Bluetooth: hci_uart: Use generic functionality from Broadcom module
[linux/fpc-iii.git] / drivers / net / irda / au1k_ir.c
blob44e4f386a5dc5e99757e329c8b105b7a0a3d8976
1 /*
2 * Alchemy Semi Au1000 IrDA driver
4 * Copyright 2001 MontaVista Software Inc.
5 * Author: MontaVista Software, Inc.
6 * ppopov@mvista.com or source@mvista.com
8 * This program is free software; you can distribute it and/or modify it
9 * under the terms of the GNU General Public License (Version 2) as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 * for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include <linux/clk.h>
22 #include <linux/module.h>
23 #include <linux/netdevice.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/slab.h>
27 #include <linux/types.h>
28 #include <linux/ioport.h>
30 #include <net/irda/irda.h>
31 #include <net/irda/irmod.h>
32 #include <net/irda/wrapper.h>
33 #include <net/irda/irda_device.h>
34 #include <asm/mach-au1x00/au1000.h>
36 /* registers */
37 #define IR_RING_PTR_STATUS 0x00
38 #define IR_RING_BASE_ADDR_H 0x04
39 #define IR_RING_BASE_ADDR_L 0x08
40 #define IR_RING_SIZE 0x0C
41 #define IR_RING_PROMPT 0x10
42 #define IR_RING_ADDR_CMPR 0x14
43 #define IR_INT_CLEAR 0x18
44 #define IR_CONFIG_1 0x20
45 #define IR_SIR_FLAGS 0x24
46 #define IR_STATUS 0x28
47 #define IR_READ_PHY_CONFIG 0x2C
48 #define IR_WRITE_PHY_CONFIG 0x30
49 #define IR_MAX_PKT_LEN 0x34
50 #define IR_RX_BYTE_CNT 0x38
51 #define IR_CONFIG_2 0x3C
52 #define IR_ENABLE 0x40
54 /* Config1 */
55 #define IR_RX_INVERT_LED (1 << 0)
56 #define IR_TX_INVERT_LED (1 << 1)
57 #define IR_ST (1 << 2)
58 #define IR_SF (1 << 3)
59 #define IR_SIR (1 << 4)
60 #define IR_MIR (1 << 5)
61 #define IR_FIR (1 << 6)
62 #define IR_16CRC (1 << 7)
63 #define IR_TD (1 << 8)
64 #define IR_RX_ALL (1 << 9)
65 #define IR_DMA_ENABLE (1 << 10)
66 #define IR_RX_ENABLE (1 << 11)
67 #define IR_TX_ENABLE (1 << 12)
68 #define IR_LOOPBACK (1 << 14)
69 #define IR_SIR_MODE (IR_SIR | IR_DMA_ENABLE | \
70 IR_RX_ALL | IR_RX_ENABLE | IR_SF | \
71 IR_16CRC)
73 /* ir_status */
74 #define IR_RX_STATUS (1 << 9)
75 #define IR_TX_STATUS (1 << 10)
76 #define IR_PHYEN (1 << 15)
78 /* ir_write_phy_config */
79 #define IR_BR(x) (((x) & 0x3f) << 10) /* baud rate */
80 #define IR_PW(x) (((x) & 0x1f) << 5) /* pulse width */
81 #define IR_P(x) ((x) & 0x1f) /* preamble bits */
83 /* Config2 */
84 #define IR_MODE_INV (1 << 0)
85 #define IR_ONE_PIN (1 << 1)
86 #define IR_PHYCLK_40MHZ (0 << 2)
87 #define IR_PHYCLK_48MHZ (1 << 2)
88 #define IR_PHYCLK_56MHZ (2 << 2)
89 #define IR_PHYCLK_64MHZ (3 << 2)
90 #define IR_DP (1 << 4)
91 #define IR_DA (1 << 5)
92 #define IR_FLT_HIGH (0 << 6)
93 #define IR_FLT_MEDHI (1 << 6)
94 #define IR_FLT_MEDLO (2 << 6)
95 #define IR_FLT_LO (3 << 6)
96 #define IR_IEN (1 << 8)
98 /* ir_enable */
99 #define IR_HC (1 << 3) /* divide SBUS clock by 2 */
100 #define IR_CE (1 << 2) /* clock enable */
101 #define IR_C (1 << 1) /* coherency bit */
102 #define IR_BE (1 << 0) /* set in big endian mode */
104 #define NUM_IR_DESC 64
105 #define RING_SIZE_4 0x0
106 #define RING_SIZE_16 0x3
107 #define RING_SIZE_64 0xF
108 #define MAX_NUM_IR_DESC 64
109 #define MAX_BUF_SIZE 2048
111 /* Ring descriptor flags */
112 #define AU_OWN (1 << 7) /* tx,rx */
113 #define IR_DIS_CRC (1 << 6) /* tx */
114 #define IR_BAD_CRC (1 << 5) /* tx */
115 #define IR_NEED_PULSE (1 << 4) /* tx */
116 #define IR_FORCE_UNDER (1 << 3) /* tx */
117 #define IR_DISABLE_TX (1 << 2) /* tx */
118 #define IR_HW_UNDER (1 << 0) /* tx */
119 #define IR_TX_ERROR (IR_DIS_CRC | IR_BAD_CRC | IR_HW_UNDER)
121 #define IR_PHY_ERROR (1 << 6) /* rx */
122 #define IR_CRC_ERROR (1 << 5) /* rx */
123 #define IR_MAX_LEN (1 << 4) /* rx */
124 #define IR_FIFO_OVER (1 << 3) /* rx */
125 #define IR_SIR_ERROR (1 << 2) /* rx */
126 #define IR_RX_ERROR (IR_PHY_ERROR | IR_CRC_ERROR | \
127 IR_MAX_LEN | IR_FIFO_OVER | IR_SIR_ERROR)
129 struct db_dest {
130 struct db_dest *pnext;
131 volatile u32 *vaddr;
132 dma_addr_t dma_addr;
135 struct ring_dest {
136 u8 count_0; /* 7:0 */
137 u8 count_1; /* 12:8 */
138 u8 reserved;
139 u8 flags;
140 u8 addr_0; /* 7:0 */
141 u8 addr_1; /* 15:8 */
142 u8 addr_2; /* 23:16 */
143 u8 addr_3; /* 31:24 */
146 /* Private data for each instance */
147 struct au1k_private {
148 void __iomem *iobase;
149 int irq_rx, irq_tx;
151 struct db_dest *pDBfree;
152 struct db_dest db[2 * NUM_IR_DESC];
153 volatile struct ring_dest *rx_ring[NUM_IR_DESC];
154 volatile struct ring_dest *tx_ring[NUM_IR_DESC];
155 struct db_dest *rx_db_inuse[NUM_IR_DESC];
156 struct db_dest *tx_db_inuse[NUM_IR_DESC];
157 u32 rx_head;
158 u32 tx_head;
159 u32 tx_tail;
160 u32 tx_full;
162 iobuff_t rx_buff;
164 struct net_device *netdev;
165 struct qos_info qos;
166 struct irlap_cb *irlap;
168 u8 open;
169 u32 speed;
170 u32 newspeed;
172 struct timer_list timer;
174 struct resource *ioarea;
175 struct au1k_irda_platform_data *platdata;
176 struct clk *irda_clk;
179 static int qos_mtt_bits = 0x07; /* 1 ms or more */
181 #define RUN_AT(x) (jiffies + (x))
183 static void au1k_irda_plat_set_phy_mode(struct au1k_private *p, int mode)
185 if (p->platdata && p->platdata->set_phy_mode)
186 p->platdata->set_phy_mode(mode);
189 static inline unsigned long irda_read(struct au1k_private *p,
190 unsigned long ofs)
193 * IrDA peripheral bug. You have to read the register
194 * twice to get the right value.
196 (void)__raw_readl(p->iobase + ofs);
197 return __raw_readl(p->iobase + ofs);
200 static inline void irda_write(struct au1k_private *p, unsigned long ofs,
201 unsigned long val)
203 __raw_writel(val, p->iobase + ofs);
204 wmb();
208 * Buffer allocation/deallocation routines. The buffer descriptor returned
209 * has the virtual and dma address of a buffer suitable for
210 * both, receive and transmit operations.
212 static struct db_dest *GetFreeDB(struct au1k_private *aup)
214 struct db_dest *db;
215 db = aup->pDBfree;
217 if (db)
218 aup->pDBfree = db->pnext;
219 return db;
223 DMA memory allocation, derived from pci_alloc_consistent.
224 However, the Au1000 data cache is coherent (when programmed
225 so), therefore we return KSEG0 address, not KSEG1.
227 static void *dma_alloc(size_t size, dma_addr_t *dma_handle)
229 void *ret;
230 int gfp = GFP_ATOMIC | GFP_DMA;
232 ret = (void *)__get_free_pages(gfp, get_order(size));
234 if (ret != NULL) {
235 memset(ret, 0, size);
236 *dma_handle = virt_to_bus(ret);
237 ret = (void *)KSEG0ADDR(ret);
239 return ret;
242 static void dma_free(void *vaddr, size_t size)
244 vaddr = (void *)KSEG0ADDR(vaddr);
245 free_pages((unsigned long) vaddr, get_order(size));
249 static void setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base)
251 int i;
252 for (i = 0; i < NUM_IR_DESC; i++) {
253 aup->rx_ring[i] = (volatile struct ring_dest *)
254 (rx_base + sizeof(struct ring_dest) * i);
256 for (i = 0; i < NUM_IR_DESC; i++) {
257 aup->tx_ring[i] = (volatile struct ring_dest *)
258 (tx_base + sizeof(struct ring_dest) * i);
262 static int au1k_irda_init_iobuf(iobuff_t *io, int size)
264 io->head = kmalloc(size, GFP_KERNEL);
265 if (io->head != NULL) {
266 io->truesize = size;
267 io->in_frame = FALSE;
268 io->state = OUTSIDE_FRAME;
269 io->data = io->head;
271 return io->head ? 0 : -ENOMEM;
275 * Set the IrDA communications speed.
277 static int au1k_irda_set_speed(struct net_device *dev, int speed)
279 struct au1k_private *aup = netdev_priv(dev);
280 volatile struct ring_dest *ptxd;
281 unsigned long control;
282 int ret = 0, timeout = 10, i;
284 if (speed == aup->speed)
285 return ret;
287 /* disable PHY first */
288 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
289 irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
291 /* disable RX/TX */
292 irda_write(aup, IR_CONFIG_1,
293 irda_read(aup, IR_CONFIG_1) & ~(IR_RX_ENABLE | IR_TX_ENABLE));
294 msleep(20);
295 while (irda_read(aup, IR_STATUS) & (IR_RX_STATUS | IR_TX_STATUS)) {
296 msleep(20);
297 if (!timeout--) {
298 printk(KERN_ERR "%s: rx/tx disable timeout\n",
299 dev->name);
300 break;
304 /* disable DMA */
305 irda_write(aup, IR_CONFIG_1,
306 irda_read(aup, IR_CONFIG_1) & ~IR_DMA_ENABLE);
307 msleep(20);
309 /* After we disable tx/rx. the index pointers go back to zero. */
310 aup->tx_head = aup->tx_tail = aup->rx_head = 0;
311 for (i = 0; i < NUM_IR_DESC; i++) {
312 ptxd = aup->tx_ring[i];
313 ptxd->flags = 0;
314 ptxd->count_0 = 0;
315 ptxd->count_1 = 0;
318 for (i = 0; i < NUM_IR_DESC; i++) {
319 ptxd = aup->rx_ring[i];
320 ptxd->count_0 = 0;
321 ptxd->count_1 = 0;
322 ptxd->flags = AU_OWN;
325 if (speed == 4000000)
326 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_FIR);
327 else
328 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
330 switch (speed) {
331 case 9600:
332 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(11) | IR_PW(12));
333 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
334 break;
335 case 19200:
336 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(5) | IR_PW(12));
337 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
338 break;
339 case 38400:
340 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(2) | IR_PW(12));
341 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
342 break;
343 case 57600:
344 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(1) | IR_PW(12));
345 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
346 break;
347 case 115200:
348 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_PW(12));
349 irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
350 break;
351 case 4000000:
352 irda_write(aup, IR_WRITE_PHY_CONFIG, IR_P(15));
353 irda_write(aup, IR_CONFIG_1, IR_FIR | IR_DMA_ENABLE |
354 IR_RX_ENABLE);
355 break;
356 default:
357 printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed);
358 ret = -EINVAL;
359 break;
362 aup->speed = speed;
363 irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) | IR_PHYEN);
365 control = irda_read(aup, IR_STATUS);
366 irda_write(aup, IR_RING_PROMPT, 0);
368 if (control & (1 << 14)) {
369 printk(KERN_ERR "%s: configuration error\n", dev->name);
370 } else {
371 if (control & (1 << 11))
372 printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
373 if (control & (1 << 12))
374 printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
375 if (control & (1 << 13))
376 printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
377 if (control & (1 << 10))
378 printk(KERN_DEBUG "%s TX enabled\n", dev->name);
379 if (control & (1 << 9))
380 printk(KERN_DEBUG "%s RX enabled\n", dev->name);
383 return ret;
386 static void update_rx_stats(struct net_device *dev, u32 status, u32 count)
388 struct net_device_stats *ps = &dev->stats;
390 ps->rx_packets++;
392 if (status & IR_RX_ERROR) {
393 ps->rx_errors++;
394 if (status & (IR_PHY_ERROR | IR_FIFO_OVER))
395 ps->rx_missed_errors++;
396 if (status & IR_MAX_LEN)
397 ps->rx_length_errors++;
398 if (status & IR_CRC_ERROR)
399 ps->rx_crc_errors++;
400 } else
401 ps->rx_bytes += count;
404 static void update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
406 struct net_device_stats *ps = &dev->stats;
408 ps->tx_packets++;
409 ps->tx_bytes += pkt_len;
411 if (status & IR_TX_ERROR) {
412 ps->tx_errors++;
413 ps->tx_aborted_errors++;
417 static void au1k_tx_ack(struct net_device *dev)
419 struct au1k_private *aup = netdev_priv(dev);
420 volatile struct ring_dest *ptxd;
422 ptxd = aup->tx_ring[aup->tx_tail];
423 while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) {
424 update_tx_stats(dev, ptxd->flags,
425 (ptxd->count_1 << 8) | ptxd->count_0);
426 ptxd->count_0 = 0;
427 ptxd->count_1 = 0;
428 wmb();
429 aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1);
430 ptxd = aup->tx_ring[aup->tx_tail];
432 if (aup->tx_full) {
433 aup->tx_full = 0;
434 netif_wake_queue(dev);
438 if (aup->tx_tail == aup->tx_head) {
439 if (aup->newspeed) {
440 au1k_irda_set_speed(dev, aup->newspeed);
441 aup->newspeed = 0;
442 } else {
443 irda_write(aup, IR_CONFIG_1,
444 irda_read(aup, IR_CONFIG_1) & ~IR_TX_ENABLE);
445 irda_write(aup, IR_CONFIG_1,
446 irda_read(aup, IR_CONFIG_1) | IR_RX_ENABLE);
447 irda_write(aup, IR_RING_PROMPT, 0);
452 static int au1k_irda_rx(struct net_device *dev)
454 struct au1k_private *aup = netdev_priv(dev);
455 volatile struct ring_dest *prxd;
456 struct sk_buff *skb;
457 struct db_dest *pDB;
458 u32 flags, count;
460 prxd = aup->rx_ring[aup->rx_head];
461 flags = prxd->flags;
463 while (!(flags & AU_OWN)) {
464 pDB = aup->rx_db_inuse[aup->rx_head];
465 count = (prxd->count_1 << 8) | prxd->count_0;
466 if (!(flags & IR_RX_ERROR)) {
467 /* good frame */
468 update_rx_stats(dev, flags, count);
469 skb = alloc_skb(count + 1, GFP_ATOMIC);
470 if (skb == NULL) {
471 dev->stats.rx_dropped++;
472 continue;
474 skb_reserve(skb, 1);
475 if (aup->speed == 4000000)
476 skb_put(skb, count);
477 else
478 skb_put(skb, count - 2);
479 skb_copy_to_linear_data(skb, (void *)pDB->vaddr,
480 count - 2);
481 skb->dev = dev;
482 skb_reset_mac_header(skb);
483 skb->protocol = htons(ETH_P_IRDA);
484 netif_rx(skb);
485 prxd->count_0 = 0;
486 prxd->count_1 = 0;
488 prxd->flags |= AU_OWN;
489 aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1);
490 irda_write(aup, IR_RING_PROMPT, 0);
492 /* next descriptor */
493 prxd = aup->rx_ring[aup->rx_head];
494 flags = prxd->flags;
497 return 0;
500 static irqreturn_t au1k_irda_interrupt(int dummy, void *dev_id)
502 struct net_device *dev = dev_id;
503 struct au1k_private *aup = netdev_priv(dev);
505 irda_write(aup, IR_INT_CLEAR, 0); /* ack irda interrupts */
507 au1k_irda_rx(dev);
508 au1k_tx_ack(dev);
510 return IRQ_HANDLED;
513 static int au1k_init(struct net_device *dev)
515 struct au1k_private *aup = netdev_priv(dev);
516 u32 enable, ring_address, phyck;
517 struct clk *c;
518 int i;
520 c = clk_get(NULL, "irda_clk");
521 if (IS_ERR(c))
522 return PTR_ERR(c);
523 i = clk_prepare_enable(c);
524 if (i) {
525 clk_put(c);
526 return i;
529 switch (clk_get_rate(c)) {
530 case 40000000:
531 phyck = IR_PHYCLK_40MHZ;
532 break;
533 case 48000000:
534 phyck = IR_PHYCLK_48MHZ;
535 break;
536 case 56000000:
537 phyck = IR_PHYCLK_56MHZ;
538 break;
539 case 64000000:
540 phyck = IR_PHYCLK_64MHZ;
541 break;
542 default:
543 clk_disable_unprepare(c);
544 clk_put(c);
545 return -EINVAL;
547 aup->irda_clk = c;
549 enable = IR_HC | IR_CE | IR_C;
550 #ifndef CONFIG_CPU_LITTLE_ENDIAN
551 enable |= IR_BE;
552 #endif
553 aup->tx_head = 0;
554 aup->tx_tail = 0;
555 aup->rx_head = 0;
557 for (i = 0; i < NUM_IR_DESC; i++)
558 aup->rx_ring[i]->flags = AU_OWN;
560 irda_write(aup, IR_ENABLE, enable);
561 msleep(20);
563 /* disable PHY */
564 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
565 irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
566 msleep(20);
568 irda_write(aup, IR_MAX_PKT_LEN, MAX_BUF_SIZE);
570 ring_address = (u32)virt_to_phys((void *)aup->rx_ring[0]);
571 irda_write(aup, IR_RING_BASE_ADDR_H, ring_address >> 26);
572 irda_write(aup, IR_RING_BASE_ADDR_L, (ring_address >> 10) & 0xffff);
574 irda_write(aup, IR_RING_SIZE,
575 (RING_SIZE_64 << 8) | (RING_SIZE_64 << 12));
577 irda_write(aup, IR_CONFIG_2, phyck | IR_ONE_PIN);
578 irda_write(aup, IR_RING_ADDR_CMPR, 0);
580 au1k_irda_set_speed(dev, 9600);
581 return 0;
584 static int au1k_irda_start(struct net_device *dev)
586 struct au1k_private *aup = netdev_priv(dev);
587 char hwname[32];
588 int retval;
590 retval = au1k_init(dev);
591 if (retval) {
592 printk(KERN_ERR "%s: error in au1k_init\n", dev->name);
593 return retval;
596 retval = request_irq(aup->irq_tx, &au1k_irda_interrupt, 0,
597 dev->name, dev);
598 if (retval) {
599 printk(KERN_ERR "%s: unable to get IRQ %d\n",
600 dev->name, dev->irq);
601 return retval;
603 retval = request_irq(aup->irq_rx, &au1k_irda_interrupt, 0,
604 dev->name, dev);
605 if (retval) {
606 free_irq(aup->irq_tx, dev);
607 printk(KERN_ERR "%s: unable to get IRQ %d\n",
608 dev->name, dev->irq);
609 return retval;
612 /* Give self a hardware name */
613 sprintf(hwname, "Au1000 SIR/FIR");
614 aup->irlap = irlap_open(dev, &aup->qos, hwname);
615 netif_start_queue(dev);
617 /* int enable */
618 irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) | IR_IEN);
620 /* power up */
621 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
623 aup->timer.expires = RUN_AT((3 * HZ));
624 aup->timer.data = (unsigned long)dev;
625 return 0;
628 static int au1k_irda_stop(struct net_device *dev)
630 struct au1k_private *aup = netdev_priv(dev);
632 au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
634 /* disable interrupts */
635 irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) & ~IR_IEN);
636 irda_write(aup, IR_CONFIG_1, 0);
637 irda_write(aup, IR_ENABLE, 0); /* disable clock */
639 if (aup->irlap) {
640 irlap_close(aup->irlap);
641 aup->irlap = NULL;
644 netif_stop_queue(dev);
645 del_timer(&aup->timer);
647 /* disable the interrupt */
648 free_irq(aup->irq_tx, dev);
649 free_irq(aup->irq_rx, dev);
651 clk_disable_unprepare(aup->irda_clk);
652 clk_put(aup->irda_clk);
654 return 0;
658 * Au1000 transmit routine.
660 static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
662 struct au1k_private *aup = netdev_priv(dev);
663 int speed = irda_get_next_speed(skb);
664 volatile struct ring_dest *ptxd;
665 struct db_dest *pDB;
666 u32 len, flags;
668 if (speed != aup->speed && speed != -1)
669 aup->newspeed = speed;
671 if ((skb->len == 0) && (aup->newspeed)) {
672 if (aup->tx_tail == aup->tx_head) {
673 au1k_irda_set_speed(dev, speed);
674 aup->newspeed = 0;
676 dev_kfree_skb(skb);
677 return NETDEV_TX_OK;
680 ptxd = aup->tx_ring[aup->tx_head];
681 flags = ptxd->flags;
683 if (flags & AU_OWN) {
684 printk(KERN_DEBUG "%s: tx_full\n", dev->name);
685 netif_stop_queue(dev);
686 aup->tx_full = 1;
687 return 1;
688 } else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
689 printk(KERN_DEBUG "%s: tx_full\n", dev->name);
690 netif_stop_queue(dev);
691 aup->tx_full = 1;
692 return 1;
695 pDB = aup->tx_db_inuse[aup->tx_head];
697 #if 0
698 if (irda_read(aup, IR_RX_BYTE_CNT) != 0) {
699 printk(KERN_DEBUG "tx warning: rx byte cnt %x\n",
700 irda_read(aup, IR_RX_BYTE_CNT));
702 #endif
704 if (aup->speed == 4000000) {
705 /* FIR */
706 skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
707 ptxd->count_0 = skb->len & 0xff;
708 ptxd->count_1 = (skb->len >> 8) & 0xff;
709 } else {
710 /* SIR */
711 len = async_wrap_skb(skb, (u8 *)pDB->vaddr, MAX_BUF_SIZE);
712 ptxd->count_0 = len & 0xff;
713 ptxd->count_1 = (len >> 8) & 0xff;
714 ptxd->flags |= IR_DIS_CRC;
716 ptxd->flags |= AU_OWN;
717 wmb();
719 irda_write(aup, IR_CONFIG_1,
720 irda_read(aup, IR_CONFIG_1) | IR_TX_ENABLE);
721 irda_write(aup, IR_RING_PROMPT, 0);
723 dev_kfree_skb(skb);
724 aup->tx_head = (aup->tx_head + 1) & (NUM_IR_DESC - 1);
725 return NETDEV_TX_OK;
729 * The Tx ring has been full longer than the watchdog timeout
730 * value. The transmitter must be hung?
732 static void au1k_tx_timeout(struct net_device *dev)
734 u32 speed;
735 struct au1k_private *aup = netdev_priv(dev);
737 printk(KERN_ERR "%s: tx timeout\n", dev->name);
738 speed = aup->speed;
739 aup->speed = 0;
740 au1k_irda_set_speed(dev, speed);
741 aup->tx_full = 0;
742 netif_wake_queue(dev);
745 static int au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
747 struct if_irda_req *rq = (struct if_irda_req *)ifreq;
748 struct au1k_private *aup = netdev_priv(dev);
749 int ret = -EOPNOTSUPP;
751 switch (cmd) {
752 case SIOCSBANDWIDTH:
753 if (capable(CAP_NET_ADMIN)) {
755 * We are unable to set the speed if the
756 * device is not running.
758 if (aup->open)
759 ret = au1k_irda_set_speed(dev,
760 rq->ifr_baudrate);
761 else {
762 printk(KERN_ERR "%s ioctl: !netif_running\n",
763 dev->name);
764 ret = 0;
767 break;
769 case SIOCSMEDIABUSY:
770 ret = -EPERM;
771 if (capable(CAP_NET_ADMIN)) {
772 irda_device_set_media_busy(dev, TRUE);
773 ret = 0;
775 break;
777 case SIOCGRECEIVING:
778 rq->ifr_receiving = 0;
779 break;
780 default:
781 break;
783 return ret;
786 static const struct net_device_ops au1k_irda_netdev_ops = {
787 .ndo_open = au1k_irda_start,
788 .ndo_stop = au1k_irda_stop,
789 .ndo_start_xmit = au1k_irda_hard_xmit,
790 .ndo_tx_timeout = au1k_tx_timeout,
791 .ndo_do_ioctl = au1k_irda_ioctl,
794 static int au1k_irda_net_init(struct net_device *dev)
796 struct au1k_private *aup = netdev_priv(dev);
797 struct db_dest *pDB, *pDBfree;
798 int i, err, retval = 0;
799 dma_addr_t temp;
801 err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
802 if (err)
803 goto out1;
805 dev->netdev_ops = &au1k_irda_netdev_ops;
807 irda_init_max_qos_capabilies(&aup->qos);
809 /* The only value we must override it the baudrate */
810 aup->qos.baud_rate.bits = IR_9600 | IR_19200 | IR_38400 |
811 IR_57600 | IR_115200 | IR_576000 | (IR_4000000 << 8);
813 aup->qos.min_turn_time.bits = qos_mtt_bits;
814 irda_qos_bits_to_value(&aup->qos);
816 retval = -ENOMEM;
818 /* Tx ring follows rx ring + 512 bytes */
819 /* we need a 1k aligned buffer */
820 aup->rx_ring[0] = (struct ring_dest *)
821 dma_alloc(2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)),
822 &temp);
823 if (!aup->rx_ring[0])
824 goto out2;
826 /* allocate the data buffers */
827 aup->db[0].vaddr =
828 dma_alloc(MAX_BUF_SIZE * 2 * NUM_IR_DESC, &temp);
829 if (!aup->db[0].vaddr)
830 goto out3;
832 setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512);
834 pDBfree = NULL;
835 pDB = aup->db;
836 for (i = 0; i < (2 * NUM_IR_DESC); i++) {
837 pDB->pnext = pDBfree;
838 pDBfree = pDB;
839 pDB->vaddr =
840 (u32 *)((unsigned)aup->db[0].vaddr + (MAX_BUF_SIZE * i));
841 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
842 pDB++;
844 aup->pDBfree = pDBfree;
846 /* attach a data buffer to each descriptor */
847 for (i = 0; i < NUM_IR_DESC; i++) {
848 pDB = GetFreeDB(aup);
849 if (!pDB)
850 goto out3;
851 aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
852 aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr >> 8) & 0xff);
853 aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
854 aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
855 aup->rx_db_inuse[i] = pDB;
857 for (i = 0; i < NUM_IR_DESC; i++) {
858 pDB = GetFreeDB(aup);
859 if (!pDB)
860 goto out3;
861 aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
862 aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr >> 8) & 0xff);
863 aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
864 aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
865 aup->tx_ring[i]->count_0 = 0;
866 aup->tx_ring[i]->count_1 = 0;
867 aup->tx_ring[i]->flags = 0;
868 aup->tx_db_inuse[i] = pDB;
871 return 0;
873 out3:
874 dma_free((void *)aup->rx_ring[0],
875 2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
876 out2:
877 kfree(aup->rx_buff.head);
878 out1:
879 printk(KERN_ERR "au1k_irda_net_init() failed. Returns %d\n", retval);
880 return retval;
883 static int au1k_irda_probe(struct platform_device *pdev)
885 struct au1k_private *aup;
886 struct net_device *dev;
887 struct resource *r;
888 struct clk *c;
889 int err;
891 dev = alloc_irdadev(sizeof(struct au1k_private));
892 if (!dev)
893 return -ENOMEM;
895 aup = netdev_priv(dev);
897 aup->platdata = pdev->dev.platform_data;
899 err = -EINVAL;
900 r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
901 if (!r)
902 goto out;
904 aup->irq_tx = r->start;
906 r = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
907 if (!r)
908 goto out;
910 aup->irq_rx = r->start;
912 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
913 if (!r)
914 goto out;
916 err = -EBUSY;
917 aup->ioarea = request_mem_region(r->start, resource_size(r),
918 pdev->name);
919 if (!aup->ioarea)
920 goto out;
922 /* bail out early if clock doesn't exist */
923 c = clk_get(NULL, "irda_clk");
924 if (IS_ERR(c)) {
925 err = PTR_ERR(c);
926 goto out;
928 clk_put(c);
930 aup->iobase = ioremap_nocache(r->start, resource_size(r));
931 if (!aup->iobase)
932 goto out2;
934 dev->irq = aup->irq_rx;
936 err = au1k_irda_net_init(dev);
937 if (err)
938 goto out3;
939 err = register_netdev(dev);
940 if (err)
941 goto out4;
943 platform_set_drvdata(pdev, dev);
945 printk(KERN_INFO "IrDA: Registered device %s\n", dev->name);
946 return 0;
948 out4:
949 dma_free((void *)aup->db[0].vaddr,
950 MAX_BUF_SIZE * 2 * NUM_IR_DESC);
951 dma_free((void *)aup->rx_ring[0],
952 2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
953 kfree(aup->rx_buff.head);
954 out3:
955 iounmap(aup->iobase);
956 out2:
957 release_resource(aup->ioarea);
958 kfree(aup->ioarea);
959 out:
960 free_netdev(dev);
961 return err;
964 static int au1k_irda_remove(struct platform_device *pdev)
966 struct net_device *dev = platform_get_drvdata(pdev);
967 struct au1k_private *aup = netdev_priv(dev);
969 unregister_netdev(dev);
971 dma_free((void *)aup->db[0].vaddr,
972 MAX_BUF_SIZE * 2 * NUM_IR_DESC);
973 dma_free((void *)aup->rx_ring[0],
974 2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
975 kfree(aup->rx_buff.head);
977 iounmap(aup->iobase);
978 release_resource(aup->ioarea);
979 kfree(aup->ioarea);
981 free_netdev(dev);
983 return 0;
986 static struct platform_driver au1k_irda_driver = {
987 .driver = {
988 .name = "au1000-irda",
990 .probe = au1k_irda_probe,
991 .remove = au1k_irda_remove,
994 module_platform_driver(au1k_irda_driver);
996 MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
997 MODULE_DESCRIPTION("Au1000 IrDA Device Driver");