1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/pagemap.h>
45 /* How many pages do we try to swap or page in/out together? */
48 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
53 static DEFINE_PER_CPU(struct lru_rotate
, lru_rotate
) = {
54 .lock
= INIT_LOCAL_LOCK(lock
),
58 * The following struct pagevec are grouped together because they are protected
59 * by disabling preemption (and interrupts remain enabled).
63 struct pagevec lru_add
;
64 struct pagevec lru_deactivate_file
;
65 struct pagevec lru_deactivate
;
66 struct pagevec lru_lazyfree
;
68 struct pagevec activate_page
;
71 static DEFINE_PER_CPU(struct lru_pvecs
, lru_pvecs
) = {
72 .lock
= INIT_LOCAL_LOCK(lock
),
76 * This path almost never happens for VM activity - pages are normally
77 * freed via pagevecs. But it gets used by networking.
79 static void __page_cache_release(struct page
*page
)
82 struct lruvec
*lruvec
;
85 lruvec
= lock_page_lruvec_irqsave(page
, &flags
);
86 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
88 del_page_from_lru_list(page
, lruvec
, page_off_lru(page
));
89 unlock_page_lruvec_irqrestore(lruvec
, flags
);
91 __ClearPageWaiters(page
);
94 static void __put_single_page(struct page
*page
)
96 __page_cache_release(page
);
97 mem_cgroup_uncharge(page
);
98 free_unref_page(page
);
101 static void __put_compound_page(struct page
*page
)
104 * __page_cache_release() is supposed to be called for thp, not for
105 * hugetlb. This is because hugetlb page does never have PageLRU set
106 * (it's never listed to any LRU lists) and no memcg routines should
107 * be called for hugetlb (it has a separate hugetlb_cgroup.)
110 __page_cache_release(page
);
111 destroy_compound_page(page
);
114 void __put_page(struct page
*page
)
116 if (is_zone_device_page(page
)) {
117 put_dev_pagemap(page
->pgmap
);
120 * The page belongs to the device that created pgmap. Do
121 * not return it to page allocator.
126 if (unlikely(PageCompound(page
)))
127 __put_compound_page(page
);
129 __put_single_page(page
);
131 EXPORT_SYMBOL(__put_page
);
134 * put_pages_list() - release a list of pages
135 * @pages: list of pages threaded on page->lru
137 * Release a list of pages which are strung together on page.lru. Currently
138 * used by read_cache_pages() and related error recovery code.
140 void put_pages_list(struct list_head
*pages
)
142 while (!list_empty(pages
)) {
145 victim
= lru_to_page(pages
);
146 list_del(&victim
->lru
);
150 EXPORT_SYMBOL(put_pages_list
);
153 * get_kernel_pages() - pin kernel pages in memory
154 * @kiov: An array of struct kvec structures
155 * @nr_segs: number of segments to pin
156 * @write: pinning for read/write, currently ignored
157 * @pages: array that receives pointers to the pages pinned.
158 * Should be at least nr_segs long.
160 * Returns number of pages pinned. This may be fewer than the number
161 * requested. If nr_pages is 0 or negative, returns 0. If no pages
162 * were pinned, returns -errno. Each page returned must be released
163 * with a put_page() call when it is finished with.
165 int get_kernel_pages(const struct kvec
*kiov
, int nr_segs
, int write
,
170 for (seg
= 0; seg
< nr_segs
; seg
++) {
171 if (WARN_ON(kiov
[seg
].iov_len
!= PAGE_SIZE
))
174 pages
[seg
] = kmap_to_page(kiov
[seg
].iov_base
);
175 get_page(pages
[seg
]);
180 EXPORT_SYMBOL_GPL(get_kernel_pages
);
183 * get_kernel_page() - pin a kernel page in memory
184 * @start: starting kernel address
185 * @write: pinning for read/write, currently ignored
186 * @pages: array that receives pointer to the page pinned.
187 * Must be at least nr_segs long.
189 * Returns 1 if page is pinned. If the page was not pinned, returns
190 * -errno. The page returned must be released with a put_page() call
191 * when it is finished with.
193 int get_kernel_page(unsigned long start
, int write
, struct page
**pages
)
195 const struct kvec kiov
= {
196 .iov_base
= (void *)start
,
200 return get_kernel_pages(&kiov
, 1, write
, pages
);
202 EXPORT_SYMBOL_GPL(get_kernel_page
);
204 static void pagevec_lru_move_fn(struct pagevec
*pvec
,
205 void (*move_fn
)(struct page
*page
, struct lruvec
*lruvec
))
208 struct lruvec
*lruvec
= NULL
;
209 unsigned long flags
= 0;
211 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
212 struct page
*page
= pvec
->pages
[i
];
214 /* block memcg migration during page moving between lru */
215 if (!TestClearPageLRU(page
))
218 lruvec
= relock_page_lruvec_irqsave(page
, lruvec
, &flags
);
219 (*move_fn
)(page
, lruvec
);
224 unlock_page_lruvec_irqrestore(lruvec
, flags
);
225 release_pages(pvec
->pages
, pvec
->nr
);
226 pagevec_reinit(pvec
);
229 static void pagevec_move_tail_fn(struct page
*page
, struct lruvec
*lruvec
)
231 if (!PageUnevictable(page
)) {
232 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
233 ClearPageActive(page
);
234 add_page_to_lru_list_tail(page
, lruvec
, page_lru(page
));
235 __count_vm_events(PGROTATED
, thp_nr_pages(page
));
240 * Writeback is about to end against a page which has been marked for immediate
241 * reclaim. If it still appears to be reclaimable, move it to the tail of the
244 * rotate_reclaimable_page() must disable IRQs, to prevent nasty races.
246 void rotate_reclaimable_page(struct page
*page
)
248 if (!PageLocked(page
) && !PageDirty(page
) &&
249 !PageUnevictable(page
) && PageLRU(page
)) {
250 struct pagevec
*pvec
;
254 local_lock_irqsave(&lru_rotate
.lock
, flags
);
255 pvec
= this_cpu_ptr(&lru_rotate
.pvec
);
256 if (!pagevec_add(pvec
, page
) || PageCompound(page
))
257 pagevec_lru_move_fn(pvec
, pagevec_move_tail_fn
);
258 local_unlock_irqrestore(&lru_rotate
.lock
, flags
);
262 void lru_note_cost(struct lruvec
*lruvec
, bool file
, unsigned int nr_pages
)
265 unsigned long lrusize
;
268 * Hold lruvec->lru_lock is safe here, since
269 * 1) The pinned lruvec in reclaim, or
270 * 2) From a pre-LRU page during refault (which also holds the
271 * rcu lock, so would be safe even if the page was on the LRU
272 * and could move simultaneously to a new lruvec).
274 spin_lock_irq(&lruvec
->lru_lock
);
275 /* Record cost event */
277 lruvec
->file_cost
+= nr_pages
;
279 lruvec
->anon_cost
+= nr_pages
;
282 * Decay previous events
284 * Because workloads change over time (and to avoid
285 * overflow) we keep these statistics as a floating
286 * average, which ends up weighing recent refaults
287 * more than old ones.
289 lrusize
= lruvec_page_state(lruvec
, NR_INACTIVE_ANON
) +
290 lruvec_page_state(lruvec
, NR_ACTIVE_ANON
) +
291 lruvec_page_state(lruvec
, NR_INACTIVE_FILE
) +
292 lruvec_page_state(lruvec
, NR_ACTIVE_FILE
);
294 if (lruvec
->file_cost
+ lruvec
->anon_cost
> lrusize
/ 4) {
295 lruvec
->file_cost
/= 2;
296 lruvec
->anon_cost
/= 2;
298 spin_unlock_irq(&lruvec
->lru_lock
);
299 } while ((lruvec
= parent_lruvec(lruvec
)));
302 void lru_note_cost_page(struct page
*page
)
304 lru_note_cost(mem_cgroup_page_lruvec(page
, page_pgdat(page
)),
305 page_is_file_lru(page
), thp_nr_pages(page
));
308 static void __activate_page(struct page
*page
, struct lruvec
*lruvec
)
310 if (!PageActive(page
) && !PageUnevictable(page
)) {
311 int lru
= page_lru_base_type(page
);
312 int nr_pages
= thp_nr_pages(page
);
314 del_page_from_lru_list(page
, lruvec
, lru
);
317 add_page_to_lru_list(page
, lruvec
, lru
);
318 trace_mm_lru_activate(page
);
320 __count_vm_events(PGACTIVATE
, nr_pages
);
321 __count_memcg_events(lruvec_memcg(lruvec
), PGACTIVATE
,
327 static void activate_page_drain(int cpu
)
329 struct pagevec
*pvec
= &per_cpu(lru_pvecs
.activate_page
, cpu
);
331 if (pagevec_count(pvec
))
332 pagevec_lru_move_fn(pvec
, __activate_page
);
335 static bool need_activate_page_drain(int cpu
)
337 return pagevec_count(&per_cpu(lru_pvecs
.activate_page
, cpu
)) != 0;
340 static void activate_page(struct page
*page
)
342 page
= compound_head(page
);
343 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
344 struct pagevec
*pvec
;
346 local_lock(&lru_pvecs
.lock
);
347 pvec
= this_cpu_ptr(&lru_pvecs
.activate_page
);
349 if (!pagevec_add(pvec
, page
) || PageCompound(page
))
350 pagevec_lru_move_fn(pvec
, __activate_page
);
351 local_unlock(&lru_pvecs
.lock
);
356 static inline void activate_page_drain(int cpu
)
360 static void activate_page(struct page
*page
)
362 struct lruvec
*lruvec
;
364 page
= compound_head(page
);
365 if (TestClearPageLRU(page
)) {
366 lruvec
= lock_page_lruvec_irq(page
);
367 __activate_page(page
, lruvec
);
368 unlock_page_lruvec_irq(lruvec
);
374 static void __lru_cache_activate_page(struct page
*page
)
376 struct pagevec
*pvec
;
379 local_lock(&lru_pvecs
.lock
);
380 pvec
= this_cpu_ptr(&lru_pvecs
.lru_add
);
383 * Search backwards on the optimistic assumption that the page being
384 * activated has just been added to this pagevec. Note that only
385 * the local pagevec is examined as a !PageLRU page could be in the
386 * process of being released, reclaimed, migrated or on a remote
387 * pagevec that is currently being drained. Furthermore, marking
388 * a remote pagevec's page PageActive potentially hits a race where
389 * a page is marked PageActive just after it is added to the inactive
390 * list causing accounting errors and BUG_ON checks to trigger.
392 for (i
= pagevec_count(pvec
) - 1; i
>= 0; i
--) {
393 struct page
*pagevec_page
= pvec
->pages
[i
];
395 if (pagevec_page
== page
) {
401 local_unlock(&lru_pvecs
.lock
);
405 * Mark a page as having seen activity.
407 * inactive,unreferenced -> inactive,referenced
408 * inactive,referenced -> active,unreferenced
409 * active,unreferenced -> active,referenced
411 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
412 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
414 void mark_page_accessed(struct page
*page
)
416 page
= compound_head(page
);
418 if (!PageReferenced(page
)) {
419 SetPageReferenced(page
);
420 } else if (PageUnevictable(page
)) {
422 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
423 * this list is never rotated or maintained, so marking an
424 * evictable page accessed has no effect.
426 } else if (!PageActive(page
)) {
428 * If the page is on the LRU, queue it for activation via
429 * lru_pvecs.activate_page. Otherwise, assume the page is on a
430 * pagevec, mark it active and it'll be moved to the active
431 * LRU on the next drain.
436 __lru_cache_activate_page(page
);
437 ClearPageReferenced(page
);
438 workingset_activation(page
);
440 if (page_is_idle(page
))
441 clear_page_idle(page
);
443 EXPORT_SYMBOL(mark_page_accessed
);
446 * lru_cache_add - add a page to a page list
447 * @page: the page to be added to the LRU.
449 * Queue the page for addition to the LRU via pagevec. The decision on whether
450 * to add the page to the [in]active [file|anon] list is deferred until the
451 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
452 * have the page added to the active list using mark_page_accessed().
454 void lru_cache_add(struct page
*page
)
456 struct pagevec
*pvec
;
458 VM_BUG_ON_PAGE(PageActive(page
) && PageUnevictable(page
), page
);
459 VM_BUG_ON_PAGE(PageLRU(page
), page
);
462 local_lock(&lru_pvecs
.lock
);
463 pvec
= this_cpu_ptr(&lru_pvecs
.lru_add
);
464 if (!pagevec_add(pvec
, page
) || PageCompound(page
))
465 __pagevec_lru_add(pvec
);
466 local_unlock(&lru_pvecs
.lock
);
468 EXPORT_SYMBOL(lru_cache_add
);
471 * lru_cache_add_inactive_or_unevictable
472 * @page: the page to be added to LRU
473 * @vma: vma in which page is mapped for determining reclaimability
475 * Place @page on the inactive or unevictable LRU list, depending on its
478 void lru_cache_add_inactive_or_unevictable(struct page
*page
,
479 struct vm_area_struct
*vma
)
483 VM_BUG_ON_PAGE(PageLRU(page
), page
);
485 unevictable
= (vma
->vm_flags
& (VM_LOCKED
| VM_SPECIAL
)) == VM_LOCKED
;
486 if (unlikely(unevictable
) && !TestSetPageMlocked(page
)) {
487 int nr_pages
= thp_nr_pages(page
);
489 * We use the irq-unsafe __mod_zone_page_stat because this
490 * counter is not modified from interrupt context, and the pte
491 * lock is held(spinlock), which implies preemption disabled.
493 __mod_zone_page_state(page_zone(page
), NR_MLOCK
, nr_pages
);
494 count_vm_events(UNEVICTABLE_PGMLOCKED
, nr_pages
);
500 * If the page can not be invalidated, it is moved to the
501 * inactive list to speed up its reclaim. It is moved to the
502 * head of the list, rather than the tail, to give the flusher
503 * threads some time to write it out, as this is much more
504 * effective than the single-page writeout from reclaim.
506 * If the page isn't page_mapped and dirty/writeback, the page
507 * could reclaim asap using PG_reclaim.
509 * 1. active, mapped page -> none
510 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
511 * 3. inactive, mapped page -> none
512 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
513 * 5. inactive, clean -> inactive, tail
516 * In 4, why it moves inactive's head, the VM expects the page would
517 * be write it out by flusher threads as this is much more effective
518 * than the single-page writeout from reclaim.
520 static void lru_deactivate_file_fn(struct page
*page
, struct lruvec
*lruvec
)
524 int nr_pages
= thp_nr_pages(page
);
526 if (PageUnevictable(page
))
529 /* Some processes are using the page */
530 if (page_mapped(page
))
533 active
= PageActive(page
);
534 lru
= page_lru_base_type(page
);
536 del_page_from_lru_list(page
, lruvec
, lru
+ active
);
537 ClearPageActive(page
);
538 ClearPageReferenced(page
);
540 if (PageWriteback(page
) || PageDirty(page
)) {
542 * PG_reclaim could be raced with end_page_writeback
543 * It can make readahead confusing. But race window
544 * is _really_ small and it's non-critical problem.
546 add_page_to_lru_list(page
, lruvec
, lru
);
547 SetPageReclaim(page
);
550 * The page's writeback ends up during pagevec
551 * We moves tha page into tail of inactive.
553 add_page_to_lru_list_tail(page
, lruvec
, lru
);
554 __count_vm_events(PGROTATED
, nr_pages
);
558 __count_vm_events(PGDEACTIVATE
, nr_pages
);
559 __count_memcg_events(lruvec_memcg(lruvec
), PGDEACTIVATE
,
564 static void lru_deactivate_fn(struct page
*page
, struct lruvec
*lruvec
)
566 if (PageActive(page
) && !PageUnevictable(page
)) {
567 int lru
= page_lru_base_type(page
);
568 int nr_pages
= thp_nr_pages(page
);
570 del_page_from_lru_list(page
, lruvec
, lru
+ LRU_ACTIVE
);
571 ClearPageActive(page
);
572 ClearPageReferenced(page
);
573 add_page_to_lru_list(page
, lruvec
, lru
);
575 __count_vm_events(PGDEACTIVATE
, nr_pages
);
576 __count_memcg_events(lruvec_memcg(lruvec
), PGDEACTIVATE
,
581 static void lru_lazyfree_fn(struct page
*page
, struct lruvec
*lruvec
)
583 if (PageAnon(page
) && PageSwapBacked(page
) &&
584 !PageSwapCache(page
) && !PageUnevictable(page
)) {
585 bool active
= PageActive(page
);
586 int nr_pages
= thp_nr_pages(page
);
588 del_page_from_lru_list(page
, lruvec
,
589 LRU_INACTIVE_ANON
+ active
);
590 ClearPageActive(page
);
591 ClearPageReferenced(page
);
593 * Lazyfree pages are clean anonymous pages. They have
594 * PG_swapbacked flag cleared, to distinguish them from normal
597 ClearPageSwapBacked(page
);
598 add_page_to_lru_list(page
, lruvec
, LRU_INACTIVE_FILE
);
600 __count_vm_events(PGLAZYFREE
, nr_pages
);
601 __count_memcg_events(lruvec_memcg(lruvec
), PGLAZYFREE
,
607 * Drain pages out of the cpu's pagevecs.
608 * Either "cpu" is the current CPU, and preemption has already been
609 * disabled; or "cpu" is being hot-unplugged, and is already dead.
611 void lru_add_drain_cpu(int cpu
)
613 struct pagevec
*pvec
= &per_cpu(lru_pvecs
.lru_add
, cpu
);
615 if (pagevec_count(pvec
))
616 __pagevec_lru_add(pvec
);
618 pvec
= &per_cpu(lru_rotate
.pvec
, cpu
);
619 /* Disabling interrupts below acts as a compiler barrier. */
620 if (data_race(pagevec_count(pvec
))) {
623 /* No harm done if a racing interrupt already did this */
624 local_lock_irqsave(&lru_rotate
.lock
, flags
);
625 pagevec_lru_move_fn(pvec
, pagevec_move_tail_fn
);
626 local_unlock_irqrestore(&lru_rotate
.lock
, flags
);
629 pvec
= &per_cpu(lru_pvecs
.lru_deactivate_file
, cpu
);
630 if (pagevec_count(pvec
))
631 pagevec_lru_move_fn(pvec
, lru_deactivate_file_fn
);
633 pvec
= &per_cpu(lru_pvecs
.lru_deactivate
, cpu
);
634 if (pagevec_count(pvec
))
635 pagevec_lru_move_fn(pvec
, lru_deactivate_fn
);
637 pvec
= &per_cpu(lru_pvecs
.lru_lazyfree
, cpu
);
638 if (pagevec_count(pvec
))
639 pagevec_lru_move_fn(pvec
, lru_lazyfree_fn
);
641 activate_page_drain(cpu
);
645 * deactivate_file_page - forcefully deactivate a file page
646 * @page: page to deactivate
648 * This function hints the VM that @page is a good reclaim candidate,
649 * for example if its invalidation fails due to the page being dirty
650 * or under writeback.
652 void deactivate_file_page(struct page
*page
)
655 * In a workload with many unevictable page such as mprotect,
656 * unevictable page deactivation for accelerating reclaim is pointless.
658 if (PageUnevictable(page
))
661 if (likely(get_page_unless_zero(page
))) {
662 struct pagevec
*pvec
;
664 local_lock(&lru_pvecs
.lock
);
665 pvec
= this_cpu_ptr(&lru_pvecs
.lru_deactivate_file
);
667 if (!pagevec_add(pvec
, page
) || PageCompound(page
))
668 pagevec_lru_move_fn(pvec
, lru_deactivate_file_fn
);
669 local_unlock(&lru_pvecs
.lock
);
674 * deactivate_page - deactivate a page
675 * @page: page to deactivate
677 * deactivate_page() moves @page to the inactive list if @page was on the active
678 * list and was not an unevictable page. This is done to accelerate the reclaim
681 void deactivate_page(struct page
*page
)
683 if (PageLRU(page
) && PageActive(page
) && !PageUnevictable(page
)) {
684 struct pagevec
*pvec
;
686 local_lock(&lru_pvecs
.lock
);
687 pvec
= this_cpu_ptr(&lru_pvecs
.lru_deactivate
);
689 if (!pagevec_add(pvec
, page
) || PageCompound(page
))
690 pagevec_lru_move_fn(pvec
, lru_deactivate_fn
);
691 local_unlock(&lru_pvecs
.lock
);
696 * mark_page_lazyfree - make an anon page lazyfree
697 * @page: page to deactivate
699 * mark_page_lazyfree() moves @page to the inactive file list.
700 * This is done to accelerate the reclaim of @page.
702 void mark_page_lazyfree(struct page
*page
)
704 if (PageLRU(page
) && PageAnon(page
) && PageSwapBacked(page
) &&
705 !PageSwapCache(page
) && !PageUnevictable(page
)) {
706 struct pagevec
*pvec
;
708 local_lock(&lru_pvecs
.lock
);
709 pvec
= this_cpu_ptr(&lru_pvecs
.lru_lazyfree
);
711 if (!pagevec_add(pvec
, page
) || PageCompound(page
))
712 pagevec_lru_move_fn(pvec
, lru_lazyfree_fn
);
713 local_unlock(&lru_pvecs
.lock
);
717 void lru_add_drain(void)
719 local_lock(&lru_pvecs
.lock
);
720 lru_add_drain_cpu(smp_processor_id());
721 local_unlock(&lru_pvecs
.lock
);
724 void lru_add_drain_cpu_zone(struct zone
*zone
)
726 local_lock(&lru_pvecs
.lock
);
727 lru_add_drain_cpu(smp_processor_id());
728 drain_local_pages(zone
);
729 local_unlock(&lru_pvecs
.lock
);
734 static DEFINE_PER_CPU(struct work_struct
, lru_add_drain_work
);
736 static void lru_add_drain_per_cpu(struct work_struct
*dummy
)
742 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
743 * kworkers being shut down before our page_alloc_cpu_dead callback is
744 * executed on the offlined cpu.
745 * Calling this function with cpu hotplug locks held can actually lead
746 * to obscure indirect dependencies via WQ context.
748 void lru_add_drain_all(void)
751 * lru_drain_gen - Global pages generation number
753 * (A) Definition: global lru_drain_gen = x implies that all generations
754 * 0 < n <= x are already *scheduled* for draining.
756 * This is an optimization for the highly-contended use case where a
757 * user space workload keeps constantly generating a flow of pages for
760 static unsigned int lru_drain_gen
;
761 static struct cpumask has_work
;
762 static DEFINE_MUTEX(lock
);
763 unsigned cpu
, this_gen
;
766 * Make sure nobody triggers this path before mm_percpu_wq is fully
769 if (WARN_ON(!mm_percpu_wq
))
773 * Guarantee pagevec counter stores visible by this CPU are visible to
774 * other CPUs before loading the current drain generation.
779 * (B) Locally cache global LRU draining generation number
781 * The read barrier ensures that the counter is loaded before the mutex
782 * is taken. It pairs with smp_mb() inside the mutex critical section
785 this_gen
= smp_load_acquire(&lru_drain_gen
);
790 * (C) Exit the draining operation if a newer generation, from another
791 * lru_add_drain_all(), was already scheduled for draining. Check (A).
793 if (unlikely(this_gen
!= lru_drain_gen
))
797 * (D) Increment global generation number
799 * Pairs with smp_load_acquire() at (B), outside of the critical
800 * section. Use a full memory barrier to guarantee that the new global
801 * drain generation number is stored before loading pagevec counters.
803 * This pairing must be done here, before the for_each_online_cpu loop
804 * below which drains the page vectors.
806 * Let x, y, and z represent some system CPU numbers, where x < y < z.
807 * Assume CPU #z is is in the middle of the for_each_online_cpu loop
808 * below and has already reached CPU #y's per-cpu data. CPU #x comes
809 * along, adds some pages to its per-cpu vectors, then calls
810 * lru_add_drain_all().
812 * If the paired barrier is done at any later step, e.g. after the
813 * loop, CPU #x will just exit at (C) and miss flushing out all of its
816 WRITE_ONCE(lru_drain_gen
, lru_drain_gen
+ 1);
819 cpumask_clear(&has_work
);
820 for_each_online_cpu(cpu
) {
821 struct work_struct
*work
= &per_cpu(lru_add_drain_work
, cpu
);
823 if (pagevec_count(&per_cpu(lru_pvecs
.lru_add
, cpu
)) ||
824 data_race(pagevec_count(&per_cpu(lru_rotate
.pvec
, cpu
))) ||
825 pagevec_count(&per_cpu(lru_pvecs
.lru_deactivate_file
, cpu
)) ||
826 pagevec_count(&per_cpu(lru_pvecs
.lru_deactivate
, cpu
)) ||
827 pagevec_count(&per_cpu(lru_pvecs
.lru_lazyfree
, cpu
)) ||
828 need_activate_page_drain(cpu
)) {
829 INIT_WORK(work
, lru_add_drain_per_cpu
);
830 queue_work_on(cpu
, mm_percpu_wq
, work
);
831 __cpumask_set_cpu(cpu
, &has_work
);
835 for_each_cpu(cpu
, &has_work
)
836 flush_work(&per_cpu(lru_add_drain_work
, cpu
));
842 void lru_add_drain_all(void)
846 #endif /* CONFIG_SMP */
849 * release_pages - batched put_page()
850 * @pages: array of pages to release
851 * @nr: number of pages
853 * Decrement the reference count on all the pages in @pages. If it
854 * fell to zero, remove the page from the LRU and free it.
856 void release_pages(struct page
**pages
, int nr
)
859 LIST_HEAD(pages_to_free
);
860 struct lruvec
*lruvec
= NULL
;
862 unsigned int lock_batch
;
864 for (i
= 0; i
< nr
; i
++) {
865 struct page
*page
= pages
[i
];
868 * Make sure the IRQ-safe lock-holding time does not get
869 * excessive with a continuous string of pages from the
870 * same lruvec. The lock is held only if lruvec != NULL.
872 if (lruvec
&& ++lock_batch
== SWAP_CLUSTER_MAX
) {
873 unlock_page_lruvec_irqrestore(lruvec
, flags
);
877 page
= compound_head(page
);
878 if (is_huge_zero_page(page
))
881 if (is_zone_device_page(page
)) {
883 unlock_page_lruvec_irqrestore(lruvec
, flags
);
887 * ZONE_DEVICE pages that return 'false' from
888 * page_is_devmap_managed() do not require special
889 * processing, and instead, expect a call to
890 * put_page_testzero().
892 if (page_is_devmap_managed(page
)) {
893 put_devmap_managed_page(page
);
896 if (put_page_testzero(page
))
897 put_dev_pagemap(page
->pgmap
);
901 if (!put_page_testzero(page
))
904 if (PageCompound(page
)) {
906 unlock_page_lruvec_irqrestore(lruvec
, flags
);
909 __put_compound_page(page
);
914 struct lruvec
*prev_lruvec
= lruvec
;
916 lruvec
= relock_page_lruvec_irqsave(page
, lruvec
,
918 if (prev_lruvec
!= lruvec
)
921 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
922 __ClearPageLRU(page
);
923 del_page_from_lru_list(page
, lruvec
, page_off_lru(page
));
926 __ClearPageWaiters(page
);
928 list_add(&page
->lru
, &pages_to_free
);
931 unlock_page_lruvec_irqrestore(lruvec
, flags
);
933 mem_cgroup_uncharge_list(&pages_to_free
);
934 free_unref_page_list(&pages_to_free
);
936 EXPORT_SYMBOL(release_pages
);
939 * The pages which we're about to release may be in the deferred lru-addition
940 * queues. That would prevent them from really being freed right now. That's
941 * OK from a correctness point of view but is inefficient - those pages may be
942 * cache-warm and we want to give them back to the page allocator ASAP.
944 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
945 * and __pagevec_lru_add_active() call release_pages() directly to avoid
948 void __pagevec_release(struct pagevec
*pvec
)
950 if (!pvec
->percpu_pvec_drained
) {
952 pvec
->percpu_pvec_drained
= true;
954 release_pages(pvec
->pages
, pagevec_count(pvec
));
955 pagevec_reinit(pvec
);
957 EXPORT_SYMBOL(__pagevec_release
);
959 static void __pagevec_lru_add_fn(struct page
*page
, struct lruvec
*lruvec
)
962 int was_unevictable
= TestClearPageUnevictable(page
);
963 int nr_pages
= thp_nr_pages(page
);
965 VM_BUG_ON_PAGE(PageLRU(page
), page
);
968 * Page becomes evictable in two ways:
969 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
970 * 2) Before acquiring LRU lock to put the page to correct LRU and then
971 * a) do PageLRU check with lock [check_move_unevictable_pages]
972 * b) do PageLRU check before lock [clear_page_mlock]
974 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
975 * following strict ordering:
977 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
979 * SetPageLRU() TestClearPageMlocked()
980 * smp_mb() // explicit ordering // above provides strict
982 * PageMlocked() PageLRU()
985 * if '#1' does not observe setting of PG_lru by '#0' and fails
986 * isolation, the explicit barrier will make sure that page_evictable
987 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
988 * can be reordered after PageMlocked check and can make '#1' to fail
989 * the isolation of the page whose Mlocked bit is cleared (#0 is also
990 * looking at the same page) and the evictable page will be stranded
991 * in an unevictable LRU.
994 smp_mb__after_atomic();
996 if (page_evictable(page
)) {
997 lru
= page_lru(page
);
999 __count_vm_events(UNEVICTABLE_PGRESCUED
, nr_pages
);
1001 lru
= LRU_UNEVICTABLE
;
1002 ClearPageActive(page
);
1003 SetPageUnevictable(page
);
1004 if (!was_unevictable
)
1005 __count_vm_events(UNEVICTABLE_PGCULLED
, nr_pages
);
1008 add_page_to_lru_list(page
, lruvec
, lru
);
1009 trace_mm_lru_insertion(page
, lru
);
1013 * Add the passed pages to the LRU, then drop the caller's refcount
1014 * on them. Reinitialises the caller's pagevec.
1016 void __pagevec_lru_add(struct pagevec
*pvec
)
1019 struct lruvec
*lruvec
= NULL
;
1020 unsigned long flags
= 0;
1022 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
1023 struct page
*page
= pvec
->pages
[i
];
1025 lruvec
= relock_page_lruvec_irqsave(page
, lruvec
, &flags
);
1026 __pagevec_lru_add_fn(page
, lruvec
);
1029 unlock_page_lruvec_irqrestore(lruvec
, flags
);
1030 release_pages(pvec
->pages
, pvec
->nr
);
1031 pagevec_reinit(pvec
);
1035 * pagevec_lookup_entries - gang pagecache lookup
1036 * @pvec: Where the resulting entries are placed
1037 * @mapping: The address_space to search
1038 * @start: The starting entry index
1039 * @nr_entries: The maximum number of pages
1040 * @indices: The cache indices corresponding to the entries in @pvec
1042 * pagevec_lookup_entries() will search for and return a group of up
1043 * to @nr_pages pages and shadow entries in the mapping. All
1044 * entries are placed in @pvec. pagevec_lookup_entries() takes a
1045 * reference against actual pages in @pvec.
1047 * The search returns a group of mapping-contiguous entries with
1048 * ascending indexes. There may be holes in the indices due to
1049 * not-present entries.
1051 * Only one subpage of a Transparent Huge Page is returned in one call:
1052 * allowing truncate_inode_pages_range() to evict the whole THP without
1053 * cycling through a pagevec of extra references.
1055 * pagevec_lookup_entries() returns the number of entries which were
1058 unsigned pagevec_lookup_entries(struct pagevec
*pvec
,
1059 struct address_space
*mapping
,
1060 pgoff_t start
, unsigned nr_entries
,
1063 pvec
->nr
= find_get_entries(mapping
, start
, nr_entries
,
1064 pvec
->pages
, indices
);
1065 return pagevec_count(pvec
);
1069 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1070 * @pvec: The pagevec to prune
1072 * pagevec_lookup_entries() fills both pages and exceptional radix
1073 * tree entries into the pagevec. This function prunes all
1074 * exceptionals from @pvec without leaving holes, so that it can be
1075 * passed on to page-only pagevec operations.
1077 void pagevec_remove_exceptionals(struct pagevec
*pvec
)
1081 for (i
= 0, j
= 0; i
< pagevec_count(pvec
); i
++) {
1082 struct page
*page
= pvec
->pages
[i
];
1083 if (!xa_is_value(page
))
1084 pvec
->pages
[j
++] = page
;
1090 * pagevec_lookup_range - gang pagecache lookup
1091 * @pvec: Where the resulting pages are placed
1092 * @mapping: The address_space to search
1093 * @start: The starting page index
1094 * @end: The final page index
1096 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1097 * pages in the mapping starting from index @start and upto index @end
1098 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1099 * reference against the pages in @pvec.
1101 * The search returns a group of mapping-contiguous pages with ascending
1102 * indexes. There may be holes in the indices due to not-present pages. We
1103 * also update @start to index the next page for the traversal.
1105 * pagevec_lookup_range() returns the number of pages which were found. If this
1106 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1109 unsigned pagevec_lookup_range(struct pagevec
*pvec
,
1110 struct address_space
*mapping
, pgoff_t
*start
, pgoff_t end
)
1112 pvec
->nr
= find_get_pages_range(mapping
, start
, end
, PAGEVEC_SIZE
,
1114 return pagevec_count(pvec
);
1116 EXPORT_SYMBOL(pagevec_lookup_range
);
1118 unsigned pagevec_lookup_range_tag(struct pagevec
*pvec
,
1119 struct address_space
*mapping
, pgoff_t
*index
, pgoff_t end
,
1122 pvec
->nr
= find_get_pages_range_tag(mapping
, index
, end
, tag
,
1123 PAGEVEC_SIZE
, pvec
->pages
);
1124 return pagevec_count(pvec
);
1126 EXPORT_SYMBOL(pagevec_lookup_range_tag
);
1129 * Perform any setup for the swap system
1131 void __init
swap_setup(void)
1133 unsigned long megs
= totalram_pages() >> (20 - PAGE_SHIFT
);
1135 /* Use a smaller cluster for small-memory machines */
1141 * Right now other parts of the system means that we
1142 * _really_ don't want to cluster much more
1146 #ifdef CONFIG_DEV_PAGEMAP_OPS
1147 void put_devmap_managed_page(struct page
*page
)
1151 if (WARN_ON_ONCE(!page_is_devmap_managed(page
)))
1154 count
= page_ref_dec_return(page
);
1157 * devmap page refcounts are 1-based, rather than 0-based: if
1158 * refcount is 1, then the page is free and the refcount is
1159 * stable because nobody holds a reference on the page.
1162 free_devmap_managed_page(page
);
1166 EXPORT_SYMBOL(put_devmap_managed_page
);