4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/kernel.h>
19 #include <linux/kmod.h>
20 #include <linux/device.h>
21 #include <linux/init.h>
22 #include <linux/cache.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmaengine.h>
25 #include <linux/mutex.h>
26 #include <linux/of_device.h>
27 #include <linux/of_irq.h>
28 #include <linux/clk/clk-conf.h>
29 #include <linux/slab.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/spi/spi.h>
32 #include <linux/of_gpio.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/pm_domain.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/ioport.h>
40 #include <linux/acpi.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/spi.h>
45 static void spidev_release(struct device
*dev
)
47 struct spi_device
*spi
= to_spi_device(dev
);
49 /* spi masters may cleanup for released devices */
50 if (spi
->master
->cleanup
)
51 spi
->master
->cleanup(spi
);
53 spi_master_put(spi
->master
);
58 modalias_show(struct device
*dev
, struct device_attribute
*a
, char *buf
)
60 const struct spi_device
*spi
= to_spi_device(dev
);
63 len
= acpi_device_modalias(dev
, buf
, PAGE_SIZE
- 1);
67 return sprintf(buf
, "%s%s\n", SPI_MODULE_PREFIX
, spi
->modalias
);
69 static DEVICE_ATTR_RO(modalias
);
71 static struct attribute
*spi_dev_attrs
[] = {
72 &dev_attr_modalias
.attr
,
75 ATTRIBUTE_GROUPS(spi_dev
);
77 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
78 * and the sysfs version makes coldplug work too.
81 static const struct spi_device_id
*spi_match_id(const struct spi_device_id
*id
,
82 const struct spi_device
*sdev
)
85 if (!strcmp(sdev
->modalias
, id
->name
))
92 const struct spi_device_id
*spi_get_device_id(const struct spi_device
*sdev
)
94 const struct spi_driver
*sdrv
= to_spi_driver(sdev
->dev
.driver
);
96 return spi_match_id(sdrv
->id_table
, sdev
);
98 EXPORT_SYMBOL_GPL(spi_get_device_id
);
100 static int spi_match_device(struct device
*dev
, struct device_driver
*drv
)
102 const struct spi_device
*spi
= to_spi_device(dev
);
103 const struct spi_driver
*sdrv
= to_spi_driver(drv
);
105 /* Attempt an OF style match */
106 if (of_driver_match_device(dev
, drv
))
110 if (acpi_driver_match_device(dev
, drv
))
114 return !!spi_match_id(sdrv
->id_table
, spi
);
116 return strcmp(spi
->modalias
, drv
->name
) == 0;
119 static int spi_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
121 const struct spi_device
*spi
= to_spi_device(dev
);
124 rc
= acpi_device_uevent_modalias(dev
, env
);
128 add_uevent_var(env
, "MODALIAS=%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
132 #ifdef CONFIG_PM_SLEEP
133 static int spi_legacy_suspend(struct device
*dev
, pm_message_t message
)
136 struct spi_driver
*drv
= to_spi_driver(dev
->driver
);
138 /* suspend will stop irqs and dma; no more i/o */
141 value
= drv
->suspend(to_spi_device(dev
), message
);
143 dev_dbg(dev
, "... can't suspend\n");
148 static int spi_legacy_resume(struct device
*dev
)
151 struct spi_driver
*drv
= to_spi_driver(dev
->driver
);
153 /* resume may restart the i/o queue */
156 value
= drv
->resume(to_spi_device(dev
));
158 dev_dbg(dev
, "... can't resume\n");
163 static int spi_pm_suspend(struct device
*dev
)
165 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
168 return pm_generic_suspend(dev
);
170 return spi_legacy_suspend(dev
, PMSG_SUSPEND
);
173 static int spi_pm_resume(struct device
*dev
)
175 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
178 return pm_generic_resume(dev
);
180 return spi_legacy_resume(dev
);
183 static int spi_pm_freeze(struct device
*dev
)
185 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
188 return pm_generic_freeze(dev
);
190 return spi_legacy_suspend(dev
, PMSG_FREEZE
);
193 static int spi_pm_thaw(struct device
*dev
)
195 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
198 return pm_generic_thaw(dev
);
200 return spi_legacy_resume(dev
);
203 static int spi_pm_poweroff(struct device
*dev
)
205 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
208 return pm_generic_poweroff(dev
);
210 return spi_legacy_suspend(dev
, PMSG_HIBERNATE
);
213 static int spi_pm_restore(struct device
*dev
)
215 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
218 return pm_generic_restore(dev
);
220 return spi_legacy_resume(dev
);
223 #define spi_pm_suspend NULL
224 #define spi_pm_resume NULL
225 #define spi_pm_freeze NULL
226 #define spi_pm_thaw NULL
227 #define spi_pm_poweroff NULL
228 #define spi_pm_restore NULL
231 static const struct dev_pm_ops spi_pm
= {
232 .suspend
= spi_pm_suspend
,
233 .resume
= spi_pm_resume
,
234 .freeze
= spi_pm_freeze
,
236 .poweroff
= spi_pm_poweroff
,
237 .restore
= spi_pm_restore
,
239 pm_generic_runtime_suspend
,
240 pm_generic_runtime_resume
,
245 struct bus_type spi_bus_type
= {
247 .dev_groups
= spi_dev_groups
,
248 .match
= spi_match_device
,
249 .uevent
= spi_uevent
,
252 EXPORT_SYMBOL_GPL(spi_bus_type
);
255 static int spi_drv_probe(struct device
*dev
)
257 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
260 ret
= of_clk_set_defaults(dev
->of_node
, false);
264 ret
= dev_pm_domain_attach(dev
, true);
265 if (ret
!= -EPROBE_DEFER
) {
266 ret
= sdrv
->probe(to_spi_device(dev
));
268 dev_pm_domain_detach(dev
, true);
274 static int spi_drv_remove(struct device
*dev
)
276 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
279 ret
= sdrv
->remove(to_spi_device(dev
));
280 dev_pm_domain_detach(dev
, true);
285 static void spi_drv_shutdown(struct device
*dev
)
287 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
289 sdrv
->shutdown(to_spi_device(dev
));
293 * spi_register_driver - register a SPI driver
294 * @sdrv: the driver to register
297 int spi_register_driver(struct spi_driver
*sdrv
)
299 sdrv
->driver
.bus
= &spi_bus_type
;
301 sdrv
->driver
.probe
= spi_drv_probe
;
303 sdrv
->driver
.remove
= spi_drv_remove
;
305 sdrv
->driver
.shutdown
= spi_drv_shutdown
;
306 return driver_register(&sdrv
->driver
);
308 EXPORT_SYMBOL_GPL(spi_register_driver
);
310 /*-------------------------------------------------------------------------*/
312 /* SPI devices should normally not be created by SPI device drivers; that
313 * would make them board-specific. Similarly with SPI master drivers.
314 * Device registration normally goes into like arch/.../mach.../board-YYY.c
315 * with other readonly (flashable) information about mainboard devices.
319 struct list_head list
;
320 struct spi_board_info board_info
;
323 static LIST_HEAD(board_list
);
324 static LIST_HEAD(spi_master_list
);
327 * Used to protect add/del opertion for board_info list and
328 * spi_master list, and their matching process
330 static DEFINE_MUTEX(board_lock
);
333 * spi_alloc_device - Allocate a new SPI device
334 * @master: Controller to which device is connected
337 * Allows a driver to allocate and initialize a spi_device without
338 * registering it immediately. This allows a driver to directly
339 * fill the spi_device with device parameters before calling
340 * spi_add_device() on it.
342 * Caller is responsible to call spi_add_device() on the returned
343 * spi_device structure to add it to the SPI master. If the caller
344 * needs to discard the spi_device without adding it, then it should
345 * call spi_dev_put() on it.
347 * Returns a pointer to the new device, or NULL.
349 struct spi_device
*spi_alloc_device(struct spi_master
*master
)
351 struct spi_device
*spi
;
353 if (!spi_master_get(master
))
356 spi
= kzalloc(sizeof(*spi
), GFP_KERNEL
);
358 spi_master_put(master
);
362 spi
->master
= master
;
363 spi
->dev
.parent
= &master
->dev
;
364 spi
->dev
.bus
= &spi_bus_type
;
365 spi
->dev
.release
= spidev_release
;
366 spi
->cs_gpio
= -ENOENT
;
367 device_initialize(&spi
->dev
);
370 EXPORT_SYMBOL_GPL(spi_alloc_device
);
372 static void spi_dev_set_name(struct spi_device
*spi
)
374 struct acpi_device
*adev
= ACPI_COMPANION(&spi
->dev
);
377 dev_set_name(&spi
->dev
, "spi-%s", acpi_dev_name(adev
));
381 dev_set_name(&spi
->dev
, "%s.%u", dev_name(&spi
->master
->dev
),
385 static int spi_dev_check(struct device
*dev
, void *data
)
387 struct spi_device
*spi
= to_spi_device(dev
);
388 struct spi_device
*new_spi
= data
;
390 if (spi
->master
== new_spi
->master
&&
391 spi
->chip_select
== new_spi
->chip_select
)
397 * spi_add_device - Add spi_device allocated with spi_alloc_device
398 * @spi: spi_device to register
400 * Companion function to spi_alloc_device. Devices allocated with
401 * spi_alloc_device can be added onto the spi bus with this function.
403 * Returns 0 on success; negative errno on failure
405 int spi_add_device(struct spi_device
*spi
)
407 static DEFINE_MUTEX(spi_add_lock
);
408 struct spi_master
*master
= spi
->master
;
409 struct device
*dev
= master
->dev
.parent
;
412 /* Chipselects are numbered 0..max; validate. */
413 if (spi
->chip_select
>= master
->num_chipselect
) {
414 dev_err(dev
, "cs%d >= max %d\n",
416 master
->num_chipselect
);
420 /* Set the bus ID string */
421 spi_dev_set_name(spi
);
423 /* We need to make sure there's no other device with this
424 * chipselect **BEFORE** we call setup(), else we'll trash
425 * its configuration. Lock against concurrent add() calls.
427 mutex_lock(&spi_add_lock
);
429 status
= bus_for_each_dev(&spi_bus_type
, NULL
, spi
, spi_dev_check
);
431 dev_err(dev
, "chipselect %d already in use\n",
436 if (master
->cs_gpios
)
437 spi
->cs_gpio
= master
->cs_gpios
[spi
->chip_select
];
439 /* Drivers may modify this initial i/o setup, but will
440 * normally rely on the device being setup. Devices
441 * using SPI_CS_HIGH can't coexist well otherwise...
443 status
= spi_setup(spi
);
445 dev_err(dev
, "can't setup %s, status %d\n",
446 dev_name(&spi
->dev
), status
);
450 /* Device may be bound to an active driver when this returns */
451 status
= device_add(&spi
->dev
);
453 dev_err(dev
, "can't add %s, status %d\n",
454 dev_name(&spi
->dev
), status
);
456 dev_dbg(dev
, "registered child %s\n", dev_name(&spi
->dev
));
459 mutex_unlock(&spi_add_lock
);
462 EXPORT_SYMBOL_GPL(spi_add_device
);
465 * spi_new_device - instantiate one new SPI device
466 * @master: Controller to which device is connected
467 * @chip: Describes the SPI device
470 * On typical mainboards, this is purely internal; and it's not needed
471 * after board init creates the hard-wired devices. Some development
472 * platforms may not be able to use spi_register_board_info though, and
473 * this is exported so that for example a USB or parport based adapter
474 * driver could add devices (which it would learn about out-of-band).
476 * Returns the new device, or NULL.
478 struct spi_device
*spi_new_device(struct spi_master
*master
,
479 struct spi_board_info
*chip
)
481 struct spi_device
*proxy
;
484 /* NOTE: caller did any chip->bus_num checks necessary.
486 * Also, unless we change the return value convention to use
487 * error-or-pointer (not NULL-or-pointer), troubleshootability
488 * suggests syslogged diagnostics are best here (ugh).
491 proxy
= spi_alloc_device(master
);
495 WARN_ON(strlen(chip
->modalias
) >= sizeof(proxy
->modalias
));
497 proxy
->chip_select
= chip
->chip_select
;
498 proxy
->max_speed_hz
= chip
->max_speed_hz
;
499 proxy
->mode
= chip
->mode
;
500 proxy
->irq
= chip
->irq
;
501 strlcpy(proxy
->modalias
, chip
->modalias
, sizeof(proxy
->modalias
));
502 proxy
->dev
.platform_data
= (void *) chip
->platform_data
;
503 proxy
->controller_data
= chip
->controller_data
;
504 proxy
->controller_state
= NULL
;
506 status
= spi_add_device(proxy
);
514 EXPORT_SYMBOL_GPL(spi_new_device
);
516 static void spi_match_master_to_boardinfo(struct spi_master
*master
,
517 struct spi_board_info
*bi
)
519 struct spi_device
*dev
;
521 if (master
->bus_num
!= bi
->bus_num
)
524 dev
= spi_new_device(master
, bi
);
526 dev_err(master
->dev
.parent
, "can't create new device for %s\n",
531 * spi_register_board_info - register SPI devices for a given board
532 * @info: array of chip descriptors
533 * @n: how many descriptors are provided
536 * Board-specific early init code calls this (probably during arch_initcall)
537 * with segments of the SPI device table. Any device nodes are created later,
538 * after the relevant parent SPI controller (bus_num) is defined. We keep
539 * this table of devices forever, so that reloading a controller driver will
540 * not make Linux forget about these hard-wired devices.
542 * Other code can also call this, e.g. a particular add-on board might provide
543 * SPI devices through its expansion connector, so code initializing that board
544 * would naturally declare its SPI devices.
546 * The board info passed can safely be __initdata ... but be careful of
547 * any embedded pointers (platform_data, etc), they're copied as-is.
549 int spi_register_board_info(struct spi_board_info
const *info
, unsigned n
)
551 struct boardinfo
*bi
;
557 bi
= kzalloc(n
* sizeof(*bi
), GFP_KERNEL
);
561 for (i
= 0; i
< n
; i
++, bi
++, info
++) {
562 struct spi_master
*master
;
564 memcpy(&bi
->board_info
, info
, sizeof(*info
));
565 mutex_lock(&board_lock
);
566 list_add_tail(&bi
->list
, &board_list
);
567 list_for_each_entry(master
, &spi_master_list
, list
)
568 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
569 mutex_unlock(&board_lock
);
575 /*-------------------------------------------------------------------------*/
577 static void spi_set_cs(struct spi_device
*spi
, bool enable
)
579 if (spi
->mode
& SPI_CS_HIGH
)
582 if (spi
->cs_gpio
>= 0)
583 gpio_set_value(spi
->cs_gpio
, !enable
);
584 else if (spi
->master
->set_cs
)
585 spi
->master
->set_cs(spi
, !enable
);
588 #ifdef CONFIG_HAS_DMA
589 static int spi_map_buf(struct spi_master
*master
, struct device
*dev
,
590 struct sg_table
*sgt
, void *buf
, size_t len
,
591 enum dma_data_direction dir
)
593 const bool vmalloced_buf
= is_vmalloc_addr(buf
);
594 const int desc_len
= vmalloced_buf
? PAGE_SIZE
: master
->max_dma_len
;
595 const int sgs
= DIV_ROUND_UP(len
, desc_len
);
596 struct page
*vm_page
;
601 ret
= sg_alloc_table(sgt
, sgs
, GFP_KERNEL
);
605 for (i
= 0; i
< sgs
; i
++) {
606 min
= min_t(size_t, len
, desc_len
);
609 vm_page
= vmalloc_to_page(buf
);
614 sg_set_page(&sgt
->sgl
[i
], vm_page
,
615 min
, offset_in_page(buf
));
618 sg_set_buf(&sgt
->sgl
[i
], sg_buf
, min
);
626 ret
= dma_map_sg(dev
, sgt
->sgl
, sgt
->nents
, dir
);
639 static void spi_unmap_buf(struct spi_master
*master
, struct device
*dev
,
640 struct sg_table
*sgt
, enum dma_data_direction dir
)
642 if (sgt
->orig_nents
) {
643 dma_unmap_sg(dev
, sgt
->sgl
, sgt
->orig_nents
, dir
);
648 static int __spi_map_msg(struct spi_master
*master
, struct spi_message
*msg
)
650 struct device
*tx_dev
, *rx_dev
;
651 struct spi_transfer
*xfer
;
654 if (!master
->can_dma
)
657 tx_dev
= master
->dma_tx
->device
->dev
;
658 rx_dev
= master
->dma_rx
->device
->dev
;
660 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
661 if (!master
->can_dma(master
, msg
->spi
, xfer
))
664 if (xfer
->tx_buf
!= NULL
) {
665 ret
= spi_map_buf(master
, tx_dev
, &xfer
->tx_sg
,
666 (void *)xfer
->tx_buf
, xfer
->len
,
672 if (xfer
->rx_buf
!= NULL
) {
673 ret
= spi_map_buf(master
, rx_dev
, &xfer
->rx_sg
,
674 xfer
->rx_buf
, xfer
->len
,
677 spi_unmap_buf(master
, tx_dev
, &xfer
->tx_sg
,
684 master
->cur_msg_mapped
= true;
689 static int spi_unmap_msg(struct spi_master
*master
, struct spi_message
*msg
)
691 struct spi_transfer
*xfer
;
692 struct device
*tx_dev
, *rx_dev
;
694 if (!master
->cur_msg_mapped
|| !master
->can_dma
)
697 tx_dev
= master
->dma_tx
->device
->dev
;
698 rx_dev
= master
->dma_rx
->device
->dev
;
700 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
701 if (!master
->can_dma(master
, msg
->spi
, xfer
))
704 spi_unmap_buf(master
, rx_dev
, &xfer
->rx_sg
, DMA_FROM_DEVICE
);
705 spi_unmap_buf(master
, tx_dev
, &xfer
->tx_sg
, DMA_TO_DEVICE
);
710 #else /* !CONFIG_HAS_DMA */
711 static inline int __spi_map_msg(struct spi_master
*master
,
712 struct spi_message
*msg
)
717 static inline int spi_unmap_msg(struct spi_master
*master
,
718 struct spi_message
*msg
)
722 #endif /* !CONFIG_HAS_DMA */
724 static int spi_map_msg(struct spi_master
*master
, struct spi_message
*msg
)
726 struct spi_transfer
*xfer
;
728 unsigned int max_tx
, max_rx
;
730 if (master
->flags
& (SPI_MASTER_MUST_RX
| SPI_MASTER_MUST_TX
)) {
734 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
735 if ((master
->flags
& SPI_MASTER_MUST_TX
) &&
737 max_tx
= max(xfer
->len
, max_tx
);
738 if ((master
->flags
& SPI_MASTER_MUST_RX
) &&
740 max_rx
= max(xfer
->len
, max_rx
);
744 tmp
= krealloc(master
->dummy_tx
, max_tx
,
745 GFP_KERNEL
| GFP_DMA
);
748 master
->dummy_tx
= tmp
;
749 memset(tmp
, 0, max_tx
);
753 tmp
= krealloc(master
->dummy_rx
, max_rx
,
754 GFP_KERNEL
| GFP_DMA
);
757 master
->dummy_rx
= tmp
;
760 if (max_tx
|| max_rx
) {
761 list_for_each_entry(xfer
, &msg
->transfers
,
764 xfer
->tx_buf
= master
->dummy_tx
;
766 xfer
->rx_buf
= master
->dummy_rx
;
771 return __spi_map_msg(master
, msg
);
775 * spi_transfer_one_message - Default implementation of transfer_one_message()
777 * This is a standard implementation of transfer_one_message() for
778 * drivers which impelment a transfer_one() operation. It provides
779 * standard handling of delays and chip select management.
781 static int spi_transfer_one_message(struct spi_master
*master
,
782 struct spi_message
*msg
)
784 struct spi_transfer
*xfer
;
785 bool keep_cs
= false;
787 unsigned long ms
= 1;
789 spi_set_cs(msg
->spi
, true);
791 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
792 trace_spi_transfer_start(msg
, xfer
);
794 if (xfer
->tx_buf
|| xfer
->rx_buf
) {
795 reinit_completion(&master
->xfer_completion
);
797 ret
= master
->transfer_one(master
, msg
->spi
, xfer
);
799 dev_err(&msg
->spi
->dev
,
800 "SPI transfer failed: %d\n", ret
);
806 ms
= xfer
->len
* 8 * 1000 / xfer
->speed_hz
;
807 ms
+= ms
+ 100; /* some tolerance */
809 ms
= wait_for_completion_timeout(&master
->xfer_completion
,
810 msecs_to_jiffies(ms
));
814 dev_err(&msg
->spi
->dev
,
815 "SPI transfer timed out\n");
816 msg
->status
= -ETIMEDOUT
;
820 dev_err(&msg
->spi
->dev
,
821 "Bufferless transfer has length %u\n",
825 trace_spi_transfer_stop(msg
, xfer
);
827 if (msg
->status
!= -EINPROGRESS
)
830 if (xfer
->delay_usecs
)
831 udelay(xfer
->delay_usecs
);
833 if (xfer
->cs_change
) {
834 if (list_is_last(&xfer
->transfer_list
,
838 spi_set_cs(msg
->spi
, false);
840 spi_set_cs(msg
->spi
, true);
844 msg
->actual_length
+= xfer
->len
;
848 if (ret
!= 0 || !keep_cs
)
849 spi_set_cs(msg
->spi
, false);
851 if (msg
->status
== -EINPROGRESS
)
854 spi_finalize_current_message(master
);
860 * spi_finalize_current_transfer - report completion of a transfer
861 * @master: the master reporting completion
863 * Called by SPI drivers using the core transfer_one_message()
864 * implementation to notify it that the current interrupt driven
865 * transfer has finished and the next one may be scheduled.
867 void spi_finalize_current_transfer(struct spi_master
*master
)
869 complete(&master
->xfer_completion
);
871 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer
);
874 * __spi_pump_messages - function which processes spi message queue
875 * @master: master to process queue for
876 * @in_kthread: true if we are in the context of the message pump thread
878 * This function checks if there is any spi message in the queue that
879 * needs processing and if so call out to the driver to initialize hardware
880 * and transfer each message.
882 * Note that it is called both from the kthread itself and also from
883 * inside spi_sync(); the queue extraction handling at the top of the
884 * function should deal with this safely.
886 static void __spi_pump_messages(struct spi_master
*master
, bool in_kthread
)
889 bool was_busy
= false;
893 spin_lock_irqsave(&master
->queue_lock
, flags
);
895 /* Make sure we are not already running a message */
896 if (master
->cur_msg
) {
897 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
901 /* If another context is idling the device then defer */
902 if (master
->idling
) {
903 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
904 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
908 /* Check if the queue is idle */
909 if (list_empty(&master
->queue
) || !master
->running
) {
911 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
915 /* Only do teardown in the thread */
917 queue_kthread_work(&master
->kworker
,
918 &master
->pump_messages
);
919 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
923 master
->busy
= false;
924 master
->idling
= true;
925 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
927 kfree(master
->dummy_rx
);
928 master
->dummy_rx
= NULL
;
929 kfree(master
->dummy_tx
);
930 master
->dummy_tx
= NULL
;
931 if (master
->unprepare_transfer_hardware
&&
932 master
->unprepare_transfer_hardware(master
))
933 dev_err(&master
->dev
,
934 "failed to unprepare transfer hardware\n");
935 if (master
->auto_runtime_pm
) {
936 pm_runtime_mark_last_busy(master
->dev
.parent
);
937 pm_runtime_put_autosuspend(master
->dev
.parent
);
939 trace_spi_master_idle(master
);
941 spin_lock_irqsave(&master
->queue_lock
, flags
);
942 master
->idling
= false;
943 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
947 /* Extract head of queue */
949 list_first_entry(&master
->queue
, struct spi_message
, queue
);
951 list_del_init(&master
->cur_msg
->queue
);
956 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
958 if (!was_busy
&& master
->auto_runtime_pm
) {
959 ret
= pm_runtime_get_sync(master
->dev
.parent
);
961 dev_err(&master
->dev
, "Failed to power device: %d\n",
968 trace_spi_master_busy(master
);
970 if (!was_busy
&& master
->prepare_transfer_hardware
) {
971 ret
= master
->prepare_transfer_hardware(master
);
973 dev_err(&master
->dev
,
974 "failed to prepare transfer hardware\n");
976 if (master
->auto_runtime_pm
)
977 pm_runtime_put(master
->dev
.parent
);
982 trace_spi_message_start(master
->cur_msg
);
984 if (master
->prepare_message
) {
985 ret
= master
->prepare_message(master
, master
->cur_msg
);
987 dev_err(&master
->dev
,
988 "failed to prepare message: %d\n", ret
);
989 master
->cur_msg
->status
= ret
;
990 spi_finalize_current_message(master
);
993 master
->cur_msg_prepared
= true;
996 ret
= spi_map_msg(master
, master
->cur_msg
);
998 master
->cur_msg
->status
= ret
;
999 spi_finalize_current_message(master
);
1003 ret
= master
->transfer_one_message(master
, master
->cur_msg
);
1005 dev_err(&master
->dev
,
1006 "failed to transfer one message from queue\n");
1012 * spi_pump_messages - kthread work function which processes spi message queue
1013 * @work: pointer to kthread work struct contained in the master struct
1015 static void spi_pump_messages(struct kthread_work
*work
)
1017 struct spi_master
*master
=
1018 container_of(work
, struct spi_master
, pump_messages
);
1020 __spi_pump_messages(master
, true);
1023 static int spi_init_queue(struct spi_master
*master
)
1025 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
1027 master
->running
= false;
1028 master
->busy
= false;
1030 init_kthread_worker(&master
->kworker
);
1031 master
->kworker_task
= kthread_run(kthread_worker_fn
,
1032 &master
->kworker
, "%s",
1033 dev_name(&master
->dev
));
1034 if (IS_ERR(master
->kworker_task
)) {
1035 dev_err(&master
->dev
, "failed to create message pump task\n");
1036 return PTR_ERR(master
->kworker_task
);
1038 init_kthread_work(&master
->pump_messages
, spi_pump_messages
);
1041 * Master config will indicate if this controller should run the
1042 * message pump with high (realtime) priority to reduce the transfer
1043 * latency on the bus by minimising the delay between a transfer
1044 * request and the scheduling of the message pump thread. Without this
1045 * setting the message pump thread will remain at default priority.
1048 dev_info(&master
->dev
,
1049 "will run message pump with realtime priority\n");
1050 sched_setscheduler(master
->kworker_task
, SCHED_FIFO
, ¶m
);
1057 * spi_get_next_queued_message() - called by driver to check for queued
1059 * @master: the master to check for queued messages
1061 * If there are more messages in the queue, the next message is returned from
1064 struct spi_message
*spi_get_next_queued_message(struct spi_master
*master
)
1066 struct spi_message
*next
;
1067 unsigned long flags
;
1069 /* get a pointer to the next message, if any */
1070 spin_lock_irqsave(&master
->queue_lock
, flags
);
1071 next
= list_first_entry_or_null(&master
->queue
, struct spi_message
,
1073 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1077 EXPORT_SYMBOL_GPL(spi_get_next_queued_message
);
1080 * spi_finalize_current_message() - the current message is complete
1081 * @master: the master to return the message to
1083 * Called by the driver to notify the core that the message in the front of the
1084 * queue is complete and can be removed from the queue.
1086 void spi_finalize_current_message(struct spi_master
*master
)
1088 struct spi_message
*mesg
;
1089 unsigned long flags
;
1092 spin_lock_irqsave(&master
->queue_lock
, flags
);
1093 mesg
= master
->cur_msg
;
1094 master
->cur_msg
= NULL
;
1096 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1097 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1099 spi_unmap_msg(master
, mesg
);
1101 if (master
->cur_msg_prepared
&& master
->unprepare_message
) {
1102 ret
= master
->unprepare_message(master
, mesg
);
1104 dev_err(&master
->dev
,
1105 "failed to unprepare message: %d\n", ret
);
1109 trace_spi_message_done(mesg
);
1111 master
->cur_msg_prepared
= false;
1115 mesg
->complete(mesg
->context
);
1117 EXPORT_SYMBOL_GPL(spi_finalize_current_message
);
1119 static int spi_start_queue(struct spi_master
*master
)
1121 unsigned long flags
;
1123 spin_lock_irqsave(&master
->queue_lock
, flags
);
1125 if (master
->running
|| master
->busy
) {
1126 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1130 master
->running
= true;
1131 master
->cur_msg
= NULL
;
1132 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1134 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1139 static int spi_stop_queue(struct spi_master
*master
)
1141 unsigned long flags
;
1142 unsigned limit
= 500;
1145 spin_lock_irqsave(&master
->queue_lock
, flags
);
1148 * This is a bit lame, but is optimized for the common execution path.
1149 * A wait_queue on the master->busy could be used, but then the common
1150 * execution path (pump_messages) would be required to call wake_up or
1151 * friends on every SPI message. Do this instead.
1153 while ((!list_empty(&master
->queue
) || master
->busy
) && limit
--) {
1154 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1155 usleep_range(10000, 11000);
1156 spin_lock_irqsave(&master
->queue_lock
, flags
);
1159 if (!list_empty(&master
->queue
) || master
->busy
)
1162 master
->running
= false;
1164 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1167 dev_warn(&master
->dev
,
1168 "could not stop message queue\n");
1174 static int spi_destroy_queue(struct spi_master
*master
)
1178 ret
= spi_stop_queue(master
);
1181 * flush_kthread_worker will block until all work is done.
1182 * If the reason that stop_queue timed out is that the work will never
1183 * finish, then it does no good to call flush/stop thread, so
1187 dev_err(&master
->dev
, "problem destroying queue\n");
1191 flush_kthread_worker(&master
->kworker
);
1192 kthread_stop(master
->kworker_task
);
1197 static int __spi_queued_transfer(struct spi_device
*spi
,
1198 struct spi_message
*msg
,
1201 struct spi_master
*master
= spi
->master
;
1202 unsigned long flags
;
1204 spin_lock_irqsave(&master
->queue_lock
, flags
);
1206 if (!master
->running
) {
1207 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1210 msg
->actual_length
= 0;
1211 msg
->status
= -EINPROGRESS
;
1213 list_add_tail(&msg
->queue
, &master
->queue
);
1214 if (!master
->busy
&& need_pump
)
1215 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1217 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1222 * spi_queued_transfer - transfer function for queued transfers
1223 * @spi: spi device which is requesting transfer
1224 * @msg: spi message which is to handled is queued to driver queue
1226 static int spi_queued_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1228 return __spi_queued_transfer(spi
, msg
, true);
1231 static int spi_master_initialize_queue(struct spi_master
*master
)
1235 master
->transfer
= spi_queued_transfer
;
1236 if (!master
->transfer_one_message
)
1237 master
->transfer_one_message
= spi_transfer_one_message
;
1239 /* Initialize and start queue */
1240 ret
= spi_init_queue(master
);
1242 dev_err(&master
->dev
, "problem initializing queue\n");
1243 goto err_init_queue
;
1245 master
->queued
= true;
1246 ret
= spi_start_queue(master
);
1248 dev_err(&master
->dev
, "problem starting queue\n");
1249 goto err_start_queue
;
1255 spi_destroy_queue(master
);
1260 /*-------------------------------------------------------------------------*/
1262 #if defined(CONFIG_OF)
1263 static struct spi_device
*
1264 of_register_spi_device(struct spi_master
*master
, struct device_node
*nc
)
1266 struct spi_device
*spi
;
1270 /* Alloc an spi_device */
1271 spi
= spi_alloc_device(master
);
1273 dev_err(&master
->dev
, "spi_device alloc error for %s\n",
1279 /* Select device driver */
1280 rc
= of_modalias_node(nc
, spi
->modalias
,
1281 sizeof(spi
->modalias
));
1283 dev_err(&master
->dev
, "cannot find modalias for %s\n",
1288 /* Device address */
1289 rc
= of_property_read_u32(nc
, "reg", &value
);
1291 dev_err(&master
->dev
, "%s has no valid 'reg' property (%d)\n",
1295 spi
->chip_select
= value
;
1297 /* Mode (clock phase/polarity/etc.) */
1298 if (of_find_property(nc
, "spi-cpha", NULL
))
1299 spi
->mode
|= SPI_CPHA
;
1300 if (of_find_property(nc
, "spi-cpol", NULL
))
1301 spi
->mode
|= SPI_CPOL
;
1302 if (of_find_property(nc
, "spi-cs-high", NULL
))
1303 spi
->mode
|= SPI_CS_HIGH
;
1304 if (of_find_property(nc
, "spi-3wire", NULL
))
1305 spi
->mode
|= SPI_3WIRE
;
1306 if (of_find_property(nc
, "spi-lsb-first", NULL
))
1307 spi
->mode
|= SPI_LSB_FIRST
;
1309 /* Device DUAL/QUAD mode */
1310 if (!of_property_read_u32(nc
, "spi-tx-bus-width", &value
)) {
1315 spi
->mode
|= SPI_TX_DUAL
;
1318 spi
->mode
|= SPI_TX_QUAD
;
1321 dev_warn(&master
->dev
,
1322 "spi-tx-bus-width %d not supported\n",
1328 if (!of_property_read_u32(nc
, "spi-rx-bus-width", &value
)) {
1333 spi
->mode
|= SPI_RX_DUAL
;
1336 spi
->mode
|= SPI_RX_QUAD
;
1339 dev_warn(&master
->dev
,
1340 "spi-rx-bus-width %d not supported\n",
1347 rc
= of_property_read_u32(nc
, "spi-max-frequency", &value
);
1349 dev_err(&master
->dev
, "%s has no valid 'spi-max-frequency' property (%d)\n",
1353 spi
->max_speed_hz
= value
;
1356 spi
->irq
= irq_of_parse_and_map(nc
, 0);
1358 /* Store a pointer to the node in the device structure */
1360 spi
->dev
.of_node
= nc
;
1362 /* Register the new device */
1363 request_module("%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
1364 rc
= spi_add_device(spi
);
1366 dev_err(&master
->dev
, "spi_device register error %s\n",
1379 * of_register_spi_devices() - Register child devices onto the SPI bus
1380 * @master: Pointer to spi_master device
1382 * Registers an spi_device for each child node of master node which has a 'reg'
1385 static void of_register_spi_devices(struct spi_master
*master
)
1387 struct spi_device
*spi
;
1388 struct device_node
*nc
;
1390 if (!master
->dev
.of_node
)
1393 for_each_available_child_of_node(master
->dev
.of_node
, nc
) {
1394 spi
= of_register_spi_device(master
, nc
);
1396 dev_warn(&master
->dev
, "Failed to create SPI device for %s\n",
1401 static void of_register_spi_devices(struct spi_master
*master
) { }
1405 static int acpi_spi_add_resource(struct acpi_resource
*ares
, void *data
)
1407 struct spi_device
*spi
= data
;
1409 if (ares
->type
== ACPI_RESOURCE_TYPE_SERIAL_BUS
) {
1410 struct acpi_resource_spi_serialbus
*sb
;
1412 sb
= &ares
->data
.spi_serial_bus
;
1413 if (sb
->type
== ACPI_RESOURCE_SERIAL_TYPE_SPI
) {
1414 spi
->chip_select
= sb
->device_selection
;
1415 spi
->max_speed_hz
= sb
->connection_speed
;
1417 if (sb
->clock_phase
== ACPI_SPI_SECOND_PHASE
)
1418 spi
->mode
|= SPI_CPHA
;
1419 if (sb
->clock_polarity
== ACPI_SPI_START_HIGH
)
1420 spi
->mode
|= SPI_CPOL
;
1421 if (sb
->device_polarity
== ACPI_SPI_ACTIVE_HIGH
)
1422 spi
->mode
|= SPI_CS_HIGH
;
1424 } else if (spi
->irq
< 0) {
1427 if (acpi_dev_resource_interrupt(ares
, 0, &r
))
1431 /* Always tell the ACPI core to skip this resource */
1435 static acpi_status
acpi_spi_add_device(acpi_handle handle
, u32 level
,
1436 void *data
, void **return_value
)
1438 struct spi_master
*master
= data
;
1439 struct list_head resource_list
;
1440 struct acpi_device
*adev
;
1441 struct spi_device
*spi
;
1444 if (acpi_bus_get_device(handle
, &adev
))
1446 if (acpi_bus_get_status(adev
) || !adev
->status
.present
)
1449 spi
= spi_alloc_device(master
);
1451 dev_err(&master
->dev
, "failed to allocate SPI device for %s\n",
1452 dev_name(&adev
->dev
));
1453 return AE_NO_MEMORY
;
1456 ACPI_COMPANION_SET(&spi
->dev
, adev
);
1459 INIT_LIST_HEAD(&resource_list
);
1460 ret
= acpi_dev_get_resources(adev
, &resource_list
,
1461 acpi_spi_add_resource
, spi
);
1462 acpi_dev_free_resource_list(&resource_list
);
1464 if (ret
< 0 || !spi
->max_speed_hz
) {
1469 adev
->power
.flags
.ignore_parent
= true;
1470 strlcpy(spi
->modalias
, acpi_device_hid(adev
), sizeof(spi
->modalias
));
1471 if (spi_add_device(spi
)) {
1472 adev
->power
.flags
.ignore_parent
= false;
1473 dev_err(&master
->dev
, "failed to add SPI device %s from ACPI\n",
1474 dev_name(&adev
->dev
));
1481 static void acpi_register_spi_devices(struct spi_master
*master
)
1486 handle
= ACPI_HANDLE(master
->dev
.parent
);
1490 status
= acpi_walk_namespace(ACPI_TYPE_DEVICE
, handle
, 1,
1491 acpi_spi_add_device
, NULL
,
1493 if (ACPI_FAILURE(status
))
1494 dev_warn(&master
->dev
, "failed to enumerate SPI slaves\n");
1497 static inline void acpi_register_spi_devices(struct spi_master
*master
) {}
1498 #endif /* CONFIG_ACPI */
1500 static void spi_master_release(struct device
*dev
)
1502 struct spi_master
*master
;
1504 master
= container_of(dev
, struct spi_master
, dev
);
1508 static struct class spi_master_class
= {
1509 .name
= "spi_master",
1510 .owner
= THIS_MODULE
,
1511 .dev_release
= spi_master_release
,
1517 * spi_alloc_master - allocate SPI master controller
1518 * @dev: the controller, possibly using the platform_bus
1519 * @size: how much zeroed driver-private data to allocate; the pointer to this
1520 * memory is in the driver_data field of the returned device,
1521 * accessible with spi_master_get_devdata().
1522 * Context: can sleep
1524 * This call is used only by SPI master controller drivers, which are the
1525 * only ones directly touching chip registers. It's how they allocate
1526 * an spi_master structure, prior to calling spi_register_master().
1528 * This must be called from context that can sleep. It returns the SPI
1529 * master structure on success, else NULL.
1531 * The caller is responsible for assigning the bus number and initializing
1532 * the master's methods before calling spi_register_master(); and (after errors
1533 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1536 struct spi_master
*spi_alloc_master(struct device
*dev
, unsigned size
)
1538 struct spi_master
*master
;
1543 master
= kzalloc(size
+ sizeof(*master
), GFP_KERNEL
);
1547 device_initialize(&master
->dev
);
1548 master
->bus_num
= -1;
1549 master
->num_chipselect
= 1;
1550 master
->dev
.class = &spi_master_class
;
1551 master
->dev
.parent
= get_device(dev
);
1552 spi_master_set_devdata(master
, &master
[1]);
1556 EXPORT_SYMBOL_GPL(spi_alloc_master
);
1559 static int of_spi_register_master(struct spi_master
*master
)
1562 struct device_node
*np
= master
->dev
.of_node
;
1567 nb
= of_gpio_named_count(np
, "cs-gpios");
1568 master
->num_chipselect
= max_t(int, nb
, master
->num_chipselect
);
1570 /* Return error only for an incorrectly formed cs-gpios property */
1571 if (nb
== 0 || nb
== -ENOENT
)
1576 cs
= devm_kzalloc(&master
->dev
,
1577 sizeof(int) * master
->num_chipselect
,
1579 master
->cs_gpios
= cs
;
1581 if (!master
->cs_gpios
)
1584 for (i
= 0; i
< master
->num_chipselect
; i
++)
1587 for (i
= 0; i
< nb
; i
++)
1588 cs
[i
] = of_get_named_gpio(np
, "cs-gpios", i
);
1593 static int of_spi_register_master(struct spi_master
*master
)
1600 * spi_register_master - register SPI master controller
1601 * @master: initialized master, originally from spi_alloc_master()
1602 * Context: can sleep
1604 * SPI master controllers connect to their drivers using some non-SPI bus,
1605 * such as the platform bus. The final stage of probe() in that code
1606 * includes calling spi_register_master() to hook up to this SPI bus glue.
1608 * SPI controllers use board specific (often SOC specific) bus numbers,
1609 * and board-specific addressing for SPI devices combines those numbers
1610 * with chip select numbers. Since SPI does not directly support dynamic
1611 * device identification, boards need configuration tables telling which
1612 * chip is at which address.
1614 * This must be called from context that can sleep. It returns zero on
1615 * success, else a negative error code (dropping the master's refcount).
1616 * After a successful return, the caller is responsible for calling
1617 * spi_unregister_master().
1619 int spi_register_master(struct spi_master
*master
)
1621 static atomic_t dyn_bus_id
= ATOMIC_INIT((1<<15) - 1);
1622 struct device
*dev
= master
->dev
.parent
;
1623 struct boardinfo
*bi
;
1624 int status
= -ENODEV
;
1630 status
= of_spi_register_master(master
);
1634 /* even if it's just one always-selected device, there must
1635 * be at least one chipselect
1637 if (master
->num_chipselect
== 0)
1640 if ((master
->bus_num
< 0) && master
->dev
.of_node
)
1641 master
->bus_num
= of_alias_get_id(master
->dev
.of_node
, "spi");
1643 /* convention: dynamically assigned bus IDs count down from the max */
1644 if (master
->bus_num
< 0) {
1645 /* FIXME switch to an IDR based scheme, something like
1646 * I2C now uses, so we can't run out of "dynamic" IDs
1648 master
->bus_num
= atomic_dec_return(&dyn_bus_id
);
1652 INIT_LIST_HEAD(&master
->queue
);
1653 spin_lock_init(&master
->queue_lock
);
1654 spin_lock_init(&master
->bus_lock_spinlock
);
1655 mutex_init(&master
->bus_lock_mutex
);
1656 master
->bus_lock_flag
= 0;
1657 init_completion(&master
->xfer_completion
);
1658 if (!master
->max_dma_len
)
1659 master
->max_dma_len
= INT_MAX
;
1661 /* register the device, then userspace will see it.
1662 * registration fails if the bus ID is in use.
1664 dev_set_name(&master
->dev
, "spi%u", master
->bus_num
);
1665 status
= device_add(&master
->dev
);
1668 dev_dbg(dev
, "registered master %s%s\n", dev_name(&master
->dev
),
1669 dynamic
? " (dynamic)" : "");
1671 /* If we're using a queued driver, start the queue */
1672 if (master
->transfer
)
1673 dev_info(dev
, "master is unqueued, this is deprecated\n");
1675 status
= spi_master_initialize_queue(master
);
1677 device_del(&master
->dev
);
1682 mutex_lock(&board_lock
);
1683 list_add_tail(&master
->list
, &spi_master_list
);
1684 list_for_each_entry(bi
, &board_list
, list
)
1685 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
1686 mutex_unlock(&board_lock
);
1688 /* Register devices from the device tree and ACPI */
1689 of_register_spi_devices(master
);
1690 acpi_register_spi_devices(master
);
1694 EXPORT_SYMBOL_GPL(spi_register_master
);
1696 static void devm_spi_unregister(struct device
*dev
, void *res
)
1698 spi_unregister_master(*(struct spi_master
**)res
);
1702 * dev_spi_register_master - register managed SPI master controller
1703 * @dev: device managing SPI master
1704 * @master: initialized master, originally from spi_alloc_master()
1705 * Context: can sleep
1707 * Register a SPI device as with spi_register_master() which will
1708 * automatically be unregister
1710 int devm_spi_register_master(struct device
*dev
, struct spi_master
*master
)
1712 struct spi_master
**ptr
;
1715 ptr
= devres_alloc(devm_spi_unregister
, sizeof(*ptr
), GFP_KERNEL
);
1719 ret
= spi_register_master(master
);
1722 devres_add(dev
, ptr
);
1729 EXPORT_SYMBOL_GPL(devm_spi_register_master
);
1731 static int __unregister(struct device
*dev
, void *null
)
1733 spi_unregister_device(to_spi_device(dev
));
1738 * spi_unregister_master - unregister SPI master controller
1739 * @master: the master being unregistered
1740 * Context: can sleep
1742 * This call is used only by SPI master controller drivers, which are the
1743 * only ones directly touching chip registers.
1745 * This must be called from context that can sleep.
1747 void spi_unregister_master(struct spi_master
*master
)
1751 if (master
->queued
) {
1752 if (spi_destroy_queue(master
))
1753 dev_err(&master
->dev
, "queue remove failed\n");
1756 mutex_lock(&board_lock
);
1757 list_del(&master
->list
);
1758 mutex_unlock(&board_lock
);
1760 dummy
= device_for_each_child(&master
->dev
, NULL
, __unregister
);
1761 device_unregister(&master
->dev
);
1763 EXPORT_SYMBOL_GPL(spi_unregister_master
);
1765 int spi_master_suspend(struct spi_master
*master
)
1769 /* Basically no-ops for non-queued masters */
1770 if (!master
->queued
)
1773 ret
= spi_stop_queue(master
);
1775 dev_err(&master
->dev
, "queue stop failed\n");
1779 EXPORT_SYMBOL_GPL(spi_master_suspend
);
1781 int spi_master_resume(struct spi_master
*master
)
1785 if (!master
->queued
)
1788 ret
= spi_start_queue(master
);
1790 dev_err(&master
->dev
, "queue restart failed\n");
1794 EXPORT_SYMBOL_GPL(spi_master_resume
);
1796 static int __spi_master_match(struct device
*dev
, const void *data
)
1798 struct spi_master
*m
;
1799 const u16
*bus_num
= data
;
1801 m
= container_of(dev
, struct spi_master
, dev
);
1802 return m
->bus_num
== *bus_num
;
1806 * spi_busnum_to_master - look up master associated with bus_num
1807 * @bus_num: the master's bus number
1808 * Context: can sleep
1810 * This call may be used with devices that are registered after
1811 * arch init time. It returns a refcounted pointer to the relevant
1812 * spi_master (which the caller must release), or NULL if there is
1813 * no such master registered.
1815 struct spi_master
*spi_busnum_to_master(u16 bus_num
)
1818 struct spi_master
*master
= NULL
;
1820 dev
= class_find_device(&spi_master_class
, NULL
, &bus_num
,
1821 __spi_master_match
);
1823 master
= container_of(dev
, struct spi_master
, dev
);
1824 /* reference got in class_find_device */
1827 EXPORT_SYMBOL_GPL(spi_busnum_to_master
);
1830 /*-------------------------------------------------------------------------*/
1832 /* Core methods for SPI master protocol drivers. Some of the
1833 * other core methods are currently defined as inline functions.
1837 * spi_setup - setup SPI mode and clock rate
1838 * @spi: the device whose settings are being modified
1839 * Context: can sleep, and no requests are queued to the device
1841 * SPI protocol drivers may need to update the transfer mode if the
1842 * device doesn't work with its default. They may likewise need
1843 * to update clock rates or word sizes from initial values. This function
1844 * changes those settings, and must be called from a context that can sleep.
1845 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1846 * effect the next time the device is selected and data is transferred to
1847 * or from it. When this function returns, the spi device is deselected.
1849 * Note that this call will fail if the protocol driver specifies an option
1850 * that the underlying controller or its driver does not support. For
1851 * example, not all hardware supports wire transfers using nine bit words,
1852 * LSB-first wire encoding, or active-high chipselects.
1854 int spi_setup(struct spi_device
*spi
)
1856 unsigned bad_bits
, ugly_bits
;
1859 /* check mode to prevent that DUAL and QUAD set at the same time
1861 if (((spi
->mode
& SPI_TX_DUAL
) && (spi
->mode
& SPI_TX_QUAD
)) ||
1862 ((spi
->mode
& SPI_RX_DUAL
) && (spi
->mode
& SPI_RX_QUAD
))) {
1864 "setup: can not select dual and quad at the same time\n");
1867 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1869 if ((spi
->mode
& SPI_3WIRE
) && (spi
->mode
&
1870 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
)))
1872 /* help drivers fail *cleanly* when they need options
1873 * that aren't supported with their current master
1875 bad_bits
= spi
->mode
& ~spi
->master
->mode_bits
;
1876 ugly_bits
= bad_bits
&
1877 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
);
1880 "setup: ignoring unsupported mode bits %x\n",
1882 spi
->mode
&= ~ugly_bits
;
1883 bad_bits
&= ~ugly_bits
;
1886 dev_err(&spi
->dev
, "setup: unsupported mode bits %x\n",
1891 if (!spi
->bits_per_word
)
1892 spi
->bits_per_word
= 8;
1894 if (!spi
->max_speed_hz
)
1895 spi
->max_speed_hz
= spi
->master
->max_speed_hz
;
1897 if (spi
->master
->setup
)
1898 status
= spi
->master
->setup(spi
);
1900 dev_dbg(&spi
->dev
, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1901 (int) (spi
->mode
& (SPI_CPOL
| SPI_CPHA
)),
1902 (spi
->mode
& SPI_CS_HIGH
) ? "cs_high, " : "",
1903 (spi
->mode
& SPI_LSB_FIRST
) ? "lsb, " : "",
1904 (spi
->mode
& SPI_3WIRE
) ? "3wire, " : "",
1905 (spi
->mode
& SPI_LOOP
) ? "loopback, " : "",
1906 spi
->bits_per_word
, spi
->max_speed_hz
,
1911 EXPORT_SYMBOL_GPL(spi_setup
);
1913 static int __spi_validate(struct spi_device
*spi
, struct spi_message
*message
)
1915 struct spi_master
*master
= spi
->master
;
1916 struct spi_transfer
*xfer
;
1919 if (list_empty(&message
->transfers
))
1922 /* Half-duplex links include original MicroWire, and ones with
1923 * only one data pin like SPI_3WIRE (switches direction) or where
1924 * either MOSI or MISO is missing. They can also be caused by
1925 * software limitations.
1927 if ((master
->flags
& SPI_MASTER_HALF_DUPLEX
)
1928 || (spi
->mode
& SPI_3WIRE
)) {
1929 unsigned flags
= master
->flags
;
1931 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
1932 if (xfer
->rx_buf
&& xfer
->tx_buf
)
1934 if ((flags
& SPI_MASTER_NO_TX
) && xfer
->tx_buf
)
1936 if ((flags
& SPI_MASTER_NO_RX
) && xfer
->rx_buf
)
1942 * Set transfer bits_per_word and max speed as spi device default if
1943 * it is not set for this transfer.
1944 * Set transfer tx_nbits and rx_nbits as single transfer default
1945 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1947 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
1948 message
->frame_length
+= xfer
->len
;
1949 if (!xfer
->bits_per_word
)
1950 xfer
->bits_per_word
= spi
->bits_per_word
;
1952 if (!xfer
->speed_hz
)
1953 xfer
->speed_hz
= spi
->max_speed_hz
;
1955 if (master
->max_speed_hz
&&
1956 xfer
->speed_hz
> master
->max_speed_hz
)
1957 xfer
->speed_hz
= master
->max_speed_hz
;
1959 if (master
->bits_per_word_mask
) {
1960 /* Only 32 bits fit in the mask */
1961 if (xfer
->bits_per_word
> 32)
1963 if (!(master
->bits_per_word_mask
&
1964 BIT(xfer
->bits_per_word
- 1)))
1969 * SPI transfer length should be multiple of SPI word size
1970 * where SPI word size should be power-of-two multiple
1972 if (xfer
->bits_per_word
<= 8)
1974 else if (xfer
->bits_per_word
<= 16)
1979 /* No partial transfers accepted */
1980 if (xfer
->len
% w_size
)
1983 if (xfer
->speed_hz
&& master
->min_speed_hz
&&
1984 xfer
->speed_hz
< master
->min_speed_hz
)
1987 if (xfer
->tx_buf
&& !xfer
->tx_nbits
)
1988 xfer
->tx_nbits
= SPI_NBITS_SINGLE
;
1989 if (xfer
->rx_buf
&& !xfer
->rx_nbits
)
1990 xfer
->rx_nbits
= SPI_NBITS_SINGLE
;
1991 /* check transfer tx/rx_nbits:
1992 * 1. check the value matches one of single, dual and quad
1993 * 2. check tx/rx_nbits match the mode in spi_device
1996 if (xfer
->tx_nbits
!= SPI_NBITS_SINGLE
&&
1997 xfer
->tx_nbits
!= SPI_NBITS_DUAL
&&
1998 xfer
->tx_nbits
!= SPI_NBITS_QUAD
)
2000 if ((xfer
->tx_nbits
== SPI_NBITS_DUAL
) &&
2001 !(spi
->mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
)))
2003 if ((xfer
->tx_nbits
== SPI_NBITS_QUAD
) &&
2004 !(spi
->mode
& SPI_TX_QUAD
))
2007 /* check transfer rx_nbits */
2009 if (xfer
->rx_nbits
!= SPI_NBITS_SINGLE
&&
2010 xfer
->rx_nbits
!= SPI_NBITS_DUAL
&&
2011 xfer
->rx_nbits
!= SPI_NBITS_QUAD
)
2013 if ((xfer
->rx_nbits
== SPI_NBITS_DUAL
) &&
2014 !(spi
->mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
)))
2016 if ((xfer
->rx_nbits
== SPI_NBITS_QUAD
) &&
2017 !(spi
->mode
& SPI_RX_QUAD
))
2022 message
->status
= -EINPROGRESS
;
2027 static int __spi_async(struct spi_device
*spi
, struct spi_message
*message
)
2029 struct spi_master
*master
= spi
->master
;
2033 trace_spi_message_submit(message
);
2035 return master
->transfer(spi
, message
);
2039 * spi_async - asynchronous SPI transfer
2040 * @spi: device with which data will be exchanged
2041 * @message: describes the data transfers, including completion callback
2042 * Context: any (irqs may be blocked, etc)
2044 * This call may be used in_irq and other contexts which can't sleep,
2045 * as well as from task contexts which can sleep.
2047 * The completion callback is invoked in a context which can't sleep.
2048 * Before that invocation, the value of message->status is undefined.
2049 * When the callback is issued, message->status holds either zero (to
2050 * indicate complete success) or a negative error code. After that
2051 * callback returns, the driver which issued the transfer request may
2052 * deallocate the associated memory; it's no longer in use by any SPI
2053 * core or controller driver code.
2055 * Note that although all messages to a spi_device are handled in
2056 * FIFO order, messages may go to different devices in other orders.
2057 * Some device might be higher priority, or have various "hard" access
2058 * time requirements, for example.
2060 * On detection of any fault during the transfer, processing of
2061 * the entire message is aborted, and the device is deselected.
2062 * Until returning from the associated message completion callback,
2063 * no other spi_message queued to that device will be processed.
2064 * (This rule applies equally to all the synchronous transfer calls,
2065 * which are wrappers around this core asynchronous primitive.)
2067 int spi_async(struct spi_device
*spi
, struct spi_message
*message
)
2069 struct spi_master
*master
= spi
->master
;
2071 unsigned long flags
;
2073 ret
= __spi_validate(spi
, message
);
2077 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2079 if (master
->bus_lock_flag
)
2082 ret
= __spi_async(spi
, message
);
2084 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2088 EXPORT_SYMBOL_GPL(spi_async
);
2091 * spi_async_locked - version of spi_async with exclusive bus usage
2092 * @spi: device with which data will be exchanged
2093 * @message: describes the data transfers, including completion callback
2094 * Context: any (irqs may be blocked, etc)
2096 * This call may be used in_irq and other contexts which can't sleep,
2097 * as well as from task contexts which can sleep.
2099 * The completion callback is invoked in a context which can't sleep.
2100 * Before that invocation, the value of message->status is undefined.
2101 * When the callback is issued, message->status holds either zero (to
2102 * indicate complete success) or a negative error code. After that
2103 * callback returns, the driver which issued the transfer request may
2104 * deallocate the associated memory; it's no longer in use by any SPI
2105 * core or controller driver code.
2107 * Note that although all messages to a spi_device are handled in
2108 * FIFO order, messages may go to different devices in other orders.
2109 * Some device might be higher priority, or have various "hard" access
2110 * time requirements, for example.
2112 * On detection of any fault during the transfer, processing of
2113 * the entire message is aborted, and the device is deselected.
2114 * Until returning from the associated message completion callback,
2115 * no other spi_message queued to that device will be processed.
2116 * (This rule applies equally to all the synchronous transfer calls,
2117 * which are wrappers around this core asynchronous primitive.)
2119 int spi_async_locked(struct spi_device
*spi
, struct spi_message
*message
)
2121 struct spi_master
*master
= spi
->master
;
2123 unsigned long flags
;
2125 ret
= __spi_validate(spi
, message
);
2129 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2131 ret
= __spi_async(spi
, message
);
2133 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2138 EXPORT_SYMBOL_GPL(spi_async_locked
);
2141 /*-------------------------------------------------------------------------*/
2143 /* Utility methods for SPI master protocol drivers, layered on
2144 * top of the core. Some other utility methods are defined as
2148 static void spi_complete(void *arg
)
2153 static int __spi_sync(struct spi_device
*spi
, struct spi_message
*message
,
2156 DECLARE_COMPLETION_ONSTACK(done
);
2158 struct spi_master
*master
= spi
->master
;
2159 unsigned long flags
;
2161 status
= __spi_validate(spi
, message
);
2165 message
->complete
= spi_complete
;
2166 message
->context
= &done
;
2170 mutex_lock(&master
->bus_lock_mutex
);
2172 /* If we're not using the legacy transfer method then we will
2173 * try to transfer in the calling context so special case.
2174 * This code would be less tricky if we could remove the
2175 * support for driver implemented message queues.
2177 if (master
->transfer
== spi_queued_transfer
) {
2178 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2180 trace_spi_message_submit(message
);
2182 status
= __spi_queued_transfer(spi
, message
, false);
2184 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2186 status
= spi_async_locked(spi
, message
);
2190 mutex_unlock(&master
->bus_lock_mutex
);
2193 /* Push out the messages in the calling context if we
2196 if (master
->transfer
== spi_queued_transfer
)
2197 __spi_pump_messages(master
, false);
2199 wait_for_completion(&done
);
2200 status
= message
->status
;
2202 message
->context
= NULL
;
2207 * spi_sync - blocking/synchronous SPI data transfers
2208 * @spi: device with which data will be exchanged
2209 * @message: describes the data transfers
2210 * Context: can sleep
2212 * This call may only be used from a context that may sleep. The sleep
2213 * is non-interruptible, and has no timeout. Low-overhead controller
2214 * drivers may DMA directly into and out of the message buffers.
2216 * Note that the SPI device's chip select is active during the message,
2217 * and then is normally disabled between messages. Drivers for some
2218 * frequently-used devices may want to minimize costs of selecting a chip,
2219 * by leaving it selected in anticipation that the next message will go
2220 * to the same chip. (That may increase power usage.)
2222 * Also, the caller is guaranteeing that the memory associated with the
2223 * message will not be freed before this call returns.
2225 * It returns zero on success, else a negative error code.
2227 int spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
2229 return __spi_sync(spi
, message
, 0);
2231 EXPORT_SYMBOL_GPL(spi_sync
);
2234 * spi_sync_locked - version of spi_sync with exclusive bus usage
2235 * @spi: device with which data will be exchanged
2236 * @message: describes the data transfers
2237 * Context: can sleep
2239 * This call may only be used from a context that may sleep. The sleep
2240 * is non-interruptible, and has no timeout. Low-overhead controller
2241 * drivers may DMA directly into and out of the message buffers.
2243 * This call should be used by drivers that require exclusive access to the
2244 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2245 * be released by a spi_bus_unlock call when the exclusive access is over.
2247 * It returns zero on success, else a negative error code.
2249 int spi_sync_locked(struct spi_device
*spi
, struct spi_message
*message
)
2251 return __spi_sync(spi
, message
, 1);
2253 EXPORT_SYMBOL_GPL(spi_sync_locked
);
2256 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2257 * @master: SPI bus master that should be locked for exclusive bus access
2258 * Context: can sleep
2260 * This call may only be used from a context that may sleep. The sleep
2261 * is non-interruptible, and has no timeout.
2263 * This call should be used by drivers that require exclusive access to the
2264 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2265 * exclusive access is over. Data transfer must be done by spi_sync_locked
2266 * and spi_async_locked calls when the SPI bus lock is held.
2268 * It returns zero on success, else a negative error code.
2270 int spi_bus_lock(struct spi_master
*master
)
2272 unsigned long flags
;
2274 mutex_lock(&master
->bus_lock_mutex
);
2276 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2277 master
->bus_lock_flag
= 1;
2278 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2280 /* mutex remains locked until spi_bus_unlock is called */
2284 EXPORT_SYMBOL_GPL(spi_bus_lock
);
2287 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2288 * @master: SPI bus master that was locked for exclusive bus access
2289 * Context: can sleep
2291 * This call may only be used from a context that may sleep. The sleep
2292 * is non-interruptible, and has no timeout.
2294 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2297 * It returns zero on success, else a negative error code.
2299 int spi_bus_unlock(struct spi_master
*master
)
2301 master
->bus_lock_flag
= 0;
2303 mutex_unlock(&master
->bus_lock_mutex
);
2307 EXPORT_SYMBOL_GPL(spi_bus_unlock
);
2309 /* portable code must never pass more than 32 bytes */
2310 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2315 * spi_write_then_read - SPI synchronous write followed by read
2316 * @spi: device with which data will be exchanged
2317 * @txbuf: data to be written (need not be dma-safe)
2318 * @n_tx: size of txbuf, in bytes
2319 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2320 * @n_rx: size of rxbuf, in bytes
2321 * Context: can sleep
2323 * This performs a half duplex MicroWire style transaction with the
2324 * device, sending txbuf and then reading rxbuf. The return value
2325 * is zero for success, else a negative errno status code.
2326 * This call may only be used from a context that may sleep.
2328 * Parameters to this routine are always copied using a small buffer;
2329 * portable code should never use this for more than 32 bytes.
2330 * Performance-sensitive or bulk transfer code should instead use
2331 * spi_{async,sync}() calls with dma-safe buffers.
2333 int spi_write_then_read(struct spi_device
*spi
,
2334 const void *txbuf
, unsigned n_tx
,
2335 void *rxbuf
, unsigned n_rx
)
2337 static DEFINE_MUTEX(lock
);
2340 struct spi_message message
;
2341 struct spi_transfer x
[2];
2344 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2345 * copying here, (as a pure convenience thing), but we can
2346 * keep heap costs out of the hot path unless someone else is
2347 * using the pre-allocated buffer or the transfer is too large.
2349 if ((n_tx
+ n_rx
) > SPI_BUFSIZ
|| !mutex_trylock(&lock
)) {
2350 local_buf
= kmalloc(max((unsigned)SPI_BUFSIZ
, n_tx
+ n_rx
),
2351 GFP_KERNEL
| GFP_DMA
);
2358 spi_message_init(&message
);
2359 memset(x
, 0, sizeof(x
));
2362 spi_message_add_tail(&x
[0], &message
);
2366 spi_message_add_tail(&x
[1], &message
);
2369 memcpy(local_buf
, txbuf
, n_tx
);
2370 x
[0].tx_buf
= local_buf
;
2371 x
[1].rx_buf
= local_buf
+ n_tx
;
2374 status
= spi_sync(spi
, &message
);
2376 memcpy(rxbuf
, x
[1].rx_buf
, n_rx
);
2378 if (x
[0].tx_buf
== buf
)
2379 mutex_unlock(&lock
);
2385 EXPORT_SYMBOL_GPL(spi_write_then_read
);
2387 /*-------------------------------------------------------------------------*/
2389 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2390 static int __spi_of_device_match(struct device
*dev
, void *data
)
2392 return dev
->of_node
== data
;
2395 /* must call put_device() when done with returned spi_device device */
2396 static struct spi_device
*of_find_spi_device_by_node(struct device_node
*node
)
2398 struct device
*dev
= bus_find_device(&spi_bus_type
, NULL
, node
,
2399 __spi_of_device_match
);
2400 return dev
? to_spi_device(dev
) : NULL
;
2403 static int __spi_of_master_match(struct device
*dev
, const void *data
)
2405 return dev
->of_node
== data
;
2408 /* the spi masters are not using spi_bus, so we find it with another way */
2409 static struct spi_master
*of_find_spi_master_by_node(struct device_node
*node
)
2413 dev
= class_find_device(&spi_master_class
, NULL
, node
,
2414 __spi_of_master_match
);
2418 /* reference got in class_find_device */
2419 return container_of(dev
, struct spi_master
, dev
);
2422 static int of_spi_notify(struct notifier_block
*nb
, unsigned long action
,
2425 struct of_reconfig_data
*rd
= arg
;
2426 struct spi_master
*master
;
2427 struct spi_device
*spi
;
2429 switch (of_reconfig_get_state_change(action
, arg
)) {
2430 case OF_RECONFIG_CHANGE_ADD
:
2431 master
= of_find_spi_master_by_node(rd
->dn
->parent
);
2433 return NOTIFY_OK
; /* not for us */
2435 spi
= of_register_spi_device(master
, rd
->dn
);
2436 put_device(&master
->dev
);
2439 pr_err("%s: failed to create for '%s'\n",
2440 __func__
, rd
->dn
->full_name
);
2441 return notifier_from_errno(PTR_ERR(spi
));
2445 case OF_RECONFIG_CHANGE_REMOVE
:
2446 /* find our device by node */
2447 spi
= of_find_spi_device_by_node(rd
->dn
);
2449 return NOTIFY_OK
; /* no? not meant for us */
2451 /* unregister takes one ref away */
2452 spi_unregister_device(spi
);
2454 /* and put the reference of the find */
2455 put_device(&spi
->dev
);
2462 static struct notifier_block spi_of_notifier
= {
2463 .notifier_call
= of_spi_notify
,
2465 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2466 extern struct notifier_block spi_of_notifier
;
2467 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2469 static int __init
spi_init(void)
2473 buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
2479 status
= bus_register(&spi_bus_type
);
2483 status
= class_register(&spi_master_class
);
2487 if (IS_ENABLED(CONFIG_OF_DYNAMIC
))
2488 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier
));
2493 bus_unregister(&spi_bus_type
);
2501 /* board_info is normally registered in arch_initcall(),
2502 * but even essential drivers wait till later
2504 * REVISIT only boardinfo really needs static linking. the rest (device and
2505 * driver registration) _could_ be dynamically linked (modular) ... costs
2506 * include needing to have boardinfo data structures be much more public.
2508 postcore_initcall(spi_init
);