Bluetooth: hci_uart: Use generic functionality from Broadcom module
[linux/fpc-iii.git] / drivers / spi / spi-rspi.c
blob46ce47076e63d143f10b298f386877bb960b8f56
1 /*
2 * SH RSPI driver
4 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
5 * Copyright (C) 2014 Glider bvba
7 * Based on spi-sh.c:
8 * Copyright (C) 2011 Renesas Solutions Corp.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/clk.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of_device.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/sh_dma.h>
33 #include <linux/spi/spi.h>
34 #include <linux/spi/rspi.h>
36 #define RSPI_SPCR 0x00 /* Control Register */
37 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
38 #define RSPI_SPPCR 0x02 /* Pin Control Register */
39 #define RSPI_SPSR 0x03 /* Status Register */
40 #define RSPI_SPDR 0x04 /* Data Register */
41 #define RSPI_SPSCR 0x08 /* Sequence Control Register */
42 #define RSPI_SPSSR 0x09 /* Sequence Status Register */
43 #define RSPI_SPBR 0x0a /* Bit Rate Register */
44 #define RSPI_SPDCR 0x0b /* Data Control Register */
45 #define RSPI_SPCKD 0x0c /* Clock Delay Register */
46 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
47 #define RSPI_SPND 0x0e /* Next-Access Delay Register */
48 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
49 #define RSPI_SPCMD0 0x10 /* Command Register 0 */
50 #define RSPI_SPCMD1 0x12 /* Command Register 1 */
51 #define RSPI_SPCMD2 0x14 /* Command Register 2 */
52 #define RSPI_SPCMD3 0x16 /* Command Register 3 */
53 #define RSPI_SPCMD4 0x18 /* Command Register 4 */
54 #define RSPI_SPCMD5 0x1a /* Command Register 5 */
55 #define RSPI_SPCMD6 0x1c /* Command Register 6 */
56 #define RSPI_SPCMD7 0x1e /* Command Register 7 */
57 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
58 #define RSPI_NUM_SPCMD 8
59 #define RSPI_RZ_NUM_SPCMD 4
60 #define QSPI_NUM_SPCMD 4
62 /* RSPI on RZ only */
63 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
64 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
66 /* QSPI only */
67 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
68 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
69 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
70 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
71 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
72 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
73 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
75 /* SPCR - Control Register */
76 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
77 #define SPCR_SPE 0x40 /* Function Enable */
78 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
79 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
80 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
81 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
82 /* RSPI on SH only */
83 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
84 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
85 /* QSPI on R-Car Gen2 only */
86 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
87 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
89 /* SSLP - Slave Select Polarity Register */
90 #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
91 #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
93 /* SPPCR - Pin Control Register */
94 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
95 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
96 #define SPPCR_SPOM 0x04
97 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
98 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
100 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
101 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
103 /* SPSR - Status Register */
104 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
105 #define SPSR_TEND 0x40 /* Transmit End */
106 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
107 #define SPSR_PERF 0x08 /* Parity Error Flag */
108 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
109 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
110 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
112 /* SPSCR - Sequence Control Register */
113 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
115 /* SPSSR - Sequence Status Register */
116 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
117 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
119 /* SPDCR - Data Control Register */
120 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
121 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
122 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
123 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
124 #define SPDCR_SPLWORD SPDCR_SPLW1
125 #define SPDCR_SPLBYTE SPDCR_SPLW0
126 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
127 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
128 #define SPDCR_SLSEL1 0x08
129 #define SPDCR_SLSEL0 0x04
130 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
131 #define SPDCR_SPFC1 0x02
132 #define SPDCR_SPFC0 0x01
133 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
135 /* SPCKD - Clock Delay Register */
136 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
138 /* SSLND - Slave Select Negation Delay Register */
139 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
141 /* SPND - Next-Access Delay Register */
142 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
144 /* SPCR2 - Control Register 2 */
145 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
146 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
147 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
148 #define SPCR2_SPPE 0x01 /* Parity Enable */
150 /* SPCMDn - Command Registers */
151 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
152 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
153 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
154 #define SPCMD_LSBF 0x1000 /* LSB First */
155 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
156 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
157 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
158 #define SPCMD_SPB_16BIT 0x0100
159 #define SPCMD_SPB_20BIT 0x0000
160 #define SPCMD_SPB_24BIT 0x0100
161 #define SPCMD_SPB_32BIT 0x0200
162 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
163 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
164 #define SPCMD_SPIMOD1 0x0040
165 #define SPCMD_SPIMOD0 0x0020
166 #define SPCMD_SPIMOD_SINGLE 0
167 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
168 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
169 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
170 #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
171 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
172 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
173 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
175 /* SPBFCR - Buffer Control Register */
176 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
177 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
178 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
179 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
181 struct rspi_data {
182 void __iomem *addr;
183 u32 max_speed_hz;
184 struct spi_master *master;
185 wait_queue_head_t wait;
186 struct clk *clk;
187 u16 spcmd;
188 u8 spsr;
189 u8 sppcr;
190 int rx_irq, tx_irq;
191 const struct spi_ops *ops;
193 unsigned dma_callbacked:1;
194 unsigned byte_access:1;
197 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
199 iowrite8(data, rspi->addr + offset);
202 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
204 iowrite16(data, rspi->addr + offset);
207 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
209 iowrite32(data, rspi->addr + offset);
212 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
214 return ioread8(rspi->addr + offset);
217 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
219 return ioread16(rspi->addr + offset);
222 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
224 if (rspi->byte_access)
225 rspi_write8(rspi, data, RSPI_SPDR);
226 else /* 16 bit */
227 rspi_write16(rspi, data, RSPI_SPDR);
230 static u16 rspi_read_data(const struct rspi_data *rspi)
232 if (rspi->byte_access)
233 return rspi_read8(rspi, RSPI_SPDR);
234 else /* 16 bit */
235 return rspi_read16(rspi, RSPI_SPDR);
238 /* optional functions */
239 struct spi_ops {
240 int (*set_config_register)(struct rspi_data *rspi, int access_size);
241 int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
242 struct spi_transfer *xfer);
243 u16 mode_bits;
244 u16 flags;
245 u16 fifo_size;
249 * functions for RSPI on legacy SH
251 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
253 int spbr;
255 /* Sets output mode, MOSI signal, and (optionally) loopback */
256 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
258 /* Sets transfer bit rate */
259 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
260 2 * rspi->max_speed_hz) - 1;
261 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
263 /* Disable dummy transmission, set 16-bit word access, 1 frame */
264 rspi_write8(rspi, 0, RSPI_SPDCR);
265 rspi->byte_access = 0;
267 /* Sets RSPCK, SSL, next-access delay value */
268 rspi_write8(rspi, 0x00, RSPI_SPCKD);
269 rspi_write8(rspi, 0x00, RSPI_SSLND);
270 rspi_write8(rspi, 0x00, RSPI_SPND);
272 /* Sets parity, interrupt mask */
273 rspi_write8(rspi, 0x00, RSPI_SPCR2);
275 /* Sets SPCMD */
276 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
277 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
279 /* Sets RSPI mode */
280 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
282 return 0;
286 * functions for RSPI on RZ
288 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
290 int spbr;
292 /* Sets output mode, MOSI signal, and (optionally) loopback */
293 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
295 /* Sets transfer bit rate */
296 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
297 2 * rspi->max_speed_hz) - 1;
298 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
300 /* Disable dummy transmission, set byte access */
301 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
302 rspi->byte_access = 1;
304 /* Sets RSPCK, SSL, next-access delay value */
305 rspi_write8(rspi, 0x00, RSPI_SPCKD);
306 rspi_write8(rspi, 0x00, RSPI_SSLND);
307 rspi_write8(rspi, 0x00, RSPI_SPND);
309 /* Sets SPCMD */
310 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
311 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
313 /* Sets RSPI mode */
314 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
316 return 0;
320 * functions for QSPI
322 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
324 int spbr;
326 /* Sets output mode, MOSI signal, and (optionally) loopback */
327 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
329 /* Sets transfer bit rate */
330 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
331 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
333 /* Disable dummy transmission, set byte access */
334 rspi_write8(rspi, 0, RSPI_SPDCR);
335 rspi->byte_access = 1;
337 /* Sets RSPCK, SSL, next-access delay value */
338 rspi_write8(rspi, 0x00, RSPI_SPCKD);
339 rspi_write8(rspi, 0x00, RSPI_SSLND);
340 rspi_write8(rspi, 0x00, RSPI_SPND);
342 /* Data Length Setting */
343 if (access_size == 8)
344 rspi->spcmd |= SPCMD_SPB_8BIT;
345 else if (access_size == 16)
346 rspi->spcmd |= SPCMD_SPB_16BIT;
347 else
348 rspi->spcmd |= SPCMD_SPB_32BIT;
350 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
352 /* Resets transfer data length */
353 rspi_write32(rspi, 0, QSPI_SPBMUL0);
355 /* Resets transmit and receive buffer */
356 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
357 /* Sets buffer to allow normal operation */
358 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
360 /* Sets SPCMD */
361 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
363 /* Enables SPI function in master mode */
364 rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
366 return 0;
369 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
371 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
373 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
376 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
378 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
381 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
382 u8 enable_bit)
384 int ret;
386 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
387 if (rspi->spsr & wait_mask)
388 return 0;
390 rspi_enable_irq(rspi, enable_bit);
391 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
392 if (ret == 0 && !(rspi->spsr & wait_mask))
393 return -ETIMEDOUT;
395 return 0;
398 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
400 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
403 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
405 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
408 static int rspi_data_out(struct rspi_data *rspi, u8 data)
410 int error = rspi_wait_for_tx_empty(rspi);
411 if (error < 0) {
412 dev_err(&rspi->master->dev, "transmit timeout\n");
413 return error;
415 rspi_write_data(rspi, data);
416 return 0;
419 static int rspi_data_in(struct rspi_data *rspi)
421 int error;
422 u8 data;
424 error = rspi_wait_for_rx_full(rspi);
425 if (error < 0) {
426 dev_err(&rspi->master->dev, "receive timeout\n");
427 return error;
429 data = rspi_read_data(rspi);
430 return data;
433 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
434 unsigned int n)
436 while (n-- > 0) {
437 if (tx) {
438 int ret = rspi_data_out(rspi, *tx++);
439 if (ret < 0)
440 return ret;
442 if (rx) {
443 int ret = rspi_data_in(rspi);
444 if (ret < 0)
445 return ret;
446 *rx++ = ret;
450 return 0;
453 static void rspi_dma_complete(void *arg)
455 struct rspi_data *rspi = arg;
457 rspi->dma_callbacked = 1;
458 wake_up_interruptible(&rspi->wait);
461 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
462 struct sg_table *rx)
464 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
465 u8 irq_mask = 0;
466 unsigned int other_irq = 0;
467 dma_cookie_t cookie;
468 int ret;
470 /* First prepare and submit the DMA request(s), as this may fail */
471 if (rx) {
472 desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
473 rx->sgl, rx->nents, DMA_FROM_DEVICE,
474 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
475 if (!desc_rx) {
476 ret = -EAGAIN;
477 goto no_dma_rx;
480 desc_rx->callback = rspi_dma_complete;
481 desc_rx->callback_param = rspi;
482 cookie = dmaengine_submit(desc_rx);
483 if (dma_submit_error(cookie)) {
484 ret = cookie;
485 goto no_dma_rx;
488 irq_mask |= SPCR_SPRIE;
491 if (tx) {
492 desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
493 tx->sgl, tx->nents, DMA_TO_DEVICE,
494 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
495 if (!desc_tx) {
496 ret = -EAGAIN;
497 goto no_dma_tx;
500 if (rx) {
501 /* No callback */
502 desc_tx->callback = NULL;
503 } else {
504 desc_tx->callback = rspi_dma_complete;
505 desc_tx->callback_param = rspi;
507 cookie = dmaengine_submit(desc_tx);
508 if (dma_submit_error(cookie)) {
509 ret = cookie;
510 goto no_dma_tx;
513 irq_mask |= SPCR_SPTIE;
517 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
518 * called. So, this driver disables the IRQ while DMA transfer.
520 if (tx)
521 disable_irq(other_irq = rspi->tx_irq);
522 if (rx && rspi->rx_irq != other_irq)
523 disable_irq(rspi->rx_irq);
525 rspi_enable_irq(rspi, irq_mask);
526 rspi->dma_callbacked = 0;
528 /* Now start DMA */
529 if (rx)
530 dma_async_issue_pending(rspi->master->dma_rx);
531 if (tx)
532 dma_async_issue_pending(rspi->master->dma_tx);
534 ret = wait_event_interruptible_timeout(rspi->wait,
535 rspi->dma_callbacked, HZ);
536 if (ret > 0 && rspi->dma_callbacked)
537 ret = 0;
538 else if (!ret) {
539 dev_err(&rspi->master->dev, "DMA timeout\n");
540 ret = -ETIMEDOUT;
541 if (tx)
542 dmaengine_terminate_all(rspi->master->dma_tx);
543 if (rx)
544 dmaengine_terminate_all(rspi->master->dma_rx);
547 rspi_disable_irq(rspi, irq_mask);
549 if (tx)
550 enable_irq(rspi->tx_irq);
551 if (rx && rspi->rx_irq != other_irq)
552 enable_irq(rspi->rx_irq);
554 return ret;
556 no_dma_tx:
557 if (rx)
558 dmaengine_terminate_all(rspi->master->dma_rx);
559 no_dma_rx:
560 if (ret == -EAGAIN) {
561 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
562 dev_driver_string(&rspi->master->dev),
563 dev_name(&rspi->master->dev));
565 return ret;
568 static void rspi_receive_init(const struct rspi_data *rspi)
570 u8 spsr;
572 spsr = rspi_read8(rspi, RSPI_SPSR);
573 if (spsr & SPSR_SPRF)
574 rspi_read_data(rspi); /* dummy read */
575 if (spsr & SPSR_OVRF)
576 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
577 RSPI_SPSR);
580 static void rspi_rz_receive_init(const struct rspi_data *rspi)
582 rspi_receive_init(rspi);
583 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
584 rspi_write8(rspi, 0, RSPI_SPBFCR);
587 static void qspi_receive_init(const struct rspi_data *rspi)
589 u8 spsr;
591 spsr = rspi_read8(rspi, RSPI_SPSR);
592 if (spsr & SPSR_SPRF)
593 rspi_read_data(rspi); /* dummy read */
594 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
595 rspi_write8(rspi, 0, QSPI_SPBFCR);
598 static bool __rspi_can_dma(const struct rspi_data *rspi,
599 const struct spi_transfer *xfer)
601 return xfer->len > rspi->ops->fifo_size;
604 static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
605 struct spi_transfer *xfer)
607 struct rspi_data *rspi = spi_master_get_devdata(master);
609 return __rspi_can_dma(rspi, xfer);
612 static int rspi_common_transfer(struct rspi_data *rspi,
613 struct spi_transfer *xfer)
615 int ret;
617 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
618 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
619 ret = rspi_dma_transfer(rspi, &xfer->tx_sg,
620 xfer->rx_buf ? &xfer->rx_sg : NULL);
621 if (ret != -EAGAIN)
622 return ret;
625 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
626 if (ret < 0)
627 return ret;
629 /* Wait for the last transmission */
630 rspi_wait_for_tx_empty(rspi);
632 return 0;
635 static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
636 struct spi_transfer *xfer)
638 struct rspi_data *rspi = spi_master_get_devdata(master);
639 u8 spcr;
641 spcr = rspi_read8(rspi, RSPI_SPCR);
642 if (xfer->rx_buf) {
643 rspi_receive_init(rspi);
644 spcr &= ~SPCR_TXMD;
645 } else {
646 spcr |= SPCR_TXMD;
648 rspi_write8(rspi, spcr, RSPI_SPCR);
650 return rspi_common_transfer(rspi, xfer);
653 static int rspi_rz_transfer_one(struct spi_master *master,
654 struct spi_device *spi,
655 struct spi_transfer *xfer)
657 struct rspi_data *rspi = spi_master_get_devdata(master);
659 rspi_rz_receive_init(rspi);
661 return rspi_common_transfer(rspi, xfer);
664 static int qspi_transfer_out_in(struct rspi_data *rspi,
665 struct spi_transfer *xfer)
667 qspi_receive_init(rspi);
669 return rspi_common_transfer(rspi, xfer);
672 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
674 int ret;
676 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
677 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
678 if (ret != -EAGAIN)
679 return ret;
682 ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len);
683 if (ret < 0)
684 return ret;
686 /* Wait for the last transmission */
687 rspi_wait_for_tx_empty(rspi);
689 return 0;
692 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
694 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
695 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
696 if (ret != -EAGAIN)
697 return ret;
700 return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len);
703 static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
704 struct spi_transfer *xfer)
706 struct rspi_data *rspi = spi_master_get_devdata(master);
708 if (spi->mode & SPI_LOOP) {
709 return qspi_transfer_out_in(rspi, xfer);
710 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
711 /* Quad or Dual SPI Write */
712 return qspi_transfer_out(rspi, xfer);
713 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
714 /* Quad or Dual SPI Read */
715 return qspi_transfer_in(rspi, xfer);
716 } else {
717 /* Single SPI Transfer */
718 return qspi_transfer_out_in(rspi, xfer);
722 static int rspi_setup(struct spi_device *spi)
724 struct rspi_data *rspi = spi_master_get_devdata(spi->master);
726 rspi->max_speed_hz = spi->max_speed_hz;
728 rspi->spcmd = SPCMD_SSLKP;
729 if (spi->mode & SPI_CPOL)
730 rspi->spcmd |= SPCMD_CPOL;
731 if (spi->mode & SPI_CPHA)
732 rspi->spcmd |= SPCMD_CPHA;
734 /* CMOS output mode and MOSI signal from previous transfer */
735 rspi->sppcr = 0;
736 if (spi->mode & SPI_LOOP)
737 rspi->sppcr |= SPPCR_SPLP;
739 set_config_register(rspi, 8);
741 return 0;
744 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
746 if (xfer->tx_buf)
747 switch (xfer->tx_nbits) {
748 case SPI_NBITS_QUAD:
749 return SPCMD_SPIMOD_QUAD;
750 case SPI_NBITS_DUAL:
751 return SPCMD_SPIMOD_DUAL;
752 default:
753 return 0;
755 if (xfer->rx_buf)
756 switch (xfer->rx_nbits) {
757 case SPI_NBITS_QUAD:
758 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
759 case SPI_NBITS_DUAL:
760 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
761 default:
762 return 0;
765 return 0;
768 static int qspi_setup_sequencer(struct rspi_data *rspi,
769 const struct spi_message *msg)
771 const struct spi_transfer *xfer;
772 unsigned int i = 0, len = 0;
773 u16 current_mode = 0xffff, mode;
775 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
776 mode = qspi_transfer_mode(xfer);
777 if (mode == current_mode) {
778 len += xfer->len;
779 continue;
782 /* Transfer mode change */
783 if (i) {
784 /* Set transfer data length of previous transfer */
785 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
788 if (i >= QSPI_NUM_SPCMD) {
789 dev_err(&msg->spi->dev,
790 "Too many different transfer modes");
791 return -EINVAL;
794 /* Program transfer mode for this transfer */
795 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
796 current_mode = mode;
797 len = xfer->len;
798 i++;
800 if (i) {
801 /* Set final transfer data length and sequence length */
802 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
803 rspi_write8(rspi, i - 1, RSPI_SPSCR);
806 return 0;
809 static int rspi_prepare_message(struct spi_master *master,
810 struct spi_message *msg)
812 struct rspi_data *rspi = spi_master_get_devdata(master);
813 int ret;
815 if (msg->spi->mode &
816 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
817 /* Setup sequencer for messages with multiple transfer modes */
818 ret = qspi_setup_sequencer(rspi, msg);
819 if (ret < 0)
820 return ret;
823 /* Enable SPI function in master mode */
824 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
825 return 0;
828 static int rspi_unprepare_message(struct spi_master *master,
829 struct spi_message *msg)
831 struct rspi_data *rspi = spi_master_get_devdata(master);
833 /* Disable SPI function */
834 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
836 /* Reset sequencer for Single SPI Transfers */
837 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
838 rspi_write8(rspi, 0, RSPI_SPSCR);
839 return 0;
842 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
844 struct rspi_data *rspi = _sr;
845 u8 spsr;
846 irqreturn_t ret = IRQ_NONE;
847 u8 disable_irq = 0;
849 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
850 if (spsr & SPSR_SPRF)
851 disable_irq |= SPCR_SPRIE;
852 if (spsr & SPSR_SPTEF)
853 disable_irq |= SPCR_SPTIE;
855 if (disable_irq) {
856 ret = IRQ_HANDLED;
857 rspi_disable_irq(rspi, disable_irq);
858 wake_up(&rspi->wait);
861 return ret;
864 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
866 struct rspi_data *rspi = _sr;
867 u8 spsr;
869 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
870 if (spsr & SPSR_SPRF) {
871 rspi_disable_irq(rspi, SPCR_SPRIE);
872 wake_up(&rspi->wait);
873 return IRQ_HANDLED;
876 return 0;
879 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
881 struct rspi_data *rspi = _sr;
882 u8 spsr;
884 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
885 if (spsr & SPSR_SPTEF) {
886 rspi_disable_irq(rspi, SPCR_SPTIE);
887 wake_up(&rspi->wait);
888 return IRQ_HANDLED;
891 return 0;
894 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
895 enum dma_transfer_direction dir,
896 unsigned int id,
897 dma_addr_t port_addr)
899 dma_cap_mask_t mask;
900 struct dma_chan *chan;
901 struct dma_slave_config cfg;
902 int ret;
904 dma_cap_zero(mask);
905 dma_cap_set(DMA_SLAVE, mask);
907 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
908 (void *)(unsigned long)id, dev,
909 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
910 if (!chan) {
911 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
912 return NULL;
915 memset(&cfg, 0, sizeof(cfg));
916 cfg.slave_id = id;
917 cfg.direction = dir;
918 if (dir == DMA_MEM_TO_DEV) {
919 cfg.dst_addr = port_addr;
920 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
921 } else {
922 cfg.src_addr = port_addr;
923 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
926 ret = dmaengine_slave_config(chan, &cfg);
927 if (ret) {
928 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
929 dma_release_channel(chan);
930 return NULL;
933 return chan;
936 static int rspi_request_dma(struct device *dev, struct spi_master *master,
937 const struct resource *res)
939 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
940 unsigned int dma_tx_id, dma_rx_id;
942 if (dev->of_node) {
943 /* In the OF case we will get the slave IDs from the DT */
944 dma_tx_id = 0;
945 dma_rx_id = 0;
946 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
947 dma_tx_id = rspi_pd->dma_tx_id;
948 dma_rx_id = rspi_pd->dma_rx_id;
949 } else {
950 /* The driver assumes no error. */
951 return 0;
954 master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
955 res->start + RSPI_SPDR);
956 if (!master->dma_tx)
957 return -ENODEV;
959 master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
960 res->start + RSPI_SPDR);
961 if (!master->dma_rx) {
962 dma_release_channel(master->dma_tx);
963 master->dma_tx = NULL;
964 return -ENODEV;
967 master->can_dma = rspi_can_dma;
968 dev_info(dev, "DMA available");
969 return 0;
972 static void rspi_release_dma(struct spi_master *master)
974 if (master->dma_tx)
975 dma_release_channel(master->dma_tx);
976 if (master->dma_rx)
977 dma_release_channel(master->dma_rx);
980 static int rspi_remove(struct platform_device *pdev)
982 struct rspi_data *rspi = platform_get_drvdata(pdev);
984 rspi_release_dma(rspi->master);
985 pm_runtime_disable(&pdev->dev);
987 return 0;
990 static const struct spi_ops rspi_ops = {
991 .set_config_register = rspi_set_config_register,
992 .transfer_one = rspi_transfer_one,
993 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
994 .flags = SPI_MASTER_MUST_TX,
995 .fifo_size = 8,
998 static const struct spi_ops rspi_rz_ops = {
999 .set_config_register = rspi_rz_set_config_register,
1000 .transfer_one = rspi_rz_transfer_one,
1001 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1002 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1003 .fifo_size = 8, /* 8 for TX, 32 for RX */
1006 static const struct spi_ops qspi_ops = {
1007 .set_config_register = qspi_set_config_register,
1008 .transfer_one = qspi_transfer_one,
1009 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP |
1010 SPI_TX_DUAL | SPI_TX_QUAD |
1011 SPI_RX_DUAL | SPI_RX_QUAD,
1012 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1013 .fifo_size = 32,
1016 #ifdef CONFIG_OF
1017 static const struct of_device_id rspi_of_match[] = {
1018 /* RSPI on legacy SH */
1019 { .compatible = "renesas,rspi", .data = &rspi_ops },
1020 /* RSPI on RZ/A1H */
1021 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1022 /* QSPI on R-Car Gen2 */
1023 { .compatible = "renesas,qspi", .data = &qspi_ops },
1024 { /* sentinel */ }
1027 MODULE_DEVICE_TABLE(of, rspi_of_match);
1029 static int rspi_parse_dt(struct device *dev, struct spi_master *master)
1031 u32 num_cs;
1032 int error;
1034 /* Parse DT properties */
1035 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1036 if (error) {
1037 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1038 return error;
1041 master->num_chipselect = num_cs;
1042 return 0;
1044 #else
1045 #define rspi_of_match NULL
1046 static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
1048 return -EINVAL;
1050 #endif /* CONFIG_OF */
1052 static int rspi_request_irq(struct device *dev, unsigned int irq,
1053 irq_handler_t handler, const char *suffix,
1054 void *dev_id)
1056 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1057 dev_name(dev), suffix);
1058 if (!name)
1059 return -ENOMEM;
1061 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1064 static int rspi_probe(struct platform_device *pdev)
1066 struct resource *res;
1067 struct spi_master *master;
1068 struct rspi_data *rspi;
1069 int ret;
1070 const struct of_device_id *of_id;
1071 const struct rspi_plat_data *rspi_pd;
1072 const struct spi_ops *ops;
1074 master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1075 if (master == NULL) {
1076 dev_err(&pdev->dev, "spi_alloc_master error.\n");
1077 return -ENOMEM;
1080 of_id = of_match_device(rspi_of_match, &pdev->dev);
1081 if (of_id) {
1082 ops = of_id->data;
1083 ret = rspi_parse_dt(&pdev->dev, master);
1084 if (ret)
1085 goto error1;
1086 } else {
1087 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1088 rspi_pd = dev_get_platdata(&pdev->dev);
1089 if (rspi_pd && rspi_pd->num_chipselect)
1090 master->num_chipselect = rspi_pd->num_chipselect;
1091 else
1092 master->num_chipselect = 2; /* default */
1095 /* ops parameter check */
1096 if (!ops->set_config_register) {
1097 dev_err(&pdev->dev, "there is no set_config_register\n");
1098 ret = -ENODEV;
1099 goto error1;
1102 rspi = spi_master_get_devdata(master);
1103 platform_set_drvdata(pdev, rspi);
1104 rspi->ops = ops;
1105 rspi->master = master;
1107 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1108 rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1109 if (IS_ERR(rspi->addr)) {
1110 ret = PTR_ERR(rspi->addr);
1111 goto error1;
1114 rspi->clk = devm_clk_get(&pdev->dev, NULL);
1115 if (IS_ERR(rspi->clk)) {
1116 dev_err(&pdev->dev, "cannot get clock\n");
1117 ret = PTR_ERR(rspi->clk);
1118 goto error1;
1121 pm_runtime_enable(&pdev->dev);
1123 init_waitqueue_head(&rspi->wait);
1125 master->bus_num = pdev->id;
1126 master->setup = rspi_setup;
1127 master->auto_runtime_pm = true;
1128 master->transfer_one = ops->transfer_one;
1129 master->prepare_message = rspi_prepare_message;
1130 master->unprepare_message = rspi_unprepare_message;
1131 master->mode_bits = ops->mode_bits;
1132 master->flags = ops->flags;
1133 master->dev.of_node = pdev->dev.of_node;
1135 ret = platform_get_irq_byname(pdev, "rx");
1136 if (ret < 0) {
1137 ret = platform_get_irq_byname(pdev, "mux");
1138 if (ret < 0)
1139 ret = platform_get_irq(pdev, 0);
1140 if (ret >= 0)
1141 rspi->rx_irq = rspi->tx_irq = ret;
1142 } else {
1143 rspi->rx_irq = ret;
1144 ret = platform_get_irq_byname(pdev, "tx");
1145 if (ret >= 0)
1146 rspi->tx_irq = ret;
1148 if (ret < 0) {
1149 dev_err(&pdev->dev, "platform_get_irq error\n");
1150 goto error2;
1153 if (rspi->rx_irq == rspi->tx_irq) {
1154 /* Single multiplexed interrupt */
1155 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1156 "mux", rspi);
1157 } else {
1158 /* Multi-interrupt mode, only SPRI and SPTI are used */
1159 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1160 "rx", rspi);
1161 if (!ret)
1162 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1163 rspi_irq_tx, "tx", rspi);
1165 if (ret < 0) {
1166 dev_err(&pdev->dev, "request_irq error\n");
1167 goto error2;
1170 ret = rspi_request_dma(&pdev->dev, master, res);
1171 if (ret < 0)
1172 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1174 ret = devm_spi_register_master(&pdev->dev, master);
1175 if (ret < 0) {
1176 dev_err(&pdev->dev, "spi_register_master error.\n");
1177 goto error3;
1180 dev_info(&pdev->dev, "probed\n");
1182 return 0;
1184 error3:
1185 rspi_release_dma(master);
1186 error2:
1187 pm_runtime_disable(&pdev->dev);
1188 error1:
1189 spi_master_put(master);
1191 return ret;
1194 static struct platform_device_id spi_driver_ids[] = {
1195 { "rspi", (kernel_ulong_t)&rspi_ops },
1196 { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops },
1197 { "qspi", (kernel_ulong_t)&qspi_ops },
1201 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1203 static struct platform_driver rspi_driver = {
1204 .probe = rspi_probe,
1205 .remove = rspi_remove,
1206 .id_table = spi_driver_ids,
1207 .driver = {
1208 .name = "renesas_spi",
1209 .of_match_table = of_match_ptr(rspi_of_match),
1212 module_platform_driver(rspi_driver);
1214 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1215 MODULE_LICENSE("GPL v2");
1216 MODULE_AUTHOR("Yoshihiro Shimoda");
1217 MODULE_ALIAS("platform:rspi");