Bluetooth: hci_uart: Use generic functionality from Broadcom module
[linux/fpc-iii.git] / drivers / net / caif / caif_hsi.c
blobb3b922adc0e4f68ed15ff34537c21e1bd7e5e81f
1 /*
2 * Copyright (C) ST-Ericsson AB 2010
3 * Author: Daniel Martensson
4 * Dmitry.Tarnyagin / dmitry.tarnyagin@lockless.no
5 * License terms: GNU General Public License (GPL) version 2.
6 */
8 #define pr_fmt(fmt) KBUILD_MODNAME fmt
10 #include <linux/init.h>
11 #include <linux/module.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/string.h>
15 #include <linux/list.h>
16 #include <linux/interrupt.h>
17 #include <linux/delay.h>
18 #include <linux/sched.h>
19 #include <linux/if_arp.h>
20 #include <linux/timer.h>
21 #include <net/rtnetlink.h>
22 #include <linux/pkt_sched.h>
23 #include <net/caif/caif_layer.h>
24 #include <net/caif/caif_hsi.h>
26 MODULE_LICENSE("GPL");
27 MODULE_AUTHOR("Daniel Martensson");
28 MODULE_DESCRIPTION("CAIF HSI driver");
30 /* Returns the number of padding bytes for alignment. */
31 #define PAD_POW2(x, pow) ((((x)&((pow)-1)) == 0) ? 0 :\
32 (((pow)-((x)&((pow)-1)))))
34 static const struct cfhsi_config hsi_default_config = {
36 /* Inactivity timeout on HSI, ms */
37 .inactivity_timeout = HZ,
39 /* Aggregation timeout (ms) of zero means no aggregation is done*/
40 .aggregation_timeout = 1,
43 * HSI link layer flow-control thresholds.
44 * Threshold values for the HSI packet queue. Flow-control will be
45 * asserted when the number of packets exceeds q_high_mark. It will
46 * not be de-asserted before the number of packets drops below
47 * q_low_mark.
48 * Warning: A high threshold value might increase throughput but it
49 * will at the same time prevent channel prioritization and increase
50 * the risk of flooding the modem. The high threshold should be above
51 * the low.
53 .q_high_mark = 100,
54 .q_low_mark = 50,
57 * HSI padding options.
58 * Warning: must be a base of 2 (& operation used) and can not be zero !
60 .head_align = 4,
61 .tail_align = 4,
64 #define ON 1
65 #define OFF 0
67 static LIST_HEAD(cfhsi_list);
69 static void cfhsi_inactivity_tout(unsigned long arg)
71 struct cfhsi *cfhsi = (struct cfhsi *)arg;
73 netdev_dbg(cfhsi->ndev, "%s.\n",
74 __func__);
76 /* Schedule power down work queue. */
77 if (!test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
78 queue_work(cfhsi->wq, &cfhsi->wake_down_work);
81 static void cfhsi_update_aggregation_stats(struct cfhsi *cfhsi,
82 const struct sk_buff *skb,
83 int direction)
85 struct caif_payload_info *info;
86 int hpad, tpad, len;
88 info = (struct caif_payload_info *)&skb->cb;
89 hpad = 1 + PAD_POW2((info->hdr_len + 1), cfhsi->cfg.head_align);
90 tpad = PAD_POW2((skb->len + hpad), cfhsi->cfg.tail_align);
91 len = skb->len + hpad + tpad;
93 if (direction > 0)
94 cfhsi->aggregation_len += len;
95 else if (direction < 0)
96 cfhsi->aggregation_len -= len;
99 static bool cfhsi_can_send_aggregate(struct cfhsi *cfhsi)
101 int i;
103 if (cfhsi->cfg.aggregation_timeout == 0)
104 return true;
106 for (i = 0; i < CFHSI_PRIO_BEBK; ++i) {
107 if (cfhsi->qhead[i].qlen)
108 return true;
111 /* TODO: Use aggregation_len instead */
112 if (cfhsi->qhead[CFHSI_PRIO_BEBK].qlen >= CFHSI_MAX_PKTS)
113 return true;
115 return false;
118 static struct sk_buff *cfhsi_dequeue(struct cfhsi *cfhsi)
120 struct sk_buff *skb;
121 int i;
123 for (i = 0; i < CFHSI_PRIO_LAST; ++i) {
124 skb = skb_dequeue(&cfhsi->qhead[i]);
125 if (skb)
126 break;
129 return skb;
132 static int cfhsi_tx_queue_len(struct cfhsi *cfhsi)
134 int i, len = 0;
135 for (i = 0; i < CFHSI_PRIO_LAST; ++i)
136 len += skb_queue_len(&cfhsi->qhead[i]);
137 return len;
140 static void cfhsi_abort_tx(struct cfhsi *cfhsi)
142 struct sk_buff *skb;
144 for (;;) {
145 spin_lock_bh(&cfhsi->lock);
146 skb = cfhsi_dequeue(cfhsi);
147 if (!skb)
148 break;
150 cfhsi->ndev->stats.tx_errors++;
151 cfhsi->ndev->stats.tx_dropped++;
152 cfhsi_update_aggregation_stats(cfhsi, skb, -1);
153 spin_unlock_bh(&cfhsi->lock);
154 kfree_skb(skb);
156 cfhsi->tx_state = CFHSI_TX_STATE_IDLE;
157 if (!test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
158 mod_timer(&cfhsi->inactivity_timer,
159 jiffies + cfhsi->cfg.inactivity_timeout);
160 spin_unlock_bh(&cfhsi->lock);
163 static int cfhsi_flush_fifo(struct cfhsi *cfhsi)
165 char buffer[32]; /* Any reasonable value */
166 size_t fifo_occupancy;
167 int ret;
169 netdev_dbg(cfhsi->ndev, "%s.\n",
170 __func__);
172 do {
173 ret = cfhsi->ops->cfhsi_fifo_occupancy(cfhsi->ops,
174 &fifo_occupancy);
175 if (ret) {
176 netdev_warn(cfhsi->ndev,
177 "%s: can't get FIFO occupancy: %d.\n",
178 __func__, ret);
179 break;
180 } else if (!fifo_occupancy)
181 /* No more data, exitting normally */
182 break;
184 fifo_occupancy = min(sizeof(buffer), fifo_occupancy);
185 set_bit(CFHSI_FLUSH_FIFO, &cfhsi->bits);
186 ret = cfhsi->ops->cfhsi_rx(buffer, fifo_occupancy,
187 cfhsi->ops);
188 if (ret) {
189 clear_bit(CFHSI_FLUSH_FIFO, &cfhsi->bits);
190 netdev_warn(cfhsi->ndev,
191 "%s: can't read data: %d.\n",
192 __func__, ret);
193 break;
196 ret = 5 * HZ;
197 ret = wait_event_interruptible_timeout(cfhsi->flush_fifo_wait,
198 !test_bit(CFHSI_FLUSH_FIFO, &cfhsi->bits), ret);
200 if (ret < 0) {
201 netdev_warn(cfhsi->ndev,
202 "%s: can't wait for flush complete: %d.\n",
203 __func__, ret);
204 break;
205 } else if (!ret) {
206 ret = -ETIMEDOUT;
207 netdev_warn(cfhsi->ndev,
208 "%s: timeout waiting for flush complete.\n",
209 __func__);
210 break;
212 } while (1);
214 return ret;
217 static int cfhsi_tx_frm(struct cfhsi_desc *desc, struct cfhsi *cfhsi)
219 int nfrms = 0;
220 int pld_len = 0;
221 struct sk_buff *skb;
222 u8 *pfrm = desc->emb_frm + CFHSI_MAX_EMB_FRM_SZ;
224 skb = cfhsi_dequeue(cfhsi);
225 if (!skb)
226 return 0;
228 /* Clear offset. */
229 desc->offset = 0;
231 /* Check if we can embed a CAIF frame. */
232 if (skb->len < CFHSI_MAX_EMB_FRM_SZ) {
233 struct caif_payload_info *info;
234 int hpad;
235 int tpad;
237 /* Calculate needed head alignment and tail alignment. */
238 info = (struct caif_payload_info *)&skb->cb;
240 hpad = 1 + PAD_POW2((info->hdr_len + 1), cfhsi->cfg.head_align);
241 tpad = PAD_POW2((skb->len + hpad), cfhsi->cfg.tail_align);
243 /* Check if frame still fits with added alignment. */
244 if ((skb->len + hpad + tpad) <= CFHSI_MAX_EMB_FRM_SZ) {
245 u8 *pemb = desc->emb_frm;
246 desc->offset = CFHSI_DESC_SHORT_SZ;
247 *pemb = (u8)(hpad - 1);
248 pemb += hpad;
250 /* Update network statistics. */
251 spin_lock_bh(&cfhsi->lock);
252 cfhsi->ndev->stats.tx_packets++;
253 cfhsi->ndev->stats.tx_bytes += skb->len;
254 cfhsi_update_aggregation_stats(cfhsi, skb, -1);
255 spin_unlock_bh(&cfhsi->lock);
257 /* Copy in embedded CAIF frame. */
258 skb_copy_bits(skb, 0, pemb, skb->len);
260 /* Consume the SKB */
261 consume_skb(skb);
262 skb = NULL;
266 /* Create payload CAIF frames. */
267 pfrm = desc->emb_frm + CFHSI_MAX_EMB_FRM_SZ;
268 while (nfrms < CFHSI_MAX_PKTS) {
269 struct caif_payload_info *info;
270 int hpad;
271 int tpad;
273 if (!skb)
274 skb = cfhsi_dequeue(cfhsi);
276 if (!skb)
277 break;
279 /* Calculate needed head alignment and tail alignment. */
280 info = (struct caif_payload_info *)&skb->cb;
282 hpad = 1 + PAD_POW2((info->hdr_len + 1), cfhsi->cfg.head_align);
283 tpad = PAD_POW2((skb->len + hpad), cfhsi->cfg.tail_align);
285 /* Fill in CAIF frame length in descriptor. */
286 desc->cffrm_len[nfrms] = hpad + skb->len + tpad;
288 /* Fill head padding information. */
289 *pfrm = (u8)(hpad - 1);
290 pfrm += hpad;
292 /* Update network statistics. */
293 spin_lock_bh(&cfhsi->lock);
294 cfhsi->ndev->stats.tx_packets++;
295 cfhsi->ndev->stats.tx_bytes += skb->len;
296 cfhsi_update_aggregation_stats(cfhsi, skb, -1);
297 spin_unlock_bh(&cfhsi->lock);
299 /* Copy in CAIF frame. */
300 skb_copy_bits(skb, 0, pfrm, skb->len);
302 /* Update payload length. */
303 pld_len += desc->cffrm_len[nfrms];
305 /* Update frame pointer. */
306 pfrm += skb->len + tpad;
308 /* Consume the SKB */
309 consume_skb(skb);
310 skb = NULL;
312 /* Update number of frames. */
313 nfrms++;
316 /* Unused length fields should be zero-filled (according to SPEC). */
317 while (nfrms < CFHSI_MAX_PKTS) {
318 desc->cffrm_len[nfrms] = 0x0000;
319 nfrms++;
322 /* Check if we can piggy-back another descriptor. */
323 if (cfhsi_can_send_aggregate(cfhsi))
324 desc->header |= CFHSI_PIGGY_DESC;
325 else
326 desc->header &= ~CFHSI_PIGGY_DESC;
328 return CFHSI_DESC_SZ + pld_len;
331 static void cfhsi_start_tx(struct cfhsi *cfhsi)
333 struct cfhsi_desc *desc = (struct cfhsi_desc *)cfhsi->tx_buf;
334 int len, res;
336 netdev_dbg(cfhsi->ndev, "%s.\n", __func__);
338 if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
339 return;
341 do {
342 /* Create HSI frame. */
343 len = cfhsi_tx_frm(desc, cfhsi);
344 if (!len) {
345 spin_lock_bh(&cfhsi->lock);
346 if (unlikely(cfhsi_tx_queue_len(cfhsi))) {
347 spin_unlock_bh(&cfhsi->lock);
348 res = -EAGAIN;
349 continue;
351 cfhsi->tx_state = CFHSI_TX_STATE_IDLE;
352 /* Start inactivity timer. */
353 mod_timer(&cfhsi->inactivity_timer,
354 jiffies + cfhsi->cfg.inactivity_timeout);
355 spin_unlock_bh(&cfhsi->lock);
356 break;
359 /* Set up new transfer. */
360 res = cfhsi->ops->cfhsi_tx(cfhsi->tx_buf, len, cfhsi->ops);
361 if (WARN_ON(res < 0))
362 netdev_err(cfhsi->ndev, "%s: TX error %d.\n",
363 __func__, res);
364 } while (res < 0);
367 static void cfhsi_tx_done(struct cfhsi *cfhsi)
369 netdev_dbg(cfhsi->ndev, "%s.\n", __func__);
371 if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
372 return;
375 * Send flow on if flow off has been previously signalled
376 * and number of packets is below low water mark.
378 spin_lock_bh(&cfhsi->lock);
379 if (cfhsi->flow_off_sent &&
380 cfhsi_tx_queue_len(cfhsi) <= cfhsi->cfg.q_low_mark &&
381 cfhsi->cfdev.flowctrl) {
383 cfhsi->flow_off_sent = 0;
384 cfhsi->cfdev.flowctrl(cfhsi->ndev, ON);
387 if (cfhsi_can_send_aggregate(cfhsi)) {
388 spin_unlock_bh(&cfhsi->lock);
389 cfhsi_start_tx(cfhsi);
390 } else {
391 mod_timer(&cfhsi->aggregation_timer,
392 jiffies + cfhsi->cfg.aggregation_timeout);
393 spin_unlock_bh(&cfhsi->lock);
396 return;
399 static void cfhsi_tx_done_cb(struct cfhsi_cb_ops *cb_ops)
401 struct cfhsi *cfhsi;
403 cfhsi = container_of(cb_ops, struct cfhsi, cb_ops);
404 netdev_dbg(cfhsi->ndev, "%s.\n",
405 __func__);
407 if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
408 return;
409 cfhsi_tx_done(cfhsi);
412 static int cfhsi_rx_desc(struct cfhsi_desc *desc, struct cfhsi *cfhsi)
414 int xfer_sz = 0;
415 int nfrms = 0;
416 u16 *plen = NULL;
417 u8 *pfrm = NULL;
419 if ((desc->header & ~CFHSI_PIGGY_DESC) ||
420 (desc->offset > CFHSI_MAX_EMB_FRM_SZ)) {
421 netdev_err(cfhsi->ndev, "%s: Invalid descriptor.\n",
422 __func__);
423 return -EPROTO;
426 /* Check for embedded CAIF frame. */
427 if (desc->offset) {
428 struct sk_buff *skb;
429 u8 *dst = NULL;
430 int len = 0;
431 pfrm = ((u8 *)desc) + desc->offset;
433 /* Remove offset padding. */
434 pfrm += *pfrm + 1;
436 /* Read length of CAIF frame (little endian). */
437 len = *pfrm;
438 len |= ((*(pfrm+1)) << 8) & 0xFF00;
439 len += 2; /* Add FCS fields. */
441 /* Sanity check length of CAIF frame. */
442 if (unlikely(len > CFHSI_MAX_CAIF_FRAME_SZ)) {
443 netdev_err(cfhsi->ndev, "%s: Invalid length.\n",
444 __func__);
445 return -EPROTO;
448 /* Allocate SKB (OK even in IRQ context). */
449 skb = alloc_skb(len + 1, GFP_ATOMIC);
450 if (!skb) {
451 netdev_err(cfhsi->ndev, "%s: Out of memory !\n",
452 __func__);
453 return -ENOMEM;
455 caif_assert(skb != NULL);
457 dst = skb_put(skb, len);
458 memcpy(dst, pfrm, len);
460 skb->protocol = htons(ETH_P_CAIF);
461 skb_reset_mac_header(skb);
462 skb->dev = cfhsi->ndev;
465 * We are in a callback handler and
466 * unfortunately we don't know what context we're
467 * running in.
469 if (in_interrupt())
470 netif_rx(skb);
471 else
472 netif_rx_ni(skb);
474 /* Update network statistics. */
475 cfhsi->ndev->stats.rx_packets++;
476 cfhsi->ndev->stats.rx_bytes += len;
479 /* Calculate transfer length. */
480 plen = desc->cffrm_len;
481 while (nfrms < CFHSI_MAX_PKTS && *plen) {
482 xfer_sz += *plen;
483 plen++;
484 nfrms++;
487 /* Check for piggy-backed descriptor. */
488 if (desc->header & CFHSI_PIGGY_DESC)
489 xfer_sz += CFHSI_DESC_SZ;
491 if ((xfer_sz % 4) || (xfer_sz > (CFHSI_BUF_SZ_RX - CFHSI_DESC_SZ))) {
492 netdev_err(cfhsi->ndev,
493 "%s: Invalid payload len: %d, ignored.\n",
494 __func__, xfer_sz);
495 return -EPROTO;
497 return xfer_sz;
500 static int cfhsi_rx_desc_len(struct cfhsi_desc *desc)
502 int xfer_sz = 0;
503 int nfrms = 0;
504 u16 *plen;
506 if ((desc->header & ~CFHSI_PIGGY_DESC) ||
507 (desc->offset > CFHSI_MAX_EMB_FRM_SZ)) {
509 pr_err("Invalid descriptor. %x %x\n", desc->header,
510 desc->offset);
511 return -EPROTO;
514 /* Calculate transfer length. */
515 plen = desc->cffrm_len;
516 while (nfrms < CFHSI_MAX_PKTS && *plen) {
517 xfer_sz += *plen;
518 plen++;
519 nfrms++;
522 if (xfer_sz % 4) {
523 pr_err("Invalid payload len: %d, ignored.\n", xfer_sz);
524 return -EPROTO;
526 return xfer_sz;
529 static int cfhsi_rx_pld(struct cfhsi_desc *desc, struct cfhsi *cfhsi)
531 int rx_sz = 0;
532 int nfrms = 0;
533 u16 *plen = NULL;
534 u8 *pfrm = NULL;
536 /* Sanity check header and offset. */
537 if (WARN_ON((desc->header & ~CFHSI_PIGGY_DESC) ||
538 (desc->offset > CFHSI_MAX_EMB_FRM_SZ))) {
539 netdev_err(cfhsi->ndev, "%s: Invalid descriptor.\n",
540 __func__);
541 return -EPROTO;
544 /* Set frame pointer to start of payload. */
545 pfrm = desc->emb_frm + CFHSI_MAX_EMB_FRM_SZ;
546 plen = desc->cffrm_len;
548 /* Skip already processed frames. */
549 while (nfrms < cfhsi->rx_state.nfrms) {
550 pfrm += *plen;
551 rx_sz += *plen;
552 plen++;
553 nfrms++;
556 /* Parse payload. */
557 while (nfrms < CFHSI_MAX_PKTS && *plen) {
558 struct sk_buff *skb;
559 u8 *dst = NULL;
560 u8 *pcffrm = NULL;
561 int len;
563 /* CAIF frame starts after head padding. */
564 pcffrm = pfrm + *pfrm + 1;
566 /* Read length of CAIF frame (little endian). */
567 len = *pcffrm;
568 len |= ((*(pcffrm + 1)) << 8) & 0xFF00;
569 len += 2; /* Add FCS fields. */
571 /* Sanity check length of CAIF frames. */
572 if (unlikely(len > CFHSI_MAX_CAIF_FRAME_SZ)) {
573 netdev_err(cfhsi->ndev, "%s: Invalid length.\n",
574 __func__);
575 return -EPROTO;
578 /* Allocate SKB (OK even in IRQ context). */
579 skb = alloc_skb(len + 1, GFP_ATOMIC);
580 if (!skb) {
581 netdev_err(cfhsi->ndev, "%s: Out of memory !\n",
582 __func__);
583 cfhsi->rx_state.nfrms = nfrms;
584 return -ENOMEM;
586 caif_assert(skb != NULL);
588 dst = skb_put(skb, len);
589 memcpy(dst, pcffrm, len);
591 skb->protocol = htons(ETH_P_CAIF);
592 skb_reset_mac_header(skb);
593 skb->dev = cfhsi->ndev;
596 * We're called in callback from HSI
597 * and don't know the context we're running in.
599 if (in_interrupt())
600 netif_rx(skb);
601 else
602 netif_rx_ni(skb);
604 /* Update network statistics. */
605 cfhsi->ndev->stats.rx_packets++;
606 cfhsi->ndev->stats.rx_bytes += len;
608 pfrm += *plen;
609 rx_sz += *plen;
610 plen++;
611 nfrms++;
614 return rx_sz;
617 static void cfhsi_rx_done(struct cfhsi *cfhsi)
619 int res;
620 int desc_pld_len = 0, rx_len, rx_state;
621 struct cfhsi_desc *desc = NULL;
622 u8 *rx_ptr, *rx_buf;
623 struct cfhsi_desc *piggy_desc = NULL;
625 desc = (struct cfhsi_desc *)cfhsi->rx_buf;
627 netdev_dbg(cfhsi->ndev, "%s\n", __func__);
629 if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
630 return;
632 /* Update inactivity timer if pending. */
633 spin_lock_bh(&cfhsi->lock);
634 mod_timer_pending(&cfhsi->inactivity_timer,
635 jiffies + cfhsi->cfg.inactivity_timeout);
636 spin_unlock_bh(&cfhsi->lock);
638 if (cfhsi->rx_state.state == CFHSI_RX_STATE_DESC) {
639 desc_pld_len = cfhsi_rx_desc_len(desc);
641 if (desc_pld_len < 0)
642 goto out_of_sync;
644 rx_buf = cfhsi->rx_buf;
645 rx_len = desc_pld_len;
646 if (desc_pld_len > 0 && (desc->header & CFHSI_PIGGY_DESC))
647 rx_len += CFHSI_DESC_SZ;
648 if (desc_pld_len == 0)
649 rx_buf = cfhsi->rx_flip_buf;
650 } else {
651 rx_buf = cfhsi->rx_flip_buf;
653 rx_len = CFHSI_DESC_SZ;
654 if (cfhsi->rx_state.pld_len > 0 &&
655 (desc->header & CFHSI_PIGGY_DESC)) {
657 piggy_desc = (struct cfhsi_desc *)
658 (desc->emb_frm + CFHSI_MAX_EMB_FRM_SZ +
659 cfhsi->rx_state.pld_len);
661 cfhsi->rx_state.piggy_desc = true;
663 /* Extract payload len from piggy-backed descriptor. */
664 desc_pld_len = cfhsi_rx_desc_len(piggy_desc);
665 if (desc_pld_len < 0)
666 goto out_of_sync;
668 if (desc_pld_len > 0) {
669 rx_len = desc_pld_len;
670 if (piggy_desc->header & CFHSI_PIGGY_DESC)
671 rx_len += CFHSI_DESC_SZ;
675 * Copy needed information from the piggy-backed
676 * descriptor to the descriptor in the start.
678 memcpy(rx_buf, (u8 *)piggy_desc,
679 CFHSI_DESC_SHORT_SZ);
683 if (desc_pld_len) {
684 rx_state = CFHSI_RX_STATE_PAYLOAD;
685 rx_ptr = rx_buf + CFHSI_DESC_SZ;
686 } else {
687 rx_state = CFHSI_RX_STATE_DESC;
688 rx_ptr = rx_buf;
689 rx_len = CFHSI_DESC_SZ;
692 /* Initiate next read */
693 if (test_bit(CFHSI_AWAKE, &cfhsi->bits)) {
694 /* Set up new transfer. */
695 netdev_dbg(cfhsi->ndev, "%s: Start RX.\n",
696 __func__);
698 res = cfhsi->ops->cfhsi_rx(rx_ptr, rx_len,
699 cfhsi->ops);
700 if (WARN_ON(res < 0)) {
701 netdev_err(cfhsi->ndev, "%s: RX error %d.\n",
702 __func__, res);
703 cfhsi->ndev->stats.rx_errors++;
704 cfhsi->ndev->stats.rx_dropped++;
708 if (cfhsi->rx_state.state == CFHSI_RX_STATE_DESC) {
709 /* Extract payload from descriptor */
710 if (cfhsi_rx_desc(desc, cfhsi) < 0)
711 goto out_of_sync;
712 } else {
713 /* Extract payload */
714 if (cfhsi_rx_pld(desc, cfhsi) < 0)
715 goto out_of_sync;
716 if (piggy_desc) {
717 /* Extract any payload in piggyback descriptor. */
718 if (cfhsi_rx_desc(piggy_desc, cfhsi) < 0)
719 goto out_of_sync;
720 /* Mark no embedded frame after extracting it */
721 piggy_desc->offset = 0;
725 /* Update state info */
726 memset(&cfhsi->rx_state, 0, sizeof(cfhsi->rx_state));
727 cfhsi->rx_state.state = rx_state;
728 cfhsi->rx_ptr = rx_ptr;
729 cfhsi->rx_len = rx_len;
730 cfhsi->rx_state.pld_len = desc_pld_len;
731 cfhsi->rx_state.piggy_desc = desc->header & CFHSI_PIGGY_DESC;
733 if (rx_buf != cfhsi->rx_buf)
734 swap(cfhsi->rx_buf, cfhsi->rx_flip_buf);
735 return;
737 out_of_sync:
738 netdev_err(cfhsi->ndev, "%s: Out of sync.\n", __func__);
739 print_hex_dump_bytes("--> ", DUMP_PREFIX_NONE,
740 cfhsi->rx_buf, CFHSI_DESC_SZ);
741 schedule_work(&cfhsi->out_of_sync_work);
744 static void cfhsi_rx_slowpath(unsigned long arg)
746 struct cfhsi *cfhsi = (struct cfhsi *)arg;
748 netdev_dbg(cfhsi->ndev, "%s.\n",
749 __func__);
751 cfhsi_rx_done(cfhsi);
754 static void cfhsi_rx_done_cb(struct cfhsi_cb_ops *cb_ops)
756 struct cfhsi *cfhsi;
758 cfhsi = container_of(cb_ops, struct cfhsi, cb_ops);
759 netdev_dbg(cfhsi->ndev, "%s.\n",
760 __func__);
762 if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
763 return;
765 if (test_and_clear_bit(CFHSI_FLUSH_FIFO, &cfhsi->bits))
766 wake_up_interruptible(&cfhsi->flush_fifo_wait);
767 else
768 cfhsi_rx_done(cfhsi);
771 static void cfhsi_wake_up(struct work_struct *work)
773 struct cfhsi *cfhsi = NULL;
774 int res;
775 int len;
776 long ret;
778 cfhsi = container_of(work, struct cfhsi, wake_up_work);
780 if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
781 return;
783 if (unlikely(test_bit(CFHSI_AWAKE, &cfhsi->bits))) {
784 /* It happenes when wakeup is requested by
785 * both ends at the same time. */
786 clear_bit(CFHSI_WAKE_UP, &cfhsi->bits);
787 clear_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits);
788 return;
791 /* Activate wake line. */
792 cfhsi->ops->cfhsi_wake_up(cfhsi->ops);
794 netdev_dbg(cfhsi->ndev, "%s: Start waiting.\n",
795 __func__);
797 /* Wait for acknowledge. */
798 ret = CFHSI_WAKE_TOUT;
799 ret = wait_event_interruptible_timeout(cfhsi->wake_up_wait,
800 test_and_clear_bit(CFHSI_WAKE_UP_ACK,
801 &cfhsi->bits), ret);
802 if (unlikely(ret < 0)) {
803 /* Interrupted by signal. */
804 netdev_err(cfhsi->ndev, "%s: Signalled: %ld.\n",
805 __func__, ret);
807 clear_bit(CFHSI_WAKE_UP, &cfhsi->bits);
808 cfhsi->ops->cfhsi_wake_down(cfhsi->ops);
809 return;
810 } else if (!ret) {
811 bool ca_wake = false;
812 size_t fifo_occupancy = 0;
814 /* Wakeup timeout */
815 netdev_dbg(cfhsi->ndev, "%s: Timeout.\n",
816 __func__);
818 /* Check FIFO to check if modem has sent something. */
819 WARN_ON(cfhsi->ops->cfhsi_fifo_occupancy(cfhsi->ops,
820 &fifo_occupancy));
822 netdev_dbg(cfhsi->ndev, "%s: Bytes in FIFO: %u.\n",
823 __func__, (unsigned) fifo_occupancy);
825 /* Check if we misssed the interrupt. */
826 WARN_ON(cfhsi->ops->cfhsi_get_peer_wake(cfhsi->ops,
827 &ca_wake));
829 if (ca_wake) {
830 netdev_err(cfhsi->ndev, "%s: CA Wake missed !.\n",
831 __func__);
833 /* Clear the CFHSI_WAKE_UP_ACK bit to prevent race. */
834 clear_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits);
836 /* Continue execution. */
837 goto wake_ack;
840 clear_bit(CFHSI_WAKE_UP, &cfhsi->bits);
841 cfhsi->ops->cfhsi_wake_down(cfhsi->ops);
842 return;
844 wake_ack:
845 netdev_dbg(cfhsi->ndev, "%s: Woken.\n",
846 __func__);
848 /* Clear power up bit. */
849 set_bit(CFHSI_AWAKE, &cfhsi->bits);
850 clear_bit(CFHSI_WAKE_UP, &cfhsi->bits);
852 /* Resume read operation. */
853 netdev_dbg(cfhsi->ndev, "%s: Start RX.\n", __func__);
854 res = cfhsi->ops->cfhsi_rx(cfhsi->rx_ptr, cfhsi->rx_len, cfhsi->ops);
856 if (WARN_ON(res < 0))
857 netdev_err(cfhsi->ndev, "%s: RX err %d.\n", __func__, res);
859 /* Clear power up acknowledment. */
860 clear_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits);
862 spin_lock_bh(&cfhsi->lock);
864 /* Resume transmit if queues are not empty. */
865 if (!cfhsi_tx_queue_len(cfhsi)) {
866 netdev_dbg(cfhsi->ndev, "%s: Peer wake, start timer.\n",
867 __func__);
868 /* Start inactivity timer. */
869 mod_timer(&cfhsi->inactivity_timer,
870 jiffies + cfhsi->cfg.inactivity_timeout);
871 spin_unlock_bh(&cfhsi->lock);
872 return;
875 netdev_dbg(cfhsi->ndev, "%s: Host wake.\n",
876 __func__);
878 spin_unlock_bh(&cfhsi->lock);
880 /* Create HSI frame. */
881 len = cfhsi_tx_frm((struct cfhsi_desc *)cfhsi->tx_buf, cfhsi);
883 if (likely(len > 0)) {
884 /* Set up new transfer. */
885 res = cfhsi->ops->cfhsi_tx(cfhsi->tx_buf, len, cfhsi->ops);
886 if (WARN_ON(res < 0)) {
887 netdev_err(cfhsi->ndev, "%s: TX error %d.\n",
888 __func__, res);
889 cfhsi_abort_tx(cfhsi);
891 } else {
892 netdev_err(cfhsi->ndev,
893 "%s: Failed to create HSI frame: %d.\n",
894 __func__, len);
898 static void cfhsi_wake_down(struct work_struct *work)
900 long ret;
901 struct cfhsi *cfhsi = NULL;
902 size_t fifo_occupancy = 0;
903 int retry = CFHSI_WAKE_TOUT;
905 cfhsi = container_of(work, struct cfhsi, wake_down_work);
906 netdev_dbg(cfhsi->ndev, "%s.\n", __func__);
908 if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
909 return;
911 /* Deactivate wake line. */
912 cfhsi->ops->cfhsi_wake_down(cfhsi->ops);
914 /* Wait for acknowledge. */
915 ret = CFHSI_WAKE_TOUT;
916 ret = wait_event_interruptible_timeout(cfhsi->wake_down_wait,
917 test_and_clear_bit(CFHSI_WAKE_DOWN_ACK,
918 &cfhsi->bits), ret);
919 if (ret < 0) {
920 /* Interrupted by signal. */
921 netdev_err(cfhsi->ndev, "%s: Signalled: %ld.\n",
922 __func__, ret);
923 return;
924 } else if (!ret) {
925 bool ca_wake = true;
927 /* Timeout */
928 netdev_err(cfhsi->ndev, "%s: Timeout.\n", __func__);
930 /* Check if we misssed the interrupt. */
931 WARN_ON(cfhsi->ops->cfhsi_get_peer_wake(cfhsi->ops,
932 &ca_wake));
933 if (!ca_wake)
934 netdev_err(cfhsi->ndev, "%s: CA Wake missed !.\n",
935 __func__);
938 /* Check FIFO occupancy. */
939 while (retry) {
940 WARN_ON(cfhsi->ops->cfhsi_fifo_occupancy(cfhsi->ops,
941 &fifo_occupancy));
943 if (!fifo_occupancy)
944 break;
946 set_current_state(TASK_INTERRUPTIBLE);
947 schedule_timeout(1);
948 retry--;
951 if (!retry)
952 netdev_err(cfhsi->ndev, "%s: FIFO Timeout.\n", __func__);
954 /* Clear AWAKE condition. */
955 clear_bit(CFHSI_AWAKE, &cfhsi->bits);
957 /* Cancel pending RX requests. */
958 cfhsi->ops->cfhsi_rx_cancel(cfhsi->ops);
961 static void cfhsi_out_of_sync(struct work_struct *work)
963 struct cfhsi *cfhsi = NULL;
965 cfhsi = container_of(work, struct cfhsi, out_of_sync_work);
967 rtnl_lock();
968 dev_close(cfhsi->ndev);
969 rtnl_unlock();
972 static void cfhsi_wake_up_cb(struct cfhsi_cb_ops *cb_ops)
974 struct cfhsi *cfhsi = NULL;
976 cfhsi = container_of(cb_ops, struct cfhsi, cb_ops);
977 netdev_dbg(cfhsi->ndev, "%s.\n",
978 __func__);
980 set_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits);
981 wake_up_interruptible(&cfhsi->wake_up_wait);
983 if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
984 return;
986 /* Schedule wake up work queue if the peer initiates. */
987 if (!test_and_set_bit(CFHSI_WAKE_UP, &cfhsi->bits))
988 queue_work(cfhsi->wq, &cfhsi->wake_up_work);
991 static void cfhsi_wake_down_cb(struct cfhsi_cb_ops *cb_ops)
993 struct cfhsi *cfhsi = NULL;
995 cfhsi = container_of(cb_ops, struct cfhsi, cb_ops);
996 netdev_dbg(cfhsi->ndev, "%s.\n",
997 __func__);
999 /* Initiating low power is only permitted by the host (us). */
1000 set_bit(CFHSI_WAKE_DOWN_ACK, &cfhsi->bits);
1001 wake_up_interruptible(&cfhsi->wake_down_wait);
1004 static void cfhsi_aggregation_tout(unsigned long arg)
1006 struct cfhsi *cfhsi = (struct cfhsi *)arg;
1008 netdev_dbg(cfhsi->ndev, "%s.\n",
1009 __func__);
1011 cfhsi_start_tx(cfhsi);
1014 static int cfhsi_xmit(struct sk_buff *skb, struct net_device *dev)
1016 struct cfhsi *cfhsi = NULL;
1017 int start_xfer = 0;
1018 int timer_active;
1019 int prio;
1021 if (!dev)
1022 return -EINVAL;
1024 cfhsi = netdev_priv(dev);
1026 switch (skb->priority) {
1027 case TC_PRIO_BESTEFFORT:
1028 case TC_PRIO_FILLER:
1029 case TC_PRIO_BULK:
1030 prio = CFHSI_PRIO_BEBK;
1031 break;
1032 case TC_PRIO_INTERACTIVE_BULK:
1033 prio = CFHSI_PRIO_VI;
1034 break;
1035 case TC_PRIO_INTERACTIVE:
1036 prio = CFHSI_PRIO_VO;
1037 break;
1038 case TC_PRIO_CONTROL:
1039 default:
1040 prio = CFHSI_PRIO_CTL;
1041 break;
1044 spin_lock_bh(&cfhsi->lock);
1046 /* Update aggregation statistics */
1047 cfhsi_update_aggregation_stats(cfhsi, skb, 1);
1049 /* Queue the SKB */
1050 skb_queue_tail(&cfhsi->qhead[prio], skb);
1052 /* Sanity check; xmit should not be called after unregister_netdev */
1053 if (WARN_ON(test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))) {
1054 spin_unlock_bh(&cfhsi->lock);
1055 cfhsi_abort_tx(cfhsi);
1056 return -EINVAL;
1059 /* Send flow off if number of packets is above high water mark. */
1060 if (!cfhsi->flow_off_sent &&
1061 cfhsi_tx_queue_len(cfhsi) > cfhsi->cfg.q_high_mark &&
1062 cfhsi->cfdev.flowctrl) {
1063 cfhsi->flow_off_sent = 1;
1064 cfhsi->cfdev.flowctrl(cfhsi->ndev, OFF);
1067 if (cfhsi->tx_state == CFHSI_TX_STATE_IDLE) {
1068 cfhsi->tx_state = CFHSI_TX_STATE_XFER;
1069 start_xfer = 1;
1072 if (!start_xfer) {
1073 /* Send aggregate if it is possible */
1074 bool aggregate_ready =
1075 cfhsi_can_send_aggregate(cfhsi) &&
1076 del_timer(&cfhsi->aggregation_timer) > 0;
1077 spin_unlock_bh(&cfhsi->lock);
1078 if (aggregate_ready)
1079 cfhsi_start_tx(cfhsi);
1080 return 0;
1083 /* Delete inactivity timer if started. */
1084 timer_active = del_timer_sync(&cfhsi->inactivity_timer);
1086 spin_unlock_bh(&cfhsi->lock);
1088 if (timer_active) {
1089 struct cfhsi_desc *desc = (struct cfhsi_desc *)cfhsi->tx_buf;
1090 int len;
1091 int res;
1093 /* Create HSI frame. */
1094 len = cfhsi_tx_frm(desc, cfhsi);
1095 WARN_ON(!len);
1097 /* Set up new transfer. */
1098 res = cfhsi->ops->cfhsi_tx(cfhsi->tx_buf, len, cfhsi->ops);
1099 if (WARN_ON(res < 0)) {
1100 netdev_err(cfhsi->ndev, "%s: TX error %d.\n",
1101 __func__, res);
1102 cfhsi_abort_tx(cfhsi);
1104 } else {
1105 /* Schedule wake up work queue if the we initiate. */
1106 if (!test_and_set_bit(CFHSI_WAKE_UP, &cfhsi->bits))
1107 queue_work(cfhsi->wq, &cfhsi->wake_up_work);
1110 return 0;
1113 static const struct net_device_ops cfhsi_netdevops;
1115 static void cfhsi_setup(struct net_device *dev)
1117 int i;
1118 struct cfhsi *cfhsi = netdev_priv(dev);
1119 dev->features = 0;
1120 dev->type = ARPHRD_CAIF;
1121 dev->flags = IFF_POINTOPOINT | IFF_NOARP;
1122 dev->mtu = CFHSI_MAX_CAIF_FRAME_SZ;
1123 dev->tx_queue_len = 0;
1124 dev->destructor = free_netdev;
1125 dev->netdev_ops = &cfhsi_netdevops;
1126 for (i = 0; i < CFHSI_PRIO_LAST; ++i)
1127 skb_queue_head_init(&cfhsi->qhead[i]);
1128 cfhsi->cfdev.link_select = CAIF_LINK_HIGH_BANDW;
1129 cfhsi->cfdev.use_frag = false;
1130 cfhsi->cfdev.use_stx = false;
1131 cfhsi->cfdev.use_fcs = false;
1132 cfhsi->ndev = dev;
1133 cfhsi->cfg = hsi_default_config;
1136 static int cfhsi_open(struct net_device *ndev)
1138 struct cfhsi *cfhsi = netdev_priv(ndev);
1139 int res;
1141 clear_bit(CFHSI_SHUTDOWN, &cfhsi->bits);
1143 /* Initialize state vaiables. */
1144 cfhsi->tx_state = CFHSI_TX_STATE_IDLE;
1145 cfhsi->rx_state.state = CFHSI_RX_STATE_DESC;
1147 /* Set flow info */
1148 cfhsi->flow_off_sent = 0;
1151 * Allocate a TX buffer with the size of a HSI packet descriptors
1152 * and the necessary room for CAIF payload frames.
1154 cfhsi->tx_buf = kzalloc(CFHSI_BUF_SZ_TX, GFP_KERNEL);
1155 if (!cfhsi->tx_buf) {
1156 res = -ENODEV;
1157 goto err_alloc_tx;
1161 * Allocate a RX buffer with the size of two HSI packet descriptors and
1162 * the necessary room for CAIF payload frames.
1164 cfhsi->rx_buf = kzalloc(CFHSI_BUF_SZ_RX, GFP_KERNEL);
1165 if (!cfhsi->rx_buf) {
1166 res = -ENODEV;
1167 goto err_alloc_rx;
1170 cfhsi->rx_flip_buf = kzalloc(CFHSI_BUF_SZ_RX, GFP_KERNEL);
1171 if (!cfhsi->rx_flip_buf) {
1172 res = -ENODEV;
1173 goto err_alloc_rx_flip;
1176 /* Initialize aggregation timeout */
1177 cfhsi->cfg.aggregation_timeout = hsi_default_config.aggregation_timeout;
1179 /* Initialize recieve vaiables. */
1180 cfhsi->rx_ptr = cfhsi->rx_buf;
1181 cfhsi->rx_len = CFHSI_DESC_SZ;
1183 /* Initialize spin locks. */
1184 spin_lock_init(&cfhsi->lock);
1186 /* Set up the driver. */
1187 cfhsi->cb_ops.tx_done_cb = cfhsi_tx_done_cb;
1188 cfhsi->cb_ops.rx_done_cb = cfhsi_rx_done_cb;
1189 cfhsi->cb_ops.wake_up_cb = cfhsi_wake_up_cb;
1190 cfhsi->cb_ops.wake_down_cb = cfhsi_wake_down_cb;
1192 /* Initialize the work queues. */
1193 INIT_WORK(&cfhsi->wake_up_work, cfhsi_wake_up);
1194 INIT_WORK(&cfhsi->wake_down_work, cfhsi_wake_down);
1195 INIT_WORK(&cfhsi->out_of_sync_work, cfhsi_out_of_sync);
1197 /* Clear all bit fields. */
1198 clear_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits);
1199 clear_bit(CFHSI_WAKE_DOWN_ACK, &cfhsi->bits);
1200 clear_bit(CFHSI_WAKE_UP, &cfhsi->bits);
1201 clear_bit(CFHSI_AWAKE, &cfhsi->bits);
1203 /* Create work thread. */
1204 cfhsi->wq = create_singlethread_workqueue(cfhsi->ndev->name);
1205 if (!cfhsi->wq) {
1206 netdev_err(cfhsi->ndev, "%s: Failed to create work queue.\n",
1207 __func__);
1208 res = -ENODEV;
1209 goto err_create_wq;
1212 /* Initialize wait queues. */
1213 init_waitqueue_head(&cfhsi->wake_up_wait);
1214 init_waitqueue_head(&cfhsi->wake_down_wait);
1215 init_waitqueue_head(&cfhsi->flush_fifo_wait);
1217 /* Setup the inactivity timer. */
1218 init_timer(&cfhsi->inactivity_timer);
1219 cfhsi->inactivity_timer.data = (unsigned long)cfhsi;
1220 cfhsi->inactivity_timer.function = cfhsi_inactivity_tout;
1221 /* Setup the slowpath RX timer. */
1222 init_timer(&cfhsi->rx_slowpath_timer);
1223 cfhsi->rx_slowpath_timer.data = (unsigned long)cfhsi;
1224 cfhsi->rx_slowpath_timer.function = cfhsi_rx_slowpath;
1225 /* Setup the aggregation timer. */
1226 init_timer(&cfhsi->aggregation_timer);
1227 cfhsi->aggregation_timer.data = (unsigned long)cfhsi;
1228 cfhsi->aggregation_timer.function = cfhsi_aggregation_tout;
1230 /* Activate HSI interface. */
1231 res = cfhsi->ops->cfhsi_up(cfhsi->ops);
1232 if (res) {
1233 netdev_err(cfhsi->ndev,
1234 "%s: can't activate HSI interface: %d.\n",
1235 __func__, res);
1236 goto err_activate;
1239 /* Flush FIFO */
1240 res = cfhsi_flush_fifo(cfhsi);
1241 if (res) {
1242 netdev_err(cfhsi->ndev, "%s: Can't flush FIFO: %d.\n",
1243 __func__, res);
1244 goto err_net_reg;
1246 return res;
1248 err_net_reg:
1249 cfhsi->ops->cfhsi_down(cfhsi->ops);
1250 err_activate:
1251 destroy_workqueue(cfhsi->wq);
1252 err_create_wq:
1253 kfree(cfhsi->rx_flip_buf);
1254 err_alloc_rx_flip:
1255 kfree(cfhsi->rx_buf);
1256 err_alloc_rx:
1257 kfree(cfhsi->tx_buf);
1258 err_alloc_tx:
1259 return res;
1262 static int cfhsi_close(struct net_device *ndev)
1264 struct cfhsi *cfhsi = netdev_priv(ndev);
1265 u8 *tx_buf, *rx_buf, *flip_buf;
1267 /* going to shutdown driver */
1268 set_bit(CFHSI_SHUTDOWN, &cfhsi->bits);
1270 /* Flush workqueue */
1271 flush_workqueue(cfhsi->wq);
1273 /* Delete timers if pending */
1274 del_timer_sync(&cfhsi->inactivity_timer);
1275 del_timer_sync(&cfhsi->rx_slowpath_timer);
1276 del_timer_sync(&cfhsi->aggregation_timer);
1278 /* Cancel pending RX request (if any) */
1279 cfhsi->ops->cfhsi_rx_cancel(cfhsi->ops);
1281 /* Destroy workqueue */
1282 destroy_workqueue(cfhsi->wq);
1284 /* Store bufferes: will be freed later. */
1285 tx_buf = cfhsi->tx_buf;
1286 rx_buf = cfhsi->rx_buf;
1287 flip_buf = cfhsi->rx_flip_buf;
1288 /* Flush transmit queues. */
1289 cfhsi_abort_tx(cfhsi);
1291 /* Deactivate interface */
1292 cfhsi->ops->cfhsi_down(cfhsi->ops);
1294 /* Free buffers. */
1295 kfree(tx_buf);
1296 kfree(rx_buf);
1297 kfree(flip_buf);
1298 return 0;
1301 static void cfhsi_uninit(struct net_device *dev)
1303 struct cfhsi *cfhsi = netdev_priv(dev);
1304 ASSERT_RTNL();
1305 symbol_put(cfhsi_get_device);
1306 list_del(&cfhsi->list);
1309 static const struct net_device_ops cfhsi_netdevops = {
1310 .ndo_uninit = cfhsi_uninit,
1311 .ndo_open = cfhsi_open,
1312 .ndo_stop = cfhsi_close,
1313 .ndo_start_xmit = cfhsi_xmit
1316 static void cfhsi_netlink_parms(struct nlattr *data[], struct cfhsi *cfhsi)
1318 int i;
1320 if (!data) {
1321 pr_debug("no params data found\n");
1322 return;
1325 i = __IFLA_CAIF_HSI_INACTIVITY_TOUT;
1327 * Inactivity timeout in millisecs. Lowest possible value is 1,
1328 * and highest possible is NEXT_TIMER_MAX_DELTA.
1330 if (data[i]) {
1331 u32 inactivity_timeout = nla_get_u32(data[i]);
1332 /* Pre-calculate inactivity timeout. */
1333 cfhsi->cfg.inactivity_timeout = inactivity_timeout * HZ / 1000;
1334 if (cfhsi->cfg.inactivity_timeout == 0)
1335 cfhsi->cfg.inactivity_timeout = 1;
1336 else if (cfhsi->cfg.inactivity_timeout > NEXT_TIMER_MAX_DELTA)
1337 cfhsi->cfg.inactivity_timeout = NEXT_TIMER_MAX_DELTA;
1340 i = __IFLA_CAIF_HSI_AGGREGATION_TOUT;
1341 if (data[i])
1342 cfhsi->cfg.aggregation_timeout = nla_get_u32(data[i]);
1344 i = __IFLA_CAIF_HSI_HEAD_ALIGN;
1345 if (data[i])
1346 cfhsi->cfg.head_align = nla_get_u32(data[i]);
1348 i = __IFLA_CAIF_HSI_TAIL_ALIGN;
1349 if (data[i])
1350 cfhsi->cfg.tail_align = nla_get_u32(data[i]);
1352 i = __IFLA_CAIF_HSI_QHIGH_WATERMARK;
1353 if (data[i])
1354 cfhsi->cfg.q_high_mark = nla_get_u32(data[i]);
1356 i = __IFLA_CAIF_HSI_QLOW_WATERMARK;
1357 if (data[i])
1358 cfhsi->cfg.q_low_mark = nla_get_u32(data[i]);
1361 static int caif_hsi_changelink(struct net_device *dev, struct nlattr *tb[],
1362 struct nlattr *data[])
1364 cfhsi_netlink_parms(data, netdev_priv(dev));
1365 netdev_state_change(dev);
1366 return 0;
1369 static const struct nla_policy caif_hsi_policy[__IFLA_CAIF_HSI_MAX + 1] = {
1370 [__IFLA_CAIF_HSI_INACTIVITY_TOUT] = { .type = NLA_U32, .len = 4 },
1371 [__IFLA_CAIF_HSI_AGGREGATION_TOUT] = { .type = NLA_U32, .len = 4 },
1372 [__IFLA_CAIF_HSI_HEAD_ALIGN] = { .type = NLA_U32, .len = 4 },
1373 [__IFLA_CAIF_HSI_TAIL_ALIGN] = { .type = NLA_U32, .len = 4 },
1374 [__IFLA_CAIF_HSI_QHIGH_WATERMARK] = { .type = NLA_U32, .len = 4 },
1375 [__IFLA_CAIF_HSI_QLOW_WATERMARK] = { .type = NLA_U32, .len = 4 },
1378 static size_t caif_hsi_get_size(const struct net_device *dev)
1380 int i;
1381 size_t s = 0;
1382 for (i = __IFLA_CAIF_HSI_UNSPEC + 1; i < __IFLA_CAIF_HSI_MAX; i++)
1383 s += nla_total_size(caif_hsi_policy[i].len);
1384 return s;
1387 static int caif_hsi_fill_info(struct sk_buff *skb, const struct net_device *dev)
1389 struct cfhsi *cfhsi = netdev_priv(dev);
1391 if (nla_put_u32(skb, __IFLA_CAIF_HSI_INACTIVITY_TOUT,
1392 cfhsi->cfg.inactivity_timeout) ||
1393 nla_put_u32(skb, __IFLA_CAIF_HSI_AGGREGATION_TOUT,
1394 cfhsi->cfg.aggregation_timeout) ||
1395 nla_put_u32(skb, __IFLA_CAIF_HSI_HEAD_ALIGN,
1396 cfhsi->cfg.head_align) ||
1397 nla_put_u32(skb, __IFLA_CAIF_HSI_TAIL_ALIGN,
1398 cfhsi->cfg.tail_align) ||
1399 nla_put_u32(skb, __IFLA_CAIF_HSI_QHIGH_WATERMARK,
1400 cfhsi->cfg.q_high_mark) ||
1401 nla_put_u32(skb, __IFLA_CAIF_HSI_QLOW_WATERMARK,
1402 cfhsi->cfg.q_low_mark))
1403 return -EMSGSIZE;
1405 return 0;
1408 static int caif_hsi_newlink(struct net *src_net, struct net_device *dev,
1409 struct nlattr *tb[], struct nlattr *data[])
1411 struct cfhsi *cfhsi = NULL;
1412 struct cfhsi_ops *(*get_ops)(void);
1414 ASSERT_RTNL();
1416 cfhsi = netdev_priv(dev);
1417 cfhsi_netlink_parms(data, cfhsi);
1419 get_ops = symbol_get(cfhsi_get_ops);
1420 if (!get_ops) {
1421 pr_err("%s: failed to get the cfhsi_ops\n", __func__);
1422 return -ENODEV;
1425 /* Assign the HSI device. */
1426 cfhsi->ops = (*get_ops)();
1427 if (!cfhsi->ops) {
1428 pr_err("%s: failed to get the cfhsi_ops\n", __func__);
1429 goto err;
1432 /* Assign the driver to this HSI device. */
1433 cfhsi->ops->cb_ops = &cfhsi->cb_ops;
1434 if (register_netdevice(dev)) {
1435 pr_warn("%s: caif_hsi device registration failed\n", __func__);
1436 goto err;
1438 /* Add CAIF HSI device to list. */
1439 list_add_tail(&cfhsi->list, &cfhsi_list);
1441 return 0;
1442 err:
1443 symbol_put(cfhsi_get_ops);
1444 return -ENODEV;
1447 static struct rtnl_link_ops caif_hsi_link_ops __read_mostly = {
1448 .kind = "cfhsi",
1449 .priv_size = sizeof(struct cfhsi),
1450 .setup = cfhsi_setup,
1451 .maxtype = __IFLA_CAIF_HSI_MAX,
1452 .policy = caif_hsi_policy,
1453 .newlink = caif_hsi_newlink,
1454 .changelink = caif_hsi_changelink,
1455 .get_size = caif_hsi_get_size,
1456 .fill_info = caif_hsi_fill_info,
1459 static void __exit cfhsi_exit_module(void)
1461 struct list_head *list_node;
1462 struct list_head *n;
1463 struct cfhsi *cfhsi;
1465 rtnl_link_unregister(&caif_hsi_link_ops);
1467 rtnl_lock();
1468 list_for_each_safe(list_node, n, &cfhsi_list) {
1469 cfhsi = list_entry(list_node, struct cfhsi, list);
1470 unregister_netdev(cfhsi->ndev);
1472 rtnl_unlock();
1475 static int __init cfhsi_init_module(void)
1477 return rtnl_link_register(&caif_hsi_link_ops);
1480 module_init(cfhsi_init_module);
1481 module_exit(cfhsi_exit_module);