2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
59 #define IO_MADE_GOOD ((struct bio *)2)
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
67 static int max_queued_requests
= 1024;
69 static void allow_barrier(struct r1conf
*conf
, sector_t start_next_window
,
71 static void lower_barrier(struct r1conf
*conf
);
73 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
75 struct pool_info
*pi
= data
;
76 int size
= offsetof(struct r1bio
, bios
[pi
->raid_disks
]);
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size
, gfp_flags
);
82 static void r1bio_pool_free(void *r1_bio
, void *data
)
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
95 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
97 struct pool_info
*pi
= data
;
103 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
108 * Allocate bios : 1 for reading, n-1 for writing
110 for (j
= pi
->raid_disks
; j
-- ; ) {
111 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
114 r1_bio
->bios
[j
] = bio
;
117 * Allocate RESYNC_PAGES data pages and attach them to
119 * If this is a user-requested check/repair, allocate
120 * RESYNC_PAGES for each bio.
122 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
123 need_pages
= pi
->raid_disks
;
126 for (j
= 0; j
< need_pages
; j
++) {
127 bio
= r1_bio
->bios
[j
];
128 bio
->bi_vcnt
= RESYNC_PAGES
;
130 if (bio_alloc_pages(bio
, gfp_flags
))
133 /* If not user-requests, copy the page pointers to all bios */
134 if (!test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
)) {
135 for (i
=0; i
<RESYNC_PAGES
; i
++)
136 for (j
=1; j
<pi
->raid_disks
; j
++)
137 r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
=
138 r1_bio
->bios
[0]->bi_io_vec
[i
].bv_page
;
141 r1_bio
->master_bio
= NULL
;
149 bio_for_each_segment_all(bv
, r1_bio
->bios
[j
], i
)
150 __free_page(bv
->bv_page
);
154 while (++j
< pi
->raid_disks
)
155 bio_put(r1_bio
->bios
[j
]);
156 r1bio_pool_free(r1_bio
, data
);
160 static void r1buf_pool_free(void *__r1_bio
, void *data
)
162 struct pool_info
*pi
= data
;
164 struct r1bio
*r1bio
= __r1_bio
;
166 for (i
= 0; i
< RESYNC_PAGES
; i
++)
167 for (j
= pi
->raid_disks
; j
-- ;) {
169 r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
!=
170 r1bio
->bios
[0]->bi_io_vec
[i
].bv_page
)
171 safe_put_page(r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
173 for (i
=0 ; i
< pi
->raid_disks
; i
++)
174 bio_put(r1bio
->bios
[i
]);
176 r1bio_pool_free(r1bio
, data
);
179 static void put_all_bios(struct r1conf
*conf
, struct r1bio
*r1_bio
)
183 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
184 struct bio
**bio
= r1_bio
->bios
+ i
;
185 if (!BIO_SPECIAL(*bio
))
191 static void free_r1bio(struct r1bio
*r1_bio
)
193 struct r1conf
*conf
= r1_bio
->mddev
->private;
195 put_all_bios(conf
, r1_bio
);
196 mempool_free(r1_bio
, conf
->r1bio_pool
);
199 static void put_buf(struct r1bio
*r1_bio
)
201 struct r1conf
*conf
= r1_bio
->mddev
->private;
204 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
205 struct bio
*bio
= r1_bio
->bios
[i
];
207 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
210 mempool_free(r1_bio
, conf
->r1buf_pool
);
215 static void reschedule_retry(struct r1bio
*r1_bio
)
218 struct mddev
*mddev
= r1_bio
->mddev
;
219 struct r1conf
*conf
= mddev
->private;
221 spin_lock_irqsave(&conf
->device_lock
, flags
);
222 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
224 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
226 wake_up(&conf
->wait_barrier
);
227 md_wakeup_thread(mddev
->thread
);
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
235 static void call_bio_endio(struct r1bio
*r1_bio
)
237 struct bio
*bio
= r1_bio
->master_bio
;
239 struct r1conf
*conf
= r1_bio
->mddev
->private;
240 sector_t start_next_window
= r1_bio
->start_next_window
;
241 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
243 if (bio
->bi_phys_segments
) {
245 spin_lock_irqsave(&conf
->device_lock
, flags
);
246 bio
->bi_phys_segments
--;
247 done
= (bio
->bi_phys_segments
== 0);
248 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
250 * make_request() might be waiting for
251 * bi_phys_segments to decrease
253 wake_up(&conf
->wait_barrier
);
257 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
258 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
262 * Wake up any possible resync thread that waits for the device
265 allow_barrier(conf
, start_next_window
, bi_sector
);
269 static void raid_end_bio_io(struct r1bio
*r1_bio
)
271 struct bio
*bio
= r1_bio
->master_bio
;
273 /* if nobody has done the final endio yet, do it now */
274 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
277 (unsigned long long) bio
->bi_iter
.bi_sector
,
278 (unsigned long long) bio_end_sector(bio
) - 1);
280 call_bio_endio(r1_bio
);
286 * Update disk head position estimator based on IRQ completion info.
288 static inline void update_head_pos(int disk
, struct r1bio
*r1_bio
)
290 struct r1conf
*conf
= r1_bio
->mddev
->private;
292 conf
->mirrors
[disk
].head_position
=
293 r1_bio
->sector
+ (r1_bio
->sectors
);
297 * Find the disk number which triggered given bio
299 static int find_bio_disk(struct r1bio
*r1_bio
, struct bio
*bio
)
302 struct r1conf
*conf
= r1_bio
->mddev
->private;
303 int raid_disks
= conf
->raid_disks
;
305 for (mirror
= 0; mirror
< raid_disks
* 2; mirror
++)
306 if (r1_bio
->bios
[mirror
] == bio
)
309 BUG_ON(mirror
== raid_disks
* 2);
310 update_head_pos(mirror
, r1_bio
);
315 static void raid1_end_read_request(struct bio
*bio
, int error
)
317 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
318 struct r1bio
*r1_bio
= bio
->bi_private
;
320 struct r1conf
*conf
= r1_bio
->mddev
->private;
322 mirror
= r1_bio
->read_disk
;
324 * this branch is our 'one mirror IO has finished' event handler:
326 update_head_pos(mirror
, r1_bio
);
329 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
331 /* If all other devices have failed, we want to return
332 * the error upwards rather than fail the last device.
333 * Here we redefine "uptodate" to mean "Don't want to retry"
336 spin_lock_irqsave(&conf
->device_lock
, flags
);
337 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
338 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
339 !test_bit(Faulty
, &conf
->mirrors
[mirror
].rdev
->flags
)))
341 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
345 raid_end_bio_io(r1_bio
);
346 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, conf
->mddev
);
351 char b
[BDEVNAME_SIZE
];
353 KERN_ERR
"md/raid1:%s: %s: "
354 "rescheduling sector %llu\n",
356 bdevname(conf
->mirrors
[mirror
].rdev
->bdev
,
358 (unsigned long long)r1_bio
->sector
);
359 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
360 reschedule_retry(r1_bio
);
361 /* don't drop the reference on read_disk yet */
365 static void close_write(struct r1bio
*r1_bio
)
367 /* it really is the end of this request */
368 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
369 /* free extra copy of the data pages */
370 int i
= r1_bio
->behind_page_count
;
372 safe_put_page(r1_bio
->behind_bvecs
[i
].bv_page
);
373 kfree(r1_bio
->behind_bvecs
);
374 r1_bio
->behind_bvecs
= NULL
;
376 /* clear the bitmap if all writes complete successfully */
377 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
379 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
380 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
381 md_write_end(r1_bio
->mddev
);
384 static void r1_bio_write_done(struct r1bio
*r1_bio
)
386 if (!atomic_dec_and_test(&r1_bio
->remaining
))
389 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
390 reschedule_retry(r1_bio
);
393 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
394 reschedule_retry(r1_bio
);
396 raid_end_bio_io(r1_bio
);
400 static void raid1_end_write_request(struct bio
*bio
, int error
)
402 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
403 struct r1bio
*r1_bio
= bio
->bi_private
;
404 int mirror
, behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
405 struct r1conf
*conf
= r1_bio
->mddev
->private;
406 struct bio
*to_put
= NULL
;
408 mirror
= find_bio_disk(r1_bio
, bio
);
411 * 'one mirror IO has finished' event handler:
414 set_bit(WriteErrorSeen
,
415 &conf
->mirrors
[mirror
].rdev
->flags
);
416 if (!test_and_set_bit(WantReplacement
,
417 &conf
->mirrors
[mirror
].rdev
->flags
))
418 set_bit(MD_RECOVERY_NEEDED
, &
419 conf
->mddev
->recovery
);
421 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
424 * Set R1BIO_Uptodate in our master bio, so that we
425 * will return a good error code for to the higher
426 * levels even if IO on some other mirrored buffer
429 * The 'master' represents the composite IO operation
430 * to user-side. So if something waits for IO, then it
431 * will wait for the 'master' bio.
436 r1_bio
->bios
[mirror
] = NULL
;
439 * Do not set R1BIO_Uptodate if the current device is
440 * rebuilding or Faulty. This is because we cannot use
441 * such device for properly reading the data back (we could
442 * potentially use it, if the current write would have felt
443 * before rdev->recovery_offset, but for simplicity we don't
446 if (test_bit(In_sync
, &conf
->mirrors
[mirror
].rdev
->flags
) &&
447 !test_bit(Faulty
, &conf
->mirrors
[mirror
].rdev
->flags
))
448 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
450 /* Maybe we can clear some bad blocks. */
451 if (is_badblock(conf
->mirrors
[mirror
].rdev
,
452 r1_bio
->sector
, r1_bio
->sectors
,
453 &first_bad
, &bad_sectors
)) {
454 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
455 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
460 if (test_bit(WriteMostly
, &conf
->mirrors
[mirror
].rdev
->flags
))
461 atomic_dec(&r1_bio
->behind_remaining
);
464 * In behind mode, we ACK the master bio once the I/O
465 * has safely reached all non-writemostly
466 * disks. Setting the Returned bit ensures that this
467 * gets done only once -- we don't ever want to return
468 * -EIO here, instead we'll wait
470 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
471 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
472 /* Maybe we can return now */
473 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
474 struct bio
*mbio
= r1_bio
->master_bio
;
475 pr_debug("raid1: behind end write sectors"
477 (unsigned long long) mbio
->bi_iter
.bi_sector
,
478 (unsigned long long) bio_end_sector(mbio
) - 1);
479 call_bio_endio(r1_bio
);
483 if (r1_bio
->bios
[mirror
] == NULL
)
484 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
,
488 * Let's see if all mirrored write operations have finished
491 r1_bio_write_done(r1_bio
);
498 * This routine returns the disk from which the requested read should
499 * be done. There is a per-array 'next expected sequential IO' sector
500 * number - if this matches on the next IO then we use the last disk.
501 * There is also a per-disk 'last know head position' sector that is
502 * maintained from IRQ contexts, both the normal and the resync IO
503 * completion handlers update this position correctly. If there is no
504 * perfect sequential match then we pick the disk whose head is closest.
506 * If there are 2 mirrors in the same 2 devices, performance degrades
507 * because position is mirror, not device based.
509 * The rdev for the device selected will have nr_pending incremented.
511 static int read_balance(struct r1conf
*conf
, struct r1bio
*r1_bio
, int *max_sectors
)
513 const sector_t this_sector
= r1_bio
->sector
;
515 int best_good_sectors
;
516 int best_disk
, best_dist_disk
, best_pending_disk
;
520 unsigned int min_pending
;
521 struct md_rdev
*rdev
;
523 int choose_next_idle
;
527 * Check if we can balance. We can balance on the whole
528 * device if no resync is going on, or below the resync window.
529 * We take the first readable disk when above the resync window.
532 sectors
= r1_bio
->sectors
;
535 best_dist
= MaxSector
;
536 best_pending_disk
= -1;
537 min_pending
= UINT_MAX
;
538 best_good_sectors
= 0;
540 choose_next_idle
= 0;
542 choose_first
= (conf
->mddev
->recovery_cp
< this_sector
+ sectors
);
544 for (disk
= 0 ; disk
< conf
->raid_disks
* 2 ; disk
++) {
548 unsigned int pending
;
551 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
552 if (r1_bio
->bios
[disk
] == IO_BLOCKED
554 || test_bit(Unmerged
, &rdev
->flags
)
555 || test_bit(Faulty
, &rdev
->flags
))
557 if (!test_bit(In_sync
, &rdev
->flags
) &&
558 rdev
->recovery_offset
< this_sector
+ sectors
)
560 if (test_bit(WriteMostly
, &rdev
->flags
)) {
561 /* Don't balance among write-mostly, just
562 * use the first as a last resort */
563 if (best_dist_disk
< 0) {
564 if (is_badblock(rdev
, this_sector
, sectors
,
565 &first_bad
, &bad_sectors
)) {
566 if (first_bad
< this_sector
)
567 /* Cannot use this */
569 best_good_sectors
= first_bad
- this_sector
;
571 best_good_sectors
= sectors
;
572 best_dist_disk
= disk
;
573 best_pending_disk
= disk
;
577 /* This is a reasonable device to use. It might
580 if (is_badblock(rdev
, this_sector
, sectors
,
581 &first_bad
, &bad_sectors
)) {
582 if (best_dist
< MaxSector
)
583 /* already have a better device */
585 if (first_bad
<= this_sector
) {
586 /* cannot read here. If this is the 'primary'
587 * device, then we must not read beyond
588 * bad_sectors from another device..
590 bad_sectors
-= (this_sector
- first_bad
);
591 if (choose_first
&& sectors
> bad_sectors
)
592 sectors
= bad_sectors
;
593 if (best_good_sectors
> sectors
)
594 best_good_sectors
= sectors
;
597 sector_t good_sectors
= first_bad
- this_sector
;
598 if (good_sectors
> best_good_sectors
) {
599 best_good_sectors
= good_sectors
;
607 best_good_sectors
= sectors
;
609 nonrot
= blk_queue_nonrot(bdev_get_queue(rdev
->bdev
));
610 has_nonrot_disk
|= nonrot
;
611 pending
= atomic_read(&rdev
->nr_pending
);
612 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
617 /* Don't change to another disk for sequential reads */
618 if (conf
->mirrors
[disk
].next_seq_sect
== this_sector
620 int opt_iosize
= bdev_io_opt(rdev
->bdev
) >> 9;
621 struct raid1_info
*mirror
= &conf
->mirrors
[disk
];
625 * If buffered sequential IO size exceeds optimal
626 * iosize, check if there is idle disk. If yes, choose
627 * the idle disk. read_balance could already choose an
628 * idle disk before noticing it's a sequential IO in
629 * this disk. This doesn't matter because this disk
630 * will idle, next time it will be utilized after the
631 * first disk has IO size exceeds optimal iosize. In
632 * this way, iosize of the first disk will be optimal
633 * iosize at least. iosize of the second disk might be
634 * small, but not a big deal since when the second disk
635 * starts IO, the first disk is likely still busy.
637 if (nonrot
&& opt_iosize
> 0 &&
638 mirror
->seq_start
!= MaxSector
&&
639 mirror
->next_seq_sect
> opt_iosize
&&
640 mirror
->next_seq_sect
- opt_iosize
>=
642 choose_next_idle
= 1;
647 /* If device is idle, use it */
653 if (choose_next_idle
)
656 if (min_pending
> pending
) {
657 min_pending
= pending
;
658 best_pending_disk
= disk
;
661 if (dist
< best_dist
) {
663 best_dist_disk
= disk
;
668 * If all disks are rotational, choose the closest disk. If any disk is
669 * non-rotational, choose the disk with less pending request even the
670 * disk is rotational, which might/might not be optimal for raids with
671 * mixed ratation/non-rotational disks depending on workload.
673 if (best_disk
== -1) {
675 best_disk
= best_pending_disk
;
677 best_disk
= best_dist_disk
;
680 if (best_disk
>= 0) {
681 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
684 atomic_inc(&rdev
->nr_pending
);
685 if (test_bit(Faulty
, &rdev
->flags
)) {
686 /* cannot risk returning a device that failed
687 * before we inc'ed nr_pending
689 rdev_dec_pending(rdev
, conf
->mddev
);
692 sectors
= best_good_sectors
;
694 if (conf
->mirrors
[best_disk
].next_seq_sect
!= this_sector
)
695 conf
->mirrors
[best_disk
].seq_start
= this_sector
;
697 conf
->mirrors
[best_disk
].next_seq_sect
= this_sector
+ sectors
;
700 *max_sectors
= sectors
;
705 static int raid1_mergeable_bvec(struct mddev
*mddev
,
706 struct bvec_merge_data
*bvm
,
707 struct bio_vec
*biovec
)
709 struct r1conf
*conf
= mddev
->private;
710 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
711 int max
= biovec
->bv_len
;
713 if (mddev
->merge_check_needed
) {
716 for (disk
= 0; disk
< conf
->raid_disks
* 2; disk
++) {
717 struct md_rdev
*rdev
= rcu_dereference(
718 conf
->mirrors
[disk
].rdev
);
719 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
720 struct request_queue
*q
=
721 bdev_get_queue(rdev
->bdev
);
722 if (q
->merge_bvec_fn
) {
723 bvm
->bi_sector
= sector
+
725 bvm
->bi_bdev
= rdev
->bdev
;
726 max
= min(max
, q
->merge_bvec_fn(
737 static int raid1_congested(struct mddev
*mddev
, int bits
)
739 struct r1conf
*conf
= mddev
->private;
742 if ((bits
& (1 << BDI_async_congested
)) &&
743 conf
->pending_count
>= max_queued_requests
)
747 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
748 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
749 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
750 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
754 /* Note the '|| 1' - when read_balance prefers
755 * non-congested targets, it can be removed
757 if ((bits
& (1<<BDI_async_congested
)) || 1)
758 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
760 ret
&= bdi_congested(&q
->backing_dev_info
, bits
);
767 static void flush_pending_writes(struct r1conf
*conf
)
769 /* Any writes that have been queued but are awaiting
770 * bitmap updates get flushed here.
772 spin_lock_irq(&conf
->device_lock
);
774 if (conf
->pending_bio_list
.head
) {
776 bio
= bio_list_get(&conf
->pending_bio_list
);
777 conf
->pending_count
= 0;
778 spin_unlock_irq(&conf
->device_lock
);
779 /* flush any pending bitmap writes to
780 * disk before proceeding w/ I/O */
781 bitmap_unplug(conf
->mddev
->bitmap
);
782 wake_up(&conf
->wait_barrier
);
784 while (bio
) { /* submit pending writes */
785 struct bio
*next
= bio
->bi_next
;
787 if (unlikely((bio
->bi_rw
& REQ_DISCARD
) &&
788 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
792 generic_make_request(bio
);
796 spin_unlock_irq(&conf
->device_lock
);
800 * Sometimes we need to suspend IO while we do something else,
801 * either some resync/recovery, or reconfigure the array.
802 * To do this we raise a 'barrier'.
803 * The 'barrier' is a counter that can be raised multiple times
804 * to count how many activities are happening which preclude
806 * We can only raise the barrier if there is no pending IO.
807 * i.e. if nr_pending == 0.
808 * We choose only to raise the barrier if no-one is waiting for the
809 * barrier to go down. This means that as soon as an IO request
810 * is ready, no other operations which require a barrier will start
811 * until the IO request has had a chance.
813 * So: regular IO calls 'wait_barrier'. When that returns there
814 * is no backgroup IO happening, It must arrange to call
815 * allow_barrier when it has finished its IO.
816 * backgroup IO calls must call raise_barrier. Once that returns
817 * there is no normal IO happeing. It must arrange to call
818 * lower_barrier when the particular background IO completes.
820 static void raise_barrier(struct r1conf
*conf
, sector_t sector_nr
)
822 spin_lock_irq(&conf
->resync_lock
);
824 /* Wait until no block IO is waiting */
825 wait_event_lock_irq(conf
->wait_barrier
, !conf
->nr_waiting
,
828 /* block any new IO from starting */
830 conf
->next_resync
= sector_nr
;
832 /* For these conditions we must wait:
833 * A: while the array is in frozen state
834 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
835 * the max count which allowed.
836 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
837 * next resync will reach to the window which normal bios are
839 * D: while there are any active requests in the current window.
841 wait_event_lock_irq(conf
->wait_barrier
,
842 !conf
->array_frozen
&&
843 conf
->barrier
< RESYNC_DEPTH
&&
844 conf
->current_window_requests
== 0 &&
845 (conf
->start_next_window
>=
846 conf
->next_resync
+ RESYNC_SECTORS
),
850 spin_unlock_irq(&conf
->resync_lock
);
853 static void lower_barrier(struct r1conf
*conf
)
856 BUG_ON(conf
->barrier
<= 0);
857 spin_lock_irqsave(&conf
->resync_lock
, flags
);
860 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
861 wake_up(&conf
->wait_barrier
);
864 static bool need_to_wait_for_sync(struct r1conf
*conf
, struct bio
*bio
)
868 if (conf
->array_frozen
|| !bio
)
870 else if (conf
->barrier
&& bio_data_dir(bio
) == WRITE
) {
871 if ((conf
->mddev
->curr_resync_completed
872 >= bio_end_sector(bio
)) ||
873 (conf
->next_resync
+ NEXT_NORMALIO_DISTANCE
874 <= bio
->bi_iter
.bi_sector
))
883 static sector_t
wait_barrier(struct r1conf
*conf
, struct bio
*bio
)
887 spin_lock_irq(&conf
->resync_lock
);
888 if (need_to_wait_for_sync(conf
, bio
)) {
890 /* Wait for the barrier to drop.
891 * However if there are already pending
892 * requests (preventing the barrier from
893 * rising completely), and the
894 * per-process bio queue isn't empty,
895 * then don't wait, as we need to empty
896 * that queue to allow conf->start_next_window
899 wait_event_lock_irq(conf
->wait_barrier
,
900 !conf
->array_frozen
&&
902 ((conf
->start_next_window
<
903 conf
->next_resync
+ RESYNC_SECTORS
) &&
905 !bio_list_empty(current
->bio_list
))),
910 if (bio
&& bio_data_dir(bio
) == WRITE
) {
911 if (bio
->bi_iter
.bi_sector
>=
912 conf
->mddev
->curr_resync_completed
) {
913 if (conf
->start_next_window
== MaxSector
)
914 conf
->start_next_window
=
916 NEXT_NORMALIO_DISTANCE
;
918 if ((conf
->start_next_window
+ NEXT_NORMALIO_DISTANCE
)
919 <= bio
->bi_iter
.bi_sector
)
920 conf
->next_window_requests
++;
922 conf
->current_window_requests
++;
923 sector
= conf
->start_next_window
;
928 spin_unlock_irq(&conf
->resync_lock
);
932 static void allow_barrier(struct r1conf
*conf
, sector_t start_next_window
,
937 spin_lock_irqsave(&conf
->resync_lock
, flags
);
939 if (start_next_window
) {
940 if (start_next_window
== conf
->start_next_window
) {
941 if (conf
->start_next_window
+ NEXT_NORMALIO_DISTANCE
943 conf
->next_window_requests
--;
945 conf
->current_window_requests
--;
947 conf
->current_window_requests
--;
949 if (!conf
->current_window_requests
) {
950 if (conf
->next_window_requests
) {
951 conf
->current_window_requests
=
952 conf
->next_window_requests
;
953 conf
->next_window_requests
= 0;
954 conf
->start_next_window
+=
955 NEXT_NORMALIO_DISTANCE
;
957 conf
->start_next_window
= MaxSector
;
960 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
961 wake_up(&conf
->wait_barrier
);
964 static void freeze_array(struct r1conf
*conf
, int extra
)
966 /* stop syncio and normal IO and wait for everything to
968 * We wait until nr_pending match nr_queued+extra
969 * This is called in the context of one normal IO request
970 * that has failed. Thus any sync request that might be pending
971 * will be blocked by nr_pending, and we need to wait for
972 * pending IO requests to complete or be queued for re-try.
973 * Thus the number queued (nr_queued) plus this request (extra)
974 * must match the number of pending IOs (nr_pending) before
977 spin_lock_irq(&conf
->resync_lock
);
978 conf
->array_frozen
= 1;
979 wait_event_lock_irq_cmd(conf
->wait_barrier
,
980 conf
->nr_pending
== conf
->nr_queued
+extra
,
982 flush_pending_writes(conf
));
983 spin_unlock_irq(&conf
->resync_lock
);
985 static void unfreeze_array(struct r1conf
*conf
)
987 /* reverse the effect of the freeze */
988 spin_lock_irq(&conf
->resync_lock
);
989 conf
->array_frozen
= 0;
990 wake_up(&conf
->wait_barrier
);
991 spin_unlock_irq(&conf
->resync_lock
);
994 /* duplicate the data pages for behind I/O
996 static void alloc_behind_pages(struct bio
*bio
, struct r1bio
*r1_bio
)
999 struct bio_vec
*bvec
;
1000 struct bio_vec
*bvecs
= kzalloc(bio
->bi_vcnt
* sizeof(struct bio_vec
),
1002 if (unlikely(!bvecs
))
1005 bio_for_each_segment_all(bvec
, bio
, i
) {
1007 bvecs
[i
].bv_page
= alloc_page(GFP_NOIO
);
1008 if (unlikely(!bvecs
[i
].bv_page
))
1010 memcpy(kmap(bvecs
[i
].bv_page
) + bvec
->bv_offset
,
1011 kmap(bvec
->bv_page
) + bvec
->bv_offset
, bvec
->bv_len
);
1012 kunmap(bvecs
[i
].bv_page
);
1013 kunmap(bvec
->bv_page
);
1015 r1_bio
->behind_bvecs
= bvecs
;
1016 r1_bio
->behind_page_count
= bio
->bi_vcnt
;
1017 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
1021 for (i
= 0; i
< bio
->bi_vcnt
; i
++)
1022 if (bvecs
[i
].bv_page
)
1023 put_page(bvecs
[i
].bv_page
);
1025 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1026 bio
->bi_iter
.bi_size
);
1029 struct raid1_plug_cb
{
1030 struct blk_plug_cb cb
;
1031 struct bio_list pending
;
1035 static void raid1_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1037 struct raid1_plug_cb
*plug
= container_of(cb
, struct raid1_plug_cb
,
1039 struct mddev
*mddev
= plug
->cb
.data
;
1040 struct r1conf
*conf
= mddev
->private;
1043 if (from_schedule
|| current
->bio_list
) {
1044 spin_lock_irq(&conf
->device_lock
);
1045 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1046 conf
->pending_count
+= plug
->pending_cnt
;
1047 spin_unlock_irq(&conf
->device_lock
);
1048 wake_up(&conf
->wait_barrier
);
1049 md_wakeup_thread(mddev
->thread
);
1054 /* we aren't scheduling, so we can do the write-out directly. */
1055 bio
= bio_list_get(&plug
->pending
);
1056 bitmap_unplug(mddev
->bitmap
);
1057 wake_up(&conf
->wait_barrier
);
1059 while (bio
) { /* submit pending writes */
1060 struct bio
*next
= bio
->bi_next
;
1061 bio
->bi_next
= NULL
;
1062 if (unlikely((bio
->bi_rw
& REQ_DISCARD
) &&
1063 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
1064 /* Just ignore it */
1067 generic_make_request(bio
);
1073 static void make_request(struct mddev
*mddev
, struct bio
* bio
)
1075 struct r1conf
*conf
= mddev
->private;
1076 struct raid1_info
*mirror
;
1077 struct r1bio
*r1_bio
;
1078 struct bio
*read_bio
;
1080 struct bitmap
*bitmap
;
1081 unsigned long flags
;
1082 const int rw
= bio_data_dir(bio
);
1083 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
1084 const unsigned long do_flush_fua
= (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
));
1085 const unsigned long do_discard
= (bio
->bi_rw
1086 & (REQ_DISCARD
| REQ_SECURE
));
1087 const unsigned long do_same
= (bio
->bi_rw
& REQ_WRITE_SAME
);
1088 struct md_rdev
*blocked_rdev
;
1089 struct blk_plug_cb
*cb
;
1090 struct raid1_plug_cb
*plug
= NULL
;
1092 int sectors_handled
;
1094 sector_t start_next_window
;
1097 * Register the new request and wait if the reconstruction
1098 * thread has put up a bar for new requests.
1099 * Continue immediately if no resync is active currently.
1102 md_write_start(mddev
, bio
); /* wait on superblock update early */
1104 if (bio_data_dir(bio
) == WRITE
&&
1105 bio_end_sector(bio
) > mddev
->suspend_lo
&&
1106 bio
->bi_iter
.bi_sector
< mddev
->suspend_hi
) {
1107 /* As the suspend_* range is controlled by
1108 * userspace, we want an interruptible
1113 flush_signals(current
);
1114 prepare_to_wait(&conf
->wait_barrier
,
1115 &w
, TASK_INTERRUPTIBLE
);
1116 if (bio_end_sector(bio
) <= mddev
->suspend_lo
||
1117 bio
->bi_iter
.bi_sector
>= mddev
->suspend_hi
)
1121 finish_wait(&conf
->wait_barrier
, &w
);
1124 start_next_window
= wait_barrier(conf
, bio
);
1126 bitmap
= mddev
->bitmap
;
1129 * make_request() can abort the operation when READA is being
1130 * used and no empty request is available.
1133 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1135 r1_bio
->master_bio
= bio
;
1136 r1_bio
->sectors
= bio_sectors(bio
);
1138 r1_bio
->mddev
= mddev
;
1139 r1_bio
->sector
= bio
->bi_iter
.bi_sector
;
1141 /* We might need to issue multiple reads to different
1142 * devices if there are bad blocks around, so we keep
1143 * track of the number of reads in bio->bi_phys_segments.
1144 * If this is 0, there is only one r1_bio and no locking
1145 * will be needed when requests complete. If it is
1146 * non-zero, then it is the number of not-completed requests.
1148 bio
->bi_phys_segments
= 0;
1149 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
1153 * read balancing logic:
1158 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
1161 /* couldn't find anywhere to read from */
1162 raid_end_bio_io(r1_bio
);
1165 mirror
= conf
->mirrors
+ rdisk
;
1167 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
1169 /* Reading from a write-mostly device must
1170 * take care not to over-take any writes
1173 wait_event(bitmap
->behind_wait
,
1174 atomic_read(&bitmap
->behind_writes
) == 0);
1176 r1_bio
->read_disk
= rdisk
;
1177 r1_bio
->start_next_window
= 0;
1179 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1180 bio_trim(read_bio
, r1_bio
->sector
- bio
->bi_iter
.bi_sector
,
1183 r1_bio
->bios
[rdisk
] = read_bio
;
1185 read_bio
->bi_iter
.bi_sector
= r1_bio
->sector
+
1186 mirror
->rdev
->data_offset
;
1187 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
1188 read_bio
->bi_end_io
= raid1_end_read_request
;
1189 read_bio
->bi_rw
= READ
| do_sync
;
1190 read_bio
->bi_private
= r1_bio
;
1192 if (max_sectors
< r1_bio
->sectors
) {
1193 /* could not read all from this device, so we will
1194 * need another r1_bio.
1197 sectors_handled
= (r1_bio
->sector
+ max_sectors
1198 - bio
->bi_iter
.bi_sector
);
1199 r1_bio
->sectors
= max_sectors
;
1200 spin_lock_irq(&conf
->device_lock
);
1201 if (bio
->bi_phys_segments
== 0)
1202 bio
->bi_phys_segments
= 2;
1204 bio
->bi_phys_segments
++;
1205 spin_unlock_irq(&conf
->device_lock
);
1206 /* Cannot call generic_make_request directly
1207 * as that will be queued in __make_request
1208 * and subsequent mempool_alloc might block waiting
1209 * for it. So hand bio over to raid1d.
1211 reschedule_retry(r1_bio
);
1213 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1215 r1_bio
->master_bio
= bio
;
1216 r1_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1218 r1_bio
->mddev
= mddev
;
1219 r1_bio
->sector
= bio
->bi_iter
.bi_sector
+
1223 generic_make_request(read_bio
);
1230 if (conf
->pending_count
>= max_queued_requests
) {
1231 md_wakeup_thread(mddev
->thread
);
1232 wait_event(conf
->wait_barrier
,
1233 conf
->pending_count
< max_queued_requests
);
1235 /* first select target devices under rcu_lock and
1236 * inc refcount on their rdev. Record them by setting
1238 * If there are known/acknowledged bad blocks on any device on
1239 * which we have seen a write error, we want to avoid writing those
1241 * This potentially requires several writes to write around
1242 * the bad blocks. Each set of writes gets it's own r1bio
1243 * with a set of bios attached.
1246 disks
= conf
->raid_disks
* 2;
1248 r1_bio
->start_next_window
= start_next_window
;
1249 blocked_rdev
= NULL
;
1251 max_sectors
= r1_bio
->sectors
;
1252 for (i
= 0; i
< disks
; i
++) {
1253 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1254 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1255 atomic_inc(&rdev
->nr_pending
);
1256 blocked_rdev
= rdev
;
1259 r1_bio
->bios
[i
] = NULL
;
1260 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)
1261 || test_bit(Unmerged
, &rdev
->flags
)) {
1262 if (i
< conf
->raid_disks
)
1263 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1267 atomic_inc(&rdev
->nr_pending
);
1268 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1273 is_bad
= is_badblock(rdev
, r1_bio
->sector
,
1275 &first_bad
, &bad_sectors
);
1277 /* mustn't write here until the bad block is
1279 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1280 blocked_rdev
= rdev
;
1283 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
1284 /* Cannot write here at all */
1285 bad_sectors
-= (r1_bio
->sector
- first_bad
);
1286 if (bad_sectors
< max_sectors
)
1287 /* mustn't write more than bad_sectors
1288 * to other devices yet
1290 max_sectors
= bad_sectors
;
1291 rdev_dec_pending(rdev
, mddev
);
1292 /* We don't set R1BIO_Degraded as that
1293 * only applies if the disk is
1294 * missing, so it might be re-added,
1295 * and we want to know to recover this
1297 * In this case the device is here,
1298 * and the fact that this chunk is not
1299 * in-sync is recorded in the bad
1305 int good_sectors
= first_bad
- r1_bio
->sector
;
1306 if (good_sectors
< max_sectors
)
1307 max_sectors
= good_sectors
;
1310 r1_bio
->bios
[i
] = bio
;
1314 if (unlikely(blocked_rdev
)) {
1315 /* Wait for this device to become unblocked */
1317 sector_t old
= start_next_window
;
1319 for (j
= 0; j
< i
; j
++)
1320 if (r1_bio
->bios
[j
])
1321 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1323 allow_barrier(conf
, start_next_window
, bio
->bi_iter
.bi_sector
);
1324 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1325 start_next_window
= wait_barrier(conf
, bio
);
1327 * We must make sure the multi r1bios of bio have
1328 * the same value of bi_phys_segments
1330 if (bio
->bi_phys_segments
&& old
&&
1331 old
!= start_next_window
)
1332 /* Wait for the former r1bio(s) to complete */
1333 wait_event(conf
->wait_barrier
,
1334 bio
->bi_phys_segments
== 1);
1338 if (max_sectors
< r1_bio
->sectors
) {
1339 /* We are splitting this write into multiple parts, so
1340 * we need to prepare for allocating another r1_bio.
1342 r1_bio
->sectors
= max_sectors
;
1343 spin_lock_irq(&conf
->device_lock
);
1344 if (bio
->bi_phys_segments
== 0)
1345 bio
->bi_phys_segments
= 2;
1347 bio
->bi_phys_segments
++;
1348 spin_unlock_irq(&conf
->device_lock
);
1350 sectors_handled
= r1_bio
->sector
+ max_sectors
- bio
->bi_iter
.bi_sector
;
1352 atomic_set(&r1_bio
->remaining
, 1);
1353 atomic_set(&r1_bio
->behind_remaining
, 0);
1356 for (i
= 0; i
< disks
; i
++) {
1358 if (!r1_bio
->bios
[i
])
1361 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1362 bio_trim(mbio
, r1_bio
->sector
- bio
->bi_iter
.bi_sector
, max_sectors
);
1366 * Not if there are too many, or cannot
1367 * allocate memory, or a reader on WriteMostly
1368 * is waiting for behind writes to flush */
1370 (atomic_read(&bitmap
->behind_writes
)
1371 < mddev
->bitmap_info
.max_write_behind
) &&
1372 !waitqueue_active(&bitmap
->behind_wait
))
1373 alloc_behind_pages(mbio
, r1_bio
);
1375 bitmap_startwrite(bitmap
, r1_bio
->sector
,
1377 test_bit(R1BIO_BehindIO
,
1381 if (r1_bio
->behind_bvecs
) {
1382 struct bio_vec
*bvec
;
1386 * We trimmed the bio, so _all is legit
1388 bio_for_each_segment_all(bvec
, mbio
, j
)
1389 bvec
->bv_page
= r1_bio
->behind_bvecs
[j
].bv_page
;
1390 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
1391 atomic_inc(&r1_bio
->behind_remaining
);
1394 r1_bio
->bios
[i
] = mbio
;
1396 mbio
->bi_iter
.bi_sector
= (r1_bio
->sector
+
1397 conf
->mirrors
[i
].rdev
->data_offset
);
1398 mbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1399 mbio
->bi_end_io
= raid1_end_write_request
;
1401 WRITE
| do_flush_fua
| do_sync
| do_discard
| do_same
;
1402 mbio
->bi_private
= r1_bio
;
1404 atomic_inc(&r1_bio
->remaining
);
1406 cb
= blk_check_plugged(raid1_unplug
, mddev
, sizeof(*plug
));
1408 plug
= container_of(cb
, struct raid1_plug_cb
, cb
);
1411 spin_lock_irqsave(&conf
->device_lock
, flags
);
1413 bio_list_add(&plug
->pending
, mbio
);
1414 plug
->pending_cnt
++;
1416 bio_list_add(&conf
->pending_bio_list
, mbio
);
1417 conf
->pending_count
++;
1419 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1421 md_wakeup_thread(mddev
->thread
);
1423 /* Mustn't call r1_bio_write_done before this next test,
1424 * as it could result in the bio being freed.
1426 if (sectors_handled
< bio_sectors(bio
)) {
1427 r1_bio_write_done(r1_bio
);
1428 /* We need another r1_bio. It has already been counted
1429 * in bio->bi_phys_segments
1431 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1432 r1_bio
->master_bio
= bio
;
1433 r1_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1435 r1_bio
->mddev
= mddev
;
1436 r1_bio
->sector
= bio
->bi_iter
.bi_sector
+ sectors_handled
;
1440 r1_bio_write_done(r1_bio
);
1442 /* In case raid1d snuck in to freeze_array */
1443 wake_up(&conf
->wait_barrier
);
1446 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
1448 struct r1conf
*conf
= mddev
->private;
1451 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1452 conf
->raid_disks
- mddev
->degraded
);
1454 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1455 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1456 seq_printf(seq
, "%s",
1457 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1460 seq_printf(seq
, "]");
1463 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1465 char b
[BDEVNAME_SIZE
];
1466 struct r1conf
*conf
= mddev
->private;
1469 * If it is not operational, then we have already marked it as dead
1470 * else if it is the last working disks, ignore the error, let the
1471 * next level up know.
1472 * else mark the drive as failed
1474 if (test_bit(In_sync
, &rdev
->flags
)
1475 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1477 * Don't fail the drive, act as though we were just a
1478 * normal single drive.
1479 * However don't try a recovery from this drive as
1480 * it is very likely to fail.
1482 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1485 set_bit(Blocked
, &rdev
->flags
);
1486 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1487 unsigned long flags
;
1488 spin_lock_irqsave(&conf
->device_lock
, flags
);
1490 set_bit(Faulty
, &rdev
->flags
);
1491 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1493 set_bit(Faulty
, &rdev
->flags
);
1495 * if recovery is running, make sure it aborts.
1497 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1498 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1500 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1501 "md/raid1:%s: Operation continuing on %d devices.\n",
1502 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1503 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1506 static void print_conf(struct r1conf
*conf
)
1510 printk(KERN_DEBUG
"RAID1 conf printout:\n");
1512 printk(KERN_DEBUG
"(!conf)\n");
1515 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1519 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1520 char b
[BDEVNAME_SIZE
];
1521 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1523 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1524 i
, !test_bit(In_sync
, &rdev
->flags
),
1525 !test_bit(Faulty
, &rdev
->flags
),
1526 bdevname(rdev
->bdev
,b
));
1531 static void close_sync(struct r1conf
*conf
)
1533 wait_barrier(conf
, NULL
);
1534 allow_barrier(conf
, 0, 0);
1536 mempool_destroy(conf
->r1buf_pool
);
1537 conf
->r1buf_pool
= NULL
;
1539 spin_lock_irq(&conf
->resync_lock
);
1540 conf
->next_resync
= 0;
1541 conf
->start_next_window
= MaxSector
;
1542 conf
->current_window_requests
+=
1543 conf
->next_window_requests
;
1544 conf
->next_window_requests
= 0;
1545 spin_unlock_irq(&conf
->resync_lock
);
1548 static int raid1_spare_active(struct mddev
*mddev
)
1551 struct r1conf
*conf
= mddev
->private;
1553 unsigned long flags
;
1556 * Find all failed disks within the RAID1 configuration
1557 * and mark them readable.
1558 * Called under mddev lock, so rcu protection not needed.
1560 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1561 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1562 struct md_rdev
*repl
= conf
->mirrors
[conf
->raid_disks
+ i
].rdev
;
1564 && repl
->recovery_offset
== MaxSector
1565 && !test_bit(Faulty
, &repl
->flags
)
1566 && !test_and_set_bit(In_sync
, &repl
->flags
)) {
1567 /* replacement has just become active */
1569 !test_and_clear_bit(In_sync
, &rdev
->flags
))
1572 /* Replaced device not technically
1573 * faulty, but we need to be sure
1574 * it gets removed and never re-added
1576 set_bit(Faulty
, &rdev
->flags
);
1577 sysfs_notify_dirent_safe(
1582 && rdev
->recovery_offset
== MaxSector
1583 && !test_bit(Faulty
, &rdev
->flags
)
1584 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1586 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1589 spin_lock_irqsave(&conf
->device_lock
, flags
);
1590 mddev
->degraded
-= count
;
1591 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1597 static int raid1_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1599 struct r1conf
*conf
= mddev
->private;
1602 struct raid1_info
*p
;
1604 int last
= conf
->raid_disks
- 1;
1605 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
1607 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1610 if (rdev
->raid_disk
>= 0)
1611 first
= last
= rdev
->raid_disk
;
1613 if (q
->merge_bvec_fn
) {
1614 set_bit(Unmerged
, &rdev
->flags
);
1615 mddev
->merge_check_needed
= 1;
1618 for (mirror
= first
; mirror
<= last
; mirror
++) {
1619 p
= conf
->mirrors
+mirror
;
1623 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1624 rdev
->data_offset
<< 9);
1626 p
->head_position
= 0;
1627 rdev
->raid_disk
= mirror
;
1629 /* As all devices are equivalent, we don't need a full recovery
1630 * if this was recently any drive of the array
1632 if (rdev
->saved_raid_disk
< 0)
1634 rcu_assign_pointer(p
->rdev
, rdev
);
1637 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
1638 p
[conf
->raid_disks
].rdev
== NULL
) {
1639 /* Add this device as a replacement */
1640 clear_bit(In_sync
, &rdev
->flags
);
1641 set_bit(Replacement
, &rdev
->flags
);
1642 rdev
->raid_disk
= mirror
;
1645 rcu_assign_pointer(p
[conf
->raid_disks
].rdev
, rdev
);
1649 if (err
== 0 && test_bit(Unmerged
, &rdev
->flags
)) {
1650 /* Some requests might not have seen this new
1651 * merge_bvec_fn. We must wait for them to complete
1652 * before merging the device fully.
1653 * First we make sure any code which has tested
1654 * our function has submitted the request, then
1655 * we wait for all outstanding requests to complete.
1657 synchronize_sched();
1658 freeze_array(conf
, 0);
1659 unfreeze_array(conf
);
1660 clear_bit(Unmerged
, &rdev
->flags
);
1662 md_integrity_add_rdev(rdev
, mddev
);
1663 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1664 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1669 static int raid1_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1671 struct r1conf
*conf
= mddev
->private;
1673 int number
= rdev
->raid_disk
;
1674 struct raid1_info
*p
= conf
->mirrors
+ number
;
1676 if (rdev
!= p
->rdev
)
1677 p
= conf
->mirrors
+ conf
->raid_disks
+ number
;
1680 if (rdev
== p
->rdev
) {
1681 if (test_bit(In_sync
, &rdev
->flags
) ||
1682 atomic_read(&rdev
->nr_pending
)) {
1686 /* Only remove non-faulty devices if recovery
1689 if (!test_bit(Faulty
, &rdev
->flags
) &&
1690 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1691 mddev
->degraded
< conf
->raid_disks
) {
1697 if (atomic_read(&rdev
->nr_pending
)) {
1698 /* lost the race, try later */
1702 } else if (conf
->mirrors
[conf
->raid_disks
+ number
].rdev
) {
1703 /* We just removed a device that is being replaced.
1704 * Move down the replacement. We drain all IO before
1705 * doing this to avoid confusion.
1707 struct md_rdev
*repl
=
1708 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
;
1709 freeze_array(conf
, 0);
1710 clear_bit(Replacement
, &repl
->flags
);
1712 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
= NULL
;
1713 unfreeze_array(conf
);
1714 clear_bit(WantReplacement
, &rdev
->flags
);
1716 clear_bit(WantReplacement
, &rdev
->flags
);
1717 err
= md_integrity_register(mddev
);
1725 static void end_sync_read(struct bio
*bio
, int error
)
1727 struct r1bio
*r1_bio
= bio
->bi_private
;
1729 update_head_pos(r1_bio
->read_disk
, r1_bio
);
1732 * we have read a block, now it needs to be re-written,
1733 * or re-read if the read failed.
1734 * We don't do much here, just schedule handling by raid1d
1736 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1737 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1739 if (atomic_dec_and_test(&r1_bio
->remaining
))
1740 reschedule_retry(r1_bio
);
1743 static void end_sync_write(struct bio
*bio
, int error
)
1745 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1746 struct r1bio
*r1_bio
= bio
->bi_private
;
1747 struct mddev
*mddev
= r1_bio
->mddev
;
1748 struct r1conf
*conf
= mddev
->private;
1753 mirror
= find_bio_disk(r1_bio
, bio
);
1756 sector_t sync_blocks
= 0;
1757 sector_t s
= r1_bio
->sector
;
1758 long sectors_to_go
= r1_bio
->sectors
;
1759 /* make sure these bits doesn't get cleared. */
1761 bitmap_end_sync(mddev
->bitmap
, s
,
1764 sectors_to_go
-= sync_blocks
;
1765 } while (sectors_to_go
> 0);
1766 set_bit(WriteErrorSeen
,
1767 &conf
->mirrors
[mirror
].rdev
->flags
);
1768 if (!test_and_set_bit(WantReplacement
,
1769 &conf
->mirrors
[mirror
].rdev
->flags
))
1770 set_bit(MD_RECOVERY_NEEDED
, &
1772 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1773 } else if (is_badblock(conf
->mirrors
[mirror
].rdev
,
1776 &first_bad
, &bad_sectors
) &&
1777 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1780 &first_bad
, &bad_sectors
)
1782 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1784 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1785 int s
= r1_bio
->sectors
;
1786 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1787 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1788 reschedule_retry(r1_bio
);
1791 md_done_sync(mddev
, s
, uptodate
);
1796 static int r1_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1797 int sectors
, struct page
*page
, int rw
)
1799 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
1803 set_bit(WriteErrorSeen
, &rdev
->flags
);
1804 if (!test_and_set_bit(WantReplacement
,
1806 set_bit(MD_RECOVERY_NEEDED
, &
1807 rdev
->mddev
->recovery
);
1809 /* need to record an error - either for the block or the device */
1810 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1811 md_error(rdev
->mddev
, rdev
);
1815 static int fix_sync_read_error(struct r1bio
*r1_bio
)
1817 /* Try some synchronous reads of other devices to get
1818 * good data, much like with normal read errors. Only
1819 * read into the pages we already have so we don't
1820 * need to re-issue the read request.
1821 * We don't need to freeze the array, because being in an
1822 * active sync request, there is no normal IO, and
1823 * no overlapping syncs.
1824 * We don't need to check is_badblock() again as we
1825 * made sure that anything with a bad block in range
1826 * will have bi_end_io clear.
1828 struct mddev
*mddev
= r1_bio
->mddev
;
1829 struct r1conf
*conf
= mddev
->private;
1830 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1831 sector_t sect
= r1_bio
->sector
;
1832 int sectors
= r1_bio
->sectors
;
1837 int d
= r1_bio
->read_disk
;
1839 struct md_rdev
*rdev
;
1842 if (s
> (PAGE_SIZE
>>9))
1845 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1846 /* No rcu protection needed here devices
1847 * can only be removed when no resync is
1848 * active, and resync is currently active
1850 rdev
= conf
->mirrors
[d
].rdev
;
1851 if (sync_page_io(rdev
, sect
, s
<<9,
1852 bio
->bi_io_vec
[idx
].bv_page
,
1859 if (d
== conf
->raid_disks
* 2)
1861 } while (!success
&& d
!= r1_bio
->read_disk
);
1864 char b
[BDEVNAME_SIZE
];
1866 /* Cannot read from anywhere, this block is lost.
1867 * Record a bad block on each device. If that doesn't
1868 * work just disable and interrupt the recovery.
1869 * Don't fail devices as that won't really help.
1871 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O read error"
1872 " for block %llu\n",
1874 bdevname(bio
->bi_bdev
, b
),
1875 (unsigned long long)r1_bio
->sector
);
1876 for (d
= 0; d
< conf
->raid_disks
* 2; d
++) {
1877 rdev
= conf
->mirrors
[d
].rdev
;
1878 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
1880 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1884 conf
->recovery_disabled
=
1885 mddev
->recovery_disabled
;
1886 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1887 md_done_sync(mddev
, r1_bio
->sectors
, 0);
1899 /* write it back and re-read */
1900 while (d
!= r1_bio
->read_disk
) {
1902 d
= conf
->raid_disks
* 2;
1904 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1906 rdev
= conf
->mirrors
[d
].rdev
;
1907 if (r1_sync_page_io(rdev
, sect
, s
,
1908 bio
->bi_io_vec
[idx
].bv_page
,
1910 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
1911 rdev_dec_pending(rdev
, mddev
);
1915 while (d
!= r1_bio
->read_disk
) {
1917 d
= conf
->raid_disks
* 2;
1919 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1921 rdev
= conf
->mirrors
[d
].rdev
;
1922 if (r1_sync_page_io(rdev
, sect
, s
,
1923 bio
->bi_io_vec
[idx
].bv_page
,
1925 atomic_add(s
, &rdev
->corrected_errors
);
1931 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1932 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1936 static void process_checks(struct r1bio
*r1_bio
)
1938 /* We have read all readable devices. If we haven't
1939 * got the block, then there is no hope left.
1940 * If we have, then we want to do a comparison
1941 * and skip the write if everything is the same.
1942 * If any blocks failed to read, then we need to
1943 * attempt an over-write
1945 struct mddev
*mddev
= r1_bio
->mddev
;
1946 struct r1conf
*conf
= mddev
->private;
1951 /* Fix variable parts of all bios */
1952 vcnt
= (r1_bio
->sectors
+ PAGE_SIZE
/ 512 - 1) >> (PAGE_SHIFT
- 9);
1953 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
1957 struct bio
*b
= r1_bio
->bios
[i
];
1958 if (b
->bi_end_io
!= end_sync_read
)
1960 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1961 uptodate
= test_bit(BIO_UPTODATE
, &b
->bi_flags
);
1964 clear_bit(BIO_UPTODATE
, &b
->bi_flags
);
1966 b
->bi_iter
.bi_size
= r1_bio
->sectors
<< 9;
1967 b
->bi_iter
.bi_sector
= r1_bio
->sector
+
1968 conf
->mirrors
[i
].rdev
->data_offset
;
1969 b
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1970 b
->bi_end_io
= end_sync_read
;
1971 b
->bi_private
= r1_bio
;
1973 size
= b
->bi_iter
.bi_size
;
1974 for (j
= 0; j
< vcnt
; j
++) {
1976 bi
= &b
->bi_io_vec
[j
];
1978 if (size
> PAGE_SIZE
)
1979 bi
->bv_len
= PAGE_SIZE
;
1985 for (primary
= 0; primary
< conf
->raid_disks
* 2; primary
++)
1986 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
1987 test_bit(BIO_UPTODATE
, &r1_bio
->bios
[primary
]->bi_flags
)) {
1988 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
1989 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
1992 r1_bio
->read_disk
= primary
;
1993 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
1995 struct bio
*pbio
= r1_bio
->bios
[primary
];
1996 struct bio
*sbio
= r1_bio
->bios
[i
];
1997 int uptodate
= test_bit(BIO_UPTODATE
, &sbio
->bi_flags
);
1999 if (sbio
->bi_end_io
!= end_sync_read
)
2001 /* Now we can 'fixup' the BIO_UPTODATE flag */
2002 set_bit(BIO_UPTODATE
, &sbio
->bi_flags
);
2005 for (j
= vcnt
; j
-- ; ) {
2007 p
= pbio
->bi_io_vec
[j
].bv_page
;
2008 s
= sbio
->bi_io_vec
[j
].bv_page
;
2009 if (memcmp(page_address(p
),
2011 sbio
->bi_io_vec
[j
].bv_len
))
2017 atomic64_add(r1_bio
->sectors
, &mddev
->resync_mismatches
);
2018 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
2020 /* No need to write to this device. */
2021 sbio
->bi_end_io
= NULL
;
2022 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
2026 bio_copy_data(sbio
, pbio
);
2030 static void sync_request_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
2032 struct r1conf
*conf
= mddev
->private;
2034 int disks
= conf
->raid_disks
* 2;
2035 struct bio
*bio
, *wbio
;
2037 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2039 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
2040 /* ouch - failed to read all of that. */
2041 if (!fix_sync_read_error(r1_bio
))
2044 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2045 process_checks(r1_bio
);
2050 atomic_set(&r1_bio
->remaining
, 1);
2051 for (i
= 0; i
< disks
; i
++) {
2052 wbio
= r1_bio
->bios
[i
];
2053 if (wbio
->bi_end_io
== NULL
||
2054 (wbio
->bi_end_io
== end_sync_read
&&
2055 (i
== r1_bio
->read_disk
||
2056 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
2059 wbio
->bi_rw
= WRITE
;
2060 wbio
->bi_end_io
= end_sync_write
;
2061 atomic_inc(&r1_bio
->remaining
);
2062 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, bio_sectors(wbio
));
2064 generic_make_request(wbio
);
2067 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
2068 /* if we're here, all write(s) have completed, so clean up */
2069 int s
= r1_bio
->sectors
;
2070 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2071 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2072 reschedule_retry(r1_bio
);
2075 md_done_sync(mddev
, s
, 1);
2081 * This is a kernel thread which:
2083 * 1. Retries failed read operations on working mirrors.
2084 * 2. Updates the raid superblock when problems encounter.
2085 * 3. Performs writes following reads for array synchronising.
2088 static void fix_read_error(struct r1conf
*conf
, int read_disk
,
2089 sector_t sect
, int sectors
)
2091 struct mddev
*mddev
= conf
->mddev
;
2097 struct md_rdev
*rdev
;
2099 if (s
> (PAGE_SIZE
>>9))
2103 /* Note: no rcu protection needed here
2104 * as this is synchronous in the raid1d thread
2105 * which is the thread that might remove
2106 * a device. If raid1d ever becomes multi-threaded....
2111 rdev
= conf
->mirrors
[d
].rdev
;
2113 (test_bit(In_sync
, &rdev
->flags
) ||
2114 (!test_bit(Faulty
, &rdev
->flags
) &&
2115 rdev
->recovery_offset
>= sect
+ s
)) &&
2116 is_badblock(rdev
, sect
, s
,
2117 &first_bad
, &bad_sectors
) == 0 &&
2118 sync_page_io(rdev
, sect
, s
<<9,
2119 conf
->tmppage
, READ
, false))
2123 if (d
== conf
->raid_disks
* 2)
2126 } while (!success
&& d
!= read_disk
);
2129 /* Cannot read from anywhere - mark it bad */
2130 struct md_rdev
*rdev
= conf
->mirrors
[read_disk
].rdev
;
2131 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2132 md_error(mddev
, rdev
);
2135 /* write it back and re-read */
2137 while (d
!= read_disk
) {
2139 d
= conf
->raid_disks
* 2;
2141 rdev
= conf
->mirrors
[d
].rdev
;
2143 !test_bit(Faulty
, &rdev
->flags
))
2144 r1_sync_page_io(rdev
, sect
, s
,
2145 conf
->tmppage
, WRITE
);
2148 while (d
!= read_disk
) {
2149 char b
[BDEVNAME_SIZE
];
2151 d
= conf
->raid_disks
* 2;
2153 rdev
= conf
->mirrors
[d
].rdev
;
2155 !test_bit(Faulty
, &rdev
->flags
)) {
2156 if (r1_sync_page_io(rdev
, sect
, s
,
2157 conf
->tmppage
, READ
)) {
2158 atomic_add(s
, &rdev
->corrected_errors
);
2160 "md/raid1:%s: read error corrected "
2161 "(%d sectors at %llu on %s)\n",
2163 (unsigned long long)(sect
+
2165 bdevname(rdev
->bdev
, b
));
2174 static int narrow_write_error(struct r1bio
*r1_bio
, int i
)
2176 struct mddev
*mddev
= r1_bio
->mddev
;
2177 struct r1conf
*conf
= mddev
->private;
2178 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2180 /* bio has the data to be written to device 'i' where
2181 * we just recently had a write error.
2182 * We repeatedly clone the bio and trim down to one block,
2183 * then try the write. Where the write fails we record
2185 * It is conceivable that the bio doesn't exactly align with
2186 * blocks. We must handle this somehow.
2188 * We currently own a reference on the rdev.
2194 int sect_to_write
= r1_bio
->sectors
;
2197 if (rdev
->badblocks
.shift
< 0)
2200 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2201 bdev_logical_block_size(rdev
->bdev
) >> 9);
2202 sector
= r1_bio
->sector
;
2203 sectors
= ((sector
+ block_sectors
)
2204 & ~(sector_t
)(block_sectors
- 1))
2207 while (sect_to_write
) {
2209 if (sectors
> sect_to_write
)
2210 sectors
= sect_to_write
;
2211 /* Write at 'sector' for 'sectors'*/
2213 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
2214 unsigned vcnt
= r1_bio
->behind_page_count
;
2215 struct bio_vec
*vec
= r1_bio
->behind_bvecs
;
2217 while (!vec
->bv_page
) {
2222 wbio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, mddev
);
2223 memcpy(wbio
->bi_io_vec
, vec
, vcnt
* sizeof(struct bio_vec
));
2225 wbio
->bi_vcnt
= vcnt
;
2227 wbio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
2230 wbio
->bi_rw
= WRITE
;
2231 wbio
->bi_iter
.bi_sector
= r1_bio
->sector
;
2232 wbio
->bi_iter
.bi_size
= r1_bio
->sectors
<< 9;
2234 bio_trim(wbio
, sector
- r1_bio
->sector
, sectors
);
2235 wbio
->bi_iter
.bi_sector
+= rdev
->data_offset
;
2236 wbio
->bi_bdev
= rdev
->bdev
;
2237 if (submit_bio_wait(WRITE
, wbio
) == 0)
2239 ok
= rdev_set_badblocks(rdev
, sector
,
2244 sect_to_write
-= sectors
;
2246 sectors
= block_sectors
;
2251 static void handle_sync_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2254 int s
= r1_bio
->sectors
;
2255 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++) {
2256 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2257 struct bio
*bio
= r1_bio
->bios
[m
];
2258 if (bio
->bi_end_io
== NULL
)
2260 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
2261 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
2262 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
, 0);
2264 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
2265 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
2266 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
2267 md_error(conf
->mddev
, rdev
);
2271 md_done_sync(conf
->mddev
, s
, 1);
2274 static void handle_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2277 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++)
2278 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
2279 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2280 rdev_clear_badblocks(rdev
,
2282 r1_bio
->sectors
, 0);
2283 rdev_dec_pending(rdev
, conf
->mddev
);
2284 } else if (r1_bio
->bios
[m
] != NULL
) {
2285 /* This drive got a write error. We need to
2286 * narrow down and record precise write
2289 if (!narrow_write_error(r1_bio
, m
)) {
2290 md_error(conf
->mddev
,
2291 conf
->mirrors
[m
].rdev
);
2292 /* an I/O failed, we can't clear the bitmap */
2293 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2295 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
2298 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2299 close_write(r1_bio
);
2300 raid_end_bio_io(r1_bio
);
2303 static void handle_read_error(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2307 struct mddev
*mddev
= conf
->mddev
;
2309 char b
[BDEVNAME_SIZE
];
2310 struct md_rdev
*rdev
;
2312 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
2313 /* we got a read error. Maybe the drive is bad. Maybe just
2314 * the block and we can fix it.
2315 * We freeze all other IO, and try reading the block from
2316 * other devices. When we find one, we re-write
2317 * and check it that fixes the read error.
2318 * This is all done synchronously while the array is
2321 if (mddev
->ro
== 0) {
2322 freeze_array(conf
, 1);
2323 fix_read_error(conf
, r1_bio
->read_disk
,
2324 r1_bio
->sector
, r1_bio
->sectors
);
2325 unfreeze_array(conf
);
2327 md_error(mddev
, conf
->mirrors
[r1_bio
->read_disk
].rdev
);
2328 rdev_dec_pending(conf
->mirrors
[r1_bio
->read_disk
].rdev
, conf
->mddev
);
2330 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2331 bdevname(bio
->bi_bdev
, b
);
2333 disk
= read_balance(conf
, r1_bio
, &max_sectors
);
2335 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O"
2336 " read error for block %llu\n",
2337 mdname(mddev
), b
, (unsigned long long)r1_bio
->sector
);
2338 raid_end_bio_io(r1_bio
);
2340 const unsigned long do_sync
2341 = r1_bio
->master_bio
->bi_rw
& REQ_SYNC
;
2343 r1_bio
->bios
[r1_bio
->read_disk
] =
2344 mddev
->ro
? IO_BLOCKED
: NULL
;
2347 r1_bio
->read_disk
= disk
;
2348 bio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
2349 bio_trim(bio
, r1_bio
->sector
- bio
->bi_iter
.bi_sector
,
2351 r1_bio
->bios
[r1_bio
->read_disk
] = bio
;
2352 rdev
= conf
->mirrors
[disk
].rdev
;
2353 printk_ratelimited(KERN_ERR
2354 "md/raid1:%s: redirecting sector %llu"
2355 " to other mirror: %s\n",
2357 (unsigned long long)r1_bio
->sector
,
2358 bdevname(rdev
->bdev
, b
));
2359 bio
->bi_iter
.bi_sector
= r1_bio
->sector
+ rdev
->data_offset
;
2360 bio
->bi_bdev
= rdev
->bdev
;
2361 bio
->bi_end_io
= raid1_end_read_request
;
2362 bio
->bi_rw
= READ
| do_sync
;
2363 bio
->bi_private
= r1_bio
;
2364 if (max_sectors
< r1_bio
->sectors
) {
2365 /* Drat - have to split this up more */
2366 struct bio
*mbio
= r1_bio
->master_bio
;
2367 int sectors_handled
= (r1_bio
->sector
+ max_sectors
2368 - mbio
->bi_iter
.bi_sector
);
2369 r1_bio
->sectors
= max_sectors
;
2370 spin_lock_irq(&conf
->device_lock
);
2371 if (mbio
->bi_phys_segments
== 0)
2372 mbio
->bi_phys_segments
= 2;
2374 mbio
->bi_phys_segments
++;
2375 spin_unlock_irq(&conf
->device_lock
);
2376 generic_make_request(bio
);
2379 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
2381 r1_bio
->master_bio
= mbio
;
2382 r1_bio
->sectors
= bio_sectors(mbio
) - sectors_handled
;
2384 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
2385 r1_bio
->mddev
= mddev
;
2386 r1_bio
->sector
= mbio
->bi_iter
.bi_sector
+
2391 generic_make_request(bio
);
2395 static void raid1d(struct md_thread
*thread
)
2397 struct mddev
*mddev
= thread
->mddev
;
2398 struct r1bio
*r1_bio
;
2399 unsigned long flags
;
2400 struct r1conf
*conf
= mddev
->private;
2401 struct list_head
*head
= &conf
->retry_list
;
2402 struct blk_plug plug
;
2404 md_check_recovery(mddev
);
2406 blk_start_plug(&plug
);
2409 flush_pending_writes(conf
);
2411 spin_lock_irqsave(&conf
->device_lock
, flags
);
2412 if (list_empty(head
)) {
2413 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2416 r1_bio
= list_entry(head
->prev
, struct r1bio
, retry_list
);
2417 list_del(head
->prev
);
2419 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2421 mddev
= r1_bio
->mddev
;
2422 conf
= mddev
->private;
2423 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2424 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2425 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2426 handle_sync_write_finished(conf
, r1_bio
);
2428 sync_request_write(mddev
, r1_bio
);
2429 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2430 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2431 handle_write_finished(conf
, r1_bio
);
2432 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2433 handle_read_error(conf
, r1_bio
);
2435 /* just a partial read to be scheduled from separate
2438 generic_make_request(r1_bio
->bios
[r1_bio
->read_disk
]);
2441 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2442 md_check_recovery(mddev
);
2444 blk_finish_plug(&plug
);
2447 static int init_resync(struct r1conf
*conf
)
2451 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2452 BUG_ON(conf
->r1buf_pool
);
2453 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
2455 if (!conf
->r1buf_pool
)
2457 conf
->next_resync
= 0;
2462 * perform a "sync" on one "block"
2464 * We need to make sure that no normal I/O request - particularly write
2465 * requests - conflict with active sync requests.
2467 * This is achieved by tracking pending requests and a 'barrier' concept
2468 * that can be installed to exclude normal IO requests.
2471 static sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
2473 struct r1conf
*conf
= mddev
->private;
2474 struct r1bio
*r1_bio
;
2476 sector_t max_sector
, nr_sectors
;
2480 int write_targets
= 0, read_targets
= 0;
2481 sector_t sync_blocks
;
2482 int still_degraded
= 0;
2483 int good_sectors
= RESYNC_SECTORS
;
2484 int min_bad
= 0; /* number of sectors that are bad in all devices */
2486 if (!conf
->r1buf_pool
)
2487 if (init_resync(conf
))
2490 max_sector
= mddev
->dev_sectors
;
2491 if (sector_nr
>= max_sector
) {
2492 /* If we aborted, we need to abort the
2493 * sync on the 'current' bitmap chunk (there will
2494 * only be one in raid1 resync.
2495 * We can find the current addess in mddev->curr_resync
2497 if (mddev
->curr_resync
< max_sector
) /* aborted */
2498 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2500 else /* completed sync */
2503 bitmap_close_sync(mddev
->bitmap
);
2508 if (mddev
->bitmap
== NULL
&&
2509 mddev
->recovery_cp
== MaxSector
&&
2510 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2511 conf
->fullsync
== 0) {
2513 return max_sector
- sector_nr
;
2515 /* before building a request, check if we can skip these blocks..
2516 * This call the bitmap_start_sync doesn't actually record anything
2518 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2519 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2520 /* We can skip this block, and probably several more */
2525 * If there is non-resync activity waiting for a turn,
2526 * and resync is going fast enough,
2527 * then let it though before starting on this new sync request.
2529 if (!go_faster
&& conf
->nr_waiting
)
2530 msleep_interruptible(1000);
2532 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
2533 r1_bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
2535 raise_barrier(conf
, sector_nr
);
2539 * If we get a correctably read error during resync or recovery,
2540 * we might want to read from a different device. So we
2541 * flag all drives that could conceivably be read from for READ,
2542 * and any others (which will be non-In_sync devices) for WRITE.
2543 * If a read fails, we try reading from something else for which READ
2547 r1_bio
->mddev
= mddev
;
2548 r1_bio
->sector
= sector_nr
;
2550 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2552 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2553 struct md_rdev
*rdev
;
2554 bio
= r1_bio
->bios
[i
];
2557 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2559 test_bit(Faulty
, &rdev
->flags
)) {
2560 if (i
< conf
->raid_disks
)
2562 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2564 bio
->bi_end_io
= end_sync_write
;
2567 /* may need to read from here */
2568 sector_t first_bad
= MaxSector
;
2571 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2572 &first_bad
, &bad_sectors
)) {
2573 if (first_bad
> sector_nr
)
2574 good_sectors
= first_bad
- sector_nr
;
2576 bad_sectors
-= (sector_nr
- first_bad
);
2578 min_bad
> bad_sectors
)
2579 min_bad
= bad_sectors
;
2582 if (sector_nr
< first_bad
) {
2583 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2591 bio
->bi_end_io
= end_sync_read
;
2593 } else if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
2594 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2595 !test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)) {
2597 * The device is suitable for reading (InSync),
2598 * but has bad block(s) here. Let's try to correct them,
2599 * if we are doing resync or repair. Otherwise, leave
2600 * this device alone for this sync request.
2603 bio
->bi_end_io
= end_sync_write
;
2607 if (bio
->bi_end_io
) {
2608 atomic_inc(&rdev
->nr_pending
);
2609 bio
->bi_iter
.bi_sector
= sector_nr
+ rdev
->data_offset
;
2610 bio
->bi_bdev
= rdev
->bdev
;
2611 bio
->bi_private
= r1_bio
;
2617 r1_bio
->read_disk
= disk
;
2619 if (read_targets
== 0 && min_bad
> 0) {
2620 /* These sectors are bad on all InSync devices, so we
2621 * need to mark them bad on all write targets
2624 for (i
= 0 ; i
< conf
->raid_disks
* 2 ; i
++)
2625 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2626 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2627 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2631 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2636 /* Cannot record the badblocks, so need to
2638 * If there are multiple read targets, could just
2639 * fail the really bad ones ???
2641 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2642 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2648 if (min_bad
> 0 && min_bad
< good_sectors
) {
2649 /* only resync enough to reach the next bad->good
2651 good_sectors
= min_bad
;
2654 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2655 /* extra read targets are also write targets */
2656 write_targets
+= read_targets
-1;
2658 if (write_targets
== 0 || read_targets
== 0) {
2659 /* There is nowhere to write, so all non-sync
2660 * drives must be failed - so we are finished
2664 max_sector
= sector_nr
+ min_bad
;
2665 rv
= max_sector
- sector_nr
;
2671 if (max_sector
> mddev
->resync_max
)
2672 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2673 if (max_sector
> sector_nr
+ good_sectors
)
2674 max_sector
= sector_nr
+ good_sectors
;
2679 int len
= PAGE_SIZE
;
2680 if (sector_nr
+ (len
>>9) > max_sector
)
2681 len
= (max_sector
- sector_nr
) << 9;
2684 if (sync_blocks
== 0) {
2685 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2686 &sync_blocks
, still_degraded
) &&
2688 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2690 BUG_ON(sync_blocks
< (PAGE_SIZE
>>9));
2691 if ((len
>> 9) > sync_blocks
)
2692 len
= sync_blocks
<<9;
2695 for (i
= 0 ; i
< conf
->raid_disks
* 2; i
++) {
2696 bio
= r1_bio
->bios
[i
];
2697 if (bio
->bi_end_io
) {
2698 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2699 if (bio_add_page(bio
, page
, len
, 0) == 0) {
2701 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2704 bio
= r1_bio
->bios
[i
];
2705 if (bio
->bi_end_io
==NULL
)
2707 /* remove last page from this bio */
2709 bio
->bi_iter
.bi_size
-= len
;
2710 __clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
2716 nr_sectors
+= len
>>9;
2717 sector_nr
+= len
>>9;
2718 sync_blocks
-= (len
>>9);
2719 } while (r1_bio
->bios
[disk
]->bi_vcnt
< RESYNC_PAGES
);
2721 r1_bio
->sectors
= nr_sectors
;
2723 /* For a user-requested sync, we read all readable devices and do a
2726 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2727 atomic_set(&r1_bio
->remaining
, read_targets
);
2728 for (i
= 0; i
< conf
->raid_disks
* 2 && read_targets
; i
++) {
2729 bio
= r1_bio
->bios
[i
];
2730 if (bio
->bi_end_io
== end_sync_read
) {
2732 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2733 generic_make_request(bio
);
2737 atomic_set(&r1_bio
->remaining
, 1);
2738 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2739 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2740 generic_make_request(bio
);
2746 static sector_t
raid1_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
2751 return mddev
->dev_sectors
;
2754 static struct r1conf
*setup_conf(struct mddev
*mddev
)
2756 struct r1conf
*conf
;
2758 struct raid1_info
*disk
;
2759 struct md_rdev
*rdev
;
2762 conf
= kzalloc(sizeof(struct r1conf
), GFP_KERNEL
);
2766 conf
->mirrors
= kzalloc(sizeof(struct raid1_info
)
2767 * mddev
->raid_disks
* 2,
2772 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2776 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2777 if (!conf
->poolinfo
)
2779 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
* 2;
2780 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2783 if (!conf
->r1bio_pool
)
2786 conf
->poolinfo
->mddev
= mddev
;
2789 spin_lock_init(&conf
->device_lock
);
2790 rdev_for_each(rdev
, mddev
) {
2791 struct request_queue
*q
;
2792 int disk_idx
= rdev
->raid_disk
;
2793 if (disk_idx
>= mddev
->raid_disks
2796 if (test_bit(Replacement
, &rdev
->flags
))
2797 disk
= conf
->mirrors
+ mddev
->raid_disks
+ disk_idx
;
2799 disk
= conf
->mirrors
+ disk_idx
;
2804 q
= bdev_get_queue(rdev
->bdev
);
2805 if (q
->merge_bvec_fn
)
2806 mddev
->merge_check_needed
= 1;
2808 disk
->head_position
= 0;
2809 disk
->seq_start
= MaxSector
;
2811 conf
->raid_disks
= mddev
->raid_disks
;
2812 conf
->mddev
= mddev
;
2813 INIT_LIST_HEAD(&conf
->retry_list
);
2815 spin_lock_init(&conf
->resync_lock
);
2816 init_waitqueue_head(&conf
->wait_barrier
);
2818 bio_list_init(&conf
->pending_bio_list
);
2819 conf
->pending_count
= 0;
2820 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
2822 conf
->start_next_window
= MaxSector
;
2823 conf
->current_window_requests
= conf
->next_window_requests
= 0;
2826 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2828 disk
= conf
->mirrors
+ i
;
2830 if (i
< conf
->raid_disks
&&
2831 disk
[conf
->raid_disks
].rdev
) {
2832 /* This slot has a replacement. */
2834 /* No original, just make the replacement
2835 * a recovering spare
2838 disk
[conf
->raid_disks
].rdev
;
2839 disk
[conf
->raid_disks
].rdev
= NULL
;
2840 } else if (!test_bit(In_sync
, &disk
->rdev
->flags
))
2841 /* Original is not in_sync - bad */
2846 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2847 disk
->head_position
= 0;
2849 (disk
->rdev
->saved_raid_disk
< 0))
2855 conf
->thread
= md_register_thread(raid1d
, mddev
, "raid1");
2856 if (!conf
->thread
) {
2858 "md/raid1:%s: couldn't allocate thread\n",
2867 if (conf
->r1bio_pool
)
2868 mempool_destroy(conf
->r1bio_pool
);
2869 kfree(conf
->mirrors
);
2870 safe_put_page(conf
->tmppage
);
2871 kfree(conf
->poolinfo
);
2874 return ERR_PTR(err
);
2877 static void raid1_free(struct mddev
*mddev
, void *priv
);
2878 static int run(struct mddev
*mddev
)
2880 struct r1conf
*conf
;
2882 struct md_rdev
*rdev
;
2884 bool discard_supported
= false;
2886 if (mddev
->level
!= 1) {
2887 printk(KERN_ERR
"md/raid1:%s: raid level not set to mirroring (%d)\n",
2888 mdname(mddev
), mddev
->level
);
2891 if (mddev
->reshape_position
!= MaxSector
) {
2892 printk(KERN_ERR
"md/raid1:%s: reshape_position set but not supported\n",
2897 * copy the already verified devices into our private RAID1
2898 * bookkeeping area. [whatever we allocate in run(),
2899 * should be freed in raid1_free()]
2901 if (mddev
->private == NULL
)
2902 conf
= setup_conf(mddev
);
2904 conf
= mddev
->private;
2907 return PTR_ERR(conf
);
2910 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
2912 rdev_for_each(rdev
, mddev
) {
2913 if (!mddev
->gendisk
)
2915 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2916 rdev
->data_offset
<< 9);
2917 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
2918 discard_supported
= true;
2921 mddev
->degraded
= 0;
2922 for (i
=0; i
< conf
->raid_disks
; i
++)
2923 if (conf
->mirrors
[i
].rdev
== NULL
||
2924 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
2925 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
2928 if (conf
->raid_disks
- mddev
->degraded
== 1)
2929 mddev
->recovery_cp
= MaxSector
;
2931 if (mddev
->recovery_cp
!= MaxSector
)
2932 printk(KERN_NOTICE
"md/raid1:%s: not clean"
2933 " -- starting background reconstruction\n",
2936 "md/raid1:%s: active with %d out of %d mirrors\n",
2937 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2941 * Ok, everything is just fine now
2943 mddev
->thread
= conf
->thread
;
2944 conf
->thread
= NULL
;
2945 mddev
->private = conf
;
2947 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
2950 if (discard_supported
)
2951 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
2954 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
2958 ret
= md_integrity_register(mddev
);
2960 md_unregister_thread(&mddev
->thread
);
2961 raid1_free(mddev
, conf
);
2966 static void raid1_free(struct mddev
*mddev
, void *priv
)
2968 struct r1conf
*conf
= priv
;
2970 if (conf
->r1bio_pool
)
2971 mempool_destroy(conf
->r1bio_pool
);
2972 kfree(conf
->mirrors
);
2973 safe_put_page(conf
->tmppage
);
2974 kfree(conf
->poolinfo
);
2978 static int raid1_resize(struct mddev
*mddev
, sector_t sectors
)
2980 /* no resync is happening, and there is enough space
2981 * on all devices, so we can resize.
2982 * We need to make sure resync covers any new space.
2983 * If the array is shrinking we should possibly wait until
2984 * any io in the removed space completes, but it hardly seems
2987 sector_t newsize
= raid1_size(mddev
, sectors
, 0);
2988 if (mddev
->external_size
&&
2989 mddev
->array_sectors
> newsize
)
2991 if (mddev
->bitmap
) {
2992 int ret
= bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
2996 md_set_array_sectors(mddev
, newsize
);
2997 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
2998 revalidate_disk(mddev
->gendisk
);
2999 if (sectors
> mddev
->dev_sectors
&&
3000 mddev
->recovery_cp
> mddev
->dev_sectors
) {
3001 mddev
->recovery_cp
= mddev
->dev_sectors
;
3002 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3004 mddev
->dev_sectors
= sectors
;
3005 mddev
->resync_max_sectors
= sectors
;
3009 static int raid1_reshape(struct mddev
*mddev
)
3012 * 1/ resize the r1bio_pool
3013 * 2/ resize conf->mirrors
3015 * We allocate a new r1bio_pool if we can.
3016 * Then raise a device barrier and wait until all IO stops.
3017 * Then resize conf->mirrors and swap in the new r1bio pool.
3019 * At the same time, we "pack" the devices so that all the missing
3020 * devices have the higher raid_disk numbers.
3022 mempool_t
*newpool
, *oldpool
;
3023 struct pool_info
*newpoolinfo
;
3024 struct raid1_info
*newmirrors
;
3025 struct r1conf
*conf
= mddev
->private;
3026 int cnt
, raid_disks
;
3027 unsigned long flags
;
3030 /* Cannot change chunk_size, layout, or level */
3031 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
3032 mddev
->layout
!= mddev
->new_layout
||
3033 mddev
->level
!= mddev
->new_level
) {
3034 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3035 mddev
->new_layout
= mddev
->layout
;
3036 mddev
->new_level
= mddev
->level
;
3040 err
= md_allow_write(mddev
);
3044 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3046 if (raid_disks
< conf
->raid_disks
) {
3048 for (d
= 0; d
< conf
->raid_disks
; d
++)
3049 if (conf
->mirrors
[d
].rdev
)
3051 if (cnt
> raid_disks
)
3055 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
3058 newpoolinfo
->mddev
= mddev
;
3059 newpoolinfo
->raid_disks
= raid_disks
* 2;
3061 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
3062 r1bio_pool_free
, newpoolinfo
);
3067 newmirrors
= kzalloc(sizeof(struct raid1_info
) * raid_disks
* 2,
3071 mempool_destroy(newpool
);
3075 freeze_array(conf
, 0);
3077 /* ok, everything is stopped */
3078 oldpool
= conf
->r1bio_pool
;
3079 conf
->r1bio_pool
= newpool
;
3081 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
3082 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
3083 if (rdev
&& rdev
->raid_disk
!= d2
) {
3084 sysfs_unlink_rdev(mddev
, rdev
);
3085 rdev
->raid_disk
= d2
;
3086 sysfs_unlink_rdev(mddev
, rdev
);
3087 if (sysfs_link_rdev(mddev
, rdev
))
3089 "md/raid1:%s: cannot register rd%d\n",
3090 mdname(mddev
), rdev
->raid_disk
);
3093 newmirrors
[d2
++].rdev
= rdev
;
3095 kfree(conf
->mirrors
);
3096 conf
->mirrors
= newmirrors
;
3097 kfree(conf
->poolinfo
);
3098 conf
->poolinfo
= newpoolinfo
;
3100 spin_lock_irqsave(&conf
->device_lock
, flags
);
3101 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
3102 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3103 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
3104 mddev
->delta_disks
= 0;
3106 unfreeze_array(conf
);
3108 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3109 md_wakeup_thread(mddev
->thread
);
3111 mempool_destroy(oldpool
);
3115 static void raid1_quiesce(struct mddev
*mddev
, int state
)
3117 struct r1conf
*conf
= mddev
->private;
3120 case 2: /* wake for suspend */
3121 wake_up(&conf
->wait_barrier
);
3124 freeze_array(conf
, 0);
3127 unfreeze_array(conf
);
3132 static void *raid1_takeover(struct mddev
*mddev
)
3134 /* raid1 can take over:
3135 * raid5 with 2 devices, any layout or chunk size
3137 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
3138 struct r1conf
*conf
;
3139 mddev
->new_level
= 1;
3140 mddev
->new_layout
= 0;
3141 mddev
->new_chunk_sectors
= 0;
3142 conf
= setup_conf(mddev
);
3144 /* Array must appear to be quiesced */
3145 conf
->array_frozen
= 1;
3148 return ERR_PTR(-EINVAL
);
3151 static struct md_personality raid1_personality
=
3155 .owner
= THIS_MODULE
,
3156 .make_request
= make_request
,
3160 .error_handler
= error
,
3161 .hot_add_disk
= raid1_add_disk
,
3162 .hot_remove_disk
= raid1_remove_disk
,
3163 .spare_active
= raid1_spare_active
,
3164 .sync_request
= sync_request
,
3165 .resize
= raid1_resize
,
3167 .check_reshape
= raid1_reshape
,
3168 .quiesce
= raid1_quiesce
,
3169 .takeover
= raid1_takeover
,
3170 .congested
= raid1_congested
,
3171 .mergeable_bvec
= raid1_mergeable_bvec
,
3174 static int __init
raid_init(void)
3176 return register_md_personality(&raid1_personality
);
3179 static void raid_exit(void)
3181 unregister_md_personality(&raid1_personality
);
3184 module_init(raid_init
);
3185 module_exit(raid_exit
);
3186 MODULE_LICENSE("GPL");
3187 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3188 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3189 MODULE_ALIAS("md-raid1");
3190 MODULE_ALIAS("md-level-1");
3192 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);