Bluetooth: hci_uart: Use generic functionality from Broadcom module
[linux/fpc-iii.git] / drivers / iio / accel / bmc150-accel.c
blob75567fd457dcc4b9bd7c147fdc4cb229cdbaf0c4
1 /*
2 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
3 * - BMC150
4 * - BMI055
5 * - BMA255
6 * - BMA250E
7 * - BMA222E
8 * - BMA280
10 * Copyright (c) 2014, Intel Corporation.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms and conditions of the GNU General Public License,
14 * version 2, as published by the Free Software Foundation.
16 * This program is distributed in the hope it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * more details.
22 #include <linux/module.h>
23 #include <linux/i2c.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/acpi.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/pm.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/iio/iio.h>
32 #include <linux/iio/sysfs.h>
33 #include <linux/iio/buffer.h>
34 #include <linux/iio/events.h>
35 #include <linux/iio/trigger.h>
36 #include <linux/iio/trigger_consumer.h>
37 #include <linux/iio/triggered_buffer.h>
39 #define BMC150_ACCEL_DRV_NAME "bmc150_accel"
40 #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event"
41 #define BMC150_ACCEL_GPIO_NAME "bmc150_accel_int"
43 #define BMC150_ACCEL_REG_CHIP_ID 0x00
45 #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B
46 #define BMC150_ACCEL_ANY_MOTION_MASK 0x07
47 #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0)
48 #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1)
49 #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2)
50 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3)
52 #define BMC150_ACCEL_REG_PMU_LPW 0x11
53 #define BMC150_ACCEL_PMU_MODE_MASK 0xE0
54 #define BMC150_ACCEL_PMU_MODE_SHIFT 5
55 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17
56 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1
58 #define BMC150_ACCEL_REG_PMU_RANGE 0x0F
60 #define BMC150_ACCEL_DEF_RANGE_2G 0x03
61 #define BMC150_ACCEL_DEF_RANGE_4G 0x05
62 #define BMC150_ACCEL_DEF_RANGE_8G 0x08
63 #define BMC150_ACCEL_DEF_RANGE_16G 0x0C
65 /* Default BW: 125Hz */
66 #define BMC150_ACCEL_REG_PMU_BW 0x10
67 #define BMC150_ACCEL_DEF_BW 125
69 #define BMC150_ACCEL_REG_INT_MAP_0 0x19
70 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE BIT(2)
72 #define BMC150_ACCEL_REG_INT_MAP_1 0x1A
73 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA BIT(0)
75 #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21
76 #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80
77 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
78 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00
80 #define BMC150_ACCEL_REG_INT_EN_0 0x16
81 #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0)
82 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1)
83 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2)
85 #define BMC150_ACCEL_REG_INT_EN_1 0x17
86 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4)
88 #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20
89 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0)
91 #define BMC150_ACCEL_REG_INT_5 0x27
92 #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03
94 #define BMC150_ACCEL_REG_INT_6 0x28
95 #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF
97 /* Slope duration in terms of number of samples */
98 #define BMC150_ACCEL_DEF_SLOPE_DURATION 1
99 /* in terms of multiples of g's/LSB, based on range */
100 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1
102 #define BMC150_ACCEL_REG_XOUT_L 0x02
104 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100
106 /* Sleep Duration values */
107 #define BMC150_ACCEL_SLEEP_500_MICRO 0x05
108 #define BMC150_ACCEL_SLEEP_1_MS 0x06
109 #define BMC150_ACCEL_SLEEP_2_MS 0x07
110 #define BMC150_ACCEL_SLEEP_4_MS 0x08
111 #define BMC150_ACCEL_SLEEP_6_MS 0x09
112 #define BMC150_ACCEL_SLEEP_10_MS 0x0A
113 #define BMC150_ACCEL_SLEEP_25_MS 0x0B
114 #define BMC150_ACCEL_SLEEP_50_MS 0x0C
115 #define BMC150_ACCEL_SLEEP_100_MS 0x0D
116 #define BMC150_ACCEL_SLEEP_500_MS 0x0E
117 #define BMC150_ACCEL_SLEEP_1_SEC 0x0F
119 #define BMC150_ACCEL_REG_TEMP 0x08
120 #define BMC150_ACCEL_TEMP_CENTER_VAL 24
122 #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
123 #define BMC150_AUTO_SUSPEND_DELAY_MS 2000
125 enum bmc150_accel_axis {
126 AXIS_X,
127 AXIS_Y,
128 AXIS_Z,
131 enum bmc150_power_modes {
132 BMC150_ACCEL_SLEEP_MODE_NORMAL,
133 BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
134 BMC150_ACCEL_SLEEP_MODE_LPM,
135 BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
138 struct bmc150_scale_info {
139 int scale;
140 u8 reg_range;
143 struct bmc150_accel_chip_info {
144 u8 chip_id;
145 const struct iio_chan_spec *channels;
146 int num_channels;
147 const struct bmc150_scale_info scale_table[4];
150 struct bmc150_accel_data {
151 struct i2c_client *client;
152 struct iio_trigger *dready_trig;
153 struct iio_trigger *motion_trig;
154 struct mutex mutex;
155 s16 buffer[8];
156 u8 bw_bits;
157 u32 slope_dur;
158 u32 slope_thres;
159 u32 range;
160 int ev_enable_state;
161 bool dready_trigger_on;
162 bool motion_trigger_on;
163 int64_t timestamp;
164 const struct bmc150_accel_chip_info *chip_info;
167 static const struct {
168 int val;
169 int val2;
170 u8 bw_bits;
171 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
172 {31, 260000, 0x09},
173 {62, 500000, 0x0A},
174 {125, 0, 0x0B},
175 {250, 0, 0x0C},
176 {500, 0, 0x0D},
177 {1000, 0, 0x0E},
178 {2000, 0, 0x0F} };
180 static const struct {
181 int bw_bits;
182 int msec;
183 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
184 {0x09, 32},
185 {0x0A, 16},
186 {0x0B, 8},
187 {0x0C, 4},
188 {0x0D, 2},
189 {0x0E, 1},
190 {0x0F, 1} };
192 static const struct {
193 int sleep_dur;
194 u8 reg_value;
195 } bmc150_accel_sleep_value_table[] = { {0, 0},
196 {500, BMC150_ACCEL_SLEEP_500_MICRO},
197 {1000, BMC150_ACCEL_SLEEP_1_MS},
198 {2000, BMC150_ACCEL_SLEEP_2_MS},
199 {4000, BMC150_ACCEL_SLEEP_4_MS},
200 {6000, BMC150_ACCEL_SLEEP_6_MS},
201 {10000, BMC150_ACCEL_SLEEP_10_MS},
202 {25000, BMC150_ACCEL_SLEEP_25_MS},
203 {50000, BMC150_ACCEL_SLEEP_50_MS},
204 {100000, BMC150_ACCEL_SLEEP_100_MS},
205 {500000, BMC150_ACCEL_SLEEP_500_MS},
206 {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
209 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
210 enum bmc150_power_modes mode,
211 int dur_us)
213 int i;
214 int ret;
215 u8 lpw_bits;
216 int dur_val = -1;
218 if (dur_us > 0) {
219 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
220 ++i) {
221 if (bmc150_accel_sleep_value_table[i].sleep_dur ==
222 dur_us)
223 dur_val =
224 bmc150_accel_sleep_value_table[i].reg_value;
226 } else
227 dur_val = 0;
229 if (dur_val < 0)
230 return -EINVAL;
232 lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
233 lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
235 dev_dbg(&data->client->dev, "Set Mode bits %x\n", lpw_bits);
237 ret = i2c_smbus_write_byte_data(data->client,
238 BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
239 if (ret < 0) {
240 dev_err(&data->client->dev, "Error writing reg_pmu_lpw\n");
241 return ret;
244 return 0;
247 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
248 int val2)
250 int i;
251 int ret;
253 for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
254 if (bmc150_accel_samp_freq_table[i].val == val &&
255 bmc150_accel_samp_freq_table[i].val2 == val2) {
256 ret = i2c_smbus_write_byte_data(
257 data->client,
258 BMC150_ACCEL_REG_PMU_BW,
259 bmc150_accel_samp_freq_table[i].bw_bits);
260 if (ret < 0)
261 return ret;
263 data->bw_bits =
264 bmc150_accel_samp_freq_table[i].bw_bits;
265 return 0;
269 return -EINVAL;
272 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
274 int ret;
276 ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_CHIP_ID);
277 if (ret < 0) {
278 dev_err(&data->client->dev,
279 "Error: Reading chip id\n");
280 return ret;
283 dev_dbg(&data->client->dev, "Chip Id %x\n", ret);
284 if (ret != data->chip_info->chip_id) {
285 dev_err(&data->client->dev, "Invalid chip %x\n", ret);
286 return -ENODEV;
289 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
290 if (ret < 0)
291 return ret;
293 /* Set Bandwidth */
294 ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
295 if (ret < 0)
296 return ret;
298 /* Set Default Range */
299 ret = i2c_smbus_write_byte_data(data->client,
300 BMC150_ACCEL_REG_PMU_RANGE,
301 BMC150_ACCEL_DEF_RANGE_4G);
302 if (ret < 0) {
303 dev_err(&data->client->dev,
304 "Error writing reg_pmu_range\n");
305 return ret;
308 data->range = BMC150_ACCEL_DEF_RANGE_4G;
310 /* Set default slope duration */
311 ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_INT_5);
312 if (ret < 0) {
313 dev_err(&data->client->dev, "Error reading reg_int_5\n");
314 return ret;
316 data->slope_dur |= BMC150_ACCEL_DEF_SLOPE_DURATION;
317 ret = i2c_smbus_write_byte_data(data->client,
318 BMC150_ACCEL_REG_INT_5,
319 data->slope_dur);
320 if (ret < 0) {
321 dev_err(&data->client->dev, "Error writing reg_int_5\n");
322 return ret;
324 dev_dbg(&data->client->dev, "slope_dur %x\n", data->slope_dur);
326 /* Set default slope thresholds */
327 ret = i2c_smbus_write_byte_data(data->client,
328 BMC150_ACCEL_REG_INT_6,
329 BMC150_ACCEL_DEF_SLOPE_THRESHOLD);
330 if (ret < 0) {
331 dev_err(&data->client->dev, "Error writing reg_int_6\n");
332 return ret;
334 data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
335 dev_dbg(&data->client->dev, "slope_thres %x\n", data->slope_thres);
337 /* Set default as latched interrupts */
338 ret = i2c_smbus_write_byte_data(data->client,
339 BMC150_ACCEL_REG_INT_RST_LATCH,
340 BMC150_ACCEL_INT_MODE_LATCH_INT |
341 BMC150_ACCEL_INT_MODE_LATCH_RESET);
342 if (ret < 0) {
343 dev_err(&data->client->dev,
344 "Error writing reg_int_rst_latch\n");
345 return ret;
348 return 0;
351 static int bmc150_accel_setup_any_motion_interrupt(
352 struct bmc150_accel_data *data,
353 bool status)
355 int ret;
357 /* Enable/Disable INT1 mapping */
358 ret = i2c_smbus_read_byte_data(data->client,
359 BMC150_ACCEL_REG_INT_MAP_0);
360 if (ret < 0) {
361 dev_err(&data->client->dev, "Error reading reg_int_map_0\n");
362 return ret;
364 if (status)
365 ret |= BMC150_ACCEL_INT_MAP_0_BIT_SLOPE;
366 else
367 ret &= ~BMC150_ACCEL_INT_MAP_0_BIT_SLOPE;
369 ret = i2c_smbus_write_byte_data(data->client,
370 BMC150_ACCEL_REG_INT_MAP_0,
371 ret);
372 if (ret < 0) {
373 dev_err(&data->client->dev, "Error writing reg_int_map_0\n");
374 return ret;
377 if (status) {
378 /* Set slope duration (no of samples) */
379 ret = i2c_smbus_write_byte_data(data->client,
380 BMC150_ACCEL_REG_INT_5,
381 data->slope_dur);
382 if (ret < 0) {
383 dev_err(&data->client->dev, "Error write reg_int_5\n");
384 return ret;
387 /* Set slope thresholds */
388 ret = i2c_smbus_write_byte_data(data->client,
389 BMC150_ACCEL_REG_INT_6,
390 data->slope_thres);
391 if (ret < 0) {
392 dev_err(&data->client->dev, "Error write reg_int_6\n");
393 return ret;
397 * New data interrupt is always non-latched,
398 * which will have higher priority, so no need
399 * to set latched mode, we will be flooded anyway with INTR
401 if (!data->dready_trigger_on) {
402 ret = i2c_smbus_write_byte_data(data->client,
403 BMC150_ACCEL_REG_INT_RST_LATCH,
404 BMC150_ACCEL_INT_MODE_LATCH_INT |
405 BMC150_ACCEL_INT_MODE_LATCH_RESET);
406 if (ret < 0) {
407 dev_err(&data->client->dev,
408 "Error writing reg_int_rst_latch\n");
409 return ret;
413 ret = i2c_smbus_write_byte_data(data->client,
414 BMC150_ACCEL_REG_INT_EN_0,
415 BMC150_ACCEL_INT_EN_BIT_SLP_X |
416 BMC150_ACCEL_INT_EN_BIT_SLP_Y |
417 BMC150_ACCEL_INT_EN_BIT_SLP_Z);
418 } else
419 ret = i2c_smbus_write_byte_data(data->client,
420 BMC150_ACCEL_REG_INT_EN_0,
423 if (ret < 0) {
424 dev_err(&data->client->dev, "Error writing reg_int_en_0\n");
425 return ret;
428 return 0;
431 static int bmc150_accel_setup_new_data_interrupt(struct bmc150_accel_data *data,
432 bool status)
434 int ret;
436 /* Enable/Disable INT1 mapping */
437 ret = i2c_smbus_read_byte_data(data->client,
438 BMC150_ACCEL_REG_INT_MAP_1);
439 if (ret < 0) {
440 dev_err(&data->client->dev, "Error reading reg_int_map_1\n");
441 return ret;
443 if (status)
444 ret |= BMC150_ACCEL_INT_MAP_1_BIT_DATA;
445 else
446 ret &= ~BMC150_ACCEL_INT_MAP_1_BIT_DATA;
448 ret = i2c_smbus_write_byte_data(data->client,
449 BMC150_ACCEL_REG_INT_MAP_1,
450 ret);
451 if (ret < 0) {
452 dev_err(&data->client->dev, "Error writing reg_int_map_1\n");
453 return ret;
456 if (status) {
458 * Set non latched mode interrupt and clear any latched
459 * interrupt
461 ret = i2c_smbus_write_byte_data(data->client,
462 BMC150_ACCEL_REG_INT_RST_LATCH,
463 BMC150_ACCEL_INT_MODE_NON_LATCH_INT |
464 BMC150_ACCEL_INT_MODE_LATCH_RESET);
465 if (ret < 0) {
466 dev_err(&data->client->dev,
467 "Error writing reg_int_rst_latch\n");
468 return ret;
471 ret = i2c_smbus_write_byte_data(data->client,
472 BMC150_ACCEL_REG_INT_EN_1,
473 BMC150_ACCEL_INT_EN_BIT_DATA_EN);
475 } else {
476 /* Restore default interrupt mode */
477 ret = i2c_smbus_write_byte_data(data->client,
478 BMC150_ACCEL_REG_INT_RST_LATCH,
479 BMC150_ACCEL_INT_MODE_LATCH_INT |
480 BMC150_ACCEL_INT_MODE_LATCH_RESET);
481 if (ret < 0) {
482 dev_err(&data->client->dev,
483 "Error writing reg_int_rst_latch\n");
484 return ret;
487 ret = i2c_smbus_write_byte_data(data->client,
488 BMC150_ACCEL_REG_INT_EN_1,
492 if (ret < 0) {
493 dev_err(&data->client->dev, "Error writing reg_int_en_1\n");
494 return ret;
497 return 0;
500 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
501 int *val2)
503 int i;
505 for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
506 if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
507 *val = bmc150_accel_samp_freq_table[i].val;
508 *val2 = bmc150_accel_samp_freq_table[i].val2;
509 return IIO_VAL_INT_PLUS_MICRO;
513 return -EINVAL;
516 #ifdef CONFIG_PM
517 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
519 int i;
521 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
522 if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
523 return bmc150_accel_sample_upd_time[i].msec;
526 return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
529 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
531 int ret;
533 if (on)
534 ret = pm_runtime_get_sync(&data->client->dev);
535 else {
536 pm_runtime_mark_last_busy(&data->client->dev);
537 ret = pm_runtime_put_autosuspend(&data->client->dev);
539 if (ret < 0) {
540 dev_err(&data->client->dev,
541 "Failed: bmc150_accel_set_power_state for %d\n", on);
542 if (on)
543 pm_runtime_put_noidle(&data->client->dev);
545 return ret;
548 return 0;
550 #else
551 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
553 return 0;
555 #endif
557 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
559 int ret, i;
561 for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
562 if (data->chip_info->scale_table[i].scale == val) {
563 ret = i2c_smbus_write_byte_data(
564 data->client,
565 BMC150_ACCEL_REG_PMU_RANGE,
566 data->chip_info->scale_table[i].reg_range);
567 if (ret < 0) {
568 dev_err(&data->client->dev,
569 "Error writing pmu_range\n");
570 return ret;
573 data->range = data->chip_info->scale_table[i].reg_range;
574 return 0;
578 return -EINVAL;
581 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
583 int ret;
585 mutex_lock(&data->mutex);
587 ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_TEMP);
588 if (ret < 0) {
589 dev_err(&data->client->dev, "Error reading reg_temp\n");
590 mutex_unlock(&data->mutex);
591 return ret;
593 *val = sign_extend32(ret, 7);
595 mutex_unlock(&data->mutex);
597 return IIO_VAL_INT;
600 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
601 struct iio_chan_spec const *chan,
602 int *val)
604 int ret;
605 int axis = chan->scan_index;
607 mutex_lock(&data->mutex);
608 ret = bmc150_accel_set_power_state(data, true);
609 if (ret < 0) {
610 mutex_unlock(&data->mutex);
611 return ret;
614 ret = i2c_smbus_read_word_data(data->client,
615 BMC150_ACCEL_AXIS_TO_REG(axis));
616 if (ret < 0) {
617 dev_err(&data->client->dev, "Error reading axis %d\n", axis);
618 bmc150_accel_set_power_state(data, false);
619 mutex_unlock(&data->mutex);
620 return ret;
622 *val = sign_extend32(ret >> chan->scan_type.shift,
623 chan->scan_type.realbits - 1);
624 ret = bmc150_accel_set_power_state(data, false);
625 mutex_unlock(&data->mutex);
626 if (ret < 0)
627 return ret;
629 return IIO_VAL_INT;
632 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
633 struct iio_chan_spec const *chan,
634 int *val, int *val2, long mask)
636 struct bmc150_accel_data *data = iio_priv(indio_dev);
637 int ret;
639 switch (mask) {
640 case IIO_CHAN_INFO_RAW:
641 switch (chan->type) {
642 case IIO_TEMP:
643 return bmc150_accel_get_temp(data, val);
644 case IIO_ACCEL:
645 if (iio_buffer_enabled(indio_dev))
646 return -EBUSY;
647 else
648 return bmc150_accel_get_axis(data, chan, val);
649 default:
650 return -EINVAL;
652 case IIO_CHAN_INFO_OFFSET:
653 if (chan->type == IIO_TEMP) {
654 *val = BMC150_ACCEL_TEMP_CENTER_VAL;
655 return IIO_VAL_INT;
656 } else
657 return -EINVAL;
658 case IIO_CHAN_INFO_SCALE:
659 *val = 0;
660 switch (chan->type) {
661 case IIO_TEMP:
662 *val2 = 500000;
663 return IIO_VAL_INT_PLUS_MICRO;
664 case IIO_ACCEL:
666 int i;
667 const struct bmc150_scale_info *si;
668 int st_size = ARRAY_SIZE(data->chip_info->scale_table);
670 for (i = 0; i < st_size; ++i) {
671 si = &data->chip_info->scale_table[i];
672 if (si->reg_range == data->range) {
673 *val2 = si->scale;
674 return IIO_VAL_INT_PLUS_MICRO;
677 return -EINVAL;
679 default:
680 return -EINVAL;
682 case IIO_CHAN_INFO_SAMP_FREQ:
683 mutex_lock(&data->mutex);
684 ret = bmc150_accel_get_bw(data, val, val2);
685 mutex_unlock(&data->mutex);
686 return ret;
687 default:
688 return -EINVAL;
692 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
693 struct iio_chan_spec const *chan,
694 int val, int val2, long mask)
696 struct bmc150_accel_data *data = iio_priv(indio_dev);
697 int ret;
699 switch (mask) {
700 case IIO_CHAN_INFO_SAMP_FREQ:
701 mutex_lock(&data->mutex);
702 ret = bmc150_accel_set_bw(data, val, val2);
703 mutex_unlock(&data->mutex);
704 break;
705 case IIO_CHAN_INFO_SCALE:
706 if (val)
707 return -EINVAL;
709 mutex_lock(&data->mutex);
710 ret = bmc150_accel_set_scale(data, val2);
711 mutex_unlock(&data->mutex);
712 return ret;
713 default:
714 ret = -EINVAL;
717 return ret;
720 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
721 const struct iio_chan_spec *chan,
722 enum iio_event_type type,
723 enum iio_event_direction dir,
724 enum iio_event_info info,
725 int *val, int *val2)
727 struct bmc150_accel_data *data = iio_priv(indio_dev);
729 *val2 = 0;
730 switch (info) {
731 case IIO_EV_INFO_VALUE:
732 *val = data->slope_thres;
733 break;
734 case IIO_EV_INFO_PERIOD:
735 *val = data->slope_dur & BMC150_ACCEL_SLOPE_DUR_MASK;
736 break;
737 default:
738 return -EINVAL;
741 return IIO_VAL_INT;
744 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
745 const struct iio_chan_spec *chan,
746 enum iio_event_type type,
747 enum iio_event_direction dir,
748 enum iio_event_info info,
749 int val, int val2)
751 struct bmc150_accel_data *data = iio_priv(indio_dev);
753 if (data->ev_enable_state)
754 return -EBUSY;
756 switch (info) {
757 case IIO_EV_INFO_VALUE:
758 data->slope_thres = val;
759 break;
760 case IIO_EV_INFO_PERIOD:
761 data->slope_dur &= ~BMC150_ACCEL_SLOPE_DUR_MASK;
762 data->slope_dur |= val & BMC150_ACCEL_SLOPE_DUR_MASK;
763 break;
764 default:
765 return -EINVAL;
768 return 0;
771 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
772 const struct iio_chan_spec *chan,
773 enum iio_event_type type,
774 enum iio_event_direction dir)
777 struct bmc150_accel_data *data = iio_priv(indio_dev);
779 return data->ev_enable_state;
782 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
783 const struct iio_chan_spec *chan,
784 enum iio_event_type type,
785 enum iio_event_direction dir,
786 int state)
788 struct bmc150_accel_data *data = iio_priv(indio_dev);
789 int ret;
791 if (state && data->ev_enable_state)
792 return 0;
794 mutex_lock(&data->mutex);
796 if (!state && data->motion_trigger_on) {
797 data->ev_enable_state = 0;
798 mutex_unlock(&data->mutex);
799 return 0;
803 * We will expect the enable and disable to do operation in
804 * in reverse order. This will happen here anyway as our
805 * resume operation uses sync mode runtime pm calls, the
806 * suspend operation will be delayed by autosuspend delay
807 * So the disable operation will still happen in reverse of
808 * enable operation. When runtime pm is disabled the mode
809 * is always on so sequence doesn't matter
812 ret = bmc150_accel_set_power_state(data, state);
813 if (ret < 0) {
814 mutex_unlock(&data->mutex);
815 return ret;
818 ret = bmc150_accel_setup_any_motion_interrupt(data, state);
819 if (ret < 0) {
820 bmc150_accel_set_power_state(data, false);
821 mutex_unlock(&data->mutex);
822 return ret;
825 data->ev_enable_state = state;
826 mutex_unlock(&data->mutex);
828 return 0;
831 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
832 struct iio_trigger *trig)
834 struct bmc150_accel_data *data = iio_priv(indio_dev);
836 if (data->dready_trig != trig && data->motion_trig != trig)
837 return -EINVAL;
839 return 0;
842 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
843 "15.620000 31.260000 62.50000 125 250 500 1000 2000");
845 static struct attribute *bmc150_accel_attributes[] = {
846 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
847 NULL,
850 static const struct attribute_group bmc150_accel_attrs_group = {
851 .attrs = bmc150_accel_attributes,
854 static const struct iio_event_spec bmc150_accel_event = {
855 .type = IIO_EV_TYPE_ROC,
856 .dir = IIO_EV_DIR_EITHER,
857 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
858 BIT(IIO_EV_INFO_ENABLE) |
859 BIT(IIO_EV_INFO_PERIOD)
862 #define BMC150_ACCEL_CHANNEL(_axis, bits) { \
863 .type = IIO_ACCEL, \
864 .modified = 1, \
865 .channel2 = IIO_MOD_##_axis, \
866 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
867 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
868 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
869 .scan_index = AXIS_##_axis, \
870 .scan_type = { \
871 .sign = 's', \
872 .realbits = (bits), \
873 .storagebits = 16, \
874 .shift = 16 - (bits), \
875 }, \
876 .event_spec = &bmc150_accel_event, \
877 .num_event_specs = 1 \
880 #define BMC150_ACCEL_CHANNELS(bits) { \
882 .type = IIO_TEMP, \
883 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
884 BIT(IIO_CHAN_INFO_SCALE) | \
885 BIT(IIO_CHAN_INFO_OFFSET), \
886 .scan_index = -1, \
887 }, \
888 BMC150_ACCEL_CHANNEL(X, bits), \
889 BMC150_ACCEL_CHANNEL(Y, bits), \
890 BMC150_ACCEL_CHANNEL(Z, bits), \
891 IIO_CHAN_SOFT_TIMESTAMP(3), \
894 static const struct iio_chan_spec bma222e_accel_channels[] =
895 BMC150_ACCEL_CHANNELS(8);
896 static const struct iio_chan_spec bma250e_accel_channels[] =
897 BMC150_ACCEL_CHANNELS(10);
898 static const struct iio_chan_spec bmc150_accel_channels[] =
899 BMC150_ACCEL_CHANNELS(12);
900 static const struct iio_chan_spec bma280_accel_channels[] =
901 BMC150_ACCEL_CHANNELS(14);
903 enum {
904 bmc150,
905 bmi055,
906 bma255,
907 bma250e,
908 bma222e,
909 bma280,
912 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
913 [bmc150] = {
914 .chip_id = 0xFA,
915 .channels = bmc150_accel_channels,
916 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
917 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
918 {19122, BMC150_ACCEL_DEF_RANGE_4G},
919 {38344, BMC150_ACCEL_DEF_RANGE_8G},
920 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
922 [bmi055] = {
923 .chip_id = 0xFA,
924 .channels = bmc150_accel_channels,
925 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
926 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
927 {19122, BMC150_ACCEL_DEF_RANGE_4G},
928 {38344, BMC150_ACCEL_DEF_RANGE_8G},
929 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
931 [bma255] = {
932 .chip_id = 0xFA,
933 .channels = bmc150_accel_channels,
934 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
935 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
936 {19122, BMC150_ACCEL_DEF_RANGE_4G},
937 {38344, BMC150_ACCEL_DEF_RANGE_8G},
938 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
940 [bma250e] = {
941 .chip_id = 0xF9,
942 .channels = bma250e_accel_channels,
943 .num_channels = ARRAY_SIZE(bma250e_accel_channels),
944 .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
945 {76590, BMC150_ACCEL_DEF_RANGE_4G},
946 {153277, BMC150_ACCEL_DEF_RANGE_8G},
947 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
949 [bma222e] = {
950 .chip_id = 0xF8,
951 .channels = bma222e_accel_channels,
952 .num_channels = ARRAY_SIZE(bma222e_accel_channels),
953 .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
954 {306457, BMC150_ACCEL_DEF_RANGE_4G},
955 {612915, BMC150_ACCEL_DEF_RANGE_8G},
956 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
958 [bma280] = {
959 .chip_id = 0xFB,
960 .channels = bma280_accel_channels,
961 .num_channels = ARRAY_SIZE(bma280_accel_channels),
962 .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
963 {4785, BMC150_ACCEL_DEF_RANGE_4G},
964 {9581, BMC150_ACCEL_DEF_RANGE_8G},
965 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
969 static const struct iio_info bmc150_accel_info = {
970 .attrs = &bmc150_accel_attrs_group,
971 .read_raw = bmc150_accel_read_raw,
972 .write_raw = bmc150_accel_write_raw,
973 .read_event_value = bmc150_accel_read_event,
974 .write_event_value = bmc150_accel_write_event,
975 .write_event_config = bmc150_accel_write_event_config,
976 .read_event_config = bmc150_accel_read_event_config,
977 .validate_trigger = bmc150_accel_validate_trigger,
978 .driver_module = THIS_MODULE,
981 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
983 struct iio_poll_func *pf = p;
984 struct iio_dev *indio_dev = pf->indio_dev;
985 struct bmc150_accel_data *data = iio_priv(indio_dev);
986 int bit, ret, i = 0;
988 mutex_lock(&data->mutex);
989 for_each_set_bit(bit, indio_dev->active_scan_mask,
990 indio_dev->masklength) {
991 ret = i2c_smbus_read_word_data(data->client,
992 BMC150_ACCEL_AXIS_TO_REG(bit));
993 if (ret < 0) {
994 mutex_unlock(&data->mutex);
995 goto err_read;
997 data->buffer[i++] = ret;
999 mutex_unlock(&data->mutex);
1001 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1002 data->timestamp);
1003 err_read:
1004 iio_trigger_notify_done(indio_dev->trig);
1006 return IRQ_HANDLED;
1009 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1011 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
1012 struct bmc150_accel_data *data = iio_priv(indio_dev);
1013 int ret;
1015 /* new data interrupts don't need ack */
1016 if (data->dready_trigger_on)
1017 return 0;
1019 mutex_lock(&data->mutex);
1020 /* clear any latched interrupt */
1021 ret = i2c_smbus_write_byte_data(data->client,
1022 BMC150_ACCEL_REG_INT_RST_LATCH,
1023 BMC150_ACCEL_INT_MODE_LATCH_INT |
1024 BMC150_ACCEL_INT_MODE_LATCH_RESET);
1025 mutex_unlock(&data->mutex);
1026 if (ret < 0) {
1027 dev_err(&data->client->dev,
1028 "Error writing reg_int_rst_latch\n");
1029 return ret;
1032 return 0;
1035 static int bmc150_accel_data_rdy_trigger_set_state(struct iio_trigger *trig,
1036 bool state)
1038 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
1039 struct bmc150_accel_data *data = iio_priv(indio_dev);
1040 int ret;
1042 mutex_lock(&data->mutex);
1044 if (!state && data->ev_enable_state && data->motion_trigger_on) {
1045 data->motion_trigger_on = false;
1046 mutex_unlock(&data->mutex);
1047 return 0;
1051 * Refer to comment in bmc150_accel_write_event_config for
1052 * enable/disable operation order
1054 ret = bmc150_accel_set_power_state(data, state);
1055 if (ret < 0) {
1056 mutex_unlock(&data->mutex);
1057 return ret;
1059 if (data->motion_trig == trig)
1060 ret = bmc150_accel_setup_any_motion_interrupt(data, state);
1061 else
1062 ret = bmc150_accel_setup_new_data_interrupt(data, state);
1063 if (ret < 0) {
1064 bmc150_accel_set_power_state(data, false);
1065 mutex_unlock(&data->mutex);
1066 return ret;
1068 if (data->motion_trig == trig)
1069 data->motion_trigger_on = state;
1070 else
1071 data->dready_trigger_on = state;
1073 mutex_unlock(&data->mutex);
1075 return ret;
1078 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1079 .set_trigger_state = bmc150_accel_data_rdy_trigger_set_state,
1080 .try_reenable = bmc150_accel_trig_try_reen,
1081 .owner = THIS_MODULE,
1084 static irqreturn_t bmc150_accel_event_handler(int irq, void *private)
1086 struct iio_dev *indio_dev = private;
1087 struct bmc150_accel_data *data = iio_priv(indio_dev);
1088 int ret;
1089 int dir;
1091 ret = i2c_smbus_read_byte_data(data->client,
1092 BMC150_ACCEL_REG_INT_STATUS_2);
1093 if (ret < 0) {
1094 dev_err(&data->client->dev, "Error reading reg_int_status_2\n");
1095 goto ack_intr_status;
1098 if (ret & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1099 dir = IIO_EV_DIR_FALLING;
1100 else
1101 dir = IIO_EV_DIR_RISING;
1103 if (ret & BMC150_ACCEL_ANY_MOTION_BIT_X)
1104 iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL,
1106 IIO_MOD_X,
1107 IIO_EV_TYPE_ROC,
1108 dir),
1109 data->timestamp);
1110 if (ret & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1111 iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL,
1113 IIO_MOD_Y,
1114 IIO_EV_TYPE_ROC,
1115 dir),
1116 data->timestamp);
1117 if (ret & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1118 iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL,
1120 IIO_MOD_Z,
1121 IIO_EV_TYPE_ROC,
1122 dir),
1123 data->timestamp);
1124 ack_intr_status:
1125 if (!data->dready_trigger_on)
1126 ret = i2c_smbus_write_byte_data(data->client,
1127 BMC150_ACCEL_REG_INT_RST_LATCH,
1128 BMC150_ACCEL_INT_MODE_LATCH_INT |
1129 BMC150_ACCEL_INT_MODE_LATCH_RESET);
1131 return IRQ_HANDLED;
1134 static irqreturn_t bmc150_accel_data_rdy_trig_poll(int irq, void *private)
1136 struct iio_dev *indio_dev = private;
1137 struct bmc150_accel_data *data = iio_priv(indio_dev);
1139 data->timestamp = iio_get_time_ns();
1141 if (data->dready_trigger_on)
1142 iio_trigger_poll(data->dready_trig);
1143 else if (data->motion_trigger_on)
1144 iio_trigger_poll(data->motion_trig);
1146 if (data->ev_enable_state)
1147 return IRQ_WAKE_THREAD;
1148 else
1149 return IRQ_HANDLED;
1152 static const char *bmc150_accel_match_acpi_device(struct device *dev, int *data)
1154 const struct acpi_device_id *id;
1156 id = acpi_match_device(dev->driver->acpi_match_table, dev);
1158 if (!id)
1159 return NULL;
1161 *data = (int) id->driver_data;
1163 return dev_name(dev);
1166 static int bmc150_accel_gpio_probe(struct i2c_client *client,
1167 struct bmc150_accel_data *data)
1169 struct device *dev;
1170 struct gpio_desc *gpio;
1171 int ret;
1173 if (!client)
1174 return -EINVAL;
1176 dev = &client->dev;
1178 /* data ready gpio interrupt pin */
1179 gpio = devm_gpiod_get_index(dev, BMC150_ACCEL_GPIO_NAME, 0);
1180 if (IS_ERR(gpio)) {
1181 dev_err(dev, "Failed: gpio get index\n");
1182 return PTR_ERR(gpio);
1185 ret = gpiod_direction_input(gpio);
1186 if (ret)
1187 return ret;
1189 ret = gpiod_to_irq(gpio);
1191 dev_dbg(dev, "GPIO resource, no:%d irq:%d\n", desc_to_gpio(gpio), ret);
1193 return ret;
1196 static int bmc150_accel_probe(struct i2c_client *client,
1197 const struct i2c_device_id *id)
1199 struct bmc150_accel_data *data;
1200 struct iio_dev *indio_dev;
1201 int ret;
1202 const char *name = NULL;
1203 int chip_id = 0;
1205 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
1206 if (!indio_dev)
1207 return -ENOMEM;
1209 data = iio_priv(indio_dev);
1210 i2c_set_clientdata(client, indio_dev);
1211 data->client = client;
1213 if (id) {
1214 name = id->name;
1215 chip_id = id->driver_data;
1218 if (ACPI_HANDLE(&client->dev))
1219 name = bmc150_accel_match_acpi_device(&client->dev, &chip_id);
1221 data->chip_info = &bmc150_accel_chip_info_tbl[chip_id];
1223 ret = bmc150_accel_chip_init(data);
1224 if (ret < 0)
1225 return ret;
1227 mutex_init(&data->mutex);
1229 indio_dev->dev.parent = &client->dev;
1230 indio_dev->channels = data->chip_info->channels;
1231 indio_dev->num_channels = data->chip_info->num_channels;
1232 indio_dev->name = name;
1233 indio_dev->modes = INDIO_DIRECT_MODE;
1234 indio_dev->info = &bmc150_accel_info;
1236 if (client->irq < 0)
1237 client->irq = bmc150_accel_gpio_probe(client, data);
1239 if (client->irq >= 0) {
1240 ret = devm_request_threaded_irq(
1241 &client->dev, client->irq,
1242 bmc150_accel_data_rdy_trig_poll,
1243 bmc150_accel_event_handler,
1244 IRQF_TRIGGER_RISING,
1245 BMC150_ACCEL_IRQ_NAME,
1246 indio_dev);
1247 if (ret)
1248 return ret;
1250 data->dready_trig = devm_iio_trigger_alloc(&client->dev,
1251 "%s-dev%d",
1252 indio_dev->name,
1253 indio_dev->id);
1254 if (!data->dready_trig)
1255 return -ENOMEM;
1257 data->motion_trig = devm_iio_trigger_alloc(&client->dev,
1258 "%s-any-motion-dev%d",
1259 indio_dev->name,
1260 indio_dev->id);
1261 if (!data->motion_trig)
1262 return -ENOMEM;
1264 data->dready_trig->dev.parent = &client->dev;
1265 data->dready_trig->ops = &bmc150_accel_trigger_ops;
1266 iio_trigger_set_drvdata(data->dready_trig, indio_dev);
1267 ret = iio_trigger_register(data->dready_trig);
1268 if (ret)
1269 return ret;
1271 data->motion_trig->dev.parent = &client->dev;
1272 data->motion_trig->ops = &bmc150_accel_trigger_ops;
1273 iio_trigger_set_drvdata(data->motion_trig, indio_dev);
1274 ret = iio_trigger_register(data->motion_trig);
1275 if (ret) {
1276 data->motion_trig = NULL;
1277 goto err_trigger_unregister;
1280 ret = iio_triggered_buffer_setup(indio_dev,
1281 &iio_pollfunc_store_time,
1282 bmc150_accel_trigger_handler,
1283 NULL);
1284 if (ret < 0) {
1285 dev_err(&client->dev,
1286 "Failed: iio triggered buffer setup\n");
1287 goto err_trigger_unregister;
1291 ret = iio_device_register(indio_dev);
1292 if (ret < 0) {
1293 dev_err(&client->dev, "Unable to register iio device\n");
1294 goto err_buffer_cleanup;
1297 ret = pm_runtime_set_active(&client->dev);
1298 if (ret)
1299 goto err_iio_unregister;
1301 pm_runtime_enable(&client->dev);
1302 pm_runtime_set_autosuspend_delay(&client->dev,
1303 BMC150_AUTO_SUSPEND_DELAY_MS);
1304 pm_runtime_use_autosuspend(&client->dev);
1306 return 0;
1308 err_iio_unregister:
1309 iio_device_unregister(indio_dev);
1310 err_buffer_cleanup:
1311 if (data->dready_trig)
1312 iio_triggered_buffer_cleanup(indio_dev);
1313 err_trigger_unregister:
1314 if (data->dready_trig)
1315 iio_trigger_unregister(data->dready_trig);
1316 if (data->motion_trig)
1317 iio_trigger_unregister(data->motion_trig);
1319 return ret;
1322 static int bmc150_accel_remove(struct i2c_client *client)
1324 struct iio_dev *indio_dev = i2c_get_clientdata(client);
1325 struct bmc150_accel_data *data = iio_priv(indio_dev);
1327 pm_runtime_disable(&client->dev);
1328 pm_runtime_set_suspended(&client->dev);
1329 pm_runtime_put_noidle(&client->dev);
1331 iio_device_unregister(indio_dev);
1333 if (data->dready_trig) {
1334 iio_triggered_buffer_cleanup(indio_dev);
1335 iio_trigger_unregister(data->dready_trig);
1336 iio_trigger_unregister(data->motion_trig);
1339 mutex_lock(&data->mutex);
1340 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1341 mutex_unlock(&data->mutex);
1343 return 0;
1346 #ifdef CONFIG_PM_SLEEP
1347 static int bmc150_accel_suspend(struct device *dev)
1349 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1350 struct bmc150_accel_data *data = iio_priv(indio_dev);
1352 mutex_lock(&data->mutex);
1353 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1354 mutex_unlock(&data->mutex);
1356 return 0;
1359 static int bmc150_accel_resume(struct device *dev)
1361 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1362 struct bmc150_accel_data *data = iio_priv(indio_dev);
1364 mutex_lock(&data->mutex);
1365 if (data->dready_trigger_on || data->motion_trigger_on ||
1366 data->ev_enable_state)
1367 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1368 mutex_unlock(&data->mutex);
1370 return 0;
1372 #endif
1374 #ifdef CONFIG_PM
1375 static int bmc150_accel_runtime_suspend(struct device *dev)
1377 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1378 struct bmc150_accel_data *data = iio_priv(indio_dev);
1379 int ret;
1381 dev_dbg(&data->client->dev, __func__);
1382 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1383 if (ret < 0)
1384 return -EAGAIN;
1386 return 0;
1389 static int bmc150_accel_runtime_resume(struct device *dev)
1391 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1392 struct bmc150_accel_data *data = iio_priv(indio_dev);
1393 int ret;
1394 int sleep_val;
1396 dev_dbg(&data->client->dev, __func__);
1398 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1399 if (ret < 0)
1400 return ret;
1402 sleep_val = bmc150_accel_get_startup_times(data);
1403 if (sleep_val < 20)
1404 usleep_range(sleep_val * 1000, 20000);
1405 else
1406 msleep_interruptible(sleep_val);
1408 return 0;
1410 #endif
1412 static const struct dev_pm_ops bmc150_accel_pm_ops = {
1413 SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1414 SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1415 bmc150_accel_runtime_resume, NULL)
1418 static const struct acpi_device_id bmc150_accel_acpi_match[] = {
1419 {"BSBA0150", bmc150},
1420 {"BMC150A", bmc150},
1421 {"BMI055A", bmi055},
1422 {"BMA0255", bma255},
1423 {"BMA250E", bma250e},
1424 {"BMA222E", bma222e},
1425 {"BMA0280", bma280},
1426 { },
1428 MODULE_DEVICE_TABLE(acpi, bmc150_accel_acpi_match);
1430 static const struct i2c_device_id bmc150_accel_id[] = {
1431 {"bmc150_accel", bmc150},
1432 {"bmi055_accel", bmi055},
1433 {"bma255", bma255},
1434 {"bma250e", bma250e},
1435 {"bma222e", bma222e},
1436 {"bma280", bma280},
1440 MODULE_DEVICE_TABLE(i2c, bmc150_accel_id);
1442 static struct i2c_driver bmc150_accel_driver = {
1443 .driver = {
1444 .name = BMC150_ACCEL_DRV_NAME,
1445 .acpi_match_table = ACPI_PTR(bmc150_accel_acpi_match),
1446 .pm = &bmc150_accel_pm_ops,
1448 .probe = bmc150_accel_probe,
1449 .remove = bmc150_accel_remove,
1450 .id_table = bmc150_accel_id,
1452 module_i2c_driver(bmc150_accel_driver);
1454 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1455 MODULE_LICENSE("GPL v2");
1456 MODULE_DESCRIPTION("BMC150 accelerometer driver");