Bluetooth: hci_uart: Use generic functionality from Broadcom module
[linux/fpc-iii.git] / drivers / iio / magnetometer / ak8975.c
blobb13936dacc78377fec8254380ee92c0f95d50b25
1 /*
2 * A sensor driver for the magnetometer AK8975.
4 * Magnetic compass sensor driver for monitoring magnetic flux information.
6 * Copyright (c) 2010, NVIDIA Corporation.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, write to the Free Software Foundation, Inc.,
20 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/i2c.h>
27 #include <linux/interrupt.h>
28 #include <linux/err.h>
29 #include <linux/mutex.h>
30 #include <linux/delay.h>
31 #include <linux/bitops.h>
32 #include <linux/gpio.h>
33 #include <linux/of_gpio.h>
34 #include <linux/acpi.h>
36 #include <linux/iio/iio.h>
37 #include <linux/iio/sysfs.h>
39 * Register definitions, as well as various shifts and masks to get at the
40 * individual fields of the registers.
42 #define AK8975_REG_WIA 0x00
43 #define AK8975_DEVICE_ID 0x48
45 #define AK8975_REG_INFO 0x01
47 #define AK8975_REG_ST1 0x02
48 #define AK8975_REG_ST1_DRDY_SHIFT 0
49 #define AK8975_REG_ST1_DRDY_MASK (1 << AK8975_REG_ST1_DRDY_SHIFT)
51 #define AK8975_REG_HXL 0x03
52 #define AK8975_REG_HXH 0x04
53 #define AK8975_REG_HYL 0x05
54 #define AK8975_REG_HYH 0x06
55 #define AK8975_REG_HZL 0x07
56 #define AK8975_REG_HZH 0x08
57 #define AK8975_REG_ST2 0x09
58 #define AK8975_REG_ST2_DERR_SHIFT 2
59 #define AK8975_REG_ST2_DERR_MASK (1 << AK8975_REG_ST2_DERR_SHIFT)
61 #define AK8975_REG_ST2_HOFL_SHIFT 3
62 #define AK8975_REG_ST2_HOFL_MASK (1 << AK8975_REG_ST2_HOFL_SHIFT)
64 #define AK8975_REG_CNTL 0x0A
65 #define AK8975_REG_CNTL_MODE_SHIFT 0
66 #define AK8975_REG_CNTL_MODE_MASK (0xF << AK8975_REG_CNTL_MODE_SHIFT)
67 #define AK8975_REG_CNTL_MODE_POWER_DOWN 0x00
68 #define AK8975_REG_CNTL_MODE_ONCE 0x01
69 #define AK8975_REG_CNTL_MODE_SELF_TEST 0x08
70 #define AK8975_REG_CNTL_MODE_FUSE_ROM 0x0F
72 #define AK8975_REG_RSVC 0x0B
73 #define AK8975_REG_ASTC 0x0C
74 #define AK8975_REG_TS1 0x0D
75 #define AK8975_REG_TS2 0x0E
76 #define AK8975_REG_I2CDIS 0x0F
77 #define AK8975_REG_ASAX 0x10
78 #define AK8975_REG_ASAY 0x11
79 #define AK8975_REG_ASAZ 0x12
81 #define AK8975_MAX_REGS AK8975_REG_ASAZ
84 * AK09912 Register definitions
86 #define AK09912_REG_WIA1 0x00
87 #define AK09912_REG_WIA2 0x01
88 #define AK09912_DEVICE_ID 0x04
89 #define AK09911_DEVICE_ID 0x05
91 #define AK09911_REG_INFO1 0x02
92 #define AK09911_REG_INFO2 0x03
94 #define AK09912_REG_ST1 0x10
96 #define AK09912_REG_ST1_DRDY_SHIFT 0
97 #define AK09912_REG_ST1_DRDY_MASK (1 << AK09912_REG_ST1_DRDY_SHIFT)
99 #define AK09912_REG_HXL 0x11
100 #define AK09912_REG_HXH 0x12
101 #define AK09912_REG_HYL 0x13
102 #define AK09912_REG_HYH 0x14
103 #define AK09912_REG_HZL 0x15
104 #define AK09912_REG_HZH 0x16
105 #define AK09912_REG_TMPS 0x17
107 #define AK09912_REG_ST2 0x18
108 #define AK09912_REG_ST2_HOFL_SHIFT 3
109 #define AK09912_REG_ST2_HOFL_MASK (1 << AK09912_REG_ST2_HOFL_SHIFT)
111 #define AK09912_REG_CNTL1 0x30
113 #define AK09912_REG_CNTL2 0x31
114 #define AK09912_REG_CNTL_MODE_POWER_DOWN 0x00
115 #define AK09912_REG_CNTL_MODE_ONCE 0x01
116 #define AK09912_REG_CNTL_MODE_SELF_TEST 0x10
117 #define AK09912_REG_CNTL_MODE_FUSE_ROM 0x1F
118 #define AK09912_REG_CNTL2_MODE_SHIFT 0
119 #define AK09912_REG_CNTL2_MODE_MASK (0x1F << AK09912_REG_CNTL2_MODE_SHIFT)
121 #define AK09912_REG_CNTL3 0x32
123 #define AK09912_REG_TS1 0x33
124 #define AK09912_REG_TS2 0x34
125 #define AK09912_REG_TS3 0x35
126 #define AK09912_REG_I2CDIS 0x36
127 #define AK09912_REG_TS4 0x37
129 #define AK09912_REG_ASAX 0x60
130 #define AK09912_REG_ASAY 0x61
131 #define AK09912_REG_ASAZ 0x62
133 #define AK09912_MAX_REGS AK09912_REG_ASAZ
136 * Miscellaneous values.
138 #define AK8975_MAX_CONVERSION_TIMEOUT 500
139 #define AK8975_CONVERSION_DONE_POLL_TIME 10
140 #define AK8975_DATA_READY_TIMEOUT ((100*HZ)/1000)
143 * Precalculate scale factor (in Gauss units) for each axis and
144 * store in the device data.
146 * This scale factor is axis-dependent, and is derived from 3 calibration
147 * factors ASA(x), ASA(y), and ASA(z).
149 * These ASA values are read from the sensor device at start of day, and
150 * cached in the device context struct.
152 * Adjusting the flux value with the sensitivity adjustment value should be
153 * done via the following formula:
155 * Hadj = H * ( ( ( (ASA-128)*0.5 ) / 128 ) + 1 )
156 * where H is the raw value, ASA is the sensitivity adjustment, and Hadj
157 * is the resultant adjusted value.
159 * We reduce the formula to:
161 * Hadj = H * (ASA + 128) / 256
163 * H is in the range of -4096 to 4095. The magnetometer has a range of
164 * +-1229uT. To go from the raw value to uT is:
166 * HuT = H * 1229/4096, or roughly, 3/10.
168 * Since 1uT = 0.01 gauss, our final scale factor becomes:
170 * Hadj = H * ((ASA + 128) / 256) * 3/10 * 1/100
171 * Hadj = H * ((ASA + 128) * 0.003) / 256
173 * Since ASA doesn't change, we cache the resultant scale factor into the
174 * device context in ak8975_setup().
176 * Given we use IIO_VAL_INT_PLUS_MICRO bit when displaying the scale, we
177 * multiply the stored scale value by 1e6.
179 static long ak8975_raw_to_gauss(u16 data)
181 return (((long)data + 128) * 3000) / 256;
185 * For AK8963 and AK09911, same calculation, but the device is less sensitive:
187 * H is in the range of +-8190. The magnetometer has a range of
188 * +-4912uT. To go from the raw value to uT is:
190 * HuT = H * 4912/8190, or roughly, 6/10, instead of 3/10.
193 static long ak8963_09911_raw_to_gauss(u16 data)
195 return (((long)data + 128) * 6000) / 256;
199 * For AK09912, same calculation, except the device is more sensitive:
201 * H is in the range of -32752 to 32752. The magnetometer has a range of
202 * +-4912uT. To go from the raw value to uT is:
204 * HuT = H * 4912/32752, or roughly, 3/20, instead of 3/10.
206 static long ak09912_raw_to_gauss(u16 data)
208 return (((long)data + 128) * 1500) / 256;
211 /* Compatible Asahi Kasei Compass parts */
212 enum asahi_compass_chipset {
213 AK8975,
214 AK8963,
215 AK09911,
216 AK09912,
217 AK_MAX_TYPE
220 enum ak_ctrl_reg_addr {
221 ST1,
222 ST2,
223 CNTL,
224 ASA_BASE,
225 MAX_REGS,
226 REGS_END,
229 enum ak_ctrl_reg_mask {
230 ST1_DRDY,
231 ST2_HOFL,
232 ST2_DERR,
233 CNTL_MODE,
234 MASK_END,
237 enum ak_ctrl_mode {
238 POWER_DOWN,
239 MODE_ONCE,
240 SELF_TEST,
241 FUSE_ROM,
242 MODE_END,
245 struct ak_def {
246 enum asahi_compass_chipset type;
247 long (*raw_to_gauss)(u16 data);
248 u16 range;
249 u8 ctrl_regs[REGS_END];
250 u8 ctrl_masks[MASK_END];
251 u8 ctrl_modes[MODE_END];
252 u8 data_regs[3];
255 static struct ak_def ak_def_array[AK_MAX_TYPE] = {
257 .type = AK8975,
258 .raw_to_gauss = ak8975_raw_to_gauss,
259 .range = 4096,
260 .ctrl_regs = {
261 AK8975_REG_ST1,
262 AK8975_REG_ST2,
263 AK8975_REG_CNTL,
264 AK8975_REG_ASAX,
265 AK8975_MAX_REGS},
266 .ctrl_masks = {
267 AK8975_REG_ST1_DRDY_MASK,
268 AK8975_REG_ST2_HOFL_MASK,
269 AK8975_REG_ST2_DERR_MASK,
270 AK8975_REG_CNTL_MODE_MASK},
271 .ctrl_modes = {
272 AK8975_REG_CNTL_MODE_POWER_DOWN,
273 AK8975_REG_CNTL_MODE_ONCE,
274 AK8975_REG_CNTL_MODE_SELF_TEST,
275 AK8975_REG_CNTL_MODE_FUSE_ROM},
276 .data_regs = {
277 AK8975_REG_HXL,
278 AK8975_REG_HYL,
279 AK8975_REG_HZL},
282 .type = AK8963,
283 .raw_to_gauss = ak8963_09911_raw_to_gauss,
284 .range = 8190,
285 .ctrl_regs = {
286 AK8975_REG_ST1,
287 AK8975_REG_ST2,
288 AK8975_REG_CNTL,
289 AK8975_REG_ASAX,
290 AK8975_MAX_REGS},
291 .ctrl_masks = {
292 AK8975_REG_ST1_DRDY_MASK,
293 AK8975_REG_ST2_HOFL_MASK,
295 AK8975_REG_CNTL_MODE_MASK},
296 .ctrl_modes = {
297 AK8975_REG_CNTL_MODE_POWER_DOWN,
298 AK8975_REG_CNTL_MODE_ONCE,
299 AK8975_REG_CNTL_MODE_SELF_TEST,
300 AK8975_REG_CNTL_MODE_FUSE_ROM},
301 .data_regs = {
302 AK8975_REG_HXL,
303 AK8975_REG_HYL,
304 AK8975_REG_HZL},
307 .type = AK09911,
308 .raw_to_gauss = ak8963_09911_raw_to_gauss,
309 .range = 8192,
310 .ctrl_regs = {
311 AK09912_REG_ST1,
312 AK09912_REG_ST2,
313 AK09912_REG_CNTL2,
314 AK09912_REG_ASAX,
315 AK09912_MAX_REGS},
316 .ctrl_masks = {
317 AK09912_REG_ST1_DRDY_MASK,
318 AK09912_REG_ST2_HOFL_MASK,
320 AK09912_REG_CNTL2_MODE_MASK},
321 .ctrl_modes = {
322 AK09912_REG_CNTL_MODE_POWER_DOWN,
323 AK09912_REG_CNTL_MODE_ONCE,
324 AK09912_REG_CNTL_MODE_SELF_TEST,
325 AK09912_REG_CNTL_MODE_FUSE_ROM},
326 .data_regs = {
327 AK09912_REG_HXL,
328 AK09912_REG_HYL,
329 AK09912_REG_HZL},
332 .type = AK09912,
333 .raw_to_gauss = ak09912_raw_to_gauss,
334 .range = 32752,
335 .ctrl_regs = {
336 AK09912_REG_ST1,
337 AK09912_REG_ST2,
338 AK09912_REG_CNTL2,
339 AK09912_REG_ASAX,
340 AK09912_MAX_REGS},
341 .ctrl_masks = {
342 AK09912_REG_ST1_DRDY_MASK,
343 AK09912_REG_ST2_HOFL_MASK,
345 AK09912_REG_CNTL2_MODE_MASK},
346 .ctrl_modes = {
347 AK09912_REG_CNTL_MODE_POWER_DOWN,
348 AK09912_REG_CNTL_MODE_ONCE,
349 AK09912_REG_CNTL_MODE_SELF_TEST,
350 AK09912_REG_CNTL_MODE_FUSE_ROM},
351 .data_regs = {
352 AK09912_REG_HXL,
353 AK09912_REG_HYL,
354 AK09912_REG_HZL},
359 * Per-instance context data for the device.
361 struct ak8975_data {
362 struct i2c_client *client;
363 struct ak_def *def;
364 struct attribute_group attrs;
365 struct mutex lock;
366 u8 asa[3];
367 long raw_to_gauss[3];
368 int eoc_gpio;
369 int eoc_irq;
370 wait_queue_head_t data_ready_queue;
371 unsigned long flags;
372 u8 cntl_cache;
376 * Return 0 if the i2c device is the one we expect.
377 * return a negative error number otherwise
379 static int ak8975_who_i_am(struct i2c_client *client,
380 enum asahi_compass_chipset type)
382 u8 wia_val[2];
383 int ret;
386 * Signature for each device:
387 * Device | WIA1 | WIA2
388 * AK09912 | DEVICE_ID | AK09912_DEVICE_ID
389 * AK09911 | DEVICE_ID | AK09911_DEVICE_ID
390 * AK8975 | DEVICE_ID | NA
391 * AK8963 | DEVICE_ID | NA
393 ret = i2c_smbus_read_i2c_block_data(client, AK09912_REG_WIA1,
394 2, wia_val);
395 if (ret < 0) {
396 dev_err(&client->dev, "Error reading WIA\n");
397 return ret;
400 if (wia_val[0] != AK8975_DEVICE_ID)
401 return -ENODEV;
403 switch (type) {
404 case AK8975:
405 case AK8963:
406 return 0;
407 case AK09911:
408 if (wia_val[1] == AK09911_DEVICE_ID)
409 return 0;
410 break;
411 case AK09912:
412 if (wia_val[1] == AK09912_DEVICE_ID)
413 return 0;
414 break;
415 default:
416 dev_err(&client->dev, "Type %d unknown\n", type);
418 return -ENODEV;
422 * Helper function to write to CNTL register.
424 static int ak8975_set_mode(struct ak8975_data *data, enum ak_ctrl_mode mode)
426 u8 regval;
427 int ret;
429 regval = (data->cntl_cache & ~data->def->ctrl_masks[CNTL_MODE]) |
430 data->def->ctrl_modes[mode];
431 ret = i2c_smbus_write_byte_data(data->client,
432 data->def->ctrl_regs[CNTL], regval);
433 if (ret < 0) {
434 return ret;
436 data->cntl_cache = regval;
437 /* After mode change wait atleast 100us */
438 usleep_range(100, 500);
440 return 0;
444 * Handle data ready irq
446 static irqreturn_t ak8975_irq_handler(int irq, void *data)
448 struct ak8975_data *ak8975 = data;
450 set_bit(0, &ak8975->flags);
451 wake_up(&ak8975->data_ready_queue);
453 return IRQ_HANDLED;
457 * Install data ready interrupt handler
459 static int ak8975_setup_irq(struct ak8975_data *data)
461 struct i2c_client *client = data->client;
462 int rc;
463 int irq;
465 if (client->irq)
466 irq = client->irq;
467 else
468 irq = gpio_to_irq(data->eoc_gpio);
470 rc = devm_request_irq(&client->dev, irq, ak8975_irq_handler,
471 IRQF_TRIGGER_RISING | IRQF_ONESHOT,
472 dev_name(&client->dev), data);
473 if (rc < 0) {
474 dev_err(&client->dev,
475 "irq %d request failed, (gpio %d): %d\n",
476 irq, data->eoc_gpio, rc);
477 return rc;
480 init_waitqueue_head(&data->data_ready_queue);
481 clear_bit(0, &data->flags);
482 data->eoc_irq = irq;
484 return rc;
489 * Perform some start-of-day setup, including reading the asa calibration
490 * values and caching them.
492 static int ak8975_setup(struct i2c_client *client)
494 struct iio_dev *indio_dev = i2c_get_clientdata(client);
495 struct ak8975_data *data = iio_priv(indio_dev);
496 int ret;
498 /* Write the fused rom access mode. */
499 ret = ak8975_set_mode(data, FUSE_ROM);
500 if (ret < 0) {
501 dev_err(&client->dev, "Error in setting fuse access mode\n");
502 return ret;
505 /* Get asa data and store in the device data. */
506 ret = i2c_smbus_read_i2c_block_data(client,
507 data->def->ctrl_regs[ASA_BASE],
508 3, data->asa);
509 if (ret < 0) {
510 dev_err(&client->dev, "Not able to read asa data\n");
511 return ret;
514 /* After reading fuse ROM data set power-down mode */
515 ret = ak8975_set_mode(data, POWER_DOWN);
516 if (ret < 0) {
517 dev_err(&client->dev, "Error in setting power-down mode\n");
518 return ret;
521 if (data->eoc_gpio > 0 || client->irq > 0) {
522 ret = ak8975_setup_irq(data);
523 if (ret < 0) {
524 dev_err(&client->dev,
525 "Error setting data ready interrupt\n");
526 return ret;
530 data->raw_to_gauss[0] = data->def->raw_to_gauss(data->asa[0]);
531 data->raw_to_gauss[1] = data->def->raw_to_gauss(data->asa[1]);
532 data->raw_to_gauss[2] = data->def->raw_to_gauss(data->asa[2]);
534 return 0;
537 static int wait_conversion_complete_gpio(struct ak8975_data *data)
539 struct i2c_client *client = data->client;
540 u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
541 int ret;
543 /* Wait for the conversion to complete. */
544 while (timeout_ms) {
545 msleep(AK8975_CONVERSION_DONE_POLL_TIME);
546 if (gpio_get_value(data->eoc_gpio))
547 break;
548 timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
550 if (!timeout_ms) {
551 dev_err(&client->dev, "Conversion timeout happened\n");
552 return -EINVAL;
555 ret = i2c_smbus_read_byte_data(client, data->def->ctrl_regs[ST1]);
556 if (ret < 0)
557 dev_err(&client->dev, "Error in reading ST1\n");
559 return ret;
562 static int wait_conversion_complete_polled(struct ak8975_data *data)
564 struct i2c_client *client = data->client;
565 u8 read_status;
566 u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
567 int ret;
569 /* Wait for the conversion to complete. */
570 while (timeout_ms) {
571 msleep(AK8975_CONVERSION_DONE_POLL_TIME);
572 ret = i2c_smbus_read_byte_data(client,
573 data->def->ctrl_regs[ST1]);
574 if (ret < 0) {
575 dev_err(&client->dev, "Error in reading ST1\n");
576 return ret;
578 read_status = ret;
579 if (read_status)
580 break;
581 timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
583 if (!timeout_ms) {
584 dev_err(&client->dev, "Conversion timeout happened\n");
585 return -EINVAL;
588 return read_status;
591 /* Returns 0 if the end of conversion interrupt occured or -ETIME otherwise */
592 static int wait_conversion_complete_interrupt(struct ak8975_data *data)
594 int ret;
596 ret = wait_event_timeout(data->data_ready_queue,
597 test_bit(0, &data->flags),
598 AK8975_DATA_READY_TIMEOUT);
599 clear_bit(0, &data->flags);
601 return ret > 0 ? 0 : -ETIME;
605 * Emits the raw flux value for the x, y, or z axis.
607 static int ak8975_read_axis(struct iio_dev *indio_dev, int index, int *val)
609 struct ak8975_data *data = iio_priv(indio_dev);
610 struct i2c_client *client = data->client;
611 int ret;
613 mutex_lock(&data->lock);
615 /* Set up the device for taking a sample. */
616 ret = ak8975_set_mode(data, MODE_ONCE);
617 if (ret < 0) {
618 dev_err(&client->dev, "Error in setting operating mode\n");
619 goto exit;
622 /* Wait for the conversion to complete. */
623 if (data->eoc_irq)
624 ret = wait_conversion_complete_interrupt(data);
625 else if (gpio_is_valid(data->eoc_gpio))
626 ret = wait_conversion_complete_gpio(data);
627 else
628 ret = wait_conversion_complete_polled(data);
629 if (ret < 0)
630 goto exit;
632 /* This will be executed only for non-interrupt based waiting case */
633 if (ret & data->def->ctrl_masks[ST1_DRDY]) {
634 ret = i2c_smbus_read_byte_data(client,
635 data->def->ctrl_regs[ST2]);
636 if (ret < 0) {
637 dev_err(&client->dev, "Error in reading ST2\n");
638 goto exit;
640 if (ret & (data->def->ctrl_masks[ST2_DERR] |
641 data->def->ctrl_masks[ST2_HOFL])) {
642 dev_err(&client->dev, "ST2 status error 0x%x\n", ret);
643 ret = -EINVAL;
644 goto exit;
648 /* Read the flux value from the appropriate register
649 (the register is specified in the iio device attributes). */
650 ret = i2c_smbus_read_word_data(client, data->def->data_regs[index]);
651 if (ret < 0) {
652 dev_err(&client->dev, "Read axis data fails\n");
653 goto exit;
656 mutex_unlock(&data->lock);
658 /* Clamp to valid range. */
659 *val = clamp_t(s16, ret, -data->def->range, data->def->range);
660 return IIO_VAL_INT;
662 exit:
663 mutex_unlock(&data->lock);
664 return ret;
667 static int ak8975_read_raw(struct iio_dev *indio_dev,
668 struct iio_chan_spec const *chan,
669 int *val, int *val2,
670 long mask)
672 struct ak8975_data *data = iio_priv(indio_dev);
674 switch (mask) {
675 case IIO_CHAN_INFO_RAW:
676 return ak8975_read_axis(indio_dev, chan->address, val);
677 case IIO_CHAN_INFO_SCALE:
678 *val = 0;
679 *val2 = data->raw_to_gauss[chan->address];
680 return IIO_VAL_INT_PLUS_MICRO;
682 return -EINVAL;
685 #define AK8975_CHANNEL(axis, index) \
687 .type = IIO_MAGN, \
688 .modified = 1, \
689 .channel2 = IIO_MOD_##axis, \
690 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
691 BIT(IIO_CHAN_INFO_SCALE), \
692 .address = index, \
695 static const struct iio_chan_spec ak8975_channels[] = {
696 AK8975_CHANNEL(X, 0), AK8975_CHANNEL(Y, 1), AK8975_CHANNEL(Z, 2),
699 static const struct iio_info ak8975_info = {
700 .read_raw = &ak8975_read_raw,
701 .driver_module = THIS_MODULE,
704 static const struct acpi_device_id ak_acpi_match[] = {
705 {"AK8975", AK8975},
706 {"AK8963", AK8963},
707 {"INVN6500", AK8963},
708 {"AK09911", AK09911},
709 {"AK09912", AK09912},
710 { },
712 MODULE_DEVICE_TABLE(acpi, ak_acpi_match);
714 static const char *ak8975_match_acpi_device(struct device *dev,
715 enum asahi_compass_chipset *chipset)
717 const struct acpi_device_id *id;
719 id = acpi_match_device(dev->driver->acpi_match_table, dev);
720 if (!id)
721 return NULL;
722 *chipset = (int)id->driver_data;
724 return dev_name(dev);
727 static int ak8975_probe(struct i2c_client *client,
728 const struct i2c_device_id *id)
730 struct ak8975_data *data;
731 struct iio_dev *indio_dev;
732 int eoc_gpio;
733 int err;
734 const char *name = NULL;
735 enum asahi_compass_chipset chipset;
737 /* Grab and set up the supplied GPIO. */
738 if (client->dev.platform_data)
739 eoc_gpio = *(int *)(client->dev.platform_data);
740 else if (client->dev.of_node)
741 eoc_gpio = of_get_gpio(client->dev.of_node, 0);
742 else
743 eoc_gpio = -1;
745 if (eoc_gpio == -EPROBE_DEFER)
746 return -EPROBE_DEFER;
748 /* We may not have a GPIO based IRQ to scan, that is fine, we will
749 poll if so */
750 if (gpio_is_valid(eoc_gpio)) {
751 err = devm_gpio_request_one(&client->dev, eoc_gpio,
752 GPIOF_IN, "ak_8975");
753 if (err < 0) {
754 dev_err(&client->dev,
755 "failed to request GPIO %d, error %d\n",
756 eoc_gpio, err);
757 return err;
761 /* Register with IIO */
762 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
763 if (indio_dev == NULL)
764 return -ENOMEM;
766 data = iio_priv(indio_dev);
767 i2c_set_clientdata(client, indio_dev);
769 data->client = client;
770 data->eoc_gpio = eoc_gpio;
771 data->eoc_irq = 0;
773 /* id will be NULL when enumerated via ACPI */
774 if (id) {
775 chipset = (enum asahi_compass_chipset)(id->driver_data);
776 name = id->name;
777 } else if (ACPI_HANDLE(&client->dev))
778 name = ak8975_match_acpi_device(&client->dev, &chipset);
779 else
780 return -ENOSYS;
782 if (chipset >= AK_MAX_TYPE) {
783 dev_err(&client->dev, "AKM device type unsupported: %d\n",
784 chipset);
785 return -ENODEV;
788 data->def = &ak_def_array[chipset];
789 err = ak8975_who_i_am(client, data->def->type);
790 if (err < 0) {
791 dev_err(&client->dev, "Unexpected device\n");
792 return err;
794 dev_dbg(&client->dev, "Asahi compass chip %s\n", name);
796 /* Perform some basic start-of-day setup of the device. */
797 err = ak8975_setup(client);
798 if (err < 0) {
799 dev_err(&client->dev, "%s initialization fails\n", name);
800 return err;
803 mutex_init(&data->lock);
804 indio_dev->dev.parent = &client->dev;
805 indio_dev->channels = ak8975_channels;
806 indio_dev->num_channels = ARRAY_SIZE(ak8975_channels);
807 indio_dev->info = &ak8975_info;
808 indio_dev->modes = INDIO_DIRECT_MODE;
809 indio_dev->name = name;
810 return devm_iio_device_register(&client->dev, indio_dev);
813 static const struct i2c_device_id ak8975_id[] = {
814 {"ak8975", AK8975},
815 {"ak8963", AK8963},
816 {"AK8963", AK8963},
817 {"ak09911", AK09911},
818 {"ak09912", AK09912},
822 MODULE_DEVICE_TABLE(i2c, ak8975_id);
824 static const struct of_device_id ak8975_of_match[] = {
825 { .compatible = "asahi-kasei,ak8975", },
826 { .compatible = "ak8975", },
827 { .compatible = "asahi-kasei,ak8963", },
828 { .compatible = "ak8963", },
829 { .compatible = "asahi-kasei,ak09911", },
830 { .compatible = "ak09911", },
831 { .compatible = "asahi-kasei,ak09912", },
832 { .compatible = "ak09912", },
835 MODULE_DEVICE_TABLE(of, ak8975_of_match);
837 static struct i2c_driver ak8975_driver = {
838 .driver = {
839 .name = "ak8975",
840 .of_match_table = of_match_ptr(ak8975_of_match),
841 .acpi_match_table = ACPI_PTR(ak_acpi_match),
843 .probe = ak8975_probe,
844 .id_table = ak8975_id,
846 module_i2c_driver(ak8975_driver);
848 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
849 MODULE_DESCRIPTION("AK8975 magnetometer driver");
850 MODULE_LICENSE("GPL");