Bluetooth: hci_uart: Use generic functionality from Broadcom module
[linux/fpc-iii.git] / drivers / firmware / dmi_scan.c
blob2eebd28b4c40af2789c32e0008f2b60006fc03ac
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
14 * DMI stands for "Desktop Management Interface". It is part
15 * of and an antecedent to, SMBIOS, which stands for System
16 * Management BIOS. See further: http://www.dmtf.org/standards
18 static const char dmi_empty_string[] = " ";
20 static u16 __initdata dmi_ver;
22 * Catch too early calls to dmi_check_system():
24 static int dmi_initialized;
26 /* DMI system identification string used during boot */
27 static char dmi_ids_string[128] __initdata;
29 static struct dmi_memdev_info {
30 const char *device;
31 const char *bank;
32 u16 handle;
33 } *dmi_memdev;
34 static int dmi_memdev_nr;
36 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
38 const u8 *bp = ((u8 *) dm) + dm->length;
40 if (s) {
41 s--;
42 while (s > 0 && *bp) {
43 bp += strlen(bp) + 1;
44 s--;
47 if (*bp != 0) {
48 size_t len = strlen(bp)+1;
49 size_t cmp_len = len > 8 ? 8 : len;
51 if (!memcmp(bp, dmi_empty_string, cmp_len))
52 return dmi_empty_string;
53 return bp;
57 return "";
60 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
62 const char *bp = dmi_string_nosave(dm, s);
63 char *str;
64 size_t len;
66 if (bp == dmi_empty_string)
67 return dmi_empty_string;
69 len = strlen(bp) + 1;
70 str = dmi_alloc(len);
71 if (str != NULL)
72 strcpy(str, bp);
74 return str;
78 * We have to be cautious here. We have seen BIOSes with DMI pointers
79 * pointing to completely the wrong place for example
81 static void dmi_table(u8 *buf, u32 len, int num,
82 void (*decode)(const struct dmi_header *, void *),
83 void *private_data)
85 u8 *data = buf;
86 int i = 0;
89 * Stop when we have seen all the items the table claimed to have
90 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker OR we run
91 * off the end of the table (should never happen but sometimes does
92 * on bogus implementations.)
94 while ((!num || i < num) &&
95 (data - buf + sizeof(struct dmi_header)) <= len) {
96 const struct dmi_header *dm = (const struct dmi_header *)data;
99 * We want to know the total length (formatted area and
100 * strings) before decoding to make sure we won't run off the
101 * table in dmi_decode or dmi_string
103 data += dm->length;
104 while ((data - buf < len - 1) && (data[0] || data[1]))
105 data++;
106 if (data - buf < len - 1)
107 decode(dm, private_data);
110 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
112 if (dm->type == DMI_ENTRY_END_OF_TABLE)
113 break;
115 data += 2;
116 i++;
120 static phys_addr_t dmi_base;
121 static u32 dmi_len;
122 static u16 dmi_num;
124 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
125 void *))
127 u8 *buf;
129 buf = dmi_early_remap(dmi_base, dmi_len);
130 if (buf == NULL)
131 return -1;
133 dmi_table(buf, dmi_len, dmi_num, decode, NULL);
135 add_device_randomness(buf, dmi_len);
137 dmi_early_unmap(buf, dmi_len);
138 return 0;
141 static int __init dmi_checksum(const u8 *buf, u8 len)
143 u8 sum = 0;
144 int a;
146 for (a = 0; a < len; a++)
147 sum += buf[a];
149 return sum == 0;
152 static const char *dmi_ident[DMI_STRING_MAX];
153 static LIST_HEAD(dmi_devices);
154 int dmi_available;
157 * Save a DMI string
159 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
160 int string)
162 const char *d = (const char *) dm;
163 const char *p;
165 if (dmi_ident[slot])
166 return;
168 p = dmi_string(dm, d[string]);
169 if (p == NULL)
170 return;
172 dmi_ident[slot] = p;
175 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
176 int index)
178 const u8 *d = (u8 *) dm + index;
179 char *s;
180 int is_ff = 1, is_00 = 1, i;
182 if (dmi_ident[slot])
183 return;
185 for (i = 0; i < 16 && (is_ff || is_00); i++) {
186 if (d[i] != 0x00)
187 is_00 = 0;
188 if (d[i] != 0xFF)
189 is_ff = 0;
192 if (is_ff || is_00)
193 return;
195 s = dmi_alloc(16*2+4+1);
196 if (!s)
197 return;
200 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
201 * the UUID are supposed to be little-endian encoded. The specification
202 * says that this is the defacto standard.
204 if (dmi_ver >= 0x0206)
205 sprintf(s, "%pUL", d);
206 else
207 sprintf(s, "%pUB", d);
209 dmi_ident[slot] = s;
212 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
213 int index)
215 const u8 *d = (u8 *) dm + index;
216 char *s;
218 if (dmi_ident[slot])
219 return;
221 s = dmi_alloc(4);
222 if (!s)
223 return;
225 sprintf(s, "%u", *d & 0x7F);
226 dmi_ident[slot] = s;
229 static void __init dmi_save_one_device(int type, const char *name)
231 struct dmi_device *dev;
233 /* No duplicate device */
234 if (dmi_find_device(type, name, NULL))
235 return;
237 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
238 if (!dev)
239 return;
241 dev->type = type;
242 strcpy((char *)(dev + 1), name);
243 dev->name = (char *)(dev + 1);
244 dev->device_data = NULL;
245 list_add(&dev->list, &dmi_devices);
248 static void __init dmi_save_devices(const struct dmi_header *dm)
250 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
252 for (i = 0; i < count; i++) {
253 const char *d = (char *)(dm + 1) + (i * 2);
255 /* Skip disabled device */
256 if ((*d & 0x80) == 0)
257 continue;
259 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
263 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
265 int i, count = *(u8 *)(dm + 1);
266 struct dmi_device *dev;
268 for (i = 1; i <= count; i++) {
269 const char *devname = dmi_string(dm, i);
271 if (devname == dmi_empty_string)
272 continue;
274 dev = dmi_alloc(sizeof(*dev));
275 if (!dev)
276 break;
278 dev->type = DMI_DEV_TYPE_OEM_STRING;
279 dev->name = devname;
280 dev->device_data = NULL;
282 list_add(&dev->list, &dmi_devices);
286 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
288 struct dmi_device *dev;
289 void *data;
291 data = dmi_alloc(dm->length);
292 if (data == NULL)
293 return;
295 memcpy(data, dm, dm->length);
297 dev = dmi_alloc(sizeof(*dev));
298 if (!dev)
299 return;
301 dev->type = DMI_DEV_TYPE_IPMI;
302 dev->name = "IPMI controller";
303 dev->device_data = data;
305 list_add_tail(&dev->list, &dmi_devices);
308 static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
309 int devfn, const char *name)
311 struct dmi_dev_onboard *onboard_dev;
313 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
314 if (!onboard_dev)
315 return;
317 onboard_dev->instance = instance;
318 onboard_dev->segment = segment;
319 onboard_dev->bus = bus;
320 onboard_dev->devfn = devfn;
322 strcpy((char *)&onboard_dev[1], name);
323 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
324 onboard_dev->dev.name = (char *)&onboard_dev[1];
325 onboard_dev->dev.device_data = onboard_dev;
327 list_add(&onboard_dev->dev.list, &dmi_devices);
330 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
332 const u8 *d = (u8 *) dm + 5;
334 /* Skip disabled device */
335 if ((*d & 0x80) == 0)
336 return;
338 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
339 dmi_string_nosave(dm, *(d-1)));
340 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
343 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
345 if (dm->type != DMI_ENTRY_MEM_DEVICE)
346 return;
347 dmi_memdev_nr++;
350 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
352 const char *d = (const char *)dm;
353 static int nr;
355 if (dm->type != DMI_ENTRY_MEM_DEVICE)
356 return;
357 if (nr >= dmi_memdev_nr) {
358 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
359 return;
361 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
362 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
363 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
364 nr++;
367 void __init dmi_memdev_walk(void)
369 if (!dmi_available)
370 return;
372 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
373 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
374 if (dmi_memdev)
375 dmi_walk_early(save_mem_devices);
380 * Process a DMI table entry. Right now all we care about are the BIOS
381 * and machine entries. For 2.5 we should pull the smbus controller info
382 * out of here.
384 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
386 switch (dm->type) {
387 case 0: /* BIOS Information */
388 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
389 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
390 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
391 break;
392 case 1: /* System Information */
393 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
394 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
395 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
396 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
397 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
398 break;
399 case 2: /* Base Board Information */
400 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
401 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
402 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
403 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
404 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
405 break;
406 case 3: /* Chassis Information */
407 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
408 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
409 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
410 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
411 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
412 break;
413 case 10: /* Onboard Devices Information */
414 dmi_save_devices(dm);
415 break;
416 case 11: /* OEM Strings */
417 dmi_save_oem_strings_devices(dm);
418 break;
419 case 38: /* IPMI Device Information */
420 dmi_save_ipmi_device(dm);
421 break;
422 case 41: /* Onboard Devices Extended Information */
423 dmi_save_extended_devices(dm);
427 static int __init print_filtered(char *buf, size_t len, const char *info)
429 int c = 0;
430 const char *p;
432 if (!info)
433 return c;
435 for (p = info; *p; p++)
436 if (isprint(*p))
437 c += scnprintf(buf + c, len - c, "%c", *p);
438 else
439 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
440 return c;
443 static void __init dmi_format_ids(char *buf, size_t len)
445 int c = 0;
446 const char *board; /* Board Name is optional */
448 c += print_filtered(buf + c, len - c,
449 dmi_get_system_info(DMI_SYS_VENDOR));
450 c += scnprintf(buf + c, len - c, " ");
451 c += print_filtered(buf + c, len - c,
452 dmi_get_system_info(DMI_PRODUCT_NAME));
454 board = dmi_get_system_info(DMI_BOARD_NAME);
455 if (board) {
456 c += scnprintf(buf + c, len - c, "/");
457 c += print_filtered(buf + c, len - c, board);
459 c += scnprintf(buf + c, len - c, ", BIOS ");
460 c += print_filtered(buf + c, len - c,
461 dmi_get_system_info(DMI_BIOS_VERSION));
462 c += scnprintf(buf + c, len - c, " ");
463 c += print_filtered(buf + c, len - c,
464 dmi_get_system_info(DMI_BIOS_DATE));
468 * Check for DMI/SMBIOS headers in the system firmware image. Any
469 * SMBIOS header must start 16 bytes before the DMI header, so take a
470 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
471 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
472 * takes precedence) and return 0. Otherwise return 1.
474 static int __init dmi_present(const u8 *buf)
476 int smbios_ver;
478 if (memcmp(buf, "_SM_", 4) == 0 &&
479 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
480 smbios_ver = get_unaligned_be16(buf + 6);
482 /* Some BIOS report weird SMBIOS version, fix that up */
483 switch (smbios_ver) {
484 case 0x021F:
485 case 0x0221:
486 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n",
487 smbios_ver & 0xFF, 3);
488 smbios_ver = 0x0203;
489 break;
490 case 0x0233:
491 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6);
492 smbios_ver = 0x0206;
493 break;
495 } else {
496 smbios_ver = 0;
499 buf += 16;
501 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
502 dmi_num = get_unaligned_le16(buf + 12);
503 dmi_len = get_unaligned_le16(buf + 6);
504 dmi_base = get_unaligned_le32(buf + 8);
506 if (dmi_walk_early(dmi_decode) == 0) {
507 if (smbios_ver) {
508 dmi_ver = smbios_ver;
509 pr_info("SMBIOS %d.%d present.\n",
510 dmi_ver >> 8, dmi_ver & 0xFF);
511 } else {
512 dmi_ver = (buf[14] & 0xF0) << 4 |
513 (buf[14] & 0x0F);
514 pr_info("Legacy DMI %d.%d present.\n",
515 dmi_ver >> 8, dmi_ver & 0xFF);
517 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
518 printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
519 return 0;
523 return 1;
527 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
528 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
530 static int __init dmi_smbios3_present(const u8 *buf)
532 if (memcmp(buf, "_SM3_", 5) == 0 &&
533 buf[6] < 32 && dmi_checksum(buf, buf[6])) {
534 dmi_ver = get_unaligned_be16(buf + 7);
535 dmi_num = 0; /* No longer specified */
536 dmi_len = get_unaligned_le32(buf + 12);
537 dmi_base = get_unaligned_le64(buf + 16);
539 if (dmi_walk_early(dmi_decode) == 0) {
540 pr_info("SMBIOS %d.%d present.\n",
541 dmi_ver >> 8, dmi_ver & 0xFF);
542 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
543 pr_debug("DMI: %s\n", dmi_ids_string);
544 return 0;
547 return 1;
550 void __init dmi_scan_machine(void)
552 char __iomem *p, *q;
553 char buf[32];
555 if (efi_enabled(EFI_CONFIG_TABLES)) {
557 * According to the DMTF SMBIOS reference spec v3.0.0, it is
558 * allowed to define both the 64-bit entry point (smbios3) and
559 * the 32-bit entry point (smbios), in which case they should
560 * either both point to the same SMBIOS structure table, or the
561 * table pointed to by the 64-bit entry point should contain a
562 * superset of the table contents pointed to by the 32-bit entry
563 * point (section 5.2)
564 * This implies that the 64-bit entry point should have
565 * precedence if it is defined and supported by the OS. If we
566 * have the 64-bit entry point, but fail to decode it, fall
567 * back to the legacy one (if available)
569 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
570 p = dmi_early_remap(efi.smbios3, 32);
571 if (p == NULL)
572 goto error;
573 memcpy_fromio(buf, p, 32);
574 dmi_early_unmap(p, 32);
576 if (!dmi_smbios3_present(buf)) {
577 dmi_available = 1;
578 goto out;
581 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
582 goto error;
584 /* This is called as a core_initcall() because it isn't
585 * needed during early boot. This also means we can
586 * iounmap the space when we're done with it.
588 p = dmi_early_remap(efi.smbios, 32);
589 if (p == NULL)
590 goto error;
591 memcpy_fromio(buf, p, 32);
592 dmi_early_unmap(p, 32);
594 if (!dmi_present(buf)) {
595 dmi_available = 1;
596 goto out;
598 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
599 p = dmi_early_remap(0xF0000, 0x10000);
600 if (p == NULL)
601 goto error;
604 * Iterate over all possible DMI header addresses q.
605 * Maintain the 32 bytes around q in buf. On the
606 * first iteration, substitute zero for the
607 * out-of-range bytes so there is no chance of falsely
608 * detecting an SMBIOS header.
610 memset(buf, 0, 16);
611 for (q = p; q < p + 0x10000; q += 16) {
612 memcpy_fromio(buf + 16, q, 16);
613 if (!dmi_smbios3_present(buf) || !dmi_present(buf)) {
614 dmi_available = 1;
615 dmi_early_unmap(p, 0x10000);
616 goto out;
618 memcpy(buf, buf + 16, 16);
620 dmi_early_unmap(p, 0x10000);
622 error:
623 pr_info("DMI not present or invalid.\n");
624 out:
625 dmi_initialized = 1;
629 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
631 * Invoke dump_stack_set_arch_desc() with DMI system information so that
632 * DMI identifiers are printed out on task dumps. Arch boot code should
633 * call this function after dmi_scan_machine() if it wants to print out DMI
634 * identifiers on task dumps.
636 void __init dmi_set_dump_stack_arch_desc(void)
638 dump_stack_set_arch_desc("%s", dmi_ids_string);
642 * dmi_matches - check if dmi_system_id structure matches system DMI data
643 * @dmi: pointer to the dmi_system_id structure to check
645 static bool dmi_matches(const struct dmi_system_id *dmi)
647 int i;
649 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
651 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
652 int s = dmi->matches[i].slot;
653 if (s == DMI_NONE)
654 break;
655 if (dmi_ident[s]) {
656 if (!dmi->matches[i].exact_match &&
657 strstr(dmi_ident[s], dmi->matches[i].substr))
658 continue;
659 else if (dmi->matches[i].exact_match &&
660 !strcmp(dmi_ident[s], dmi->matches[i].substr))
661 continue;
664 /* No match */
665 return false;
667 return true;
671 * dmi_is_end_of_table - check for end-of-table marker
672 * @dmi: pointer to the dmi_system_id structure to check
674 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
676 return dmi->matches[0].slot == DMI_NONE;
680 * dmi_check_system - check system DMI data
681 * @list: array of dmi_system_id structures to match against
682 * All non-null elements of the list must match
683 * their slot's (field index's) data (i.e., each
684 * list string must be a substring of the specified
685 * DMI slot's string data) to be considered a
686 * successful match.
688 * Walk the blacklist table running matching functions until someone
689 * returns non zero or we hit the end. Callback function is called for
690 * each successful match. Returns the number of matches.
692 int dmi_check_system(const struct dmi_system_id *list)
694 int count = 0;
695 const struct dmi_system_id *d;
697 for (d = list; !dmi_is_end_of_table(d); d++)
698 if (dmi_matches(d)) {
699 count++;
700 if (d->callback && d->callback(d))
701 break;
704 return count;
706 EXPORT_SYMBOL(dmi_check_system);
709 * dmi_first_match - find dmi_system_id structure matching system DMI data
710 * @list: array of dmi_system_id structures to match against
711 * All non-null elements of the list must match
712 * their slot's (field index's) data (i.e., each
713 * list string must be a substring of the specified
714 * DMI slot's string data) to be considered a
715 * successful match.
717 * Walk the blacklist table until the first match is found. Return the
718 * pointer to the matching entry or NULL if there's no match.
720 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
722 const struct dmi_system_id *d;
724 for (d = list; !dmi_is_end_of_table(d); d++)
725 if (dmi_matches(d))
726 return d;
728 return NULL;
730 EXPORT_SYMBOL(dmi_first_match);
733 * dmi_get_system_info - return DMI data value
734 * @field: data index (see enum dmi_field)
736 * Returns one DMI data value, can be used to perform
737 * complex DMI data checks.
739 const char *dmi_get_system_info(int field)
741 return dmi_ident[field];
743 EXPORT_SYMBOL(dmi_get_system_info);
746 * dmi_name_in_serial - Check if string is in the DMI product serial information
747 * @str: string to check for
749 int dmi_name_in_serial(const char *str)
751 int f = DMI_PRODUCT_SERIAL;
752 if (dmi_ident[f] && strstr(dmi_ident[f], str))
753 return 1;
754 return 0;
758 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
759 * @str: Case sensitive Name
761 int dmi_name_in_vendors(const char *str)
763 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
764 int i;
765 for (i = 0; fields[i] != DMI_NONE; i++) {
766 int f = fields[i];
767 if (dmi_ident[f] && strstr(dmi_ident[f], str))
768 return 1;
770 return 0;
772 EXPORT_SYMBOL(dmi_name_in_vendors);
775 * dmi_find_device - find onboard device by type/name
776 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
777 * @name: device name string or %NULL to match all
778 * @from: previous device found in search, or %NULL for new search.
780 * Iterates through the list of known onboard devices. If a device is
781 * found with a matching @vendor and @device, a pointer to its device
782 * structure is returned. Otherwise, %NULL is returned.
783 * A new search is initiated by passing %NULL as the @from argument.
784 * If @from is not %NULL, searches continue from next device.
786 const struct dmi_device *dmi_find_device(int type, const char *name,
787 const struct dmi_device *from)
789 const struct list_head *head = from ? &from->list : &dmi_devices;
790 struct list_head *d;
792 for (d = head->next; d != &dmi_devices; d = d->next) {
793 const struct dmi_device *dev =
794 list_entry(d, struct dmi_device, list);
796 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
797 ((name == NULL) || (strcmp(dev->name, name) == 0)))
798 return dev;
801 return NULL;
803 EXPORT_SYMBOL(dmi_find_device);
806 * dmi_get_date - parse a DMI date
807 * @field: data index (see enum dmi_field)
808 * @yearp: optional out parameter for the year
809 * @monthp: optional out parameter for the month
810 * @dayp: optional out parameter for the day
812 * The date field is assumed to be in the form resembling
813 * [mm[/dd]]/yy[yy] and the result is stored in the out
814 * parameters any or all of which can be omitted.
816 * If the field doesn't exist, all out parameters are set to zero
817 * and false is returned. Otherwise, true is returned with any
818 * invalid part of date set to zero.
820 * On return, year, month and day are guaranteed to be in the
821 * range of [0,9999], [0,12] and [0,31] respectively.
823 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
825 int year = 0, month = 0, day = 0;
826 bool exists;
827 const char *s, *y;
828 char *e;
830 s = dmi_get_system_info(field);
831 exists = s;
832 if (!exists)
833 goto out;
836 * Determine year first. We assume the date string resembles
837 * mm/dd/yy[yy] but the original code extracted only the year
838 * from the end. Keep the behavior in the spirit of no
839 * surprises.
841 y = strrchr(s, '/');
842 if (!y)
843 goto out;
845 y++;
846 year = simple_strtoul(y, &e, 10);
847 if (y != e && year < 100) { /* 2-digit year */
848 year += 1900;
849 if (year < 1996) /* no dates < spec 1.0 */
850 year += 100;
852 if (year > 9999) /* year should fit in %04d */
853 year = 0;
855 /* parse the mm and dd */
856 month = simple_strtoul(s, &e, 10);
857 if (s == e || *e != '/' || !month || month > 12) {
858 month = 0;
859 goto out;
862 s = e + 1;
863 day = simple_strtoul(s, &e, 10);
864 if (s == y || s == e || *e != '/' || day > 31)
865 day = 0;
866 out:
867 if (yearp)
868 *yearp = year;
869 if (monthp)
870 *monthp = month;
871 if (dayp)
872 *dayp = day;
873 return exists;
875 EXPORT_SYMBOL(dmi_get_date);
878 * dmi_walk - Walk the DMI table and get called back for every record
879 * @decode: Callback function
880 * @private_data: Private data to be passed to the callback function
882 * Returns -1 when the DMI table can't be reached, 0 on success.
884 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
885 void *private_data)
887 u8 *buf;
889 if (!dmi_available)
890 return -1;
892 buf = dmi_remap(dmi_base, dmi_len);
893 if (buf == NULL)
894 return -1;
896 dmi_table(buf, dmi_len, dmi_num, decode, private_data);
898 dmi_unmap(buf);
899 return 0;
901 EXPORT_SYMBOL_GPL(dmi_walk);
904 * dmi_match - compare a string to the dmi field (if exists)
905 * @f: DMI field identifier
906 * @str: string to compare the DMI field to
908 * Returns true if the requested field equals to the str (including NULL).
910 bool dmi_match(enum dmi_field f, const char *str)
912 const char *info = dmi_get_system_info(f);
914 if (info == NULL || str == NULL)
915 return info == str;
917 return !strcmp(info, str);
919 EXPORT_SYMBOL_GPL(dmi_match);
921 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
923 int n;
925 if (dmi_memdev == NULL)
926 return;
928 for (n = 0; n < dmi_memdev_nr; n++) {
929 if (handle == dmi_memdev[n].handle) {
930 *bank = dmi_memdev[n].bank;
931 *device = dmi_memdev[n].device;
932 break;
936 EXPORT_SYMBOL_GPL(dmi_memdev_name);