2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
14 #include <linux/of_pci.h>
15 #include <linux/pci.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include <linux/log2.h>
22 #include <linux/pci-aspm.h>
23 #include <linux/pm_wakeup.h>
24 #include <linux/interrupt.h>
25 #include <linux/device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/pci_hotplug.h>
28 #include <asm-generic/pci-bridge.h>
29 #include <asm/setup.h>
32 const char *pci_power_names
[] = {
33 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
35 EXPORT_SYMBOL_GPL(pci_power_names
);
37 int isa_dma_bridge_buggy
;
38 EXPORT_SYMBOL(isa_dma_bridge_buggy
);
41 EXPORT_SYMBOL(pci_pci_problems
);
43 unsigned int pci_pm_d3_delay
;
45 static void pci_pme_list_scan(struct work_struct
*work
);
47 static LIST_HEAD(pci_pme_list
);
48 static DEFINE_MUTEX(pci_pme_list_mutex
);
49 static DECLARE_DELAYED_WORK(pci_pme_work
, pci_pme_list_scan
);
51 struct pci_pme_device
{
52 struct list_head list
;
56 #define PME_TIMEOUT 1000 /* How long between PME checks */
58 static void pci_dev_d3_sleep(struct pci_dev
*dev
)
60 unsigned int delay
= dev
->d3_delay
;
62 if (delay
< pci_pm_d3_delay
)
63 delay
= pci_pm_d3_delay
;
68 #ifdef CONFIG_PCI_DOMAINS
69 int pci_domains_supported
= 1;
72 #define DEFAULT_CARDBUS_IO_SIZE (256)
73 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
74 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
75 unsigned long pci_cardbus_io_size
= DEFAULT_CARDBUS_IO_SIZE
;
76 unsigned long pci_cardbus_mem_size
= DEFAULT_CARDBUS_MEM_SIZE
;
78 #define DEFAULT_HOTPLUG_IO_SIZE (256)
79 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
80 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
81 unsigned long pci_hotplug_io_size
= DEFAULT_HOTPLUG_IO_SIZE
;
82 unsigned long pci_hotplug_mem_size
= DEFAULT_HOTPLUG_MEM_SIZE
;
84 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_TUNE_OFF
;
87 * The default CLS is used if arch didn't set CLS explicitly and not
88 * all pci devices agree on the same value. Arch can override either
89 * the dfl or actual value as it sees fit. Don't forget this is
90 * measured in 32-bit words, not bytes.
92 u8 pci_dfl_cache_line_size
= L1_CACHE_BYTES
>> 2;
93 u8 pci_cache_line_size
;
96 * If we set up a device for bus mastering, we need to check the latency
97 * timer as certain BIOSes forget to set it properly.
99 unsigned int pcibios_max_latency
= 255;
101 /* If set, the PCIe ARI capability will not be used. */
102 static bool pcie_ari_disabled
;
105 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
106 * @bus: pointer to PCI bus structure to search
108 * Given a PCI bus, returns the highest PCI bus number present in the set
109 * including the given PCI bus and its list of child PCI buses.
111 unsigned char pci_bus_max_busnr(struct pci_bus
*bus
)
114 unsigned char max
, n
;
116 max
= bus
->busn_res
.end
;
117 list_for_each_entry(tmp
, &bus
->children
, node
) {
118 n
= pci_bus_max_busnr(tmp
);
124 EXPORT_SYMBOL_GPL(pci_bus_max_busnr
);
126 #ifdef CONFIG_HAS_IOMEM
127 void __iomem
*pci_ioremap_bar(struct pci_dev
*pdev
, int bar
)
130 * Make sure the BAR is actually a memory resource, not an IO resource
132 if (!(pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)) {
136 return ioremap_nocache(pci_resource_start(pdev
, bar
),
137 pci_resource_len(pdev
, bar
));
139 EXPORT_SYMBOL_GPL(pci_ioremap_bar
);
142 #define PCI_FIND_CAP_TTL 48
144 static int __pci_find_next_cap_ttl(struct pci_bus
*bus
, unsigned int devfn
,
145 u8 pos
, int cap
, int *ttl
)
150 pci_bus_read_config_byte(bus
, devfn
, pos
, &pos
);
154 pci_bus_read_config_byte(bus
, devfn
, pos
+ PCI_CAP_LIST_ID
,
160 pos
+= PCI_CAP_LIST_NEXT
;
165 static int __pci_find_next_cap(struct pci_bus
*bus
, unsigned int devfn
,
168 int ttl
= PCI_FIND_CAP_TTL
;
170 return __pci_find_next_cap_ttl(bus
, devfn
, pos
, cap
, &ttl
);
173 int pci_find_next_capability(struct pci_dev
*dev
, u8 pos
, int cap
)
175 return __pci_find_next_cap(dev
->bus
, dev
->devfn
,
176 pos
+ PCI_CAP_LIST_NEXT
, cap
);
178 EXPORT_SYMBOL_GPL(pci_find_next_capability
);
180 static int __pci_bus_find_cap_start(struct pci_bus
*bus
,
181 unsigned int devfn
, u8 hdr_type
)
185 pci_bus_read_config_word(bus
, devfn
, PCI_STATUS
, &status
);
186 if (!(status
& PCI_STATUS_CAP_LIST
))
190 case PCI_HEADER_TYPE_NORMAL
:
191 case PCI_HEADER_TYPE_BRIDGE
:
192 return PCI_CAPABILITY_LIST
;
193 case PCI_HEADER_TYPE_CARDBUS
:
194 return PCI_CB_CAPABILITY_LIST
;
203 * pci_find_capability - query for devices' capabilities
204 * @dev: PCI device to query
205 * @cap: capability code
207 * Tell if a device supports a given PCI capability.
208 * Returns the address of the requested capability structure within the
209 * device's PCI configuration space or 0 in case the device does not
210 * support it. Possible values for @cap:
212 * %PCI_CAP_ID_PM Power Management
213 * %PCI_CAP_ID_AGP Accelerated Graphics Port
214 * %PCI_CAP_ID_VPD Vital Product Data
215 * %PCI_CAP_ID_SLOTID Slot Identification
216 * %PCI_CAP_ID_MSI Message Signalled Interrupts
217 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
218 * %PCI_CAP_ID_PCIX PCI-X
219 * %PCI_CAP_ID_EXP PCI Express
221 int pci_find_capability(struct pci_dev
*dev
, int cap
)
225 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
227 pos
= __pci_find_next_cap(dev
->bus
, dev
->devfn
, pos
, cap
);
231 EXPORT_SYMBOL(pci_find_capability
);
234 * pci_bus_find_capability - query for devices' capabilities
235 * @bus: the PCI bus to query
236 * @devfn: PCI device to query
237 * @cap: capability code
239 * Like pci_find_capability() but works for pci devices that do not have a
240 * pci_dev structure set up yet.
242 * Returns the address of the requested capability structure within the
243 * device's PCI configuration space or 0 in case the device does not
246 int pci_bus_find_capability(struct pci_bus
*bus
, unsigned int devfn
, int cap
)
251 pci_bus_read_config_byte(bus
, devfn
, PCI_HEADER_TYPE
, &hdr_type
);
253 pos
= __pci_bus_find_cap_start(bus
, devfn
, hdr_type
& 0x7f);
255 pos
= __pci_find_next_cap(bus
, devfn
, pos
, cap
);
259 EXPORT_SYMBOL(pci_bus_find_capability
);
262 * pci_find_next_ext_capability - Find an extended capability
263 * @dev: PCI device to query
264 * @start: address at which to start looking (0 to start at beginning of list)
265 * @cap: capability code
267 * Returns the address of the next matching extended capability structure
268 * within the device's PCI configuration space or 0 if the device does
269 * not support it. Some capabilities can occur several times, e.g., the
270 * vendor-specific capability, and this provides a way to find them all.
272 int pci_find_next_ext_capability(struct pci_dev
*dev
, int start
, int cap
)
276 int pos
= PCI_CFG_SPACE_SIZE
;
278 /* minimum 8 bytes per capability */
279 ttl
= (PCI_CFG_SPACE_EXP_SIZE
- PCI_CFG_SPACE_SIZE
) / 8;
281 if (dev
->cfg_size
<= PCI_CFG_SPACE_SIZE
)
287 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
291 * If we have no capabilities, this is indicated by cap ID,
292 * cap version and next pointer all being 0.
298 if (PCI_EXT_CAP_ID(header
) == cap
&& pos
!= start
)
301 pos
= PCI_EXT_CAP_NEXT(header
);
302 if (pos
< PCI_CFG_SPACE_SIZE
)
305 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
311 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability
);
314 * pci_find_ext_capability - Find an extended capability
315 * @dev: PCI device to query
316 * @cap: capability code
318 * Returns the address of the requested extended capability structure
319 * within the device's PCI configuration space or 0 if the device does
320 * not support it. Possible values for @cap:
322 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
323 * %PCI_EXT_CAP_ID_VC Virtual Channel
324 * %PCI_EXT_CAP_ID_DSN Device Serial Number
325 * %PCI_EXT_CAP_ID_PWR Power Budgeting
327 int pci_find_ext_capability(struct pci_dev
*dev
, int cap
)
329 return pci_find_next_ext_capability(dev
, 0, cap
);
331 EXPORT_SYMBOL_GPL(pci_find_ext_capability
);
333 static int __pci_find_next_ht_cap(struct pci_dev
*dev
, int pos
, int ht_cap
)
335 int rc
, ttl
= PCI_FIND_CAP_TTL
;
338 if (ht_cap
== HT_CAPTYPE_SLAVE
|| ht_cap
== HT_CAPTYPE_HOST
)
339 mask
= HT_3BIT_CAP_MASK
;
341 mask
= HT_5BIT_CAP_MASK
;
343 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
, pos
,
344 PCI_CAP_ID_HT
, &ttl
);
346 rc
= pci_read_config_byte(dev
, pos
+ 3, &cap
);
347 if (rc
!= PCIBIOS_SUCCESSFUL
)
350 if ((cap
& mask
) == ht_cap
)
353 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
,
354 pos
+ PCI_CAP_LIST_NEXT
,
355 PCI_CAP_ID_HT
, &ttl
);
361 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
362 * @dev: PCI device to query
363 * @pos: Position from which to continue searching
364 * @ht_cap: Hypertransport capability code
366 * To be used in conjunction with pci_find_ht_capability() to search for
367 * all capabilities matching @ht_cap. @pos should always be a value returned
368 * from pci_find_ht_capability().
370 * NB. To be 100% safe against broken PCI devices, the caller should take
371 * steps to avoid an infinite loop.
373 int pci_find_next_ht_capability(struct pci_dev
*dev
, int pos
, int ht_cap
)
375 return __pci_find_next_ht_cap(dev
, pos
+ PCI_CAP_LIST_NEXT
, ht_cap
);
377 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability
);
380 * pci_find_ht_capability - query a device's Hypertransport capabilities
381 * @dev: PCI device to query
382 * @ht_cap: Hypertransport capability code
384 * Tell if a device supports a given Hypertransport capability.
385 * Returns an address within the device's PCI configuration space
386 * or 0 in case the device does not support the request capability.
387 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
388 * which has a Hypertransport capability matching @ht_cap.
390 int pci_find_ht_capability(struct pci_dev
*dev
, int ht_cap
)
394 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
396 pos
= __pci_find_next_ht_cap(dev
, pos
, ht_cap
);
400 EXPORT_SYMBOL_GPL(pci_find_ht_capability
);
403 * pci_find_parent_resource - return resource region of parent bus of given region
404 * @dev: PCI device structure contains resources to be searched
405 * @res: child resource record for which parent is sought
407 * For given resource region of given device, return the resource
408 * region of parent bus the given region is contained in.
410 struct resource
*pci_find_parent_resource(const struct pci_dev
*dev
,
411 struct resource
*res
)
413 const struct pci_bus
*bus
= dev
->bus
;
417 pci_bus_for_each_resource(bus
, r
, i
) {
420 if (res
->start
&& resource_contains(r
, res
)) {
423 * If the window is prefetchable but the BAR is
424 * not, the allocator made a mistake.
426 if (r
->flags
& IORESOURCE_PREFETCH
&&
427 !(res
->flags
& IORESOURCE_PREFETCH
))
431 * If we're below a transparent bridge, there may
432 * be both a positively-decoded aperture and a
433 * subtractively-decoded region that contain the BAR.
434 * We want the positively-decoded one, so this depends
435 * on pci_bus_for_each_resource() giving us those
443 EXPORT_SYMBOL(pci_find_parent_resource
);
446 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
447 * @dev: the PCI device to operate on
448 * @pos: config space offset of status word
449 * @mask: mask of bit(s) to care about in status word
451 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
453 int pci_wait_for_pending(struct pci_dev
*dev
, int pos
, u16 mask
)
457 /* Wait for Transaction Pending bit clean */
458 for (i
= 0; i
< 4; i
++) {
461 msleep((1 << (i
- 1)) * 100);
463 pci_read_config_word(dev
, pos
, &status
);
464 if (!(status
& mask
))
472 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
473 * @dev: PCI device to have its BARs restored
475 * Restore the BAR values for a given device, so as to make it
476 * accessible by its driver.
478 static void pci_restore_bars(struct pci_dev
*dev
)
482 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++)
483 pci_update_resource(dev
, i
);
486 static struct pci_platform_pm_ops
*pci_platform_pm
;
488 int pci_set_platform_pm(struct pci_platform_pm_ops
*ops
)
490 if (!ops
->is_manageable
|| !ops
->set_state
|| !ops
->choose_state
493 pci_platform_pm
= ops
;
497 static inline bool platform_pci_power_manageable(struct pci_dev
*dev
)
499 return pci_platform_pm
? pci_platform_pm
->is_manageable(dev
) : false;
502 static inline int platform_pci_set_power_state(struct pci_dev
*dev
,
505 return pci_platform_pm
? pci_platform_pm
->set_state(dev
, t
) : -ENOSYS
;
508 static inline pci_power_t
platform_pci_choose_state(struct pci_dev
*dev
)
510 return pci_platform_pm
?
511 pci_platform_pm
->choose_state(dev
) : PCI_POWER_ERROR
;
514 static inline int platform_pci_sleep_wake(struct pci_dev
*dev
, bool enable
)
516 return pci_platform_pm
?
517 pci_platform_pm
->sleep_wake(dev
, enable
) : -ENODEV
;
520 static inline int platform_pci_run_wake(struct pci_dev
*dev
, bool enable
)
522 return pci_platform_pm
?
523 pci_platform_pm
->run_wake(dev
, enable
) : -ENODEV
;
526 static inline bool platform_pci_need_resume(struct pci_dev
*dev
)
528 return pci_platform_pm
? pci_platform_pm
->need_resume(dev
) : false;
532 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
534 * @dev: PCI device to handle.
535 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
538 * -EINVAL if the requested state is invalid.
539 * -EIO if device does not support PCI PM or its PM capabilities register has a
540 * wrong version, or device doesn't support the requested state.
541 * 0 if device already is in the requested state.
542 * 0 if device's power state has been successfully changed.
544 static int pci_raw_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
547 bool need_restore
= false;
549 /* Check if we're already there */
550 if (dev
->current_state
== state
)
556 if (state
< PCI_D0
|| state
> PCI_D3hot
)
559 /* Validate current state:
560 * Can enter D0 from any state, but if we can only go deeper
561 * to sleep if we're already in a low power state
563 if (state
!= PCI_D0
&& dev
->current_state
<= PCI_D3cold
564 && dev
->current_state
> state
) {
565 dev_err(&dev
->dev
, "invalid power transition (from state %d to %d)\n",
566 dev
->current_state
, state
);
570 /* check if this device supports the desired state */
571 if ((state
== PCI_D1
&& !dev
->d1_support
)
572 || (state
== PCI_D2
&& !dev
->d2_support
))
575 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
577 /* If we're (effectively) in D3, force entire word to 0.
578 * This doesn't affect PME_Status, disables PME_En, and
579 * sets PowerState to 0.
581 switch (dev
->current_state
) {
585 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
590 case PCI_UNKNOWN
: /* Boot-up */
591 if ((pmcsr
& PCI_PM_CTRL_STATE_MASK
) == PCI_D3hot
592 && !(pmcsr
& PCI_PM_CTRL_NO_SOFT_RESET
))
594 /* Fall-through: force to D0 */
600 /* enter specified state */
601 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
603 /* Mandatory power management transition delays */
604 /* see PCI PM 1.1 5.6.1 table 18 */
605 if (state
== PCI_D3hot
|| dev
->current_state
== PCI_D3hot
)
606 pci_dev_d3_sleep(dev
);
607 else if (state
== PCI_D2
|| dev
->current_state
== PCI_D2
)
608 udelay(PCI_PM_D2_DELAY
);
610 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
611 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
612 if (dev
->current_state
!= state
&& printk_ratelimit())
613 dev_info(&dev
->dev
, "Refused to change power state, currently in D%d\n",
617 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
618 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
619 * from D3hot to D0 _may_ perform an internal reset, thereby
620 * going to "D0 Uninitialized" rather than "D0 Initialized".
621 * For example, at least some versions of the 3c905B and the
622 * 3c556B exhibit this behaviour.
624 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
625 * devices in a D3hot state at boot. Consequently, we need to
626 * restore at least the BARs so that the device will be
627 * accessible to its driver.
630 pci_restore_bars(dev
);
633 pcie_aspm_pm_state_change(dev
->bus
->self
);
639 * pci_update_current_state - Read PCI power state of given device from its
640 * PCI PM registers and cache it
641 * @dev: PCI device to handle.
642 * @state: State to cache in case the device doesn't have the PM capability
644 void pci_update_current_state(struct pci_dev
*dev
, pci_power_t state
)
650 * Configuration space is not accessible for device in
651 * D3cold, so just keep or set D3cold for safety
653 if (dev
->current_state
== PCI_D3cold
)
655 if (state
== PCI_D3cold
) {
656 dev
->current_state
= PCI_D3cold
;
659 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
660 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
662 dev
->current_state
= state
;
667 * pci_power_up - Put the given device into D0 forcibly
668 * @dev: PCI device to power up
670 void pci_power_up(struct pci_dev
*dev
)
672 if (platform_pci_power_manageable(dev
))
673 platform_pci_set_power_state(dev
, PCI_D0
);
675 pci_raw_set_power_state(dev
, PCI_D0
);
676 pci_update_current_state(dev
, PCI_D0
);
680 * pci_platform_power_transition - Use platform to change device power state
681 * @dev: PCI device to handle.
682 * @state: State to put the device into.
684 static int pci_platform_power_transition(struct pci_dev
*dev
, pci_power_t state
)
688 if (platform_pci_power_manageable(dev
)) {
689 error
= platform_pci_set_power_state(dev
, state
);
691 pci_update_current_state(dev
, state
);
695 if (error
&& !dev
->pm_cap
) /* Fall back to PCI_D0 */
696 dev
->current_state
= PCI_D0
;
702 * pci_wakeup - Wake up a PCI device
703 * @pci_dev: Device to handle.
704 * @ign: ignored parameter
706 static int pci_wakeup(struct pci_dev
*pci_dev
, void *ign
)
708 pci_wakeup_event(pci_dev
);
709 pm_request_resume(&pci_dev
->dev
);
714 * pci_wakeup_bus - Walk given bus and wake up devices on it
715 * @bus: Top bus of the subtree to walk.
717 static void pci_wakeup_bus(struct pci_bus
*bus
)
720 pci_walk_bus(bus
, pci_wakeup
, NULL
);
724 * __pci_start_power_transition - Start power transition of a PCI device
725 * @dev: PCI device to handle.
726 * @state: State to put the device into.
728 static void __pci_start_power_transition(struct pci_dev
*dev
, pci_power_t state
)
730 if (state
== PCI_D0
) {
731 pci_platform_power_transition(dev
, PCI_D0
);
733 * Mandatory power management transition delays, see
734 * PCI Express Base Specification Revision 2.0 Section
735 * 6.6.1: Conventional Reset. Do not delay for
736 * devices powered on/off by corresponding bridge,
737 * because have already delayed for the bridge.
739 if (dev
->runtime_d3cold
) {
740 msleep(dev
->d3cold_delay
);
742 * When powering on a bridge from D3cold, the
743 * whole hierarchy may be powered on into
744 * D0uninitialized state, resume them to give
745 * them a chance to suspend again
747 pci_wakeup_bus(dev
->subordinate
);
753 * __pci_dev_set_current_state - Set current state of a PCI device
754 * @dev: Device to handle
755 * @data: pointer to state to be set
757 static int __pci_dev_set_current_state(struct pci_dev
*dev
, void *data
)
759 pci_power_t state
= *(pci_power_t
*)data
;
761 dev
->current_state
= state
;
766 * __pci_bus_set_current_state - Walk given bus and set current state of devices
767 * @bus: Top bus of the subtree to walk.
768 * @state: state to be set
770 static void __pci_bus_set_current_state(struct pci_bus
*bus
, pci_power_t state
)
773 pci_walk_bus(bus
, __pci_dev_set_current_state
, &state
);
777 * __pci_complete_power_transition - Complete power transition of a PCI device
778 * @dev: PCI device to handle.
779 * @state: State to put the device into.
781 * This function should not be called directly by device drivers.
783 int __pci_complete_power_transition(struct pci_dev
*dev
, pci_power_t state
)
789 ret
= pci_platform_power_transition(dev
, state
);
790 /* Power off the bridge may power off the whole hierarchy */
791 if (!ret
&& state
== PCI_D3cold
)
792 __pci_bus_set_current_state(dev
->subordinate
, PCI_D3cold
);
795 EXPORT_SYMBOL_GPL(__pci_complete_power_transition
);
798 * pci_set_power_state - Set the power state of a PCI device
799 * @dev: PCI device to handle.
800 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
802 * Transition a device to a new power state, using the platform firmware and/or
803 * the device's PCI PM registers.
806 * -EINVAL if the requested state is invalid.
807 * -EIO if device does not support PCI PM or its PM capabilities register has a
808 * wrong version, or device doesn't support the requested state.
809 * 0 if device already is in the requested state.
810 * 0 if device's power state has been successfully changed.
812 int pci_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
816 /* bound the state we're entering */
817 if (state
> PCI_D3cold
)
819 else if (state
< PCI_D0
)
821 else if ((state
== PCI_D1
|| state
== PCI_D2
) && pci_no_d1d2(dev
))
823 * If the device or the parent bridge do not support PCI PM,
824 * ignore the request if we're doing anything other than putting
825 * it into D0 (which would only happen on boot).
829 /* Check if we're already there */
830 if (dev
->current_state
== state
)
833 __pci_start_power_transition(dev
, state
);
835 /* This device is quirked not to be put into D3, so
836 don't put it in D3 */
837 if (state
>= PCI_D3hot
&& (dev
->dev_flags
& PCI_DEV_FLAGS_NO_D3
))
841 * To put device in D3cold, we put device into D3hot in native
842 * way, then put device into D3cold with platform ops
844 error
= pci_raw_set_power_state(dev
, state
> PCI_D3hot
?
847 if (!__pci_complete_power_transition(dev
, state
))
852 EXPORT_SYMBOL(pci_set_power_state
);
855 * pci_choose_state - Choose the power state of a PCI device
856 * @dev: PCI device to be suspended
857 * @state: target sleep state for the whole system. This is the value
858 * that is passed to suspend() function.
860 * Returns PCI power state suitable for given device and given system
864 pci_power_t
pci_choose_state(struct pci_dev
*dev
, pm_message_t state
)
871 ret
= platform_pci_choose_state(dev
);
872 if (ret
!= PCI_POWER_ERROR
)
875 switch (state
.event
) {
878 case PM_EVENT_FREEZE
:
879 case PM_EVENT_PRETHAW
:
880 /* REVISIT both freeze and pre-thaw "should" use D0 */
881 case PM_EVENT_SUSPEND
:
882 case PM_EVENT_HIBERNATE
:
885 dev_info(&dev
->dev
, "unrecognized suspend event %d\n",
891 EXPORT_SYMBOL(pci_choose_state
);
893 #define PCI_EXP_SAVE_REGS 7
895 static struct pci_cap_saved_state
*_pci_find_saved_cap(struct pci_dev
*pci_dev
,
896 u16 cap
, bool extended
)
898 struct pci_cap_saved_state
*tmp
;
900 hlist_for_each_entry(tmp
, &pci_dev
->saved_cap_space
, next
) {
901 if (tmp
->cap
.cap_extended
== extended
&& tmp
->cap
.cap_nr
== cap
)
907 struct pci_cap_saved_state
*pci_find_saved_cap(struct pci_dev
*dev
, char cap
)
909 return _pci_find_saved_cap(dev
, cap
, false);
912 struct pci_cap_saved_state
*pci_find_saved_ext_cap(struct pci_dev
*dev
, u16 cap
)
914 return _pci_find_saved_cap(dev
, cap
, true);
917 static int pci_save_pcie_state(struct pci_dev
*dev
)
920 struct pci_cap_saved_state
*save_state
;
923 if (!pci_is_pcie(dev
))
926 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
928 dev_err(&dev
->dev
, "buffer not found in %s\n", __func__
);
932 cap
= (u16
*)&save_state
->cap
.data
[0];
933 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &cap
[i
++]);
934 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL
, &cap
[i
++]);
935 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL
, &cap
[i
++]);
936 pcie_capability_read_word(dev
, PCI_EXP_RTCTL
, &cap
[i
++]);
937 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL2
, &cap
[i
++]);
938 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL2
, &cap
[i
++]);
939 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL2
, &cap
[i
++]);
944 static void pci_restore_pcie_state(struct pci_dev
*dev
)
947 struct pci_cap_saved_state
*save_state
;
950 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
954 cap
= (u16
*)&save_state
->cap
.data
[0];
955 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL
, cap
[i
++]);
956 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL
, cap
[i
++]);
957 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL
, cap
[i
++]);
958 pcie_capability_write_word(dev
, PCI_EXP_RTCTL
, cap
[i
++]);
959 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL2
, cap
[i
++]);
960 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL2
, cap
[i
++]);
961 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL2
, cap
[i
++]);
965 static int pci_save_pcix_state(struct pci_dev
*dev
)
968 struct pci_cap_saved_state
*save_state
;
970 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
974 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
976 dev_err(&dev
->dev
, "buffer not found in %s\n", __func__
);
980 pci_read_config_word(dev
, pos
+ PCI_X_CMD
,
981 (u16
*)save_state
->cap
.data
);
986 static void pci_restore_pcix_state(struct pci_dev
*dev
)
989 struct pci_cap_saved_state
*save_state
;
992 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
993 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
994 if (!save_state
|| pos
<= 0)
996 cap
= (u16
*)&save_state
->cap
.data
[0];
998 pci_write_config_word(dev
, pos
+ PCI_X_CMD
, cap
[i
++]);
1003 * pci_save_state - save the PCI configuration space of a device before suspending
1004 * @dev: - PCI device that we're dealing with
1006 int pci_save_state(struct pci_dev
*dev
)
1009 /* XXX: 100% dword access ok here? */
1010 for (i
= 0; i
< 16; i
++)
1011 pci_read_config_dword(dev
, i
* 4, &dev
->saved_config_space
[i
]);
1012 dev
->state_saved
= true;
1014 i
= pci_save_pcie_state(dev
);
1018 i
= pci_save_pcix_state(dev
);
1022 return pci_save_vc_state(dev
);
1024 EXPORT_SYMBOL(pci_save_state
);
1026 static void pci_restore_config_dword(struct pci_dev
*pdev
, int offset
,
1027 u32 saved_val
, int retry
)
1031 pci_read_config_dword(pdev
, offset
, &val
);
1032 if (val
== saved_val
)
1036 dev_dbg(&pdev
->dev
, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1037 offset
, val
, saved_val
);
1038 pci_write_config_dword(pdev
, offset
, saved_val
);
1042 pci_read_config_dword(pdev
, offset
, &val
);
1043 if (val
== saved_val
)
1050 static void pci_restore_config_space_range(struct pci_dev
*pdev
,
1051 int start
, int end
, int retry
)
1055 for (index
= end
; index
>= start
; index
--)
1056 pci_restore_config_dword(pdev
, 4 * index
,
1057 pdev
->saved_config_space
[index
],
1061 static void pci_restore_config_space(struct pci_dev
*pdev
)
1063 if (pdev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
) {
1064 pci_restore_config_space_range(pdev
, 10, 15, 0);
1065 /* Restore BARs before the command register. */
1066 pci_restore_config_space_range(pdev
, 4, 9, 10);
1067 pci_restore_config_space_range(pdev
, 0, 3, 0);
1069 pci_restore_config_space_range(pdev
, 0, 15, 0);
1074 * pci_restore_state - Restore the saved state of a PCI device
1075 * @dev: - PCI device that we're dealing with
1077 void pci_restore_state(struct pci_dev
*dev
)
1079 if (!dev
->state_saved
)
1082 /* PCI Express register must be restored first */
1083 pci_restore_pcie_state(dev
);
1084 pci_restore_ats_state(dev
);
1085 pci_restore_vc_state(dev
);
1087 pci_restore_config_space(dev
);
1089 pci_restore_pcix_state(dev
);
1090 pci_restore_msi_state(dev
);
1091 pci_restore_iov_state(dev
);
1093 dev
->state_saved
= false;
1095 EXPORT_SYMBOL(pci_restore_state
);
1097 struct pci_saved_state
{
1098 u32 config_space
[16];
1099 struct pci_cap_saved_data cap
[0];
1103 * pci_store_saved_state - Allocate and return an opaque struct containing
1104 * the device saved state.
1105 * @dev: PCI device that we're dealing with
1107 * Return NULL if no state or error.
1109 struct pci_saved_state
*pci_store_saved_state(struct pci_dev
*dev
)
1111 struct pci_saved_state
*state
;
1112 struct pci_cap_saved_state
*tmp
;
1113 struct pci_cap_saved_data
*cap
;
1116 if (!dev
->state_saved
)
1119 size
= sizeof(*state
) + sizeof(struct pci_cap_saved_data
);
1121 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
)
1122 size
+= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1124 state
= kzalloc(size
, GFP_KERNEL
);
1128 memcpy(state
->config_space
, dev
->saved_config_space
,
1129 sizeof(state
->config_space
));
1132 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
) {
1133 size_t len
= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1134 memcpy(cap
, &tmp
->cap
, len
);
1135 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+ len
);
1137 /* Empty cap_save terminates list */
1141 EXPORT_SYMBOL_GPL(pci_store_saved_state
);
1144 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1145 * @dev: PCI device that we're dealing with
1146 * @state: Saved state returned from pci_store_saved_state()
1148 int pci_load_saved_state(struct pci_dev
*dev
,
1149 struct pci_saved_state
*state
)
1151 struct pci_cap_saved_data
*cap
;
1153 dev
->state_saved
= false;
1158 memcpy(dev
->saved_config_space
, state
->config_space
,
1159 sizeof(state
->config_space
));
1163 struct pci_cap_saved_state
*tmp
;
1165 tmp
= _pci_find_saved_cap(dev
, cap
->cap_nr
, cap
->cap_extended
);
1166 if (!tmp
|| tmp
->cap
.size
!= cap
->size
)
1169 memcpy(tmp
->cap
.data
, cap
->data
, tmp
->cap
.size
);
1170 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+
1171 sizeof(struct pci_cap_saved_data
) + cap
->size
);
1174 dev
->state_saved
= true;
1177 EXPORT_SYMBOL_GPL(pci_load_saved_state
);
1180 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1181 * and free the memory allocated for it.
1182 * @dev: PCI device that we're dealing with
1183 * @state: Pointer to saved state returned from pci_store_saved_state()
1185 int pci_load_and_free_saved_state(struct pci_dev
*dev
,
1186 struct pci_saved_state
**state
)
1188 int ret
= pci_load_saved_state(dev
, *state
);
1193 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state
);
1195 int __weak
pcibios_enable_device(struct pci_dev
*dev
, int bars
)
1197 return pci_enable_resources(dev
, bars
);
1200 static int do_pci_enable_device(struct pci_dev
*dev
, int bars
)
1203 struct pci_dev
*bridge
;
1207 err
= pci_set_power_state(dev
, PCI_D0
);
1208 if (err
< 0 && err
!= -EIO
)
1211 bridge
= pci_upstream_bridge(dev
);
1213 pcie_aspm_powersave_config_link(bridge
);
1215 err
= pcibios_enable_device(dev
, bars
);
1218 pci_fixup_device(pci_fixup_enable
, dev
);
1220 if (dev
->msi_enabled
|| dev
->msix_enabled
)
1223 pci_read_config_byte(dev
, PCI_INTERRUPT_PIN
, &pin
);
1225 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
1226 if (cmd
& PCI_COMMAND_INTX_DISABLE
)
1227 pci_write_config_word(dev
, PCI_COMMAND
,
1228 cmd
& ~PCI_COMMAND_INTX_DISABLE
);
1235 * pci_reenable_device - Resume abandoned device
1236 * @dev: PCI device to be resumed
1238 * Note this function is a backend of pci_default_resume and is not supposed
1239 * to be called by normal code, write proper resume handler and use it instead.
1241 int pci_reenable_device(struct pci_dev
*dev
)
1243 if (pci_is_enabled(dev
))
1244 return do_pci_enable_device(dev
, (1 << PCI_NUM_RESOURCES
) - 1);
1247 EXPORT_SYMBOL(pci_reenable_device
);
1249 static void pci_enable_bridge(struct pci_dev
*dev
)
1251 struct pci_dev
*bridge
;
1254 bridge
= pci_upstream_bridge(dev
);
1256 pci_enable_bridge(bridge
);
1258 if (pci_is_enabled(dev
)) {
1259 if (!dev
->is_busmaster
)
1260 pci_set_master(dev
);
1264 retval
= pci_enable_device(dev
);
1266 dev_err(&dev
->dev
, "Error enabling bridge (%d), continuing\n",
1268 pci_set_master(dev
);
1271 static int pci_enable_device_flags(struct pci_dev
*dev
, unsigned long flags
)
1273 struct pci_dev
*bridge
;
1278 * Power state could be unknown at this point, either due to a fresh
1279 * boot or a device removal call. So get the current power state
1280 * so that things like MSI message writing will behave as expected
1281 * (e.g. if the device really is in D0 at enable time).
1285 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1286 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
1289 if (atomic_inc_return(&dev
->enable_cnt
) > 1)
1290 return 0; /* already enabled */
1292 bridge
= pci_upstream_bridge(dev
);
1294 pci_enable_bridge(bridge
);
1296 /* only skip sriov related */
1297 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
1298 if (dev
->resource
[i
].flags
& flags
)
1300 for (i
= PCI_BRIDGE_RESOURCES
; i
< DEVICE_COUNT_RESOURCE
; i
++)
1301 if (dev
->resource
[i
].flags
& flags
)
1304 err
= do_pci_enable_device(dev
, bars
);
1306 atomic_dec(&dev
->enable_cnt
);
1311 * pci_enable_device_io - Initialize a device for use with IO space
1312 * @dev: PCI device to be initialized
1314 * Initialize device before it's used by a driver. Ask low-level code
1315 * to enable I/O resources. Wake up the device if it was suspended.
1316 * Beware, this function can fail.
1318 int pci_enable_device_io(struct pci_dev
*dev
)
1320 return pci_enable_device_flags(dev
, IORESOURCE_IO
);
1322 EXPORT_SYMBOL(pci_enable_device_io
);
1325 * pci_enable_device_mem - Initialize a device for use with Memory space
1326 * @dev: PCI device to be initialized
1328 * Initialize device before it's used by a driver. Ask low-level code
1329 * to enable Memory resources. Wake up the device if it was suspended.
1330 * Beware, this function can fail.
1332 int pci_enable_device_mem(struct pci_dev
*dev
)
1334 return pci_enable_device_flags(dev
, IORESOURCE_MEM
);
1336 EXPORT_SYMBOL(pci_enable_device_mem
);
1339 * pci_enable_device - Initialize device before it's used by a driver.
1340 * @dev: PCI device to be initialized
1342 * Initialize device before it's used by a driver. Ask low-level code
1343 * to enable I/O and memory. Wake up the device if it was suspended.
1344 * Beware, this function can fail.
1346 * Note we don't actually enable the device many times if we call
1347 * this function repeatedly (we just increment the count).
1349 int pci_enable_device(struct pci_dev
*dev
)
1351 return pci_enable_device_flags(dev
, IORESOURCE_MEM
| IORESOURCE_IO
);
1353 EXPORT_SYMBOL(pci_enable_device
);
1356 * Managed PCI resources. This manages device on/off, intx/msi/msix
1357 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1358 * there's no need to track it separately. pci_devres is initialized
1359 * when a device is enabled using managed PCI device enable interface.
1362 unsigned int enabled
:1;
1363 unsigned int pinned
:1;
1364 unsigned int orig_intx
:1;
1365 unsigned int restore_intx
:1;
1369 static void pcim_release(struct device
*gendev
, void *res
)
1371 struct pci_dev
*dev
= container_of(gendev
, struct pci_dev
, dev
);
1372 struct pci_devres
*this = res
;
1375 if (dev
->msi_enabled
)
1376 pci_disable_msi(dev
);
1377 if (dev
->msix_enabled
)
1378 pci_disable_msix(dev
);
1380 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
1381 if (this->region_mask
& (1 << i
))
1382 pci_release_region(dev
, i
);
1384 if (this->restore_intx
)
1385 pci_intx(dev
, this->orig_intx
);
1387 if (this->enabled
&& !this->pinned
)
1388 pci_disable_device(dev
);
1391 static struct pci_devres
*get_pci_dr(struct pci_dev
*pdev
)
1393 struct pci_devres
*dr
, *new_dr
;
1395 dr
= devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1399 new_dr
= devres_alloc(pcim_release
, sizeof(*new_dr
), GFP_KERNEL
);
1402 return devres_get(&pdev
->dev
, new_dr
, NULL
, NULL
);
1405 static struct pci_devres
*find_pci_dr(struct pci_dev
*pdev
)
1407 if (pci_is_managed(pdev
))
1408 return devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1413 * pcim_enable_device - Managed pci_enable_device()
1414 * @pdev: PCI device to be initialized
1416 * Managed pci_enable_device().
1418 int pcim_enable_device(struct pci_dev
*pdev
)
1420 struct pci_devres
*dr
;
1423 dr
= get_pci_dr(pdev
);
1429 rc
= pci_enable_device(pdev
);
1431 pdev
->is_managed
= 1;
1436 EXPORT_SYMBOL(pcim_enable_device
);
1439 * pcim_pin_device - Pin managed PCI device
1440 * @pdev: PCI device to pin
1442 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1443 * driver detach. @pdev must have been enabled with
1444 * pcim_enable_device().
1446 void pcim_pin_device(struct pci_dev
*pdev
)
1448 struct pci_devres
*dr
;
1450 dr
= find_pci_dr(pdev
);
1451 WARN_ON(!dr
|| !dr
->enabled
);
1455 EXPORT_SYMBOL(pcim_pin_device
);
1458 * pcibios_add_device - provide arch specific hooks when adding device dev
1459 * @dev: the PCI device being added
1461 * Permits the platform to provide architecture specific functionality when
1462 * devices are added. This is the default implementation. Architecture
1463 * implementations can override this.
1465 int __weak
pcibios_add_device(struct pci_dev
*dev
)
1471 * pcibios_release_device - provide arch specific hooks when releasing device dev
1472 * @dev: the PCI device being released
1474 * Permits the platform to provide architecture specific functionality when
1475 * devices are released. This is the default implementation. Architecture
1476 * implementations can override this.
1478 void __weak
pcibios_release_device(struct pci_dev
*dev
) {}
1481 * pcibios_disable_device - disable arch specific PCI resources for device dev
1482 * @dev: the PCI device to disable
1484 * Disables architecture specific PCI resources for the device. This
1485 * is the default implementation. Architecture implementations can
1488 void __weak
pcibios_disable_device (struct pci_dev
*dev
) {}
1491 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1492 * @irq: ISA IRQ to penalize
1493 * @active: IRQ active or not
1495 * Permits the platform to provide architecture-specific functionality when
1496 * penalizing ISA IRQs. This is the default implementation. Architecture
1497 * implementations can override this.
1499 void __weak
pcibios_penalize_isa_irq(int irq
, int active
) {}
1501 static void do_pci_disable_device(struct pci_dev
*dev
)
1505 pci_read_config_word(dev
, PCI_COMMAND
, &pci_command
);
1506 if (pci_command
& PCI_COMMAND_MASTER
) {
1507 pci_command
&= ~PCI_COMMAND_MASTER
;
1508 pci_write_config_word(dev
, PCI_COMMAND
, pci_command
);
1511 pcibios_disable_device(dev
);
1515 * pci_disable_enabled_device - Disable device without updating enable_cnt
1516 * @dev: PCI device to disable
1518 * NOTE: This function is a backend of PCI power management routines and is
1519 * not supposed to be called drivers.
1521 void pci_disable_enabled_device(struct pci_dev
*dev
)
1523 if (pci_is_enabled(dev
))
1524 do_pci_disable_device(dev
);
1528 * pci_disable_device - Disable PCI device after use
1529 * @dev: PCI device to be disabled
1531 * Signal to the system that the PCI device is not in use by the system
1532 * anymore. This only involves disabling PCI bus-mastering, if active.
1534 * Note we don't actually disable the device until all callers of
1535 * pci_enable_device() have called pci_disable_device().
1537 void pci_disable_device(struct pci_dev
*dev
)
1539 struct pci_devres
*dr
;
1541 dr
= find_pci_dr(dev
);
1545 dev_WARN_ONCE(&dev
->dev
, atomic_read(&dev
->enable_cnt
) <= 0,
1546 "disabling already-disabled device");
1548 if (atomic_dec_return(&dev
->enable_cnt
) != 0)
1551 do_pci_disable_device(dev
);
1553 dev
->is_busmaster
= 0;
1555 EXPORT_SYMBOL(pci_disable_device
);
1558 * pcibios_set_pcie_reset_state - set reset state for device dev
1559 * @dev: the PCIe device reset
1560 * @state: Reset state to enter into
1563 * Sets the PCIe reset state for the device. This is the default
1564 * implementation. Architecture implementations can override this.
1566 int __weak
pcibios_set_pcie_reset_state(struct pci_dev
*dev
,
1567 enum pcie_reset_state state
)
1573 * pci_set_pcie_reset_state - set reset state for device dev
1574 * @dev: the PCIe device reset
1575 * @state: Reset state to enter into
1578 * Sets the PCI reset state for the device.
1580 int pci_set_pcie_reset_state(struct pci_dev
*dev
, enum pcie_reset_state state
)
1582 return pcibios_set_pcie_reset_state(dev
, state
);
1584 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state
);
1587 * pci_check_pme_status - Check if given device has generated PME.
1588 * @dev: Device to check.
1590 * Check the PME status of the device and if set, clear it and clear PME enable
1591 * (if set). Return 'true' if PME status and PME enable were both set or
1592 * 'false' otherwise.
1594 bool pci_check_pme_status(struct pci_dev
*dev
)
1603 pmcsr_pos
= dev
->pm_cap
+ PCI_PM_CTRL
;
1604 pci_read_config_word(dev
, pmcsr_pos
, &pmcsr
);
1605 if (!(pmcsr
& PCI_PM_CTRL_PME_STATUS
))
1608 /* Clear PME status. */
1609 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
1610 if (pmcsr
& PCI_PM_CTRL_PME_ENABLE
) {
1611 /* Disable PME to avoid interrupt flood. */
1612 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
1616 pci_write_config_word(dev
, pmcsr_pos
, pmcsr
);
1622 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1623 * @dev: Device to handle.
1624 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1626 * Check if @dev has generated PME and queue a resume request for it in that
1629 static int pci_pme_wakeup(struct pci_dev
*dev
, void *pme_poll_reset
)
1631 if (pme_poll_reset
&& dev
->pme_poll
)
1632 dev
->pme_poll
= false;
1634 if (pci_check_pme_status(dev
)) {
1635 pci_wakeup_event(dev
);
1636 pm_request_resume(&dev
->dev
);
1642 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1643 * @bus: Top bus of the subtree to walk.
1645 void pci_pme_wakeup_bus(struct pci_bus
*bus
)
1648 pci_walk_bus(bus
, pci_pme_wakeup
, (void *)true);
1653 * pci_pme_capable - check the capability of PCI device to generate PME#
1654 * @dev: PCI device to handle.
1655 * @state: PCI state from which device will issue PME#.
1657 bool pci_pme_capable(struct pci_dev
*dev
, pci_power_t state
)
1662 return !!(dev
->pme_support
& (1 << state
));
1664 EXPORT_SYMBOL(pci_pme_capable
);
1666 static void pci_pme_list_scan(struct work_struct
*work
)
1668 struct pci_pme_device
*pme_dev
, *n
;
1670 mutex_lock(&pci_pme_list_mutex
);
1671 list_for_each_entry_safe(pme_dev
, n
, &pci_pme_list
, list
) {
1672 if (pme_dev
->dev
->pme_poll
) {
1673 struct pci_dev
*bridge
;
1675 bridge
= pme_dev
->dev
->bus
->self
;
1677 * If bridge is in low power state, the
1678 * configuration space of subordinate devices
1679 * may be not accessible
1681 if (bridge
&& bridge
->current_state
!= PCI_D0
)
1683 pci_pme_wakeup(pme_dev
->dev
, NULL
);
1685 list_del(&pme_dev
->list
);
1689 if (!list_empty(&pci_pme_list
))
1690 schedule_delayed_work(&pci_pme_work
,
1691 msecs_to_jiffies(PME_TIMEOUT
));
1692 mutex_unlock(&pci_pme_list_mutex
);
1696 * pci_pme_active - enable or disable PCI device's PME# function
1697 * @dev: PCI device to handle.
1698 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1700 * The caller must verify that the device is capable of generating PME# before
1701 * calling this function with @enable equal to 'true'.
1703 void pci_pme_active(struct pci_dev
*dev
, bool enable
)
1707 if (!dev
->pme_support
)
1710 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1711 /* Clear PME_Status by writing 1 to it and enable PME# */
1712 pmcsr
|= PCI_PM_CTRL_PME_STATUS
| PCI_PM_CTRL_PME_ENABLE
;
1714 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
1716 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
1719 * PCI (as opposed to PCIe) PME requires that the device have
1720 * its PME# line hooked up correctly. Not all hardware vendors
1721 * do this, so the PME never gets delivered and the device
1722 * remains asleep. The easiest way around this is to
1723 * periodically walk the list of suspended devices and check
1724 * whether any have their PME flag set. The assumption is that
1725 * we'll wake up often enough anyway that this won't be a huge
1726 * hit, and the power savings from the devices will still be a
1729 * Although PCIe uses in-band PME message instead of PME# line
1730 * to report PME, PME does not work for some PCIe devices in
1731 * reality. For example, there are devices that set their PME
1732 * status bits, but don't really bother to send a PME message;
1733 * there are PCI Express Root Ports that don't bother to
1734 * trigger interrupts when they receive PME messages from the
1735 * devices below. So PME poll is used for PCIe devices too.
1738 if (dev
->pme_poll
) {
1739 struct pci_pme_device
*pme_dev
;
1741 pme_dev
= kmalloc(sizeof(struct pci_pme_device
),
1744 dev_warn(&dev
->dev
, "can't enable PME#\n");
1748 mutex_lock(&pci_pme_list_mutex
);
1749 list_add(&pme_dev
->list
, &pci_pme_list
);
1750 if (list_is_singular(&pci_pme_list
))
1751 schedule_delayed_work(&pci_pme_work
,
1752 msecs_to_jiffies(PME_TIMEOUT
));
1753 mutex_unlock(&pci_pme_list_mutex
);
1755 mutex_lock(&pci_pme_list_mutex
);
1756 list_for_each_entry(pme_dev
, &pci_pme_list
, list
) {
1757 if (pme_dev
->dev
== dev
) {
1758 list_del(&pme_dev
->list
);
1763 mutex_unlock(&pci_pme_list_mutex
);
1767 dev_dbg(&dev
->dev
, "PME# %s\n", enable
? "enabled" : "disabled");
1769 EXPORT_SYMBOL(pci_pme_active
);
1772 * __pci_enable_wake - enable PCI device as wakeup event source
1773 * @dev: PCI device affected
1774 * @state: PCI state from which device will issue wakeup events
1775 * @runtime: True if the events are to be generated at run time
1776 * @enable: True to enable event generation; false to disable
1778 * This enables the device as a wakeup event source, or disables it.
1779 * When such events involves platform-specific hooks, those hooks are
1780 * called automatically by this routine.
1782 * Devices with legacy power management (no standard PCI PM capabilities)
1783 * always require such platform hooks.
1786 * 0 is returned on success
1787 * -EINVAL is returned if device is not supposed to wake up the system
1788 * Error code depending on the platform is returned if both the platform and
1789 * the native mechanism fail to enable the generation of wake-up events
1791 int __pci_enable_wake(struct pci_dev
*dev
, pci_power_t state
,
1792 bool runtime
, bool enable
)
1796 if (enable
&& !runtime
&& !device_may_wakeup(&dev
->dev
))
1799 /* Don't do the same thing twice in a row for one device. */
1800 if (!!enable
== !!dev
->wakeup_prepared
)
1804 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1805 * Anderson we should be doing PME# wake enable followed by ACPI wake
1806 * enable. To disable wake-up we call the platform first, for symmetry.
1812 if (pci_pme_capable(dev
, state
))
1813 pci_pme_active(dev
, true);
1816 error
= runtime
? platform_pci_run_wake(dev
, true) :
1817 platform_pci_sleep_wake(dev
, true);
1821 dev
->wakeup_prepared
= true;
1824 platform_pci_run_wake(dev
, false);
1826 platform_pci_sleep_wake(dev
, false);
1827 pci_pme_active(dev
, false);
1828 dev
->wakeup_prepared
= false;
1833 EXPORT_SYMBOL(__pci_enable_wake
);
1836 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1837 * @dev: PCI device to prepare
1838 * @enable: True to enable wake-up event generation; false to disable
1840 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1841 * and this function allows them to set that up cleanly - pci_enable_wake()
1842 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1843 * ordering constraints.
1845 * This function only returns error code if the device is not capable of
1846 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1847 * enable wake-up power for it.
1849 int pci_wake_from_d3(struct pci_dev
*dev
, bool enable
)
1851 return pci_pme_capable(dev
, PCI_D3cold
) ?
1852 pci_enable_wake(dev
, PCI_D3cold
, enable
) :
1853 pci_enable_wake(dev
, PCI_D3hot
, enable
);
1855 EXPORT_SYMBOL(pci_wake_from_d3
);
1858 * pci_target_state - find an appropriate low power state for a given PCI dev
1861 * Use underlying platform code to find a supported low power state for @dev.
1862 * If the platform can't manage @dev, return the deepest state from which it
1863 * can generate wake events, based on any available PME info.
1865 static pci_power_t
pci_target_state(struct pci_dev
*dev
)
1867 pci_power_t target_state
= PCI_D3hot
;
1869 if (platform_pci_power_manageable(dev
)) {
1871 * Call the platform to choose the target state of the device
1872 * and enable wake-up from this state if supported.
1874 pci_power_t state
= platform_pci_choose_state(dev
);
1877 case PCI_POWER_ERROR
:
1882 if (pci_no_d1d2(dev
))
1885 target_state
= state
;
1887 } else if (!dev
->pm_cap
) {
1888 target_state
= PCI_D0
;
1889 } else if (device_may_wakeup(&dev
->dev
)) {
1891 * Find the deepest state from which the device can generate
1892 * wake-up events, make it the target state and enable device
1895 if (dev
->pme_support
) {
1897 && !(dev
->pme_support
& (1 << target_state
)))
1902 return target_state
;
1906 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1907 * @dev: Device to handle.
1909 * Choose the power state appropriate for the device depending on whether
1910 * it can wake up the system and/or is power manageable by the platform
1911 * (PCI_D3hot is the default) and put the device into that state.
1913 int pci_prepare_to_sleep(struct pci_dev
*dev
)
1915 pci_power_t target_state
= pci_target_state(dev
);
1918 if (target_state
== PCI_POWER_ERROR
)
1921 pci_enable_wake(dev
, target_state
, device_may_wakeup(&dev
->dev
));
1923 error
= pci_set_power_state(dev
, target_state
);
1926 pci_enable_wake(dev
, target_state
, false);
1930 EXPORT_SYMBOL(pci_prepare_to_sleep
);
1933 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1934 * @dev: Device to handle.
1936 * Disable device's system wake-up capability and put it into D0.
1938 int pci_back_from_sleep(struct pci_dev
*dev
)
1940 pci_enable_wake(dev
, PCI_D0
, false);
1941 return pci_set_power_state(dev
, PCI_D0
);
1943 EXPORT_SYMBOL(pci_back_from_sleep
);
1946 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1947 * @dev: PCI device being suspended.
1949 * Prepare @dev to generate wake-up events at run time and put it into a low
1952 int pci_finish_runtime_suspend(struct pci_dev
*dev
)
1954 pci_power_t target_state
= pci_target_state(dev
);
1957 if (target_state
== PCI_POWER_ERROR
)
1960 dev
->runtime_d3cold
= target_state
== PCI_D3cold
;
1962 __pci_enable_wake(dev
, target_state
, true, pci_dev_run_wake(dev
));
1964 error
= pci_set_power_state(dev
, target_state
);
1967 __pci_enable_wake(dev
, target_state
, true, false);
1968 dev
->runtime_d3cold
= false;
1975 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1976 * @dev: Device to check.
1978 * Return true if the device itself is capable of generating wake-up events
1979 * (through the platform or using the native PCIe PME) or if the device supports
1980 * PME and one of its upstream bridges can generate wake-up events.
1982 bool pci_dev_run_wake(struct pci_dev
*dev
)
1984 struct pci_bus
*bus
= dev
->bus
;
1986 if (device_run_wake(&dev
->dev
))
1989 if (!dev
->pme_support
)
1992 while (bus
->parent
) {
1993 struct pci_dev
*bridge
= bus
->self
;
1995 if (device_run_wake(&bridge
->dev
))
2001 /* We have reached the root bus. */
2003 return device_run_wake(bus
->bridge
);
2007 EXPORT_SYMBOL_GPL(pci_dev_run_wake
);
2010 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2011 * @pci_dev: Device to check.
2013 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2014 * reconfigured due to wakeup settings difference between system and runtime
2015 * suspend and the current power state of it is suitable for the upcoming
2016 * (system) transition.
2018 bool pci_dev_keep_suspended(struct pci_dev
*pci_dev
)
2020 struct device
*dev
= &pci_dev
->dev
;
2022 if (!pm_runtime_suspended(dev
)
2023 || (device_can_wakeup(dev
) && !device_may_wakeup(dev
))
2024 || platform_pci_need_resume(pci_dev
))
2027 return pci_target_state(pci_dev
) == pci_dev
->current_state
;
2030 void pci_config_pm_runtime_get(struct pci_dev
*pdev
)
2032 struct device
*dev
= &pdev
->dev
;
2033 struct device
*parent
= dev
->parent
;
2036 pm_runtime_get_sync(parent
);
2037 pm_runtime_get_noresume(dev
);
2039 * pdev->current_state is set to PCI_D3cold during suspending,
2040 * so wait until suspending completes
2042 pm_runtime_barrier(dev
);
2044 * Only need to resume devices in D3cold, because config
2045 * registers are still accessible for devices suspended but
2048 if (pdev
->current_state
== PCI_D3cold
)
2049 pm_runtime_resume(dev
);
2052 void pci_config_pm_runtime_put(struct pci_dev
*pdev
)
2054 struct device
*dev
= &pdev
->dev
;
2055 struct device
*parent
= dev
->parent
;
2057 pm_runtime_put(dev
);
2059 pm_runtime_put_sync(parent
);
2063 * pci_pm_init - Initialize PM functions of given PCI device
2064 * @dev: PCI device to handle.
2066 void pci_pm_init(struct pci_dev
*dev
)
2071 pm_runtime_forbid(&dev
->dev
);
2072 pm_runtime_set_active(&dev
->dev
);
2073 pm_runtime_enable(&dev
->dev
);
2074 device_enable_async_suspend(&dev
->dev
);
2075 dev
->wakeup_prepared
= false;
2078 dev
->pme_support
= 0;
2080 /* find PCI PM capability in list */
2081 pm
= pci_find_capability(dev
, PCI_CAP_ID_PM
);
2084 /* Check device's ability to generate PME# */
2085 pci_read_config_word(dev
, pm
+ PCI_PM_PMC
, &pmc
);
2087 if ((pmc
& PCI_PM_CAP_VER_MASK
) > 3) {
2088 dev_err(&dev
->dev
, "unsupported PM cap regs version (%u)\n",
2089 pmc
& PCI_PM_CAP_VER_MASK
);
2094 dev
->d3_delay
= PCI_PM_D3_WAIT
;
2095 dev
->d3cold_delay
= PCI_PM_D3COLD_WAIT
;
2096 dev
->d3cold_allowed
= true;
2098 dev
->d1_support
= false;
2099 dev
->d2_support
= false;
2100 if (!pci_no_d1d2(dev
)) {
2101 if (pmc
& PCI_PM_CAP_D1
)
2102 dev
->d1_support
= true;
2103 if (pmc
& PCI_PM_CAP_D2
)
2104 dev
->d2_support
= true;
2106 if (dev
->d1_support
|| dev
->d2_support
)
2107 dev_printk(KERN_DEBUG
, &dev
->dev
, "supports%s%s\n",
2108 dev
->d1_support
? " D1" : "",
2109 dev
->d2_support
? " D2" : "");
2112 pmc
&= PCI_PM_CAP_PME_MASK
;
2114 dev_printk(KERN_DEBUG
, &dev
->dev
,
2115 "PME# supported from%s%s%s%s%s\n",
2116 (pmc
& PCI_PM_CAP_PME_D0
) ? " D0" : "",
2117 (pmc
& PCI_PM_CAP_PME_D1
) ? " D1" : "",
2118 (pmc
& PCI_PM_CAP_PME_D2
) ? " D2" : "",
2119 (pmc
& PCI_PM_CAP_PME_D3
) ? " D3hot" : "",
2120 (pmc
& PCI_PM_CAP_PME_D3cold
) ? " D3cold" : "");
2121 dev
->pme_support
= pmc
>> PCI_PM_CAP_PME_SHIFT
;
2122 dev
->pme_poll
= true;
2124 * Make device's PM flags reflect the wake-up capability, but
2125 * let the user space enable it to wake up the system as needed.
2127 device_set_wakeup_capable(&dev
->dev
, true);
2128 /* Disable the PME# generation functionality */
2129 pci_pme_active(dev
, false);
2133 static void pci_add_saved_cap(struct pci_dev
*pci_dev
,
2134 struct pci_cap_saved_state
*new_cap
)
2136 hlist_add_head(&new_cap
->next
, &pci_dev
->saved_cap_space
);
2140 * _pci_add_cap_save_buffer - allocate buffer for saving given
2141 * capability registers
2142 * @dev: the PCI device
2143 * @cap: the capability to allocate the buffer for
2144 * @extended: Standard or Extended capability ID
2145 * @size: requested size of the buffer
2147 static int _pci_add_cap_save_buffer(struct pci_dev
*dev
, u16 cap
,
2148 bool extended
, unsigned int size
)
2151 struct pci_cap_saved_state
*save_state
;
2154 pos
= pci_find_ext_capability(dev
, cap
);
2156 pos
= pci_find_capability(dev
, cap
);
2161 save_state
= kzalloc(sizeof(*save_state
) + size
, GFP_KERNEL
);
2165 save_state
->cap
.cap_nr
= cap
;
2166 save_state
->cap
.cap_extended
= extended
;
2167 save_state
->cap
.size
= size
;
2168 pci_add_saved_cap(dev
, save_state
);
2173 int pci_add_cap_save_buffer(struct pci_dev
*dev
, char cap
, unsigned int size
)
2175 return _pci_add_cap_save_buffer(dev
, cap
, false, size
);
2178 int pci_add_ext_cap_save_buffer(struct pci_dev
*dev
, u16 cap
, unsigned int size
)
2180 return _pci_add_cap_save_buffer(dev
, cap
, true, size
);
2184 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2185 * @dev: the PCI device
2187 void pci_allocate_cap_save_buffers(struct pci_dev
*dev
)
2191 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_EXP
,
2192 PCI_EXP_SAVE_REGS
* sizeof(u16
));
2195 "unable to preallocate PCI Express save buffer\n");
2197 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_PCIX
, sizeof(u16
));
2200 "unable to preallocate PCI-X save buffer\n");
2202 pci_allocate_vc_save_buffers(dev
);
2205 void pci_free_cap_save_buffers(struct pci_dev
*dev
)
2207 struct pci_cap_saved_state
*tmp
;
2208 struct hlist_node
*n
;
2210 hlist_for_each_entry_safe(tmp
, n
, &dev
->saved_cap_space
, next
)
2215 * pci_configure_ari - enable or disable ARI forwarding
2216 * @dev: the PCI device
2218 * If @dev and its upstream bridge both support ARI, enable ARI in the
2219 * bridge. Otherwise, disable ARI in the bridge.
2221 void pci_configure_ari(struct pci_dev
*dev
)
2224 struct pci_dev
*bridge
;
2226 if (pcie_ari_disabled
|| !pci_is_pcie(dev
) || dev
->devfn
)
2229 bridge
= dev
->bus
->self
;
2233 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCAP2
, &cap
);
2234 if (!(cap
& PCI_EXP_DEVCAP2_ARI
))
2237 if (pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ARI
)) {
2238 pcie_capability_set_word(bridge
, PCI_EXP_DEVCTL2
,
2239 PCI_EXP_DEVCTL2_ARI
);
2240 bridge
->ari_enabled
= 1;
2242 pcie_capability_clear_word(bridge
, PCI_EXP_DEVCTL2
,
2243 PCI_EXP_DEVCTL2_ARI
);
2244 bridge
->ari_enabled
= 0;
2248 static int pci_acs_enable
;
2251 * pci_request_acs - ask for ACS to be enabled if supported
2253 void pci_request_acs(void)
2259 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2260 * @dev: the PCI device
2262 static int pci_std_enable_acs(struct pci_dev
*dev
)
2268 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ACS
);
2272 pci_read_config_word(dev
, pos
+ PCI_ACS_CAP
, &cap
);
2273 pci_read_config_word(dev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
2275 /* Source Validation */
2276 ctrl
|= (cap
& PCI_ACS_SV
);
2278 /* P2P Request Redirect */
2279 ctrl
|= (cap
& PCI_ACS_RR
);
2281 /* P2P Completion Redirect */
2282 ctrl
|= (cap
& PCI_ACS_CR
);
2284 /* Upstream Forwarding */
2285 ctrl
|= (cap
& PCI_ACS_UF
);
2287 pci_write_config_word(dev
, pos
+ PCI_ACS_CTRL
, ctrl
);
2293 * pci_enable_acs - enable ACS if hardware support it
2294 * @dev: the PCI device
2296 void pci_enable_acs(struct pci_dev
*dev
)
2298 if (!pci_acs_enable
)
2301 if (!pci_std_enable_acs(dev
))
2304 pci_dev_specific_enable_acs(dev
);
2307 static bool pci_acs_flags_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
2312 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ACS
);
2317 * Except for egress control, capabilities are either required
2318 * or only required if controllable. Features missing from the
2319 * capability field can therefore be assumed as hard-wired enabled.
2321 pci_read_config_word(pdev
, pos
+ PCI_ACS_CAP
, &cap
);
2322 acs_flags
&= (cap
| PCI_ACS_EC
);
2324 pci_read_config_word(pdev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
2325 return (ctrl
& acs_flags
) == acs_flags
;
2329 * pci_acs_enabled - test ACS against required flags for a given device
2330 * @pdev: device to test
2331 * @acs_flags: required PCI ACS flags
2333 * Return true if the device supports the provided flags. Automatically
2334 * filters out flags that are not implemented on multifunction devices.
2336 * Note that this interface checks the effective ACS capabilities of the
2337 * device rather than the actual capabilities. For instance, most single
2338 * function endpoints are not required to support ACS because they have no
2339 * opportunity for peer-to-peer access. We therefore return 'true'
2340 * regardless of whether the device exposes an ACS capability. This makes
2341 * it much easier for callers of this function to ignore the actual type
2342 * or topology of the device when testing ACS support.
2344 bool pci_acs_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
2348 ret
= pci_dev_specific_acs_enabled(pdev
, acs_flags
);
2353 * Conventional PCI and PCI-X devices never support ACS, either
2354 * effectively or actually. The shared bus topology implies that
2355 * any device on the bus can receive or snoop DMA.
2357 if (!pci_is_pcie(pdev
))
2360 switch (pci_pcie_type(pdev
)) {
2362 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2363 * but since their primary interface is PCI/X, we conservatively
2364 * handle them as we would a non-PCIe device.
2366 case PCI_EXP_TYPE_PCIE_BRIDGE
:
2368 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2369 * applicable... must never implement an ACS Extended Capability...".
2370 * This seems arbitrary, but we take a conservative interpretation
2371 * of this statement.
2373 case PCI_EXP_TYPE_PCI_BRIDGE
:
2374 case PCI_EXP_TYPE_RC_EC
:
2377 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2378 * implement ACS in order to indicate their peer-to-peer capabilities,
2379 * regardless of whether they are single- or multi-function devices.
2381 case PCI_EXP_TYPE_DOWNSTREAM
:
2382 case PCI_EXP_TYPE_ROOT_PORT
:
2383 return pci_acs_flags_enabled(pdev
, acs_flags
);
2385 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2386 * implemented by the remaining PCIe types to indicate peer-to-peer
2387 * capabilities, but only when they are part of a multifunction
2388 * device. The footnote for section 6.12 indicates the specific
2389 * PCIe types included here.
2391 case PCI_EXP_TYPE_ENDPOINT
:
2392 case PCI_EXP_TYPE_UPSTREAM
:
2393 case PCI_EXP_TYPE_LEG_END
:
2394 case PCI_EXP_TYPE_RC_END
:
2395 if (!pdev
->multifunction
)
2398 return pci_acs_flags_enabled(pdev
, acs_flags
);
2402 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2403 * to single function devices with the exception of downstream ports.
2409 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2410 * @start: starting downstream device
2411 * @end: ending upstream device or NULL to search to the root bus
2412 * @acs_flags: required flags
2414 * Walk up a device tree from start to end testing PCI ACS support. If
2415 * any step along the way does not support the required flags, return false.
2417 bool pci_acs_path_enabled(struct pci_dev
*start
,
2418 struct pci_dev
*end
, u16 acs_flags
)
2420 struct pci_dev
*pdev
, *parent
= start
;
2425 if (!pci_acs_enabled(pdev
, acs_flags
))
2428 if (pci_is_root_bus(pdev
->bus
))
2429 return (end
== NULL
);
2431 parent
= pdev
->bus
->self
;
2432 } while (pdev
!= end
);
2438 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2439 * @dev: the PCI device
2440 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2442 * Perform INTx swizzling for a device behind one level of bridge. This is
2443 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2444 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2445 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2446 * the PCI Express Base Specification, Revision 2.1)
2448 u8
pci_swizzle_interrupt_pin(const struct pci_dev
*dev
, u8 pin
)
2452 if (pci_ari_enabled(dev
->bus
))
2455 slot
= PCI_SLOT(dev
->devfn
);
2457 return (((pin
- 1) + slot
) % 4) + 1;
2460 int pci_get_interrupt_pin(struct pci_dev
*dev
, struct pci_dev
**bridge
)
2468 while (!pci_is_root_bus(dev
->bus
)) {
2469 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
2470 dev
= dev
->bus
->self
;
2477 * pci_common_swizzle - swizzle INTx all the way to root bridge
2478 * @dev: the PCI device
2479 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2481 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2482 * bridges all the way up to a PCI root bus.
2484 u8
pci_common_swizzle(struct pci_dev
*dev
, u8
*pinp
)
2488 while (!pci_is_root_bus(dev
->bus
)) {
2489 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
2490 dev
= dev
->bus
->self
;
2493 return PCI_SLOT(dev
->devfn
);
2497 * pci_release_region - Release a PCI bar
2498 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2499 * @bar: BAR to release
2501 * Releases the PCI I/O and memory resources previously reserved by a
2502 * successful call to pci_request_region. Call this function only
2503 * after all use of the PCI regions has ceased.
2505 void pci_release_region(struct pci_dev
*pdev
, int bar
)
2507 struct pci_devres
*dr
;
2509 if (pci_resource_len(pdev
, bar
) == 0)
2511 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
)
2512 release_region(pci_resource_start(pdev
, bar
),
2513 pci_resource_len(pdev
, bar
));
2514 else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)
2515 release_mem_region(pci_resource_start(pdev
, bar
),
2516 pci_resource_len(pdev
, bar
));
2518 dr
= find_pci_dr(pdev
);
2520 dr
->region_mask
&= ~(1 << bar
);
2522 EXPORT_SYMBOL(pci_release_region
);
2525 * __pci_request_region - Reserved PCI I/O and memory resource
2526 * @pdev: PCI device whose resources are to be reserved
2527 * @bar: BAR to be reserved
2528 * @res_name: Name to be associated with resource.
2529 * @exclusive: whether the region access is exclusive or not
2531 * Mark the PCI region associated with PCI device @pdev BR @bar as
2532 * being reserved by owner @res_name. Do not access any
2533 * address inside the PCI regions unless this call returns
2536 * If @exclusive is set, then the region is marked so that userspace
2537 * is explicitly not allowed to map the resource via /dev/mem or
2538 * sysfs MMIO access.
2540 * Returns 0 on success, or %EBUSY on error. A warning
2541 * message is also printed on failure.
2543 static int __pci_request_region(struct pci_dev
*pdev
, int bar
,
2544 const char *res_name
, int exclusive
)
2546 struct pci_devres
*dr
;
2548 if (pci_resource_len(pdev
, bar
) == 0)
2551 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
) {
2552 if (!request_region(pci_resource_start(pdev
, bar
),
2553 pci_resource_len(pdev
, bar
), res_name
))
2555 } else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
) {
2556 if (!__request_mem_region(pci_resource_start(pdev
, bar
),
2557 pci_resource_len(pdev
, bar
), res_name
,
2562 dr
= find_pci_dr(pdev
);
2564 dr
->region_mask
|= 1 << bar
;
2569 dev_warn(&pdev
->dev
, "BAR %d: can't reserve %pR\n", bar
,
2570 &pdev
->resource
[bar
]);
2575 * pci_request_region - Reserve PCI I/O and memory resource
2576 * @pdev: PCI device whose resources are to be reserved
2577 * @bar: BAR to be reserved
2578 * @res_name: Name to be associated with resource
2580 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2581 * being reserved by owner @res_name. Do not access any
2582 * address inside the PCI regions unless this call returns
2585 * Returns 0 on success, or %EBUSY on error. A warning
2586 * message is also printed on failure.
2588 int pci_request_region(struct pci_dev
*pdev
, int bar
, const char *res_name
)
2590 return __pci_request_region(pdev
, bar
, res_name
, 0);
2592 EXPORT_SYMBOL(pci_request_region
);
2595 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2596 * @pdev: PCI device whose resources are to be reserved
2597 * @bar: BAR to be reserved
2598 * @res_name: Name to be associated with resource.
2600 * Mark the PCI region associated with PCI device @pdev BR @bar as
2601 * being reserved by owner @res_name. Do not access any
2602 * address inside the PCI regions unless this call returns
2605 * Returns 0 on success, or %EBUSY on error. A warning
2606 * message is also printed on failure.
2608 * The key difference that _exclusive makes it that userspace is
2609 * explicitly not allowed to map the resource via /dev/mem or
2612 int pci_request_region_exclusive(struct pci_dev
*pdev
, int bar
,
2613 const char *res_name
)
2615 return __pci_request_region(pdev
, bar
, res_name
, IORESOURCE_EXCLUSIVE
);
2617 EXPORT_SYMBOL(pci_request_region_exclusive
);
2620 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2621 * @pdev: PCI device whose resources were previously reserved
2622 * @bars: Bitmask of BARs to be released
2624 * Release selected PCI I/O and memory resources previously reserved.
2625 * Call this function only after all use of the PCI regions has ceased.
2627 void pci_release_selected_regions(struct pci_dev
*pdev
, int bars
)
2631 for (i
= 0; i
< 6; i
++)
2632 if (bars
& (1 << i
))
2633 pci_release_region(pdev
, i
);
2635 EXPORT_SYMBOL(pci_release_selected_regions
);
2637 static int __pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
2638 const char *res_name
, int excl
)
2642 for (i
= 0; i
< 6; i
++)
2643 if (bars
& (1 << i
))
2644 if (__pci_request_region(pdev
, i
, res_name
, excl
))
2650 if (bars
& (1 << i
))
2651 pci_release_region(pdev
, i
);
2658 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2659 * @pdev: PCI device whose resources are to be reserved
2660 * @bars: Bitmask of BARs to be requested
2661 * @res_name: Name to be associated with resource
2663 int pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
2664 const char *res_name
)
2666 return __pci_request_selected_regions(pdev
, bars
, res_name
, 0);
2668 EXPORT_SYMBOL(pci_request_selected_regions
);
2670 int pci_request_selected_regions_exclusive(struct pci_dev
*pdev
, int bars
,
2671 const char *res_name
)
2673 return __pci_request_selected_regions(pdev
, bars
, res_name
,
2674 IORESOURCE_EXCLUSIVE
);
2676 EXPORT_SYMBOL(pci_request_selected_regions_exclusive
);
2679 * pci_release_regions - Release reserved PCI I/O and memory resources
2680 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2682 * Releases all PCI I/O and memory resources previously reserved by a
2683 * successful call to pci_request_regions. Call this function only
2684 * after all use of the PCI regions has ceased.
2687 void pci_release_regions(struct pci_dev
*pdev
)
2689 pci_release_selected_regions(pdev
, (1 << 6) - 1);
2691 EXPORT_SYMBOL(pci_release_regions
);
2694 * pci_request_regions - Reserved PCI I/O and memory resources
2695 * @pdev: PCI device whose resources are to be reserved
2696 * @res_name: Name to be associated with resource.
2698 * Mark all PCI regions associated with PCI device @pdev as
2699 * being reserved by owner @res_name. Do not access any
2700 * address inside the PCI regions unless this call returns
2703 * Returns 0 on success, or %EBUSY on error. A warning
2704 * message is also printed on failure.
2706 int pci_request_regions(struct pci_dev
*pdev
, const char *res_name
)
2708 return pci_request_selected_regions(pdev
, ((1 << 6) - 1), res_name
);
2710 EXPORT_SYMBOL(pci_request_regions
);
2713 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2714 * @pdev: PCI device whose resources are to be reserved
2715 * @res_name: Name to be associated with resource.
2717 * Mark all PCI regions associated with PCI device @pdev as
2718 * being reserved by owner @res_name. Do not access any
2719 * address inside the PCI regions unless this call returns
2722 * pci_request_regions_exclusive() will mark the region so that
2723 * /dev/mem and the sysfs MMIO access will not be allowed.
2725 * Returns 0 on success, or %EBUSY on error. A warning
2726 * message is also printed on failure.
2728 int pci_request_regions_exclusive(struct pci_dev
*pdev
, const char *res_name
)
2730 return pci_request_selected_regions_exclusive(pdev
,
2731 ((1 << 6) - 1), res_name
);
2733 EXPORT_SYMBOL(pci_request_regions_exclusive
);
2736 * pci_remap_iospace - Remap the memory mapped I/O space
2737 * @res: Resource describing the I/O space
2738 * @phys_addr: physical address of range to be mapped
2740 * Remap the memory mapped I/O space described by the @res
2741 * and the CPU physical address @phys_addr into virtual address space.
2742 * Only architectures that have memory mapped IO functions defined
2743 * (and the PCI_IOBASE value defined) should call this function.
2745 int __weak
pci_remap_iospace(const struct resource
*res
, phys_addr_t phys_addr
)
2747 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
2748 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
2750 if (!(res
->flags
& IORESOURCE_IO
))
2753 if (res
->end
> IO_SPACE_LIMIT
)
2756 return ioremap_page_range(vaddr
, vaddr
+ resource_size(res
), phys_addr
,
2757 pgprot_device(PAGE_KERNEL
));
2759 /* this architecture does not have memory mapped I/O space,
2760 so this function should never be called */
2761 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
2766 static void __pci_set_master(struct pci_dev
*dev
, bool enable
)
2770 pci_read_config_word(dev
, PCI_COMMAND
, &old_cmd
);
2772 cmd
= old_cmd
| PCI_COMMAND_MASTER
;
2774 cmd
= old_cmd
& ~PCI_COMMAND_MASTER
;
2775 if (cmd
!= old_cmd
) {
2776 dev_dbg(&dev
->dev
, "%s bus mastering\n",
2777 enable
? "enabling" : "disabling");
2778 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
2780 dev
->is_busmaster
= enable
;
2784 * pcibios_setup - process "pci=" kernel boot arguments
2785 * @str: string used to pass in "pci=" kernel boot arguments
2787 * Process kernel boot arguments. This is the default implementation.
2788 * Architecture specific implementations can override this as necessary.
2790 char * __weak __init
pcibios_setup(char *str
)
2796 * pcibios_set_master - enable PCI bus-mastering for device dev
2797 * @dev: the PCI device to enable
2799 * Enables PCI bus-mastering for the device. This is the default
2800 * implementation. Architecture specific implementations can override
2801 * this if necessary.
2803 void __weak
pcibios_set_master(struct pci_dev
*dev
)
2807 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2808 if (pci_is_pcie(dev
))
2811 pci_read_config_byte(dev
, PCI_LATENCY_TIMER
, &lat
);
2813 lat
= (64 <= pcibios_max_latency
) ? 64 : pcibios_max_latency
;
2814 else if (lat
> pcibios_max_latency
)
2815 lat
= pcibios_max_latency
;
2819 pci_write_config_byte(dev
, PCI_LATENCY_TIMER
, lat
);
2823 * pci_set_master - enables bus-mastering for device dev
2824 * @dev: the PCI device to enable
2826 * Enables bus-mastering on the device and calls pcibios_set_master()
2827 * to do the needed arch specific settings.
2829 void pci_set_master(struct pci_dev
*dev
)
2831 __pci_set_master(dev
, true);
2832 pcibios_set_master(dev
);
2834 EXPORT_SYMBOL(pci_set_master
);
2837 * pci_clear_master - disables bus-mastering for device dev
2838 * @dev: the PCI device to disable
2840 void pci_clear_master(struct pci_dev
*dev
)
2842 __pci_set_master(dev
, false);
2844 EXPORT_SYMBOL(pci_clear_master
);
2847 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2848 * @dev: the PCI device for which MWI is to be enabled
2850 * Helper function for pci_set_mwi.
2851 * Originally copied from drivers/net/acenic.c.
2852 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2854 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2856 int pci_set_cacheline_size(struct pci_dev
*dev
)
2860 if (!pci_cache_line_size
)
2863 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2864 equal to or multiple of the right value. */
2865 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
2866 if (cacheline_size
>= pci_cache_line_size
&&
2867 (cacheline_size
% pci_cache_line_size
) == 0)
2870 /* Write the correct value. */
2871 pci_write_config_byte(dev
, PCI_CACHE_LINE_SIZE
, pci_cache_line_size
);
2873 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
2874 if (cacheline_size
== pci_cache_line_size
)
2877 dev_printk(KERN_DEBUG
, &dev
->dev
, "cache line size of %d is not supported\n",
2878 pci_cache_line_size
<< 2);
2882 EXPORT_SYMBOL_GPL(pci_set_cacheline_size
);
2885 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2886 * @dev: the PCI device for which MWI is enabled
2888 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2890 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2892 int pci_set_mwi(struct pci_dev
*dev
)
2894 #ifdef PCI_DISABLE_MWI
2900 rc
= pci_set_cacheline_size(dev
);
2904 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
2905 if (!(cmd
& PCI_COMMAND_INVALIDATE
)) {
2906 dev_dbg(&dev
->dev
, "enabling Mem-Wr-Inval\n");
2907 cmd
|= PCI_COMMAND_INVALIDATE
;
2908 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
2913 EXPORT_SYMBOL(pci_set_mwi
);
2916 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2917 * @dev: the PCI device for which MWI is enabled
2919 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2920 * Callers are not required to check the return value.
2922 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2924 int pci_try_set_mwi(struct pci_dev
*dev
)
2926 #ifdef PCI_DISABLE_MWI
2929 return pci_set_mwi(dev
);
2932 EXPORT_SYMBOL(pci_try_set_mwi
);
2935 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2936 * @dev: the PCI device to disable
2938 * Disables PCI Memory-Write-Invalidate transaction on the device
2940 void pci_clear_mwi(struct pci_dev
*dev
)
2942 #ifndef PCI_DISABLE_MWI
2945 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
2946 if (cmd
& PCI_COMMAND_INVALIDATE
) {
2947 cmd
&= ~PCI_COMMAND_INVALIDATE
;
2948 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
2952 EXPORT_SYMBOL(pci_clear_mwi
);
2955 * pci_intx - enables/disables PCI INTx for device dev
2956 * @pdev: the PCI device to operate on
2957 * @enable: boolean: whether to enable or disable PCI INTx
2959 * Enables/disables PCI INTx for device dev
2961 void pci_intx(struct pci_dev
*pdev
, int enable
)
2963 u16 pci_command
, new;
2965 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_command
);
2968 new = pci_command
& ~PCI_COMMAND_INTX_DISABLE
;
2970 new = pci_command
| PCI_COMMAND_INTX_DISABLE
;
2972 if (new != pci_command
) {
2973 struct pci_devres
*dr
;
2975 pci_write_config_word(pdev
, PCI_COMMAND
, new);
2977 dr
= find_pci_dr(pdev
);
2978 if (dr
&& !dr
->restore_intx
) {
2979 dr
->restore_intx
= 1;
2980 dr
->orig_intx
= !enable
;
2984 EXPORT_SYMBOL_GPL(pci_intx
);
2987 * pci_intx_mask_supported - probe for INTx masking support
2988 * @dev: the PCI device to operate on
2990 * Check if the device dev support INTx masking via the config space
2993 bool pci_intx_mask_supported(struct pci_dev
*dev
)
2995 bool mask_supported
= false;
2998 if (dev
->broken_intx_masking
)
3001 pci_cfg_access_lock(dev
);
3003 pci_read_config_word(dev
, PCI_COMMAND
, &orig
);
3004 pci_write_config_word(dev
, PCI_COMMAND
,
3005 orig
^ PCI_COMMAND_INTX_DISABLE
);
3006 pci_read_config_word(dev
, PCI_COMMAND
, &new);
3009 * There's no way to protect against hardware bugs or detect them
3010 * reliably, but as long as we know what the value should be, let's
3011 * go ahead and check it.
3013 if ((new ^ orig
) & ~PCI_COMMAND_INTX_DISABLE
) {
3014 dev_err(&dev
->dev
, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3016 } else if ((new ^ orig
) & PCI_COMMAND_INTX_DISABLE
) {
3017 mask_supported
= true;
3018 pci_write_config_word(dev
, PCI_COMMAND
, orig
);
3021 pci_cfg_access_unlock(dev
);
3022 return mask_supported
;
3024 EXPORT_SYMBOL_GPL(pci_intx_mask_supported
);
3026 static bool pci_check_and_set_intx_mask(struct pci_dev
*dev
, bool mask
)
3028 struct pci_bus
*bus
= dev
->bus
;
3029 bool mask_updated
= true;
3030 u32 cmd_status_dword
;
3031 u16 origcmd
, newcmd
;
3032 unsigned long flags
;
3036 * We do a single dword read to retrieve both command and status.
3037 * Document assumptions that make this possible.
3039 BUILD_BUG_ON(PCI_COMMAND
% 4);
3040 BUILD_BUG_ON(PCI_COMMAND
+ 2 != PCI_STATUS
);
3042 raw_spin_lock_irqsave(&pci_lock
, flags
);
3044 bus
->ops
->read(bus
, dev
->devfn
, PCI_COMMAND
, 4, &cmd_status_dword
);
3046 irq_pending
= (cmd_status_dword
>> 16) & PCI_STATUS_INTERRUPT
;
3049 * Check interrupt status register to see whether our device
3050 * triggered the interrupt (when masking) or the next IRQ is
3051 * already pending (when unmasking).
3053 if (mask
!= irq_pending
) {
3054 mask_updated
= false;
3058 origcmd
= cmd_status_dword
;
3059 newcmd
= origcmd
& ~PCI_COMMAND_INTX_DISABLE
;
3061 newcmd
|= PCI_COMMAND_INTX_DISABLE
;
3062 if (newcmd
!= origcmd
)
3063 bus
->ops
->write(bus
, dev
->devfn
, PCI_COMMAND
, 2, newcmd
);
3066 raw_spin_unlock_irqrestore(&pci_lock
, flags
);
3068 return mask_updated
;
3072 * pci_check_and_mask_intx - mask INTx on pending interrupt
3073 * @dev: the PCI device to operate on
3075 * Check if the device dev has its INTx line asserted, mask it and
3076 * return true in that case. False is returned if not interrupt was
3079 bool pci_check_and_mask_intx(struct pci_dev
*dev
)
3081 return pci_check_and_set_intx_mask(dev
, true);
3083 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx
);
3086 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3087 * @dev: the PCI device to operate on
3089 * Check if the device dev has its INTx line asserted, unmask it if not
3090 * and return true. False is returned and the mask remains active if
3091 * there was still an interrupt pending.
3093 bool pci_check_and_unmask_intx(struct pci_dev
*dev
)
3095 return pci_check_and_set_intx_mask(dev
, false);
3097 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx
);
3100 * pci_msi_off - disables any MSI or MSI-X capabilities
3101 * @dev: the PCI device to operate on
3103 * If you want to use MSI, see pci_enable_msi() and friends.
3104 * This is a lower-level primitive that allows us to disable
3105 * MSI operation at the device level.
3107 void pci_msi_off(struct pci_dev
*dev
)
3113 * This looks like it could go in msi.c, but we need it even when
3114 * CONFIG_PCI_MSI=n. For the same reason, we can't use
3115 * dev->msi_cap or dev->msix_cap here.
3117 pos
= pci_find_capability(dev
, PCI_CAP_ID_MSI
);
3119 pci_read_config_word(dev
, pos
+ PCI_MSI_FLAGS
, &control
);
3120 control
&= ~PCI_MSI_FLAGS_ENABLE
;
3121 pci_write_config_word(dev
, pos
+ PCI_MSI_FLAGS
, control
);
3123 pos
= pci_find_capability(dev
, PCI_CAP_ID_MSIX
);
3125 pci_read_config_word(dev
, pos
+ PCI_MSIX_FLAGS
, &control
);
3126 control
&= ~PCI_MSIX_FLAGS_ENABLE
;
3127 pci_write_config_word(dev
, pos
+ PCI_MSIX_FLAGS
, control
);
3130 EXPORT_SYMBOL_GPL(pci_msi_off
);
3132 int pci_set_dma_max_seg_size(struct pci_dev
*dev
, unsigned int size
)
3134 return dma_set_max_seg_size(&dev
->dev
, size
);
3136 EXPORT_SYMBOL(pci_set_dma_max_seg_size
);
3138 int pci_set_dma_seg_boundary(struct pci_dev
*dev
, unsigned long mask
)
3140 return dma_set_seg_boundary(&dev
->dev
, mask
);
3142 EXPORT_SYMBOL(pci_set_dma_seg_boundary
);
3145 * pci_wait_for_pending_transaction - waits for pending transaction
3146 * @dev: the PCI device to operate on
3148 * Return 0 if transaction is pending 1 otherwise.
3150 int pci_wait_for_pending_transaction(struct pci_dev
*dev
)
3152 if (!pci_is_pcie(dev
))
3155 return pci_wait_for_pending(dev
, pci_pcie_cap(dev
) + PCI_EXP_DEVSTA
,
3156 PCI_EXP_DEVSTA_TRPND
);
3158 EXPORT_SYMBOL(pci_wait_for_pending_transaction
);
3160 static int pcie_flr(struct pci_dev
*dev
, int probe
)
3164 pcie_capability_read_dword(dev
, PCI_EXP_DEVCAP
, &cap
);
3165 if (!(cap
& PCI_EXP_DEVCAP_FLR
))
3171 if (!pci_wait_for_pending_transaction(dev
))
3172 dev_err(&dev
->dev
, "timed out waiting for pending transaction; performing function level reset anyway\n");
3174 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL
, PCI_EXP_DEVCTL_BCR_FLR
);
3179 static int pci_af_flr(struct pci_dev
*dev
, int probe
)
3184 pos
= pci_find_capability(dev
, PCI_CAP_ID_AF
);
3188 pci_read_config_byte(dev
, pos
+ PCI_AF_CAP
, &cap
);
3189 if (!(cap
& PCI_AF_CAP_TP
) || !(cap
& PCI_AF_CAP_FLR
))
3196 * Wait for Transaction Pending bit to clear. A word-aligned test
3197 * is used, so we use the conrol offset rather than status and shift
3198 * the test bit to match.
3200 if (!pci_wait_for_pending(dev
, pos
+ PCI_AF_CTRL
,
3201 PCI_AF_STATUS_TP
<< 8))
3202 dev_err(&dev
->dev
, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3204 pci_write_config_byte(dev
, pos
+ PCI_AF_CTRL
, PCI_AF_CTRL_FLR
);
3210 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3211 * @dev: Device to reset.
3212 * @probe: If set, only check if the device can be reset this way.
3214 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3215 * unset, it will be reinitialized internally when going from PCI_D3hot to
3216 * PCI_D0. If that's the case and the device is not in a low-power state
3217 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3219 * NOTE: This causes the caller to sleep for twice the device power transition
3220 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3221 * by default (i.e. unless the @dev's d3_delay field has a different value).
3222 * Moreover, only devices in D0 can be reset by this function.
3224 static int pci_pm_reset(struct pci_dev
*dev
, int probe
)
3228 if (!dev
->pm_cap
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_PM_RESET
)
3231 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &csr
);
3232 if (csr
& PCI_PM_CTRL_NO_SOFT_RESET
)
3238 if (dev
->current_state
!= PCI_D0
)
3241 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
3243 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
3244 pci_dev_d3_sleep(dev
);
3246 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
3248 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
3249 pci_dev_d3_sleep(dev
);
3254 void pci_reset_secondary_bus(struct pci_dev
*dev
)
3258 pci_read_config_word(dev
, PCI_BRIDGE_CONTROL
, &ctrl
);
3259 ctrl
|= PCI_BRIDGE_CTL_BUS_RESET
;
3260 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
3262 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3263 * this to 2ms to ensure that we meet the minimum requirement.
3267 ctrl
&= ~PCI_BRIDGE_CTL_BUS_RESET
;
3268 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
3271 * Trhfa for conventional PCI is 2^25 clock cycles.
3272 * Assuming a minimum 33MHz clock this results in a 1s
3273 * delay before we can consider subordinate devices to
3274 * be re-initialized. PCIe has some ways to shorten this,
3275 * but we don't make use of them yet.
3280 void __weak
pcibios_reset_secondary_bus(struct pci_dev
*dev
)
3282 pci_reset_secondary_bus(dev
);
3286 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3287 * @dev: Bridge device
3289 * Use the bridge control register to assert reset on the secondary bus.
3290 * Devices on the secondary bus are left in power-on state.
3292 void pci_reset_bridge_secondary_bus(struct pci_dev
*dev
)
3294 pcibios_reset_secondary_bus(dev
);
3296 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus
);
3298 static int pci_parent_bus_reset(struct pci_dev
*dev
, int probe
)
3300 struct pci_dev
*pdev
;
3302 if (pci_is_root_bus(dev
->bus
) || dev
->subordinate
||
3303 !dev
->bus
->self
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
3306 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
3313 pci_reset_bridge_secondary_bus(dev
->bus
->self
);
3318 static int pci_reset_hotplug_slot(struct hotplug_slot
*hotplug
, int probe
)
3322 if (!hotplug
|| !try_module_get(hotplug
->ops
->owner
))
3325 if (hotplug
->ops
->reset_slot
)
3326 rc
= hotplug
->ops
->reset_slot(hotplug
, probe
);
3328 module_put(hotplug
->ops
->owner
);
3333 static int pci_dev_reset_slot_function(struct pci_dev
*dev
, int probe
)
3335 struct pci_dev
*pdev
;
3337 if (dev
->subordinate
|| !dev
->slot
||
3338 dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
3341 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
3342 if (pdev
!= dev
&& pdev
->slot
== dev
->slot
)
3345 return pci_reset_hotplug_slot(dev
->slot
->hotplug
, probe
);
3348 static int __pci_dev_reset(struct pci_dev
*dev
, int probe
)
3354 rc
= pci_dev_specific_reset(dev
, probe
);
3358 rc
= pcie_flr(dev
, probe
);
3362 rc
= pci_af_flr(dev
, probe
);
3366 rc
= pci_pm_reset(dev
, probe
);
3370 rc
= pci_dev_reset_slot_function(dev
, probe
);
3374 rc
= pci_parent_bus_reset(dev
, probe
);
3379 static void pci_dev_lock(struct pci_dev
*dev
)
3381 pci_cfg_access_lock(dev
);
3382 /* block PM suspend, driver probe, etc. */
3383 device_lock(&dev
->dev
);
3386 /* Return 1 on successful lock, 0 on contention */
3387 static int pci_dev_trylock(struct pci_dev
*dev
)
3389 if (pci_cfg_access_trylock(dev
)) {
3390 if (device_trylock(&dev
->dev
))
3392 pci_cfg_access_unlock(dev
);
3398 static void pci_dev_unlock(struct pci_dev
*dev
)
3400 device_unlock(&dev
->dev
);
3401 pci_cfg_access_unlock(dev
);
3405 * pci_reset_notify - notify device driver of reset
3406 * @dev: device to be notified of reset
3407 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3410 * Must be called prior to device access being disabled and after device
3411 * access is restored.
3413 static void pci_reset_notify(struct pci_dev
*dev
, bool prepare
)
3415 const struct pci_error_handlers
*err_handler
=
3416 dev
->driver
? dev
->driver
->err_handler
: NULL
;
3417 if (err_handler
&& err_handler
->reset_notify
)
3418 err_handler
->reset_notify(dev
, prepare
);
3421 static void pci_dev_save_and_disable(struct pci_dev
*dev
)
3423 pci_reset_notify(dev
, true);
3426 * Wake-up device prior to save. PM registers default to D0 after
3427 * reset and a simple register restore doesn't reliably return
3428 * to a non-D0 state anyway.
3430 pci_set_power_state(dev
, PCI_D0
);
3432 pci_save_state(dev
);
3434 * Disable the device by clearing the Command register, except for
3435 * INTx-disable which is set. This not only disables MMIO and I/O port
3436 * BARs, but also prevents the device from being Bus Master, preventing
3437 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3438 * compliant devices, INTx-disable prevents legacy interrupts.
3440 pci_write_config_word(dev
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
);
3443 static void pci_dev_restore(struct pci_dev
*dev
)
3445 pci_restore_state(dev
);
3446 pci_reset_notify(dev
, false);
3449 static int pci_dev_reset(struct pci_dev
*dev
, int probe
)
3456 rc
= __pci_dev_reset(dev
, probe
);
3459 pci_dev_unlock(dev
);
3465 * __pci_reset_function - reset a PCI device function
3466 * @dev: PCI device to reset
3468 * Some devices allow an individual function to be reset without affecting
3469 * other functions in the same device. The PCI device must be responsive
3470 * to PCI config space in order to use this function.
3472 * The device function is presumed to be unused when this function is called.
3473 * Resetting the device will make the contents of PCI configuration space
3474 * random, so any caller of this must be prepared to reinitialise the
3475 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3478 * Returns 0 if the device function was successfully reset or negative if the
3479 * device doesn't support resetting a single function.
3481 int __pci_reset_function(struct pci_dev
*dev
)
3483 return pci_dev_reset(dev
, 0);
3485 EXPORT_SYMBOL_GPL(__pci_reset_function
);
3488 * __pci_reset_function_locked - reset a PCI device function while holding
3489 * the @dev mutex lock.
3490 * @dev: PCI device to reset
3492 * Some devices allow an individual function to be reset without affecting
3493 * other functions in the same device. The PCI device must be responsive
3494 * to PCI config space in order to use this function.
3496 * The device function is presumed to be unused and the caller is holding
3497 * the device mutex lock when this function is called.
3498 * Resetting the device will make the contents of PCI configuration space
3499 * random, so any caller of this must be prepared to reinitialise the
3500 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3503 * Returns 0 if the device function was successfully reset or negative if the
3504 * device doesn't support resetting a single function.
3506 int __pci_reset_function_locked(struct pci_dev
*dev
)
3508 return __pci_dev_reset(dev
, 0);
3510 EXPORT_SYMBOL_GPL(__pci_reset_function_locked
);
3513 * pci_probe_reset_function - check whether the device can be safely reset
3514 * @dev: PCI device to reset
3516 * Some devices allow an individual function to be reset without affecting
3517 * other functions in the same device. The PCI device must be responsive
3518 * to PCI config space in order to use this function.
3520 * Returns 0 if the device function can be reset or negative if the
3521 * device doesn't support resetting a single function.
3523 int pci_probe_reset_function(struct pci_dev
*dev
)
3525 return pci_dev_reset(dev
, 1);
3529 * pci_reset_function - quiesce and reset a PCI device function
3530 * @dev: PCI device to reset
3532 * Some devices allow an individual function to be reset without affecting
3533 * other functions in the same device. The PCI device must be responsive
3534 * to PCI config space in order to use this function.
3536 * This function does not just reset the PCI portion of a device, but
3537 * clears all the state associated with the device. This function differs
3538 * from __pci_reset_function in that it saves and restores device state
3541 * Returns 0 if the device function was successfully reset or negative if the
3542 * device doesn't support resetting a single function.
3544 int pci_reset_function(struct pci_dev
*dev
)
3548 rc
= pci_dev_reset(dev
, 1);
3552 pci_dev_save_and_disable(dev
);
3554 rc
= pci_dev_reset(dev
, 0);
3556 pci_dev_restore(dev
);
3560 EXPORT_SYMBOL_GPL(pci_reset_function
);
3563 * pci_try_reset_function - quiesce and reset a PCI device function
3564 * @dev: PCI device to reset
3566 * Same as above, except return -EAGAIN if unable to lock device.
3568 int pci_try_reset_function(struct pci_dev
*dev
)
3572 rc
= pci_dev_reset(dev
, 1);
3576 pci_dev_save_and_disable(dev
);
3578 if (pci_dev_trylock(dev
)) {
3579 rc
= __pci_dev_reset(dev
, 0);
3580 pci_dev_unlock(dev
);
3584 pci_dev_restore(dev
);
3588 EXPORT_SYMBOL_GPL(pci_try_reset_function
);
3590 /* Do any devices on or below this bus prevent a bus reset? */
3591 static bool pci_bus_resetable(struct pci_bus
*bus
)
3593 struct pci_dev
*dev
;
3595 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3596 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
3597 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
3604 /* Lock devices from the top of the tree down */
3605 static void pci_bus_lock(struct pci_bus
*bus
)
3607 struct pci_dev
*dev
;
3609 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3611 if (dev
->subordinate
)
3612 pci_bus_lock(dev
->subordinate
);
3616 /* Unlock devices from the bottom of the tree up */
3617 static void pci_bus_unlock(struct pci_bus
*bus
)
3619 struct pci_dev
*dev
;
3621 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3622 if (dev
->subordinate
)
3623 pci_bus_unlock(dev
->subordinate
);
3624 pci_dev_unlock(dev
);
3628 /* Return 1 on successful lock, 0 on contention */
3629 static int pci_bus_trylock(struct pci_bus
*bus
)
3631 struct pci_dev
*dev
;
3633 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3634 if (!pci_dev_trylock(dev
))
3636 if (dev
->subordinate
) {
3637 if (!pci_bus_trylock(dev
->subordinate
)) {
3638 pci_dev_unlock(dev
);
3646 list_for_each_entry_continue_reverse(dev
, &bus
->devices
, bus_list
) {
3647 if (dev
->subordinate
)
3648 pci_bus_unlock(dev
->subordinate
);
3649 pci_dev_unlock(dev
);
3654 /* Do any devices on or below this slot prevent a bus reset? */
3655 static bool pci_slot_resetable(struct pci_slot
*slot
)
3657 struct pci_dev
*dev
;
3659 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
3660 if (!dev
->slot
|| dev
->slot
!= slot
)
3662 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
3663 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
3670 /* Lock devices from the top of the tree down */
3671 static void pci_slot_lock(struct pci_slot
*slot
)
3673 struct pci_dev
*dev
;
3675 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
3676 if (!dev
->slot
|| dev
->slot
!= slot
)
3679 if (dev
->subordinate
)
3680 pci_bus_lock(dev
->subordinate
);
3684 /* Unlock devices from the bottom of the tree up */
3685 static void pci_slot_unlock(struct pci_slot
*slot
)
3687 struct pci_dev
*dev
;
3689 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
3690 if (!dev
->slot
|| dev
->slot
!= slot
)
3692 if (dev
->subordinate
)
3693 pci_bus_unlock(dev
->subordinate
);
3694 pci_dev_unlock(dev
);
3698 /* Return 1 on successful lock, 0 on contention */
3699 static int pci_slot_trylock(struct pci_slot
*slot
)
3701 struct pci_dev
*dev
;
3703 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
3704 if (!dev
->slot
|| dev
->slot
!= slot
)
3706 if (!pci_dev_trylock(dev
))
3708 if (dev
->subordinate
) {
3709 if (!pci_bus_trylock(dev
->subordinate
)) {
3710 pci_dev_unlock(dev
);
3718 list_for_each_entry_continue_reverse(dev
,
3719 &slot
->bus
->devices
, bus_list
) {
3720 if (!dev
->slot
|| dev
->slot
!= slot
)
3722 if (dev
->subordinate
)
3723 pci_bus_unlock(dev
->subordinate
);
3724 pci_dev_unlock(dev
);
3729 /* Save and disable devices from the top of the tree down */
3730 static void pci_bus_save_and_disable(struct pci_bus
*bus
)
3732 struct pci_dev
*dev
;
3734 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3735 pci_dev_save_and_disable(dev
);
3736 if (dev
->subordinate
)
3737 pci_bus_save_and_disable(dev
->subordinate
);
3742 * Restore devices from top of the tree down - parent bridges need to be
3743 * restored before we can get to subordinate devices.
3745 static void pci_bus_restore(struct pci_bus
*bus
)
3747 struct pci_dev
*dev
;
3749 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3750 pci_dev_restore(dev
);
3751 if (dev
->subordinate
)
3752 pci_bus_restore(dev
->subordinate
);
3756 /* Save and disable devices from the top of the tree down */
3757 static void pci_slot_save_and_disable(struct pci_slot
*slot
)
3759 struct pci_dev
*dev
;
3761 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
3762 if (!dev
->slot
|| dev
->slot
!= slot
)
3764 pci_dev_save_and_disable(dev
);
3765 if (dev
->subordinate
)
3766 pci_bus_save_and_disable(dev
->subordinate
);
3771 * Restore devices from top of the tree down - parent bridges need to be
3772 * restored before we can get to subordinate devices.
3774 static void pci_slot_restore(struct pci_slot
*slot
)
3776 struct pci_dev
*dev
;
3778 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
3779 if (!dev
->slot
|| dev
->slot
!= slot
)
3781 pci_dev_restore(dev
);
3782 if (dev
->subordinate
)
3783 pci_bus_restore(dev
->subordinate
);
3787 static int pci_slot_reset(struct pci_slot
*slot
, int probe
)
3791 if (!slot
|| !pci_slot_resetable(slot
))
3795 pci_slot_lock(slot
);
3799 rc
= pci_reset_hotplug_slot(slot
->hotplug
, probe
);
3802 pci_slot_unlock(slot
);
3808 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3809 * @slot: PCI slot to probe
3811 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3813 int pci_probe_reset_slot(struct pci_slot
*slot
)
3815 return pci_slot_reset(slot
, 1);
3817 EXPORT_SYMBOL_GPL(pci_probe_reset_slot
);
3820 * pci_reset_slot - reset a PCI slot
3821 * @slot: PCI slot to reset
3823 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3824 * independent of other slots. For instance, some slots may support slot power
3825 * control. In the case of a 1:1 bus to slot architecture, this function may
3826 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3827 * Generally a slot reset should be attempted before a bus reset. All of the
3828 * function of the slot and any subordinate buses behind the slot are reset
3829 * through this function. PCI config space of all devices in the slot and
3830 * behind the slot is saved before and restored after reset.
3832 * Return 0 on success, non-zero on error.
3834 int pci_reset_slot(struct pci_slot
*slot
)
3838 rc
= pci_slot_reset(slot
, 1);
3842 pci_slot_save_and_disable(slot
);
3844 rc
= pci_slot_reset(slot
, 0);
3846 pci_slot_restore(slot
);
3850 EXPORT_SYMBOL_GPL(pci_reset_slot
);
3853 * pci_try_reset_slot - Try to reset a PCI slot
3854 * @slot: PCI slot to reset
3856 * Same as above except return -EAGAIN if the slot cannot be locked
3858 int pci_try_reset_slot(struct pci_slot
*slot
)
3862 rc
= pci_slot_reset(slot
, 1);
3866 pci_slot_save_and_disable(slot
);
3868 if (pci_slot_trylock(slot
)) {
3870 rc
= pci_reset_hotplug_slot(slot
->hotplug
, 0);
3871 pci_slot_unlock(slot
);
3875 pci_slot_restore(slot
);
3879 EXPORT_SYMBOL_GPL(pci_try_reset_slot
);
3881 static int pci_bus_reset(struct pci_bus
*bus
, int probe
)
3883 if (!bus
->self
|| !pci_bus_resetable(bus
))
3893 pci_reset_bridge_secondary_bus(bus
->self
);
3895 pci_bus_unlock(bus
);
3901 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3902 * @bus: PCI bus to probe
3904 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3906 int pci_probe_reset_bus(struct pci_bus
*bus
)
3908 return pci_bus_reset(bus
, 1);
3910 EXPORT_SYMBOL_GPL(pci_probe_reset_bus
);
3913 * pci_reset_bus - reset a PCI bus
3914 * @bus: top level PCI bus to reset
3916 * Do a bus reset on the given bus and any subordinate buses, saving
3917 * and restoring state of all devices.
3919 * Return 0 on success, non-zero on error.
3921 int pci_reset_bus(struct pci_bus
*bus
)
3925 rc
= pci_bus_reset(bus
, 1);
3929 pci_bus_save_and_disable(bus
);
3931 rc
= pci_bus_reset(bus
, 0);
3933 pci_bus_restore(bus
);
3937 EXPORT_SYMBOL_GPL(pci_reset_bus
);
3940 * pci_try_reset_bus - Try to reset a PCI bus
3941 * @bus: top level PCI bus to reset
3943 * Same as above except return -EAGAIN if the bus cannot be locked
3945 int pci_try_reset_bus(struct pci_bus
*bus
)
3949 rc
= pci_bus_reset(bus
, 1);
3953 pci_bus_save_and_disable(bus
);
3955 if (pci_bus_trylock(bus
)) {
3957 pci_reset_bridge_secondary_bus(bus
->self
);
3958 pci_bus_unlock(bus
);
3962 pci_bus_restore(bus
);
3966 EXPORT_SYMBOL_GPL(pci_try_reset_bus
);
3969 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3970 * @dev: PCI device to query
3972 * Returns mmrbc: maximum designed memory read count in bytes
3973 * or appropriate error value.
3975 int pcix_get_max_mmrbc(struct pci_dev
*dev
)
3980 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
3984 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
3987 return 512 << ((stat
& PCI_X_STATUS_MAX_READ
) >> 21);
3989 EXPORT_SYMBOL(pcix_get_max_mmrbc
);
3992 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3993 * @dev: PCI device to query
3995 * Returns mmrbc: maximum memory read count in bytes
3996 * or appropriate error value.
3998 int pcix_get_mmrbc(struct pci_dev
*dev
)
4003 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
4007 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
4010 return 512 << ((cmd
& PCI_X_CMD_MAX_READ
) >> 2);
4012 EXPORT_SYMBOL(pcix_get_mmrbc
);
4015 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4016 * @dev: PCI device to query
4017 * @mmrbc: maximum memory read count in bytes
4018 * valid values are 512, 1024, 2048, 4096
4020 * If possible sets maximum memory read byte count, some bridges have erratas
4021 * that prevent this.
4023 int pcix_set_mmrbc(struct pci_dev
*dev
, int mmrbc
)
4029 if (mmrbc
< 512 || mmrbc
> 4096 || !is_power_of_2(mmrbc
))
4032 v
= ffs(mmrbc
) - 10;
4034 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
4038 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
4041 if (v
> (stat
& PCI_X_STATUS_MAX_READ
) >> 21)
4044 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
4047 o
= (cmd
& PCI_X_CMD_MAX_READ
) >> 2;
4049 if (v
> o
&& (dev
->bus
->bus_flags
& PCI_BUS_FLAGS_NO_MMRBC
))
4052 cmd
&= ~PCI_X_CMD_MAX_READ
;
4054 if (pci_write_config_word(dev
, cap
+ PCI_X_CMD
, cmd
))
4059 EXPORT_SYMBOL(pcix_set_mmrbc
);
4062 * pcie_get_readrq - get PCI Express read request size
4063 * @dev: PCI device to query
4065 * Returns maximum memory read request in bytes
4066 * or appropriate error value.
4068 int pcie_get_readrq(struct pci_dev
*dev
)
4072 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
4074 return 128 << ((ctl
& PCI_EXP_DEVCTL_READRQ
) >> 12);
4076 EXPORT_SYMBOL(pcie_get_readrq
);
4079 * pcie_set_readrq - set PCI Express maximum memory read request
4080 * @dev: PCI device to query
4081 * @rq: maximum memory read count in bytes
4082 * valid values are 128, 256, 512, 1024, 2048, 4096
4084 * If possible sets maximum memory read request in bytes
4086 int pcie_set_readrq(struct pci_dev
*dev
, int rq
)
4090 if (rq
< 128 || rq
> 4096 || !is_power_of_2(rq
))
4094 * If using the "performance" PCIe config, we clamp the
4095 * read rq size to the max packet size to prevent the
4096 * host bridge generating requests larger than we can
4099 if (pcie_bus_config
== PCIE_BUS_PERFORMANCE
) {
4100 int mps
= pcie_get_mps(dev
);
4106 v
= (ffs(rq
) - 8) << 12;
4108 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
4109 PCI_EXP_DEVCTL_READRQ
, v
);
4111 EXPORT_SYMBOL(pcie_set_readrq
);
4114 * pcie_get_mps - get PCI Express maximum payload size
4115 * @dev: PCI device to query
4117 * Returns maximum payload size in bytes
4119 int pcie_get_mps(struct pci_dev
*dev
)
4123 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
4125 return 128 << ((ctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5);
4127 EXPORT_SYMBOL(pcie_get_mps
);
4130 * pcie_set_mps - set PCI Express maximum payload size
4131 * @dev: PCI device to query
4132 * @mps: maximum payload size in bytes
4133 * valid values are 128, 256, 512, 1024, 2048, 4096
4135 * If possible sets maximum payload size
4137 int pcie_set_mps(struct pci_dev
*dev
, int mps
)
4141 if (mps
< 128 || mps
> 4096 || !is_power_of_2(mps
))
4145 if (v
> dev
->pcie_mpss
)
4149 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
4150 PCI_EXP_DEVCTL_PAYLOAD
, v
);
4152 EXPORT_SYMBOL(pcie_set_mps
);
4155 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4156 * @dev: PCI device to query
4157 * @speed: storage for minimum speed
4158 * @width: storage for minimum width
4160 * This function will walk up the PCI device chain and determine the minimum
4161 * link width and speed of the device.
4163 int pcie_get_minimum_link(struct pci_dev
*dev
, enum pci_bus_speed
*speed
,
4164 enum pcie_link_width
*width
)
4168 *speed
= PCI_SPEED_UNKNOWN
;
4169 *width
= PCIE_LNK_WIDTH_UNKNOWN
;
4173 enum pci_bus_speed next_speed
;
4174 enum pcie_link_width next_width
;
4176 ret
= pcie_capability_read_word(dev
, PCI_EXP_LNKSTA
, &lnksta
);
4180 next_speed
= pcie_link_speed
[lnksta
& PCI_EXP_LNKSTA_CLS
];
4181 next_width
= (lnksta
& PCI_EXP_LNKSTA_NLW
) >>
4182 PCI_EXP_LNKSTA_NLW_SHIFT
;
4184 if (next_speed
< *speed
)
4185 *speed
= next_speed
;
4187 if (next_width
< *width
)
4188 *width
= next_width
;
4190 dev
= dev
->bus
->self
;
4195 EXPORT_SYMBOL(pcie_get_minimum_link
);
4198 * pci_select_bars - Make BAR mask from the type of resource
4199 * @dev: the PCI device for which BAR mask is made
4200 * @flags: resource type mask to be selected
4202 * This helper routine makes bar mask from the type of resource.
4204 int pci_select_bars(struct pci_dev
*dev
, unsigned long flags
)
4207 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++)
4208 if (pci_resource_flags(dev
, i
) & flags
)
4212 EXPORT_SYMBOL(pci_select_bars
);
4215 * pci_resource_bar - get position of the BAR associated with a resource
4216 * @dev: the PCI device
4217 * @resno: the resource number
4218 * @type: the BAR type to be filled in
4220 * Returns BAR position in config space, or 0 if the BAR is invalid.
4222 int pci_resource_bar(struct pci_dev
*dev
, int resno
, enum pci_bar_type
*type
)
4226 if (resno
< PCI_ROM_RESOURCE
) {
4227 *type
= pci_bar_unknown
;
4228 return PCI_BASE_ADDRESS_0
+ 4 * resno
;
4229 } else if (resno
== PCI_ROM_RESOURCE
) {
4230 *type
= pci_bar_mem32
;
4231 return dev
->rom_base_reg
;
4232 } else if (resno
< PCI_BRIDGE_RESOURCES
) {
4233 /* device specific resource */
4234 *type
= pci_bar_unknown
;
4235 reg
= pci_iov_resource_bar(dev
, resno
);
4240 dev_err(&dev
->dev
, "BAR %d: invalid resource\n", resno
);
4244 /* Some architectures require additional programming to enable VGA */
4245 static arch_set_vga_state_t arch_set_vga_state
;
4247 void __init
pci_register_set_vga_state(arch_set_vga_state_t func
)
4249 arch_set_vga_state
= func
; /* NULL disables */
4252 static int pci_set_vga_state_arch(struct pci_dev
*dev
, bool decode
,
4253 unsigned int command_bits
, u32 flags
)
4255 if (arch_set_vga_state
)
4256 return arch_set_vga_state(dev
, decode
, command_bits
,
4262 * pci_set_vga_state - set VGA decode state on device and parents if requested
4263 * @dev: the PCI device
4264 * @decode: true = enable decoding, false = disable decoding
4265 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4266 * @flags: traverse ancestors and change bridges
4267 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4269 int pci_set_vga_state(struct pci_dev
*dev
, bool decode
,
4270 unsigned int command_bits
, u32 flags
)
4272 struct pci_bus
*bus
;
4273 struct pci_dev
*bridge
;
4277 WARN_ON((flags
& PCI_VGA_STATE_CHANGE_DECODES
) && (command_bits
& ~(PCI_COMMAND_IO
|PCI_COMMAND_MEMORY
)));
4279 /* ARCH specific VGA enables */
4280 rc
= pci_set_vga_state_arch(dev
, decode
, command_bits
, flags
);
4284 if (flags
& PCI_VGA_STATE_CHANGE_DECODES
) {
4285 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
4287 cmd
|= command_bits
;
4289 cmd
&= ~command_bits
;
4290 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4293 if (!(flags
& PCI_VGA_STATE_CHANGE_BRIDGE
))
4300 pci_read_config_word(bridge
, PCI_BRIDGE_CONTROL
,
4303 cmd
|= PCI_BRIDGE_CTL_VGA
;
4305 cmd
&= ~PCI_BRIDGE_CTL_VGA
;
4306 pci_write_config_word(bridge
, PCI_BRIDGE_CONTROL
,
4314 bool pci_device_is_present(struct pci_dev
*pdev
)
4318 return pci_bus_read_dev_vendor_id(pdev
->bus
, pdev
->devfn
, &v
, 0);
4320 EXPORT_SYMBOL_GPL(pci_device_is_present
);
4322 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4323 static char resource_alignment_param
[RESOURCE_ALIGNMENT_PARAM_SIZE
] = {0};
4324 static DEFINE_SPINLOCK(resource_alignment_lock
);
4327 * pci_specified_resource_alignment - get resource alignment specified by user.
4328 * @dev: the PCI device to get
4330 * RETURNS: Resource alignment if it is specified.
4331 * Zero if it is not specified.
4333 static resource_size_t
pci_specified_resource_alignment(struct pci_dev
*dev
)
4335 int seg
, bus
, slot
, func
, align_order
, count
;
4336 resource_size_t align
= 0;
4339 spin_lock(&resource_alignment_lock
);
4340 p
= resource_alignment_param
;
4343 if (sscanf(p
, "%d%n", &align_order
, &count
) == 1 &&
4349 if (sscanf(p
, "%x:%x:%x.%x%n",
4350 &seg
, &bus
, &slot
, &func
, &count
) != 4) {
4352 if (sscanf(p
, "%x:%x.%x%n",
4353 &bus
, &slot
, &func
, &count
) != 3) {
4354 /* Invalid format */
4355 printk(KERN_ERR
"PCI: Can't parse resource_alignment parameter: %s\n",
4361 if (seg
== pci_domain_nr(dev
->bus
) &&
4362 bus
== dev
->bus
->number
&&
4363 slot
== PCI_SLOT(dev
->devfn
) &&
4364 func
== PCI_FUNC(dev
->devfn
)) {
4365 if (align_order
== -1)
4368 align
= 1 << align_order
;
4372 if (*p
!= ';' && *p
!= ',') {
4373 /* End of param or invalid format */
4378 spin_unlock(&resource_alignment_lock
);
4383 * This function disables memory decoding and releases memory resources
4384 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4385 * It also rounds up size to specified alignment.
4386 * Later on, the kernel will assign page-aligned memory resource back
4389 void pci_reassigndev_resource_alignment(struct pci_dev
*dev
)
4393 resource_size_t align
, size
;
4396 /* check if specified PCI is target device to reassign */
4397 align
= pci_specified_resource_alignment(dev
);
4401 if (dev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
&&
4402 (dev
->class >> 8) == PCI_CLASS_BRIDGE_HOST
) {
4404 "Can't reassign resources to host bridge.\n");
4409 "Disabling memory decoding and releasing memory resources.\n");
4410 pci_read_config_word(dev
, PCI_COMMAND
, &command
);
4411 command
&= ~PCI_COMMAND_MEMORY
;
4412 pci_write_config_word(dev
, PCI_COMMAND
, command
);
4414 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++) {
4415 r
= &dev
->resource
[i
];
4416 if (!(r
->flags
& IORESOURCE_MEM
))
4418 size
= resource_size(r
);
4422 "Rounding up size of resource #%d to %#llx.\n",
4423 i
, (unsigned long long)size
);
4425 r
->flags
|= IORESOURCE_UNSET
;
4429 /* Need to disable bridge's resource window,
4430 * to enable the kernel to reassign new resource
4433 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
&&
4434 (dev
->class >> 8) == PCI_CLASS_BRIDGE_PCI
) {
4435 for (i
= PCI_BRIDGE_RESOURCES
; i
< PCI_NUM_RESOURCES
; i
++) {
4436 r
= &dev
->resource
[i
];
4437 if (!(r
->flags
& IORESOURCE_MEM
))
4439 r
->flags
|= IORESOURCE_UNSET
;
4440 r
->end
= resource_size(r
) - 1;
4443 pci_disable_bridge_window(dev
);
4447 static ssize_t
pci_set_resource_alignment_param(const char *buf
, size_t count
)
4449 if (count
> RESOURCE_ALIGNMENT_PARAM_SIZE
- 1)
4450 count
= RESOURCE_ALIGNMENT_PARAM_SIZE
- 1;
4451 spin_lock(&resource_alignment_lock
);
4452 strncpy(resource_alignment_param
, buf
, count
);
4453 resource_alignment_param
[count
] = '\0';
4454 spin_unlock(&resource_alignment_lock
);
4458 static ssize_t
pci_get_resource_alignment_param(char *buf
, size_t size
)
4461 spin_lock(&resource_alignment_lock
);
4462 count
= snprintf(buf
, size
, "%s", resource_alignment_param
);
4463 spin_unlock(&resource_alignment_lock
);
4467 static ssize_t
pci_resource_alignment_show(struct bus_type
*bus
, char *buf
)
4469 return pci_get_resource_alignment_param(buf
, PAGE_SIZE
);
4472 static ssize_t
pci_resource_alignment_store(struct bus_type
*bus
,
4473 const char *buf
, size_t count
)
4475 return pci_set_resource_alignment_param(buf
, count
);
4478 BUS_ATTR(resource_alignment
, 0644, pci_resource_alignment_show
,
4479 pci_resource_alignment_store
);
4481 static int __init
pci_resource_alignment_sysfs_init(void)
4483 return bus_create_file(&pci_bus_type
,
4484 &bus_attr_resource_alignment
);
4486 late_initcall(pci_resource_alignment_sysfs_init
);
4488 static void pci_no_domains(void)
4490 #ifdef CONFIG_PCI_DOMAINS
4491 pci_domains_supported
= 0;
4495 #ifdef CONFIG_PCI_DOMAINS
4496 static atomic_t __domain_nr
= ATOMIC_INIT(-1);
4498 int pci_get_new_domain_nr(void)
4500 return atomic_inc_return(&__domain_nr
);
4503 #ifdef CONFIG_PCI_DOMAINS_GENERIC
4504 void pci_bus_assign_domain_nr(struct pci_bus
*bus
, struct device
*parent
)
4506 static int use_dt_domains
= -1;
4507 int domain
= of_get_pci_domain_nr(parent
->of_node
);
4510 * Check DT domain and use_dt_domains values.
4512 * If DT domain property is valid (domain >= 0) and
4513 * use_dt_domains != 0, the DT assignment is valid since this means
4514 * we have not previously allocated a domain number by using
4515 * pci_get_new_domain_nr(); we should also update use_dt_domains to
4516 * 1, to indicate that we have just assigned a domain number from
4519 * If DT domain property value is not valid (ie domain < 0), and we
4520 * have not previously assigned a domain number from DT
4521 * (use_dt_domains != 1) we should assign a domain number by
4524 * pci_get_new_domain_nr()
4526 * API and update the use_dt_domains value to keep track of method we
4527 * are using to assign domain numbers (use_dt_domains = 0).
4529 * All other combinations imply we have a platform that is trying
4530 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
4531 * which is a recipe for domain mishandling and it is prevented by
4532 * invalidating the domain value (domain = -1) and printing a
4533 * corresponding error.
4535 if (domain
>= 0 && use_dt_domains
) {
4537 } else if (domain
< 0 && use_dt_domains
!= 1) {
4539 domain
= pci_get_new_domain_nr();
4541 dev_err(parent
, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
4542 parent
->of_node
->full_name
);
4546 bus
->domain_nr
= domain
;
4552 * pci_ext_cfg_avail - can we access extended PCI config space?
4554 * Returns 1 if we can access PCI extended config space (offsets
4555 * greater than 0xff). This is the default implementation. Architecture
4556 * implementations can override this.
4558 int __weak
pci_ext_cfg_avail(void)
4563 void __weak
pci_fixup_cardbus(struct pci_bus
*bus
)
4566 EXPORT_SYMBOL(pci_fixup_cardbus
);
4568 static int __init
pci_setup(char *str
)
4571 char *k
= strchr(str
, ',');
4574 if (*str
&& (str
= pcibios_setup(str
)) && *str
) {
4575 if (!strcmp(str
, "nomsi")) {
4577 } else if (!strcmp(str
, "noaer")) {
4579 } else if (!strncmp(str
, "realloc=", 8)) {
4580 pci_realloc_get_opt(str
+ 8);
4581 } else if (!strncmp(str
, "realloc", 7)) {
4582 pci_realloc_get_opt("on");
4583 } else if (!strcmp(str
, "nodomains")) {
4585 } else if (!strncmp(str
, "noari", 5)) {
4586 pcie_ari_disabled
= true;
4587 } else if (!strncmp(str
, "cbiosize=", 9)) {
4588 pci_cardbus_io_size
= memparse(str
+ 9, &str
);
4589 } else if (!strncmp(str
, "cbmemsize=", 10)) {
4590 pci_cardbus_mem_size
= memparse(str
+ 10, &str
);
4591 } else if (!strncmp(str
, "resource_alignment=", 19)) {
4592 pci_set_resource_alignment_param(str
+ 19,
4594 } else if (!strncmp(str
, "ecrc=", 5)) {
4595 pcie_ecrc_get_policy(str
+ 5);
4596 } else if (!strncmp(str
, "hpiosize=", 9)) {
4597 pci_hotplug_io_size
= memparse(str
+ 9, &str
);
4598 } else if (!strncmp(str
, "hpmemsize=", 10)) {
4599 pci_hotplug_mem_size
= memparse(str
+ 10, &str
);
4600 } else if (!strncmp(str
, "pcie_bus_tune_off", 17)) {
4601 pcie_bus_config
= PCIE_BUS_TUNE_OFF
;
4602 } else if (!strncmp(str
, "pcie_bus_safe", 13)) {
4603 pcie_bus_config
= PCIE_BUS_SAFE
;
4604 } else if (!strncmp(str
, "pcie_bus_perf", 13)) {
4605 pcie_bus_config
= PCIE_BUS_PERFORMANCE
;
4606 } else if (!strncmp(str
, "pcie_bus_peer2peer", 18)) {
4607 pcie_bus_config
= PCIE_BUS_PEER2PEER
;
4608 } else if (!strncmp(str
, "pcie_scan_all", 13)) {
4609 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS
);
4611 printk(KERN_ERR
"PCI: Unknown option `%s'\n",
4619 early_param("pci", pci_setup
);