Bluetooth: hci_uart: Use generic functionality from Broadcom module
[linux/fpc-iii.git] / drivers / iio / adc / qcom-spmi-vadc.c
blob3211729bcb0bd2fa3a53629c4e78c2c9c37579a2
1 /*
2 * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 and
6 * only version 2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
14 #include <linux/bitops.h>
15 #include <linux/completion.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/iio/iio.h>
19 #include <linux/interrupt.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/regmap.h>
25 #include <linux/slab.h>
26 #include <linux/log2.h>
28 #include <dt-bindings/iio/qcom,spmi-vadc.h>
30 /* VADC register and bit definitions */
31 #define VADC_REVISION2 0x1
32 #define VADC_REVISION2_SUPPORTED_VADC 1
34 #define VADC_PERPH_TYPE 0x4
35 #define VADC_PERPH_TYPE_ADC 8
37 #define VADC_PERPH_SUBTYPE 0x5
38 #define VADC_PERPH_SUBTYPE_VADC 1
40 #define VADC_STATUS1 0x8
41 #define VADC_STATUS1_OP_MODE 4
42 #define VADC_STATUS1_REQ_STS BIT(1)
43 #define VADC_STATUS1_EOC BIT(0)
44 #define VADC_STATUS1_REQ_STS_EOC_MASK 0x3
46 #define VADC_MODE_CTL 0x40
47 #define VADC_OP_MODE_SHIFT 3
48 #define VADC_OP_MODE_NORMAL 0
49 #define VADC_AMUX_TRIM_EN BIT(1)
50 #define VADC_ADC_TRIM_EN BIT(0)
52 #define VADC_EN_CTL1 0x46
53 #define VADC_EN_CTL1_SET BIT(7)
55 #define VADC_ADC_CH_SEL_CTL 0x48
57 #define VADC_ADC_DIG_PARAM 0x50
58 #define VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT 2
60 #define VADC_HW_SETTLE_DELAY 0x51
62 #define VADC_CONV_REQ 0x52
63 #define VADC_CONV_REQ_SET BIT(7)
65 #define VADC_FAST_AVG_CTL 0x5a
66 #define VADC_FAST_AVG_EN 0x5b
67 #define VADC_FAST_AVG_EN_SET BIT(7)
69 #define VADC_ACCESS 0xd0
70 #define VADC_ACCESS_DATA 0xa5
72 #define VADC_PERH_RESET_CTL3 0xda
73 #define VADC_FOLLOW_WARM_RB BIT(2)
75 #define VADC_DATA 0x60 /* 16 bits */
77 #define VADC_CONV_TIME_MIN_US 2000
78 #define VADC_CONV_TIME_MAX_US 2100
80 /* Min ADC code represents 0V */
81 #define VADC_MIN_ADC_CODE 0x6000
82 /* Max ADC code represents full-scale range of 1.8V */
83 #define VADC_MAX_ADC_CODE 0xa800
85 #define VADC_ABSOLUTE_RANGE_UV 625000
86 #define VADC_RATIOMETRIC_RANGE_UV 1800000
88 #define VADC_DEF_PRESCALING 0 /* 1:1 */
89 #define VADC_DEF_DECIMATION 0 /* 512 */
90 #define VADC_DEF_HW_SETTLE_TIME 0 /* 0 us */
91 #define VADC_DEF_AVG_SAMPLES 0 /* 1 sample */
92 #define VADC_DEF_CALIB_TYPE VADC_CALIB_ABSOLUTE
94 #define VADC_DECIMATION_MIN 512
95 #define VADC_DECIMATION_MAX 4096
97 #define VADC_HW_SETTLE_DELAY_MAX 10000
98 #define VADC_AVG_SAMPLES_MAX 512
100 #define KELVINMIL_CELSIUSMIL 273150
102 #define VADC_CHAN_MIN VADC_USBIN
103 #define VADC_CHAN_MAX VADC_LR_MUX3_BUF_PU1_PU2_XO_THERM
106 * VADC_CALIB_ABSOLUTE: uses the 625mV and 1.25V as reference channels.
107 * VADC_CALIB_RATIOMETRIC: uses the reference voltage (1.8V) and GND for
108 * calibration.
110 enum vadc_calibration {
111 VADC_CALIB_ABSOLUTE = 0,
112 VADC_CALIB_RATIOMETRIC
116 * struct vadc_linear_graph - Represent ADC characteristics.
117 * @dy: numerator slope to calculate the gain.
118 * @dx: denominator slope to calculate the gain.
119 * @gnd: A/D word of the ground reference used for the channel.
121 * Each ADC device has different offset and gain parameters which are
122 * computed to calibrate the device.
124 struct vadc_linear_graph {
125 s32 dy;
126 s32 dx;
127 s32 gnd;
131 * struct vadc_prescale_ratio - Represent scaling ratio for ADC input.
132 * @num: the inverse numerator of the gain applied to the input channel.
133 * @den: the inverse denominator of the gain applied to the input channel.
135 struct vadc_prescale_ratio {
136 u32 num;
137 u32 den;
141 * struct vadc_channel_prop - VADC channel property.
142 * @channel: channel number, refer to the channel list.
143 * @calibration: calibration type.
144 * @decimation: sampling rate supported for the channel.
145 * @prescale: channel scaling performed on the input signal.
146 * @hw_settle_time: the time between AMUX being configured and the
147 * start of conversion.
148 * @avg_samples: ability to provide single result from the ADC
149 * that is an average of multiple measurements.
151 struct vadc_channel_prop {
152 unsigned int channel;
153 enum vadc_calibration calibration;
154 unsigned int decimation;
155 unsigned int prescale;
156 unsigned int hw_settle_time;
157 unsigned int avg_samples;
161 * struct vadc_priv - VADC private structure.
162 * @regmap: pointer to struct regmap.
163 * @dev: pointer to struct device.
164 * @base: base address for the ADC peripheral.
165 * @nchannels: number of VADC channels.
166 * @chan_props: array of VADC channel properties.
167 * @iio_chans: array of IIO channels specification.
168 * @are_ref_measured: are reference points measured.
169 * @poll_eoc: use polling instead of interrupt.
170 * @complete: VADC result notification after interrupt is received.
171 * @graph: store parameters for calibration.
172 * @lock: ADC lock for access to the peripheral.
174 struct vadc_priv {
175 struct regmap *regmap;
176 struct device *dev;
177 u16 base;
178 unsigned int nchannels;
179 struct vadc_channel_prop *chan_props;
180 struct iio_chan_spec *iio_chans;
181 bool are_ref_measured;
182 bool poll_eoc;
183 struct completion complete;
184 struct vadc_linear_graph graph[2];
185 struct mutex lock;
188 static const struct vadc_prescale_ratio vadc_prescale_ratios[] = {
189 {.num = 1, .den = 1},
190 {.num = 1, .den = 3},
191 {.num = 1, .den = 4},
192 {.num = 1, .den = 6},
193 {.num = 1, .den = 20},
194 {.num = 1, .den = 8},
195 {.num = 10, .den = 81},
196 {.num = 1, .den = 10}
199 static int vadc_read(struct vadc_priv *vadc, u16 offset, u8 *data)
201 return regmap_bulk_read(vadc->regmap, vadc->base + offset, data, 1);
204 static int vadc_write(struct vadc_priv *vadc, u16 offset, u8 data)
206 return regmap_write(vadc->regmap, vadc->base + offset, data);
209 static int vadc_reset(struct vadc_priv *vadc)
211 u8 data;
212 int ret;
214 ret = vadc_write(vadc, VADC_ACCESS, VADC_ACCESS_DATA);
215 if (ret)
216 return ret;
218 ret = vadc_read(vadc, VADC_PERH_RESET_CTL3, &data);
219 if (ret)
220 return ret;
222 ret = vadc_write(vadc, VADC_ACCESS, VADC_ACCESS_DATA);
223 if (ret)
224 return ret;
226 data |= VADC_FOLLOW_WARM_RB;
228 return vadc_write(vadc, VADC_PERH_RESET_CTL3, data);
231 static int vadc_set_state(struct vadc_priv *vadc, bool state)
233 return vadc_write(vadc, VADC_EN_CTL1, state ? VADC_EN_CTL1_SET : 0);
236 static void vadc_show_status(struct vadc_priv *vadc)
238 u8 mode, sta1, chan, dig, en, req;
239 int ret;
241 ret = vadc_read(vadc, VADC_MODE_CTL, &mode);
242 if (ret)
243 return;
245 ret = vadc_read(vadc, VADC_ADC_DIG_PARAM, &dig);
246 if (ret)
247 return;
249 ret = vadc_read(vadc, VADC_ADC_CH_SEL_CTL, &chan);
250 if (ret)
251 return;
253 ret = vadc_read(vadc, VADC_CONV_REQ, &req);
254 if (ret)
255 return;
257 ret = vadc_read(vadc, VADC_STATUS1, &sta1);
258 if (ret)
259 return;
261 ret = vadc_read(vadc, VADC_EN_CTL1, &en);
262 if (ret)
263 return;
265 dev_err(vadc->dev,
266 "mode:%02x en:%02x chan:%02x dig:%02x req:%02x sta1:%02x\n",
267 mode, en, chan, dig, req, sta1);
270 static int vadc_configure(struct vadc_priv *vadc,
271 struct vadc_channel_prop *prop)
273 u8 decimation, mode_ctrl;
274 int ret;
276 /* Mode selection */
277 mode_ctrl = (VADC_OP_MODE_NORMAL << VADC_OP_MODE_SHIFT) |
278 VADC_ADC_TRIM_EN | VADC_AMUX_TRIM_EN;
279 ret = vadc_write(vadc, VADC_MODE_CTL, mode_ctrl);
280 if (ret)
281 return ret;
283 /* Channel selection */
284 ret = vadc_write(vadc, VADC_ADC_CH_SEL_CTL, prop->channel);
285 if (ret)
286 return ret;
288 /* Digital parameter setup */
289 decimation = prop->decimation << VADC_ADC_DIG_DEC_RATIO_SEL_SHIFT;
290 ret = vadc_write(vadc, VADC_ADC_DIG_PARAM, decimation);
291 if (ret)
292 return ret;
294 /* HW settle time delay */
295 ret = vadc_write(vadc, VADC_HW_SETTLE_DELAY, prop->hw_settle_time);
296 if (ret)
297 return ret;
299 ret = vadc_write(vadc, VADC_FAST_AVG_CTL, prop->avg_samples);
300 if (ret)
301 return ret;
303 if (prop->avg_samples)
304 ret = vadc_write(vadc, VADC_FAST_AVG_EN, VADC_FAST_AVG_EN_SET);
305 else
306 ret = vadc_write(vadc, VADC_FAST_AVG_EN, 0);
308 return ret;
311 static int vadc_poll_wait_eoc(struct vadc_priv *vadc, unsigned int interval_us)
313 unsigned int count, retry;
314 u8 sta1;
315 int ret;
317 retry = interval_us / VADC_CONV_TIME_MIN_US;
319 for (count = 0; count < retry; count++) {
320 ret = vadc_read(vadc, VADC_STATUS1, &sta1);
321 if (ret)
322 return ret;
324 sta1 &= VADC_STATUS1_REQ_STS_EOC_MASK;
325 if (sta1 == VADC_STATUS1_EOC)
326 return 0;
328 usleep_range(VADC_CONV_TIME_MIN_US, VADC_CONV_TIME_MAX_US);
331 vadc_show_status(vadc);
333 return -ETIMEDOUT;
336 static int vadc_read_result(struct vadc_priv *vadc, u16 *data)
338 int ret;
340 ret = regmap_bulk_read(vadc->regmap, vadc->base + VADC_DATA, data, 2);
341 if (ret)
342 return ret;
344 *data = clamp_t(u16, *data, VADC_MIN_ADC_CODE, VADC_MAX_ADC_CODE);
346 return 0;
349 static struct vadc_channel_prop *vadc_get_channel(struct vadc_priv *vadc,
350 unsigned int num)
352 unsigned int i;
354 for (i = 0; i < vadc->nchannels; i++)
355 if (vadc->chan_props[i].channel == num)
356 return &vadc->chan_props[i];
358 dev_dbg(vadc->dev, "no such channel %02x\n", num);
360 return NULL;
363 static int vadc_do_conversion(struct vadc_priv *vadc,
364 struct vadc_channel_prop *prop, u16 *data)
366 unsigned int timeout;
367 int ret;
369 mutex_lock(&vadc->lock);
371 ret = vadc_configure(vadc, prop);
372 if (ret)
373 goto unlock;
375 if (!vadc->poll_eoc)
376 reinit_completion(&vadc->complete);
378 ret = vadc_set_state(vadc, true);
379 if (ret)
380 goto unlock;
382 ret = vadc_write(vadc, VADC_CONV_REQ, VADC_CONV_REQ_SET);
383 if (ret)
384 goto err_disable;
386 timeout = BIT(prop->avg_samples) * VADC_CONV_TIME_MIN_US * 2;
388 if (vadc->poll_eoc) {
389 ret = vadc_poll_wait_eoc(vadc, timeout);
390 } else {
391 ret = wait_for_completion_timeout(&vadc->complete, timeout);
392 if (!ret) {
393 ret = -ETIMEDOUT;
394 goto err_disable;
397 /* Double check conversion status */
398 ret = vadc_poll_wait_eoc(vadc, VADC_CONV_TIME_MIN_US);
399 if (ret)
400 goto err_disable;
403 ret = vadc_read_result(vadc, data);
405 err_disable:
406 vadc_set_state(vadc, false);
407 if (ret)
408 dev_err(vadc->dev, "conversion failed\n");
409 unlock:
410 mutex_unlock(&vadc->lock);
411 return ret;
414 static int vadc_measure_ref_points(struct vadc_priv *vadc)
416 struct vadc_channel_prop *prop;
417 u16 read_1, read_2;
418 int ret;
420 vadc->graph[VADC_CALIB_RATIOMETRIC].dx = VADC_RATIOMETRIC_RANGE_UV;
421 vadc->graph[VADC_CALIB_ABSOLUTE].dx = VADC_ABSOLUTE_RANGE_UV;
423 prop = vadc_get_channel(vadc, VADC_REF_1250MV);
424 ret = vadc_do_conversion(vadc, prop, &read_1);
425 if (ret)
426 goto err;
428 /* Try with buffered 625mV channel first */
429 prop = vadc_get_channel(vadc, VADC_SPARE1);
430 if (!prop)
431 prop = vadc_get_channel(vadc, VADC_REF_625MV);
433 ret = vadc_do_conversion(vadc, prop, &read_2);
434 if (ret)
435 goto err;
437 if (read_1 == read_2) {
438 ret = -EINVAL;
439 goto err;
442 vadc->graph[VADC_CALIB_ABSOLUTE].dy = read_1 - read_2;
443 vadc->graph[VADC_CALIB_ABSOLUTE].gnd = read_2;
445 /* Ratiometric calibration */
446 prop = vadc_get_channel(vadc, VADC_VDD_VADC);
447 ret = vadc_do_conversion(vadc, prop, &read_1);
448 if (ret)
449 goto err;
451 prop = vadc_get_channel(vadc, VADC_GND_REF);
452 ret = vadc_do_conversion(vadc, prop, &read_2);
453 if (ret)
454 goto err;
456 if (read_1 == read_2) {
457 ret = -EINVAL;
458 goto err;
461 vadc->graph[VADC_CALIB_RATIOMETRIC].dy = read_1 - read_2;
462 vadc->graph[VADC_CALIB_RATIOMETRIC].gnd = read_2;
463 err:
464 if (ret)
465 dev_err(vadc->dev, "measure reference points failed\n");
467 return ret;
470 static s32 vadc_calibrate(struct vadc_priv *vadc,
471 const struct vadc_channel_prop *prop, u16 adc_code)
473 const struct vadc_prescale_ratio *prescale;
474 s32 voltage;
476 voltage = adc_code - vadc->graph[prop->calibration].gnd;
477 voltage *= vadc->graph[prop->calibration].dx;
478 voltage = voltage / vadc->graph[prop->calibration].dy;
480 if (prop->calibration == VADC_CALIB_ABSOLUTE)
481 voltage += vadc->graph[prop->calibration].dx;
483 if (voltage < 0)
484 voltage = 0;
486 prescale = &vadc_prescale_ratios[prop->prescale];
488 voltage = voltage * prescale->den;
490 return voltage / prescale->num;
493 static int vadc_decimation_from_dt(u32 value)
495 if (!is_power_of_2(value) || value < VADC_DECIMATION_MIN ||
496 value > VADC_DECIMATION_MAX)
497 return -EINVAL;
499 return __ffs64(value / VADC_DECIMATION_MIN);
502 static int vadc_prescaling_from_dt(u32 num, u32 den)
504 unsigned int pre;
506 for (pre = 0; pre < ARRAY_SIZE(vadc_prescale_ratios); pre++)
507 if (vadc_prescale_ratios[pre].num == num &&
508 vadc_prescale_ratios[pre].den == den)
509 break;
511 if (pre == ARRAY_SIZE(vadc_prescale_ratios))
512 return -EINVAL;
514 return pre;
517 static int vadc_hw_settle_time_from_dt(u32 value)
519 if ((value <= 1000 && value % 100) || (value > 1000 && value % 2000))
520 return -EINVAL;
522 if (value <= 1000)
523 value /= 100;
524 else
525 value = value / 2000 + 10;
527 return value;
530 static int vadc_avg_samples_from_dt(u32 value)
532 if (!is_power_of_2(value) || value > VADC_AVG_SAMPLES_MAX)
533 return -EINVAL;
535 return __ffs64(value);
538 static int vadc_read_raw(struct iio_dev *indio_dev,
539 struct iio_chan_spec const *chan, int *val, int *val2,
540 long mask)
542 struct vadc_priv *vadc = iio_priv(indio_dev);
543 struct vadc_channel_prop *prop;
544 u16 adc_code;
545 int ret;
547 switch (mask) {
548 case IIO_CHAN_INFO_PROCESSED:
549 prop = &vadc->chan_props[chan->address];
550 ret = vadc_do_conversion(vadc, prop, &adc_code);
551 if (ret)
552 break;
554 *val = vadc_calibrate(vadc, prop, adc_code);
556 /* 2mV/K, return milli Celsius */
557 *val /= 2;
558 *val -= KELVINMIL_CELSIUSMIL;
559 return IIO_VAL_INT;
560 case IIO_CHAN_INFO_RAW:
561 prop = &vadc->chan_props[chan->address];
562 ret = vadc_do_conversion(vadc, prop, &adc_code);
563 if (ret)
564 break;
566 *val = vadc_calibrate(vadc, prop, adc_code);
567 return IIO_VAL_INT;
568 case IIO_CHAN_INFO_SCALE:
569 *val = 0;
570 *val2 = 1000;
571 return IIO_VAL_INT_PLUS_MICRO;
572 default:
573 ret = -EINVAL;
574 break;
577 return ret;
580 static int vadc_of_xlate(struct iio_dev *indio_dev,
581 const struct of_phandle_args *iiospec)
583 struct vadc_priv *vadc = iio_priv(indio_dev);
584 unsigned int i;
586 for (i = 0; i < vadc->nchannels; i++)
587 if (vadc->iio_chans[i].channel == iiospec->args[0])
588 return i;
590 return -EINVAL;
593 static const struct iio_info vadc_info = {
594 .read_raw = vadc_read_raw,
595 .of_xlate = vadc_of_xlate,
596 .driver_module = THIS_MODULE,
599 struct vadc_channels {
600 const char *datasheet_name;
601 unsigned int prescale_index;
602 enum iio_chan_type type;
603 long info_mask;
606 #define VADC_CHAN(_dname, _type, _mask, _pre) \
607 [VADC_##_dname] = { \
608 .datasheet_name = __stringify(_dname), \
609 .prescale_index = _pre, \
610 .type = _type, \
611 .info_mask = _mask \
612 }, \
614 #define VADC_CHAN_TEMP(_dname, _pre) \
615 VADC_CHAN(_dname, IIO_TEMP, BIT(IIO_CHAN_INFO_PROCESSED), _pre) \
617 #define VADC_CHAN_VOLT(_dname, _pre) \
618 VADC_CHAN(_dname, IIO_VOLTAGE, \
619 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), \
620 _pre) \
623 * The array represents all possible ADC channels found in the supported PMICs.
624 * Every index in the array is equal to the channel number per datasheet. The
625 * gaps in the array should be treated as reserved channels.
627 static const struct vadc_channels vadc_chans[] = {
628 VADC_CHAN_VOLT(USBIN, 4)
629 VADC_CHAN_VOLT(DCIN, 4)
630 VADC_CHAN_VOLT(VCHG_SNS, 3)
631 VADC_CHAN_VOLT(SPARE1_03, 1)
632 VADC_CHAN_VOLT(USB_ID_MV, 1)
633 VADC_CHAN_VOLT(VCOIN, 1)
634 VADC_CHAN_VOLT(VBAT_SNS, 1)
635 VADC_CHAN_VOLT(VSYS, 1)
636 VADC_CHAN_TEMP(DIE_TEMP, 0)
637 VADC_CHAN_VOLT(REF_625MV, 0)
638 VADC_CHAN_VOLT(REF_1250MV, 0)
639 VADC_CHAN_VOLT(CHG_TEMP, 0)
640 VADC_CHAN_VOLT(SPARE1, 0)
641 VADC_CHAN_VOLT(SPARE2, 0)
642 VADC_CHAN_VOLT(GND_REF, 0)
643 VADC_CHAN_VOLT(VDD_VADC, 0)
645 VADC_CHAN_VOLT(P_MUX1_1_1, 0)
646 VADC_CHAN_VOLT(P_MUX2_1_1, 0)
647 VADC_CHAN_VOLT(P_MUX3_1_1, 0)
648 VADC_CHAN_VOLT(P_MUX4_1_1, 0)
649 VADC_CHAN_VOLT(P_MUX5_1_1, 0)
650 VADC_CHAN_VOLT(P_MUX6_1_1, 0)
651 VADC_CHAN_VOLT(P_MUX7_1_1, 0)
652 VADC_CHAN_VOLT(P_MUX8_1_1, 0)
653 VADC_CHAN_VOLT(P_MUX9_1_1, 0)
654 VADC_CHAN_VOLT(P_MUX10_1_1, 0)
655 VADC_CHAN_VOLT(P_MUX11_1_1, 0)
656 VADC_CHAN_VOLT(P_MUX12_1_1, 0)
657 VADC_CHAN_VOLT(P_MUX13_1_1, 0)
658 VADC_CHAN_VOLT(P_MUX14_1_1, 0)
659 VADC_CHAN_VOLT(P_MUX15_1_1, 0)
660 VADC_CHAN_VOLT(P_MUX16_1_1, 0)
662 VADC_CHAN_VOLT(P_MUX1_1_3, 1)
663 VADC_CHAN_VOLT(P_MUX2_1_3, 1)
664 VADC_CHAN_VOLT(P_MUX3_1_3, 1)
665 VADC_CHAN_VOLT(P_MUX4_1_3, 1)
666 VADC_CHAN_VOLT(P_MUX5_1_3, 1)
667 VADC_CHAN_VOLT(P_MUX6_1_3, 1)
668 VADC_CHAN_VOLT(P_MUX7_1_3, 1)
669 VADC_CHAN_VOLT(P_MUX8_1_3, 1)
670 VADC_CHAN_VOLT(P_MUX9_1_3, 1)
671 VADC_CHAN_VOLT(P_MUX10_1_3, 1)
672 VADC_CHAN_VOLT(P_MUX11_1_3, 1)
673 VADC_CHAN_VOLT(P_MUX12_1_3, 1)
674 VADC_CHAN_VOLT(P_MUX13_1_3, 1)
675 VADC_CHAN_VOLT(P_MUX14_1_3, 1)
676 VADC_CHAN_VOLT(P_MUX15_1_3, 1)
677 VADC_CHAN_VOLT(P_MUX16_1_3, 1)
679 VADC_CHAN_VOLT(LR_MUX1_BAT_THERM, 0)
680 VADC_CHAN_VOLT(LR_MUX2_BAT_ID, 0)
681 VADC_CHAN_VOLT(LR_MUX3_XO_THERM, 0)
682 VADC_CHAN_VOLT(LR_MUX4_AMUX_THM1, 0)
683 VADC_CHAN_VOLT(LR_MUX5_AMUX_THM2, 0)
684 VADC_CHAN_VOLT(LR_MUX6_AMUX_THM3, 0)
685 VADC_CHAN_VOLT(LR_MUX7_HW_ID, 0)
686 VADC_CHAN_VOLT(LR_MUX8_AMUX_THM4, 0)
687 VADC_CHAN_VOLT(LR_MUX9_AMUX_THM5, 0)
688 VADC_CHAN_VOLT(LR_MUX10_USB_ID, 0)
689 VADC_CHAN_VOLT(AMUX_PU1, 0)
690 VADC_CHAN_VOLT(AMUX_PU2, 0)
691 VADC_CHAN_VOLT(LR_MUX3_BUF_XO_THERM, 0)
693 VADC_CHAN_VOLT(LR_MUX1_PU1_BAT_THERM, 0)
694 VADC_CHAN_VOLT(LR_MUX2_PU1_BAT_ID, 0)
695 VADC_CHAN_VOLT(LR_MUX3_PU1_XO_THERM, 0)
696 VADC_CHAN_VOLT(LR_MUX4_PU1_AMUX_THM1, 0)
697 VADC_CHAN_VOLT(LR_MUX5_PU1_AMUX_THM2, 0)
698 VADC_CHAN_VOLT(LR_MUX6_PU1_AMUX_THM3, 0)
699 VADC_CHAN_VOLT(LR_MUX7_PU1_AMUX_HW_ID, 0)
700 VADC_CHAN_VOLT(LR_MUX8_PU1_AMUX_THM4, 0)
701 VADC_CHAN_VOLT(LR_MUX9_PU1_AMUX_THM5, 0)
702 VADC_CHAN_VOLT(LR_MUX10_PU1_AMUX_USB_ID, 0)
703 VADC_CHAN_VOLT(LR_MUX3_BUF_PU1_XO_THERM, 0)
705 VADC_CHAN_VOLT(LR_MUX1_PU2_BAT_THERM, 0)
706 VADC_CHAN_VOLT(LR_MUX2_PU2_BAT_ID, 0)
707 VADC_CHAN_VOLT(LR_MUX3_PU2_XO_THERM, 0)
708 VADC_CHAN_VOLT(LR_MUX4_PU2_AMUX_THM1, 0)
709 VADC_CHAN_VOLT(LR_MUX5_PU2_AMUX_THM2, 0)
710 VADC_CHAN_VOLT(LR_MUX6_PU2_AMUX_THM3, 0)
711 VADC_CHAN_VOLT(LR_MUX7_PU2_AMUX_HW_ID, 0)
712 VADC_CHAN_VOLT(LR_MUX8_PU2_AMUX_THM4, 0)
713 VADC_CHAN_VOLT(LR_MUX9_PU2_AMUX_THM5, 0)
714 VADC_CHAN_VOLT(LR_MUX10_PU2_AMUX_USB_ID, 0)
715 VADC_CHAN_VOLT(LR_MUX3_BUF_PU2_XO_THERM, 0)
717 VADC_CHAN_VOLT(LR_MUX1_PU1_PU2_BAT_THERM, 0)
718 VADC_CHAN_VOLT(LR_MUX2_PU1_PU2_BAT_ID, 0)
719 VADC_CHAN_VOLT(LR_MUX3_PU1_PU2_XO_THERM, 0)
720 VADC_CHAN_VOLT(LR_MUX4_PU1_PU2_AMUX_THM1, 0)
721 VADC_CHAN_VOLT(LR_MUX5_PU1_PU2_AMUX_THM2, 0)
722 VADC_CHAN_VOLT(LR_MUX6_PU1_PU2_AMUX_THM3, 0)
723 VADC_CHAN_VOLT(LR_MUX7_PU1_PU2_AMUX_HW_ID, 0)
724 VADC_CHAN_VOLT(LR_MUX8_PU1_PU2_AMUX_THM4, 0)
725 VADC_CHAN_VOLT(LR_MUX9_PU1_PU2_AMUX_THM5, 0)
726 VADC_CHAN_VOLT(LR_MUX10_PU1_PU2_AMUX_USB_ID, 0)
727 VADC_CHAN_VOLT(LR_MUX3_BUF_PU1_PU2_XO_THERM, 0)
730 static int vadc_get_dt_channel_data(struct device *dev,
731 struct vadc_channel_prop *prop,
732 struct device_node *node)
734 const char *name = node->name;
735 u32 chan, value, varr[2];
736 int ret;
738 ret = of_property_read_u32(node, "reg", &chan);
739 if (ret) {
740 dev_err(dev, "invalid channel number %s\n", name);
741 return ret;
744 if (chan > VADC_CHAN_MAX || chan < VADC_CHAN_MIN) {
745 dev_err(dev, "%s invalid channel number %d\n", name, chan);
746 return -EINVAL;
749 /* the channel has DT description */
750 prop->channel = chan;
752 ret = of_property_read_u32(node, "qcom,decimation", &value);
753 if (!ret) {
754 ret = vadc_decimation_from_dt(value);
755 if (ret < 0) {
756 dev_err(dev, "%02x invalid decimation %d\n",
757 chan, value);
758 return ret;
760 prop->decimation = ret;
761 } else {
762 prop->decimation = VADC_DEF_DECIMATION;
765 ret = of_property_read_u32_array(node, "qcom,pre-scaling", varr, 2);
766 if (!ret) {
767 ret = vadc_prescaling_from_dt(varr[0], varr[1]);
768 if (ret < 0) {
769 dev_err(dev, "%02x invalid pre-scaling <%d %d>\n",
770 chan, varr[0], varr[1]);
771 return ret;
773 prop->prescale = ret;
774 } else {
775 prop->prescale = vadc_chans[prop->channel].prescale_index;
778 ret = of_property_read_u32(node, "qcom,hw-settle-time", &value);
779 if (!ret) {
780 ret = vadc_hw_settle_time_from_dt(value);
781 if (ret < 0) {
782 dev_err(dev, "%02x invalid hw-settle-time %d us\n",
783 chan, value);
784 return ret;
786 prop->hw_settle_time = ret;
787 } else {
788 prop->hw_settle_time = VADC_DEF_HW_SETTLE_TIME;
791 ret = of_property_read_u32(node, "qcom,avg-samples", &value);
792 if (!ret) {
793 ret = vadc_avg_samples_from_dt(value);
794 if (ret < 0) {
795 dev_err(dev, "%02x invalid avg-samples %d\n",
796 chan, value);
797 return ret;
799 prop->avg_samples = ret;
800 } else {
801 prop->avg_samples = VADC_DEF_AVG_SAMPLES;
804 if (of_property_read_bool(node, "qcom,ratiometric"))
805 prop->calibration = VADC_CALIB_RATIOMETRIC;
806 else
807 prop->calibration = VADC_CALIB_ABSOLUTE;
809 dev_dbg(dev, "%02x name %s\n", chan, name);
811 return 0;
814 static int vadc_get_dt_data(struct vadc_priv *vadc, struct device_node *node)
816 const struct vadc_channels *vadc_chan;
817 struct iio_chan_spec *iio_chan;
818 struct vadc_channel_prop prop;
819 struct device_node *child;
820 unsigned int index = 0;
821 int ret;
823 vadc->nchannels = of_get_available_child_count(node);
824 if (!vadc->nchannels)
825 return -EINVAL;
827 vadc->iio_chans = devm_kcalloc(vadc->dev, vadc->nchannels,
828 sizeof(*vadc->iio_chans), GFP_KERNEL);
829 if (!vadc->iio_chans)
830 return -ENOMEM;
832 vadc->chan_props = devm_kcalloc(vadc->dev, vadc->nchannels,
833 sizeof(*vadc->chan_props), GFP_KERNEL);
834 if (!vadc->chan_props)
835 return -ENOMEM;
837 iio_chan = vadc->iio_chans;
839 for_each_available_child_of_node(node, child) {
840 ret = vadc_get_dt_channel_data(vadc->dev, &prop, child);
841 if (ret)
842 return ret;
844 vadc->chan_props[index] = prop;
846 vadc_chan = &vadc_chans[prop.channel];
848 iio_chan->channel = prop.channel;
849 iio_chan->datasheet_name = vadc_chan->datasheet_name;
850 iio_chan->info_mask_separate = vadc_chan->info_mask;
851 iio_chan->type = vadc_chan->type;
852 iio_chan->indexed = 1;
853 iio_chan->address = index++;
855 iio_chan++;
858 /* These channels are mandatory, they are used as reference points */
859 if (!vadc_get_channel(vadc, VADC_REF_1250MV)) {
860 dev_err(vadc->dev, "Please define 1.25V channel\n");
861 return -ENODEV;
864 if (!vadc_get_channel(vadc, VADC_REF_625MV)) {
865 dev_err(vadc->dev, "Please define 0.625V channel\n");
866 return -ENODEV;
869 if (!vadc_get_channel(vadc, VADC_VDD_VADC)) {
870 dev_err(vadc->dev, "Please define VDD channel\n");
871 return -ENODEV;
874 if (!vadc_get_channel(vadc, VADC_GND_REF)) {
875 dev_err(vadc->dev, "Please define GND channel\n");
876 return -ENODEV;
879 return 0;
882 static irqreturn_t vadc_isr(int irq, void *dev_id)
884 struct vadc_priv *vadc = dev_id;
886 complete(&vadc->complete);
888 return IRQ_HANDLED;
891 static int vadc_check_revision(struct vadc_priv *vadc)
893 u8 val;
894 int ret;
896 ret = vadc_read(vadc, VADC_PERPH_TYPE, &val);
897 if (ret)
898 return ret;
900 if (val < VADC_PERPH_TYPE_ADC) {
901 dev_err(vadc->dev, "%d is not ADC\n", val);
902 return -ENODEV;
905 ret = vadc_read(vadc, VADC_PERPH_SUBTYPE, &val);
906 if (ret)
907 return ret;
909 if (val < VADC_PERPH_SUBTYPE_VADC) {
910 dev_err(vadc->dev, "%d is not VADC\n", val);
911 return -ENODEV;
914 ret = vadc_read(vadc, VADC_REVISION2, &val);
915 if (ret)
916 return ret;
918 if (val < VADC_REVISION2_SUPPORTED_VADC) {
919 dev_err(vadc->dev, "revision %d not supported\n", val);
920 return -ENODEV;
923 return 0;
926 static int vadc_probe(struct platform_device *pdev)
928 struct device_node *node = pdev->dev.of_node;
929 struct device *dev = &pdev->dev;
930 struct iio_dev *indio_dev;
931 struct vadc_priv *vadc;
932 struct regmap *regmap;
933 int ret, irq_eoc;
934 u32 reg;
936 regmap = dev_get_regmap(dev->parent, NULL);
937 if (!regmap)
938 return -ENODEV;
940 ret = of_property_read_u32(node, "reg", &reg);
941 if (ret < 0)
942 return ret;
944 indio_dev = devm_iio_device_alloc(dev, sizeof(*vadc));
945 if (!indio_dev)
946 return -ENOMEM;
948 vadc = iio_priv(indio_dev);
949 vadc->regmap = regmap;
950 vadc->dev = dev;
951 vadc->base = reg;
952 vadc->are_ref_measured = false;
953 init_completion(&vadc->complete);
954 mutex_init(&vadc->lock);
956 ret = vadc_check_revision(vadc);
957 if (ret)
958 return ret;
960 ret = vadc_get_dt_data(vadc, node);
961 if (ret)
962 return ret;
964 irq_eoc = platform_get_irq(pdev, 0);
965 if (irq_eoc < 0) {
966 if (irq_eoc == -EPROBE_DEFER || irq_eoc == -EINVAL)
967 return irq_eoc;
968 vadc->poll_eoc = true;
969 } else {
970 ret = devm_request_irq(dev, irq_eoc, vadc_isr, 0,
971 "spmi-vadc", vadc);
972 if (ret)
973 return ret;
976 ret = vadc_reset(vadc);
977 if (ret) {
978 dev_err(dev, "reset failed\n");
979 return ret;
982 ret = vadc_measure_ref_points(vadc);
983 if (ret)
984 return ret;
986 indio_dev->dev.parent = dev;
987 indio_dev->dev.of_node = node;
988 indio_dev->name = pdev->name;
989 indio_dev->modes = INDIO_DIRECT_MODE;
990 indio_dev->info = &vadc_info;
991 indio_dev->channels = vadc->iio_chans;
992 indio_dev->num_channels = vadc->nchannels;
994 return devm_iio_device_register(dev, indio_dev);
997 static const struct of_device_id vadc_match_table[] = {
998 { .compatible = "qcom,spmi-vadc" },
1001 MODULE_DEVICE_TABLE(of, vadc_match_table);
1003 static struct platform_driver vadc_driver = {
1004 .driver = {
1005 .name = "qcom-spmi-vadc",
1006 .of_match_table = vadc_match_table,
1008 .probe = vadc_probe,
1010 module_platform_driver(vadc_driver);
1012 MODULE_ALIAS("platform:qcom-spmi-vadc");
1013 MODULE_DESCRIPTION("Qualcomm SPMI PMIC voltage ADC driver");
1014 MODULE_LICENSE("GPL v2");
1015 MODULE_AUTHOR("Stanimir Varbanov <svarbanov@mm-sol.com>");
1016 MODULE_AUTHOR("Ivan T. Ivanov <iivanov@mm-sol.com>");