2 * Copyright (c) 2016 Intel Corporation
4 * Permission to use, copy, modify, distribute, and sell this software and its
5 * documentation for any purpose is hereby granted without fee, provided that
6 * the above copyright notice appear in all copies and that both that copyright
7 * notice and this permission notice appear in supporting documentation, and
8 * that the name of the copyright holders not be used in advertising or
9 * publicity pertaining to distribution of the software without specific,
10 * written prior permission. The copyright holders make no representations
11 * about the suitability of this software for any purpose. It is provided "as
12 * is" without express or implied warranty.
14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
23 #ifndef __DRM_CONNECTOR_H__
24 #define __DRM_CONNECTOR_H__
26 #include <linux/list.h>
27 #include <linux/llist.h>
28 #include <linux/ctype.h>
29 #include <linux/hdmi.h>
30 #include <drm/drm_mode_object.h>
31 #include <drm/drm_util.h>
33 #include <uapi/drm/drm_mode.h>
35 struct drm_connector_helper_funcs
;
36 struct drm_modeset_acquire_ctx
;
41 struct drm_property_blob
;
46 enum drm_connector_force
{
47 DRM_FORCE_UNSPECIFIED
,
49 DRM_FORCE_ON
, /* force on analog part normally */
50 DRM_FORCE_ON_DIGITAL
, /* for DVI-I use digital connector */
54 * enum drm_connector_status - status for a &drm_connector
56 * This enum is used to track the connector status. There are no separate
57 * #defines for the uapi!
59 enum drm_connector_status
{
61 * @connector_status_connected: The connector is definitely connected to
62 * a sink device, and can be enabled.
64 connector_status_connected
= 1,
66 * @connector_status_disconnected: The connector isn't connected to a
67 * sink device which can be autodetect. For digital outputs like DP or
68 * HDMI (which can be realiable probed) this means there's really
69 * nothing there. It is driver-dependent whether a connector with this
70 * status can be lit up or not.
72 connector_status_disconnected
= 2,
74 * @connector_status_unknown: The connector's status could not be
75 * reliably detected. This happens when probing would either cause
76 * flicker (like load-detection when the connector is in use), or when a
77 * hardware resource isn't available (like when load-detection needs a
78 * free CRTC). It should be possible to light up the connector with one
79 * of the listed fallback modes. For default configuration userspace
80 * should only try to light up connectors with unknown status when
81 * there's not connector with @connector_status_connected.
83 connector_status_unknown
= 3,
87 * enum drm_connector_registration_state - userspace registration status for
90 * This enum is used to track the status of initializing a connector and
91 * registering it with userspace, so that DRM can prevent bogus modesets on
92 * connectors that no longer exist.
94 enum drm_connector_registration_state
{
96 * @DRM_CONNECTOR_INITIALIZING: The connector has just been created,
97 * but has yet to be exposed to userspace. There should be no
98 * additional restrictions to how the state of this connector may be
101 DRM_CONNECTOR_INITIALIZING
= 0,
104 * @DRM_CONNECTOR_REGISTERED: The connector has been fully initialized
105 * and registered with sysfs, as such it has been exposed to
106 * userspace. There should be no additional restrictions to how the
107 * state of this connector may be modified.
109 DRM_CONNECTOR_REGISTERED
= 1,
112 * @DRM_CONNECTOR_UNREGISTERED: The connector has either been exposed
113 * to userspace and has since been unregistered and removed from
114 * userspace, or the connector was unregistered before it had a chance
115 * to be exposed to userspace (e.g. still in the
116 * @DRM_CONNECTOR_INITIALIZING state). When a connector is
117 * unregistered, there are additional restrictions to how its state
120 * - An unregistered connector may only have its DPMS changed from
121 * On->Off. Once DPMS is changed to Off, it may not be switched back
123 * - Modesets are not allowed on unregistered connectors, unless they
124 * would result in disabling its assigned CRTCs. This means
125 * disabling a CRTC on an unregistered connector is OK, but enabling
127 * - Removing a CRTC from an unregistered connector is OK, but new
128 * CRTCs may never be assigned to an unregistered connector.
130 DRM_CONNECTOR_UNREGISTERED
= 2,
133 enum subpixel_order
{
135 SubPixelHorizontalRGB
,
136 SubPixelHorizontalBGR
,
144 * struct drm_scrambling: sink's scrambling support.
146 struct drm_scrambling
{
148 * @supported: scrambling supported for rates > 340 Mhz.
152 * @low_rates: scrambling supported for rates <= 340 Mhz.
158 * struct drm_scdc - Information about scdc capabilities of a HDMI 2.0 sink
160 * Provides SCDC register support and capabilities related information on a
161 * HDMI 2.0 sink. In case of a HDMI 1.4 sink, all parameter must be 0.
165 * @supported: status control & data channel present.
169 * @read_request: sink is capable of generating scdc read request.
173 * @scrambling: sink's scrambling capabilities
175 struct drm_scrambling scrambling
;
180 * struct drm_hdmi_info - runtime information about the connected HDMI sink
182 * Describes if a given display supports advanced HDMI 2.0 features.
183 * This information is available in CEA-861-F extension blocks (like HF-VSDB).
185 struct drm_hdmi_info
{
186 /** @scdc: sink's scdc support and capabilities */
187 struct drm_scdc scdc
;
190 * @y420_vdb_modes: bitmap of modes which can support ycbcr420
191 * output only (not normal RGB/YCBCR444/422 outputs). The max VIC
192 * defined by the CEA-861-G spec is 219, so the size is 256 bits to map
195 unsigned long y420_vdb_modes
[BITS_TO_LONGS(256)];
198 * @y420_cmdb_modes: bitmap of modes which can support ycbcr420
199 * output also, along with normal HDMI outputs. The max VIC defined by
200 * the CEA-861-G spec is 219, so the size is 256 bits to map up to 256
203 unsigned long y420_cmdb_modes
[BITS_TO_LONGS(256)];
205 /** @y420_cmdb_map: bitmap of SVD index, to extraxt vcb modes */
208 /** @y420_dc_modes: bitmap of deep color support index */
213 * enum drm_link_status - connector's link_status property value
215 * This enum is used as the connector's link status property value.
216 * It is set to the values defined in uapi.
218 * @DRM_LINK_STATUS_GOOD: DP Link is Good as a result of successful
220 * @DRM_LINK_STATUS_BAD: DP Link is BAD as a result of link training
223 enum drm_link_status
{
224 DRM_LINK_STATUS_GOOD
= DRM_MODE_LINK_STATUS_GOOD
,
225 DRM_LINK_STATUS_BAD
= DRM_MODE_LINK_STATUS_BAD
,
229 * enum drm_panel_orientation - panel_orientation info for &drm_display_info
231 * This enum is used to track the (LCD) panel orientation. There are no
232 * separate #defines for the uapi!
234 * @DRM_MODE_PANEL_ORIENTATION_UNKNOWN: The drm driver has not provided any
235 * panel orientation information (normal
236 * for non panels) in this case the "panel
237 * orientation" connector prop will not be
239 * @DRM_MODE_PANEL_ORIENTATION_NORMAL: The top side of the panel matches the
240 * top side of the device's casing.
241 * @DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP: The top side of the panel matches the
242 * bottom side of the device's casing, iow
243 * the panel is mounted upside-down.
244 * @DRM_MODE_PANEL_ORIENTATION_LEFT_UP: The left side of the panel matches the
245 * top side of the device's casing.
246 * @DRM_MODE_PANEL_ORIENTATION_RIGHT_UP: The right side of the panel matches the
247 * top side of the device's casing.
249 enum drm_panel_orientation
{
250 DRM_MODE_PANEL_ORIENTATION_UNKNOWN
= -1,
251 DRM_MODE_PANEL_ORIENTATION_NORMAL
= 0,
252 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP
,
253 DRM_MODE_PANEL_ORIENTATION_LEFT_UP
,
254 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP
,
258 * struct drm_monitor_range_info - Panel's Monitor range in EDID for
261 * This struct is used to store a frequency range supported by panel
262 * as parsed from EDID's detailed monitor range descriptor block.
264 * @min_vfreq: This is the min supported refresh rate in Hz from
265 * EDID's detailed monitor range.
266 * @max_vfreq: This is the max supported refresh rate in Hz from
267 * EDID's detailed monitor range
269 struct drm_monitor_range_info
{
275 * This is a consolidated colorimetry list supported by HDMI and
276 * DP protocol standard. The respective connectors will register
277 * a property with the subset of this list (supported by that
278 * respective protocol). Userspace will set the colorspace through
279 * a colorspace property which will be created and exposed to
283 /* For Default case, driver will set the colorspace */
284 #define DRM_MODE_COLORIMETRY_DEFAULT 0
285 /* CEA 861 Normal Colorimetry options */
286 #define DRM_MODE_COLORIMETRY_NO_DATA 0
287 #define DRM_MODE_COLORIMETRY_SMPTE_170M_YCC 1
288 #define DRM_MODE_COLORIMETRY_BT709_YCC 2
289 /* CEA 861 Extended Colorimetry Options */
290 #define DRM_MODE_COLORIMETRY_XVYCC_601 3
291 #define DRM_MODE_COLORIMETRY_XVYCC_709 4
292 #define DRM_MODE_COLORIMETRY_SYCC_601 5
293 #define DRM_MODE_COLORIMETRY_OPYCC_601 6
294 #define DRM_MODE_COLORIMETRY_OPRGB 7
295 #define DRM_MODE_COLORIMETRY_BT2020_CYCC 8
296 #define DRM_MODE_COLORIMETRY_BT2020_RGB 9
297 #define DRM_MODE_COLORIMETRY_BT2020_YCC 10
298 /* Additional Colorimetry extension added as part of CTA 861.G */
299 #define DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65 11
300 #define DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER 12
301 /* Additional Colorimetry Options added for DP 1.4a VSC Colorimetry Format */
302 #define DRM_MODE_COLORIMETRY_RGB_WIDE_FIXED 13
303 #define DRM_MODE_COLORIMETRY_RGB_WIDE_FLOAT 14
304 #define DRM_MODE_COLORIMETRY_BT601_YCC 15
307 * enum drm_bus_flags - bus_flags info for &drm_display_info
309 * This enum defines signal polarities and clock edge information for signals on
310 * a bus as bitmask flags.
312 * The clock edge information is conveyed by two sets of symbols,
313 * DRM_BUS_FLAGS_*_DRIVE_\* and DRM_BUS_FLAGS_*_SAMPLE_\*. When this enum is
314 * used to describe a bus from the point of view of the transmitter, the
315 * \*_DRIVE_\* flags should be used. When used from the point of view of the
316 * receiver, the \*_SAMPLE_\* flags should be used. The \*_DRIVE_\* and
317 * \*_SAMPLE_\* flags alias each other, with the \*_SAMPLE_POSEDGE and
318 * \*_SAMPLE_NEGEDGE flags being equal to \*_DRIVE_NEGEDGE and \*_DRIVE_POSEDGE
319 * respectively. This simplifies code as signals are usually sampled on the
320 * opposite edge of the driving edge. Transmitters and receivers may however
321 * need to take other signal timings into account to convert between driving
326 * @DRM_BUS_FLAG_DE_LOW:
328 * The Data Enable signal is active low
330 DRM_BUS_FLAG_DE_LOW
= BIT(0),
333 * @DRM_BUS_FLAG_DE_HIGH:
335 * The Data Enable signal is active high
337 DRM_BUS_FLAG_DE_HIGH
= BIT(1),
340 * @DRM_BUS_FLAG_PIXDATA_DRIVE_POSEDGE:
342 * Data is driven on the rising edge of the pixel clock
344 DRM_BUS_FLAG_PIXDATA_DRIVE_POSEDGE
= BIT(2),
347 * @DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE:
349 * Data is driven on the falling edge of the pixel clock
351 DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE
= BIT(3),
354 * @DRM_BUS_FLAG_PIXDATA_SAMPLE_POSEDGE:
356 * Data is sampled on the rising edge of the pixel clock
358 DRM_BUS_FLAG_PIXDATA_SAMPLE_POSEDGE
= DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE
,
361 * @DRM_BUS_FLAG_PIXDATA_SAMPLE_NEGEDGE:
363 * Data is sampled on the falling edge of the pixel clock
365 DRM_BUS_FLAG_PIXDATA_SAMPLE_NEGEDGE
= DRM_BUS_FLAG_PIXDATA_DRIVE_POSEDGE
,
368 * @DRM_BUS_FLAG_DATA_MSB_TO_LSB:
370 * Data is transmitted MSB to LSB on the bus
372 DRM_BUS_FLAG_DATA_MSB_TO_LSB
= BIT(4),
375 * @DRM_BUS_FLAG_DATA_LSB_TO_MSB:
377 * Data is transmitted LSB to MSB on the bus
379 DRM_BUS_FLAG_DATA_LSB_TO_MSB
= BIT(5),
382 * @DRM_BUS_FLAG_SYNC_DRIVE_POSEDGE:
384 * Sync signals are driven on the rising edge of the pixel clock
386 DRM_BUS_FLAG_SYNC_DRIVE_POSEDGE
= BIT(6),
389 * @DRM_BUS_FLAG_SYNC_DRIVE_NEGEDGE:
391 * Sync signals are driven on the falling edge of the pixel clock
393 DRM_BUS_FLAG_SYNC_DRIVE_NEGEDGE
= BIT(7),
396 * @DRM_BUS_FLAG_SYNC_SAMPLE_POSEDGE:
398 * Sync signals are sampled on the rising edge of the pixel clock
400 DRM_BUS_FLAG_SYNC_SAMPLE_POSEDGE
= DRM_BUS_FLAG_SYNC_DRIVE_NEGEDGE
,
403 * @DRM_BUS_FLAG_SYNC_SAMPLE_NEGEDGE:
405 * Sync signals are sampled on the falling edge of the pixel clock
407 DRM_BUS_FLAG_SYNC_SAMPLE_NEGEDGE
= DRM_BUS_FLAG_SYNC_DRIVE_POSEDGE
,
410 * @DRM_BUS_FLAG_SHARP_SIGNALS:
412 * Set if the Sharp-specific signals (SPL, CLS, PS, REV) must be used
414 DRM_BUS_FLAG_SHARP_SIGNALS
= BIT(8),
418 * struct drm_display_info - runtime data about the connected sink
420 * Describes a given display (e.g. CRT or flat panel) and its limitations. For
421 * fixed display sinks like built-in panels there's not much difference between
422 * this and &struct drm_connector. But for sinks with a real cable this
423 * structure is meant to describe all the things at the other end of the cable.
425 * For sinks which provide an EDID this can be filled out by calling
426 * drm_add_edid_modes().
428 struct drm_display_info
{
430 * @width_mm: Physical width in mm.
432 unsigned int width_mm
;
435 * @height_mm: Physical height in mm.
437 unsigned int height_mm
;
440 * @bpc: Maximum bits per color channel. Used by HDMI and DP outputs.
445 * @subpixel_order: Subpixel order of LCD panels.
447 enum subpixel_order subpixel_order
;
449 #define DRM_COLOR_FORMAT_RGB444 (1<<0)
450 #define DRM_COLOR_FORMAT_YCRCB444 (1<<1)
451 #define DRM_COLOR_FORMAT_YCRCB422 (1<<2)
452 #define DRM_COLOR_FORMAT_YCRCB420 (1<<3)
455 * @panel_orientation: Read only connector property for built-in panels,
456 * indicating the orientation of the panel vs the device's casing.
457 * drm_connector_init() sets this to DRM_MODE_PANEL_ORIENTATION_UNKNOWN.
458 * When not UNKNOWN this gets used by the drm_fb_helpers to rotate the
459 * fb to compensate and gets exported as prop to userspace.
461 int panel_orientation
;
464 * @color_formats: HDMI Color formats, selects between RGB and YCrCb
465 * modes. Used DRM_COLOR_FORMAT\_ defines, which are _not_ the same ones
466 * as used to describe the pixel format in framebuffers, and also don't
467 * match the formats in @bus_formats which are shared with v4l.
472 * @bus_formats: Pixel data format on the wire, somewhat redundant with
473 * @color_formats. Array of size @num_bus_formats encoded using
474 * MEDIA_BUS_FMT\_ defines shared with v4l and media drivers.
476 const u32
*bus_formats
;
478 * @num_bus_formats: Size of @bus_formats array.
480 unsigned int num_bus_formats
;
483 * @bus_flags: Additional information (like pixel signal polarity) for
484 * the pixel data on the bus, using &enum drm_bus_flags values
490 * @max_tmds_clock: Maximum TMDS clock rate supported by the
491 * sink in kHz. 0 means undefined.
496 * @dvi_dual: Dual-link DVI sink?
501 * @is_hdmi: True if the sink is an HDMI device.
503 * This field shall be used instead of calling
504 * drm_detect_hdmi_monitor() when possible.
509 * @has_hdmi_infoframe: Does the sink support the HDMI infoframe?
511 bool has_hdmi_infoframe
;
514 * @rgb_quant_range_selectable: Does the sink support selecting
515 * the RGB quantization range?
517 bool rgb_quant_range_selectable
;
520 * @edid_hdmi_dc_modes: Mask of supported hdmi deep color modes. Even
521 * more stuff redundant with @bus_formats.
523 u8 edid_hdmi_dc_modes
;
526 * @cea_rev: CEA revision of the HDMI sink.
531 * @hdmi: advance features of a HDMI sink.
533 struct drm_hdmi_info hdmi
;
536 * @non_desktop: Non desktop display (HMD).
541 * @monitor_range: Frequency range supported by monitor range descriptor
543 struct drm_monitor_range_info monitor_range
;
546 int drm_display_info_set_bus_formats(struct drm_display_info
*info
,
548 unsigned int num_formats
);
551 * struct drm_connector_tv_margins - TV connector related margins
553 * Describes the margins in pixels to put around the image on TV
554 * connectors to deal with overscan.
556 struct drm_connector_tv_margins
{
558 * @bottom: Bottom margin in pixels.
563 * @left: Left margin in pixels.
568 * @right: Right margin in pixels.
573 * @top: Top margin in pixels.
579 * struct drm_tv_connector_state - TV connector related states
580 * @subconnector: selected subconnector
581 * @margins: TV margins
583 * @brightness: brightness in percent
584 * @contrast: contrast in percent
585 * @flicker_reduction: flicker reduction in percent
586 * @overscan: overscan in percent
587 * @saturation: saturation in percent
588 * @hue: hue in percent
590 struct drm_tv_connector_state
{
591 enum drm_mode_subconnector subconnector
;
592 struct drm_connector_tv_margins margins
;
594 unsigned int brightness
;
595 unsigned int contrast
;
596 unsigned int flicker_reduction
;
597 unsigned int overscan
;
598 unsigned int saturation
;
603 * struct drm_connector_state - mutable connector state
605 struct drm_connector_state
{
606 /** @connector: backpointer to the connector */
607 struct drm_connector
*connector
;
610 * @crtc: CRTC to connect connector to, NULL if disabled.
612 * Do not change this directly, use drm_atomic_set_crtc_for_connector()
615 struct drm_crtc
*crtc
;
620 * Used by the atomic helpers to select the encoder, through the
621 * &drm_connector_helper_funcs.atomic_best_encoder or
622 * &drm_connector_helper_funcs.best_encoder callbacks.
624 * This is also used in the atomic helpers to map encoders to their
625 * current and previous connectors, see
626 * drm_atomic_get_old_connector_for_encoder() and
627 * drm_atomic_get_new_connector_for_encoder().
629 * NOTE: Atomic drivers must fill this out (either themselves or through
630 * helpers), for otherwise the GETCONNECTOR and GETENCODER IOCTLs will
631 * not return correct data to userspace.
633 struct drm_encoder
*best_encoder
;
636 * @link_status: Connector link_status to keep track of whether link is
637 * GOOD or BAD to notify userspace if retraining is necessary.
639 enum drm_link_status link_status
;
641 /** @state: backpointer to global drm_atomic_state */
642 struct drm_atomic_state
*state
;
645 * @commit: Tracks the pending commit to prevent use-after-free conditions.
647 * Is only set when @crtc is NULL.
649 struct drm_crtc_commit
*commit
;
651 /** @tv: TV connector state */
652 struct drm_tv_connector_state tv
;
655 * @self_refresh_aware:
657 * This tracks whether a connector is aware of the self refresh state.
658 * It should be set to true for those connector implementations which
659 * understand the self refresh state. This is needed since the crtc
660 * registers the self refresh helpers and it doesn't know if the
661 * connectors downstream have implemented self refresh entry/exit.
663 * Drivers should set this to true in atomic_check if they know how to
664 * handle self_refresh requests.
666 bool self_refresh_aware
;
669 * @picture_aspect_ratio: Connector property to control the
670 * HDMI infoframe aspect ratio setting.
672 * The %DRM_MODE_PICTURE_ASPECT_\* values much match the
673 * values for &enum hdmi_picture_aspect
675 enum hdmi_picture_aspect picture_aspect_ratio
;
678 * @content_type: Connector property to control the
679 * HDMI infoframe content type setting.
680 * The %DRM_MODE_CONTENT_TYPE_\* values much
683 unsigned int content_type
;
686 * @hdcp_content_type: Connector property to pass the type of
687 * protected content. This is most commonly used for HDCP.
689 unsigned int hdcp_content_type
;
692 * @scaling_mode: Connector property to control the
693 * upscaling, mostly used for built-in panels.
695 unsigned int scaling_mode
;
698 * @content_protection: Connector property to request content
699 * protection. This is most commonly used for HDCP.
701 unsigned int content_protection
;
704 * @colorspace: State variable for Connector property to request
705 * colorspace change on Sink. This is most commonly used to switch
706 * to wider color gamuts like BT2020.
711 * @writeback_job: Writeback job for writeback connectors
713 * Holds the framebuffer and out-fence for a writeback connector. As
714 * the writeback completion may be asynchronous to the normal commit
715 * cycle, the writeback job lifetime is managed separately from the
716 * normal atomic state by this object.
718 * See also: drm_writeback_queue_job() and
719 * drm_writeback_signal_completion()
721 struct drm_writeback_job
*writeback_job
;
724 * @max_requested_bpc: Connector property to limit the maximum bit
725 * depth of the pixels.
727 u8 max_requested_bpc
;
730 * @max_bpc: Connector max_bpc based on the requested max_bpc property
731 * and the connector bpc limitations obtained from edid.
736 * @hdr_output_metadata:
737 * DRM blob property for HDR output metadata
739 struct drm_property_blob
*hdr_output_metadata
;
743 * struct drm_connector_funcs - control connectors on a given device
745 * Each CRTC may have one or more connectors attached to it. The functions
746 * below allow the core DRM code to control connectors, enumerate available modes,
749 struct drm_connector_funcs
{
753 * Legacy entry point to set the per-connector DPMS state. Legacy DPMS
754 * is exposed as a standard property on the connector, but diverted to
755 * this callback in the drm core. Note that atomic drivers don't
756 * implement the 4 level DPMS support on the connector any more, but
757 * instead only have an on/off "ACTIVE" property on the CRTC object.
759 * This hook is not used by atomic drivers, remapping of the legacy DPMS
760 * property is entirely handled in the DRM core.
764 * 0 on success or a negative error code on failure.
766 int (*dpms
)(struct drm_connector
*connector
, int mode
);
771 * Reset connector hardware and software state to off. This function isn't
772 * called by the core directly, only through drm_mode_config_reset().
773 * It's not a helper hook only for historical reasons.
775 * Atomic drivers can use drm_atomic_helper_connector_reset() to reset
776 * atomic state using this hook.
778 void (*reset
)(struct drm_connector
*connector
);
783 * Check to see if anything is attached to the connector. The parameter
784 * force is set to false whilst polling, true when checking the
785 * connector due to a user request. force can be used by the driver to
786 * avoid expensive, destructive operations during automated probing.
788 * This callback is optional, if not implemented the connector will be
789 * considered as always being attached.
793 * Note that this hook is only called by the probe helper. It's not in
794 * the helper library vtable purely for historical reasons. The only DRM
795 * core entry point to probe connector state is @fill_modes.
797 * Note that the helper library will already hold
798 * &drm_mode_config.connection_mutex. Drivers which need to grab additional
799 * locks to avoid races with concurrent modeset changes need to use
800 * &drm_connector_helper_funcs.detect_ctx instead.
804 * drm_connector_status indicating the connector's status.
806 enum drm_connector_status (*detect
)(struct drm_connector
*connector
,
812 * This function is called to update internal encoder state when the
813 * connector is forced to a certain state by userspace, either through
814 * the sysfs interfaces or on the kernel cmdline. In that case the
815 * @detect callback isn't called.
819 * Note that this hook is only called by the probe helper. It's not in
820 * the helper library vtable purely for historical reasons. The only DRM
821 * core entry point to probe connector state is @fill_modes.
823 void (*force
)(struct drm_connector
*connector
);
828 * Entry point for output detection and basic mode validation. The
829 * driver should reprobe the output if needed (e.g. when hotplug
830 * handling is unreliable), add all detected modes to &drm_connector.modes
831 * and filter out any the device can't support in any configuration. It
832 * also needs to filter out any modes wider or higher than the
833 * parameters max_width and max_height indicate.
835 * The drivers must also prune any modes no longer valid from
836 * &drm_connector.modes. Furthermore it must update
837 * &drm_connector.status and &drm_connector.edid. If no EDID has been
838 * received for this output connector->edid must be NULL.
840 * Drivers using the probe helpers should use
841 * drm_helper_probe_single_connector_modes() to implement this
846 * The number of modes detected and filled into &drm_connector.modes.
848 int (*fill_modes
)(struct drm_connector
*connector
, uint32_t max_width
, uint32_t max_height
);
853 * This is the legacy entry point to update a property attached to the
856 * This callback is optional if the driver does not support any legacy
857 * driver-private properties. For atomic drivers it is not used because
858 * property handling is done entirely in the DRM core.
862 * 0 on success or a negative error code on failure.
864 int (*set_property
)(struct drm_connector
*connector
, struct drm_property
*property
,
870 * This optional hook can be used to register additional userspace
871 * interfaces attached to the connector, light backlight control, i2c,
872 * DP aux or similar interfaces. It is called late in the driver load
873 * sequence from drm_connector_register() when registering all the
874 * core drm connector interfaces. Everything added from this callback
875 * should be unregistered in the early_unregister callback.
877 * This is called while holding &drm_connector.mutex.
881 * 0 on success, or a negative error code on failure.
883 int (*late_register
)(struct drm_connector
*connector
);
888 * This optional hook should be used to unregister the additional
889 * userspace interfaces attached to the connector from
890 * late_register(). It is called from drm_connector_unregister(),
891 * early in the driver unload sequence to disable userspace access
892 * before data structures are torndown.
894 * This is called while holding &drm_connector.mutex.
896 void (*early_unregister
)(struct drm_connector
*connector
);
901 * Clean up connector resources. This is called at driver unload time
902 * through drm_mode_config_cleanup(). It can also be called at runtime
903 * when a connector is being hot-unplugged for drivers that support
904 * connector hotplugging (e.g. DisplayPort MST).
906 void (*destroy
)(struct drm_connector
*connector
);
909 * @atomic_duplicate_state:
911 * Duplicate the current atomic state for this connector and return it.
912 * The core and helpers guarantee that any atomic state duplicated with
913 * this hook and still owned by the caller (i.e. not transferred to the
914 * driver by calling &drm_mode_config_funcs.atomic_commit) will be
915 * cleaned up by calling the @atomic_destroy_state hook in this
918 * This callback is mandatory for atomic drivers.
920 * Atomic drivers which don't subclass &struct drm_connector_state should use
921 * drm_atomic_helper_connector_duplicate_state(). Drivers that subclass the
922 * state structure to extend it with driver-private state should use
923 * __drm_atomic_helper_connector_duplicate_state() to make sure shared state is
924 * duplicated in a consistent fashion across drivers.
926 * It is an error to call this hook before &drm_connector.state has been
927 * initialized correctly.
931 * If the duplicate state references refcounted resources this hook must
932 * acquire a reference for each of them. The driver must release these
933 * references again in @atomic_destroy_state.
937 * Duplicated atomic state or NULL when the allocation failed.
939 struct drm_connector_state
*(*atomic_duplicate_state
)(struct drm_connector
*connector
);
942 * @atomic_destroy_state:
944 * Destroy a state duplicated with @atomic_duplicate_state and release
945 * or unreference all resources it references
947 * This callback is mandatory for atomic drivers.
949 void (*atomic_destroy_state
)(struct drm_connector
*connector
,
950 struct drm_connector_state
*state
);
953 * @atomic_set_property:
955 * Decode a driver-private property value and store the decoded value
956 * into the passed-in state structure. Since the atomic core decodes all
957 * standardized properties (even for extensions beyond the core set of
958 * properties which might not be implemented by all drivers) this
959 * requires drivers to subclass the state structure.
961 * Such driver-private properties should really only be implemented for
962 * truly hardware/vendor specific state. Instead it is preferred to
963 * standardize atomic extension and decode the properties used to expose
964 * such an extension in the core.
966 * Do not call this function directly, use
967 * drm_atomic_connector_set_property() instead.
969 * This callback is optional if the driver does not support any
970 * driver-private atomic properties.
974 * This function is called in the state assembly phase of atomic
975 * modesets, which can be aborted for any reason (including on
976 * userspace's request to just check whether a configuration would be
977 * possible). Drivers MUST NOT touch any persistent state (hardware or
978 * software) or data structures except the passed in @state parameter.
980 * Also since userspace controls in which order properties are set this
981 * function must not do any input validation (since the state update is
982 * incomplete and hence likely inconsistent). Instead any such input
983 * validation must be done in the various atomic_check callbacks.
987 * 0 if the property has been found, -EINVAL if the property isn't
988 * implemented by the driver (which shouldn't ever happen, the core only
989 * asks for properties attached to this connector). No other validation
990 * is allowed by the driver. The core already checks that the property
991 * value is within the range (integer, valid enum value, ...) the driver
992 * set when registering the property.
994 int (*atomic_set_property
)(struct drm_connector
*connector
,
995 struct drm_connector_state
*state
,
996 struct drm_property
*property
,
1000 * @atomic_get_property:
1002 * Reads out the decoded driver-private property. This is used to
1003 * implement the GETCONNECTOR IOCTL.
1005 * Do not call this function directly, use
1006 * drm_atomic_connector_get_property() instead.
1008 * This callback is optional if the driver does not support any
1009 * driver-private atomic properties.
1013 * 0 on success, -EINVAL if the property isn't implemented by the
1014 * driver (which shouldn't ever happen, the core only asks for
1015 * properties attached to this connector).
1017 int (*atomic_get_property
)(struct drm_connector
*connector
,
1018 const struct drm_connector_state
*state
,
1019 struct drm_property
*property
,
1023 * @atomic_print_state:
1025 * If driver subclasses &struct drm_connector_state, it should implement
1026 * this optional hook for printing additional driver specific state.
1028 * Do not call this directly, use drm_atomic_connector_print_state()
1031 void (*atomic_print_state
)(struct drm_printer
*p
,
1032 const struct drm_connector_state
*state
);
1036 * struct drm_cmdline_mode - DRM Mode passed through the kernel command-line
1038 * Each connector can have an initial mode with additional options
1039 * passed through the kernel command line. This structure allows to
1040 * express those parameters and will be filled by the command-line
1043 struct drm_cmdline_mode
{
1049 char name
[DRM_DISPLAY_MODE_LEN
];
1054 * Has a mode been read from the command-line?
1059 * @refresh_specified:
1061 * Did the mode have a preferred refresh rate?
1063 bool refresh_specified
;
1068 * Did the mode have a preferred BPP?
1075 * Active resolution on the X axis, in pixels.
1082 * Active resolution on the Y axis, in pixels.
1089 * Bits per pixels for the mode.
1096 * Refresh rate, in Hertz.
1103 * Do we need to use reduced blanking?
1110 * The mode is interlaced.
1117 * The timings will be calculated using the VESA Coordinated
1118 * Video Timings instead of looking up the mode from a table.
1125 * Add margins to the mode calculation (1.8% of xres rounded
1126 * down to 8 pixels and 1.8% of yres).
1133 * Ignore the hotplug state of the connector, and force its
1134 * state to one of the DRM_FORCE_* values.
1136 enum drm_connector_force force
;
1139 * @rotation_reflection:
1141 * Initial rotation and reflection of the mode setup from the
1142 * command line. See DRM_MODE_ROTATE_* and
1143 * DRM_MODE_REFLECT_*. The only rotations supported are
1144 * DRM_MODE_ROTATE_0 and DRM_MODE_ROTATE_180.
1146 unsigned int rotation_reflection
;
1149 * @panel_orientation:
1151 * drm-connector "panel orientation" property override value,
1152 * DRM_MODE_PANEL_ORIENTATION_UNKNOWN if not set.
1154 enum drm_panel_orientation panel_orientation
;
1157 * @tv_margins: TV margins to apply to the mode.
1159 struct drm_connector_tv_margins tv_margins
;
1163 * struct drm_connector - central DRM connector control structure
1165 * Each connector may be connected to one or more CRTCs, or may be clonable by
1166 * another connector if they can share a CRTC. Each connector also has a specific
1167 * position in the broader display (referred to as a 'screen' though it could
1168 * span multiple monitors).
1170 struct drm_connector
{
1171 /** @dev: parent DRM device */
1172 struct drm_device
*dev
;
1173 /** @kdev: kernel device for sysfs attributes */
1174 struct device
*kdev
;
1175 /** @attr: sysfs attributes */
1176 struct device_attribute
*attr
;
1181 * List of all connectors on a @dev, linked from
1182 * &drm_mode_config.connector_list. Protected by
1183 * &drm_mode_config.connector_list_lock, but please only use
1184 * &drm_connector_list_iter to walk this list.
1186 struct list_head head
;
1188 /** @base: base KMS object */
1189 struct drm_mode_object base
;
1191 /** @name: human readable name, can be overwritten by the driver */
1195 * @mutex: Lock for general connector state, but currently only protects
1196 * @registered. Most of the connector state is still protected by
1197 * &drm_mode_config.mutex.
1202 * @index: Compacted connector index, which matches the position inside
1203 * the mode_config.list for drivers not supporting hot-add/removing. Can
1204 * be used as an array index. It is invariant over the lifetime of the
1211 * one of the DRM_MODE_CONNECTOR_<foo> types from drm_mode.h
1214 /** @connector_type_id: index into connector type enum */
1215 int connector_type_id
;
1217 * @interlace_allowed:
1218 * Can this connector handle interlaced modes? Only used by
1219 * drm_helper_probe_single_connector_modes() for mode filtering.
1221 bool interlace_allowed
;
1223 * @doublescan_allowed:
1224 * Can this connector handle doublescan? Only used by
1225 * drm_helper_probe_single_connector_modes() for mode filtering.
1227 bool doublescan_allowed
;
1230 * Can this connector handle stereo modes? Only used by
1231 * drm_helper_probe_single_connector_modes() for mode filtering.
1233 bool stereo_allowed
;
1236 * @ycbcr_420_allowed : This bool indicates if this connector is
1237 * capable of handling YCBCR 420 output. While parsing the EDID
1238 * blocks it's very helpful to know if the source is capable of
1239 * handling YCBCR 420 outputs.
1241 bool ycbcr_420_allowed
;
1244 * @registration_state: Is this connector initializing, exposed
1245 * (registered) with userspace, or unregistered?
1247 * Protected by @mutex.
1249 enum drm_connector_registration_state registration_state
;
1253 * Modes available on this connector (from fill_modes() + user).
1254 * Protected by &drm_mode_config.mutex.
1256 struct list_head modes
;
1260 * One of the drm_connector_status enums (connected, not, or unknown).
1261 * Protected by &drm_mode_config.mutex.
1263 enum drm_connector_status status
;
1267 * These are modes added by probing with DDC or the BIOS, before
1268 * filtering is applied. Used by the probe helpers. Protected by
1269 * &drm_mode_config.mutex.
1271 struct list_head probed_modes
;
1274 * @display_info: Display information is filled from EDID information
1275 * when a display is detected. For non hot-pluggable displays such as
1276 * flat panels in embedded systems, the driver should initialize the
1277 * &drm_display_info.width_mm and &drm_display_info.height_mm fields
1278 * with the physical size of the display.
1280 * Protected by &drm_mode_config.mutex.
1282 struct drm_display_info display_info
;
1284 /** @funcs: connector control functions */
1285 const struct drm_connector_funcs
*funcs
;
1288 * @edid_blob_ptr: DRM property containing EDID if present. Protected by
1289 * &drm_mode_config.mutex. This should be updated only by calling
1290 * drm_connector_update_edid_property().
1292 struct drm_property_blob
*edid_blob_ptr
;
1294 /** @properties: property tracking for this connector */
1295 struct drm_object_properties properties
;
1298 * @scaling_mode_property: Optional atomic property to control the
1299 * upscaling. See drm_connector_attach_content_protection_property().
1301 struct drm_property
*scaling_mode_property
;
1304 * @vrr_capable_property: Optional property to help userspace
1305 * query hardware support for variable refresh rate on a connector.
1306 * connector. Drivers can add the property to a connector by
1307 * calling drm_connector_attach_vrr_capable_property().
1309 * This should be updated only by calling
1310 * drm_connector_set_vrr_capable_property().
1312 struct drm_property
*vrr_capable_property
;
1315 * @colorspace_property: Connector property to set the suitable
1316 * colorspace supported by the sink.
1318 struct drm_property
*colorspace_property
;
1323 * DRM blob property data for the DP MST path property. This should only
1324 * be updated by calling drm_connector_set_path_property().
1326 struct drm_property_blob
*path_blob_ptr
;
1329 * @max_bpc_property: Default connector property for the max bpc to be
1330 * driven out of the connector.
1332 struct drm_property
*max_bpc_property
;
1334 #define DRM_CONNECTOR_POLL_HPD (1 << 0)
1335 #define DRM_CONNECTOR_POLL_CONNECT (1 << 1)
1336 #define DRM_CONNECTOR_POLL_DISCONNECT (1 << 2)
1341 * Connector polling mode, a combination of
1343 * DRM_CONNECTOR_POLL_HPD
1344 * The connector generates hotplug events and doesn't need to be
1345 * periodically polled. The CONNECT and DISCONNECT flags must not
1346 * be set together with the HPD flag.
1348 * DRM_CONNECTOR_POLL_CONNECT
1349 * Periodically poll the connector for connection.
1351 * DRM_CONNECTOR_POLL_DISCONNECT
1352 * Periodically poll the connector for disconnection, without
1353 * causing flickering even when the connector is in use. DACs should
1354 * rarely do this without a lot of testing.
1356 * Set to 0 for connectors that don't support connection status
1362 * @dpms: Current dpms state. For legacy drivers the
1363 * &drm_connector_funcs.dpms callback must update this. For atomic
1364 * drivers, this is handled by the core atomic code, and drivers must
1365 * only take &drm_crtc_state.active into account.
1369 /** @helper_private: mid-layer private data */
1370 const struct drm_connector_helper_funcs
*helper_private
;
1372 /** @cmdline_mode: mode line parsed from the kernel cmdline for this connector */
1373 struct drm_cmdline_mode cmdline_mode
;
1374 /** @force: a DRM_FORCE_<foo> state for forced mode sets */
1375 enum drm_connector_force force
;
1376 /** @override_edid: has the EDID been overwritten through debugfs for testing? */
1378 /** @epoch_counter: used to detect any other changes in connector, besides status */
1382 * @possible_encoders: Bit mask of encoders that can drive this
1383 * connector, drm_encoder_index() determines the index into the bitfield
1384 * and the bits are set with drm_connector_attach_encoder().
1386 u32 possible_encoders
;
1389 * @encoder: Currently bound encoder driving this connector, if any.
1390 * Only really meaningful for non-atomic drivers. Atomic drivers should
1391 * instead look at &drm_connector_state.best_encoder, and in case they
1392 * need the CRTC driving this output, &drm_connector_state.crtc.
1394 struct drm_encoder
*encoder
;
1396 #define MAX_ELD_BYTES 128
1397 /** @eld: EDID-like data, if present */
1398 uint8_t eld
[MAX_ELD_BYTES
];
1399 /** @latency_present: AV delay info from ELD, if found */
1400 bool latency_present
[2];
1402 * @video_latency: Video latency info from ELD, if found.
1403 * [0]: progressive, [1]: interlaced
1405 int video_latency
[2];
1407 * @audio_latency: audio latency info from ELD, if found
1408 * [0]: progressive, [1]: interlaced
1410 int audio_latency
[2];
1413 * @ddc: associated ddc adapter.
1414 * A connector usually has its associated ddc adapter. If a driver uses
1415 * this field, then an appropriate symbolic link is created in connector
1416 * sysfs directory to make it easy for the user to tell which i2c
1417 * adapter is for a particular display.
1419 * The field should be set by calling drm_connector_init_with_ddc().
1421 struct i2c_adapter
*ddc
;
1424 * @null_edid_counter: track sinks that give us all zeros for the EDID.
1425 * Needed to workaround some HW bugs where we get all 0s
1427 int null_edid_counter
;
1429 /** @bad_edid_counter: track sinks that give us an EDID with invalid checksum */
1430 unsigned bad_edid_counter
;
1433 * @edid_corrupt: Indicates whether the last read EDID was corrupt. Used
1434 * in Displayport compliance testing - Displayport Link CTS Core 1.2
1439 * @real_edid_checksum: real edid checksum for corrupted edid block.
1440 * Required in Displayport 1.4 compliance testing
1443 u8 real_edid_checksum
;
1445 /** @debugfs_entry: debugfs directory for this connector */
1446 struct dentry
*debugfs_entry
;
1451 * Current atomic state for this connector.
1453 * This is protected by &drm_mode_config.connection_mutex. Note that
1454 * nonblocking atomic commits access the current connector state without
1455 * taking locks. Either by going through the &struct drm_atomic_state
1456 * pointers, see for_each_oldnew_connector_in_state(),
1457 * for_each_old_connector_in_state() and
1458 * for_each_new_connector_in_state(). Or through careful ordering of
1459 * atomic commit operations as implemented in the atomic helpers, see
1460 * &struct drm_crtc_commit.
1462 struct drm_connector_state
*state
;
1464 /* DisplayID bits. FIXME: Extract into a substruct? */
1469 * DRM blob property data for the tile property (used mostly by DP MST).
1470 * This is meant for screens which are driven through separate display
1471 * pipelines represented by &drm_crtc, which might not be running with
1472 * genlocked clocks. For tiled panels which are genlocked, like
1473 * dual-link LVDS or dual-link DSI, the driver should try to not expose
1474 * the tiling and virtualize both &drm_crtc and &drm_plane if needed.
1476 * This should only be updated by calling
1477 * drm_connector_set_tile_property().
1479 struct drm_property_blob
*tile_blob_ptr
;
1481 /** @has_tile: is this connector connected to a tiled monitor */
1483 /** @tile_group: tile group for the connected monitor */
1484 struct drm_tile_group
*tile_group
;
1485 /** @tile_is_single_monitor: whether the tile is one monitor housing */
1486 bool tile_is_single_monitor
;
1488 /** @num_h_tile: number of horizontal tiles in the tile group */
1489 /** @num_v_tile: number of vertical tiles in the tile group */
1490 uint8_t num_h_tile
, num_v_tile
;
1491 /** @tile_h_loc: horizontal location of this tile */
1492 /** @tile_v_loc: vertical location of this tile */
1493 uint8_t tile_h_loc
, tile_v_loc
;
1494 /** @tile_h_size: horizontal size of this tile. */
1495 /** @tile_v_size: vertical size of this tile. */
1496 uint16_t tile_h_size
, tile_v_size
;
1501 * List used only by &drm_connector_list_iter to be able to clean up a
1502 * connector from any context, in conjunction with
1503 * &drm_mode_config.connector_free_work.
1505 struct llist_node free_node
;
1507 /** @hdr_sink_metadata: HDR Metadata Information read from sink */
1508 struct hdr_sink_metadata hdr_sink_metadata
;
1511 #define obj_to_connector(x) container_of(x, struct drm_connector, base)
1513 int drm_connector_init(struct drm_device
*dev
,
1514 struct drm_connector
*connector
,
1515 const struct drm_connector_funcs
*funcs
,
1516 int connector_type
);
1517 int drm_connector_init_with_ddc(struct drm_device
*dev
,
1518 struct drm_connector
*connector
,
1519 const struct drm_connector_funcs
*funcs
,
1521 struct i2c_adapter
*ddc
);
1522 void drm_connector_attach_edid_property(struct drm_connector
*connector
);
1523 int drm_connector_register(struct drm_connector
*connector
);
1524 void drm_connector_unregister(struct drm_connector
*connector
);
1525 int drm_connector_attach_encoder(struct drm_connector
*connector
,
1526 struct drm_encoder
*encoder
);
1528 void drm_connector_cleanup(struct drm_connector
*connector
);
1530 static inline unsigned int drm_connector_index(const struct drm_connector
*connector
)
1532 return connector
->index
;
1535 static inline u32
drm_connector_mask(const struct drm_connector
*connector
)
1537 return 1 << connector
->index
;
1541 * drm_connector_lookup - lookup connector object
1543 * @file_priv: drm file to check for lease against.
1544 * @id: connector object id
1546 * This function looks up the connector object specified by id
1547 * add takes a reference to it.
1549 static inline struct drm_connector
*drm_connector_lookup(struct drm_device
*dev
,
1550 struct drm_file
*file_priv
,
1553 struct drm_mode_object
*mo
;
1554 mo
= drm_mode_object_find(dev
, file_priv
, id
, DRM_MODE_OBJECT_CONNECTOR
);
1555 return mo
? obj_to_connector(mo
) : NULL
;
1559 * drm_connector_get - acquire a connector reference
1560 * @connector: DRM connector
1562 * This function increments the connector's refcount.
1564 static inline void drm_connector_get(struct drm_connector
*connector
)
1566 drm_mode_object_get(&connector
->base
);
1570 * drm_connector_put - release a connector reference
1571 * @connector: DRM connector
1573 * This function decrements the connector's reference count and frees the
1574 * object if the reference count drops to zero.
1576 static inline void drm_connector_put(struct drm_connector
*connector
)
1578 drm_mode_object_put(&connector
->base
);
1582 * drm_connector_is_unregistered - has the connector been unregistered from
1584 * @connector: DRM connector
1586 * Checks whether or not @connector has been unregistered from userspace.
1589 * True if the connector was unregistered, false if the connector is
1590 * registered or has not yet been registered with userspace.
1593 drm_connector_is_unregistered(struct drm_connector
*connector
)
1595 return READ_ONCE(connector
->registration_state
) ==
1596 DRM_CONNECTOR_UNREGISTERED
;
1599 const char *drm_get_connector_type_name(unsigned int connector_type
);
1600 const char *drm_get_connector_status_name(enum drm_connector_status status
);
1601 const char *drm_get_subpixel_order_name(enum subpixel_order order
);
1602 const char *drm_get_dpms_name(int val
);
1603 const char *drm_get_dvi_i_subconnector_name(int val
);
1604 const char *drm_get_dvi_i_select_name(int val
);
1605 const char *drm_get_tv_subconnector_name(int val
);
1606 const char *drm_get_tv_select_name(int val
);
1607 const char *drm_get_dp_subconnector_name(int val
);
1608 const char *drm_get_content_protection_name(int val
);
1609 const char *drm_get_hdcp_content_type_name(int val
);
1611 int drm_mode_create_dvi_i_properties(struct drm_device
*dev
);
1612 void drm_connector_attach_dp_subconnector_property(struct drm_connector
*connector
);
1614 int drm_mode_create_tv_margin_properties(struct drm_device
*dev
);
1615 int drm_mode_create_tv_properties(struct drm_device
*dev
,
1616 unsigned int num_modes
,
1617 const char * const modes
[]);
1618 void drm_connector_attach_tv_margin_properties(struct drm_connector
*conn
);
1619 int drm_mode_create_scaling_mode_property(struct drm_device
*dev
);
1620 int drm_connector_attach_content_type_property(struct drm_connector
*dev
);
1621 int drm_connector_attach_scaling_mode_property(struct drm_connector
*connector
,
1622 u32 scaling_mode_mask
);
1623 int drm_connector_attach_vrr_capable_property(
1624 struct drm_connector
*connector
);
1625 int drm_mode_create_aspect_ratio_property(struct drm_device
*dev
);
1626 int drm_mode_create_hdmi_colorspace_property(struct drm_connector
*connector
);
1627 int drm_mode_create_dp_colorspace_property(struct drm_connector
*connector
);
1628 int drm_mode_create_content_type_property(struct drm_device
*dev
);
1629 void drm_hdmi_avi_infoframe_content_type(struct hdmi_avi_infoframe
*frame
,
1630 const struct drm_connector_state
*conn_state
);
1632 int drm_mode_create_suggested_offset_properties(struct drm_device
*dev
);
1634 int drm_connector_set_path_property(struct drm_connector
*connector
,
1636 int drm_connector_set_tile_property(struct drm_connector
*connector
);
1637 int drm_connector_update_edid_property(struct drm_connector
*connector
,
1638 const struct edid
*edid
);
1639 void drm_connector_set_link_status_property(struct drm_connector
*connector
,
1640 uint64_t link_status
);
1641 void drm_connector_set_vrr_capable_property(
1642 struct drm_connector
*connector
, bool capable
);
1643 int drm_connector_set_panel_orientation(
1644 struct drm_connector
*connector
,
1645 enum drm_panel_orientation panel_orientation
);
1646 int drm_connector_set_panel_orientation_with_quirk(
1647 struct drm_connector
*connector
,
1648 enum drm_panel_orientation panel_orientation
,
1649 int width
, int height
);
1650 int drm_connector_attach_max_bpc_property(struct drm_connector
*connector
,
1654 * struct drm_tile_group - Tile group metadata
1655 * @refcount: reference count
1657 * @id: tile group id exposed to userspace
1658 * @group_data: Sink-private data identifying this group
1660 * @group_data corresponds to displayid vend/prod/serial for external screens
1663 struct drm_tile_group
{
1664 struct kref refcount
;
1665 struct drm_device
*dev
;
1670 struct drm_tile_group
*drm_mode_create_tile_group(struct drm_device
*dev
,
1671 const char topology
[8]);
1672 struct drm_tile_group
*drm_mode_get_tile_group(struct drm_device
*dev
,
1673 const char topology
[8]);
1674 void drm_mode_put_tile_group(struct drm_device
*dev
,
1675 struct drm_tile_group
*tg
);
1678 * struct drm_connector_list_iter - connector_list iterator
1680 * This iterator tracks state needed to be able to walk the connector_list
1681 * within struct drm_mode_config. Only use together with
1682 * drm_connector_list_iter_begin(), drm_connector_list_iter_end() and
1683 * drm_connector_list_iter_next() respectively the convenience macro
1684 * drm_for_each_connector_iter().
1686 struct drm_connector_list_iter
{
1688 struct drm_device
*dev
;
1689 struct drm_connector
*conn
;
1692 void drm_connector_list_iter_begin(struct drm_device
*dev
,
1693 struct drm_connector_list_iter
*iter
);
1694 struct drm_connector
*
1695 drm_connector_list_iter_next(struct drm_connector_list_iter
*iter
);
1696 void drm_connector_list_iter_end(struct drm_connector_list_iter
*iter
);
1698 bool drm_connector_has_possible_encoder(struct drm_connector
*connector
,
1699 struct drm_encoder
*encoder
);
1702 * drm_for_each_connector_iter - connector_list iterator macro
1703 * @connector: &struct drm_connector pointer used as cursor
1704 * @iter: &struct drm_connector_list_iter
1706 * Note that @connector is only valid within the list body, if you want to use
1707 * @connector after calling drm_connector_list_iter_end() then you need to grab
1708 * your own reference first using drm_connector_get().
1710 #define drm_for_each_connector_iter(connector, iter) \
1711 while ((connector = drm_connector_list_iter_next(iter)))
1714 * drm_connector_for_each_possible_encoder - iterate connector's possible encoders
1715 * @connector: &struct drm_connector pointer
1716 * @encoder: &struct drm_encoder pointer used as cursor
1718 #define drm_connector_for_each_possible_encoder(connector, encoder) \
1719 drm_for_each_encoder_mask(encoder, (connector)->dev, \
1720 (connector)->possible_encoders)