2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The full GNU General Public License is in this distribution in the file
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 * Documentation: S3C6410 User's Manual == PL080S
29 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
32 * The PL080 has 8 channels available for simultaneous use, and the PL081
33 * has only two channels. So on these DMA controllers the number of channels
34 * and the number of incoming DMA signals are two totally different things.
35 * It is usually not possible to theoretically handle all physical signals,
36 * so a multiplexing scheme with possible denial of use is necessary.
38 * The PL080 has a dual bus master, PL081 has a single master.
40 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
41 * It differs in following aspects:
42 * - CH_CONFIG register at different offset,
43 * - separate CH_CONTROL2 register for transfer size,
44 * - bigger maximum transfer size,
45 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
46 * - no support for peripheral flow control.
48 * Memory to peripheral transfer may be visualized as
49 * Get data from memory to DMAC
51 * On burst request from peripheral
52 * Destination burst from DMAC to peripheral
54 * Raise terminal count interrupt
56 * For peripherals with a FIFO:
57 * Source burst size == half the depth of the peripheral FIFO
58 * Destination burst size == the depth of the peripheral FIFO
60 * (Bursts are irrelevant for mem to mem transfers - there are no burst
61 * signals, the DMA controller will simply facilitate its AHB master.)
63 * ASSUMES default (little) endianness for DMA transfers
65 * The PL08x has two flow control settings:
66 * - DMAC flow control: the transfer size defines the number of transfers
67 * which occur for the current LLI entry, and the DMAC raises TC at the
68 * end of every LLI entry. Observed behaviour shows the DMAC listening
69 * to both the BREQ and SREQ signals (contrary to documented),
70 * transferring data if either is active. The LBREQ and LSREQ signals
73 * - Peripheral flow control: the transfer size is ignored (and should be
74 * zero). The data is transferred from the current LLI entry, until
75 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
76 * will then move to the next LLI entry. Unsupported by PL080S.
78 #include <linux/amba/bus.h>
79 #include <linux/amba/pl08x.h>
80 #include <linux/debugfs.h>
81 #include <linux/delay.h>
82 #include <linux/device.h>
83 #include <linux/dmaengine.h>
84 #include <linux/dmapool.h>
85 #include <linux/dma-mapping.h>
86 #include <linux/export.h>
87 #include <linux/init.h>
88 #include <linux/interrupt.h>
89 #include <linux/module.h>
90 #include <linux/pm_runtime.h>
91 #include <linux/seq_file.h>
92 #include <linux/slab.h>
93 #include <linux/amba/pl080.h>
95 #include "dmaengine.h"
98 #define DRIVER_NAME "pl08xdmac"
100 #define PL80X_DMA_BUSWIDTHS \
101 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
102 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
103 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
104 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
106 static struct amba_driver pl08x_amba_driver
;
107 struct pl08x_driver_data
;
110 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
111 * @channels: the number of channels available in this variant
112 * @dualmaster: whether this version supports dual AHB masters or not.
113 * @nomadik: whether the channels have Nomadik security extension bits
114 * that need to be checked for permission before use and some registers are
116 * @pl080s: whether this version is a PL080S, which has separate register and
117 * LLI word for transfer size.
125 u32 max_transfer_size
;
129 * struct pl08x_bus_data - information of source or destination
130 * busses for a transfer
131 * @addr: current address
132 * @maxwidth: the maximum width of a transfer on this bus
133 * @buswidth: the width of this bus in bytes: 1, 2 or 4
135 struct pl08x_bus_data
{
141 #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
144 * struct pl08x_phy_chan - holder for the physical channels
145 * @id: physical index to this channel
146 * @lock: a lock to use when altering an instance of this struct
147 * @serving: the virtual channel currently being served by this physical
149 * @locked: channel unavailable for the system, e.g. dedicated to secure
152 struct pl08x_phy_chan
{
155 void __iomem
*reg_config
;
157 struct pl08x_dma_chan
*serving
;
162 * struct pl08x_sg - structure containing data per sg
163 * @src_addr: src address of sg
164 * @dst_addr: dst address of sg
165 * @len: transfer len in bytes
166 * @node: node for txd's dsg_list
172 struct list_head node
;
176 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
177 * @vd: virtual DMA descriptor
178 * @dsg_list: list of children sg's
179 * @llis_bus: DMA memory address (physical) start for the LLIs
180 * @llis_va: virtual memory address start for the LLIs
181 * @cctl: control reg values for current txd
182 * @ccfg: config reg values for current txd
183 * @done: this marks completed descriptors, which should not have their
185 * @cyclic: indicate cyclic transfers
188 struct virt_dma_desc vd
;
189 struct list_head dsg_list
;
192 /* Default cctl value for LLIs */
195 * Settings to be put into the physical channel when we
196 * trigger this txd. Other registers are in llis_va[0].
204 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
206 * @PL08X_CHAN_IDLE: the channel is idle
207 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
208 * channel and is running a transfer on it
209 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
210 * channel, but the transfer is currently paused
211 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
212 * channel to become available (only pertains to memcpy channels)
214 enum pl08x_dma_chan_state
{
222 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
223 * @vc: wrappped virtual channel
224 * @phychan: the physical channel utilized by this channel, if there is one
225 * @name: name of channel
226 * @cd: channel platform data
227 * @runtime_addr: address for RX/TX according to the runtime config
228 * @at: active transaction on this channel
229 * @lock: a lock for this channel data
230 * @host: a pointer to the host (internal use)
231 * @state: whether the channel is idle, paused, running etc
232 * @slave: whether this channel is a device (slave) or for memcpy
233 * @signal: the physical DMA request signal which this channel is using
234 * @mux_use: count of descriptors using this DMA request signal setting
236 struct pl08x_dma_chan
{
237 struct virt_dma_chan vc
;
238 struct pl08x_phy_chan
*phychan
;
240 const struct pl08x_channel_data
*cd
;
241 struct dma_slave_config cfg
;
242 struct pl08x_txd
*at
;
243 struct pl08x_driver_data
*host
;
244 enum pl08x_dma_chan_state state
;
251 * struct pl08x_driver_data - the local state holder for the PL08x
252 * @slave: slave engine for this instance
253 * @memcpy: memcpy engine for this instance
254 * @base: virtual memory base (remapped) for the PL08x
255 * @adev: the corresponding AMBA (PrimeCell) bus entry
256 * @vd: vendor data for this PL08x variant
257 * @pd: platform data passed in from the platform/machine
258 * @phy_chans: array of data for the physical channels
259 * @pool: a pool for the LLI descriptors
260 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
262 * @mem_buses: set to indicate memory transfers on AHB2.
263 * @lock: a spinlock for this struct
265 struct pl08x_driver_data
{
266 struct dma_device slave
;
267 struct dma_device memcpy
;
269 struct amba_device
*adev
;
270 const struct vendor_data
*vd
;
271 struct pl08x_platform_data
*pd
;
272 struct pl08x_phy_chan
*phy_chans
;
273 struct dma_pool
*pool
;
280 * PL08X specific defines
283 /* The order of words in an LLI. */
284 #define PL080_LLI_SRC 0
285 #define PL080_LLI_DST 1
286 #define PL080_LLI_LLI 2
287 #define PL080_LLI_CCTL 3
288 #define PL080S_LLI_CCTL2 4
290 /* Total words in an LLI. */
291 #define PL080_LLI_WORDS 4
292 #define PL080S_LLI_WORDS 8
295 * Number of LLIs in each LLI buffer allocated for one transfer
296 * (maximum times we call dma_pool_alloc on this pool without freeing)
298 #define MAX_NUM_TSFR_LLIS 512
299 #define PL08X_ALIGN 8
301 static inline struct pl08x_dma_chan
*to_pl08x_chan(struct dma_chan
*chan
)
303 return container_of(chan
, struct pl08x_dma_chan
, vc
.chan
);
306 static inline struct pl08x_txd
*to_pl08x_txd(struct dma_async_tx_descriptor
*tx
)
308 return container_of(tx
, struct pl08x_txd
, vd
.tx
);
314 * This gives us the DMA request input to the PL08x primecell which the
315 * peripheral described by the channel data will be routed to, possibly
316 * via a board/SoC specific external MUX. One important point to note
317 * here is that this does not depend on the physical channel.
319 static int pl08x_request_mux(struct pl08x_dma_chan
*plchan
)
321 const struct pl08x_platform_data
*pd
= plchan
->host
->pd
;
324 if (plchan
->mux_use
++ == 0 && pd
->get_xfer_signal
) {
325 ret
= pd
->get_xfer_signal(plchan
->cd
);
331 plchan
->signal
= ret
;
336 static void pl08x_release_mux(struct pl08x_dma_chan
*plchan
)
338 const struct pl08x_platform_data
*pd
= plchan
->host
->pd
;
340 if (plchan
->signal
>= 0) {
341 WARN_ON(plchan
->mux_use
== 0);
343 if (--plchan
->mux_use
== 0 && pd
->put_xfer_signal
) {
344 pd
->put_xfer_signal(plchan
->cd
, plchan
->signal
);
351 * Physical channel handling
354 /* Whether a certain channel is busy or not */
355 static int pl08x_phy_channel_busy(struct pl08x_phy_chan
*ch
)
359 val
= readl(ch
->reg_config
);
360 return val
& PL080_CONFIG_ACTIVE
;
363 static void pl08x_write_lli(struct pl08x_driver_data
*pl08x
,
364 struct pl08x_phy_chan
*phychan
, const u32
*lli
, u32 ccfg
)
366 if (pl08x
->vd
->pl080s
)
367 dev_vdbg(&pl08x
->adev
->dev
,
368 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
369 "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
370 phychan
->id
, lli
[PL080_LLI_SRC
], lli
[PL080_LLI_DST
],
371 lli
[PL080_LLI_LLI
], lli
[PL080_LLI_CCTL
],
372 lli
[PL080S_LLI_CCTL2
], ccfg
);
374 dev_vdbg(&pl08x
->adev
->dev
,
375 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
376 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
377 phychan
->id
, lli
[PL080_LLI_SRC
], lli
[PL080_LLI_DST
],
378 lli
[PL080_LLI_LLI
], lli
[PL080_LLI_CCTL
], ccfg
);
380 writel_relaxed(lli
[PL080_LLI_SRC
], phychan
->base
+ PL080_CH_SRC_ADDR
);
381 writel_relaxed(lli
[PL080_LLI_DST
], phychan
->base
+ PL080_CH_DST_ADDR
);
382 writel_relaxed(lli
[PL080_LLI_LLI
], phychan
->base
+ PL080_CH_LLI
);
383 writel_relaxed(lli
[PL080_LLI_CCTL
], phychan
->base
+ PL080_CH_CONTROL
);
385 if (pl08x
->vd
->pl080s
)
386 writel_relaxed(lli
[PL080S_LLI_CCTL2
],
387 phychan
->base
+ PL080S_CH_CONTROL2
);
389 writel(ccfg
, phychan
->reg_config
);
393 * Set the initial DMA register values i.e. those for the first LLI
394 * The next LLI pointer and the configuration interrupt bit have
395 * been set when the LLIs were constructed. Poke them into the hardware
396 * and start the transfer.
398 static void pl08x_start_next_txd(struct pl08x_dma_chan
*plchan
)
400 struct pl08x_driver_data
*pl08x
= plchan
->host
;
401 struct pl08x_phy_chan
*phychan
= plchan
->phychan
;
402 struct virt_dma_desc
*vd
= vchan_next_desc(&plchan
->vc
);
403 struct pl08x_txd
*txd
= to_pl08x_txd(&vd
->tx
);
406 list_del(&txd
->vd
.node
);
410 /* Wait for channel inactive */
411 while (pl08x_phy_channel_busy(phychan
))
414 pl08x_write_lli(pl08x
, phychan
, &txd
->llis_va
[0], txd
->ccfg
);
416 /* Enable the DMA channel */
417 /* Do not access config register until channel shows as disabled */
418 while (readl(pl08x
->base
+ PL080_EN_CHAN
) & (1 << phychan
->id
))
421 /* Do not access config register until channel shows as inactive */
422 val
= readl(phychan
->reg_config
);
423 while ((val
& PL080_CONFIG_ACTIVE
) || (val
& PL080_CONFIG_ENABLE
))
424 val
= readl(phychan
->reg_config
);
426 writel(val
| PL080_CONFIG_ENABLE
, phychan
->reg_config
);
430 * Pause the channel by setting the HALT bit.
432 * For M->P transfers, pause the DMAC first and then stop the peripheral -
433 * the FIFO can only drain if the peripheral is still requesting data.
434 * (note: this can still timeout if the DMAC FIFO never drains of data.)
436 * For P->M transfers, disable the peripheral first to stop it filling
437 * the DMAC FIFO, and then pause the DMAC.
439 static void pl08x_pause_phy_chan(struct pl08x_phy_chan
*ch
)
444 /* Set the HALT bit and wait for the FIFO to drain */
445 val
= readl(ch
->reg_config
);
446 val
|= PL080_CONFIG_HALT
;
447 writel(val
, ch
->reg_config
);
449 /* Wait for channel inactive */
450 for (timeout
= 1000; timeout
; timeout
--) {
451 if (!pl08x_phy_channel_busy(ch
))
455 if (pl08x_phy_channel_busy(ch
))
456 pr_err("pl08x: channel%u timeout waiting for pause\n", ch
->id
);
459 static void pl08x_resume_phy_chan(struct pl08x_phy_chan
*ch
)
463 /* Clear the HALT bit */
464 val
= readl(ch
->reg_config
);
465 val
&= ~PL080_CONFIG_HALT
;
466 writel(val
, ch
->reg_config
);
470 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
471 * clears any pending interrupt status. This should not be used for
472 * an on-going transfer, but as a method of shutting down a channel
473 * (eg, when it's no longer used) or terminating a transfer.
475 static void pl08x_terminate_phy_chan(struct pl08x_driver_data
*pl08x
,
476 struct pl08x_phy_chan
*ch
)
478 u32 val
= readl(ch
->reg_config
);
480 val
&= ~(PL080_CONFIG_ENABLE
| PL080_CONFIG_ERR_IRQ_MASK
|
481 PL080_CONFIG_TC_IRQ_MASK
);
483 writel(val
, ch
->reg_config
);
485 writel(1 << ch
->id
, pl08x
->base
+ PL080_ERR_CLEAR
);
486 writel(1 << ch
->id
, pl08x
->base
+ PL080_TC_CLEAR
);
489 static inline u32
get_bytes_in_cctl(u32 cctl
)
491 /* The source width defines the number of bytes */
492 u32 bytes
= cctl
& PL080_CONTROL_TRANSFER_SIZE_MASK
;
494 cctl
&= PL080_CONTROL_SWIDTH_MASK
;
496 switch (cctl
>> PL080_CONTROL_SWIDTH_SHIFT
) {
497 case PL080_WIDTH_8BIT
:
499 case PL080_WIDTH_16BIT
:
502 case PL080_WIDTH_32BIT
:
509 static inline u32
get_bytes_in_cctl_pl080s(u32 cctl
, u32 cctl1
)
511 /* The source width defines the number of bytes */
512 u32 bytes
= cctl1
& PL080S_CONTROL_TRANSFER_SIZE_MASK
;
514 cctl
&= PL080_CONTROL_SWIDTH_MASK
;
516 switch (cctl
>> PL080_CONTROL_SWIDTH_SHIFT
) {
517 case PL080_WIDTH_8BIT
:
519 case PL080_WIDTH_16BIT
:
522 case PL080_WIDTH_32BIT
:
529 /* The channel should be paused when calling this */
530 static u32
pl08x_getbytes_chan(struct pl08x_dma_chan
*plchan
)
532 struct pl08x_driver_data
*pl08x
= plchan
->host
;
533 const u32
*llis_va
, *llis_va_limit
;
534 struct pl08x_phy_chan
*ch
;
536 struct pl08x_txd
*txd
;
541 ch
= plchan
->phychan
;
548 * Follow the LLIs to get the number of remaining
549 * bytes in the currently active transaction.
551 clli
= readl(ch
->base
+ PL080_CH_LLI
) & ~PL080_LLI_LM_AHB2
;
553 /* First get the remaining bytes in the active transfer */
554 if (pl08x
->vd
->pl080s
)
555 bytes
= get_bytes_in_cctl_pl080s(
556 readl(ch
->base
+ PL080_CH_CONTROL
),
557 readl(ch
->base
+ PL080S_CH_CONTROL2
));
559 bytes
= get_bytes_in_cctl(readl(ch
->base
+ PL080_CH_CONTROL
));
564 llis_va
= txd
->llis_va
;
565 llis_bus
= txd
->llis_bus
;
567 llis_max_words
= pl08x
->lli_words
* MAX_NUM_TSFR_LLIS
;
568 BUG_ON(clli
< llis_bus
|| clli
>= llis_bus
+
569 sizeof(u32
) * llis_max_words
);
572 * Locate the next LLI - as this is an array,
573 * it's simple maths to find.
575 llis_va
+= (clli
- llis_bus
) / sizeof(u32
);
577 llis_va_limit
= llis_va
+ llis_max_words
;
579 for (; llis_va
< llis_va_limit
; llis_va
+= pl08x
->lli_words
) {
580 if (pl08x
->vd
->pl080s
)
581 bytes
+= get_bytes_in_cctl_pl080s(
582 llis_va
[PL080_LLI_CCTL
],
583 llis_va
[PL080S_LLI_CCTL2
]);
585 bytes
+= get_bytes_in_cctl(llis_va
[PL080_LLI_CCTL
]);
588 * A LLI pointer going backward terminates the LLI list
590 if (llis_va
[PL080_LLI_LLI
] <= clli
)
598 * Allocate a physical channel for a virtual channel
600 * Try to locate a physical channel to be used for this transfer. If all
601 * are taken return NULL and the requester will have to cope by using
602 * some fallback PIO mode or retrying later.
604 static struct pl08x_phy_chan
*
605 pl08x_get_phy_channel(struct pl08x_driver_data
*pl08x
,
606 struct pl08x_dma_chan
*virt_chan
)
608 struct pl08x_phy_chan
*ch
= NULL
;
612 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
613 ch
= &pl08x
->phy_chans
[i
];
615 spin_lock_irqsave(&ch
->lock
, flags
);
617 if (!ch
->locked
&& !ch
->serving
) {
618 ch
->serving
= virt_chan
;
619 spin_unlock_irqrestore(&ch
->lock
, flags
);
623 spin_unlock_irqrestore(&ch
->lock
, flags
);
626 if (i
== pl08x
->vd
->channels
) {
627 /* No physical channel available, cope with it */
634 /* Mark the physical channel as free. Note, this write is atomic. */
635 static inline void pl08x_put_phy_channel(struct pl08x_driver_data
*pl08x
,
636 struct pl08x_phy_chan
*ch
)
642 * Try to allocate a physical channel. When successful, assign it to
643 * this virtual channel, and initiate the next descriptor. The
644 * virtual channel lock must be held at this point.
646 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan
*plchan
)
648 struct pl08x_driver_data
*pl08x
= plchan
->host
;
649 struct pl08x_phy_chan
*ch
;
651 ch
= pl08x_get_phy_channel(pl08x
, plchan
);
653 dev_dbg(&pl08x
->adev
->dev
, "no physical channel available for xfer on %s\n", plchan
->name
);
654 plchan
->state
= PL08X_CHAN_WAITING
;
658 dev_dbg(&pl08x
->adev
->dev
, "allocated physical channel %d for xfer on %s\n",
659 ch
->id
, plchan
->name
);
661 plchan
->phychan
= ch
;
662 plchan
->state
= PL08X_CHAN_RUNNING
;
663 pl08x_start_next_txd(plchan
);
666 static void pl08x_phy_reassign_start(struct pl08x_phy_chan
*ch
,
667 struct pl08x_dma_chan
*plchan
)
669 struct pl08x_driver_data
*pl08x
= plchan
->host
;
671 dev_dbg(&pl08x
->adev
->dev
, "reassigned physical channel %d for xfer on %s\n",
672 ch
->id
, plchan
->name
);
675 * We do this without taking the lock; we're really only concerned
676 * about whether this pointer is NULL or not, and we're guaranteed
677 * that this will only be called when it _already_ is non-NULL.
679 ch
->serving
= plchan
;
680 plchan
->phychan
= ch
;
681 plchan
->state
= PL08X_CHAN_RUNNING
;
682 pl08x_start_next_txd(plchan
);
686 * Free a physical DMA channel, potentially reallocating it to another
687 * virtual channel if we have any pending.
689 static void pl08x_phy_free(struct pl08x_dma_chan
*plchan
)
691 struct pl08x_driver_data
*pl08x
= plchan
->host
;
692 struct pl08x_dma_chan
*p
, *next
;
697 /* Find a waiting virtual channel for the next transfer. */
698 list_for_each_entry(p
, &pl08x
->memcpy
.channels
, vc
.chan
.device_node
)
699 if (p
->state
== PL08X_CHAN_WAITING
) {
705 list_for_each_entry(p
, &pl08x
->slave
.channels
, vc
.chan
.device_node
)
706 if (p
->state
== PL08X_CHAN_WAITING
) {
712 /* Ensure that the physical channel is stopped */
713 pl08x_terminate_phy_chan(pl08x
, plchan
->phychan
);
719 * Eww. We know this isn't going to deadlock
720 * but lockdep probably doesn't.
722 spin_lock(&next
->vc
.lock
);
723 /* Re-check the state now that we have the lock */
724 success
= next
->state
== PL08X_CHAN_WAITING
;
726 pl08x_phy_reassign_start(plchan
->phychan
, next
);
727 spin_unlock(&next
->vc
.lock
);
729 /* If the state changed, try to find another channel */
733 /* No more jobs, so free up the physical channel */
734 pl08x_put_phy_channel(pl08x
, plchan
->phychan
);
737 plchan
->phychan
= NULL
;
738 plchan
->state
= PL08X_CHAN_IDLE
;
745 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded
)
748 case PL080_WIDTH_8BIT
:
750 case PL080_WIDTH_16BIT
:
752 case PL080_WIDTH_32BIT
:
761 static inline u32
pl08x_cctl_bits(u32 cctl
, u8 srcwidth
, u8 dstwidth
,
766 /* Remove all src, dst and transfer size bits */
767 retbits
&= ~PL080_CONTROL_DWIDTH_MASK
;
768 retbits
&= ~PL080_CONTROL_SWIDTH_MASK
;
769 retbits
&= ~PL080_CONTROL_TRANSFER_SIZE_MASK
;
771 /* Then set the bits according to the parameters */
774 retbits
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
777 retbits
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
780 retbits
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
789 retbits
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
792 retbits
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
795 retbits
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
802 tsize
&= PL080_CONTROL_TRANSFER_SIZE_MASK
;
803 retbits
|= tsize
<< PL080_CONTROL_TRANSFER_SIZE_SHIFT
;
807 struct pl08x_lli_build_data
{
808 struct pl08x_txd
*txd
;
809 struct pl08x_bus_data srcbus
;
810 struct pl08x_bus_data dstbus
;
816 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
817 * victim in case src & dest are not similarly aligned. i.e. If after aligning
818 * masters address with width requirements of transfer (by sending few byte by
819 * byte data), slave is still not aligned, then its width will be reduced to
821 * - prefers the destination bus if both available
822 * - prefers bus with fixed address (i.e. peripheral)
824 static void pl08x_choose_master_bus(struct pl08x_lli_build_data
*bd
,
825 struct pl08x_bus_data
**mbus
, struct pl08x_bus_data
**sbus
, u32 cctl
)
827 if (!(cctl
& PL080_CONTROL_DST_INCR
)) {
830 } else if (!(cctl
& PL080_CONTROL_SRC_INCR
)) {
834 if (bd
->dstbus
.buswidth
>= bd
->srcbus
.buswidth
) {
845 * Fills in one LLI for a certain transfer descriptor and advance the counter
847 static void pl08x_fill_lli_for_desc(struct pl08x_driver_data
*pl08x
,
848 struct pl08x_lli_build_data
*bd
,
849 int num_llis
, int len
, u32 cctl
, u32 cctl2
)
851 u32 offset
= num_llis
* pl08x
->lli_words
;
852 u32
*llis_va
= bd
->txd
->llis_va
+ offset
;
853 dma_addr_t llis_bus
= bd
->txd
->llis_bus
;
855 BUG_ON(num_llis
>= MAX_NUM_TSFR_LLIS
);
857 /* Advance the offset to next LLI. */
858 offset
+= pl08x
->lli_words
;
860 llis_va
[PL080_LLI_SRC
] = bd
->srcbus
.addr
;
861 llis_va
[PL080_LLI_DST
] = bd
->dstbus
.addr
;
862 llis_va
[PL080_LLI_LLI
] = (llis_bus
+ sizeof(u32
) * offset
);
863 llis_va
[PL080_LLI_LLI
] |= bd
->lli_bus
;
864 llis_va
[PL080_LLI_CCTL
] = cctl
;
865 if (pl08x
->vd
->pl080s
)
866 llis_va
[PL080S_LLI_CCTL2
] = cctl2
;
868 if (cctl
& PL080_CONTROL_SRC_INCR
)
869 bd
->srcbus
.addr
+= len
;
870 if (cctl
& PL080_CONTROL_DST_INCR
)
871 bd
->dstbus
.addr
+= len
;
873 BUG_ON(bd
->remainder
< len
);
875 bd
->remainder
-= len
;
878 static inline void prep_byte_width_lli(struct pl08x_driver_data
*pl08x
,
879 struct pl08x_lli_build_data
*bd
, u32
*cctl
, u32 len
,
880 int num_llis
, size_t *total_bytes
)
882 *cctl
= pl08x_cctl_bits(*cctl
, 1, 1, len
);
883 pl08x_fill_lli_for_desc(pl08x
, bd
, num_llis
, len
, *cctl
, len
);
884 (*total_bytes
) += len
;
888 static void pl08x_dump_lli(struct pl08x_driver_data
*pl08x
,
889 const u32
*llis_va
, int num_llis
)
893 if (pl08x
->vd
->pl080s
) {
894 dev_vdbg(&pl08x
->adev
->dev
,
895 "%-3s %-9s %-10s %-10s %-10s %-10s %s\n",
896 "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
897 for (i
= 0; i
< num_llis
; i
++) {
898 dev_vdbg(&pl08x
->adev
->dev
,
899 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
900 i
, llis_va
, llis_va
[PL080_LLI_SRC
],
901 llis_va
[PL080_LLI_DST
], llis_va
[PL080_LLI_LLI
],
902 llis_va
[PL080_LLI_CCTL
],
903 llis_va
[PL080S_LLI_CCTL2
]);
904 llis_va
+= pl08x
->lli_words
;
907 dev_vdbg(&pl08x
->adev
->dev
,
908 "%-3s %-9s %-10s %-10s %-10s %s\n",
909 "lli", "", "csrc", "cdst", "clli", "cctl");
910 for (i
= 0; i
< num_llis
; i
++) {
911 dev_vdbg(&pl08x
->adev
->dev
,
912 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
913 i
, llis_va
, llis_va
[PL080_LLI_SRC
],
914 llis_va
[PL080_LLI_DST
], llis_va
[PL080_LLI_LLI
],
915 llis_va
[PL080_LLI_CCTL
]);
916 llis_va
+= pl08x
->lli_words
;
921 static inline void pl08x_dump_lli(struct pl08x_driver_data
*pl08x
,
922 const u32
*llis_va
, int num_llis
) {}
926 * This fills in the table of LLIs for the transfer descriptor
927 * Note that we assume we never have to change the burst sizes
930 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data
*pl08x
,
931 struct pl08x_txd
*txd
)
933 struct pl08x_bus_data
*mbus
, *sbus
;
934 struct pl08x_lli_build_data bd
;
936 u32 cctl
, early_bytes
= 0;
937 size_t max_bytes_per_lli
, total_bytes
;
938 u32
*llis_va
, *last_lli
;
939 struct pl08x_sg
*dsg
;
941 txd
->llis_va
= dma_pool_alloc(pl08x
->pool
, GFP_NOWAIT
, &txd
->llis_bus
);
943 dev_err(&pl08x
->adev
->dev
, "%s no memory for llis\n", __func__
);
948 bd
.lli_bus
= (pl08x
->lli_buses
& PL08X_AHB2
) ? PL080_LLI_LM_AHB2
: 0;
951 /* Find maximum width of the source bus */
953 pl08x_get_bytes_for_cctl((cctl
& PL080_CONTROL_SWIDTH_MASK
) >>
954 PL080_CONTROL_SWIDTH_SHIFT
);
956 /* Find maximum width of the destination bus */
958 pl08x_get_bytes_for_cctl((cctl
& PL080_CONTROL_DWIDTH_MASK
) >>
959 PL080_CONTROL_DWIDTH_SHIFT
);
961 list_for_each_entry(dsg
, &txd
->dsg_list
, node
) {
965 bd
.srcbus
.addr
= dsg
->src_addr
;
966 bd
.dstbus
.addr
= dsg
->dst_addr
;
967 bd
.remainder
= dsg
->len
;
968 bd
.srcbus
.buswidth
= bd
.srcbus
.maxwidth
;
969 bd
.dstbus
.buswidth
= bd
.dstbus
.maxwidth
;
971 pl08x_choose_master_bus(&bd
, &mbus
, &sbus
, cctl
);
973 dev_vdbg(&pl08x
->adev
->dev
,
974 "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
976 cctl
& PL080_CONTROL_SRC_INCR
? "+" : "",
979 cctl
& PL080_CONTROL_DST_INCR
? "+" : "",
982 dev_vdbg(&pl08x
->adev
->dev
, "mbus=%s sbus=%s\n",
983 mbus
== &bd
.srcbus
? "src" : "dst",
984 sbus
== &bd
.srcbus
? "src" : "dst");
987 * Zero length is only allowed if all these requirements are
989 * - flow controller is peripheral.
990 * - src.addr is aligned to src.width
991 * - dst.addr is aligned to dst.width
993 * sg_len == 1 should be true, as there can be two cases here:
995 * - Memory addresses are contiguous and are not scattered.
996 * Here, Only one sg will be passed by user driver, with
997 * memory address and zero length. We pass this to controller
998 * and after the transfer it will receive the last burst
999 * request from peripheral and so transfer finishes.
1001 * - Memory addresses are scattered and are not contiguous.
1002 * Here, Obviously as DMA controller doesn't know when a lli's
1003 * transfer gets over, it can't load next lli. So in this
1004 * case, there has to be an assumption that only one lli is
1005 * supported. Thus, we can't have scattered addresses.
1007 if (!bd
.remainder
) {
1008 u32 fc
= (txd
->ccfg
& PL080_CONFIG_FLOW_CONTROL_MASK
) >>
1009 PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1010 if (!((fc
>= PL080_FLOW_SRC2DST_DST
) &&
1011 (fc
<= PL080_FLOW_SRC2DST_SRC
))) {
1012 dev_err(&pl08x
->adev
->dev
, "%s sg len can't be zero",
1017 if (!IS_BUS_ALIGNED(&bd
.srcbus
) ||
1018 !IS_BUS_ALIGNED(&bd
.dstbus
)) {
1019 dev_err(&pl08x
->adev
->dev
,
1020 "%s src & dst address must be aligned to src"
1021 " & dst width if peripheral is flow controller",
1026 cctl
= pl08x_cctl_bits(cctl
, bd
.srcbus
.buswidth
,
1027 bd
.dstbus
.buswidth
, 0);
1028 pl08x_fill_lli_for_desc(pl08x
, &bd
, num_llis
++,
1034 * Send byte by byte for following cases
1035 * - Less than a bus width available
1036 * - until master bus is aligned
1038 if (bd
.remainder
< mbus
->buswidth
)
1039 early_bytes
= bd
.remainder
;
1040 else if (!IS_BUS_ALIGNED(mbus
)) {
1041 early_bytes
= mbus
->buswidth
-
1042 (mbus
->addr
& (mbus
->buswidth
- 1));
1043 if ((bd
.remainder
- early_bytes
) < mbus
->buswidth
)
1044 early_bytes
= bd
.remainder
;
1048 dev_vdbg(&pl08x
->adev
->dev
,
1049 "%s byte width LLIs (remain 0x%08zx)\n",
1050 __func__
, bd
.remainder
);
1051 prep_byte_width_lli(pl08x
, &bd
, &cctl
, early_bytes
,
1052 num_llis
++, &total_bytes
);
1057 * Master now aligned
1058 * - if slave is not then we must set its width down
1060 if (!IS_BUS_ALIGNED(sbus
)) {
1061 dev_dbg(&pl08x
->adev
->dev
,
1062 "%s set down bus width to one byte\n",
1069 * Bytes transferred = tsize * src width, not
1072 max_bytes_per_lli
= bd
.srcbus
.buswidth
*
1073 pl08x
->vd
->max_transfer_size
;
1074 dev_vdbg(&pl08x
->adev
->dev
,
1075 "%s max bytes per lli = %zu\n",
1076 __func__
, max_bytes_per_lli
);
1079 * Make largest possible LLIs until less than one bus
1082 while (bd
.remainder
> (mbus
->buswidth
- 1)) {
1083 size_t lli_len
, tsize
, width
;
1086 * If enough left try to send max possible,
1087 * otherwise try to send the remainder
1089 lli_len
= min(bd
.remainder
, max_bytes_per_lli
);
1092 * Check against maximum bus alignment:
1093 * Calculate actual transfer size in relation to
1094 * bus width an get a maximum remainder of the
1095 * highest bus width - 1
1097 width
= max(mbus
->buswidth
, sbus
->buswidth
);
1098 lli_len
= (lli_len
/ width
) * width
;
1099 tsize
= lli_len
/ bd
.srcbus
.buswidth
;
1101 dev_vdbg(&pl08x
->adev
->dev
,
1102 "%s fill lli with single lli chunk of "
1103 "size 0x%08zx (remainder 0x%08zx)\n",
1104 __func__
, lli_len
, bd
.remainder
);
1106 cctl
= pl08x_cctl_bits(cctl
, bd
.srcbus
.buswidth
,
1107 bd
.dstbus
.buswidth
, tsize
);
1108 pl08x_fill_lli_for_desc(pl08x
, &bd
, num_llis
++,
1109 lli_len
, cctl
, tsize
);
1110 total_bytes
+= lli_len
;
1114 * Send any odd bytes
1117 dev_vdbg(&pl08x
->adev
->dev
,
1118 "%s align with boundary, send odd bytes (remain %zu)\n",
1119 __func__
, bd
.remainder
);
1120 prep_byte_width_lli(pl08x
, &bd
, &cctl
,
1121 bd
.remainder
, num_llis
++, &total_bytes
);
1125 if (total_bytes
!= dsg
->len
) {
1126 dev_err(&pl08x
->adev
->dev
,
1127 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1128 __func__
, total_bytes
, dsg
->len
);
1132 if (num_llis
>= MAX_NUM_TSFR_LLIS
) {
1133 dev_err(&pl08x
->adev
->dev
,
1134 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1135 __func__
, MAX_NUM_TSFR_LLIS
);
1140 llis_va
= txd
->llis_va
;
1141 last_lli
= llis_va
+ (num_llis
- 1) * pl08x
->lli_words
;
1144 /* Link back to the first LLI. */
1145 last_lli
[PL080_LLI_LLI
] = txd
->llis_bus
| bd
.lli_bus
;
1147 /* The final LLI terminates the LLI. */
1148 last_lli
[PL080_LLI_LLI
] = 0;
1149 /* The final LLI element shall also fire an interrupt. */
1150 last_lli
[PL080_LLI_CCTL
] |= PL080_CONTROL_TC_IRQ_EN
;
1153 pl08x_dump_lli(pl08x
, llis_va
, num_llis
);
1158 static void pl08x_free_txd(struct pl08x_driver_data
*pl08x
,
1159 struct pl08x_txd
*txd
)
1161 struct pl08x_sg
*dsg
, *_dsg
;
1164 dma_pool_free(pl08x
->pool
, txd
->llis_va
, txd
->llis_bus
);
1166 list_for_each_entry_safe(dsg
, _dsg
, &txd
->dsg_list
, node
) {
1167 list_del(&dsg
->node
);
1174 static void pl08x_desc_free(struct virt_dma_desc
*vd
)
1176 struct pl08x_txd
*txd
= to_pl08x_txd(&vd
->tx
);
1177 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(vd
->tx
.chan
);
1179 dma_descriptor_unmap(&vd
->tx
);
1181 pl08x_release_mux(plchan
);
1183 pl08x_free_txd(plchan
->host
, txd
);
1186 static void pl08x_free_txd_list(struct pl08x_driver_data
*pl08x
,
1187 struct pl08x_dma_chan
*plchan
)
1191 vchan_get_all_descriptors(&plchan
->vc
, &head
);
1192 vchan_dma_desc_free_list(&plchan
->vc
, &head
);
1196 * The DMA ENGINE API
1198 static int pl08x_alloc_chan_resources(struct dma_chan
*chan
)
1203 static void pl08x_free_chan_resources(struct dma_chan
*chan
)
1205 /* Ensure all queued descriptors are freed */
1206 vchan_free_chan_resources(to_virt_chan(chan
));
1209 static struct dma_async_tx_descriptor
*pl08x_prep_dma_interrupt(
1210 struct dma_chan
*chan
, unsigned long flags
)
1212 struct dma_async_tx_descriptor
*retval
= NULL
;
1218 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1219 * If slaves are relying on interrupts to signal completion this function
1220 * must not be called with interrupts disabled.
1222 static enum dma_status
pl08x_dma_tx_status(struct dma_chan
*chan
,
1223 dma_cookie_t cookie
, struct dma_tx_state
*txstate
)
1225 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1226 struct virt_dma_desc
*vd
;
1227 unsigned long flags
;
1228 enum dma_status ret
;
1231 ret
= dma_cookie_status(chan
, cookie
, txstate
);
1232 if (ret
== DMA_COMPLETE
)
1236 * There's no point calculating the residue if there's
1237 * no txstate to store the value.
1240 if (plchan
->state
== PL08X_CHAN_PAUSED
)
1245 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1246 ret
= dma_cookie_status(chan
, cookie
, txstate
);
1247 if (ret
!= DMA_COMPLETE
) {
1248 vd
= vchan_find_desc(&plchan
->vc
, cookie
);
1250 /* On the issued list, so hasn't been processed yet */
1251 struct pl08x_txd
*txd
= to_pl08x_txd(&vd
->tx
);
1252 struct pl08x_sg
*dsg
;
1254 list_for_each_entry(dsg
, &txd
->dsg_list
, node
)
1257 bytes
= pl08x_getbytes_chan(plchan
);
1260 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1263 * This cookie not complete yet
1264 * Get number of bytes left in the active transactions and queue
1266 dma_set_residue(txstate
, bytes
);
1268 if (plchan
->state
== PL08X_CHAN_PAUSED
&& ret
== DMA_IN_PROGRESS
)
1271 /* Whether waiting or running, we're in progress */
1275 /* PrimeCell DMA extension */
1276 struct burst_table
{
1281 static const struct burst_table burst_sizes
[] = {
1284 .reg
= PL080_BSIZE_256
,
1288 .reg
= PL080_BSIZE_128
,
1292 .reg
= PL080_BSIZE_64
,
1296 .reg
= PL080_BSIZE_32
,
1300 .reg
= PL080_BSIZE_16
,
1304 .reg
= PL080_BSIZE_8
,
1308 .reg
= PL080_BSIZE_4
,
1312 .reg
= PL080_BSIZE_1
,
1317 * Given the source and destination available bus masks, select which
1318 * will be routed to each port. We try to have source and destination
1319 * on separate ports, but always respect the allowable settings.
1321 static u32
pl08x_select_bus(u8 src
, u8 dst
)
1325 if (!(dst
& PL08X_AHB1
) || ((dst
& PL08X_AHB2
) && (src
& PL08X_AHB1
)))
1326 cctl
|= PL080_CONTROL_DST_AHB2
;
1327 if (!(src
& PL08X_AHB1
) || ((src
& PL08X_AHB2
) && !(dst
& PL08X_AHB2
)))
1328 cctl
|= PL080_CONTROL_SRC_AHB2
;
1333 static u32
pl08x_cctl(u32 cctl
)
1335 cctl
&= ~(PL080_CONTROL_SRC_AHB2
| PL080_CONTROL_DST_AHB2
|
1336 PL080_CONTROL_SRC_INCR
| PL080_CONTROL_DST_INCR
|
1337 PL080_CONTROL_PROT_MASK
);
1339 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1340 return cctl
| PL080_CONTROL_PROT_SYS
;
1343 static u32
pl08x_width(enum dma_slave_buswidth width
)
1346 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
1347 return PL080_WIDTH_8BIT
;
1348 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
1349 return PL080_WIDTH_16BIT
;
1350 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
1351 return PL080_WIDTH_32BIT
;
1357 static u32
pl08x_burst(u32 maxburst
)
1361 for (i
= 0; i
< ARRAY_SIZE(burst_sizes
); i
++)
1362 if (burst_sizes
[i
].burstwords
<= maxburst
)
1365 return burst_sizes
[i
].reg
;
1368 static u32
pl08x_get_cctl(struct pl08x_dma_chan
*plchan
,
1369 enum dma_slave_buswidth addr_width
, u32 maxburst
)
1371 u32 width
, burst
, cctl
= 0;
1373 width
= pl08x_width(addr_width
);
1377 cctl
|= width
<< PL080_CONTROL_SWIDTH_SHIFT
;
1378 cctl
|= width
<< PL080_CONTROL_DWIDTH_SHIFT
;
1381 * If this channel will only request single transfers, set this
1382 * down to ONE element. Also select one element if no maxburst
1385 if (plchan
->cd
->single
)
1388 burst
= pl08x_burst(maxburst
);
1389 cctl
|= burst
<< PL080_CONTROL_SB_SIZE_SHIFT
;
1390 cctl
|= burst
<< PL080_CONTROL_DB_SIZE_SHIFT
;
1392 return pl08x_cctl(cctl
);
1396 * Slave transactions callback to the slave device to allow
1397 * synchronization of slave DMA signals with the DMAC enable
1399 static void pl08x_issue_pending(struct dma_chan
*chan
)
1401 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1402 unsigned long flags
;
1404 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1405 if (vchan_issue_pending(&plchan
->vc
)) {
1406 if (!plchan
->phychan
&& plchan
->state
!= PL08X_CHAN_WAITING
)
1407 pl08x_phy_alloc_and_start(plchan
);
1409 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1412 static struct pl08x_txd
*pl08x_get_txd(struct pl08x_dma_chan
*plchan
)
1414 struct pl08x_txd
*txd
= kzalloc(sizeof(*txd
), GFP_NOWAIT
);
1417 INIT_LIST_HEAD(&txd
->dsg_list
);
1419 /* Always enable error and terminal interrupts */
1420 txd
->ccfg
= PL080_CONFIG_ERR_IRQ_MASK
|
1421 PL080_CONFIG_TC_IRQ_MASK
;
1427 * Initialize a descriptor to be used by memcpy submit
1429 static struct dma_async_tx_descriptor
*pl08x_prep_dma_memcpy(
1430 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
1431 size_t len
, unsigned long flags
)
1433 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1434 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1435 struct pl08x_txd
*txd
;
1436 struct pl08x_sg
*dsg
;
1439 txd
= pl08x_get_txd(plchan
);
1441 dev_err(&pl08x
->adev
->dev
,
1442 "%s no memory for descriptor\n", __func__
);
1446 dsg
= kzalloc(sizeof(struct pl08x_sg
), GFP_NOWAIT
);
1448 pl08x_free_txd(pl08x
, txd
);
1449 dev_err(&pl08x
->adev
->dev
, "%s no memory for pl080 sg\n",
1453 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
1455 dsg
->src_addr
= src
;
1456 dsg
->dst_addr
= dest
;
1459 /* Set platform data for m2m */
1460 txd
->ccfg
|= PL080_FLOW_MEM2MEM
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1461 txd
->cctl
= pl08x
->pd
->memcpy_channel
.cctl_memcpy
&
1462 ~(PL080_CONTROL_DST_AHB2
| PL080_CONTROL_SRC_AHB2
);
1464 /* Both to be incremented or the code will break */
1465 txd
->cctl
|= PL080_CONTROL_SRC_INCR
| PL080_CONTROL_DST_INCR
;
1467 if (pl08x
->vd
->dualmaster
)
1468 txd
->cctl
|= pl08x_select_bus(pl08x
->mem_buses
,
1471 ret
= pl08x_fill_llis_for_desc(plchan
->host
, txd
);
1473 pl08x_free_txd(pl08x
, txd
);
1477 return vchan_tx_prep(&plchan
->vc
, &txd
->vd
, flags
);
1480 static struct pl08x_txd
*pl08x_init_txd(
1481 struct dma_chan
*chan
,
1482 enum dma_transfer_direction direction
,
1483 dma_addr_t
*slave_addr
)
1485 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1486 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1487 struct pl08x_txd
*txd
;
1488 enum dma_slave_buswidth addr_width
;
1490 u8 src_buses
, dst_buses
;
1493 txd
= pl08x_get_txd(plchan
);
1495 dev_err(&pl08x
->adev
->dev
, "%s no txd\n", __func__
);
1500 * Set up addresses, the PrimeCell configured address
1501 * will take precedence since this may configure the
1502 * channel target address dynamically at runtime.
1504 if (direction
== DMA_MEM_TO_DEV
) {
1505 cctl
= PL080_CONTROL_SRC_INCR
;
1506 *slave_addr
= plchan
->cfg
.dst_addr
;
1507 addr_width
= plchan
->cfg
.dst_addr_width
;
1508 maxburst
= plchan
->cfg
.dst_maxburst
;
1509 src_buses
= pl08x
->mem_buses
;
1510 dst_buses
= plchan
->cd
->periph_buses
;
1511 } else if (direction
== DMA_DEV_TO_MEM
) {
1512 cctl
= PL080_CONTROL_DST_INCR
;
1513 *slave_addr
= plchan
->cfg
.src_addr
;
1514 addr_width
= plchan
->cfg
.src_addr_width
;
1515 maxburst
= plchan
->cfg
.src_maxburst
;
1516 src_buses
= plchan
->cd
->periph_buses
;
1517 dst_buses
= pl08x
->mem_buses
;
1519 pl08x_free_txd(pl08x
, txd
);
1520 dev_err(&pl08x
->adev
->dev
,
1521 "%s direction unsupported\n", __func__
);
1525 cctl
|= pl08x_get_cctl(plchan
, addr_width
, maxburst
);
1527 pl08x_free_txd(pl08x
, txd
);
1528 dev_err(&pl08x
->adev
->dev
,
1529 "DMA slave configuration botched?\n");
1533 txd
->cctl
= cctl
| pl08x_select_bus(src_buses
, dst_buses
);
1535 if (plchan
->cfg
.device_fc
)
1536 tmp
= (direction
== DMA_MEM_TO_DEV
) ? PL080_FLOW_MEM2PER_PER
:
1537 PL080_FLOW_PER2MEM_PER
;
1539 tmp
= (direction
== DMA_MEM_TO_DEV
) ? PL080_FLOW_MEM2PER
:
1542 txd
->ccfg
|= tmp
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1544 ret
= pl08x_request_mux(plchan
);
1546 pl08x_free_txd(pl08x
, txd
);
1547 dev_dbg(&pl08x
->adev
->dev
,
1548 "unable to mux for transfer on %s due to platform restrictions\n",
1553 dev_dbg(&pl08x
->adev
->dev
, "allocated DMA request signal %d for xfer on %s\n",
1554 plchan
->signal
, plchan
->name
);
1556 /* Assign the flow control signal to this channel */
1557 if (direction
== DMA_MEM_TO_DEV
)
1558 txd
->ccfg
|= plchan
->signal
<< PL080_CONFIG_DST_SEL_SHIFT
;
1560 txd
->ccfg
|= plchan
->signal
<< PL080_CONFIG_SRC_SEL_SHIFT
;
1565 static int pl08x_tx_add_sg(struct pl08x_txd
*txd
,
1566 enum dma_transfer_direction direction
,
1567 dma_addr_t slave_addr
,
1568 dma_addr_t buf_addr
,
1571 struct pl08x_sg
*dsg
;
1573 dsg
= kzalloc(sizeof(struct pl08x_sg
), GFP_NOWAIT
);
1577 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
1580 if (direction
== DMA_MEM_TO_DEV
) {
1581 dsg
->src_addr
= buf_addr
;
1582 dsg
->dst_addr
= slave_addr
;
1584 dsg
->src_addr
= slave_addr
;
1585 dsg
->dst_addr
= buf_addr
;
1591 static struct dma_async_tx_descriptor
*pl08x_prep_slave_sg(
1592 struct dma_chan
*chan
, struct scatterlist
*sgl
,
1593 unsigned int sg_len
, enum dma_transfer_direction direction
,
1594 unsigned long flags
, void *context
)
1596 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1597 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1598 struct pl08x_txd
*txd
;
1599 struct scatterlist
*sg
;
1601 dma_addr_t slave_addr
;
1603 dev_dbg(&pl08x
->adev
->dev
, "%s prepare transaction of %d bytes from %s\n",
1604 __func__
, sg_dma_len(sgl
), plchan
->name
);
1606 txd
= pl08x_init_txd(chan
, direction
, &slave_addr
);
1610 for_each_sg(sgl
, sg
, sg_len
, tmp
) {
1611 ret
= pl08x_tx_add_sg(txd
, direction
, slave_addr
,
1615 pl08x_release_mux(plchan
);
1616 pl08x_free_txd(pl08x
, txd
);
1617 dev_err(&pl08x
->adev
->dev
, "%s no mem for pl080 sg\n",
1623 ret
= pl08x_fill_llis_for_desc(plchan
->host
, txd
);
1625 pl08x_release_mux(plchan
);
1626 pl08x_free_txd(pl08x
, txd
);
1630 return vchan_tx_prep(&plchan
->vc
, &txd
->vd
, flags
);
1633 static struct dma_async_tx_descriptor
*pl08x_prep_dma_cyclic(
1634 struct dma_chan
*chan
, dma_addr_t buf_addr
, size_t buf_len
,
1635 size_t period_len
, enum dma_transfer_direction direction
,
1636 unsigned long flags
)
1638 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1639 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1640 struct pl08x_txd
*txd
;
1642 dma_addr_t slave_addr
;
1644 dev_dbg(&pl08x
->adev
->dev
,
1645 "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
1646 __func__
, period_len
, buf_len
,
1647 direction
== DMA_MEM_TO_DEV
? "to" : "from",
1650 txd
= pl08x_init_txd(chan
, direction
, &slave_addr
);
1655 txd
->cctl
|= PL080_CONTROL_TC_IRQ_EN
;
1656 for (tmp
= 0; tmp
< buf_len
; tmp
+= period_len
) {
1657 ret
= pl08x_tx_add_sg(txd
, direction
, slave_addr
,
1658 buf_addr
+ tmp
, period_len
);
1660 pl08x_release_mux(plchan
);
1661 pl08x_free_txd(pl08x
, txd
);
1666 ret
= pl08x_fill_llis_for_desc(plchan
->host
, txd
);
1668 pl08x_release_mux(plchan
);
1669 pl08x_free_txd(pl08x
, txd
);
1673 return vchan_tx_prep(&plchan
->vc
, &txd
->vd
, flags
);
1676 static int pl08x_config(struct dma_chan
*chan
,
1677 struct dma_slave_config
*config
)
1679 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1680 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1685 /* Reject definitely invalid configurations */
1686 if (config
->src_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
||
1687 config
->dst_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
)
1690 if (config
->device_fc
&& pl08x
->vd
->pl080s
) {
1691 dev_err(&pl08x
->adev
->dev
,
1692 "%s: PL080S does not support peripheral flow control\n",
1697 plchan
->cfg
= *config
;
1702 static int pl08x_terminate_all(struct dma_chan
*chan
)
1704 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1705 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1706 unsigned long flags
;
1708 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1709 if (!plchan
->phychan
&& !plchan
->at
) {
1710 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1714 plchan
->state
= PL08X_CHAN_IDLE
;
1716 if (plchan
->phychan
) {
1718 * Mark physical channel as free and free any slave
1721 pl08x_phy_free(plchan
);
1723 /* Dequeue jobs and free LLIs */
1725 pl08x_desc_free(&plchan
->at
->vd
);
1728 /* Dequeue jobs not yet fired as well */
1729 pl08x_free_txd_list(pl08x
, plchan
);
1731 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1736 static int pl08x_pause(struct dma_chan
*chan
)
1738 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1739 unsigned long flags
;
1742 * Anything succeeds on channels with no physical allocation and
1743 * no queued transfers.
1745 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1746 if (!plchan
->phychan
&& !plchan
->at
) {
1747 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1751 pl08x_pause_phy_chan(plchan
->phychan
);
1752 plchan
->state
= PL08X_CHAN_PAUSED
;
1754 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1759 static int pl08x_resume(struct dma_chan
*chan
)
1761 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1762 unsigned long flags
;
1765 * Anything succeeds on channels with no physical allocation and
1766 * no queued transfers.
1768 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1769 if (!plchan
->phychan
&& !plchan
->at
) {
1770 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1774 pl08x_resume_phy_chan(plchan
->phychan
);
1775 plchan
->state
= PL08X_CHAN_RUNNING
;
1777 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1782 bool pl08x_filter_id(struct dma_chan
*chan
, void *chan_id
)
1784 struct pl08x_dma_chan
*plchan
;
1785 char *name
= chan_id
;
1787 /* Reject channels for devices not bound to this driver */
1788 if (chan
->device
->dev
->driver
!= &pl08x_amba_driver
.drv
)
1791 plchan
= to_pl08x_chan(chan
);
1793 /* Check that the channel is not taken! */
1794 if (!strcmp(plchan
->name
, name
))
1799 EXPORT_SYMBOL_GPL(pl08x_filter_id
);
1802 * Just check that the device is there and active
1803 * TODO: turn this bit on/off depending on the number of physical channels
1804 * actually used, if it is zero... well shut it off. That will save some
1805 * power. Cut the clock at the same time.
1807 static void pl08x_ensure_on(struct pl08x_driver_data
*pl08x
)
1809 /* The Nomadik variant does not have the config register */
1810 if (pl08x
->vd
->nomadik
)
1812 writel(PL080_CONFIG_ENABLE
, pl08x
->base
+ PL080_CONFIG
);
1815 static irqreturn_t
pl08x_irq(int irq
, void *dev
)
1817 struct pl08x_driver_data
*pl08x
= dev
;
1818 u32 mask
= 0, err
, tc
, i
;
1820 /* check & clear - ERR & TC interrupts */
1821 err
= readl(pl08x
->base
+ PL080_ERR_STATUS
);
1823 dev_err(&pl08x
->adev
->dev
, "%s error interrupt, register value 0x%08x\n",
1825 writel(err
, pl08x
->base
+ PL080_ERR_CLEAR
);
1827 tc
= readl(pl08x
->base
+ PL080_TC_STATUS
);
1829 writel(tc
, pl08x
->base
+ PL080_TC_CLEAR
);
1834 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
1835 if (((1 << i
) & err
) || ((1 << i
) & tc
)) {
1836 /* Locate physical channel */
1837 struct pl08x_phy_chan
*phychan
= &pl08x
->phy_chans
[i
];
1838 struct pl08x_dma_chan
*plchan
= phychan
->serving
;
1839 struct pl08x_txd
*tx
;
1842 dev_err(&pl08x
->adev
->dev
,
1843 "%s Error TC interrupt on unused channel: 0x%08x\n",
1848 spin_lock(&plchan
->vc
.lock
);
1850 if (tx
&& tx
->cyclic
) {
1851 vchan_cyclic_callback(&tx
->vd
);
1855 * This descriptor is done, release its mux
1858 pl08x_release_mux(plchan
);
1860 vchan_cookie_complete(&tx
->vd
);
1863 * And start the next descriptor (if any),
1864 * otherwise free this channel.
1866 if (vchan_next_desc(&plchan
->vc
))
1867 pl08x_start_next_txd(plchan
);
1869 pl08x_phy_free(plchan
);
1871 spin_unlock(&plchan
->vc
.lock
);
1877 return mask
? IRQ_HANDLED
: IRQ_NONE
;
1880 static void pl08x_dma_slave_init(struct pl08x_dma_chan
*chan
)
1883 chan
->name
= chan
->cd
->bus_id
;
1884 chan
->cfg
.src_addr
= chan
->cd
->addr
;
1885 chan
->cfg
.dst_addr
= chan
->cd
->addr
;
1889 * Initialise the DMAC memcpy/slave channels.
1890 * Make a local wrapper to hold required data
1892 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data
*pl08x
,
1893 struct dma_device
*dmadev
, unsigned int channels
, bool slave
)
1895 struct pl08x_dma_chan
*chan
;
1898 INIT_LIST_HEAD(&dmadev
->channels
);
1901 * Register as many many memcpy as we have physical channels,
1902 * we won't always be able to use all but the code will have
1903 * to cope with that situation.
1905 for (i
= 0; i
< channels
; i
++) {
1906 chan
= kzalloc(sizeof(*chan
), GFP_KERNEL
);
1908 dev_err(&pl08x
->adev
->dev
,
1909 "%s no memory for channel\n", __func__
);
1914 chan
->state
= PL08X_CHAN_IDLE
;
1918 chan
->cd
= &pl08x
->pd
->slave_channels
[i
];
1919 pl08x_dma_slave_init(chan
);
1921 chan
->cd
= &pl08x
->pd
->memcpy_channel
;
1922 chan
->name
= kasprintf(GFP_KERNEL
, "memcpy%d", i
);
1928 dev_dbg(&pl08x
->adev
->dev
,
1929 "initialize virtual channel \"%s\"\n",
1932 chan
->vc
.desc_free
= pl08x_desc_free
;
1933 vchan_init(&chan
->vc
, dmadev
);
1935 dev_info(&pl08x
->adev
->dev
, "initialized %d virtual %s channels\n",
1936 i
, slave
? "slave" : "memcpy");
1940 static void pl08x_free_virtual_channels(struct dma_device
*dmadev
)
1942 struct pl08x_dma_chan
*chan
= NULL
;
1943 struct pl08x_dma_chan
*next
;
1945 list_for_each_entry_safe(chan
,
1946 next
, &dmadev
->channels
, vc
.chan
.device_node
) {
1947 list_del(&chan
->vc
.chan
.device_node
);
1952 #ifdef CONFIG_DEBUG_FS
1953 static const char *pl08x_state_str(enum pl08x_dma_chan_state state
)
1956 case PL08X_CHAN_IDLE
:
1958 case PL08X_CHAN_RUNNING
:
1960 case PL08X_CHAN_PAUSED
:
1962 case PL08X_CHAN_WAITING
:
1967 return "UNKNOWN STATE";
1970 static int pl08x_debugfs_show(struct seq_file
*s
, void *data
)
1972 struct pl08x_driver_data
*pl08x
= s
->private;
1973 struct pl08x_dma_chan
*chan
;
1974 struct pl08x_phy_chan
*ch
;
1975 unsigned long flags
;
1978 seq_printf(s
, "PL08x physical channels:\n");
1979 seq_printf(s
, "CHANNEL:\tUSER:\n");
1980 seq_printf(s
, "--------\t-----\n");
1981 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
1982 struct pl08x_dma_chan
*virt_chan
;
1984 ch
= &pl08x
->phy_chans
[i
];
1986 spin_lock_irqsave(&ch
->lock
, flags
);
1987 virt_chan
= ch
->serving
;
1989 seq_printf(s
, "%d\t\t%s%s\n",
1991 virt_chan
? virt_chan
->name
: "(none)",
1992 ch
->locked
? " LOCKED" : "");
1994 spin_unlock_irqrestore(&ch
->lock
, flags
);
1997 seq_printf(s
, "\nPL08x virtual memcpy channels:\n");
1998 seq_printf(s
, "CHANNEL:\tSTATE:\n");
1999 seq_printf(s
, "--------\t------\n");
2000 list_for_each_entry(chan
, &pl08x
->memcpy
.channels
, vc
.chan
.device_node
) {
2001 seq_printf(s
, "%s\t\t%s\n", chan
->name
,
2002 pl08x_state_str(chan
->state
));
2005 seq_printf(s
, "\nPL08x virtual slave channels:\n");
2006 seq_printf(s
, "CHANNEL:\tSTATE:\n");
2007 seq_printf(s
, "--------\t------\n");
2008 list_for_each_entry(chan
, &pl08x
->slave
.channels
, vc
.chan
.device_node
) {
2009 seq_printf(s
, "%s\t\t%s\n", chan
->name
,
2010 pl08x_state_str(chan
->state
));
2016 static int pl08x_debugfs_open(struct inode
*inode
, struct file
*file
)
2018 return single_open(file
, pl08x_debugfs_show
, inode
->i_private
);
2021 static const struct file_operations pl08x_debugfs_operations
= {
2022 .open
= pl08x_debugfs_open
,
2024 .llseek
= seq_lseek
,
2025 .release
= single_release
,
2028 static void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
2030 /* Expose a simple debugfs interface to view all clocks */
2031 (void) debugfs_create_file(dev_name(&pl08x
->adev
->dev
),
2032 S_IFREG
| S_IRUGO
, NULL
, pl08x
,
2033 &pl08x_debugfs_operations
);
2037 static inline void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
2042 static int pl08x_probe(struct amba_device
*adev
, const struct amba_id
*id
)
2044 struct pl08x_driver_data
*pl08x
;
2045 const struct vendor_data
*vd
= id
->data
;
2050 ret
= amba_request_regions(adev
, NULL
);
2054 /* Ensure that we can do DMA */
2055 ret
= dma_set_mask_and_coherent(&adev
->dev
, DMA_BIT_MASK(32));
2059 /* Create the driver state holder */
2060 pl08x
= kzalloc(sizeof(*pl08x
), GFP_KERNEL
);
2066 /* Initialize memcpy engine */
2067 dma_cap_set(DMA_MEMCPY
, pl08x
->memcpy
.cap_mask
);
2068 pl08x
->memcpy
.dev
= &adev
->dev
;
2069 pl08x
->memcpy
.device_alloc_chan_resources
= pl08x_alloc_chan_resources
;
2070 pl08x
->memcpy
.device_free_chan_resources
= pl08x_free_chan_resources
;
2071 pl08x
->memcpy
.device_prep_dma_memcpy
= pl08x_prep_dma_memcpy
;
2072 pl08x
->memcpy
.device_prep_dma_interrupt
= pl08x_prep_dma_interrupt
;
2073 pl08x
->memcpy
.device_tx_status
= pl08x_dma_tx_status
;
2074 pl08x
->memcpy
.device_issue_pending
= pl08x_issue_pending
;
2075 pl08x
->memcpy
.device_config
= pl08x_config
;
2076 pl08x
->memcpy
.device_pause
= pl08x_pause
;
2077 pl08x
->memcpy
.device_resume
= pl08x_resume
;
2078 pl08x
->memcpy
.device_terminate_all
= pl08x_terminate_all
;
2079 pl08x
->memcpy
.src_addr_widths
= PL80X_DMA_BUSWIDTHS
;
2080 pl08x
->memcpy
.dst_addr_widths
= PL80X_DMA_BUSWIDTHS
;
2081 pl08x
->memcpy
.directions
= BIT(DMA_MEM_TO_MEM
);
2082 pl08x
->memcpy
.residue_granularity
= DMA_RESIDUE_GRANULARITY_SEGMENT
;
2084 /* Initialize slave engine */
2085 dma_cap_set(DMA_SLAVE
, pl08x
->slave
.cap_mask
);
2086 dma_cap_set(DMA_CYCLIC
, pl08x
->slave
.cap_mask
);
2087 pl08x
->slave
.dev
= &adev
->dev
;
2088 pl08x
->slave
.device_alloc_chan_resources
= pl08x_alloc_chan_resources
;
2089 pl08x
->slave
.device_free_chan_resources
= pl08x_free_chan_resources
;
2090 pl08x
->slave
.device_prep_dma_interrupt
= pl08x_prep_dma_interrupt
;
2091 pl08x
->slave
.device_tx_status
= pl08x_dma_tx_status
;
2092 pl08x
->slave
.device_issue_pending
= pl08x_issue_pending
;
2093 pl08x
->slave
.device_prep_slave_sg
= pl08x_prep_slave_sg
;
2094 pl08x
->slave
.device_prep_dma_cyclic
= pl08x_prep_dma_cyclic
;
2095 pl08x
->slave
.device_config
= pl08x_config
;
2096 pl08x
->slave
.device_pause
= pl08x_pause
;
2097 pl08x
->slave
.device_resume
= pl08x_resume
;
2098 pl08x
->slave
.device_terminate_all
= pl08x_terminate_all
;
2099 pl08x
->slave
.src_addr_widths
= PL80X_DMA_BUSWIDTHS
;
2100 pl08x
->slave
.dst_addr_widths
= PL80X_DMA_BUSWIDTHS
;
2101 pl08x
->slave
.directions
= BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
2102 pl08x
->slave
.residue_granularity
= DMA_RESIDUE_GRANULARITY_SEGMENT
;
2104 /* Get the platform data */
2105 pl08x
->pd
= dev_get_platdata(&adev
->dev
);
2107 dev_err(&adev
->dev
, "no platform data supplied\n");
2109 goto out_no_platdata
;
2112 /* Assign useful pointers to the driver state */
2116 /* By default, AHB1 only. If dualmaster, from platform */
2117 pl08x
->lli_buses
= PL08X_AHB1
;
2118 pl08x
->mem_buses
= PL08X_AHB1
;
2119 if (pl08x
->vd
->dualmaster
) {
2120 pl08x
->lli_buses
= pl08x
->pd
->lli_buses
;
2121 pl08x
->mem_buses
= pl08x
->pd
->mem_buses
;
2125 pl08x
->lli_words
= PL080S_LLI_WORDS
;
2127 pl08x
->lli_words
= PL080_LLI_WORDS
;
2128 tsfr_size
= MAX_NUM_TSFR_LLIS
* pl08x
->lli_words
* sizeof(u32
);
2130 /* A DMA memory pool for LLIs, align on 1-byte boundary */
2131 pl08x
->pool
= dma_pool_create(DRIVER_NAME
, &pl08x
->adev
->dev
,
2132 tsfr_size
, PL08X_ALIGN
, 0);
2135 goto out_no_lli_pool
;
2138 pl08x
->base
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
2141 goto out_no_ioremap
;
2144 /* Turn on the PL08x */
2145 pl08x_ensure_on(pl08x
);
2147 /* Attach the interrupt handler */
2148 writel(0x000000FF, pl08x
->base
+ PL080_ERR_CLEAR
);
2149 writel(0x000000FF, pl08x
->base
+ PL080_TC_CLEAR
);
2151 ret
= request_irq(adev
->irq
[0], pl08x_irq
, 0, DRIVER_NAME
, pl08x
);
2153 dev_err(&adev
->dev
, "%s failed to request interrupt %d\n",
2154 __func__
, adev
->irq
[0]);
2158 /* Initialize physical channels */
2159 pl08x
->phy_chans
= kzalloc((vd
->channels
* sizeof(*pl08x
->phy_chans
)),
2161 if (!pl08x
->phy_chans
) {
2162 dev_err(&adev
->dev
, "%s failed to allocate "
2163 "physical channel holders\n",
2166 goto out_no_phychans
;
2169 for (i
= 0; i
< vd
->channels
; i
++) {
2170 struct pl08x_phy_chan
*ch
= &pl08x
->phy_chans
[i
];
2173 ch
->base
= pl08x
->base
+ PL080_Cx_BASE(i
);
2174 ch
->reg_config
= ch
->base
+ vd
->config_offset
;
2175 spin_lock_init(&ch
->lock
);
2178 * Nomadik variants can have channels that are locked
2179 * down for the secure world only. Lock up these channels
2180 * by perpetually serving a dummy virtual channel.
2185 val
= readl(ch
->reg_config
);
2186 if (val
& (PL080N_CONFIG_ITPROT
| PL080N_CONFIG_SECPROT
)) {
2187 dev_info(&adev
->dev
, "physical channel %d reserved for secure access only\n", i
);
2192 dev_dbg(&adev
->dev
, "physical channel %d is %s\n",
2193 i
, pl08x_phy_channel_busy(ch
) ? "BUSY" : "FREE");
2196 /* Register as many memcpy channels as there are physical channels */
2197 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->memcpy
,
2198 pl08x
->vd
->channels
, false);
2200 dev_warn(&pl08x
->adev
->dev
,
2201 "%s failed to enumerate memcpy channels - %d\n",
2206 /* Register slave channels */
2207 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->slave
,
2208 pl08x
->pd
->num_slave_channels
, true);
2210 dev_warn(&pl08x
->adev
->dev
,
2211 "%s failed to enumerate slave channels - %d\n",
2216 ret
= dma_async_device_register(&pl08x
->memcpy
);
2218 dev_warn(&pl08x
->adev
->dev
,
2219 "%s failed to register memcpy as an async device - %d\n",
2221 goto out_no_memcpy_reg
;
2224 ret
= dma_async_device_register(&pl08x
->slave
);
2226 dev_warn(&pl08x
->adev
->dev
,
2227 "%s failed to register slave as an async device - %d\n",
2229 goto out_no_slave_reg
;
2232 amba_set_drvdata(adev
, pl08x
);
2233 init_pl08x_debugfs(pl08x
);
2234 dev_info(&pl08x
->adev
->dev
, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2235 amba_part(adev
), pl08x
->vd
->pl080s
? "s" : "", amba_rev(adev
),
2236 (unsigned long long)adev
->res
.start
, adev
->irq
[0]);
2241 dma_async_device_unregister(&pl08x
->memcpy
);
2243 pl08x_free_virtual_channels(&pl08x
->slave
);
2245 pl08x_free_virtual_channels(&pl08x
->memcpy
);
2247 kfree(pl08x
->phy_chans
);
2249 free_irq(adev
->irq
[0], pl08x
);
2251 iounmap(pl08x
->base
);
2253 dma_pool_destroy(pl08x
->pool
);
2258 amba_release_regions(adev
);
2262 /* PL080 has 8 channels and the PL080 have just 2 */
2263 static struct vendor_data vendor_pl080
= {
2264 .config_offset
= PL080_CH_CONFIG
,
2267 .max_transfer_size
= PL080_CONTROL_TRANSFER_SIZE_MASK
,
2270 static struct vendor_data vendor_nomadik
= {
2271 .config_offset
= PL080_CH_CONFIG
,
2275 .max_transfer_size
= PL080_CONTROL_TRANSFER_SIZE_MASK
,
2278 static struct vendor_data vendor_pl080s
= {
2279 .config_offset
= PL080S_CH_CONFIG
,
2282 .max_transfer_size
= PL080S_CONTROL_TRANSFER_SIZE_MASK
,
2285 static struct vendor_data vendor_pl081
= {
2286 .config_offset
= PL080_CH_CONFIG
,
2288 .dualmaster
= false,
2289 .max_transfer_size
= PL080_CONTROL_TRANSFER_SIZE_MASK
,
2292 static struct amba_id pl08x_ids
[] = {
2293 /* Samsung PL080S variant */
2297 .data
= &vendor_pl080s
,
2303 .data
= &vendor_pl080
,
2309 .data
= &vendor_pl081
,
2311 /* Nomadik 8815 PL080 variant */
2315 .data
= &vendor_nomadik
,
2320 MODULE_DEVICE_TABLE(amba
, pl08x_ids
);
2322 static struct amba_driver pl08x_amba_driver
= {
2323 .drv
.name
= DRIVER_NAME
,
2324 .id_table
= pl08x_ids
,
2325 .probe
= pl08x_probe
,
2328 static int __init
pl08x_init(void)
2331 retval
= amba_driver_register(&pl08x_amba_driver
);
2333 printk(KERN_WARNING DRIVER_NAME
2334 "failed to register as an AMBA device (%d)\n",
2338 subsys_initcall(pl08x_init
);