Bluetooth: hci_uart: Use generic functionality from Broadcom module
[linux/fpc-iii.git] / drivers / crypto / atmel-sha.c
blob34db04addc18a40297b6801aec08d942c316d8f2
1 /*
2 * Cryptographic API.
4 * Support for ATMEL SHA1/SHA256 HW acceleration.
6 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7 * Author: Nicolas Royer <nicolas@eukrea.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as published
11 * by the Free Software Foundation.
13 * Some ideas are from omap-sham.c drivers.
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/of_device.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <linux/cryptohash.h>
37 #include <crypto/scatterwalk.h>
38 #include <crypto/algapi.h>
39 #include <crypto/sha.h>
40 #include <crypto/hash.h>
41 #include <crypto/internal/hash.h>
42 #include <linux/platform_data/crypto-atmel.h>
43 #include "atmel-sha-regs.h"
45 /* SHA flags */
46 #define SHA_FLAGS_BUSY BIT(0)
47 #define SHA_FLAGS_FINAL BIT(1)
48 #define SHA_FLAGS_DMA_ACTIVE BIT(2)
49 #define SHA_FLAGS_OUTPUT_READY BIT(3)
50 #define SHA_FLAGS_INIT BIT(4)
51 #define SHA_FLAGS_CPU BIT(5)
52 #define SHA_FLAGS_DMA_READY BIT(6)
54 #define SHA_FLAGS_FINUP BIT(16)
55 #define SHA_FLAGS_SG BIT(17)
56 #define SHA_FLAGS_SHA1 BIT(18)
57 #define SHA_FLAGS_SHA224 BIT(19)
58 #define SHA_FLAGS_SHA256 BIT(20)
59 #define SHA_FLAGS_SHA384 BIT(21)
60 #define SHA_FLAGS_SHA512 BIT(22)
61 #define SHA_FLAGS_ERROR BIT(23)
62 #define SHA_FLAGS_PAD BIT(24)
64 #define SHA_OP_UPDATE 1
65 #define SHA_OP_FINAL 2
67 #define SHA_BUFFER_LEN PAGE_SIZE
69 #define ATMEL_SHA_DMA_THRESHOLD 56
71 struct atmel_sha_caps {
72 bool has_dma;
73 bool has_dualbuff;
74 bool has_sha224;
75 bool has_sha_384_512;
78 struct atmel_sha_dev;
80 struct atmel_sha_reqctx {
81 struct atmel_sha_dev *dd;
82 unsigned long flags;
83 unsigned long op;
85 u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
86 u64 digcnt[2];
87 size_t bufcnt;
88 size_t buflen;
89 dma_addr_t dma_addr;
91 /* walk state */
92 struct scatterlist *sg;
93 unsigned int offset; /* offset in current sg */
94 unsigned int total; /* total request */
96 size_t block_size;
98 u8 buffer[0] __aligned(sizeof(u32));
101 struct atmel_sha_ctx {
102 struct atmel_sha_dev *dd;
104 unsigned long flags;
107 #define ATMEL_SHA_QUEUE_LENGTH 50
109 struct atmel_sha_dma {
110 struct dma_chan *chan;
111 struct dma_slave_config dma_conf;
114 struct atmel_sha_dev {
115 struct list_head list;
116 unsigned long phys_base;
117 struct device *dev;
118 struct clk *iclk;
119 int irq;
120 void __iomem *io_base;
122 spinlock_t lock;
123 int err;
124 struct tasklet_struct done_task;
126 unsigned long flags;
127 struct crypto_queue queue;
128 struct ahash_request *req;
130 struct atmel_sha_dma dma_lch_in;
132 struct atmel_sha_caps caps;
134 u32 hw_version;
137 struct atmel_sha_drv {
138 struct list_head dev_list;
139 spinlock_t lock;
142 static struct atmel_sha_drv atmel_sha = {
143 .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
144 .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
147 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
149 return readl_relaxed(dd->io_base + offset);
152 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
153 u32 offset, u32 value)
155 writel_relaxed(value, dd->io_base + offset);
158 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
160 size_t count;
162 while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
163 count = min(ctx->sg->length - ctx->offset, ctx->total);
164 count = min(count, ctx->buflen - ctx->bufcnt);
166 if (count <= 0)
167 break;
169 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
170 ctx->offset, count, 0);
172 ctx->bufcnt += count;
173 ctx->offset += count;
174 ctx->total -= count;
176 if (ctx->offset == ctx->sg->length) {
177 ctx->sg = sg_next(ctx->sg);
178 if (ctx->sg)
179 ctx->offset = 0;
180 else
181 ctx->total = 0;
185 return 0;
189 * The purpose of this padding is to ensure that the padded message is a
190 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
191 * The bit "1" is appended at the end of the message followed by
192 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
193 * 128 bits block (SHA384/SHA512) equals to the message length in bits
194 * is appended.
196 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
197 * - if message length < 56 bytes then padlen = 56 - message length
198 * - else padlen = 64 + 56 - message length
200 * For SHA384/SHA512, padlen is calculated as followed:
201 * - if message length < 112 bytes then padlen = 112 - message length
202 * - else padlen = 128 + 112 - message length
204 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
206 unsigned int index, padlen;
207 u64 bits[2];
208 u64 size[2];
210 size[0] = ctx->digcnt[0];
211 size[1] = ctx->digcnt[1];
213 size[0] += ctx->bufcnt;
214 if (size[0] < ctx->bufcnt)
215 size[1]++;
217 size[0] += length;
218 if (size[0] < length)
219 size[1]++;
221 bits[1] = cpu_to_be64(size[0] << 3);
222 bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
224 if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) {
225 index = ctx->bufcnt & 0x7f;
226 padlen = (index < 112) ? (112 - index) : ((128+112) - index);
227 *(ctx->buffer + ctx->bufcnt) = 0x80;
228 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
229 memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
230 ctx->bufcnt += padlen + 16;
231 ctx->flags |= SHA_FLAGS_PAD;
232 } else {
233 index = ctx->bufcnt & 0x3f;
234 padlen = (index < 56) ? (56 - index) : ((64+56) - index);
235 *(ctx->buffer + ctx->bufcnt) = 0x80;
236 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
237 memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
238 ctx->bufcnt += padlen + 8;
239 ctx->flags |= SHA_FLAGS_PAD;
243 static int atmel_sha_init(struct ahash_request *req)
245 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
246 struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
247 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
248 struct atmel_sha_dev *dd = NULL;
249 struct atmel_sha_dev *tmp;
251 spin_lock_bh(&atmel_sha.lock);
252 if (!tctx->dd) {
253 list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
254 dd = tmp;
255 break;
257 tctx->dd = dd;
258 } else {
259 dd = tctx->dd;
262 spin_unlock_bh(&atmel_sha.lock);
264 ctx->dd = dd;
266 ctx->flags = 0;
268 dev_dbg(dd->dev, "init: digest size: %d\n",
269 crypto_ahash_digestsize(tfm));
271 switch (crypto_ahash_digestsize(tfm)) {
272 case SHA1_DIGEST_SIZE:
273 ctx->flags |= SHA_FLAGS_SHA1;
274 ctx->block_size = SHA1_BLOCK_SIZE;
275 break;
276 case SHA224_DIGEST_SIZE:
277 ctx->flags |= SHA_FLAGS_SHA224;
278 ctx->block_size = SHA224_BLOCK_SIZE;
279 break;
280 case SHA256_DIGEST_SIZE:
281 ctx->flags |= SHA_FLAGS_SHA256;
282 ctx->block_size = SHA256_BLOCK_SIZE;
283 break;
284 case SHA384_DIGEST_SIZE:
285 ctx->flags |= SHA_FLAGS_SHA384;
286 ctx->block_size = SHA384_BLOCK_SIZE;
287 break;
288 case SHA512_DIGEST_SIZE:
289 ctx->flags |= SHA_FLAGS_SHA512;
290 ctx->block_size = SHA512_BLOCK_SIZE;
291 break;
292 default:
293 return -EINVAL;
294 break;
297 ctx->bufcnt = 0;
298 ctx->digcnt[0] = 0;
299 ctx->digcnt[1] = 0;
300 ctx->buflen = SHA_BUFFER_LEN;
302 return 0;
305 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
307 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
308 u32 valcr = 0, valmr = SHA_MR_MODE_AUTO;
310 if (likely(dma)) {
311 if (!dd->caps.has_dma)
312 atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
313 valmr = SHA_MR_MODE_PDC;
314 if (dd->caps.has_dualbuff)
315 valmr |= SHA_MR_DUALBUFF;
316 } else {
317 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
320 if (ctx->flags & SHA_FLAGS_SHA1)
321 valmr |= SHA_MR_ALGO_SHA1;
322 else if (ctx->flags & SHA_FLAGS_SHA224)
323 valmr |= SHA_MR_ALGO_SHA224;
324 else if (ctx->flags & SHA_FLAGS_SHA256)
325 valmr |= SHA_MR_ALGO_SHA256;
326 else if (ctx->flags & SHA_FLAGS_SHA384)
327 valmr |= SHA_MR_ALGO_SHA384;
328 else if (ctx->flags & SHA_FLAGS_SHA512)
329 valmr |= SHA_MR_ALGO_SHA512;
331 /* Setting CR_FIRST only for the first iteration */
332 if (!(ctx->digcnt[0] || ctx->digcnt[1]))
333 valcr = SHA_CR_FIRST;
335 atmel_sha_write(dd, SHA_CR, valcr);
336 atmel_sha_write(dd, SHA_MR, valmr);
339 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
340 size_t length, int final)
342 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
343 int count, len32;
344 const u32 *buffer = (const u32 *)buf;
346 dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
347 ctx->digcnt[1], ctx->digcnt[0], length, final);
349 atmel_sha_write_ctrl(dd, 0);
351 /* should be non-zero before next lines to disable clocks later */
352 ctx->digcnt[0] += length;
353 if (ctx->digcnt[0] < length)
354 ctx->digcnt[1]++;
356 if (final)
357 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
359 len32 = DIV_ROUND_UP(length, sizeof(u32));
361 dd->flags |= SHA_FLAGS_CPU;
363 for (count = 0; count < len32; count++)
364 atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
366 return -EINPROGRESS;
369 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
370 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
372 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
373 int len32;
375 dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
376 ctx->digcnt[1], ctx->digcnt[0], length1, final);
378 len32 = DIV_ROUND_UP(length1, sizeof(u32));
379 atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
380 atmel_sha_write(dd, SHA_TPR, dma_addr1);
381 atmel_sha_write(dd, SHA_TCR, len32);
383 len32 = DIV_ROUND_UP(length2, sizeof(u32));
384 atmel_sha_write(dd, SHA_TNPR, dma_addr2);
385 atmel_sha_write(dd, SHA_TNCR, len32);
387 atmel_sha_write_ctrl(dd, 1);
389 /* should be non-zero before next lines to disable clocks later */
390 ctx->digcnt[0] += length1;
391 if (ctx->digcnt[0] < length1)
392 ctx->digcnt[1]++;
394 if (final)
395 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
397 dd->flags |= SHA_FLAGS_DMA_ACTIVE;
399 /* Start DMA transfer */
400 atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
402 return -EINPROGRESS;
405 static void atmel_sha_dma_callback(void *data)
407 struct atmel_sha_dev *dd = data;
409 /* dma_lch_in - completed - wait DATRDY */
410 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
413 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
414 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
416 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
417 struct dma_async_tx_descriptor *in_desc;
418 struct scatterlist sg[2];
420 dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
421 ctx->digcnt[1], ctx->digcnt[0], length1, final);
423 if (ctx->flags & (SHA_FLAGS_SHA1 | SHA_FLAGS_SHA224 |
424 SHA_FLAGS_SHA256)) {
425 dd->dma_lch_in.dma_conf.src_maxburst = 16;
426 dd->dma_lch_in.dma_conf.dst_maxburst = 16;
427 } else {
428 dd->dma_lch_in.dma_conf.src_maxburst = 32;
429 dd->dma_lch_in.dma_conf.dst_maxburst = 32;
432 dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
434 if (length2) {
435 sg_init_table(sg, 2);
436 sg_dma_address(&sg[0]) = dma_addr1;
437 sg_dma_len(&sg[0]) = length1;
438 sg_dma_address(&sg[1]) = dma_addr2;
439 sg_dma_len(&sg[1]) = length2;
440 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
441 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
442 } else {
443 sg_init_table(sg, 1);
444 sg_dma_address(&sg[0]) = dma_addr1;
445 sg_dma_len(&sg[0]) = length1;
446 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
447 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
449 if (!in_desc)
450 return -EINVAL;
452 in_desc->callback = atmel_sha_dma_callback;
453 in_desc->callback_param = dd;
455 atmel_sha_write_ctrl(dd, 1);
457 /* should be non-zero before next lines to disable clocks later */
458 ctx->digcnt[0] += length1;
459 if (ctx->digcnt[0] < length1)
460 ctx->digcnt[1]++;
462 if (final)
463 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
465 dd->flags |= SHA_FLAGS_DMA_ACTIVE;
467 /* Start DMA transfer */
468 dmaengine_submit(in_desc);
469 dma_async_issue_pending(dd->dma_lch_in.chan);
471 return -EINPROGRESS;
474 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
475 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
477 if (dd->caps.has_dma)
478 return atmel_sha_xmit_dma(dd, dma_addr1, length1,
479 dma_addr2, length2, final);
480 else
481 return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
482 dma_addr2, length2, final);
485 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
487 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
488 int bufcnt;
490 atmel_sha_append_sg(ctx);
491 atmel_sha_fill_padding(ctx, 0);
492 bufcnt = ctx->bufcnt;
493 ctx->bufcnt = 0;
495 return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
498 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
499 struct atmel_sha_reqctx *ctx,
500 size_t length, int final)
502 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
503 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
504 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
505 dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen +
506 ctx->block_size);
507 return -EINVAL;
510 ctx->flags &= ~SHA_FLAGS_SG;
512 /* next call does not fail... so no unmap in the case of error */
513 return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
516 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
518 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
519 unsigned int final;
520 size_t count;
522 atmel_sha_append_sg(ctx);
524 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
526 dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: 0x%llx 0x%llx, final: %d\n",
527 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
529 if (final)
530 atmel_sha_fill_padding(ctx, 0);
532 if (final || (ctx->bufcnt == ctx->buflen && ctx->total)) {
533 count = ctx->bufcnt;
534 ctx->bufcnt = 0;
535 return atmel_sha_xmit_dma_map(dd, ctx, count, final);
538 return 0;
541 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
543 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
544 unsigned int length, final, tail;
545 struct scatterlist *sg;
546 unsigned int count;
548 if (!ctx->total)
549 return 0;
551 if (ctx->bufcnt || ctx->offset)
552 return atmel_sha_update_dma_slow(dd);
554 dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %u, total: %u\n",
555 ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
557 sg = ctx->sg;
559 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
560 return atmel_sha_update_dma_slow(dd);
562 if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
563 /* size is not ctx->block_size aligned */
564 return atmel_sha_update_dma_slow(dd);
566 length = min(ctx->total, sg->length);
568 if (sg_is_last(sg)) {
569 if (!(ctx->flags & SHA_FLAGS_FINUP)) {
570 /* not last sg must be ctx->block_size aligned */
571 tail = length & (ctx->block_size - 1);
572 length -= tail;
576 ctx->total -= length;
577 ctx->offset = length; /* offset where to start slow */
579 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
581 /* Add padding */
582 if (final) {
583 tail = length & (ctx->block_size - 1);
584 length -= tail;
585 ctx->total += tail;
586 ctx->offset = length; /* offset where to start slow */
588 sg = ctx->sg;
589 atmel_sha_append_sg(ctx);
591 atmel_sha_fill_padding(ctx, length);
593 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
594 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
595 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
596 dev_err(dd->dev, "dma %u bytes error\n",
597 ctx->buflen + ctx->block_size);
598 return -EINVAL;
601 if (length == 0) {
602 ctx->flags &= ~SHA_FLAGS_SG;
603 count = ctx->bufcnt;
604 ctx->bufcnt = 0;
605 return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
606 0, final);
607 } else {
608 ctx->sg = sg;
609 if (!dma_map_sg(dd->dev, ctx->sg, 1,
610 DMA_TO_DEVICE)) {
611 dev_err(dd->dev, "dma_map_sg error\n");
612 return -EINVAL;
615 ctx->flags |= SHA_FLAGS_SG;
617 count = ctx->bufcnt;
618 ctx->bufcnt = 0;
619 return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
620 length, ctx->dma_addr, count, final);
624 if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
625 dev_err(dd->dev, "dma_map_sg error\n");
626 return -EINVAL;
629 ctx->flags |= SHA_FLAGS_SG;
631 /* next call does not fail... so no unmap in the case of error */
632 return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
633 0, final);
636 static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
638 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
640 if (ctx->flags & SHA_FLAGS_SG) {
641 dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
642 if (ctx->sg->length == ctx->offset) {
643 ctx->sg = sg_next(ctx->sg);
644 if (ctx->sg)
645 ctx->offset = 0;
647 if (ctx->flags & SHA_FLAGS_PAD) {
648 dma_unmap_single(dd->dev, ctx->dma_addr,
649 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
651 } else {
652 dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
653 ctx->block_size, DMA_TO_DEVICE);
656 return 0;
659 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
661 struct ahash_request *req = dd->req;
662 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
663 int err;
665 dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
666 ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
668 if (ctx->flags & SHA_FLAGS_CPU)
669 err = atmel_sha_update_cpu(dd);
670 else
671 err = atmel_sha_update_dma_start(dd);
673 /* wait for dma completion before can take more data */
674 dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
675 err, ctx->digcnt[1], ctx->digcnt[0]);
677 return err;
680 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
682 struct ahash_request *req = dd->req;
683 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
684 int err = 0;
685 int count;
687 if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
688 atmel_sha_fill_padding(ctx, 0);
689 count = ctx->bufcnt;
690 ctx->bufcnt = 0;
691 err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
693 /* faster to handle last block with cpu */
694 else {
695 atmel_sha_fill_padding(ctx, 0);
696 count = ctx->bufcnt;
697 ctx->bufcnt = 0;
698 err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
701 dev_dbg(dd->dev, "final_req: err: %d\n", err);
703 return err;
706 static void atmel_sha_copy_hash(struct ahash_request *req)
708 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
709 u32 *hash = (u32 *)ctx->digest;
710 int i;
712 if (ctx->flags & SHA_FLAGS_SHA1)
713 for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++)
714 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
715 else if (ctx->flags & SHA_FLAGS_SHA224)
716 for (i = 0; i < SHA224_DIGEST_SIZE / sizeof(u32); i++)
717 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
718 else if (ctx->flags & SHA_FLAGS_SHA256)
719 for (i = 0; i < SHA256_DIGEST_SIZE / sizeof(u32); i++)
720 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
721 else if (ctx->flags & SHA_FLAGS_SHA384)
722 for (i = 0; i < SHA384_DIGEST_SIZE / sizeof(u32); i++)
723 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
724 else
725 for (i = 0; i < SHA512_DIGEST_SIZE / sizeof(u32); i++)
726 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
729 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
731 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
733 if (!req->result)
734 return;
736 if (ctx->flags & SHA_FLAGS_SHA1)
737 memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
738 else if (ctx->flags & SHA_FLAGS_SHA224)
739 memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
740 else if (ctx->flags & SHA_FLAGS_SHA256)
741 memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
742 else if (ctx->flags & SHA_FLAGS_SHA384)
743 memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
744 else
745 memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
748 static int atmel_sha_finish(struct ahash_request *req)
750 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
751 struct atmel_sha_dev *dd = ctx->dd;
752 int err = 0;
754 if (ctx->digcnt[0] || ctx->digcnt[1])
755 atmel_sha_copy_ready_hash(req);
757 dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %d\n", ctx->digcnt[1],
758 ctx->digcnt[0], ctx->bufcnt);
760 return err;
763 static void atmel_sha_finish_req(struct ahash_request *req, int err)
765 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
766 struct atmel_sha_dev *dd = ctx->dd;
768 if (!err) {
769 atmel_sha_copy_hash(req);
770 if (SHA_FLAGS_FINAL & dd->flags)
771 err = atmel_sha_finish(req);
772 } else {
773 ctx->flags |= SHA_FLAGS_ERROR;
776 /* atomic operation is not needed here */
777 dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
778 SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY);
780 clk_disable_unprepare(dd->iclk);
782 if (req->base.complete)
783 req->base.complete(&req->base, err);
785 /* handle new request */
786 tasklet_schedule(&dd->done_task);
789 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
791 clk_prepare_enable(dd->iclk);
793 if (!(SHA_FLAGS_INIT & dd->flags)) {
794 atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
795 dd->flags |= SHA_FLAGS_INIT;
796 dd->err = 0;
799 return 0;
802 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
804 return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
807 static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
809 atmel_sha_hw_init(dd);
811 dd->hw_version = atmel_sha_get_version(dd);
813 dev_info(dd->dev,
814 "version: 0x%x\n", dd->hw_version);
816 clk_disable_unprepare(dd->iclk);
819 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
820 struct ahash_request *req)
822 struct crypto_async_request *async_req, *backlog;
823 struct atmel_sha_reqctx *ctx;
824 unsigned long flags;
825 int err = 0, ret = 0;
827 spin_lock_irqsave(&dd->lock, flags);
828 if (req)
829 ret = ahash_enqueue_request(&dd->queue, req);
831 if (SHA_FLAGS_BUSY & dd->flags) {
832 spin_unlock_irqrestore(&dd->lock, flags);
833 return ret;
836 backlog = crypto_get_backlog(&dd->queue);
837 async_req = crypto_dequeue_request(&dd->queue);
838 if (async_req)
839 dd->flags |= SHA_FLAGS_BUSY;
841 spin_unlock_irqrestore(&dd->lock, flags);
843 if (!async_req)
844 return ret;
846 if (backlog)
847 backlog->complete(backlog, -EINPROGRESS);
849 req = ahash_request_cast(async_req);
850 dd->req = req;
851 ctx = ahash_request_ctx(req);
853 dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
854 ctx->op, req->nbytes);
856 err = atmel_sha_hw_init(dd);
858 if (err)
859 goto err1;
861 if (ctx->op == SHA_OP_UPDATE) {
862 err = atmel_sha_update_req(dd);
863 if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
864 /* no final() after finup() */
865 err = atmel_sha_final_req(dd);
866 } else if (ctx->op == SHA_OP_FINAL) {
867 err = atmel_sha_final_req(dd);
870 err1:
871 if (err != -EINPROGRESS)
872 /* done_task will not finish it, so do it here */
873 atmel_sha_finish_req(req, err);
875 dev_dbg(dd->dev, "exit, err: %d\n", err);
877 return ret;
880 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
882 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
883 struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
884 struct atmel_sha_dev *dd = tctx->dd;
886 ctx->op = op;
888 return atmel_sha_handle_queue(dd, req);
891 static int atmel_sha_update(struct ahash_request *req)
893 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
895 if (!req->nbytes)
896 return 0;
898 ctx->total = req->nbytes;
899 ctx->sg = req->src;
900 ctx->offset = 0;
902 if (ctx->flags & SHA_FLAGS_FINUP) {
903 if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
904 /* faster to use CPU for short transfers */
905 ctx->flags |= SHA_FLAGS_CPU;
906 } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
907 atmel_sha_append_sg(ctx);
908 return 0;
910 return atmel_sha_enqueue(req, SHA_OP_UPDATE);
913 static int atmel_sha_final(struct ahash_request *req)
915 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
916 struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
917 struct atmel_sha_dev *dd = tctx->dd;
919 int err = 0;
921 ctx->flags |= SHA_FLAGS_FINUP;
923 if (ctx->flags & SHA_FLAGS_ERROR)
924 return 0; /* uncompleted hash is not needed */
926 if (ctx->bufcnt) {
927 return atmel_sha_enqueue(req, SHA_OP_FINAL);
928 } else if (!(ctx->flags & SHA_FLAGS_PAD)) { /* add padding */
929 err = atmel_sha_hw_init(dd);
930 if (err)
931 goto err1;
933 dd->flags |= SHA_FLAGS_BUSY;
934 err = atmel_sha_final_req(dd);
935 } else {
936 /* copy ready hash (+ finalize hmac) */
937 return atmel_sha_finish(req);
940 err1:
941 if (err != -EINPROGRESS)
942 /* done_task will not finish it, so do it here */
943 atmel_sha_finish_req(req, err);
945 return err;
948 static int atmel_sha_finup(struct ahash_request *req)
950 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
951 int err1, err2;
953 ctx->flags |= SHA_FLAGS_FINUP;
955 err1 = atmel_sha_update(req);
956 if (err1 == -EINPROGRESS || err1 == -EBUSY)
957 return err1;
960 * final() has to be always called to cleanup resources
961 * even if udpate() failed, except EINPROGRESS
963 err2 = atmel_sha_final(req);
965 return err1 ?: err2;
968 static int atmel_sha_digest(struct ahash_request *req)
970 return atmel_sha_init(req) ?: atmel_sha_finup(req);
973 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
975 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
976 sizeof(struct atmel_sha_reqctx) +
977 SHA_BUFFER_LEN + SHA512_BLOCK_SIZE);
979 return 0;
982 static struct ahash_alg sha_1_256_algs[] = {
984 .init = atmel_sha_init,
985 .update = atmel_sha_update,
986 .final = atmel_sha_final,
987 .finup = atmel_sha_finup,
988 .digest = atmel_sha_digest,
989 .halg = {
990 .digestsize = SHA1_DIGEST_SIZE,
991 .base = {
992 .cra_name = "sha1",
993 .cra_driver_name = "atmel-sha1",
994 .cra_priority = 100,
995 .cra_flags = CRYPTO_ALG_ASYNC,
996 .cra_blocksize = SHA1_BLOCK_SIZE,
997 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
998 .cra_alignmask = 0,
999 .cra_module = THIS_MODULE,
1000 .cra_init = atmel_sha_cra_init,
1005 .init = atmel_sha_init,
1006 .update = atmel_sha_update,
1007 .final = atmel_sha_final,
1008 .finup = atmel_sha_finup,
1009 .digest = atmel_sha_digest,
1010 .halg = {
1011 .digestsize = SHA256_DIGEST_SIZE,
1012 .base = {
1013 .cra_name = "sha256",
1014 .cra_driver_name = "atmel-sha256",
1015 .cra_priority = 100,
1016 .cra_flags = CRYPTO_ALG_ASYNC,
1017 .cra_blocksize = SHA256_BLOCK_SIZE,
1018 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1019 .cra_alignmask = 0,
1020 .cra_module = THIS_MODULE,
1021 .cra_init = atmel_sha_cra_init,
1027 static struct ahash_alg sha_224_alg = {
1028 .init = atmel_sha_init,
1029 .update = atmel_sha_update,
1030 .final = atmel_sha_final,
1031 .finup = atmel_sha_finup,
1032 .digest = atmel_sha_digest,
1033 .halg = {
1034 .digestsize = SHA224_DIGEST_SIZE,
1035 .base = {
1036 .cra_name = "sha224",
1037 .cra_driver_name = "atmel-sha224",
1038 .cra_priority = 100,
1039 .cra_flags = CRYPTO_ALG_ASYNC,
1040 .cra_blocksize = SHA224_BLOCK_SIZE,
1041 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1042 .cra_alignmask = 0,
1043 .cra_module = THIS_MODULE,
1044 .cra_init = atmel_sha_cra_init,
1049 static struct ahash_alg sha_384_512_algs[] = {
1051 .init = atmel_sha_init,
1052 .update = atmel_sha_update,
1053 .final = atmel_sha_final,
1054 .finup = atmel_sha_finup,
1055 .digest = atmel_sha_digest,
1056 .halg = {
1057 .digestsize = SHA384_DIGEST_SIZE,
1058 .base = {
1059 .cra_name = "sha384",
1060 .cra_driver_name = "atmel-sha384",
1061 .cra_priority = 100,
1062 .cra_flags = CRYPTO_ALG_ASYNC,
1063 .cra_blocksize = SHA384_BLOCK_SIZE,
1064 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1065 .cra_alignmask = 0x3,
1066 .cra_module = THIS_MODULE,
1067 .cra_init = atmel_sha_cra_init,
1072 .init = atmel_sha_init,
1073 .update = atmel_sha_update,
1074 .final = atmel_sha_final,
1075 .finup = atmel_sha_finup,
1076 .digest = atmel_sha_digest,
1077 .halg = {
1078 .digestsize = SHA512_DIGEST_SIZE,
1079 .base = {
1080 .cra_name = "sha512",
1081 .cra_driver_name = "atmel-sha512",
1082 .cra_priority = 100,
1083 .cra_flags = CRYPTO_ALG_ASYNC,
1084 .cra_blocksize = SHA512_BLOCK_SIZE,
1085 .cra_ctxsize = sizeof(struct atmel_sha_ctx),
1086 .cra_alignmask = 0x3,
1087 .cra_module = THIS_MODULE,
1088 .cra_init = atmel_sha_cra_init,
1094 static void atmel_sha_done_task(unsigned long data)
1096 struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1097 int err = 0;
1099 if (!(SHA_FLAGS_BUSY & dd->flags)) {
1100 atmel_sha_handle_queue(dd, NULL);
1101 return;
1104 if (SHA_FLAGS_CPU & dd->flags) {
1105 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1106 dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1107 goto finish;
1109 } else if (SHA_FLAGS_DMA_READY & dd->flags) {
1110 if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1111 dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1112 atmel_sha_update_dma_stop(dd);
1113 if (dd->err) {
1114 err = dd->err;
1115 goto finish;
1118 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1119 /* hash or semi-hash ready */
1120 dd->flags &= ~(SHA_FLAGS_DMA_READY |
1121 SHA_FLAGS_OUTPUT_READY);
1122 err = atmel_sha_update_dma_start(dd);
1123 if (err != -EINPROGRESS)
1124 goto finish;
1127 return;
1129 finish:
1130 /* finish curent request */
1131 atmel_sha_finish_req(dd->req, err);
1134 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1136 struct atmel_sha_dev *sha_dd = dev_id;
1137 u32 reg;
1139 reg = atmel_sha_read(sha_dd, SHA_ISR);
1140 if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1141 atmel_sha_write(sha_dd, SHA_IDR, reg);
1142 if (SHA_FLAGS_BUSY & sha_dd->flags) {
1143 sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1144 if (!(SHA_FLAGS_CPU & sha_dd->flags))
1145 sha_dd->flags |= SHA_FLAGS_DMA_READY;
1146 tasklet_schedule(&sha_dd->done_task);
1147 } else {
1148 dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1150 return IRQ_HANDLED;
1153 return IRQ_NONE;
1156 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
1158 int i;
1160 for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
1161 crypto_unregister_ahash(&sha_1_256_algs[i]);
1163 if (dd->caps.has_sha224)
1164 crypto_unregister_ahash(&sha_224_alg);
1166 if (dd->caps.has_sha_384_512) {
1167 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
1168 crypto_unregister_ahash(&sha_384_512_algs[i]);
1172 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
1174 int err, i, j;
1176 for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
1177 err = crypto_register_ahash(&sha_1_256_algs[i]);
1178 if (err)
1179 goto err_sha_1_256_algs;
1182 if (dd->caps.has_sha224) {
1183 err = crypto_register_ahash(&sha_224_alg);
1184 if (err)
1185 goto err_sha_224_algs;
1188 if (dd->caps.has_sha_384_512) {
1189 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
1190 err = crypto_register_ahash(&sha_384_512_algs[i]);
1191 if (err)
1192 goto err_sha_384_512_algs;
1196 return 0;
1198 err_sha_384_512_algs:
1199 for (j = 0; j < i; j++)
1200 crypto_unregister_ahash(&sha_384_512_algs[j]);
1201 crypto_unregister_ahash(&sha_224_alg);
1202 err_sha_224_algs:
1203 i = ARRAY_SIZE(sha_1_256_algs);
1204 err_sha_1_256_algs:
1205 for (j = 0; j < i; j++)
1206 crypto_unregister_ahash(&sha_1_256_algs[j]);
1208 return err;
1211 static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
1213 struct at_dma_slave *sl = slave;
1215 if (sl && sl->dma_dev == chan->device->dev) {
1216 chan->private = sl;
1217 return true;
1218 } else {
1219 return false;
1223 static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
1224 struct crypto_platform_data *pdata)
1226 int err = -ENOMEM;
1227 dma_cap_mask_t mask_in;
1229 /* Try to grab DMA channel */
1230 dma_cap_zero(mask_in);
1231 dma_cap_set(DMA_SLAVE, mask_in);
1233 dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
1234 atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
1235 if (!dd->dma_lch_in.chan) {
1236 dev_warn(dd->dev, "no DMA channel available\n");
1237 return err;
1240 dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
1241 dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
1242 SHA_REG_DIN(0);
1243 dd->dma_lch_in.dma_conf.src_maxburst = 1;
1244 dd->dma_lch_in.dma_conf.src_addr_width =
1245 DMA_SLAVE_BUSWIDTH_4_BYTES;
1246 dd->dma_lch_in.dma_conf.dst_maxburst = 1;
1247 dd->dma_lch_in.dma_conf.dst_addr_width =
1248 DMA_SLAVE_BUSWIDTH_4_BYTES;
1249 dd->dma_lch_in.dma_conf.device_fc = false;
1251 return 0;
1254 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
1256 dma_release_channel(dd->dma_lch_in.chan);
1259 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
1262 dd->caps.has_dma = 0;
1263 dd->caps.has_dualbuff = 0;
1264 dd->caps.has_sha224 = 0;
1265 dd->caps.has_sha_384_512 = 0;
1267 /* keep only major version number */
1268 switch (dd->hw_version & 0xff0) {
1269 case 0x410:
1270 dd->caps.has_dma = 1;
1271 dd->caps.has_dualbuff = 1;
1272 dd->caps.has_sha224 = 1;
1273 dd->caps.has_sha_384_512 = 1;
1274 break;
1275 case 0x400:
1276 dd->caps.has_dma = 1;
1277 dd->caps.has_dualbuff = 1;
1278 dd->caps.has_sha224 = 1;
1279 break;
1280 case 0x320:
1281 break;
1282 default:
1283 dev_warn(dd->dev,
1284 "Unmanaged sha version, set minimum capabilities\n");
1285 break;
1289 #if defined(CONFIG_OF)
1290 static const struct of_device_id atmel_sha_dt_ids[] = {
1291 { .compatible = "atmel,at91sam9g46-sha" },
1292 { /* sentinel */ }
1295 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
1297 static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
1299 struct device_node *np = pdev->dev.of_node;
1300 struct crypto_platform_data *pdata;
1302 if (!np) {
1303 dev_err(&pdev->dev, "device node not found\n");
1304 return ERR_PTR(-EINVAL);
1307 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1308 if (!pdata) {
1309 dev_err(&pdev->dev, "could not allocate memory for pdata\n");
1310 return ERR_PTR(-ENOMEM);
1313 pdata->dma_slave = devm_kzalloc(&pdev->dev,
1314 sizeof(*(pdata->dma_slave)),
1315 GFP_KERNEL);
1316 if (!pdata->dma_slave) {
1317 dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
1318 return ERR_PTR(-ENOMEM);
1321 return pdata;
1323 #else /* CONFIG_OF */
1324 static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
1326 return ERR_PTR(-EINVAL);
1328 #endif
1330 static int atmel_sha_probe(struct platform_device *pdev)
1332 struct atmel_sha_dev *sha_dd;
1333 struct crypto_platform_data *pdata;
1334 struct device *dev = &pdev->dev;
1335 struct resource *sha_res;
1336 unsigned long sha_phys_size;
1337 int err;
1339 sha_dd = devm_kzalloc(&pdev->dev, sizeof(struct atmel_sha_dev),
1340 GFP_KERNEL);
1341 if (sha_dd == NULL) {
1342 dev_err(dev, "unable to alloc data struct.\n");
1343 err = -ENOMEM;
1344 goto sha_dd_err;
1347 sha_dd->dev = dev;
1349 platform_set_drvdata(pdev, sha_dd);
1351 INIT_LIST_HEAD(&sha_dd->list);
1353 tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
1354 (unsigned long)sha_dd);
1356 crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
1358 sha_dd->irq = -1;
1360 /* Get the base address */
1361 sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1362 if (!sha_res) {
1363 dev_err(dev, "no MEM resource info\n");
1364 err = -ENODEV;
1365 goto res_err;
1367 sha_dd->phys_base = sha_res->start;
1368 sha_phys_size = resource_size(sha_res);
1370 /* Get the IRQ */
1371 sha_dd->irq = platform_get_irq(pdev, 0);
1372 if (sha_dd->irq < 0) {
1373 dev_err(dev, "no IRQ resource info\n");
1374 err = sha_dd->irq;
1375 goto res_err;
1378 err = request_irq(sha_dd->irq, atmel_sha_irq, IRQF_SHARED, "atmel-sha",
1379 sha_dd);
1380 if (err) {
1381 dev_err(dev, "unable to request sha irq.\n");
1382 goto res_err;
1385 /* Initializing the clock */
1386 sha_dd->iclk = clk_get(&pdev->dev, "sha_clk");
1387 if (IS_ERR(sha_dd->iclk)) {
1388 dev_err(dev, "clock intialization failed.\n");
1389 err = PTR_ERR(sha_dd->iclk);
1390 goto clk_err;
1393 sha_dd->io_base = ioremap(sha_dd->phys_base, sha_phys_size);
1394 if (!sha_dd->io_base) {
1395 dev_err(dev, "can't ioremap\n");
1396 err = -ENOMEM;
1397 goto sha_io_err;
1400 atmel_sha_hw_version_init(sha_dd);
1402 atmel_sha_get_cap(sha_dd);
1404 if (sha_dd->caps.has_dma) {
1405 pdata = pdev->dev.platform_data;
1406 if (!pdata) {
1407 pdata = atmel_sha_of_init(pdev);
1408 if (IS_ERR(pdata)) {
1409 dev_err(&pdev->dev, "platform data not available\n");
1410 err = PTR_ERR(pdata);
1411 goto err_pdata;
1414 if (!pdata->dma_slave) {
1415 err = -ENXIO;
1416 goto err_pdata;
1418 err = atmel_sha_dma_init(sha_dd, pdata);
1419 if (err)
1420 goto err_sha_dma;
1422 dev_info(dev, "using %s for DMA transfers\n",
1423 dma_chan_name(sha_dd->dma_lch_in.chan));
1426 spin_lock(&atmel_sha.lock);
1427 list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
1428 spin_unlock(&atmel_sha.lock);
1430 err = atmel_sha_register_algs(sha_dd);
1431 if (err)
1432 goto err_algs;
1434 dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
1435 sha_dd->caps.has_sha224 ? "/SHA224" : "",
1436 sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
1438 return 0;
1440 err_algs:
1441 spin_lock(&atmel_sha.lock);
1442 list_del(&sha_dd->list);
1443 spin_unlock(&atmel_sha.lock);
1444 if (sha_dd->caps.has_dma)
1445 atmel_sha_dma_cleanup(sha_dd);
1446 err_sha_dma:
1447 err_pdata:
1448 iounmap(sha_dd->io_base);
1449 sha_io_err:
1450 clk_put(sha_dd->iclk);
1451 clk_err:
1452 free_irq(sha_dd->irq, sha_dd);
1453 res_err:
1454 tasklet_kill(&sha_dd->done_task);
1455 sha_dd_err:
1456 dev_err(dev, "initialization failed.\n");
1458 return err;
1461 static int atmel_sha_remove(struct platform_device *pdev)
1463 static struct atmel_sha_dev *sha_dd;
1465 sha_dd = platform_get_drvdata(pdev);
1466 if (!sha_dd)
1467 return -ENODEV;
1468 spin_lock(&atmel_sha.lock);
1469 list_del(&sha_dd->list);
1470 spin_unlock(&atmel_sha.lock);
1472 atmel_sha_unregister_algs(sha_dd);
1474 tasklet_kill(&sha_dd->done_task);
1476 if (sha_dd->caps.has_dma)
1477 atmel_sha_dma_cleanup(sha_dd);
1479 iounmap(sha_dd->io_base);
1481 clk_put(sha_dd->iclk);
1483 if (sha_dd->irq >= 0)
1484 free_irq(sha_dd->irq, sha_dd);
1486 return 0;
1489 static struct platform_driver atmel_sha_driver = {
1490 .probe = atmel_sha_probe,
1491 .remove = atmel_sha_remove,
1492 .driver = {
1493 .name = "atmel_sha",
1494 .of_match_table = of_match_ptr(atmel_sha_dt_ids),
1498 module_platform_driver(atmel_sha_driver);
1500 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
1501 MODULE_LICENSE("GPL v2");
1502 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");