2 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
10 * Copyright (c) 2014, Intel Corporation.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms and conditions of the GNU General Public License,
14 * version 2, as published by the Free Software Foundation.
16 * This program is distributed in the hope it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
22 #include <linux/module.h>
23 #include <linux/i2c.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/acpi.h>
28 #include <linux/gpio/consumer.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/iio/iio.h>
32 #include <linux/iio/sysfs.h>
33 #include <linux/iio/buffer.h>
34 #include <linux/iio/events.h>
35 #include <linux/iio/trigger.h>
36 #include <linux/iio/trigger_consumer.h>
37 #include <linux/iio/triggered_buffer.h>
39 #define BMC150_ACCEL_DRV_NAME "bmc150_accel"
40 #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event"
41 #define BMC150_ACCEL_GPIO_NAME "bmc150_accel_int"
43 #define BMC150_ACCEL_REG_CHIP_ID 0x00
45 #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B
46 #define BMC150_ACCEL_ANY_MOTION_MASK 0x07
47 #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0)
48 #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1)
49 #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2)
50 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3)
52 #define BMC150_ACCEL_REG_PMU_LPW 0x11
53 #define BMC150_ACCEL_PMU_MODE_MASK 0xE0
54 #define BMC150_ACCEL_PMU_MODE_SHIFT 5
55 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17
56 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1
58 #define BMC150_ACCEL_REG_PMU_RANGE 0x0F
60 #define BMC150_ACCEL_DEF_RANGE_2G 0x03
61 #define BMC150_ACCEL_DEF_RANGE_4G 0x05
62 #define BMC150_ACCEL_DEF_RANGE_8G 0x08
63 #define BMC150_ACCEL_DEF_RANGE_16G 0x0C
65 /* Default BW: 125Hz */
66 #define BMC150_ACCEL_REG_PMU_BW 0x10
67 #define BMC150_ACCEL_DEF_BW 125
69 #define BMC150_ACCEL_REG_INT_MAP_0 0x19
70 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE BIT(2)
72 #define BMC150_ACCEL_REG_INT_MAP_1 0x1A
73 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA BIT(0)
75 #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21
76 #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80
77 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
78 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00
80 #define BMC150_ACCEL_REG_INT_EN_0 0x16
81 #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0)
82 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1)
83 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2)
85 #define BMC150_ACCEL_REG_INT_EN_1 0x17
86 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4)
88 #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20
89 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0)
91 #define BMC150_ACCEL_REG_INT_5 0x27
92 #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03
94 #define BMC150_ACCEL_REG_INT_6 0x28
95 #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF
97 /* Slope duration in terms of number of samples */
98 #define BMC150_ACCEL_DEF_SLOPE_DURATION 1
99 /* in terms of multiples of g's/LSB, based on range */
100 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1
102 #define BMC150_ACCEL_REG_XOUT_L 0x02
104 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100
106 /* Sleep Duration values */
107 #define BMC150_ACCEL_SLEEP_500_MICRO 0x05
108 #define BMC150_ACCEL_SLEEP_1_MS 0x06
109 #define BMC150_ACCEL_SLEEP_2_MS 0x07
110 #define BMC150_ACCEL_SLEEP_4_MS 0x08
111 #define BMC150_ACCEL_SLEEP_6_MS 0x09
112 #define BMC150_ACCEL_SLEEP_10_MS 0x0A
113 #define BMC150_ACCEL_SLEEP_25_MS 0x0B
114 #define BMC150_ACCEL_SLEEP_50_MS 0x0C
115 #define BMC150_ACCEL_SLEEP_100_MS 0x0D
116 #define BMC150_ACCEL_SLEEP_500_MS 0x0E
117 #define BMC150_ACCEL_SLEEP_1_SEC 0x0F
119 #define BMC150_ACCEL_REG_TEMP 0x08
120 #define BMC150_ACCEL_TEMP_CENTER_VAL 24
122 #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
123 #define BMC150_AUTO_SUSPEND_DELAY_MS 2000
125 enum bmc150_accel_axis
{
131 enum bmc150_power_modes
{
132 BMC150_ACCEL_SLEEP_MODE_NORMAL
,
133 BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND
,
134 BMC150_ACCEL_SLEEP_MODE_LPM
,
135 BMC150_ACCEL_SLEEP_MODE_SUSPEND
= 0x04,
138 struct bmc150_scale_info
{
143 struct bmc150_accel_chip_info
{
145 const struct iio_chan_spec
*channels
;
147 const struct bmc150_scale_info scale_table
[4];
150 struct bmc150_accel_data
{
151 struct i2c_client
*client
;
152 struct iio_trigger
*dready_trig
;
153 struct iio_trigger
*motion_trig
;
161 bool dready_trigger_on
;
162 bool motion_trigger_on
;
164 const struct bmc150_accel_chip_info
*chip_info
;
167 static const struct {
171 } bmc150_accel_samp_freq_table
[] = { {15, 620000, 0x08},
180 static const struct {
183 } bmc150_accel_sample_upd_time
[] = { {0x08, 64},
192 static const struct {
195 } bmc150_accel_sleep_value_table
[] = { {0, 0},
196 {500, BMC150_ACCEL_SLEEP_500_MICRO
},
197 {1000, BMC150_ACCEL_SLEEP_1_MS
},
198 {2000, BMC150_ACCEL_SLEEP_2_MS
},
199 {4000, BMC150_ACCEL_SLEEP_4_MS
},
200 {6000, BMC150_ACCEL_SLEEP_6_MS
},
201 {10000, BMC150_ACCEL_SLEEP_10_MS
},
202 {25000, BMC150_ACCEL_SLEEP_25_MS
},
203 {50000, BMC150_ACCEL_SLEEP_50_MS
},
204 {100000, BMC150_ACCEL_SLEEP_100_MS
},
205 {500000, BMC150_ACCEL_SLEEP_500_MS
},
206 {1000000, BMC150_ACCEL_SLEEP_1_SEC
} };
209 static int bmc150_accel_set_mode(struct bmc150_accel_data
*data
,
210 enum bmc150_power_modes mode
,
219 for (i
= 0; i
< ARRAY_SIZE(bmc150_accel_sleep_value_table
);
221 if (bmc150_accel_sleep_value_table
[i
].sleep_dur
==
224 bmc150_accel_sleep_value_table
[i
].reg_value
;
232 lpw_bits
= mode
<< BMC150_ACCEL_PMU_MODE_SHIFT
;
233 lpw_bits
|= (dur_val
<< BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT
);
235 dev_dbg(&data
->client
->dev
, "Set Mode bits %x\n", lpw_bits
);
237 ret
= i2c_smbus_write_byte_data(data
->client
,
238 BMC150_ACCEL_REG_PMU_LPW
, lpw_bits
);
240 dev_err(&data
->client
->dev
, "Error writing reg_pmu_lpw\n");
247 static int bmc150_accel_set_bw(struct bmc150_accel_data
*data
, int val
,
253 for (i
= 0; i
< ARRAY_SIZE(bmc150_accel_samp_freq_table
); ++i
) {
254 if (bmc150_accel_samp_freq_table
[i
].val
== val
&&
255 bmc150_accel_samp_freq_table
[i
].val2
== val2
) {
256 ret
= i2c_smbus_write_byte_data(
258 BMC150_ACCEL_REG_PMU_BW
,
259 bmc150_accel_samp_freq_table
[i
].bw_bits
);
264 bmc150_accel_samp_freq_table
[i
].bw_bits
;
272 static int bmc150_accel_chip_init(struct bmc150_accel_data
*data
)
276 ret
= i2c_smbus_read_byte_data(data
->client
, BMC150_ACCEL_REG_CHIP_ID
);
278 dev_err(&data
->client
->dev
,
279 "Error: Reading chip id\n");
283 dev_dbg(&data
->client
->dev
, "Chip Id %x\n", ret
);
284 if (ret
!= data
->chip_info
->chip_id
) {
285 dev_err(&data
->client
->dev
, "Invalid chip %x\n", ret
);
289 ret
= bmc150_accel_set_mode(data
, BMC150_ACCEL_SLEEP_MODE_NORMAL
, 0);
294 ret
= bmc150_accel_set_bw(data
, BMC150_ACCEL_DEF_BW
, 0);
298 /* Set Default Range */
299 ret
= i2c_smbus_write_byte_data(data
->client
,
300 BMC150_ACCEL_REG_PMU_RANGE
,
301 BMC150_ACCEL_DEF_RANGE_4G
);
303 dev_err(&data
->client
->dev
,
304 "Error writing reg_pmu_range\n");
308 data
->range
= BMC150_ACCEL_DEF_RANGE_4G
;
310 /* Set default slope duration */
311 ret
= i2c_smbus_read_byte_data(data
->client
, BMC150_ACCEL_REG_INT_5
);
313 dev_err(&data
->client
->dev
, "Error reading reg_int_5\n");
316 data
->slope_dur
|= BMC150_ACCEL_DEF_SLOPE_DURATION
;
317 ret
= i2c_smbus_write_byte_data(data
->client
,
318 BMC150_ACCEL_REG_INT_5
,
321 dev_err(&data
->client
->dev
, "Error writing reg_int_5\n");
324 dev_dbg(&data
->client
->dev
, "slope_dur %x\n", data
->slope_dur
);
326 /* Set default slope thresholds */
327 ret
= i2c_smbus_write_byte_data(data
->client
,
328 BMC150_ACCEL_REG_INT_6
,
329 BMC150_ACCEL_DEF_SLOPE_THRESHOLD
);
331 dev_err(&data
->client
->dev
, "Error writing reg_int_6\n");
334 data
->slope_thres
= BMC150_ACCEL_DEF_SLOPE_THRESHOLD
;
335 dev_dbg(&data
->client
->dev
, "slope_thres %x\n", data
->slope_thres
);
337 /* Set default as latched interrupts */
338 ret
= i2c_smbus_write_byte_data(data
->client
,
339 BMC150_ACCEL_REG_INT_RST_LATCH
,
340 BMC150_ACCEL_INT_MODE_LATCH_INT
|
341 BMC150_ACCEL_INT_MODE_LATCH_RESET
);
343 dev_err(&data
->client
->dev
,
344 "Error writing reg_int_rst_latch\n");
351 static int bmc150_accel_setup_any_motion_interrupt(
352 struct bmc150_accel_data
*data
,
357 /* Enable/Disable INT1 mapping */
358 ret
= i2c_smbus_read_byte_data(data
->client
,
359 BMC150_ACCEL_REG_INT_MAP_0
);
361 dev_err(&data
->client
->dev
, "Error reading reg_int_map_0\n");
365 ret
|= BMC150_ACCEL_INT_MAP_0_BIT_SLOPE
;
367 ret
&= ~BMC150_ACCEL_INT_MAP_0_BIT_SLOPE
;
369 ret
= i2c_smbus_write_byte_data(data
->client
,
370 BMC150_ACCEL_REG_INT_MAP_0
,
373 dev_err(&data
->client
->dev
, "Error writing reg_int_map_0\n");
378 /* Set slope duration (no of samples) */
379 ret
= i2c_smbus_write_byte_data(data
->client
,
380 BMC150_ACCEL_REG_INT_5
,
383 dev_err(&data
->client
->dev
, "Error write reg_int_5\n");
387 /* Set slope thresholds */
388 ret
= i2c_smbus_write_byte_data(data
->client
,
389 BMC150_ACCEL_REG_INT_6
,
392 dev_err(&data
->client
->dev
, "Error write reg_int_6\n");
397 * New data interrupt is always non-latched,
398 * which will have higher priority, so no need
399 * to set latched mode, we will be flooded anyway with INTR
401 if (!data
->dready_trigger_on
) {
402 ret
= i2c_smbus_write_byte_data(data
->client
,
403 BMC150_ACCEL_REG_INT_RST_LATCH
,
404 BMC150_ACCEL_INT_MODE_LATCH_INT
|
405 BMC150_ACCEL_INT_MODE_LATCH_RESET
);
407 dev_err(&data
->client
->dev
,
408 "Error writing reg_int_rst_latch\n");
413 ret
= i2c_smbus_write_byte_data(data
->client
,
414 BMC150_ACCEL_REG_INT_EN_0
,
415 BMC150_ACCEL_INT_EN_BIT_SLP_X
|
416 BMC150_ACCEL_INT_EN_BIT_SLP_Y
|
417 BMC150_ACCEL_INT_EN_BIT_SLP_Z
);
419 ret
= i2c_smbus_write_byte_data(data
->client
,
420 BMC150_ACCEL_REG_INT_EN_0
,
424 dev_err(&data
->client
->dev
, "Error writing reg_int_en_0\n");
431 static int bmc150_accel_setup_new_data_interrupt(struct bmc150_accel_data
*data
,
436 /* Enable/Disable INT1 mapping */
437 ret
= i2c_smbus_read_byte_data(data
->client
,
438 BMC150_ACCEL_REG_INT_MAP_1
);
440 dev_err(&data
->client
->dev
, "Error reading reg_int_map_1\n");
444 ret
|= BMC150_ACCEL_INT_MAP_1_BIT_DATA
;
446 ret
&= ~BMC150_ACCEL_INT_MAP_1_BIT_DATA
;
448 ret
= i2c_smbus_write_byte_data(data
->client
,
449 BMC150_ACCEL_REG_INT_MAP_1
,
452 dev_err(&data
->client
->dev
, "Error writing reg_int_map_1\n");
458 * Set non latched mode interrupt and clear any latched
461 ret
= i2c_smbus_write_byte_data(data
->client
,
462 BMC150_ACCEL_REG_INT_RST_LATCH
,
463 BMC150_ACCEL_INT_MODE_NON_LATCH_INT
|
464 BMC150_ACCEL_INT_MODE_LATCH_RESET
);
466 dev_err(&data
->client
->dev
,
467 "Error writing reg_int_rst_latch\n");
471 ret
= i2c_smbus_write_byte_data(data
->client
,
472 BMC150_ACCEL_REG_INT_EN_1
,
473 BMC150_ACCEL_INT_EN_BIT_DATA_EN
);
476 /* Restore default interrupt mode */
477 ret
= i2c_smbus_write_byte_data(data
->client
,
478 BMC150_ACCEL_REG_INT_RST_LATCH
,
479 BMC150_ACCEL_INT_MODE_LATCH_INT
|
480 BMC150_ACCEL_INT_MODE_LATCH_RESET
);
482 dev_err(&data
->client
->dev
,
483 "Error writing reg_int_rst_latch\n");
487 ret
= i2c_smbus_write_byte_data(data
->client
,
488 BMC150_ACCEL_REG_INT_EN_1
,
493 dev_err(&data
->client
->dev
, "Error writing reg_int_en_1\n");
500 static int bmc150_accel_get_bw(struct bmc150_accel_data
*data
, int *val
,
505 for (i
= 0; i
< ARRAY_SIZE(bmc150_accel_samp_freq_table
); ++i
) {
506 if (bmc150_accel_samp_freq_table
[i
].bw_bits
== data
->bw_bits
) {
507 *val
= bmc150_accel_samp_freq_table
[i
].val
;
508 *val2
= bmc150_accel_samp_freq_table
[i
].val2
;
509 return IIO_VAL_INT_PLUS_MICRO
;
517 static int bmc150_accel_get_startup_times(struct bmc150_accel_data
*data
)
521 for (i
= 0; i
< ARRAY_SIZE(bmc150_accel_sample_upd_time
); ++i
) {
522 if (bmc150_accel_sample_upd_time
[i
].bw_bits
== data
->bw_bits
)
523 return bmc150_accel_sample_upd_time
[i
].msec
;
526 return BMC150_ACCEL_MAX_STARTUP_TIME_MS
;
529 static int bmc150_accel_set_power_state(struct bmc150_accel_data
*data
, bool on
)
534 ret
= pm_runtime_get_sync(&data
->client
->dev
);
536 pm_runtime_mark_last_busy(&data
->client
->dev
);
537 ret
= pm_runtime_put_autosuspend(&data
->client
->dev
);
540 dev_err(&data
->client
->dev
,
541 "Failed: bmc150_accel_set_power_state for %d\n", on
);
543 pm_runtime_put_noidle(&data
->client
->dev
);
551 static int bmc150_accel_set_power_state(struct bmc150_accel_data
*data
, bool on
)
557 static int bmc150_accel_set_scale(struct bmc150_accel_data
*data
, int val
)
561 for (i
= 0; i
< ARRAY_SIZE(data
->chip_info
->scale_table
); ++i
) {
562 if (data
->chip_info
->scale_table
[i
].scale
== val
) {
563 ret
= i2c_smbus_write_byte_data(
565 BMC150_ACCEL_REG_PMU_RANGE
,
566 data
->chip_info
->scale_table
[i
].reg_range
);
568 dev_err(&data
->client
->dev
,
569 "Error writing pmu_range\n");
573 data
->range
= data
->chip_info
->scale_table
[i
].reg_range
;
581 static int bmc150_accel_get_temp(struct bmc150_accel_data
*data
, int *val
)
585 mutex_lock(&data
->mutex
);
587 ret
= i2c_smbus_read_byte_data(data
->client
, BMC150_ACCEL_REG_TEMP
);
589 dev_err(&data
->client
->dev
, "Error reading reg_temp\n");
590 mutex_unlock(&data
->mutex
);
593 *val
= sign_extend32(ret
, 7);
595 mutex_unlock(&data
->mutex
);
600 static int bmc150_accel_get_axis(struct bmc150_accel_data
*data
,
601 struct iio_chan_spec
const *chan
,
605 int axis
= chan
->scan_index
;
607 mutex_lock(&data
->mutex
);
608 ret
= bmc150_accel_set_power_state(data
, true);
610 mutex_unlock(&data
->mutex
);
614 ret
= i2c_smbus_read_word_data(data
->client
,
615 BMC150_ACCEL_AXIS_TO_REG(axis
));
617 dev_err(&data
->client
->dev
, "Error reading axis %d\n", axis
);
618 bmc150_accel_set_power_state(data
, false);
619 mutex_unlock(&data
->mutex
);
622 *val
= sign_extend32(ret
>> chan
->scan_type
.shift
,
623 chan
->scan_type
.realbits
- 1);
624 ret
= bmc150_accel_set_power_state(data
, false);
625 mutex_unlock(&data
->mutex
);
632 static int bmc150_accel_read_raw(struct iio_dev
*indio_dev
,
633 struct iio_chan_spec
const *chan
,
634 int *val
, int *val2
, long mask
)
636 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
640 case IIO_CHAN_INFO_RAW
:
641 switch (chan
->type
) {
643 return bmc150_accel_get_temp(data
, val
);
645 if (iio_buffer_enabled(indio_dev
))
648 return bmc150_accel_get_axis(data
, chan
, val
);
652 case IIO_CHAN_INFO_OFFSET
:
653 if (chan
->type
== IIO_TEMP
) {
654 *val
= BMC150_ACCEL_TEMP_CENTER_VAL
;
658 case IIO_CHAN_INFO_SCALE
:
660 switch (chan
->type
) {
663 return IIO_VAL_INT_PLUS_MICRO
;
667 const struct bmc150_scale_info
*si
;
668 int st_size
= ARRAY_SIZE(data
->chip_info
->scale_table
);
670 for (i
= 0; i
< st_size
; ++i
) {
671 si
= &data
->chip_info
->scale_table
[i
];
672 if (si
->reg_range
== data
->range
) {
674 return IIO_VAL_INT_PLUS_MICRO
;
682 case IIO_CHAN_INFO_SAMP_FREQ
:
683 mutex_lock(&data
->mutex
);
684 ret
= bmc150_accel_get_bw(data
, val
, val2
);
685 mutex_unlock(&data
->mutex
);
692 static int bmc150_accel_write_raw(struct iio_dev
*indio_dev
,
693 struct iio_chan_spec
const *chan
,
694 int val
, int val2
, long mask
)
696 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
700 case IIO_CHAN_INFO_SAMP_FREQ
:
701 mutex_lock(&data
->mutex
);
702 ret
= bmc150_accel_set_bw(data
, val
, val2
);
703 mutex_unlock(&data
->mutex
);
705 case IIO_CHAN_INFO_SCALE
:
709 mutex_lock(&data
->mutex
);
710 ret
= bmc150_accel_set_scale(data
, val2
);
711 mutex_unlock(&data
->mutex
);
720 static int bmc150_accel_read_event(struct iio_dev
*indio_dev
,
721 const struct iio_chan_spec
*chan
,
722 enum iio_event_type type
,
723 enum iio_event_direction dir
,
724 enum iio_event_info info
,
727 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
731 case IIO_EV_INFO_VALUE
:
732 *val
= data
->slope_thres
;
734 case IIO_EV_INFO_PERIOD
:
735 *val
= data
->slope_dur
& BMC150_ACCEL_SLOPE_DUR_MASK
;
744 static int bmc150_accel_write_event(struct iio_dev
*indio_dev
,
745 const struct iio_chan_spec
*chan
,
746 enum iio_event_type type
,
747 enum iio_event_direction dir
,
748 enum iio_event_info info
,
751 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
753 if (data
->ev_enable_state
)
757 case IIO_EV_INFO_VALUE
:
758 data
->slope_thres
= val
;
760 case IIO_EV_INFO_PERIOD
:
761 data
->slope_dur
&= ~BMC150_ACCEL_SLOPE_DUR_MASK
;
762 data
->slope_dur
|= val
& BMC150_ACCEL_SLOPE_DUR_MASK
;
771 static int bmc150_accel_read_event_config(struct iio_dev
*indio_dev
,
772 const struct iio_chan_spec
*chan
,
773 enum iio_event_type type
,
774 enum iio_event_direction dir
)
777 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
779 return data
->ev_enable_state
;
782 static int bmc150_accel_write_event_config(struct iio_dev
*indio_dev
,
783 const struct iio_chan_spec
*chan
,
784 enum iio_event_type type
,
785 enum iio_event_direction dir
,
788 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
791 if (state
&& data
->ev_enable_state
)
794 mutex_lock(&data
->mutex
);
796 if (!state
&& data
->motion_trigger_on
) {
797 data
->ev_enable_state
= 0;
798 mutex_unlock(&data
->mutex
);
803 * We will expect the enable and disable to do operation in
804 * in reverse order. This will happen here anyway as our
805 * resume operation uses sync mode runtime pm calls, the
806 * suspend operation will be delayed by autosuspend delay
807 * So the disable operation will still happen in reverse of
808 * enable operation. When runtime pm is disabled the mode
809 * is always on so sequence doesn't matter
812 ret
= bmc150_accel_set_power_state(data
, state
);
814 mutex_unlock(&data
->mutex
);
818 ret
= bmc150_accel_setup_any_motion_interrupt(data
, state
);
820 bmc150_accel_set_power_state(data
, false);
821 mutex_unlock(&data
->mutex
);
825 data
->ev_enable_state
= state
;
826 mutex_unlock(&data
->mutex
);
831 static int bmc150_accel_validate_trigger(struct iio_dev
*indio_dev
,
832 struct iio_trigger
*trig
)
834 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
836 if (data
->dready_trig
!= trig
&& data
->motion_trig
!= trig
)
842 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
843 "15.620000 31.260000 62.50000 125 250 500 1000 2000");
845 static struct attribute
*bmc150_accel_attributes
[] = {
846 &iio_const_attr_sampling_frequency_available
.dev_attr
.attr
,
850 static const struct attribute_group bmc150_accel_attrs_group
= {
851 .attrs
= bmc150_accel_attributes
,
854 static const struct iio_event_spec bmc150_accel_event
= {
855 .type
= IIO_EV_TYPE_ROC
,
856 .dir
= IIO_EV_DIR_EITHER
,
857 .mask_separate
= BIT(IIO_EV_INFO_VALUE
) |
858 BIT(IIO_EV_INFO_ENABLE
) |
859 BIT(IIO_EV_INFO_PERIOD
)
862 #define BMC150_ACCEL_CHANNEL(_axis, bits) { \
865 .channel2 = IIO_MOD_##_axis, \
866 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
867 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
868 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
869 .scan_index = AXIS_##_axis, \
872 .realbits = (bits), \
874 .shift = 16 - (bits), \
876 .event_spec = &bmc150_accel_event, \
877 .num_event_specs = 1 \
880 #define BMC150_ACCEL_CHANNELS(bits) { \
883 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
884 BIT(IIO_CHAN_INFO_SCALE) | \
885 BIT(IIO_CHAN_INFO_OFFSET), \
888 BMC150_ACCEL_CHANNEL(X, bits), \
889 BMC150_ACCEL_CHANNEL(Y, bits), \
890 BMC150_ACCEL_CHANNEL(Z, bits), \
891 IIO_CHAN_SOFT_TIMESTAMP(3), \
894 static const struct iio_chan_spec bma222e_accel_channels
[] =
895 BMC150_ACCEL_CHANNELS(8);
896 static const struct iio_chan_spec bma250e_accel_channels
[] =
897 BMC150_ACCEL_CHANNELS(10);
898 static const struct iio_chan_spec bmc150_accel_channels
[] =
899 BMC150_ACCEL_CHANNELS(12);
900 static const struct iio_chan_spec bma280_accel_channels
[] =
901 BMC150_ACCEL_CHANNELS(14);
912 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl
[] = {
915 .channels
= bmc150_accel_channels
,
916 .num_channels
= ARRAY_SIZE(bmc150_accel_channels
),
917 .scale_table
= { {9610, BMC150_ACCEL_DEF_RANGE_2G
},
918 {19122, BMC150_ACCEL_DEF_RANGE_4G
},
919 {38344, BMC150_ACCEL_DEF_RANGE_8G
},
920 {76590, BMC150_ACCEL_DEF_RANGE_16G
} },
924 .channels
= bmc150_accel_channels
,
925 .num_channels
= ARRAY_SIZE(bmc150_accel_channels
),
926 .scale_table
= { {9610, BMC150_ACCEL_DEF_RANGE_2G
},
927 {19122, BMC150_ACCEL_DEF_RANGE_4G
},
928 {38344, BMC150_ACCEL_DEF_RANGE_8G
},
929 {76590, BMC150_ACCEL_DEF_RANGE_16G
} },
933 .channels
= bmc150_accel_channels
,
934 .num_channels
= ARRAY_SIZE(bmc150_accel_channels
),
935 .scale_table
= { {9610, BMC150_ACCEL_DEF_RANGE_2G
},
936 {19122, BMC150_ACCEL_DEF_RANGE_4G
},
937 {38344, BMC150_ACCEL_DEF_RANGE_8G
},
938 {76590, BMC150_ACCEL_DEF_RANGE_16G
} },
942 .channels
= bma250e_accel_channels
,
943 .num_channels
= ARRAY_SIZE(bma250e_accel_channels
),
944 .scale_table
= { {38344, BMC150_ACCEL_DEF_RANGE_2G
},
945 {76590, BMC150_ACCEL_DEF_RANGE_4G
},
946 {153277, BMC150_ACCEL_DEF_RANGE_8G
},
947 {306457, BMC150_ACCEL_DEF_RANGE_16G
} },
951 .channels
= bma222e_accel_channels
,
952 .num_channels
= ARRAY_SIZE(bma222e_accel_channels
),
953 .scale_table
= { {153277, BMC150_ACCEL_DEF_RANGE_2G
},
954 {306457, BMC150_ACCEL_DEF_RANGE_4G
},
955 {612915, BMC150_ACCEL_DEF_RANGE_8G
},
956 {1225831, BMC150_ACCEL_DEF_RANGE_16G
} },
960 .channels
= bma280_accel_channels
,
961 .num_channels
= ARRAY_SIZE(bma280_accel_channels
),
962 .scale_table
= { {2392, BMC150_ACCEL_DEF_RANGE_2G
},
963 {4785, BMC150_ACCEL_DEF_RANGE_4G
},
964 {9581, BMC150_ACCEL_DEF_RANGE_8G
},
965 {19152, BMC150_ACCEL_DEF_RANGE_16G
} },
969 static const struct iio_info bmc150_accel_info
= {
970 .attrs
= &bmc150_accel_attrs_group
,
971 .read_raw
= bmc150_accel_read_raw
,
972 .write_raw
= bmc150_accel_write_raw
,
973 .read_event_value
= bmc150_accel_read_event
,
974 .write_event_value
= bmc150_accel_write_event
,
975 .write_event_config
= bmc150_accel_write_event_config
,
976 .read_event_config
= bmc150_accel_read_event_config
,
977 .validate_trigger
= bmc150_accel_validate_trigger
,
978 .driver_module
= THIS_MODULE
,
981 static irqreturn_t
bmc150_accel_trigger_handler(int irq
, void *p
)
983 struct iio_poll_func
*pf
= p
;
984 struct iio_dev
*indio_dev
= pf
->indio_dev
;
985 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
988 mutex_lock(&data
->mutex
);
989 for_each_set_bit(bit
, indio_dev
->active_scan_mask
,
990 indio_dev
->masklength
) {
991 ret
= i2c_smbus_read_word_data(data
->client
,
992 BMC150_ACCEL_AXIS_TO_REG(bit
));
994 mutex_unlock(&data
->mutex
);
997 data
->buffer
[i
++] = ret
;
999 mutex_unlock(&data
->mutex
);
1001 iio_push_to_buffers_with_timestamp(indio_dev
, data
->buffer
,
1004 iio_trigger_notify_done(indio_dev
->trig
);
1009 static int bmc150_accel_trig_try_reen(struct iio_trigger
*trig
)
1011 struct iio_dev
*indio_dev
= iio_trigger_get_drvdata(trig
);
1012 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1015 /* new data interrupts don't need ack */
1016 if (data
->dready_trigger_on
)
1019 mutex_lock(&data
->mutex
);
1020 /* clear any latched interrupt */
1021 ret
= i2c_smbus_write_byte_data(data
->client
,
1022 BMC150_ACCEL_REG_INT_RST_LATCH
,
1023 BMC150_ACCEL_INT_MODE_LATCH_INT
|
1024 BMC150_ACCEL_INT_MODE_LATCH_RESET
);
1025 mutex_unlock(&data
->mutex
);
1027 dev_err(&data
->client
->dev
,
1028 "Error writing reg_int_rst_latch\n");
1035 static int bmc150_accel_data_rdy_trigger_set_state(struct iio_trigger
*trig
,
1038 struct iio_dev
*indio_dev
= iio_trigger_get_drvdata(trig
);
1039 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1042 mutex_lock(&data
->mutex
);
1044 if (!state
&& data
->ev_enable_state
&& data
->motion_trigger_on
) {
1045 data
->motion_trigger_on
= false;
1046 mutex_unlock(&data
->mutex
);
1051 * Refer to comment in bmc150_accel_write_event_config for
1052 * enable/disable operation order
1054 ret
= bmc150_accel_set_power_state(data
, state
);
1056 mutex_unlock(&data
->mutex
);
1059 if (data
->motion_trig
== trig
)
1060 ret
= bmc150_accel_setup_any_motion_interrupt(data
, state
);
1062 ret
= bmc150_accel_setup_new_data_interrupt(data
, state
);
1064 bmc150_accel_set_power_state(data
, false);
1065 mutex_unlock(&data
->mutex
);
1068 if (data
->motion_trig
== trig
)
1069 data
->motion_trigger_on
= state
;
1071 data
->dready_trigger_on
= state
;
1073 mutex_unlock(&data
->mutex
);
1078 static const struct iio_trigger_ops bmc150_accel_trigger_ops
= {
1079 .set_trigger_state
= bmc150_accel_data_rdy_trigger_set_state
,
1080 .try_reenable
= bmc150_accel_trig_try_reen
,
1081 .owner
= THIS_MODULE
,
1084 static irqreturn_t
bmc150_accel_event_handler(int irq
, void *private)
1086 struct iio_dev
*indio_dev
= private;
1087 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1091 ret
= i2c_smbus_read_byte_data(data
->client
,
1092 BMC150_ACCEL_REG_INT_STATUS_2
);
1094 dev_err(&data
->client
->dev
, "Error reading reg_int_status_2\n");
1095 goto ack_intr_status
;
1098 if (ret
& BMC150_ACCEL_ANY_MOTION_BIT_SIGN
)
1099 dir
= IIO_EV_DIR_FALLING
;
1101 dir
= IIO_EV_DIR_RISING
;
1103 if (ret
& BMC150_ACCEL_ANY_MOTION_BIT_X
)
1104 iio_push_event(indio_dev
, IIO_MOD_EVENT_CODE(IIO_ACCEL
,
1110 if (ret
& BMC150_ACCEL_ANY_MOTION_BIT_Y
)
1111 iio_push_event(indio_dev
, IIO_MOD_EVENT_CODE(IIO_ACCEL
,
1117 if (ret
& BMC150_ACCEL_ANY_MOTION_BIT_Z
)
1118 iio_push_event(indio_dev
, IIO_MOD_EVENT_CODE(IIO_ACCEL
,
1125 if (!data
->dready_trigger_on
)
1126 ret
= i2c_smbus_write_byte_data(data
->client
,
1127 BMC150_ACCEL_REG_INT_RST_LATCH
,
1128 BMC150_ACCEL_INT_MODE_LATCH_INT
|
1129 BMC150_ACCEL_INT_MODE_LATCH_RESET
);
1134 static irqreturn_t
bmc150_accel_data_rdy_trig_poll(int irq
, void *private)
1136 struct iio_dev
*indio_dev
= private;
1137 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1139 data
->timestamp
= iio_get_time_ns();
1141 if (data
->dready_trigger_on
)
1142 iio_trigger_poll(data
->dready_trig
);
1143 else if (data
->motion_trigger_on
)
1144 iio_trigger_poll(data
->motion_trig
);
1146 if (data
->ev_enable_state
)
1147 return IRQ_WAKE_THREAD
;
1152 static const char *bmc150_accel_match_acpi_device(struct device
*dev
, int *data
)
1154 const struct acpi_device_id
*id
;
1156 id
= acpi_match_device(dev
->driver
->acpi_match_table
, dev
);
1161 *data
= (int) id
->driver_data
;
1163 return dev_name(dev
);
1166 static int bmc150_accel_gpio_probe(struct i2c_client
*client
,
1167 struct bmc150_accel_data
*data
)
1170 struct gpio_desc
*gpio
;
1178 /* data ready gpio interrupt pin */
1179 gpio
= devm_gpiod_get_index(dev
, BMC150_ACCEL_GPIO_NAME
, 0);
1181 dev_err(dev
, "Failed: gpio get index\n");
1182 return PTR_ERR(gpio
);
1185 ret
= gpiod_direction_input(gpio
);
1189 ret
= gpiod_to_irq(gpio
);
1191 dev_dbg(dev
, "GPIO resource, no:%d irq:%d\n", desc_to_gpio(gpio
), ret
);
1196 static int bmc150_accel_probe(struct i2c_client
*client
,
1197 const struct i2c_device_id
*id
)
1199 struct bmc150_accel_data
*data
;
1200 struct iio_dev
*indio_dev
;
1202 const char *name
= NULL
;
1205 indio_dev
= devm_iio_device_alloc(&client
->dev
, sizeof(*data
));
1209 data
= iio_priv(indio_dev
);
1210 i2c_set_clientdata(client
, indio_dev
);
1211 data
->client
= client
;
1215 chip_id
= id
->driver_data
;
1218 if (ACPI_HANDLE(&client
->dev
))
1219 name
= bmc150_accel_match_acpi_device(&client
->dev
, &chip_id
);
1221 data
->chip_info
= &bmc150_accel_chip_info_tbl
[chip_id
];
1223 ret
= bmc150_accel_chip_init(data
);
1227 mutex_init(&data
->mutex
);
1229 indio_dev
->dev
.parent
= &client
->dev
;
1230 indio_dev
->channels
= data
->chip_info
->channels
;
1231 indio_dev
->num_channels
= data
->chip_info
->num_channels
;
1232 indio_dev
->name
= name
;
1233 indio_dev
->modes
= INDIO_DIRECT_MODE
;
1234 indio_dev
->info
= &bmc150_accel_info
;
1236 if (client
->irq
< 0)
1237 client
->irq
= bmc150_accel_gpio_probe(client
, data
);
1239 if (client
->irq
>= 0) {
1240 ret
= devm_request_threaded_irq(
1241 &client
->dev
, client
->irq
,
1242 bmc150_accel_data_rdy_trig_poll
,
1243 bmc150_accel_event_handler
,
1244 IRQF_TRIGGER_RISING
,
1245 BMC150_ACCEL_IRQ_NAME
,
1250 data
->dready_trig
= devm_iio_trigger_alloc(&client
->dev
,
1254 if (!data
->dready_trig
)
1257 data
->motion_trig
= devm_iio_trigger_alloc(&client
->dev
,
1258 "%s-any-motion-dev%d",
1261 if (!data
->motion_trig
)
1264 data
->dready_trig
->dev
.parent
= &client
->dev
;
1265 data
->dready_trig
->ops
= &bmc150_accel_trigger_ops
;
1266 iio_trigger_set_drvdata(data
->dready_trig
, indio_dev
);
1267 ret
= iio_trigger_register(data
->dready_trig
);
1271 data
->motion_trig
->dev
.parent
= &client
->dev
;
1272 data
->motion_trig
->ops
= &bmc150_accel_trigger_ops
;
1273 iio_trigger_set_drvdata(data
->motion_trig
, indio_dev
);
1274 ret
= iio_trigger_register(data
->motion_trig
);
1276 data
->motion_trig
= NULL
;
1277 goto err_trigger_unregister
;
1280 ret
= iio_triggered_buffer_setup(indio_dev
,
1281 &iio_pollfunc_store_time
,
1282 bmc150_accel_trigger_handler
,
1285 dev_err(&client
->dev
,
1286 "Failed: iio triggered buffer setup\n");
1287 goto err_trigger_unregister
;
1291 ret
= iio_device_register(indio_dev
);
1293 dev_err(&client
->dev
, "Unable to register iio device\n");
1294 goto err_buffer_cleanup
;
1297 ret
= pm_runtime_set_active(&client
->dev
);
1299 goto err_iio_unregister
;
1301 pm_runtime_enable(&client
->dev
);
1302 pm_runtime_set_autosuspend_delay(&client
->dev
,
1303 BMC150_AUTO_SUSPEND_DELAY_MS
);
1304 pm_runtime_use_autosuspend(&client
->dev
);
1309 iio_device_unregister(indio_dev
);
1311 if (data
->dready_trig
)
1312 iio_triggered_buffer_cleanup(indio_dev
);
1313 err_trigger_unregister
:
1314 if (data
->dready_trig
)
1315 iio_trigger_unregister(data
->dready_trig
);
1316 if (data
->motion_trig
)
1317 iio_trigger_unregister(data
->motion_trig
);
1322 static int bmc150_accel_remove(struct i2c_client
*client
)
1324 struct iio_dev
*indio_dev
= i2c_get_clientdata(client
);
1325 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1327 pm_runtime_disable(&client
->dev
);
1328 pm_runtime_set_suspended(&client
->dev
);
1329 pm_runtime_put_noidle(&client
->dev
);
1331 iio_device_unregister(indio_dev
);
1333 if (data
->dready_trig
) {
1334 iio_triggered_buffer_cleanup(indio_dev
);
1335 iio_trigger_unregister(data
->dready_trig
);
1336 iio_trigger_unregister(data
->motion_trig
);
1339 mutex_lock(&data
->mutex
);
1340 bmc150_accel_set_mode(data
, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND
, 0);
1341 mutex_unlock(&data
->mutex
);
1346 #ifdef CONFIG_PM_SLEEP
1347 static int bmc150_accel_suspend(struct device
*dev
)
1349 struct iio_dev
*indio_dev
= i2c_get_clientdata(to_i2c_client(dev
));
1350 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1352 mutex_lock(&data
->mutex
);
1353 bmc150_accel_set_mode(data
, BMC150_ACCEL_SLEEP_MODE_SUSPEND
, 0);
1354 mutex_unlock(&data
->mutex
);
1359 static int bmc150_accel_resume(struct device
*dev
)
1361 struct iio_dev
*indio_dev
= i2c_get_clientdata(to_i2c_client(dev
));
1362 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1364 mutex_lock(&data
->mutex
);
1365 if (data
->dready_trigger_on
|| data
->motion_trigger_on
||
1366 data
->ev_enable_state
)
1367 bmc150_accel_set_mode(data
, BMC150_ACCEL_SLEEP_MODE_NORMAL
, 0);
1368 mutex_unlock(&data
->mutex
);
1375 static int bmc150_accel_runtime_suspend(struct device
*dev
)
1377 struct iio_dev
*indio_dev
= i2c_get_clientdata(to_i2c_client(dev
));
1378 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1381 dev_dbg(&data
->client
->dev
, __func__
);
1382 ret
= bmc150_accel_set_mode(data
, BMC150_ACCEL_SLEEP_MODE_SUSPEND
, 0);
1389 static int bmc150_accel_runtime_resume(struct device
*dev
)
1391 struct iio_dev
*indio_dev
= i2c_get_clientdata(to_i2c_client(dev
));
1392 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1396 dev_dbg(&data
->client
->dev
, __func__
);
1398 ret
= bmc150_accel_set_mode(data
, BMC150_ACCEL_SLEEP_MODE_NORMAL
, 0);
1402 sleep_val
= bmc150_accel_get_startup_times(data
);
1404 usleep_range(sleep_val
* 1000, 20000);
1406 msleep_interruptible(sleep_val
);
1412 static const struct dev_pm_ops bmc150_accel_pm_ops
= {
1413 SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend
, bmc150_accel_resume
)
1414 SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend
,
1415 bmc150_accel_runtime_resume
, NULL
)
1418 static const struct acpi_device_id bmc150_accel_acpi_match
[] = {
1419 {"BSBA0150", bmc150
},
1420 {"BMC150A", bmc150
},
1421 {"BMI055A", bmi055
},
1422 {"BMA0255", bma255
},
1423 {"BMA250E", bma250e
},
1424 {"BMA222E", bma222e
},
1425 {"BMA0280", bma280
},
1428 MODULE_DEVICE_TABLE(acpi
, bmc150_accel_acpi_match
);
1430 static const struct i2c_device_id bmc150_accel_id
[] = {
1431 {"bmc150_accel", bmc150
},
1432 {"bmi055_accel", bmi055
},
1434 {"bma250e", bma250e
},
1435 {"bma222e", bma222e
},
1440 MODULE_DEVICE_TABLE(i2c
, bmc150_accel_id
);
1442 static struct i2c_driver bmc150_accel_driver
= {
1444 .name
= BMC150_ACCEL_DRV_NAME
,
1445 .acpi_match_table
= ACPI_PTR(bmc150_accel_acpi_match
),
1446 .pm
= &bmc150_accel_pm_ops
,
1448 .probe
= bmc150_accel_probe
,
1449 .remove
= bmc150_accel_remove
,
1450 .id_table
= bmc150_accel_id
,
1452 module_i2c_driver(bmc150_accel_driver
);
1454 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1455 MODULE_LICENSE("GPL v2");
1456 MODULE_DESCRIPTION("BMC150 accelerometer driver");