Bluetooth: hci_uart: Use generic functionality from Broadcom module
[linux/fpc-iii.git] / drivers / iio / imu / kmx61.c
blobb3a36376c719317006cf8b9d30e1369f8b6af8fb
1 /*
2 * KMX61 - Kionix 6-axis Accelerometer/Magnetometer
4 * Copyright (c) 2014, Intel Corporation.
6 * This file is subject to the terms and conditions of version 2 of
7 * the GNU General Public License. See the file COPYING in the main
8 * directory of this archive for more details.
10 * IIO driver for KMX61 (7-bit I2C slave address 0x0E or 0x0F).
14 #include <linux/module.h>
15 #include <linux/i2c.h>
16 #include <linux/acpi.h>
17 #include <linux/gpio/consumer.h>
18 #include <linux/interrupt.h>
19 #include <linux/pm.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/iio/iio.h>
22 #include <linux/iio/sysfs.h>
23 #include <linux/iio/events.h>
24 #include <linux/iio/trigger.h>
25 #include <linux/iio/buffer.h>
26 #include <linux/iio/triggered_buffer.h>
27 #include <linux/iio/trigger_consumer.h>
29 #define KMX61_DRV_NAME "kmx61"
30 #define KMX61_GPIO_NAME "kmx61_int"
31 #define KMX61_IRQ_NAME "kmx61_event"
33 #define KMX61_REG_WHO_AM_I 0x00
34 #define KMX61_REG_INS1 0x01
35 #define KMX61_REG_INS2 0x02
38 * three 16-bit accelerometer output registers for X/Y/Z axis
39 * we use only XOUT_L as a base register, all other addresses
40 * can be obtained by applying an offset and are provided here
41 * only for clarity.
43 #define KMX61_ACC_XOUT_L 0x0A
44 #define KMX61_ACC_XOUT_H 0x0B
45 #define KMX61_ACC_YOUT_L 0x0C
46 #define KMX61_ACC_YOUT_H 0x0D
47 #define KMX61_ACC_ZOUT_L 0x0E
48 #define KMX61_ACC_ZOUT_H 0x0F
51 * one 16-bit temperature output register
53 #define KMX61_TEMP_L 0x10
54 #define KMX61_TEMP_H 0x11
57 * three 16-bit magnetometer output registers for X/Y/Z axis
59 #define KMX61_MAG_XOUT_L 0x12
60 #define KMX61_MAG_XOUT_H 0x13
61 #define KMX61_MAG_YOUT_L 0x14
62 #define KMX61_MAG_YOUT_H 0x15
63 #define KMX61_MAG_ZOUT_L 0x16
64 #define KMX61_MAG_ZOUT_H 0x17
66 #define KMX61_REG_INL 0x28
67 #define KMX61_REG_STBY 0x29
68 #define KMX61_REG_CTRL1 0x2A
69 #define KMX61_REG_CTRL2 0x2B
70 #define KMX61_REG_ODCNTL 0x2C
71 #define KMX61_REG_INC1 0x2D
73 #define KMX61_REG_WUF_THRESH 0x3D
74 #define KMX61_REG_WUF_TIMER 0x3E
76 #define KMX61_ACC_STBY_BIT BIT(0)
77 #define KMX61_MAG_STBY_BIT BIT(1)
78 #define KMX61_ACT_STBY_BIT BIT(7)
80 #define KMX61_ALL_STBY (KMX61_ACC_STBY_BIT | KMX61_MAG_STBY_BIT)
82 #define KMX61_REG_INS1_BIT_WUFS BIT(1)
84 #define KMX61_REG_INS2_BIT_ZP BIT(0)
85 #define KMX61_REG_INS2_BIT_ZN BIT(1)
86 #define KMX61_REG_INS2_BIT_YP BIT(2)
87 #define KMX61_REG_INS2_BIT_YN BIT(3)
88 #define KMX61_REG_INS2_BIT_XP BIT(4)
89 #define KMX61_REG_INS2_BIT_XN BIT(5)
91 #define KMX61_REG_CTRL1_GSEL_MASK 0x03
93 #define KMX61_REG_CTRL1_BIT_RES BIT(4)
94 #define KMX61_REG_CTRL1_BIT_DRDYE BIT(5)
95 #define KMX61_REG_CTRL1_BIT_WUFE BIT(6)
96 #define KMX61_REG_CTRL1_BIT_BTSE BIT(7)
98 #define KMX61_REG_INC1_BIT_WUFS BIT(0)
99 #define KMX61_REG_INC1_BIT_DRDYM BIT(1)
100 #define KMX61_REG_INC1_BIT_DRDYA BIT(2)
101 #define KMX61_REG_INC1_BIT_IEN BIT(5)
103 #define KMX61_ACC_ODR_SHIFT 0
104 #define KMX61_MAG_ODR_SHIFT 4
105 #define KMX61_ACC_ODR_MASK 0x0F
106 #define KMX61_MAG_ODR_MASK 0xF0
108 #define KMX61_OWUF_MASK 0x7
110 #define KMX61_DEFAULT_WAKE_THRESH 1
111 #define KMX61_DEFAULT_WAKE_DURATION 1
113 #define KMX61_SLEEP_DELAY_MS 2000
115 #define KMX61_CHIP_ID 0x12
117 /* KMX61 devices */
118 #define KMX61_ACC 0x01
119 #define KMX61_MAG 0x02
121 struct kmx61_data {
122 struct i2c_client *client;
124 /* serialize access to non-atomic ops, e.g set_mode */
125 struct mutex lock;
127 /* standby state */
128 bool acc_stby;
129 bool mag_stby;
131 /* power state */
132 bool acc_ps;
133 bool mag_ps;
135 /* config bits */
136 u8 range;
137 u8 odr_bits;
138 u8 wake_thresh;
139 u8 wake_duration;
141 /* accelerometer specific data */
142 struct iio_dev *acc_indio_dev;
143 struct iio_trigger *acc_dready_trig;
144 struct iio_trigger *motion_trig;
145 bool acc_dready_trig_on;
146 bool motion_trig_on;
147 bool ev_enable_state;
149 /* magnetometer specific data */
150 struct iio_dev *mag_indio_dev;
151 struct iio_trigger *mag_dready_trig;
152 bool mag_dready_trig_on;
155 enum kmx61_range {
156 KMX61_RANGE_2G,
157 KMX61_RANGE_4G,
158 KMX61_RANGE_8G,
161 enum kmx61_axis {
162 KMX61_AXIS_X,
163 KMX61_AXIS_Y,
164 KMX61_AXIS_Z,
167 static const u16 kmx61_uscale_table[] = {9582, 19163, 38326};
169 static const struct {
170 int val;
171 int val2;
172 u8 odr_bits;
173 } kmx61_samp_freq_table[] = { {12, 500000, 0x00},
174 {25, 0, 0x01},
175 {50, 0, 0x02},
176 {100, 0, 0x03},
177 {200, 0, 0x04},
178 {400, 0, 0x05},
179 {800, 0, 0x06},
180 {1600, 0, 0x07},
181 {0, 781000, 0x08},
182 {1, 563000, 0x09},
183 {3, 125000, 0x0A},
184 {6, 250000, 0x0B} };
186 static const struct {
187 int val;
188 int val2;
189 int odr_bits;
190 } kmx61_wake_up_odr_table[] = { {0, 781000, 0x00},
191 {1, 563000, 0x01},
192 {3, 125000, 0x02},
193 {6, 250000, 0x03},
194 {12, 500000, 0x04},
195 {25, 0, 0x05},
196 {50, 0, 0x06},
197 {100, 0, 0x06},
198 {200, 0, 0x06},
199 {400, 0, 0x06},
200 {800, 0, 0x06},
201 {1600, 0, 0x06} };
203 static IIO_CONST_ATTR(accel_scale_available, "0.009582 0.019163 0.038326");
204 static IIO_CONST_ATTR(magn_scale_available, "0.001465");
205 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
206 "0.781000 1.563000 3.125000 6.250000 12.500000 25 50 100 200 400 800");
208 static struct attribute *kmx61_acc_attributes[] = {
209 &iio_const_attr_accel_scale_available.dev_attr.attr,
210 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
211 NULL,
214 static struct attribute *kmx61_mag_attributes[] = {
215 &iio_const_attr_magn_scale_available.dev_attr.attr,
216 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
217 NULL,
220 static const struct attribute_group kmx61_acc_attribute_group = {
221 .attrs = kmx61_acc_attributes,
224 static const struct attribute_group kmx61_mag_attribute_group = {
225 .attrs = kmx61_mag_attributes,
228 static const struct iio_event_spec kmx61_event = {
229 .type = IIO_EV_TYPE_THRESH,
230 .dir = IIO_EV_DIR_EITHER,
231 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
232 BIT(IIO_EV_INFO_ENABLE) |
233 BIT(IIO_EV_INFO_PERIOD),
236 #define KMX61_ACC_CHAN(_axis) { \
237 .type = IIO_ACCEL, \
238 .modified = 1, \
239 .channel2 = IIO_MOD_ ## _axis, \
240 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
241 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
242 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
243 .address = KMX61_ACC, \
244 .scan_index = KMX61_AXIS_ ## _axis, \
245 .scan_type = { \
246 .sign = 's', \
247 .realbits = 12, \
248 .storagebits = 16, \
249 .shift = 4, \
250 .endianness = IIO_LE, \
251 }, \
252 .event_spec = &kmx61_event, \
253 .num_event_specs = 1 \
256 #define KMX61_MAG_CHAN(_axis) { \
257 .type = IIO_MAGN, \
258 .modified = 1, \
259 .channel2 = IIO_MOD_ ## _axis, \
260 .address = KMX61_MAG, \
261 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
262 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
263 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
264 .scan_index = KMX61_AXIS_ ## _axis, \
265 .scan_type = { \
266 .sign = 's', \
267 .realbits = 14, \
268 .storagebits = 16, \
269 .shift = 2, \
270 .endianness = IIO_LE, \
271 }, \
274 static const struct iio_chan_spec kmx61_acc_channels[] = {
275 KMX61_ACC_CHAN(X),
276 KMX61_ACC_CHAN(Y),
277 KMX61_ACC_CHAN(Z),
280 static const struct iio_chan_spec kmx61_mag_channels[] = {
281 KMX61_MAG_CHAN(X),
282 KMX61_MAG_CHAN(Y),
283 KMX61_MAG_CHAN(Z),
286 static void kmx61_set_data(struct iio_dev *indio_dev, struct kmx61_data *data)
288 struct kmx61_data **priv = iio_priv(indio_dev);
290 *priv = data;
293 static struct kmx61_data *kmx61_get_data(struct iio_dev *indio_dev)
295 return *(struct kmx61_data **)iio_priv(indio_dev);
298 static int kmx61_convert_freq_to_bit(int val, int val2)
300 int i;
302 for (i = 0; i < ARRAY_SIZE(kmx61_samp_freq_table); i++)
303 if (val == kmx61_samp_freq_table[i].val &&
304 val2 == kmx61_samp_freq_table[i].val2)
305 return kmx61_samp_freq_table[i].odr_bits;
306 return -EINVAL;
309 static int kmx61_convert_bit_to_freq(u8 odr_bits, int *val, int *val2)
311 int i;
313 for (i = 0; i < ARRAY_SIZE(kmx61_samp_freq_table); i++)
314 if (odr_bits == kmx61_samp_freq_table[i].odr_bits) {
315 *val = kmx61_samp_freq_table[i].val;
316 *val2 = kmx61_samp_freq_table[i].val2;
317 return 0;
319 return -EINVAL;
323 static int kmx61_convert_wake_up_odr_to_bit(int val, int val2)
325 int i;
327 for (i = 0; i < ARRAY_SIZE(kmx61_wake_up_odr_table); ++i)
328 if (kmx61_wake_up_odr_table[i].val == val &&
329 kmx61_wake_up_odr_table[i].val2 == val2)
330 return kmx61_wake_up_odr_table[i].odr_bits;
331 return -EINVAL;
335 * kmx61_set_mode() - set KMX61 device operating mode
336 * @data - kmx61 device private data pointer
337 * @mode - bitmask, indicating operating mode for @device
338 * @device - bitmask, indicating device for which @mode needs to be set
339 * @update - update stby bits stored in device's private @data
341 * For each sensor (accelerometer/magnetometer) there are two operating modes
342 * STANDBY and OPERATION. Neither accel nor magn can be disabled independently
343 * if they are both enabled. Internal sensors state is saved in acc_stby and
344 * mag_stby members of driver's private @data.
346 static int kmx61_set_mode(struct kmx61_data *data, u8 mode, u8 device,
347 bool update)
349 int ret;
350 int acc_stby = -1, mag_stby = -1;
352 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_STBY);
353 if (ret < 0) {
354 dev_err(&data->client->dev, "Error reading reg_stby\n");
355 return ret;
357 if (device & KMX61_ACC) {
358 if (mode & KMX61_ACC_STBY_BIT) {
359 ret |= KMX61_ACC_STBY_BIT;
360 acc_stby = 1;
361 } else {
362 ret &= ~KMX61_ACC_STBY_BIT;
363 acc_stby = 0;
367 if (device & KMX61_MAG) {
368 if (mode & KMX61_MAG_STBY_BIT) {
369 ret |= KMX61_MAG_STBY_BIT;
370 mag_stby = 1;
371 } else {
372 ret &= ~KMX61_MAG_STBY_BIT;
373 mag_stby = 0;
377 if (mode & KMX61_ACT_STBY_BIT)
378 ret |= KMX61_ACT_STBY_BIT;
380 ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_STBY, ret);
381 if (ret < 0) {
382 dev_err(&data->client->dev, "Error writing reg_stby\n");
383 return ret;
386 if (acc_stby != -1 && update)
387 data->acc_stby = acc_stby;
388 if (mag_stby != -1 && update)
389 data->mag_stby = mag_stby;
391 return 0;
394 static int kmx61_get_mode(struct kmx61_data *data, u8 *mode, u8 device)
396 int ret;
398 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_STBY);
399 if (ret < 0) {
400 dev_err(&data->client->dev, "Error reading reg_stby\n");
401 return ret;
403 *mode = 0;
405 if (device & KMX61_ACC) {
406 if (ret & KMX61_ACC_STBY_BIT)
407 *mode |= KMX61_ACC_STBY_BIT;
408 else
409 *mode &= ~KMX61_ACC_STBY_BIT;
412 if (device & KMX61_MAG) {
413 if (ret & KMX61_MAG_STBY_BIT)
414 *mode |= KMX61_MAG_STBY_BIT;
415 else
416 *mode &= ~KMX61_MAG_STBY_BIT;
419 return 0;
422 static int kmx61_set_wake_up_odr(struct kmx61_data *data, int val, int val2)
424 int ret, odr_bits;
426 odr_bits = kmx61_convert_wake_up_odr_to_bit(val, val2);
427 if (odr_bits < 0)
428 return odr_bits;
430 ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL2,
431 odr_bits);
432 if (ret < 0)
433 dev_err(&data->client->dev, "Error writing reg_ctrl2\n");
434 return ret;
437 static int kmx61_set_odr(struct kmx61_data *data, int val, int val2, u8 device)
439 int ret;
440 u8 mode;
441 int lodr_bits, odr_bits;
443 ret = kmx61_get_mode(data, &mode, KMX61_ACC | KMX61_MAG);
444 if (ret < 0)
445 return ret;
447 lodr_bits = kmx61_convert_freq_to_bit(val, val2);
448 if (lodr_bits < 0)
449 return lodr_bits;
451 /* To change ODR, accel and magn must be in STDBY */
452 ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG,
453 true);
454 if (ret < 0)
455 return ret;
457 odr_bits = 0;
458 if (device & KMX61_ACC)
459 odr_bits |= lodr_bits << KMX61_ACC_ODR_SHIFT;
460 if (device & KMX61_MAG)
461 odr_bits |= lodr_bits << KMX61_MAG_ODR_SHIFT;
463 ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_ODCNTL,
464 odr_bits);
465 if (ret < 0)
466 return ret;
468 data->odr_bits = odr_bits;
470 if (device & KMX61_ACC) {
471 ret = kmx61_set_wake_up_odr(data, val, val2);
472 if (ret)
473 return ret;
476 return kmx61_set_mode(data, mode, KMX61_ACC | KMX61_MAG, true);
479 static int kmx61_get_odr(struct kmx61_data *data, int *val, int *val2,
480 u8 device)
481 { int i;
482 u8 lodr_bits;
484 if (device & KMX61_ACC)
485 lodr_bits = (data->odr_bits >> KMX61_ACC_ODR_SHIFT) &
486 KMX61_ACC_ODR_MASK;
487 else if (device & KMX61_MAG)
488 lodr_bits = (data->odr_bits >> KMX61_MAG_ODR_SHIFT) &
489 KMX61_MAG_ODR_MASK;
490 else
491 return -EINVAL;
493 for (i = 0; i < ARRAY_SIZE(kmx61_samp_freq_table); i++)
494 if (lodr_bits == kmx61_samp_freq_table[i].odr_bits) {
495 *val = kmx61_samp_freq_table[i].val;
496 *val2 = kmx61_samp_freq_table[i].val2;
497 return 0;
499 return -EINVAL;
502 static int kmx61_set_range(struct kmx61_data *data, u8 range)
504 int ret;
506 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1);
507 if (ret < 0) {
508 dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
509 return ret;
512 ret &= ~KMX61_REG_CTRL1_GSEL_MASK;
513 ret |= range & KMX61_REG_CTRL1_GSEL_MASK;
515 ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret);
516 if (ret < 0) {
517 dev_err(&data->client->dev, "Error writing reg_ctrl1\n");
518 return ret;
521 data->range = range;
523 return 0;
526 static int kmx61_set_scale(struct kmx61_data *data, u16 uscale)
528 int ret, i;
529 u8 mode;
531 for (i = 0; i < ARRAY_SIZE(kmx61_uscale_table); i++) {
532 if (kmx61_uscale_table[i] == uscale) {
533 ret = kmx61_get_mode(data, &mode,
534 KMX61_ACC | KMX61_MAG);
535 if (ret < 0)
536 return ret;
538 ret = kmx61_set_mode(data, KMX61_ALL_STBY,
539 KMX61_ACC | KMX61_MAG, true);
540 if (ret < 0)
541 return ret;
543 ret = kmx61_set_range(data, i);
544 if (ret < 0)
545 return ret;
547 return kmx61_set_mode(data, mode,
548 KMX61_ACC | KMX61_MAG, true);
551 return -EINVAL;
554 static int kmx61_chip_init(struct kmx61_data *data)
556 int ret, val, val2;
558 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_WHO_AM_I);
559 if (ret < 0) {
560 dev_err(&data->client->dev, "Error reading who_am_i\n");
561 return ret;
564 if (ret != KMX61_CHIP_ID) {
565 dev_err(&data->client->dev,
566 "Wrong chip id, got %x expected %x\n",
567 ret, KMX61_CHIP_ID);
568 return -EINVAL;
571 /* set accel 12bit, 4g range */
572 ret = kmx61_set_range(data, KMX61_RANGE_4G);
573 if (ret < 0)
574 return ret;
576 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_ODCNTL);
577 if (ret < 0) {
578 dev_err(&data->client->dev, "Error reading reg_odcntl\n");
579 return ret;
581 data->odr_bits = ret;
583 /* set output data rate for wake up (motion detection) function */
584 ret = kmx61_convert_bit_to_freq(data->odr_bits, &val, &val2);
585 if (ret < 0)
586 return ret;
588 ret = kmx61_set_wake_up_odr(data, val, val2);
589 if (ret < 0)
590 return ret;
592 /* set acc/magn to OPERATION mode */
593 ret = kmx61_set_mode(data, 0, KMX61_ACC | KMX61_MAG, true);
594 if (ret < 0)
595 return ret;
597 data->wake_thresh = KMX61_DEFAULT_WAKE_THRESH;
598 data->wake_duration = KMX61_DEFAULT_WAKE_DURATION;
600 return 0;
603 static int kmx61_setup_new_data_interrupt(struct kmx61_data *data,
604 bool status, u8 device)
606 u8 mode;
607 int ret;
609 ret = kmx61_get_mode(data, &mode, KMX61_ACC | KMX61_MAG);
610 if (ret < 0)
611 return ret;
613 ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
614 if (ret < 0)
615 return ret;
617 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INC1);
618 if (ret < 0) {
619 dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
620 return ret;
623 if (status) {
624 ret |= KMX61_REG_INC1_BIT_IEN;
625 if (device & KMX61_ACC)
626 ret |= KMX61_REG_INC1_BIT_DRDYA;
627 if (device & KMX61_MAG)
628 ret |= KMX61_REG_INC1_BIT_DRDYM;
629 } else {
630 ret &= ~KMX61_REG_INC1_BIT_IEN;
631 if (device & KMX61_ACC)
632 ret &= ~KMX61_REG_INC1_BIT_DRDYA;
633 if (device & KMX61_MAG)
634 ret &= ~KMX61_REG_INC1_BIT_DRDYM;
636 ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_INC1, ret);
637 if (ret < 0) {
638 dev_err(&data->client->dev, "Error writing reg_int_ctrl1\n");
639 return ret;
642 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1);
643 if (ret < 0) {
644 dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
645 return ret;
648 if (status)
649 ret |= KMX61_REG_CTRL1_BIT_DRDYE;
650 else
651 ret &= ~KMX61_REG_CTRL1_BIT_DRDYE;
653 ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret);
654 if (ret < 0) {
655 dev_err(&data->client->dev, "Error writing reg_ctrl1\n");
656 return ret;
659 return kmx61_set_mode(data, mode, KMX61_ACC | KMX61_MAG, true);
662 static int kmx61_chip_update_thresholds(struct kmx61_data *data)
664 int ret;
666 ret = i2c_smbus_write_byte_data(data->client,
667 KMX61_REG_WUF_TIMER,
668 data->wake_duration);
669 if (ret < 0) {
670 dev_err(&data->client->dev, "Errow writing reg_wuf_timer\n");
671 return ret;
674 ret = i2c_smbus_write_byte_data(data->client,
675 KMX61_REG_WUF_THRESH,
676 data->wake_thresh);
677 if (ret < 0)
678 dev_err(&data->client->dev, "Error writing reg_wuf_thresh\n");
680 return ret;
683 static int kmx61_setup_any_motion_interrupt(struct kmx61_data *data,
684 bool status)
686 u8 mode;
687 int ret;
689 ret = kmx61_get_mode(data, &mode, KMX61_ACC | KMX61_MAG);
690 if (ret < 0)
691 return ret;
693 ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
694 if (ret < 0)
695 return ret;
697 ret = kmx61_chip_update_thresholds(data);
698 if (ret < 0)
699 return ret;
701 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INC1);
702 if (ret < 0) {
703 dev_err(&data->client->dev, "Error reading reg_inc1\n");
704 return ret;
706 if (status)
707 ret |= (KMX61_REG_INC1_BIT_IEN | KMX61_REG_INC1_BIT_WUFS);
708 else
709 ret &= ~(KMX61_REG_INC1_BIT_IEN | KMX61_REG_INC1_BIT_WUFS);
711 ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_INC1, ret);
712 if (ret < 0) {
713 dev_err(&data->client->dev, "Error writing reg_inc1\n");
714 return ret;
717 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1);
718 if (ret < 0) {
719 dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
720 return ret;
723 if (status)
724 ret |= KMX61_REG_CTRL1_BIT_WUFE | KMX61_REG_CTRL1_BIT_BTSE;
725 else
726 ret &= ~(KMX61_REG_CTRL1_BIT_WUFE | KMX61_REG_CTRL1_BIT_BTSE);
728 ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret);
729 if (ret < 0) {
730 dev_err(&data->client->dev, "Error writing reg_ctrl1\n");
731 return ret;
733 mode |= KMX61_ACT_STBY_BIT;
734 return kmx61_set_mode(data, mode, KMX61_ACC | KMX61_MAG, true);
738 * kmx61_set_power_state() - set power state for kmx61 @device
739 * @data - kmx61 device private pointer
740 * @on - power state to be set for @device
741 * @device - bitmask indicating device for which @on state needs to be set
743 * Notice that when ACC power state needs to be set to ON and MAG is in
744 * OPERATION then we know that kmx61_runtime_resume was already called
745 * so we must set ACC OPERATION mode here. The same happens when MAG power
746 * state needs to be set to ON and ACC is in OPERATION.
748 static int kmx61_set_power_state(struct kmx61_data *data, bool on, u8 device)
750 #ifdef CONFIG_PM
751 int ret;
753 if (device & KMX61_ACC) {
754 if (on && !data->acc_ps && !data->mag_stby) {
755 ret = kmx61_set_mode(data, 0, KMX61_ACC, true);
756 if (ret < 0)
757 return ret;
759 data->acc_ps = on;
761 if (device & KMX61_MAG) {
762 if (on && !data->mag_ps && !data->acc_stby) {
763 ret = kmx61_set_mode(data, 0, KMX61_MAG, true);
764 if (ret < 0)
765 return ret;
767 data->mag_ps = on;
770 if (on) {
771 ret = pm_runtime_get_sync(&data->client->dev);
772 } else {
773 pm_runtime_mark_last_busy(&data->client->dev);
774 ret = pm_runtime_put_autosuspend(&data->client->dev);
776 if (ret < 0) {
777 dev_err(&data->client->dev,
778 "Failed: kmx61_set_power_state for %d, ret %d\n",
779 on, ret);
780 if (on)
781 pm_runtime_put_noidle(&data->client->dev);
783 return ret;
785 #endif
786 return 0;
789 static int kmx61_read_measurement(struct kmx61_data *data, u8 base, u8 offset)
791 int ret;
792 u8 reg = base + offset * 2;
794 ret = i2c_smbus_read_word_data(data->client, reg);
795 if (ret < 0)
796 dev_err(&data->client->dev, "failed to read reg at %x\n", reg);
798 return ret;
801 static int kmx61_read_raw(struct iio_dev *indio_dev,
802 struct iio_chan_spec const *chan, int *val,
803 int *val2, long mask)
805 int ret;
806 u8 base_reg;
807 struct kmx61_data *data = kmx61_get_data(indio_dev);
809 switch (mask) {
810 case IIO_CHAN_INFO_RAW:
811 switch (chan->type) {
812 case IIO_ACCEL:
813 base_reg = KMX61_ACC_XOUT_L;
814 break;
815 case IIO_MAGN:
816 base_reg = KMX61_MAG_XOUT_L;
817 break;
818 default:
819 return -EINVAL;
821 mutex_lock(&data->lock);
823 ret = kmx61_set_power_state(data, true, chan->address);
824 if (ret) {
825 mutex_unlock(&data->lock);
826 return ret;
829 ret = kmx61_read_measurement(data, base_reg, chan->scan_index);
830 if (ret < 0) {
831 kmx61_set_power_state(data, false, chan->address);
832 mutex_unlock(&data->lock);
833 return ret;
835 *val = sign_extend32(ret >> chan->scan_type.shift,
836 chan->scan_type.realbits - 1);
837 ret = kmx61_set_power_state(data, false, chan->address);
839 mutex_unlock(&data->lock);
840 if (ret)
841 return ret;
842 return IIO_VAL_INT;
843 case IIO_CHAN_INFO_SCALE:
844 switch (chan->type) {
845 case IIO_ACCEL:
846 *val = 0;
847 *val2 = kmx61_uscale_table[data->range];
848 return IIO_VAL_INT_PLUS_MICRO;
849 case IIO_MAGN:
850 /* 14 bits res, 1465 microGauss per magn count */
851 *val = 0;
852 *val2 = 1465;
853 return IIO_VAL_INT_PLUS_MICRO;
854 default:
855 return -EINVAL;
857 case IIO_CHAN_INFO_SAMP_FREQ:
858 if (chan->type != IIO_ACCEL && chan->type != IIO_MAGN)
859 return -EINVAL;
861 mutex_lock(&data->lock);
862 ret = kmx61_get_odr(data, val, val2, chan->address);
863 mutex_unlock(&data->lock);
864 if (ret)
865 return -EINVAL;
866 return IIO_VAL_INT_PLUS_MICRO;
868 return -EINVAL;
871 static int kmx61_write_raw(struct iio_dev *indio_dev,
872 struct iio_chan_spec const *chan, int val,
873 int val2, long mask)
875 int ret;
876 struct kmx61_data *data = kmx61_get_data(indio_dev);
878 switch (mask) {
879 case IIO_CHAN_INFO_SAMP_FREQ:
880 if (chan->type != IIO_ACCEL && chan->type != IIO_MAGN)
881 return -EINVAL;
883 mutex_lock(&data->lock);
884 ret = kmx61_set_odr(data, val, val2, chan->address);
885 mutex_unlock(&data->lock);
886 return ret;
887 case IIO_CHAN_INFO_SCALE:
888 switch (chan->type) {
889 case IIO_ACCEL:
890 if (val != 0)
891 return -EINVAL;
892 mutex_lock(&data->lock);
893 ret = kmx61_set_scale(data, val2);
894 mutex_unlock(&data->lock);
895 return ret;
896 default:
897 return -EINVAL;
899 default:
900 return -EINVAL;
904 static int kmx61_read_event(struct iio_dev *indio_dev,
905 const struct iio_chan_spec *chan,
906 enum iio_event_type type,
907 enum iio_event_direction dir,
908 enum iio_event_info info,
909 int *val, int *val2)
911 struct kmx61_data *data = kmx61_get_data(indio_dev);
913 *val2 = 0;
914 switch (info) {
915 case IIO_EV_INFO_VALUE:
916 *val = data->wake_thresh;
917 return IIO_VAL_INT;
918 case IIO_EV_INFO_PERIOD:
919 *val = data->wake_duration;
920 return IIO_VAL_INT;
921 default:
922 return -EINVAL;
926 static int kmx61_write_event(struct iio_dev *indio_dev,
927 const struct iio_chan_spec *chan,
928 enum iio_event_type type,
929 enum iio_event_direction dir,
930 enum iio_event_info info,
931 int val, int val2)
933 struct kmx61_data *data = kmx61_get_data(indio_dev);
935 if (data->ev_enable_state)
936 return -EBUSY;
938 switch (info) {
939 case IIO_EV_INFO_VALUE:
940 data->wake_thresh = val;
941 return IIO_VAL_INT;
942 case IIO_EV_INFO_PERIOD:
943 data->wake_duration = val;
944 return IIO_VAL_INT;
945 default:
946 return -EINVAL;
950 static int kmx61_read_event_config(struct iio_dev *indio_dev,
951 const struct iio_chan_spec *chan,
952 enum iio_event_type type,
953 enum iio_event_direction dir)
955 struct kmx61_data *data = kmx61_get_data(indio_dev);
957 return data->ev_enable_state;
960 static int kmx61_write_event_config(struct iio_dev *indio_dev,
961 const struct iio_chan_spec *chan,
962 enum iio_event_type type,
963 enum iio_event_direction dir,
964 int state)
966 struct kmx61_data *data = kmx61_get_data(indio_dev);
967 int ret = 0;
969 if (state && data->ev_enable_state)
970 return 0;
972 mutex_lock(&data->lock);
974 if (!state && data->motion_trig_on) {
975 data->ev_enable_state = false;
976 goto err_unlock;
979 ret = kmx61_set_power_state(data, state, KMX61_ACC);
980 if (ret < 0)
981 goto err_unlock;
983 ret = kmx61_setup_any_motion_interrupt(data, state);
984 if (ret < 0) {
985 kmx61_set_power_state(data, false, KMX61_ACC);
986 goto err_unlock;
989 data->ev_enable_state = state;
991 err_unlock:
992 mutex_unlock(&data->lock);
994 return ret;
997 static int kmx61_acc_validate_trigger(struct iio_dev *indio_dev,
998 struct iio_trigger *trig)
1000 struct kmx61_data *data = kmx61_get_data(indio_dev);
1002 if (data->acc_dready_trig != trig && data->motion_trig != trig)
1003 return -EINVAL;
1005 return 0;
1008 static int kmx61_mag_validate_trigger(struct iio_dev *indio_dev,
1009 struct iio_trigger *trig)
1011 struct kmx61_data *data = kmx61_get_data(indio_dev);
1013 if (data->mag_dready_trig != trig)
1014 return -EINVAL;
1016 return 0;
1019 static const struct iio_info kmx61_acc_info = {
1020 .driver_module = THIS_MODULE,
1021 .read_raw = kmx61_read_raw,
1022 .write_raw = kmx61_write_raw,
1023 .attrs = &kmx61_acc_attribute_group,
1024 .read_event_value = kmx61_read_event,
1025 .write_event_value = kmx61_write_event,
1026 .read_event_config = kmx61_read_event_config,
1027 .write_event_config = kmx61_write_event_config,
1028 .validate_trigger = kmx61_acc_validate_trigger,
1031 static const struct iio_info kmx61_mag_info = {
1032 .driver_module = THIS_MODULE,
1033 .read_raw = kmx61_read_raw,
1034 .write_raw = kmx61_write_raw,
1035 .attrs = &kmx61_mag_attribute_group,
1036 .validate_trigger = kmx61_mag_validate_trigger,
1040 static int kmx61_data_rdy_trigger_set_state(struct iio_trigger *trig,
1041 bool state)
1043 int ret = 0;
1044 u8 device;
1046 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
1047 struct kmx61_data *data = kmx61_get_data(indio_dev);
1049 mutex_lock(&data->lock);
1051 if (!state && data->ev_enable_state && data->motion_trig_on) {
1052 data->motion_trig_on = false;
1053 goto err_unlock;
1056 if (data->acc_dready_trig == trig || data->motion_trig == trig)
1057 device = KMX61_ACC;
1058 else
1059 device = KMX61_MAG;
1061 ret = kmx61_set_power_state(data, state, device);
1062 if (ret < 0)
1063 goto err_unlock;
1065 if (data->acc_dready_trig == trig || data->mag_dready_trig == trig)
1066 ret = kmx61_setup_new_data_interrupt(data, state, device);
1067 else
1068 ret = kmx61_setup_any_motion_interrupt(data, state);
1069 if (ret < 0) {
1070 kmx61_set_power_state(data, false, device);
1071 goto err_unlock;
1074 if (data->acc_dready_trig == trig)
1075 data->acc_dready_trig_on = state;
1076 else if (data->mag_dready_trig == trig)
1077 data->mag_dready_trig_on = state;
1078 else
1079 data->motion_trig_on = state;
1080 err_unlock:
1081 mutex_unlock(&data->lock);
1083 return ret;
1086 static int kmx61_trig_try_reenable(struct iio_trigger *trig)
1088 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
1089 struct kmx61_data *data = kmx61_get_data(indio_dev);
1090 int ret;
1092 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INL);
1093 if (ret < 0) {
1094 dev_err(&data->client->dev, "Error reading reg_inl\n");
1095 return ret;
1098 return 0;
1101 static const struct iio_trigger_ops kmx61_trigger_ops = {
1102 .set_trigger_state = kmx61_data_rdy_trigger_set_state,
1103 .try_reenable = kmx61_trig_try_reenable,
1104 .owner = THIS_MODULE,
1107 static irqreturn_t kmx61_event_handler(int irq, void *private)
1109 struct kmx61_data *data = private;
1110 struct iio_dev *indio_dev = data->acc_indio_dev;
1111 int ret;
1113 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INS1);
1114 if (ret < 0) {
1115 dev_err(&data->client->dev, "Error reading reg_ins1\n");
1116 goto ack_intr;
1119 if (ret & KMX61_REG_INS1_BIT_WUFS) {
1120 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INS2);
1121 if (ret < 0) {
1122 dev_err(&data->client->dev, "Error reading reg_ins2\n");
1123 goto ack_intr;
1126 if (ret & KMX61_REG_INS2_BIT_XN)
1127 iio_push_event(indio_dev,
1128 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1130 IIO_MOD_X,
1131 IIO_EV_TYPE_THRESH,
1132 IIO_EV_DIR_FALLING),
1135 if (ret & KMX61_REG_INS2_BIT_XP)
1136 iio_push_event(indio_dev,
1137 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1139 IIO_MOD_X,
1140 IIO_EV_TYPE_THRESH,
1141 IIO_EV_DIR_RISING),
1144 if (ret & KMX61_REG_INS2_BIT_YN)
1145 iio_push_event(indio_dev,
1146 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1148 IIO_MOD_Y,
1149 IIO_EV_TYPE_THRESH,
1150 IIO_EV_DIR_FALLING),
1153 if (ret & KMX61_REG_INS2_BIT_YP)
1154 iio_push_event(indio_dev,
1155 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1157 IIO_MOD_Y,
1158 IIO_EV_TYPE_THRESH,
1159 IIO_EV_DIR_RISING),
1162 if (ret & KMX61_REG_INS2_BIT_ZN)
1163 iio_push_event(indio_dev,
1164 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1166 IIO_MOD_Z,
1167 IIO_EV_TYPE_THRESH,
1168 IIO_EV_DIR_FALLING),
1171 if (ret & KMX61_REG_INS2_BIT_ZP)
1172 iio_push_event(indio_dev,
1173 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1175 IIO_MOD_Z,
1176 IIO_EV_TYPE_THRESH,
1177 IIO_EV_DIR_RISING),
1181 ack_intr:
1182 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1);
1183 if (ret < 0)
1184 dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
1186 ret |= KMX61_REG_CTRL1_BIT_RES;
1187 ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret);
1188 if (ret < 0)
1189 dev_err(&data->client->dev, "Error writing reg_ctrl1\n");
1191 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INL);
1192 if (ret < 0)
1193 dev_err(&data->client->dev, "Error reading reg_inl\n");
1195 return IRQ_HANDLED;
1198 static irqreturn_t kmx61_data_rdy_trig_poll(int irq, void *private)
1200 struct kmx61_data *data = private;
1202 if (data->acc_dready_trig_on)
1203 iio_trigger_poll(data->acc_dready_trig);
1204 if (data->mag_dready_trig_on)
1205 iio_trigger_poll(data->mag_dready_trig);
1207 if (data->motion_trig_on)
1208 iio_trigger_poll(data->motion_trig);
1210 if (data->ev_enable_state)
1211 return IRQ_WAKE_THREAD;
1212 return IRQ_HANDLED;
1215 static irqreturn_t kmx61_trigger_handler(int irq, void *p)
1217 struct iio_poll_func *pf = p;
1218 struct iio_dev *indio_dev = pf->indio_dev;
1219 struct kmx61_data *data = kmx61_get_data(indio_dev);
1220 int bit, ret, i = 0;
1221 u8 base;
1222 s16 buffer[8];
1224 if (indio_dev == data->acc_indio_dev)
1225 base = KMX61_ACC_XOUT_L;
1226 else
1227 base = KMX61_MAG_XOUT_L;
1229 mutex_lock(&data->lock);
1230 for_each_set_bit(bit, indio_dev->active_scan_mask,
1231 indio_dev->masklength) {
1232 ret = kmx61_read_measurement(data, base, bit);
1233 if (ret < 0) {
1234 mutex_unlock(&data->lock);
1235 goto err;
1237 buffer[i++] = ret;
1239 mutex_unlock(&data->lock);
1241 iio_push_to_buffers(indio_dev, buffer);
1242 err:
1243 iio_trigger_notify_done(indio_dev->trig);
1245 return IRQ_HANDLED;
1248 static const char *kmx61_match_acpi_device(struct device *dev)
1250 const struct acpi_device_id *id;
1252 id = acpi_match_device(dev->driver->acpi_match_table, dev);
1253 if (!id)
1254 return NULL;
1255 return dev_name(dev);
1258 static int kmx61_gpio_probe(struct i2c_client *client, struct kmx61_data *data)
1260 struct device *dev;
1261 struct gpio_desc *gpio;
1262 int ret;
1264 if (!client)
1265 return -EINVAL;
1267 dev = &client->dev;
1269 /* data ready gpio interrupt pin */
1270 gpio = devm_gpiod_get_index(dev, KMX61_GPIO_NAME, 0);
1271 if (IS_ERR(gpio)) {
1272 dev_err(dev, "acpi gpio get index failed\n");
1273 return PTR_ERR(gpio);
1276 ret = gpiod_direction_input(gpio);
1277 if (ret)
1278 return ret;
1280 ret = gpiod_to_irq(gpio);
1282 dev_dbg(dev, "GPIO resource, no:%d irq:%d\n", desc_to_gpio(gpio), ret);
1283 return ret;
1286 static struct iio_dev *kmx61_indiodev_setup(struct kmx61_data *data,
1287 const struct iio_info *info,
1288 const struct iio_chan_spec *chan,
1289 int num_channels,
1290 const char *name)
1292 struct iio_dev *indio_dev;
1294 indio_dev = devm_iio_device_alloc(&data->client->dev, sizeof(data));
1295 if (!indio_dev)
1296 return ERR_PTR(-ENOMEM);
1298 kmx61_set_data(indio_dev, data);
1300 indio_dev->dev.parent = &data->client->dev;
1301 indio_dev->channels = chan;
1302 indio_dev->num_channels = num_channels;
1303 indio_dev->name = name;
1304 indio_dev->modes = INDIO_DIRECT_MODE;
1305 indio_dev->info = info;
1307 return indio_dev;
1310 static struct iio_trigger *kmx61_trigger_setup(struct kmx61_data *data,
1311 struct iio_dev *indio_dev,
1312 const char *tag)
1314 struct iio_trigger *trig;
1315 int ret;
1317 trig = devm_iio_trigger_alloc(&data->client->dev,
1318 "%s-%s-dev%d",
1319 indio_dev->name,
1320 tag,
1321 indio_dev->id);
1322 if (!trig)
1323 return ERR_PTR(-ENOMEM);
1325 trig->dev.parent = &data->client->dev;
1326 trig->ops = &kmx61_trigger_ops;
1327 iio_trigger_set_drvdata(trig, indio_dev);
1329 ret = iio_trigger_register(trig);
1330 if (ret)
1331 return ERR_PTR(ret);
1333 return trig;
1336 static int kmx61_probe(struct i2c_client *client,
1337 const struct i2c_device_id *id)
1339 int ret;
1340 struct kmx61_data *data;
1341 const char *name = NULL;
1343 data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
1344 if (!data)
1345 return -ENOMEM;
1347 i2c_set_clientdata(client, data);
1348 data->client = client;
1350 mutex_init(&data->lock);
1352 if (id)
1353 name = id->name;
1354 else if (ACPI_HANDLE(&client->dev))
1355 name = kmx61_match_acpi_device(&client->dev);
1356 else
1357 return -ENODEV;
1359 data->acc_indio_dev =
1360 kmx61_indiodev_setup(data, &kmx61_acc_info,
1361 kmx61_acc_channels,
1362 ARRAY_SIZE(kmx61_acc_channels),
1363 name);
1364 if (IS_ERR(data->acc_indio_dev))
1365 return PTR_ERR(data->acc_indio_dev);
1367 data->mag_indio_dev =
1368 kmx61_indiodev_setup(data, &kmx61_mag_info,
1369 kmx61_mag_channels,
1370 ARRAY_SIZE(kmx61_mag_channels),
1371 name);
1372 if (IS_ERR(data->mag_indio_dev))
1373 return PTR_ERR(data->mag_indio_dev);
1375 ret = kmx61_chip_init(data);
1376 if (ret < 0)
1377 return ret;
1379 if (client->irq < 0)
1380 client->irq = kmx61_gpio_probe(client, data);
1382 if (client->irq >= 0) {
1383 ret = devm_request_threaded_irq(&client->dev, client->irq,
1384 kmx61_data_rdy_trig_poll,
1385 kmx61_event_handler,
1386 IRQF_TRIGGER_RISING,
1387 KMX61_IRQ_NAME,
1388 data);
1389 if (ret)
1390 goto err_chip_uninit;
1392 data->acc_dready_trig =
1393 kmx61_trigger_setup(data, data->acc_indio_dev,
1394 "dready");
1395 if (IS_ERR(data->acc_dready_trig)) {
1396 ret = PTR_ERR(data->acc_dready_trig);
1397 goto err_chip_uninit;
1400 data->mag_dready_trig =
1401 kmx61_trigger_setup(data, data->mag_indio_dev,
1402 "dready");
1403 if (IS_ERR(data->mag_dready_trig)) {
1404 ret = PTR_ERR(data->mag_dready_trig);
1405 goto err_trigger_unregister_acc_dready;
1408 data->motion_trig =
1409 kmx61_trigger_setup(data, data->acc_indio_dev,
1410 "any-motion");
1411 if (IS_ERR(data->motion_trig)) {
1412 ret = PTR_ERR(data->motion_trig);
1413 goto err_trigger_unregister_mag_dready;
1416 ret = iio_triggered_buffer_setup(data->acc_indio_dev,
1417 &iio_pollfunc_store_time,
1418 kmx61_trigger_handler,
1419 NULL);
1420 if (ret < 0) {
1421 dev_err(&data->client->dev,
1422 "Failed to setup acc triggered buffer\n");
1423 goto err_trigger_unregister_motion;
1426 ret = iio_triggered_buffer_setup(data->mag_indio_dev,
1427 &iio_pollfunc_store_time,
1428 kmx61_trigger_handler,
1429 NULL);
1430 if (ret < 0) {
1431 dev_err(&data->client->dev,
1432 "Failed to setup mag triggered buffer\n");
1433 goto err_buffer_cleanup_acc;
1437 ret = iio_device_register(data->acc_indio_dev);
1438 if (ret < 0) {
1439 dev_err(&client->dev, "Failed to register acc iio device\n");
1440 goto err_buffer_cleanup_mag;
1443 ret = iio_device_register(data->mag_indio_dev);
1444 if (ret < 0) {
1445 dev_err(&client->dev, "Failed to register mag iio device\n");
1446 goto err_iio_unregister_acc;
1449 ret = pm_runtime_set_active(&client->dev);
1450 if (ret < 0)
1451 goto err_iio_unregister_mag;
1453 pm_runtime_enable(&client->dev);
1454 pm_runtime_set_autosuspend_delay(&client->dev, KMX61_SLEEP_DELAY_MS);
1455 pm_runtime_use_autosuspend(&client->dev);
1457 return 0;
1459 err_iio_unregister_mag:
1460 iio_device_unregister(data->mag_indio_dev);
1461 err_iio_unregister_acc:
1462 iio_device_unregister(data->acc_indio_dev);
1463 err_buffer_cleanup_mag:
1464 if (client->irq >= 0)
1465 iio_triggered_buffer_cleanup(data->mag_indio_dev);
1466 err_buffer_cleanup_acc:
1467 if (client->irq >= 0)
1468 iio_triggered_buffer_cleanup(data->acc_indio_dev);
1469 err_trigger_unregister_motion:
1470 iio_trigger_unregister(data->motion_trig);
1471 err_trigger_unregister_mag_dready:
1472 iio_trigger_unregister(data->mag_dready_trig);
1473 err_trigger_unregister_acc_dready:
1474 iio_trigger_unregister(data->acc_dready_trig);
1475 err_chip_uninit:
1476 kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
1477 return ret;
1480 static int kmx61_remove(struct i2c_client *client)
1482 struct kmx61_data *data = i2c_get_clientdata(client);
1484 pm_runtime_disable(&client->dev);
1485 pm_runtime_set_suspended(&client->dev);
1486 pm_runtime_put_noidle(&client->dev);
1488 iio_device_unregister(data->acc_indio_dev);
1489 iio_device_unregister(data->mag_indio_dev);
1491 if (client->irq >= 0) {
1492 iio_triggered_buffer_cleanup(data->acc_indio_dev);
1493 iio_triggered_buffer_cleanup(data->mag_indio_dev);
1494 iio_trigger_unregister(data->acc_dready_trig);
1495 iio_trigger_unregister(data->mag_dready_trig);
1496 iio_trigger_unregister(data->motion_trig);
1499 mutex_lock(&data->lock);
1500 kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
1501 mutex_unlock(&data->lock);
1503 return 0;
1506 #ifdef CONFIG_PM_SLEEP
1507 static int kmx61_suspend(struct device *dev)
1509 int ret;
1510 struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev));
1512 mutex_lock(&data->lock);
1513 ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG,
1514 false);
1515 mutex_unlock(&data->lock);
1517 return ret;
1520 static int kmx61_resume(struct device *dev)
1522 u8 stby = 0;
1523 struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev));
1525 if (data->acc_stby)
1526 stby |= KMX61_ACC_STBY_BIT;
1527 if (data->mag_stby)
1528 stby |= KMX61_MAG_STBY_BIT;
1530 return kmx61_set_mode(data, stby, KMX61_ACC | KMX61_MAG, true);
1532 #endif
1534 #ifdef CONFIG_PM
1535 static int kmx61_runtime_suspend(struct device *dev)
1537 struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev));
1538 int ret;
1540 mutex_lock(&data->lock);
1541 ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
1542 mutex_unlock(&data->lock);
1544 return ret;
1547 static int kmx61_runtime_resume(struct device *dev)
1549 struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev));
1550 u8 stby = 0;
1552 if (!data->acc_ps)
1553 stby |= KMX61_ACC_STBY_BIT;
1554 if (!data->mag_ps)
1555 stby |= KMX61_MAG_STBY_BIT;
1557 return kmx61_set_mode(data, stby, KMX61_ACC | KMX61_MAG, true);
1559 #endif
1561 static const struct dev_pm_ops kmx61_pm_ops = {
1562 SET_SYSTEM_SLEEP_PM_OPS(kmx61_suspend, kmx61_resume)
1563 SET_RUNTIME_PM_OPS(kmx61_runtime_suspend, kmx61_runtime_resume, NULL)
1566 static const struct acpi_device_id kmx61_acpi_match[] = {
1567 {"KMX61021", 0},
1571 MODULE_DEVICE_TABLE(acpi, kmx61_acpi_match);
1573 static const struct i2c_device_id kmx61_id[] = {
1574 {"kmx611021", 0},
1578 MODULE_DEVICE_TABLE(i2c, kmx61_id);
1580 static struct i2c_driver kmx61_driver = {
1581 .driver = {
1582 .name = KMX61_DRV_NAME,
1583 .acpi_match_table = ACPI_PTR(kmx61_acpi_match),
1584 .pm = &kmx61_pm_ops,
1586 .probe = kmx61_probe,
1587 .remove = kmx61_remove,
1588 .id_table = kmx61_id,
1591 module_i2c_driver(kmx61_driver);
1593 MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com>");
1594 MODULE_DESCRIPTION("KMX61 accelerometer/magnetometer driver");
1595 MODULE_LICENSE("GPL v2");