Bluetooth: hci_uart: Use generic functionality from Broadcom module
[linux/fpc-iii.git] / drivers / iio / dac / ad5360.c
blob64634d7f578e2aa0bccb338ebff682daa92d7829
1 /*
2 * Analog devices AD5360, AD5361, AD5362, AD5363, AD5370, AD5371, AD5373
3 * multi-channel Digital to Analog Converters driver
5 * Copyright 2011 Analog Devices Inc.
7 * Licensed under the GPL-2.
8 */
10 #include <linux/device.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/spi/spi.h>
15 #include <linux/slab.h>
16 #include <linux/sysfs.h>
17 #include <linux/regulator/consumer.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
22 #define AD5360_CMD(x) ((x) << 22)
23 #define AD5360_ADDR(x) ((x) << 16)
25 #define AD5360_READBACK_TYPE(x) ((x) << 13)
26 #define AD5360_READBACK_ADDR(x) ((x) << 7)
28 #define AD5360_CHAN_ADDR(chan) ((chan) + 0x8)
30 #define AD5360_CMD_WRITE_DATA 0x3
31 #define AD5360_CMD_WRITE_OFFSET 0x2
32 #define AD5360_CMD_WRITE_GAIN 0x1
33 #define AD5360_CMD_SPECIAL_FUNCTION 0x0
35 /* Special function register addresses */
36 #define AD5360_REG_SF_NOP 0x0
37 #define AD5360_REG_SF_CTRL 0x1
38 #define AD5360_REG_SF_OFS(x) (0x2 + (x))
39 #define AD5360_REG_SF_READBACK 0x5
41 #define AD5360_SF_CTRL_PWR_DOWN BIT(0)
43 #define AD5360_READBACK_X1A 0x0
44 #define AD5360_READBACK_X1B 0x1
45 #define AD5360_READBACK_OFFSET 0x2
46 #define AD5360_READBACK_GAIN 0x3
47 #define AD5360_READBACK_SF 0x4
50 /**
51 * struct ad5360_chip_info - chip specific information
52 * @channel_template: channel specification template
53 * @num_channels: number of channels
54 * @channels_per_group: number of channels per group
55 * @num_vrefs: number of vref supplies for the chip
58 struct ad5360_chip_info {
59 struct iio_chan_spec channel_template;
60 unsigned int num_channels;
61 unsigned int channels_per_group;
62 unsigned int num_vrefs;
65 /**
66 * struct ad5360_state - driver instance specific data
67 * @spi: spi_device
68 * @chip_info: chip model specific constants, available modes etc
69 * @vref_reg: vref supply regulators
70 * @ctrl: control register cache
71 * @data: spi transfer buffers
74 struct ad5360_state {
75 struct spi_device *spi;
76 const struct ad5360_chip_info *chip_info;
77 struct regulator_bulk_data vref_reg[3];
78 unsigned int ctrl;
81 * DMA (thus cache coherency maintenance) requires the
82 * transfer buffers to live in their own cache lines.
84 union {
85 __be32 d32;
86 u8 d8[4];
87 } data[2] ____cacheline_aligned;
90 enum ad5360_type {
91 ID_AD5360,
92 ID_AD5361,
93 ID_AD5362,
94 ID_AD5363,
95 ID_AD5370,
96 ID_AD5371,
97 ID_AD5372,
98 ID_AD5373,
101 #define AD5360_CHANNEL(bits) { \
102 .type = IIO_VOLTAGE, \
103 .indexed = 1, \
104 .output = 1, \
105 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
106 BIT(IIO_CHAN_INFO_SCALE) | \
107 BIT(IIO_CHAN_INFO_OFFSET) | \
108 BIT(IIO_CHAN_INFO_CALIBSCALE) | \
109 BIT(IIO_CHAN_INFO_CALIBBIAS), \
110 .scan_type = { \
111 .sign = 'u', \
112 .realbits = (bits), \
113 .storagebits = 16, \
114 .shift = 16 - (bits), \
115 }, \
118 static const struct ad5360_chip_info ad5360_chip_info_tbl[] = {
119 [ID_AD5360] = {
120 .channel_template = AD5360_CHANNEL(16),
121 .num_channels = 16,
122 .channels_per_group = 8,
123 .num_vrefs = 2,
125 [ID_AD5361] = {
126 .channel_template = AD5360_CHANNEL(14),
127 .num_channels = 16,
128 .channels_per_group = 8,
129 .num_vrefs = 2,
131 [ID_AD5362] = {
132 .channel_template = AD5360_CHANNEL(16),
133 .num_channels = 8,
134 .channels_per_group = 4,
135 .num_vrefs = 2,
137 [ID_AD5363] = {
138 .channel_template = AD5360_CHANNEL(14),
139 .num_channels = 8,
140 .channels_per_group = 4,
141 .num_vrefs = 2,
143 [ID_AD5370] = {
144 .channel_template = AD5360_CHANNEL(16),
145 .num_channels = 40,
146 .channels_per_group = 8,
147 .num_vrefs = 2,
149 [ID_AD5371] = {
150 .channel_template = AD5360_CHANNEL(14),
151 .num_channels = 40,
152 .channels_per_group = 8,
153 .num_vrefs = 3,
155 [ID_AD5372] = {
156 .channel_template = AD5360_CHANNEL(16),
157 .num_channels = 32,
158 .channels_per_group = 8,
159 .num_vrefs = 2,
161 [ID_AD5373] = {
162 .channel_template = AD5360_CHANNEL(14),
163 .num_channels = 32,
164 .channels_per_group = 8,
165 .num_vrefs = 2,
169 static unsigned int ad5360_get_channel_vref_index(struct ad5360_state *st,
170 unsigned int channel)
172 unsigned int i;
174 /* The first groups have their own vref, while the remaining groups
175 * share the last vref */
176 i = channel / st->chip_info->channels_per_group;
177 if (i >= st->chip_info->num_vrefs)
178 i = st->chip_info->num_vrefs - 1;
180 return i;
183 static int ad5360_get_channel_vref(struct ad5360_state *st,
184 unsigned int channel)
186 unsigned int i = ad5360_get_channel_vref_index(st, channel);
188 return regulator_get_voltage(st->vref_reg[i].consumer);
192 static int ad5360_write_unlocked(struct iio_dev *indio_dev,
193 unsigned int cmd, unsigned int addr, unsigned int val,
194 unsigned int shift)
196 struct ad5360_state *st = iio_priv(indio_dev);
198 val <<= shift;
199 val |= AD5360_CMD(cmd) | AD5360_ADDR(addr);
200 st->data[0].d32 = cpu_to_be32(val);
202 return spi_write(st->spi, &st->data[0].d8[1], 3);
205 static int ad5360_write(struct iio_dev *indio_dev, unsigned int cmd,
206 unsigned int addr, unsigned int val, unsigned int shift)
208 int ret;
210 mutex_lock(&indio_dev->mlock);
211 ret = ad5360_write_unlocked(indio_dev, cmd, addr, val, shift);
212 mutex_unlock(&indio_dev->mlock);
214 return ret;
217 static int ad5360_read(struct iio_dev *indio_dev, unsigned int type,
218 unsigned int addr)
220 struct ad5360_state *st = iio_priv(indio_dev);
221 int ret;
222 struct spi_transfer t[] = {
224 .tx_buf = &st->data[0].d8[1],
225 .len = 3,
226 .cs_change = 1,
227 }, {
228 .rx_buf = &st->data[1].d8[1],
229 .len = 3,
233 mutex_lock(&indio_dev->mlock);
235 st->data[0].d32 = cpu_to_be32(AD5360_CMD(AD5360_CMD_SPECIAL_FUNCTION) |
236 AD5360_ADDR(AD5360_REG_SF_READBACK) |
237 AD5360_READBACK_TYPE(type) |
238 AD5360_READBACK_ADDR(addr));
240 ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
241 if (ret >= 0)
242 ret = be32_to_cpu(st->data[1].d32) & 0xffff;
244 mutex_unlock(&indio_dev->mlock);
246 return ret;
249 static ssize_t ad5360_read_dac_powerdown(struct device *dev,
250 struct device_attribute *attr,
251 char *buf)
253 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
254 struct ad5360_state *st = iio_priv(indio_dev);
256 return sprintf(buf, "%d\n", (bool)(st->ctrl & AD5360_SF_CTRL_PWR_DOWN));
259 static int ad5360_update_ctrl(struct iio_dev *indio_dev, unsigned int set,
260 unsigned int clr)
262 struct ad5360_state *st = iio_priv(indio_dev);
263 unsigned int ret;
265 mutex_lock(&indio_dev->mlock);
267 st->ctrl |= set;
268 st->ctrl &= ~clr;
270 ret = ad5360_write_unlocked(indio_dev, AD5360_CMD_SPECIAL_FUNCTION,
271 AD5360_REG_SF_CTRL, st->ctrl, 0);
273 mutex_unlock(&indio_dev->mlock);
275 return ret;
278 static ssize_t ad5360_write_dac_powerdown(struct device *dev,
279 struct device_attribute *attr, const char *buf, size_t len)
281 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
282 bool pwr_down;
283 int ret;
285 ret = strtobool(buf, &pwr_down);
286 if (ret)
287 return ret;
289 if (pwr_down)
290 ret = ad5360_update_ctrl(indio_dev, AD5360_SF_CTRL_PWR_DOWN, 0);
291 else
292 ret = ad5360_update_ctrl(indio_dev, 0, AD5360_SF_CTRL_PWR_DOWN);
294 return ret ? ret : len;
297 static IIO_DEVICE_ATTR(out_voltage_powerdown,
298 S_IRUGO | S_IWUSR,
299 ad5360_read_dac_powerdown,
300 ad5360_write_dac_powerdown, 0);
302 static struct attribute *ad5360_attributes[] = {
303 &iio_dev_attr_out_voltage_powerdown.dev_attr.attr,
304 NULL,
307 static const struct attribute_group ad5360_attribute_group = {
308 .attrs = ad5360_attributes,
311 static int ad5360_write_raw(struct iio_dev *indio_dev,
312 struct iio_chan_spec const *chan,
313 int val,
314 int val2,
315 long mask)
317 struct ad5360_state *st = iio_priv(indio_dev);
318 int max_val = (1 << chan->scan_type.realbits);
319 unsigned int ofs_index;
321 switch (mask) {
322 case IIO_CHAN_INFO_RAW:
323 if (val >= max_val || val < 0)
324 return -EINVAL;
326 return ad5360_write(indio_dev, AD5360_CMD_WRITE_DATA,
327 chan->address, val, chan->scan_type.shift);
329 case IIO_CHAN_INFO_CALIBBIAS:
330 if (val >= max_val || val < 0)
331 return -EINVAL;
333 return ad5360_write(indio_dev, AD5360_CMD_WRITE_OFFSET,
334 chan->address, val, chan->scan_type.shift);
336 case IIO_CHAN_INFO_CALIBSCALE:
337 if (val >= max_val || val < 0)
338 return -EINVAL;
340 return ad5360_write(indio_dev, AD5360_CMD_WRITE_GAIN,
341 chan->address, val, chan->scan_type.shift);
343 case IIO_CHAN_INFO_OFFSET:
344 if (val <= -max_val || val > 0)
345 return -EINVAL;
347 val = -val;
349 /* offset is supposed to have the same scale as raw, but it
350 * is always 14bits wide, so on a chip where the raw value has
351 * more bits, we need to shift offset. */
352 val >>= (chan->scan_type.realbits - 14);
354 /* There is one DAC offset register per vref. Changing one
355 * channels offset will also change the offset for all other
356 * channels which share the same vref supply. */
357 ofs_index = ad5360_get_channel_vref_index(st, chan->channel);
358 return ad5360_write(indio_dev, AD5360_CMD_SPECIAL_FUNCTION,
359 AD5360_REG_SF_OFS(ofs_index), val, 0);
360 default:
361 break;
364 return -EINVAL;
367 static int ad5360_read_raw(struct iio_dev *indio_dev,
368 struct iio_chan_spec const *chan,
369 int *val,
370 int *val2,
371 long m)
373 struct ad5360_state *st = iio_priv(indio_dev);
374 unsigned int ofs_index;
375 int scale_uv;
376 int ret;
378 switch (m) {
379 case IIO_CHAN_INFO_RAW:
380 ret = ad5360_read(indio_dev, AD5360_READBACK_X1A,
381 chan->address);
382 if (ret < 0)
383 return ret;
384 *val = ret >> chan->scan_type.shift;
385 return IIO_VAL_INT;
386 case IIO_CHAN_INFO_SCALE:
387 scale_uv = ad5360_get_channel_vref(st, chan->channel);
388 if (scale_uv < 0)
389 return scale_uv;
391 /* vout = 4 * vref * dac_code */
392 *val = scale_uv * 4 / 1000;
393 *val2 = chan->scan_type.realbits;
394 return IIO_VAL_FRACTIONAL_LOG2;
395 case IIO_CHAN_INFO_CALIBBIAS:
396 ret = ad5360_read(indio_dev, AD5360_READBACK_OFFSET,
397 chan->address);
398 if (ret < 0)
399 return ret;
400 *val = ret;
401 return IIO_VAL_INT;
402 case IIO_CHAN_INFO_CALIBSCALE:
403 ret = ad5360_read(indio_dev, AD5360_READBACK_GAIN,
404 chan->address);
405 if (ret < 0)
406 return ret;
407 *val = ret;
408 return IIO_VAL_INT;
409 case IIO_CHAN_INFO_OFFSET:
410 ofs_index = ad5360_get_channel_vref_index(st, chan->channel);
411 ret = ad5360_read(indio_dev, AD5360_READBACK_SF,
412 AD5360_REG_SF_OFS(ofs_index));
413 if (ret < 0)
414 return ret;
416 ret <<= (chan->scan_type.realbits - 14);
417 *val = -ret;
418 return IIO_VAL_INT;
421 return -EINVAL;
424 static const struct iio_info ad5360_info = {
425 .read_raw = ad5360_read_raw,
426 .write_raw = ad5360_write_raw,
427 .attrs = &ad5360_attribute_group,
428 .driver_module = THIS_MODULE,
431 static const char * const ad5360_vref_name[] = {
432 "vref0", "vref1", "vref2"
435 static int ad5360_alloc_channels(struct iio_dev *indio_dev)
437 struct ad5360_state *st = iio_priv(indio_dev);
438 struct iio_chan_spec *channels;
439 unsigned int i;
441 channels = kcalloc(st->chip_info->num_channels,
442 sizeof(struct iio_chan_spec), GFP_KERNEL);
444 if (!channels)
445 return -ENOMEM;
447 for (i = 0; i < st->chip_info->num_channels; ++i) {
448 channels[i] = st->chip_info->channel_template;
449 channels[i].channel = i;
450 channels[i].address = AD5360_CHAN_ADDR(i);
453 indio_dev->channels = channels;
455 return 0;
458 static int ad5360_probe(struct spi_device *spi)
460 enum ad5360_type type = spi_get_device_id(spi)->driver_data;
461 struct iio_dev *indio_dev;
462 struct ad5360_state *st;
463 unsigned int i;
464 int ret;
466 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
467 if (indio_dev == NULL) {
468 dev_err(&spi->dev, "Failed to allocate iio device\n");
469 return -ENOMEM;
472 st = iio_priv(indio_dev);
473 spi_set_drvdata(spi, indio_dev);
475 st->chip_info = &ad5360_chip_info_tbl[type];
476 st->spi = spi;
478 indio_dev->dev.parent = &spi->dev;
479 indio_dev->name = spi_get_device_id(spi)->name;
480 indio_dev->info = &ad5360_info;
481 indio_dev->modes = INDIO_DIRECT_MODE;
482 indio_dev->num_channels = st->chip_info->num_channels;
484 ret = ad5360_alloc_channels(indio_dev);
485 if (ret) {
486 dev_err(&spi->dev, "Failed to allocate channel spec: %d\n", ret);
487 return ret;
490 for (i = 0; i < st->chip_info->num_vrefs; ++i)
491 st->vref_reg[i].supply = ad5360_vref_name[i];
493 ret = devm_regulator_bulk_get(&st->spi->dev, st->chip_info->num_vrefs,
494 st->vref_reg);
495 if (ret) {
496 dev_err(&spi->dev, "Failed to request vref regulators: %d\n", ret);
497 goto error_free_channels;
500 ret = regulator_bulk_enable(st->chip_info->num_vrefs, st->vref_reg);
501 if (ret) {
502 dev_err(&spi->dev, "Failed to enable vref regulators: %d\n", ret);
503 goto error_free_channels;
506 ret = iio_device_register(indio_dev);
507 if (ret) {
508 dev_err(&spi->dev, "Failed to register iio device: %d\n", ret);
509 goto error_disable_reg;
512 return 0;
514 error_disable_reg:
515 regulator_bulk_disable(st->chip_info->num_vrefs, st->vref_reg);
516 error_free_channels:
517 kfree(indio_dev->channels);
519 return ret;
522 static int ad5360_remove(struct spi_device *spi)
524 struct iio_dev *indio_dev = spi_get_drvdata(spi);
525 struct ad5360_state *st = iio_priv(indio_dev);
527 iio_device_unregister(indio_dev);
529 kfree(indio_dev->channels);
531 regulator_bulk_disable(st->chip_info->num_vrefs, st->vref_reg);
533 return 0;
536 static const struct spi_device_id ad5360_ids[] = {
537 { "ad5360", ID_AD5360 },
538 { "ad5361", ID_AD5361 },
539 { "ad5362", ID_AD5362 },
540 { "ad5363", ID_AD5363 },
541 { "ad5370", ID_AD5370 },
542 { "ad5371", ID_AD5371 },
543 { "ad5372", ID_AD5372 },
544 { "ad5373", ID_AD5373 },
547 MODULE_DEVICE_TABLE(spi, ad5360_ids);
549 static struct spi_driver ad5360_driver = {
550 .driver = {
551 .name = "ad5360",
552 .owner = THIS_MODULE,
554 .probe = ad5360_probe,
555 .remove = ad5360_remove,
556 .id_table = ad5360_ids,
558 module_spi_driver(ad5360_driver);
560 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
561 MODULE_DESCRIPTION("Analog Devices AD5360/61/62/63/70/71/72/73 DAC");
562 MODULE_LICENSE("GPL v2");