Merge tag 'iommu-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux/fpc-iii.git] / mm / vmscan.c
blob257cba79a96dd024251478235b237f60b048cb70
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
59 #include "internal.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
64 struct scan_control {
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
69 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 * are scanned.
72 nodemask_t *nodemask;
75 * The memory cgroup that hit its limit and as a result is the
76 * primary target of this reclaim invocation.
78 struct mem_cgroup *target_mem_cgroup;
81 * Scan pressure balancing between anon and file LRUs
83 unsigned long anon_cost;
84 unsigned long file_cost;
86 /* Can active pages be deactivated as part of reclaim? */
87 #define DEACTIVATE_ANON 1
88 #define DEACTIVATE_FILE 2
89 unsigned int may_deactivate:2;
90 unsigned int force_deactivate:1;
91 unsigned int skipped_deactivate:1;
93 /* Writepage batching in laptop mode; RECLAIM_WRITE */
94 unsigned int may_writepage:1;
96 /* Can mapped pages be reclaimed? */
97 unsigned int may_unmap:1;
99 /* Can pages be swapped as part of reclaim? */
100 unsigned int may_swap:1;
103 * Cgroups are not reclaimed below their configured memory.low,
104 * unless we threaten to OOM. If any cgroups are skipped due to
105 * memory.low and nothing was reclaimed, go back for memory.low.
107 unsigned int memcg_low_reclaim:1;
108 unsigned int memcg_low_skipped:1;
110 unsigned int hibernation_mode:1;
112 /* One of the zones is ready for compaction */
113 unsigned int compaction_ready:1;
115 /* There is easily reclaimable cold cache in the current node */
116 unsigned int cache_trim_mode:1;
118 /* The file pages on the current node are dangerously low */
119 unsigned int file_is_tiny:1;
121 /* Allocation order */
122 s8 order;
124 /* Scan (total_size >> priority) pages at once */
125 s8 priority;
127 /* The highest zone to isolate pages for reclaim from */
128 s8 reclaim_idx;
130 /* This context's GFP mask */
131 gfp_t gfp_mask;
133 /* Incremented by the number of inactive pages that were scanned */
134 unsigned long nr_scanned;
136 /* Number of pages freed so far during a call to shrink_zones() */
137 unsigned long nr_reclaimed;
139 struct {
140 unsigned int dirty;
141 unsigned int unqueued_dirty;
142 unsigned int congested;
143 unsigned int writeback;
144 unsigned int immediate;
145 unsigned int file_taken;
146 unsigned int taken;
147 } nr;
149 /* for recording the reclaimed slab by now */
150 struct reclaim_state reclaim_state;
153 #ifdef ARCH_HAS_PREFETCHW
154 #define prefetchw_prev_lru_page(_page, _base, _field) \
155 do { \
156 if ((_page)->lru.prev != _base) { \
157 struct page *prev; \
159 prev = lru_to_page(&(_page->lru)); \
160 prefetchw(&prev->_field); \
162 } while (0)
163 #else
164 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165 #endif
168 * From 0 .. 200. Higher means more swappy.
170 int vm_swappiness = 60;
172 static void set_task_reclaim_state(struct task_struct *task,
173 struct reclaim_state *rs)
175 /* Check for an overwrite */
176 WARN_ON_ONCE(rs && task->reclaim_state);
178 /* Check for the nulling of an already-nulled member */
179 WARN_ON_ONCE(!rs && !task->reclaim_state);
181 task->reclaim_state = rs;
184 static LIST_HEAD(shrinker_list);
185 static DECLARE_RWSEM(shrinker_rwsem);
187 #ifdef CONFIG_MEMCG
189 * We allow subsystems to populate their shrinker-related
190 * LRU lists before register_shrinker_prepared() is called
191 * for the shrinker, since we don't want to impose
192 * restrictions on their internal registration order.
193 * In this case shrink_slab_memcg() may find corresponding
194 * bit is set in the shrinkers map.
196 * This value is used by the function to detect registering
197 * shrinkers and to skip do_shrink_slab() calls for them.
199 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
201 static DEFINE_IDR(shrinker_idr);
202 static int shrinker_nr_max;
204 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
206 int id, ret = -ENOMEM;
208 down_write(&shrinker_rwsem);
209 /* This may call shrinker, so it must use down_read_trylock() */
210 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
211 if (id < 0)
212 goto unlock;
214 if (id >= shrinker_nr_max) {
215 if (memcg_expand_shrinker_maps(id)) {
216 idr_remove(&shrinker_idr, id);
217 goto unlock;
220 shrinker_nr_max = id + 1;
222 shrinker->id = id;
223 ret = 0;
224 unlock:
225 up_write(&shrinker_rwsem);
226 return ret;
229 static void unregister_memcg_shrinker(struct shrinker *shrinker)
231 int id = shrinker->id;
233 BUG_ON(id < 0);
235 down_write(&shrinker_rwsem);
236 idr_remove(&shrinker_idr, id);
237 up_write(&shrinker_rwsem);
240 static bool cgroup_reclaim(struct scan_control *sc)
242 return sc->target_mem_cgroup;
246 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
247 * @sc: scan_control in question
249 * The normal page dirty throttling mechanism in balance_dirty_pages() is
250 * completely broken with the legacy memcg and direct stalling in
251 * shrink_page_list() is used for throttling instead, which lacks all the
252 * niceties such as fairness, adaptive pausing, bandwidth proportional
253 * allocation and configurability.
255 * This function tests whether the vmscan currently in progress can assume
256 * that the normal dirty throttling mechanism is operational.
258 static bool writeback_throttling_sane(struct scan_control *sc)
260 if (!cgroup_reclaim(sc))
261 return true;
262 #ifdef CONFIG_CGROUP_WRITEBACK
263 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
264 return true;
265 #endif
266 return false;
268 #else
269 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
271 return 0;
274 static void unregister_memcg_shrinker(struct shrinker *shrinker)
278 static bool cgroup_reclaim(struct scan_control *sc)
280 return false;
283 static bool writeback_throttling_sane(struct scan_control *sc)
285 return true;
287 #endif
290 * This misses isolated pages which are not accounted for to save counters.
291 * As the data only determines if reclaim or compaction continues, it is
292 * not expected that isolated pages will be a dominating factor.
294 unsigned long zone_reclaimable_pages(struct zone *zone)
296 unsigned long nr;
298 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
299 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
300 if (get_nr_swap_pages() > 0)
301 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
302 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
304 return nr;
308 * lruvec_lru_size - Returns the number of pages on the given LRU list.
309 * @lruvec: lru vector
310 * @lru: lru to use
311 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
313 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
315 unsigned long size = 0;
316 int zid;
318 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
319 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
321 if (!managed_zone(zone))
322 continue;
324 if (!mem_cgroup_disabled())
325 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
326 else
327 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
329 return size;
333 * Add a shrinker callback to be called from the vm.
335 int prealloc_shrinker(struct shrinker *shrinker)
337 unsigned int size = sizeof(*shrinker->nr_deferred);
339 if (shrinker->flags & SHRINKER_NUMA_AWARE)
340 size *= nr_node_ids;
342 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
343 if (!shrinker->nr_deferred)
344 return -ENOMEM;
346 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
347 if (prealloc_memcg_shrinker(shrinker))
348 goto free_deferred;
351 return 0;
353 free_deferred:
354 kfree(shrinker->nr_deferred);
355 shrinker->nr_deferred = NULL;
356 return -ENOMEM;
359 void free_prealloced_shrinker(struct shrinker *shrinker)
361 if (!shrinker->nr_deferred)
362 return;
364 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
365 unregister_memcg_shrinker(shrinker);
367 kfree(shrinker->nr_deferred);
368 shrinker->nr_deferred = NULL;
371 void register_shrinker_prepared(struct shrinker *shrinker)
373 down_write(&shrinker_rwsem);
374 list_add_tail(&shrinker->list, &shrinker_list);
375 #ifdef CONFIG_MEMCG
376 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
377 idr_replace(&shrinker_idr, shrinker, shrinker->id);
378 #endif
379 up_write(&shrinker_rwsem);
382 int register_shrinker(struct shrinker *shrinker)
384 int err = prealloc_shrinker(shrinker);
386 if (err)
387 return err;
388 register_shrinker_prepared(shrinker);
389 return 0;
391 EXPORT_SYMBOL(register_shrinker);
394 * Remove one
396 void unregister_shrinker(struct shrinker *shrinker)
398 if (!shrinker->nr_deferred)
399 return;
400 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
401 unregister_memcg_shrinker(shrinker);
402 down_write(&shrinker_rwsem);
403 list_del(&shrinker->list);
404 up_write(&shrinker_rwsem);
405 kfree(shrinker->nr_deferred);
406 shrinker->nr_deferred = NULL;
408 EXPORT_SYMBOL(unregister_shrinker);
410 #define SHRINK_BATCH 128
412 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
413 struct shrinker *shrinker, int priority)
415 unsigned long freed = 0;
416 unsigned long long delta;
417 long total_scan;
418 long freeable;
419 long nr;
420 long new_nr;
421 int nid = shrinkctl->nid;
422 long batch_size = shrinker->batch ? shrinker->batch
423 : SHRINK_BATCH;
424 long scanned = 0, next_deferred;
426 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
427 nid = 0;
429 freeable = shrinker->count_objects(shrinker, shrinkctl);
430 if (freeable == 0 || freeable == SHRINK_EMPTY)
431 return freeable;
434 * copy the current shrinker scan count into a local variable
435 * and zero it so that other concurrent shrinker invocations
436 * don't also do this scanning work.
438 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
440 total_scan = nr;
441 if (shrinker->seeks) {
442 delta = freeable >> priority;
443 delta *= 4;
444 do_div(delta, shrinker->seeks);
445 } else {
447 * These objects don't require any IO to create. Trim
448 * them aggressively under memory pressure to keep
449 * them from causing refetches in the IO caches.
451 delta = freeable / 2;
454 total_scan += delta;
455 if (total_scan < 0) {
456 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
457 shrinker->scan_objects, total_scan);
458 total_scan = freeable;
459 next_deferred = nr;
460 } else
461 next_deferred = total_scan;
464 * We need to avoid excessive windup on filesystem shrinkers
465 * due to large numbers of GFP_NOFS allocations causing the
466 * shrinkers to return -1 all the time. This results in a large
467 * nr being built up so when a shrink that can do some work
468 * comes along it empties the entire cache due to nr >>>
469 * freeable. This is bad for sustaining a working set in
470 * memory.
472 * Hence only allow the shrinker to scan the entire cache when
473 * a large delta change is calculated directly.
475 if (delta < freeable / 4)
476 total_scan = min(total_scan, freeable / 2);
479 * Avoid risking looping forever due to too large nr value:
480 * never try to free more than twice the estimate number of
481 * freeable entries.
483 if (total_scan > freeable * 2)
484 total_scan = freeable * 2;
486 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
487 freeable, delta, total_scan, priority);
490 * Normally, we should not scan less than batch_size objects in one
491 * pass to avoid too frequent shrinker calls, but if the slab has less
492 * than batch_size objects in total and we are really tight on memory,
493 * we will try to reclaim all available objects, otherwise we can end
494 * up failing allocations although there are plenty of reclaimable
495 * objects spread over several slabs with usage less than the
496 * batch_size.
498 * We detect the "tight on memory" situations by looking at the total
499 * number of objects we want to scan (total_scan). If it is greater
500 * than the total number of objects on slab (freeable), we must be
501 * scanning at high prio and therefore should try to reclaim as much as
502 * possible.
504 while (total_scan >= batch_size ||
505 total_scan >= freeable) {
506 unsigned long ret;
507 unsigned long nr_to_scan = min(batch_size, total_scan);
509 shrinkctl->nr_to_scan = nr_to_scan;
510 shrinkctl->nr_scanned = nr_to_scan;
511 ret = shrinker->scan_objects(shrinker, shrinkctl);
512 if (ret == SHRINK_STOP)
513 break;
514 freed += ret;
516 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
517 total_scan -= shrinkctl->nr_scanned;
518 scanned += shrinkctl->nr_scanned;
520 cond_resched();
523 if (next_deferred >= scanned)
524 next_deferred -= scanned;
525 else
526 next_deferred = 0;
528 * move the unused scan count back into the shrinker in a
529 * manner that handles concurrent updates. If we exhausted the
530 * scan, there is no need to do an update.
532 if (next_deferred > 0)
533 new_nr = atomic_long_add_return(next_deferred,
534 &shrinker->nr_deferred[nid]);
535 else
536 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
538 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
539 return freed;
542 #ifdef CONFIG_MEMCG
543 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
544 struct mem_cgroup *memcg, int priority)
546 struct memcg_shrinker_map *map;
547 unsigned long ret, freed = 0;
548 int i;
550 if (!mem_cgroup_online(memcg))
551 return 0;
553 if (!down_read_trylock(&shrinker_rwsem))
554 return 0;
556 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
557 true);
558 if (unlikely(!map))
559 goto unlock;
561 for_each_set_bit(i, map->map, shrinker_nr_max) {
562 struct shrink_control sc = {
563 .gfp_mask = gfp_mask,
564 .nid = nid,
565 .memcg = memcg,
567 struct shrinker *shrinker;
569 shrinker = idr_find(&shrinker_idr, i);
570 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
571 if (!shrinker)
572 clear_bit(i, map->map);
573 continue;
576 /* Call non-slab shrinkers even though kmem is disabled */
577 if (!memcg_kmem_enabled() &&
578 !(shrinker->flags & SHRINKER_NONSLAB))
579 continue;
581 ret = do_shrink_slab(&sc, shrinker, priority);
582 if (ret == SHRINK_EMPTY) {
583 clear_bit(i, map->map);
585 * After the shrinker reported that it had no objects to
586 * free, but before we cleared the corresponding bit in
587 * the memcg shrinker map, a new object might have been
588 * added. To make sure, we have the bit set in this
589 * case, we invoke the shrinker one more time and reset
590 * the bit if it reports that it is not empty anymore.
591 * The memory barrier here pairs with the barrier in
592 * memcg_set_shrinker_bit():
594 * list_lru_add() shrink_slab_memcg()
595 * list_add_tail() clear_bit()
596 * <MB> <MB>
597 * set_bit() do_shrink_slab()
599 smp_mb__after_atomic();
600 ret = do_shrink_slab(&sc, shrinker, priority);
601 if (ret == SHRINK_EMPTY)
602 ret = 0;
603 else
604 memcg_set_shrinker_bit(memcg, nid, i);
606 freed += ret;
608 if (rwsem_is_contended(&shrinker_rwsem)) {
609 freed = freed ? : 1;
610 break;
613 unlock:
614 up_read(&shrinker_rwsem);
615 return freed;
617 #else /* CONFIG_MEMCG */
618 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
619 struct mem_cgroup *memcg, int priority)
621 return 0;
623 #endif /* CONFIG_MEMCG */
626 * shrink_slab - shrink slab caches
627 * @gfp_mask: allocation context
628 * @nid: node whose slab caches to target
629 * @memcg: memory cgroup whose slab caches to target
630 * @priority: the reclaim priority
632 * Call the shrink functions to age shrinkable caches.
634 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
635 * unaware shrinkers will receive a node id of 0 instead.
637 * @memcg specifies the memory cgroup to target. Unaware shrinkers
638 * are called only if it is the root cgroup.
640 * @priority is sc->priority, we take the number of objects and >> by priority
641 * in order to get the scan target.
643 * Returns the number of reclaimed slab objects.
645 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
646 struct mem_cgroup *memcg,
647 int priority)
649 unsigned long ret, freed = 0;
650 struct shrinker *shrinker;
653 * The root memcg might be allocated even though memcg is disabled
654 * via "cgroup_disable=memory" boot parameter. This could make
655 * mem_cgroup_is_root() return false, then just run memcg slab
656 * shrink, but skip global shrink. This may result in premature
657 * oom.
659 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
660 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
662 if (!down_read_trylock(&shrinker_rwsem))
663 goto out;
665 list_for_each_entry(shrinker, &shrinker_list, list) {
666 struct shrink_control sc = {
667 .gfp_mask = gfp_mask,
668 .nid = nid,
669 .memcg = memcg,
672 ret = do_shrink_slab(&sc, shrinker, priority);
673 if (ret == SHRINK_EMPTY)
674 ret = 0;
675 freed += ret;
677 * Bail out if someone want to register a new shrinker to
678 * prevent the registration from being stalled for long periods
679 * by parallel ongoing shrinking.
681 if (rwsem_is_contended(&shrinker_rwsem)) {
682 freed = freed ? : 1;
683 break;
687 up_read(&shrinker_rwsem);
688 out:
689 cond_resched();
690 return freed;
693 void drop_slab_node(int nid)
695 unsigned long freed;
697 do {
698 struct mem_cgroup *memcg = NULL;
700 if (fatal_signal_pending(current))
701 return;
703 freed = 0;
704 memcg = mem_cgroup_iter(NULL, NULL, NULL);
705 do {
706 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
707 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
708 } while (freed > 10);
711 void drop_slab(void)
713 int nid;
715 for_each_online_node(nid)
716 drop_slab_node(nid);
719 static inline int is_page_cache_freeable(struct page *page)
722 * A freeable page cache page is referenced only by the caller
723 * that isolated the page, the page cache and optional buffer
724 * heads at page->private.
726 int page_cache_pins = thp_nr_pages(page);
727 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
730 static int may_write_to_inode(struct inode *inode)
732 if (current->flags & PF_SWAPWRITE)
733 return 1;
734 if (!inode_write_congested(inode))
735 return 1;
736 if (inode_to_bdi(inode) == current->backing_dev_info)
737 return 1;
738 return 0;
742 * We detected a synchronous write error writing a page out. Probably
743 * -ENOSPC. We need to propagate that into the address_space for a subsequent
744 * fsync(), msync() or close().
746 * The tricky part is that after writepage we cannot touch the mapping: nothing
747 * prevents it from being freed up. But we have a ref on the page and once
748 * that page is locked, the mapping is pinned.
750 * We're allowed to run sleeping lock_page() here because we know the caller has
751 * __GFP_FS.
753 static void handle_write_error(struct address_space *mapping,
754 struct page *page, int error)
756 lock_page(page);
757 if (page_mapping(page) == mapping)
758 mapping_set_error(mapping, error);
759 unlock_page(page);
762 /* possible outcome of pageout() */
763 typedef enum {
764 /* failed to write page out, page is locked */
765 PAGE_KEEP,
766 /* move page to the active list, page is locked */
767 PAGE_ACTIVATE,
768 /* page has been sent to the disk successfully, page is unlocked */
769 PAGE_SUCCESS,
770 /* page is clean and locked */
771 PAGE_CLEAN,
772 } pageout_t;
775 * pageout is called by shrink_page_list() for each dirty page.
776 * Calls ->writepage().
778 static pageout_t pageout(struct page *page, struct address_space *mapping)
781 * If the page is dirty, only perform writeback if that write
782 * will be non-blocking. To prevent this allocation from being
783 * stalled by pagecache activity. But note that there may be
784 * stalls if we need to run get_block(). We could test
785 * PagePrivate for that.
787 * If this process is currently in __generic_file_write_iter() against
788 * this page's queue, we can perform writeback even if that
789 * will block.
791 * If the page is swapcache, write it back even if that would
792 * block, for some throttling. This happens by accident, because
793 * swap_backing_dev_info is bust: it doesn't reflect the
794 * congestion state of the swapdevs. Easy to fix, if needed.
796 if (!is_page_cache_freeable(page))
797 return PAGE_KEEP;
798 if (!mapping) {
800 * Some data journaling orphaned pages can have
801 * page->mapping == NULL while being dirty with clean buffers.
803 if (page_has_private(page)) {
804 if (try_to_free_buffers(page)) {
805 ClearPageDirty(page);
806 pr_info("%s: orphaned page\n", __func__);
807 return PAGE_CLEAN;
810 return PAGE_KEEP;
812 if (mapping->a_ops->writepage == NULL)
813 return PAGE_ACTIVATE;
814 if (!may_write_to_inode(mapping->host))
815 return PAGE_KEEP;
817 if (clear_page_dirty_for_io(page)) {
818 int res;
819 struct writeback_control wbc = {
820 .sync_mode = WB_SYNC_NONE,
821 .nr_to_write = SWAP_CLUSTER_MAX,
822 .range_start = 0,
823 .range_end = LLONG_MAX,
824 .for_reclaim = 1,
827 SetPageReclaim(page);
828 res = mapping->a_ops->writepage(page, &wbc);
829 if (res < 0)
830 handle_write_error(mapping, page, res);
831 if (res == AOP_WRITEPAGE_ACTIVATE) {
832 ClearPageReclaim(page);
833 return PAGE_ACTIVATE;
836 if (!PageWriteback(page)) {
837 /* synchronous write or broken a_ops? */
838 ClearPageReclaim(page);
840 trace_mm_vmscan_writepage(page);
841 inc_node_page_state(page, NR_VMSCAN_WRITE);
842 return PAGE_SUCCESS;
845 return PAGE_CLEAN;
849 * Same as remove_mapping, but if the page is removed from the mapping, it
850 * gets returned with a refcount of 0.
852 static int __remove_mapping(struct address_space *mapping, struct page *page,
853 bool reclaimed, struct mem_cgroup *target_memcg)
855 unsigned long flags;
856 int refcount;
857 void *shadow = NULL;
859 BUG_ON(!PageLocked(page));
860 BUG_ON(mapping != page_mapping(page));
862 xa_lock_irqsave(&mapping->i_pages, flags);
864 * The non racy check for a busy page.
866 * Must be careful with the order of the tests. When someone has
867 * a ref to the page, it may be possible that they dirty it then
868 * drop the reference. So if PageDirty is tested before page_count
869 * here, then the following race may occur:
871 * get_user_pages(&page);
872 * [user mapping goes away]
873 * write_to(page);
874 * !PageDirty(page) [good]
875 * SetPageDirty(page);
876 * put_page(page);
877 * !page_count(page) [good, discard it]
879 * [oops, our write_to data is lost]
881 * Reversing the order of the tests ensures such a situation cannot
882 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
883 * load is not satisfied before that of page->_refcount.
885 * Note that if SetPageDirty is always performed via set_page_dirty,
886 * and thus under the i_pages lock, then this ordering is not required.
888 refcount = 1 + compound_nr(page);
889 if (!page_ref_freeze(page, refcount))
890 goto cannot_free;
891 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
892 if (unlikely(PageDirty(page))) {
893 page_ref_unfreeze(page, refcount);
894 goto cannot_free;
897 if (PageSwapCache(page)) {
898 swp_entry_t swap = { .val = page_private(page) };
899 mem_cgroup_swapout(page, swap);
900 if (reclaimed && !mapping_exiting(mapping))
901 shadow = workingset_eviction(page, target_memcg);
902 __delete_from_swap_cache(page, swap, shadow);
903 xa_unlock_irqrestore(&mapping->i_pages, flags);
904 put_swap_page(page, swap);
905 } else {
906 void (*freepage)(struct page *);
908 freepage = mapping->a_ops->freepage;
910 * Remember a shadow entry for reclaimed file cache in
911 * order to detect refaults, thus thrashing, later on.
913 * But don't store shadows in an address space that is
914 * already exiting. This is not just an optimization,
915 * inode reclaim needs to empty out the radix tree or
916 * the nodes are lost. Don't plant shadows behind its
917 * back.
919 * We also don't store shadows for DAX mappings because the
920 * only page cache pages found in these are zero pages
921 * covering holes, and because we don't want to mix DAX
922 * exceptional entries and shadow exceptional entries in the
923 * same address_space.
925 if (reclaimed && page_is_file_lru(page) &&
926 !mapping_exiting(mapping) && !dax_mapping(mapping))
927 shadow = workingset_eviction(page, target_memcg);
928 __delete_from_page_cache(page, shadow);
929 xa_unlock_irqrestore(&mapping->i_pages, flags);
931 if (freepage != NULL)
932 freepage(page);
935 return 1;
937 cannot_free:
938 xa_unlock_irqrestore(&mapping->i_pages, flags);
939 return 0;
943 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
944 * someone else has a ref on the page, abort and return 0. If it was
945 * successfully detached, return 1. Assumes the caller has a single ref on
946 * this page.
948 int remove_mapping(struct address_space *mapping, struct page *page)
950 if (__remove_mapping(mapping, page, false, NULL)) {
952 * Unfreezing the refcount with 1 rather than 2 effectively
953 * drops the pagecache ref for us without requiring another
954 * atomic operation.
956 page_ref_unfreeze(page, 1);
957 return 1;
959 return 0;
963 * putback_lru_page - put previously isolated page onto appropriate LRU list
964 * @page: page to be put back to appropriate lru list
966 * Add previously isolated @page to appropriate LRU list.
967 * Page may still be unevictable for other reasons.
969 * lru_lock must not be held, interrupts must be enabled.
971 void putback_lru_page(struct page *page)
973 lru_cache_add(page);
974 put_page(page); /* drop ref from isolate */
977 enum page_references {
978 PAGEREF_RECLAIM,
979 PAGEREF_RECLAIM_CLEAN,
980 PAGEREF_KEEP,
981 PAGEREF_ACTIVATE,
984 static enum page_references page_check_references(struct page *page,
985 struct scan_control *sc)
987 int referenced_ptes, referenced_page;
988 unsigned long vm_flags;
990 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
991 &vm_flags);
992 referenced_page = TestClearPageReferenced(page);
995 * Mlock lost the isolation race with us. Let try_to_unmap()
996 * move the page to the unevictable list.
998 if (vm_flags & VM_LOCKED)
999 return PAGEREF_RECLAIM;
1001 if (referenced_ptes) {
1003 * All mapped pages start out with page table
1004 * references from the instantiating fault, so we need
1005 * to look twice if a mapped file page is used more
1006 * than once.
1008 * Mark it and spare it for another trip around the
1009 * inactive list. Another page table reference will
1010 * lead to its activation.
1012 * Note: the mark is set for activated pages as well
1013 * so that recently deactivated but used pages are
1014 * quickly recovered.
1016 SetPageReferenced(page);
1018 if (referenced_page || referenced_ptes > 1)
1019 return PAGEREF_ACTIVATE;
1022 * Activate file-backed executable pages after first usage.
1024 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1025 return PAGEREF_ACTIVATE;
1027 return PAGEREF_KEEP;
1030 /* Reclaim if clean, defer dirty pages to writeback */
1031 if (referenced_page && !PageSwapBacked(page))
1032 return PAGEREF_RECLAIM_CLEAN;
1034 return PAGEREF_RECLAIM;
1037 /* Check if a page is dirty or under writeback */
1038 static void page_check_dirty_writeback(struct page *page,
1039 bool *dirty, bool *writeback)
1041 struct address_space *mapping;
1044 * Anonymous pages are not handled by flushers and must be written
1045 * from reclaim context. Do not stall reclaim based on them
1047 if (!page_is_file_lru(page) ||
1048 (PageAnon(page) && !PageSwapBacked(page))) {
1049 *dirty = false;
1050 *writeback = false;
1051 return;
1054 /* By default assume that the page flags are accurate */
1055 *dirty = PageDirty(page);
1056 *writeback = PageWriteback(page);
1058 /* Verify dirty/writeback state if the filesystem supports it */
1059 if (!page_has_private(page))
1060 return;
1062 mapping = page_mapping(page);
1063 if (mapping && mapping->a_ops->is_dirty_writeback)
1064 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1068 * shrink_page_list() returns the number of reclaimed pages
1070 static unsigned int shrink_page_list(struct list_head *page_list,
1071 struct pglist_data *pgdat,
1072 struct scan_control *sc,
1073 struct reclaim_stat *stat,
1074 bool ignore_references)
1076 LIST_HEAD(ret_pages);
1077 LIST_HEAD(free_pages);
1078 unsigned int nr_reclaimed = 0;
1079 unsigned int pgactivate = 0;
1081 memset(stat, 0, sizeof(*stat));
1082 cond_resched();
1084 while (!list_empty(page_list)) {
1085 struct address_space *mapping;
1086 struct page *page;
1087 enum page_references references = PAGEREF_RECLAIM;
1088 bool dirty, writeback, may_enter_fs;
1089 unsigned int nr_pages;
1091 cond_resched();
1093 page = lru_to_page(page_list);
1094 list_del(&page->lru);
1096 if (!trylock_page(page))
1097 goto keep;
1099 VM_BUG_ON_PAGE(PageActive(page), page);
1101 nr_pages = compound_nr(page);
1103 /* Account the number of base pages even though THP */
1104 sc->nr_scanned += nr_pages;
1106 if (unlikely(!page_evictable(page)))
1107 goto activate_locked;
1109 if (!sc->may_unmap && page_mapped(page))
1110 goto keep_locked;
1112 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1113 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1116 * The number of dirty pages determines if a node is marked
1117 * reclaim_congested which affects wait_iff_congested. kswapd
1118 * will stall and start writing pages if the tail of the LRU
1119 * is all dirty unqueued pages.
1121 page_check_dirty_writeback(page, &dirty, &writeback);
1122 if (dirty || writeback)
1123 stat->nr_dirty++;
1125 if (dirty && !writeback)
1126 stat->nr_unqueued_dirty++;
1129 * Treat this page as congested if the underlying BDI is or if
1130 * pages are cycling through the LRU so quickly that the
1131 * pages marked for immediate reclaim are making it to the
1132 * end of the LRU a second time.
1134 mapping = page_mapping(page);
1135 if (((dirty || writeback) && mapping &&
1136 inode_write_congested(mapping->host)) ||
1137 (writeback && PageReclaim(page)))
1138 stat->nr_congested++;
1141 * If a page at the tail of the LRU is under writeback, there
1142 * are three cases to consider.
1144 * 1) If reclaim is encountering an excessive number of pages
1145 * under writeback and this page is both under writeback and
1146 * PageReclaim then it indicates that pages are being queued
1147 * for IO but are being recycled through the LRU before the
1148 * IO can complete. Waiting on the page itself risks an
1149 * indefinite stall if it is impossible to writeback the
1150 * page due to IO error or disconnected storage so instead
1151 * note that the LRU is being scanned too quickly and the
1152 * caller can stall after page list has been processed.
1154 * 2) Global or new memcg reclaim encounters a page that is
1155 * not marked for immediate reclaim, or the caller does not
1156 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1157 * not to fs). In this case mark the page for immediate
1158 * reclaim and continue scanning.
1160 * Require may_enter_fs because we would wait on fs, which
1161 * may not have submitted IO yet. And the loop driver might
1162 * enter reclaim, and deadlock if it waits on a page for
1163 * which it is needed to do the write (loop masks off
1164 * __GFP_IO|__GFP_FS for this reason); but more thought
1165 * would probably show more reasons.
1167 * 3) Legacy memcg encounters a page that is already marked
1168 * PageReclaim. memcg does not have any dirty pages
1169 * throttling so we could easily OOM just because too many
1170 * pages are in writeback and there is nothing else to
1171 * reclaim. Wait for the writeback to complete.
1173 * In cases 1) and 2) we activate the pages to get them out of
1174 * the way while we continue scanning for clean pages on the
1175 * inactive list and refilling from the active list. The
1176 * observation here is that waiting for disk writes is more
1177 * expensive than potentially causing reloads down the line.
1178 * Since they're marked for immediate reclaim, they won't put
1179 * memory pressure on the cache working set any longer than it
1180 * takes to write them to disk.
1182 if (PageWriteback(page)) {
1183 /* Case 1 above */
1184 if (current_is_kswapd() &&
1185 PageReclaim(page) &&
1186 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1187 stat->nr_immediate++;
1188 goto activate_locked;
1190 /* Case 2 above */
1191 } else if (writeback_throttling_sane(sc) ||
1192 !PageReclaim(page) || !may_enter_fs) {
1194 * This is slightly racy - end_page_writeback()
1195 * might have just cleared PageReclaim, then
1196 * setting PageReclaim here end up interpreted
1197 * as PageReadahead - but that does not matter
1198 * enough to care. What we do want is for this
1199 * page to have PageReclaim set next time memcg
1200 * reclaim reaches the tests above, so it will
1201 * then wait_on_page_writeback() to avoid OOM;
1202 * and it's also appropriate in global reclaim.
1204 SetPageReclaim(page);
1205 stat->nr_writeback++;
1206 goto activate_locked;
1208 /* Case 3 above */
1209 } else {
1210 unlock_page(page);
1211 wait_on_page_writeback(page);
1212 /* then go back and try same page again */
1213 list_add_tail(&page->lru, page_list);
1214 continue;
1218 if (!ignore_references)
1219 references = page_check_references(page, sc);
1221 switch (references) {
1222 case PAGEREF_ACTIVATE:
1223 goto activate_locked;
1224 case PAGEREF_KEEP:
1225 stat->nr_ref_keep += nr_pages;
1226 goto keep_locked;
1227 case PAGEREF_RECLAIM:
1228 case PAGEREF_RECLAIM_CLEAN:
1229 ; /* try to reclaim the page below */
1233 * Anonymous process memory has backing store?
1234 * Try to allocate it some swap space here.
1235 * Lazyfree page could be freed directly
1237 if (PageAnon(page) && PageSwapBacked(page)) {
1238 if (!PageSwapCache(page)) {
1239 if (!(sc->gfp_mask & __GFP_IO))
1240 goto keep_locked;
1241 if (PageTransHuge(page)) {
1242 /* cannot split THP, skip it */
1243 if (!can_split_huge_page(page, NULL))
1244 goto activate_locked;
1246 * Split pages without a PMD map right
1247 * away. Chances are some or all of the
1248 * tail pages can be freed without IO.
1250 if (!compound_mapcount(page) &&
1251 split_huge_page_to_list(page,
1252 page_list))
1253 goto activate_locked;
1255 if (!add_to_swap(page)) {
1256 if (!PageTransHuge(page))
1257 goto activate_locked_split;
1258 /* Fallback to swap normal pages */
1259 if (split_huge_page_to_list(page,
1260 page_list))
1261 goto activate_locked;
1262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1263 count_vm_event(THP_SWPOUT_FALLBACK);
1264 #endif
1265 if (!add_to_swap(page))
1266 goto activate_locked_split;
1269 may_enter_fs = true;
1271 /* Adding to swap updated mapping */
1272 mapping = page_mapping(page);
1274 } else if (unlikely(PageTransHuge(page))) {
1275 /* Split file THP */
1276 if (split_huge_page_to_list(page, page_list))
1277 goto keep_locked;
1281 * THP may get split above, need minus tail pages and update
1282 * nr_pages to avoid accounting tail pages twice.
1284 * The tail pages that are added into swap cache successfully
1285 * reach here.
1287 if ((nr_pages > 1) && !PageTransHuge(page)) {
1288 sc->nr_scanned -= (nr_pages - 1);
1289 nr_pages = 1;
1293 * The page is mapped into the page tables of one or more
1294 * processes. Try to unmap it here.
1296 if (page_mapped(page)) {
1297 enum ttu_flags flags = TTU_BATCH_FLUSH;
1298 bool was_swapbacked = PageSwapBacked(page);
1300 if (unlikely(PageTransHuge(page)))
1301 flags |= TTU_SPLIT_HUGE_PMD;
1303 if (!try_to_unmap(page, flags)) {
1304 stat->nr_unmap_fail += nr_pages;
1305 if (!was_swapbacked && PageSwapBacked(page))
1306 stat->nr_lazyfree_fail += nr_pages;
1307 goto activate_locked;
1311 if (PageDirty(page)) {
1313 * Only kswapd can writeback filesystem pages
1314 * to avoid risk of stack overflow. But avoid
1315 * injecting inefficient single-page IO into
1316 * flusher writeback as much as possible: only
1317 * write pages when we've encountered many
1318 * dirty pages, and when we've already scanned
1319 * the rest of the LRU for clean pages and see
1320 * the same dirty pages again (PageReclaim).
1322 if (page_is_file_lru(page) &&
1323 (!current_is_kswapd() || !PageReclaim(page) ||
1324 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1326 * Immediately reclaim when written back.
1327 * Similar in principal to deactivate_page()
1328 * except we already have the page isolated
1329 * and know it's dirty
1331 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1332 SetPageReclaim(page);
1334 goto activate_locked;
1337 if (references == PAGEREF_RECLAIM_CLEAN)
1338 goto keep_locked;
1339 if (!may_enter_fs)
1340 goto keep_locked;
1341 if (!sc->may_writepage)
1342 goto keep_locked;
1345 * Page is dirty. Flush the TLB if a writable entry
1346 * potentially exists to avoid CPU writes after IO
1347 * starts and then write it out here.
1349 try_to_unmap_flush_dirty();
1350 switch (pageout(page, mapping)) {
1351 case PAGE_KEEP:
1352 goto keep_locked;
1353 case PAGE_ACTIVATE:
1354 goto activate_locked;
1355 case PAGE_SUCCESS:
1356 stat->nr_pageout += thp_nr_pages(page);
1358 if (PageWriteback(page))
1359 goto keep;
1360 if (PageDirty(page))
1361 goto keep;
1364 * A synchronous write - probably a ramdisk. Go
1365 * ahead and try to reclaim the page.
1367 if (!trylock_page(page))
1368 goto keep;
1369 if (PageDirty(page) || PageWriteback(page))
1370 goto keep_locked;
1371 mapping = page_mapping(page);
1372 fallthrough;
1373 case PAGE_CLEAN:
1374 ; /* try to free the page below */
1379 * If the page has buffers, try to free the buffer mappings
1380 * associated with this page. If we succeed we try to free
1381 * the page as well.
1383 * We do this even if the page is PageDirty().
1384 * try_to_release_page() does not perform I/O, but it is
1385 * possible for a page to have PageDirty set, but it is actually
1386 * clean (all its buffers are clean). This happens if the
1387 * buffers were written out directly, with submit_bh(). ext3
1388 * will do this, as well as the blockdev mapping.
1389 * try_to_release_page() will discover that cleanness and will
1390 * drop the buffers and mark the page clean - it can be freed.
1392 * Rarely, pages can have buffers and no ->mapping. These are
1393 * the pages which were not successfully invalidated in
1394 * truncate_cleanup_page(). We try to drop those buffers here
1395 * and if that worked, and the page is no longer mapped into
1396 * process address space (page_count == 1) it can be freed.
1397 * Otherwise, leave the page on the LRU so it is swappable.
1399 if (page_has_private(page)) {
1400 if (!try_to_release_page(page, sc->gfp_mask))
1401 goto activate_locked;
1402 if (!mapping && page_count(page) == 1) {
1403 unlock_page(page);
1404 if (put_page_testzero(page))
1405 goto free_it;
1406 else {
1408 * rare race with speculative reference.
1409 * the speculative reference will free
1410 * this page shortly, so we may
1411 * increment nr_reclaimed here (and
1412 * leave it off the LRU).
1414 nr_reclaimed++;
1415 continue;
1420 if (PageAnon(page) && !PageSwapBacked(page)) {
1421 /* follow __remove_mapping for reference */
1422 if (!page_ref_freeze(page, 1))
1423 goto keep_locked;
1424 if (PageDirty(page)) {
1425 page_ref_unfreeze(page, 1);
1426 goto keep_locked;
1429 count_vm_event(PGLAZYFREED);
1430 count_memcg_page_event(page, PGLAZYFREED);
1431 } else if (!mapping || !__remove_mapping(mapping, page, true,
1432 sc->target_mem_cgroup))
1433 goto keep_locked;
1435 unlock_page(page);
1436 free_it:
1438 * THP may get swapped out in a whole, need account
1439 * all base pages.
1441 nr_reclaimed += nr_pages;
1444 * Is there need to periodically free_page_list? It would
1445 * appear not as the counts should be low
1447 if (unlikely(PageTransHuge(page)))
1448 destroy_compound_page(page);
1449 else
1450 list_add(&page->lru, &free_pages);
1451 continue;
1453 activate_locked_split:
1455 * The tail pages that are failed to add into swap cache
1456 * reach here. Fixup nr_scanned and nr_pages.
1458 if (nr_pages > 1) {
1459 sc->nr_scanned -= (nr_pages - 1);
1460 nr_pages = 1;
1462 activate_locked:
1463 /* Not a candidate for swapping, so reclaim swap space. */
1464 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1465 PageMlocked(page)))
1466 try_to_free_swap(page);
1467 VM_BUG_ON_PAGE(PageActive(page), page);
1468 if (!PageMlocked(page)) {
1469 int type = page_is_file_lru(page);
1470 SetPageActive(page);
1471 stat->nr_activate[type] += nr_pages;
1472 count_memcg_page_event(page, PGACTIVATE);
1474 keep_locked:
1475 unlock_page(page);
1476 keep:
1477 list_add(&page->lru, &ret_pages);
1478 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1481 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1483 mem_cgroup_uncharge_list(&free_pages);
1484 try_to_unmap_flush();
1485 free_unref_page_list(&free_pages);
1487 list_splice(&ret_pages, page_list);
1488 count_vm_events(PGACTIVATE, pgactivate);
1490 return nr_reclaimed;
1493 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1494 struct list_head *page_list)
1496 struct scan_control sc = {
1497 .gfp_mask = GFP_KERNEL,
1498 .priority = DEF_PRIORITY,
1499 .may_unmap = 1,
1501 struct reclaim_stat stat;
1502 unsigned int nr_reclaimed;
1503 struct page *page, *next;
1504 LIST_HEAD(clean_pages);
1506 list_for_each_entry_safe(page, next, page_list, lru) {
1507 if (page_is_file_lru(page) && !PageDirty(page) &&
1508 !__PageMovable(page) && !PageUnevictable(page)) {
1509 ClearPageActive(page);
1510 list_move(&page->lru, &clean_pages);
1514 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1515 &stat, true);
1516 list_splice(&clean_pages, page_list);
1517 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1518 -(long)nr_reclaimed);
1520 * Since lazyfree pages are isolated from file LRU from the beginning,
1521 * they will rotate back to anonymous LRU in the end if it failed to
1522 * discard so isolated count will be mismatched.
1523 * Compensate the isolated count for both LRU lists.
1525 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1526 stat.nr_lazyfree_fail);
1527 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1528 -(long)stat.nr_lazyfree_fail);
1529 return nr_reclaimed;
1533 * Attempt to remove the specified page from its LRU. Only take this page
1534 * if it is of the appropriate PageActive status. Pages which are being
1535 * freed elsewhere are also ignored.
1537 * page: page to consider
1538 * mode: one of the LRU isolation modes defined above
1540 * returns 0 on success, -ve errno on failure.
1542 int __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
1544 int ret = -EBUSY;
1546 /* Only take pages on the LRU. */
1547 if (!PageLRU(page))
1548 return ret;
1550 /* Compaction should not handle unevictable pages but CMA can do so */
1551 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1552 return ret;
1555 * To minimise LRU disruption, the caller can indicate that it only
1556 * wants to isolate pages it will be able to operate on without
1557 * blocking - clean pages for the most part.
1559 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1560 * that it is possible to migrate without blocking
1562 if (mode & ISOLATE_ASYNC_MIGRATE) {
1563 /* All the caller can do on PageWriteback is block */
1564 if (PageWriteback(page))
1565 return ret;
1567 if (PageDirty(page)) {
1568 struct address_space *mapping;
1569 bool migrate_dirty;
1572 * Only pages without mappings or that have a
1573 * ->migratepage callback are possible to migrate
1574 * without blocking. However, we can be racing with
1575 * truncation so it's necessary to lock the page
1576 * to stabilise the mapping as truncation holds
1577 * the page lock until after the page is removed
1578 * from the page cache.
1580 if (!trylock_page(page))
1581 return ret;
1583 mapping = page_mapping(page);
1584 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1585 unlock_page(page);
1586 if (!migrate_dirty)
1587 return ret;
1591 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1592 return ret;
1594 return 0;
1598 * Update LRU sizes after isolating pages. The LRU size updates must
1599 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1601 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1602 enum lru_list lru, unsigned long *nr_zone_taken)
1604 int zid;
1606 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1607 if (!nr_zone_taken[zid])
1608 continue;
1610 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1616 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1618 * lruvec->lru_lock is heavily contended. Some of the functions that
1619 * shrink the lists perform better by taking out a batch of pages
1620 * and working on them outside the LRU lock.
1622 * For pagecache intensive workloads, this function is the hottest
1623 * spot in the kernel (apart from copy_*_user functions).
1625 * Lru_lock must be held before calling this function.
1627 * @nr_to_scan: The number of eligible pages to look through on the list.
1628 * @lruvec: The LRU vector to pull pages from.
1629 * @dst: The temp list to put pages on to.
1630 * @nr_scanned: The number of pages that were scanned.
1631 * @sc: The scan_control struct for this reclaim session
1632 * @lru: LRU list id for isolating
1634 * returns how many pages were moved onto *@dst.
1636 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1637 struct lruvec *lruvec, struct list_head *dst,
1638 unsigned long *nr_scanned, struct scan_control *sc,
1639 enum lru_list lru)
1641 struct list_head *src = &lruvec->lists[lru];
1642 unsigned long nr_taken = 0;
1643 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1644 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1645 unsigned long skipped = 0;
1646 unsigned long scan, total_scan, nr_pages;
1647 LIST_HEAD(pages_skipped);
1648 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1650 total_scan = 0;
1651 scan = 0;
1652 while (scan < nr_to_scan && !list_empty(src)) {
1653 struct page *page;
1655 page = lru_to_page(src);
1656 prefetchw_prev_lru_page(page, src, flags);
1658 nr_pages = compound_nr(page);
1659 total_scan += nr_pages;
1661 if (page_zonenum(page) > sc->reclaim_idx) {
1662 list_move(&page->lru, &pages_skipped);
1663 nr_skipped[page_zonenum(page)] += nr_pages;
1664 continue;
1668 * Do not count skipped pages because that makes the function
1669 * return with no isolated pages if the LRU mostly contains
1670 * ineligible pages. This causes the VM to not reclaim any
1671 * pages, triggering a premature OOM.
1673 * Account all tail pages of THP. This would not cause
1674 * premature OOM since __isolate_lru_page() returns -EBUSY
1675 * only when the page is being freed somewhere else.
1677 scan += nr_pages;
1678 switch (__isolate_lru_page_prepare(page, mode)) {
1679 case 0:
1681 * Be careful not to clear PageLRU until after we're
1682 * sure the page is not being freed elsewhere -- the
1683 * page release code relies on it.
1685 if (unlikely(!get_page_unless_zero(page)))
1686 goto busy;
1688 if (!TestClearPageLRU(page)) {
1690 * This page may in other isolation path,
1691 * but we still hold lru_lock.
1693 put_page(page);
1694 goto busy;
1697 nr_taken += nr_pages;
1698 nr_zone_taken[page_zonenum(page)] += nr_pages;
1699 list_move(&page->lru, dst);
1700 break;
1702 default:
1703 busy:
1704 /* else it is being freed elsewhere */
1705 list_move(&page->lru, src);
1710 * Splice any skipped pages to the start of the LRU list. Note that
1711 * this disrupts the LRU order when reclaiming for lower zones but
1712 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1713 * scanning would soon rescan the same pages to skip and put the
1714 * system at risk of premature OOM.
1716 if (!list_empty(&pages_skipped)) {
1717 int zid;
1719 list_splice(&pages_skipped, src);
1720 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1721 if (!nr_skipped[zid])
1722 continue;
1724 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1725 skipped += nr_skipped[zid];
1728 *nr_scanned = total_scan;
1729 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1730 total_scan, skipped, nr_taken, mode, lru);
1731 update_lru_sizes(lruvec, lru, nr_zone_taken);
1732 return nr_taken;
1736 * isolate_lru_page - tries to isolate a page from its LRU list
1737 * @page: page to isolate from its LRU list
1739 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1740 * vmstat statistic corresponding to whatever LRU list the page was on.
1742 * Returns 0 if the page was removed from an LRU list.
1743 * Returns -EBUSY if the page was not on an LRU list.
1745 * The returned page will have PageLRU() cleared. If it was found on
1746 * the active list, it will have PageActive set. If it was found on
1747 * the unevictable list, it will have the PageUnevictable bit set. That flag
1748 * may need to be cleared by the caller before letting the page go.
1750 * The vmstat statistic corresponding to the list on which the page was
1751 * found will be decremented.
1753 * Restrictions:
1755 * (1) Must be called with an elevated refcount on the page. This is a
1756 * fundamental difference from isolate_lru_pages (which is called
1757 * without a stable reference).
1758 * (2) the lru_lock must not be held.
1759 * (3) interrupts must be enabled.
1761 int isolate_lru_page(struct page *page)
1763 int ret = -EBUSY;
1765 VM_BUG_ON_PAGE(!page_count(page), page);
1766 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1768 if (TestClearPageLRU(page)) {
1769 struct lruvec *lruvec;
1771 get_page(page);
1772 lruvec = lock_page_lruvec_irq(page);
1773 del_page_from_lru_list(page, lruvec, page_lru(page));
1774 unlock_page_lruvec_irq(lruvec);
1775 ret = 0;
1778 return ret;
1782 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1783 * then get rescheduled. When there are massive number of tasks doing page
1784 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1785 * the LRU list will go small and be scanned faster than necessary, leading to
1786 * unnecessary swapping, thrashing and OOM.
1788 static int too_many_isolated(struct pglist_data *pgdat, int file,
1789 struct scan_control *sc)
1791 unsigned long inactive, isolated;
1793 if (current_is_kswapd())
1794 return 0;
1796 if (!writeback_throttling_sane(sc))
1797 return 0;
1799 if (file) {
1800 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1801 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1802 } else {
1803 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1804 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1808 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1809 * won't get blocked by normal direct-reclaimers, forming a circular
1810 * deadlock.
1812 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1813 inactive >>= 3;
1815 return isolated > inactive;
1819 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
1820 * On return, @list is reused as a list of pages to be freed by the caller.
1822 * Returns the number of pages moved to the given lruvec.
1824 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1825 struct list_head *list)
1827 int nr_pages, nr_moved = 0;
1828 LIST_HEAD(pages_to_free);
1829 struct page *page;
1830 enum lru_list lru;
1832 while (!list_empty(list)) {
1833 page = lru_to_page(list);
1834 VM_BUG_ON_PAGE(PageLRU(page), page);
1835 list_del(&page->lru);
1836 if (unlikely(!page_evictable(page))) {
1837 spin_unlock_irq(&lruvec->lru_lock);
1838 putback_lru_page(page);
1839 spin_lock_irq(&lruvec->lru_lock);
1840 continue;
1844 * The SetPageLRU needs to be kept here for list integrity.
1845 * Otherwise:
1846 * #0 move_pages_to_lru #1 release_pages
1847 * if !put_page_testzero
1848 * if (put_page_testzero())
1849 * !PageLRU //skip lru_lock
1850 * SetPageLRU()
1851 * list_add(&page->lru,)
1852 * list_add(&page->lru,)
1854 SetPageLRU(page);
1856 if (unlikely(put_page_testzero(page))) {
1857 __ClearPageLRU(page);
1858 __ClearPageActive(page);
1860 if (unlikely(PageCompound(page))) {
1861 spin_unlock_irq(&lruvec->lru_lock);
1862 destroy_compound_page(page);
1863 spin_lock_irq(&lruvec->lru_lock);
1864 } else
1865 list_add(&page->lru, &pages_to_free);
1867 continue;
1871 * All pages were isolated from the same lruvec (and isolation
1872 * inhibits memcg migration).
1874 VM_BUG_ON_PAGE(!lruvec_holds_page_lru_lock(page, lruvec), page);
1875 lru = page_lru(page);
1876 nr_pages = thp_nr_pages(page);
1878 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1879 list_add(&page->lru, &lruvec->lists[lru]);
1880 nr_moved += nr_pages;
1881 if (PageActive(page))
1882 workingset_age_nonresident(lruvec, nr_pages);
1886 * To save our caller's stack, now use input list for pages to free.
1888 list_splice(&pages_to_free, list);
1890 return nr_moved;
1894 * If a kernel thread (such as nfsd for loop-back mounts) services
1895 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1896 * In that case we should only throttle if the backing device it is
1897 * writing to is congested. In other cases it is safe to throttle.
1899 static int current_may_throttle(void)
1901 return !(current->flags & PF_LOCAL_THROTTLE) ||
1902 current->backing_dev_info == NULL ||
1903 bdi_write_congested(current->backing_dev_info);
1907 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1908 * of reclaimed pages
1910 static noinline_for_stack unsigned long
1911 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1912 struct scan_control *sc, enum lru_list lru)
1914 LIST_HEAD(page_list);
1915 unsigned long nr_scanned;
1916 unsigned int nr_reclaimed = 0;
1917 unsigned long nr_taken;
1918 struct reclaim_stat stat;
1919 bool file = is_file_lru(lru);
1920 enum vm_event_item item;
1921 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1922 bool stalled = false;
1924 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1925 if (stalled)
1926 return 0;
1928 /* wait a bit for the reclaimer. */
1929 msleep(100);
1930 stalled = true;
1932 /* We are about to die and free our memory. Return now. */
1933 if (fatal_signal_pending(current))
1934 return SWAP_CLUSTER_MAX;
1937 lru_add_drain();
1939 spin_lock_irq(&lruvec->lru_lock);
1941 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1942 &nr_scanned, sc, lru);
1944 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1945 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1946 if (!cgroup_reclaim(sc))
1947 __count_vm_events(item, nr_scanned);
1948 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1949 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
1951 spin_unlock_irq(&lruvec->lru_lock);
1953 if (nr_taken == 0)
1954 return 0;
1956 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
1958 spin_lock_irq(&lruvec->lru_lock);
1959 move_pages_to_lru(lruvec, &page_list);
1961 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1962 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1963 if (!cgroup_reclaim(sc))
1964 __count_vm_events(item, nr_reclaimed);
1965 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1966 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1967 spin_unlock_irq(&lruvec->lru_lock);
1969 lru_note_cost(lruvec, file, stat.nr_pageout);
1970 mem_cgroup_uncharge_list(&page_list);
1971 free_unref_page_list(&page_list);
1974 * If dirty pages are scanned that are not queued for IO, it
1975 * implies that flushers are not doing their job. This can
1976 * happen when memory pressure pushes dirty pages to the end of
1977 * the LRU before the dirty limits are breached and the dirty
1978 * data has expired. It can also happen when the proportion of
1979 * dirty pages grows not through writes but through memory
1980 * pressure reclaiming all the clean cache. And in some cases,
1981 * the flushers simply cannot keep up with the allocation
1982 * rate. Nudge the flusher threads in case they are asleep.
1984 if (stat.nr_unqueued_dirty == nr_taken)
1985 wakeup_flusher_threads(WB_REASON_VMSCAN);
1987 sc->nr.dirty += stat.nr_dirty;
1988 sc->nr.congested += stat.nr_congested;
1989 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1990 sc->nr.writeback += stat.nr_writeback;
1991 sc->nr.immediate += stat.nr_immediate;
1992 sc->nr.taken += nr_taken;
1993 if (file)
1994 sc->nr.file_taken += nr_taken;
1996 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1997 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1998 return nr_reclaimed;
2002 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2004 * We move them the other way if the page is referenced by one or more
2005 * processes.
2007 * If the pages are mostly unmapped, the processing is fast and it is
2008 * appropriate to hold lru_lock across the whole operation. But if
2009 * the pages are mapped, the processing is slow (page_referenced()), so
2010 * we should drop lru_lock around each page. It's impossible to balance
2011 * this, so instead we remove the pages from the LRU while processing them.
2012 * It is safe to rely on PG_active against the non-LRU pages in here because
2013 * nobody will play with that bit on a non-LRU page.
2015 * The downside is that we have to touch page->_refcount against each page.
2016 * But we had to alter page->flags anyway.
2018 static void shrink_active_list(unsigned long nr_to_scan,
2019 struct lruvec *lruvec,
2020 struct scan_control *sc,
2021 enum lru_list lru)
2023 unsigned long nr_taken;
2024 unsigned long nr_scanned;
2025 unsigned long vm_flags;
2026 LIST_HEAD(l_hold); /* The pages which were snipped off */
2027 LIST_HEAD(l_active);
2028 LIST_HEAD(l_inactive);
2029 struct page *page;
2030 unsigned nr_deactivate, nr_activate;
2031 unsigned nr_rotated = 0;
2032 int file = is_file_lru(lru);
2033 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2035 lru_add_drain();
2037 spin_lock_irq(&lruvec->lru_lock);
2039 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2040 &nr_scanned, sc, lru);
2042 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2044 if (!cgroup_reclaim(sc))
2045 __count_vm_events(PGREFILL, nr_scanned);
2046 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2048 spin_unlock_irq(&lruvec->lru_lock);
2050 while (!list_empty(&l_hold)) {
2051 cond_resched();
2052 page = lru_to_page(&l_hold);
2053 list_del(&page->lru);
2055 if (unlikely(!page_evictable(page))) {
2056 putback_lru_page(page);
2057 continue;
2060 if (unlikely(buffer_heads_over_limit)) {
2061 if (page_has_private(page) && trylock_page(page)) {
2062 if (page_has_private(page))
2063 try_to_release_page(page, 0);
2064 unlock_page(page);
2068 if (page_referenced(page, 0, sc->target_mem_cgroup,
2069 &vm_flags)) {
2071 * Identify referenced, file-backed active pages and
2072 * give them one more trip around the active list. So
2073 * that executable code get better chances to stay in
2074 * memory under moderate memory pressure. Anon pages
2075 * are not likely to be evicted by use-once streaming
2076 * IO, plus JVM can create lots of anon VM_EXEC pages,
2077 * so we ignore them here.
2079 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2080 nr_rotated += thp_nr_pages(page);
2081 list_add(&page->lru, &l_active);
2082 continue;
2086 ClearPageActive(page); /* we are de-activating */
2087 SetPageWorkingset(page);
2088 list_add(&page->lru, &l_inactive);
2092 * Move pages back to the lru list.
2094 spin_lock_irq(&lruvec->lru_lock);
2096 nr_activate = move_pages_to_lru(lruvec, &l_active);
2097 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2098 /* Keep all free pages in l_active list */
2099 list_splice(&l_inactive, &l_active);
2101 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2102 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2104 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2105 spin_unlock_irq(&lruvec->lru_lock);
2107 mem_cgroup_uncharge_list(&l_active);
2108 free_unref_page_list(&l_active);
2109 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2110 nr_deactivate, nr_rotated, sc->priority, file);
2113 unsigned long reclaim_pages(struct list_head *page_list)
2115 int nid = NUMA_NO_NODE;
2116 unsigned int nr_reclaimed = 0;
2117 LIST_HEAD(node_page_list);
2118 struct reclaim_stat dummy_stat;
2119 struct page *page;
2120 struct scan_control sc = {
2121 .gfp_mask = GFP_KERNEL,
2122 .priority = DEF_PRIORITY,
2123 .may_writepage = 1,
2124 .may_unmap = 1,
2125 .may_swap = 1,
2128 while (!list_empty(page_list)) {
2129 page = lru_to_page(page_list);
2130 if (nid == NUMA_NO_NODE) {
2131 nid = page_to_nid(page);
2132 INIT_LIST_HEAD(&node_page_list);
2135 if (nid == page_to_nid(page)) {
2136 ClearPageActive(page);
2137 list_move(&page->lru, &node_page_list);
2138 continue;
2141 nr_reclaimed += shrink_page_list(&node_page_list,
2142 NODE_DATA(nid),
2143 &sc, &dummy_stat, false);
2144 while (!list_empty(&node_page_list)) {
2145 page = lru_to_page(&node_page_list);
2146 list_del(&page->lru);
2147 putback_lru_page(page);
2150 nid = NUMA_NO_NODE;
2153 if (!list_empty(&node_page_list)) {
2154 nr_reclaimed += shrink_page_list(&node_page_list,
2155 NODE_DATA(nid),
2156 &sc, &dummy_stat, false);
2157 while (!list_empty(&node_page_list)) {
2158 page = lru_to_page(&node_page_list);
2159 list_del(&page->lru);
2160 putback_lru_page(page);
2164 return nr_reclaimed;
2167 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2168 struct lruvec *lruvec, struct scan_control *sc)
2170 if (is_active_lru(lru)) {
2171 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2172 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2173 else
2174 sc->skipped_deactivate = 1;
2175 return 0;
2178 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2182 * The inactive anon list should be small enough that the VM never has
2183 * to do too much work.
2185 * The inactive file list should be small enough to leave most memory
2186 * to the established workingset on the scan-resistant active list,
2187 * but large enough to avoid thrashing the aggregate readahead window.
2189 * Both inactive lists should also be large enough that each inactive
2190 * page has a chance to be referenced again before it is reclaimed.
2192 * If that fails and refaulting is observed, the inactive list grows.
2194 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2195 * on this LRU, maintained by the pageout code. An inactive_ratio
2196 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2198 * total target max
2199 * memory ratio inactive
2200 * -------------------------------------
2201 * 10MB 1 5MB
2202 * 100MB 1 50MB
2203 * 1GB 3 250MB
2204 * 10GB 10 0.9GB
2205 * 100GB 31 3GB
2206 * 1TB 101 10GB
2207 * 10TB 320 32GB
2209 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2211 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2212 unsigned long inactive, active;
2213 unsigned long inactive_ratio;
2214 unsigned long gb;
2216 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2217 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2219 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2220 if (gb)
2221 inactive_ratio = int_sqrt(10 * gb);
2222 else
2223 inactive_ratio = 1;
2225 return inactive * inactive_ratio < active;
2228 enum scan_balance {
2229 SCAN_EQUAL,
2230 SCAN_FRACT,
2231 SCAN_ANON,
2232 SCAN_FILE,
2236 * Determine how aggressively the anon and file LRU lists should be
2237 * scanned. The relative value of each set of LRU lists is determined
2238 * by looking at the fraction of the pages scanned we did rotate back
2239 * onto the active list instead of evict.
2241 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2242 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2244 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2245 unsigned long *nr)
2247 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2248 unsigned long anon_cost, file_cost, total_cost;
2249 int swappiness = mem_cgroup_swappiness(memcg);
2250 u64 fraction[ANON_AND_FILE];
2251 u64 denominator = 0; /* gcc */
2252 enum scan_balance scan_balance;
2253 unsigned long ap, fp;
2254 enum lru_list lru;
2256 /* If we have no swap space, do not bother scanning anon pages. */
2257 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2258 scan_balance = SCAN_FILE;
2259 goto out;
2263 * Global reclaim will swap to prevent OOM even with no
2264 * swappiness, but memcg users want to use this knob to
2265 * disable swapping for individual groups completely when
2266 * using the memory controller's swap limit feature would be
2267 * too expensive.
2269 if (cgroup_reclaim(sc) && !swappiness) {
2270 scan_balance = SCAN_FILE;
2271 goto out;
2275 * Do not apply any pressure balancing cleverness when the
2276 * system is close to OOM, scan both anon and file equally
2277 * (unless the swappiness setting disagrees with swapping).
2279 if (!sc->priority && swappiness) {
2280 scan_balance = SCAN_EQUAL;
2281 goto out;
2285 * If the system is almost out of file pages, force-scan anon.
2287 if (sc->file_is_tiny) {
2288 scan_balance = SCAN_ANON;
2289 goto out;
2293 * If there is enough inactive page cache, we do not reclaim
2294 * anything from the anonymous working right now.
2296 if (sc->cache_trim_mode) {
2297 scan_balance = SCAN_FILE;
2298 goto out;
2301 scan_balance = SCAN_FRACT;
2303 * Calculate the pressure balance between anon and file pages.
2305 * The amount of pressure we put on each LRU is inversely
2306 * proportional to the cost of reclaiming each list, as
2307 * determined by the share of pages that are refaulting, times
2308 * the relative IO cost of bringing back a swapped out
2309 * anonymous page vs reloading a filesystem page (swappiness).
2311 * Although we limit that influence to ensure no list gets
2312 * left behind completely: at least a third of the pressure is
2313 * applied, before swappiness.
2315 * With swappiness at 100, anon and file have equal IO cost.
2317 total_cost = sc->anon_cost + sc->file_cost;
2318 anon_cost = total_cost + sc->anon_cost;
2319 file_cost = total_cost + sc->file_cost;
2320 total_cost = anon_cost + file_cost;
2322 ap = swappiness * (total_cost + 1);
2323 ap /= anon_cost + 1;
2325 fp = (200 - swappiness) * (total_cost + 1);
2326 fp /= file_cost + 1;
2328 fraction[0] = ap;
2329 fraction[1] = fp;
2330 denominator = ap + fp;
2331 out:
2332 for_each_evictable_lru(lru) {
2333 int file = is_file_lru(lru);
2334 unsigned long lruvec_size;
2335 unsigned long scan;
2336 unsigned long protection;
2338 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2339 protection = mem_cgroup_protection(sc->target_mem_cgroup,
2340 memcg,
2341 sc->memcg_low_reclaim);
2343 if (protection) {
2345 * Scale a cgroup's reclaim pressure by proportioning
2346 * its current usage to its memory.low or memory.min
2347 * setting.
2349 * This is important, as otherwise scanning aggression
2350 * becomes extremely binary -- from nothing as we
2351 * approach the memory protection threshold, to totally
2352 * nominal as we exceed it. This results in requiring
2353 * setting extremely liberal protection thresholds. It
2354 * also means we simply get no protection at all if we
2355 * set it too low, which is not ideal.
2357 * If there is any protection in place, we reduce scan
2358 * pressure by how much of the total memory used is
2359 * within protection thresholds.
2361 * There is one special case: in the first reclaim pass,
2362 * we skip over all groups that are within their low
2363 * protection. If that fails to reclaim enough pages to
2364 * satisfy the reclaim goal, we come back and override
2365 * the best-effort low protection. However, we still
2366 * ideally want to honor how well-behaved groups are in
2367 * that case instead of simply punishing them all
2368 * equally. As such, we reclaim them based on how much
2369 * memory they are using, reducing the scan pressure
2370 * again by how much of the total memory used is under
2371 * hard protection.
2373 unsigned long cgroup_size = mem_cgroup_size(memcg);
2375 /* Avoid TOCTOU with earlier protection check */
2376 cgroup_size = max(cgroup_size, protection);
2378 scan = lruvec_size - lruvec_size * protection /
2379 cgroup_size;
2382 * Minimally target SWAP_CLUSTER_MAX pages to keep
2383 * reclaim moving forwards, avoiding decrementing
2384 * sc->priority further than desirable.
2386 scan = max(scan, SWAP_CLUSTER_MAX);
2387 } else {
2388 scan = lruvec_size;
2391 scan >>= sc->priority;
2394 * If the cgroup's already been deleted, make sure to
2395 * scrape out the remaining cache.
2397 if (!scan && !mem_cgroup_online(memcg))
2398 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2400 switch (scan_balance) {
2401 case SCAN_EQUAL:
2402 /* Scan lists relative to size */
2403 break;
2404 case SCAN_FRACT:
2406 * Scan types proportional to swappiness and
2407 * their relative recent reclaim efficiency.
2408 * Make sure we don't miss the last page on
2409 * the offlined memory cgroups because of a
2410 * round-off error.
2412 scan = mem_cgroup_online(memcg) ?
2413 div64_u64(scan * fraction[file], denominator) :
2414 DIV64_U64_ROUND_UP(scan * fraction[file],
2415 denominator);
2416 break;
2417 case SCAN_FILE:
2418 case SCAN_ANON:
2419 /* Scan one type exclusively */
2420 if ((scan_balance == SCAN_FILE) != file)
2421 scan = 0;
2422 break;
2423 default:
2424 /* Look ma, no brain */
2425 BUG();
2428 nr[lru] = scan;
2432 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2434 unsigned long nr[NR_LRU_LISTS];
2435 unsigned long targets[NR_LRU_LISTS];
2436 unsigned long nr_to_scan;
2437 enum lru_list lru;
2438 unsigned long nr_reclaimed = 0;
2439 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2440 struct blk_plug plug;
2441 bool scan_adjusted;
2443 get_scan_count(lruvec, sc, nr);
2445 /* Record the original scan target for proportional adjustments later */
2446 memcpy(targets, nr, sizeof(nr));
2449 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2450 * event that can occur when there is little memory pressure e.g.
2451 * multiple streaming readers/writers. Hence, we do not abort scanning
2452 * when the requested number of pages are reclaimed when scanning at
2453 * DEF_PRIORITY on the assumption that the fact we are direct
2454 * reclaiming implies that kswapd is not keeping up and it is best to
2455 * do a batch of work at once. For memcg reclaim one check is made to
2456 * abort proportional reclaim if either the file or anon lru has already
2457 * dropped to zero at the first pass.
2459 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2460 sc->priority == DEF_PRIORITY);
2462 blk_start_plug(&plug);
2463 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2464 nr[LRU_INACTIVE_FILE]) {
2465 unsigned long nr_anon, nr_file, percentage;
2466 unsigned long nr_scanned;
2468 for_each_evictable_lru(lru) {
2469 if (nr[lru]) {
2470 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2471 nr[lru] -= nr_to_scan;
2473 nr_reclaimed += shrink_list(lru, nr_to_scan,
2474 lruvec, sc);
2478 cond_resched();
2480 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2481 continue;
2484 * For kswapd and memcg, reclaim at least the number of pages
2485 * requested. Ensure that the anon and file LRUs are scanned
2486 * proportionally what was requested by get_scan_count(). We
2487 * stop reclaiming one LRU and reduce the amount scanning
2488 * proportional to the original scan target.
2490 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2491 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2494 * It's just vindictive to attack the larger once the smaller
2495 * has gone to zero. And given the way we stop scanning the
2496 * smaller below, this makes sure that we only make one nudge
2497 * towards proportionality once we've got nr_to_reclaim.
2499 if (!nr_file || !nr_anon)
2500 break;
2502 if (nr_file > nr_anon) {
2503 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2504 targets[LRU_ACTIVE_ANON] + 1;
2505 lru = LRU_BASE;
2506 percentage = nr_anon * 100 / scan_target;
2507 } else {
2508 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2509 targets[LRU_ACTIVE_FILE] + 1;
2510 lru = LRU_FILE;
2511 percentage = nr_file * 100 / scan_target;
2514 /* Stop scanning the smaller of the LRU */
2515 nr[lru] = 0;
2516 nr[lru + LRU_ACTIVE] = 0;
2519 * Recalculate the other LRU scan count based on its original
2520 * scan target and the percentage scanning already complete
2522 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2523 nr_scanned = targets[lru] - nr[lru];
2524 nr[lru] = targets[lru] * (100 - percentage) / 100;
2525 nr[lru] -= min(nr[lru], nr_scanned);
2527 lru += LRU_ACTIVE;
2528 nr_scanned = targets[lru] - nr[lru];
2529 nr[lru] = targets[lru] * (100 - percentage) / 100;
2530 nr[lru] -= min(nr[lru], nr_scanned);
2532 scan_adjusted = true;
2534 blk_finish_plug(&plug);
2535 sc->nr_reclaimed += nr_reclaimed;
2538 * Even if we did not try to evict anon pages at all, we want to
2539 * rebalance the anon lru active/inactive ratio.
2541 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2542 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2543 sc, LRU_ACTIVE_ANON);
2546 /* Use reclaim/compaction for costly allocs or under memory pressure */
2547 static bool in_reclaim_compaction(struct scan_control *sc)
2549 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2550 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2551 sc->priority < DEF_PRIORITY - 2))
2552 return true;
2554 return false;
2558 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2559 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2560 * true if more pages should be reclaimed such that when the page allocator
2561 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2562 * It will give up earlier than that if there is difficulty reclaiming pages.
2564 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2565 unsigned long nr_reclaimed,
2566 struct scan_control *sc)
2568 unsigned long pages_for_compaction;
2569 unsigned long inactive_lru_pages;
2570 int z;
2572 /* If not in reclaim/compaction mode, stop */
2573 if (!in_reclaim_compaction(sc))
2574 return false;
2577 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2578 * number of pages that were scanned. This will return to the caller
2579 * with the risk reclaim/compaction and the resulting allocation attempt
2580 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2581 * allocations through requiring that the full LRU list has been scanned
2582 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2583 * scan, but that approximation was wrong, and there were corner cases
2584 * where always a non-zero amount of pages were scanned.
2586 if (!nr_reclaimed)
2587 return false;
2589 /* If compaction would go ahead or the allocation would succeed, stop */
2590 for (z = 0; z <= sc->reclaim_idx; z++) {
2591 struct zone *zone = &pgdat->node_zones[z];
2592 if (!managed_zone(zone))
2593 continue;
2595 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2596 case COMPACT_SUCCESS:
2597 case COMPACT_CONTINUE:
2598 return false;
2599 default:
2600 /* check next zone */
2606 * If we have not reclaimed enough pages for compaction and the
2607 * inactive lists are large enough, continue reclaiming
2609 pages_for_compaction = compact_gap(sc->order);
2610 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2611 if (get_nr_swap_pages() > 0)
2612 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2614 return inactive_lru_pages > pages_for_compaction;
2617 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2619 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2620 struct mem_cgroup *memcg;
2622 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2623 do {
2624 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2625 unsigned long reclaimed;
2626 unsigned long scanned;
2629 * This loop can become CPU-bound when target memcgs
2630 * aren't eligible for reclaim - either because they
2631 * don't have any reclaimable pages, or because their
2632 * memory is explicitly protected. Avoid soft lockups.
2634 cond_resched();
2636 mem_cgroup_calculate_protection(target_memcg, memcg);
2638 if (mem_cgroup_below_min(memcg)) {
2640 * Hard protection.
2641 * If there is no reclaimable memory, OOM.
2643 continue;
2644 } else if (mem_cgroup_below_low(memcg)) {
2646 * Soft protection.
2647 * Respect the protection only as long as
2648 * there is an unprotected supply
2649 * of reclaimable memory from other cgroups.
2651 if (!sc->memcg_low_reclaim) {
2652 sc->memcg_low_skipped = 1;
2653 continue;
2655 memcg_memory_event(memcg, MEMCG_LOW);
2658 reclaimed = sc->nr_reclaimed;
2659 scanned = sc->nr_scanned;
2661 shrink_lruvec(lruvec, sc);
2663 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2664 sc->priority);
2666 /* Record the group's reclaim efficiency */
2667 vmpressure(sc->gfp_mask, memcg, false,
2668 sc->nr_scanned - scanned,
2669 sc->nr_reclaimed - reclaimed);
2671 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2674 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2676 struct reclaim_state *reclaim_state = current->reclaim_state;
2677 unsigned long nr_reclaimed, nr_scanned;
2678 struct lruvec *target_lruvec;
2679 bool reclaimable = false;
2680 unsigned long file;
2682 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2684 again:
2685 memset(&sc->nr, 0, sizeof(sc->nr));
2687 nr_reclaimed = sc->nr_reclaimed;
2688 nr_scanned = sc->nr_scanned;
2691 * Determine the scan balance between anon and file LRUs.
2693 spin_lock_irq(&target_lruvec->lru_lock);
2694 sc->anon_cost = target_lruvec->anon_cost;
2695 sc->file_cost = target_lruvec->file_cost;
2696 spin_unlock_irq(&target_lruvec->lru_lock);
2699 * Target desirable inactive:active list ratios for the anon
2700 * and file LRU lists.
2702 if (!sc->force_deactivate) {
2703 unsigned long refaults;
2705 refaults = lruvec_page_state(target_lruvec,
2706 WORKINGSET_ACTIVATE_ANON);
2707 if (refaults != target_lruvec->refaults[0] ||
2708 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2709 sc->may_deactivate |= DEACTIVATE_ANON;
2710 else
2711 sc->may_deactivate &= ~DEACTIVATE_ANON;
2714 * When refaults are being observed, it means a new
2715 * workingset is being established. Deactivate to get
2716 * rid of any stale active pages quickly.
2718 refaults = lruvec_page_state(target_lruvec,
2719 WORKINGSET_ACTIVATE_FILE);
2720 if (refaults != target_lruvec->refaults[1] ||
2721 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2722 sc->may_deactivate |= DEACTIVATE_FILE;
2723 else
2724 sc->may_deactivate &= ~DEACTIVATE_FILE;
2725 } else
2726 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2729 * If we have plenty of inactive file pages that aren't
2730 * thrashing, try to reclaim those first before touching
2731 * anonymous pages.
2733 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2734 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2735 sc->cache_trim_mode = 1;
2736 else
2737 sc->cache_trim_mode = 0;
2740 * Prevent the reclaimer from falling into the cache trap: as
2741 * cache pages start out inactive, every cache fault will tip
2742 * the scan balance towards the file LRU. And as the file LRU
2743 * shrinks, so does the window for rotation from references.
2744 * This means we have a runaway feedback loop where a tiny
2745 * thrashing file LRU becomes infinitely more attractive than
2746 * anon pages. Try to detect this based on file LRU size.
2748 if (!cgroup_reclaim(sc)) {
2749 unsigned long total_high_wmark = 0;
2750 unsigned long free, anon;
2751 int z;
2753 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2754 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2755 node_page_state(pgdat, NR_INACTIVE_FILE);
2757 for (z = 0; z < MAX_NR_ZONES; z++) {
2758 struct zone *zone = &pgdat->node_zones[z];
2759 if (!managed_zone(zone))
2760 continue;
2762 total_high_wmark += high_wmark_pages(zone);
2766 * Consider anon: if that's low too, this isn't a
2767 * runaway file reclaim problem, but rather just
2768 * extreme pressure. Reclaim as per usual then.
2770 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2772 sc->file_is_tiny =
2773 file + free <= total_high_wmark &&
2774 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2775 anon >> sc->priority;
2778 shrink_node_memcgs(pgdat, sc);
2780 if (reclaim_state) {
2781 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2782 reclaim_state->reclaimed_slab = 0;
2785 /* Record the subtree's reclaim efficiency */
2786 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2787 sc->nr_scanned - nr_scanned,
2788 sc->nr_reclaimed - nr_reclaimed);
2790 if (sc->nr_reclaimed - nr_reclaimed)
2791 reclaimable = true;
2793 if (current_is_kswapd()) {
2795 * If reclaim is isolating dirty pages under writeback,
2796 * it implies that the long-lived page allocation rate
2797 * is exceeding the page laundering rate. Either the
2798 * global limits are not being effective at throttling
2799 * processes due to the page distribution throughout
2800 * zones or there is heavy usage of a slow backing
2801 * device. The only option is to throttle from reclaim
2802 * context which is not ideal as there is no guarantee
2803 * the dirtying process is throttled in the same way
2804 * balance_dirty_pages() manages.
2806 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2807 * count the number of pages under pages flagged for
2808 * immediate reclaim and stall if any are encountered
2809 * in the nr_immediate check below.
2811 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2812 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2814 /* Allow kswapd to start writing pages during reclaim.*/
2815 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2816 set_bit(PGDAT_DIRTY, &pgdat->flags);
2819 * If kswapd scans pages marked for immediate
2820 * reclaim and under writeback (nr_immediate), it
2821 * implies that pages are cycling through the LRU
2822 * faster than they are written so also forcibly stall.
2824 if (sc->nr.immediate)
2825 congestion_wait(BLK_RW_ASYNC, HZ/10);
2829 * Tag a node/memcg as congested if all the dirty pages
2830 * scanned were backed by a congested BDI and
2831 * wait_iff_congested will stall.
2833 * Legacy memcg will stall in page writeback so avoid forcibly
2834 * stalling in wait_iff_congested().
2836 if ((current_is_kswapd() ||
2837 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2838 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2839 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2842 * Stall direct reclaim for IO completions if underlying BDIs
2843 * and node is congested. Allow kswapd to continue until it
2844 * starts encountering unqueued dirty pages or cycling through
2845 * the LRU too quickly.
2847 if (!current_is_kswapd() && current_may_throttle() &&
2848 !sc->hibernation_mode &&
2849 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2850 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2852 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2853 sc))
2854 goto again;
2857 * Kswapd gives up on balancing particular nodes after too
2858 * many failures to reclaim anything from them and goes to
2859 * sleep. On reclaim progress, reset the failure counter. A
2860 * successful direct reclaim run will revive a dormant kswapd.
2862 if (reclaimable)
2863 pgdat->kswapd_failures = 0;
2867 * Returns true if compaction should go ahead for a costly-order request, or
2868 * the allocation would already succeed without compaction. Return false if we
2869 * should reclaim first.
2871 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2873 unsigned long watermark;
2874 enum compact_result suitable;
2876 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2877 if (suitable == COMPACT_SUCCESS)
2878 /* Allocation should succeed already. Don't reclaim. */
2879 return true;
2880 if (suitable == COMPACT_SKIPPED)
2881 /* Compaction cannot yet proceed. Do reclaim. */
2882 return false;
2885 * Compaction is already possible, but it takes time to run and there
2886 * are potentially other callers using the pages just freed. So proceed
2887 * with reclaim to make a buffer of free pages available to give
2888 * compaction a reasonable chance of completing and allocating the page.
2889 * Note that we won't actually reclaim the whole buffer in one attempt
2890 * as the target watermark in should_continue_reclaim() is lower. But if
2891 * we are already above the high+gap watermark, don't reclaim at all.
2893 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2895 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2899 * This is the direct reclaim path, for page-allocating processes. We only
2900 * try to reclaim pages from zones which will satisfy the caller's allocation
2901 * request.
2903 * If a zone is deemed to be full of pinned pages then just give it a light
2904 * scan then give up on it.
2906 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2908 struct zoneref *z;
2909 struct zone *zone;
2910 unsigned long nr_soft_reclaimed;
2911 unsigned long nr_soft_scanned;
2912 gfp_t orig_mask;
2913 pg_data_t *last_pgdat = NULL;
2916 * If the number of buffer_heads in the machine exceeds the maximum
2917 * allowed level, force direct reclaim to scan the highmem zone as
2918 * highmem pages could be pinning lowmem pages storing buffer_heads
2920 orig_mask = sc->gfp_mask;
2921 if (buffer_heads_over_limit) {
2922 sc->gfp_mask |= __GFP_HIGHMEM;
2923 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2926 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2927 sc->reclaim_idx, sc->nodemask) {
2929 * Take care memory controller reclaiming has small influence
2930 * to global LRU.
2932 if (!cgroup_reclaim(sc)) {
2933 if (!cpuset_zone_allowed(zone,
2934 GFP_KERNEL | __GFP_HARDWALL))
2935 continue;
2938 * If we already have plenty of memory free for
2939 * compaction in this zone, don't free any more.
2940 * Even though compaction is invoked for any
2941 * non-zero order, only frequent costly order
2942 * reclamation is disruptive enough to become a
2943 * noticeable problem, like transparent huge
2944 * page allocations.
2946 if (IS_ENABLED(CONFIG_COMPACTION) &&
2947 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2948 compaction_ready(zone, sc)) {
2949 sc->compaction_ready = true;
2950 continue;
2954 * Shrink each node in the zonelist once. If the
2955 * zonelist is ordered by zone (not the default) then a
2956 * node may be shrunk multiple times but in that case
2957 * the user prefers lower zones being preserved.
2959 if (zone->zone_pgdat == last_pgdat)
2960 continue;
2963 * This steals pages from memory cgroups over softlimit
2964 * and returns the number of reclaimed pages and
2965 * scanned pages. This works for global memory pressure
2966 * and balancing, not for a memcg's limit.
2968 nr_soft_scanned = 0;
2969 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2970 sc->order, sc->gfp_mask,
2971 &nr_soft_scanned);
2972 sc->nr_reclaimed += nr_soft_reclaimed;
2973 sc->nr_scanned += nr_soft_scanned;
2974 /* need some check for avoid more shrink_zone() */
2977 /* See comment about same check for global reclaim above */
2978 if (zone->zone_pgdat == last_pgdat)
2979 continue;
2980 last_pgdat = zone->zone_pgdat;
2981 shrink_node(zone->zone_pgdat, sc);
2985 * Restore to original mask to avoid the impact on the caller if we
2986 * promoted it to __GFP_HIGHMEM.
2988 sc->gfp_mask = orig_mask;
2991 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2993 struct lruvec *target_lruvec;
2994 unsigned long refaults;
2996 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2997 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
2998 target_lruvec->refaults[0] = refaults;
2999 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3000 target_lruvec->refaults[1] = refaults;
3004 * This is the main entry point to direct page reclaim.
3006 * If a full scan of the inactive list fails to free enough memory then we
3007 * are "out of memory" and something needs to be killed.
3009 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3010 * high - the zone may be full of dirty or under-writeback pages, which this
3011 * caller can't do much about. We kick the writeback threads and take explicit
3012 * naps in the hope that some of these pages can be written. But if the
3013 * allocating task holds filesystem locks which prevent writeout this might not
3014 * work, and the allocation attempt will fail.
3016 * returns: 0, if no pages reclaimed
3017 * else, the number of pages reclaimed
3019 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3020 struct scan_control *sc)
3022 int initial_priority = sc->priority;
3023 pg_data_t *last_pgdat;
3024 struct zoneref *z;
3025 struct zone *zone;
3026 retry:
3027 delayacct_freepages_start();
3029 if (!cgroup_reclaim(sc))
3030 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3032 do {
3033 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3034 sc->priority);
3035 sc->nr_scanned = 0;
3036 shrink_zones(zonelist, sc);
3038 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3039 break;
3041 if (sc->compaction_ready)
3042 break;
3045 * If we're getting trouble reclaiming, start doing
3046 * writepage even in laptop mode.
3048 if (sc->priority < DEF_PRIORITY - 2)
3049 sc->may_writepage = 1;
3050 } while (--sc->priority >= 0);
3052 last_pgdat = NULL;
3053 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3054 sc->nodemask) {
3055 if (zone->zone_pgdat == last_pgdat)
3056 continue;
3057 last_pgdat = zone->zone_pgdat;
3059 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3061 if (cgroup_reclaim(sc)) {
3062 struct lruvec *lruvec;
3064 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3065 zone->zone_pgdat);
3066 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3070 delayacct_freepages_end();
3072 if (sc->nr_reclaimed)
3073 return sc->nr_reclaimed;
3075 /* Aborted reclaim to try compaction? don't OOM, then */
3076 if (sc->compaction_ready)
3077 return 1;
3080 * We make inactive:active ratio decisions based on the node's
3081 * composition of memory, but a restrictive reclaim_idx or a
3082 * memory.low cgroup setting can exempt large amounts of
3083 * memory from reclaim. Neither of which are very common, so
3084 * instead of doing costly eligibility calculations of the
3085 * entire cgroup subtree up front, we assume the estimates are
3086 * good, and retry with forcible deactivation if that fails.
3088 if (sc->skipped_deactivate) {
3089 sc->priority = initial_priority;
3090 sc->force_deactivate = 1;
3091 sc->skipped_deactivate = 0;
3092 goto retry;
3095 /* Untapped cgroup reserves? Don't OOM, retry. */
3096 if (sc->memcg_low_skipped) {
3097 sc->priority = initial_priority;
3098 sc->force_deactivate = 0;
3099 sc->memcg_low_reclaim = 1;
3100 sc->memcg_low_skipped = 0;
3101 goto retry;
3104 return 0;
3107 static bool allow_direct_reclaim(pg_data_t *pgdat)
3109 struct zone *zone;
3110 unsigned long pfmemalloc_reserve = 0;
3111 unsigned long free_pages = 0;
3112 int i;
3113 bool wmark_ok;
3115 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3116 return true;
3118 for (i = 0; i <= ZONE_NORMAL; i++) {
3119 zone = &pgdat->node_zones[i];
3120 if (!managed_zone(zone))
3121 continue;
3123 if (!zone_reclaimable_pages(zone))
3124 continue;
3126 pfmemalloc_reserve += min_wmark_pages(zone);
3127 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3130 /* If there are no reserves (unexpected config) then do not throttle */
3131 if (!pfmemalloc_reserve)
3132 return true;
3134 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3136 /* kswapd must be awake if processes are being throttled */
3137 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3138 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3139 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3141 wake_up_interruptible(&pgdat->kswapd_wait);
3144 return wmark_ok;
3148 * Throttle direct reclaimers if backing storage is backed by the network
3149 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3150 * depleted. kswapd will continue to make progress and wake the processes
3151 * when the low watermark is reached.
3153 * Returns true if a fatal signal was delivered during throttling. If this
3154 * happens, the page allocator should not consider triggering the OOM killer.
3156 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3157 nodemask_t *nodemask)
3159 struct zoneref *z;
3160 struct zone *zone;
3161 pg_data_t *pgdat = NULL;
3164 * Kernel threads should not be throttled as they may be indirectly
3165 * responsible for cleaning pages necessary for reclaim to make forward
3166 * progress. kjournald for example may enter direct reclaim while
3167 * committing a transaction where throttling it could forcing other
3168 * processes to block on log_wait_commit().
3170 if (current->flags & PF_KTHREAD)
3171 goto out;
3174 * If a fatal signal is pending, this process should not throttle.
3175 * It should return quickly so it can exit and free its memory
3177 if (fatal_signal_pending(current))
3178 goto out;
3181 * Check if the pfmemalloc reserves are ok by finding the first node
3182 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3183 * GFP_KERNEL will be required for allocating network buffers when
3184 * swapping over the network so ZONE_HIGHMEM is unusable.
3186 * Throttling is based on the first usable node and throttled processes
3187 * wait on a queue until kswapd makes progress and wakes them. There
3188 * is an affinity then between processes waking up and where reclaim
3189 * progress has been made assuming the process wakes on the same node.
3190 * More importantly, processes running on remote nodes will not compete
3191 * for remote pfmemalloc reserves and processes on different nodes
3192 * should make reasonable progress.
3194 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3195 gfp_zone(gfp_mask), nodemask) {
3196 if (zone_idx(zone) > ZONE_NORMAL)
3197 continue;
3199 /* Throttle based on the first usable node */
3200 pgdat = zone->zone_pgdat;
3201 if (allow_direct_reclaim(pgdat))
3202 goto out;
3203 break;
3206 /* If no zone was usable by the allocation flags then do not throttle */
3207 if (!pgdat)
3208 goto out;
3210 /* Account for the throttling */
3211 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3214 * If the caller cannot enter the filesystem, it's possible that it
3215 * is due to the caller holding an FS lock or performing a journal
3216 * transaction in the case of a filesystem like ext[3|4]. In this case,
3217 * it is not safe to block on pfmemalloc_wait as kswapd could be
3218 * blocked waiting on the same lock. Instead, throttle for up to a
3219 * second before continuing.
3221 if (!(gfp_mask & __GFP_FS)) {
3222 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3223 allow_direct_reclaim(pgdat), HZ);
3225 goto check_pending;
3228 /* Throttle until kswapd wakes the process */
3229 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3230 allow_direct_reclaim(pgdat));
3232 check_pending:
3233 if (fatal_signal_pending(current))
3234 return true;
3236 out:
3237 return false;
3240 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3241 gfp_t gfp_mask, nodemask_t *nodemask)
3243 unsigned long nr_reclaimed;
3244 struct scan_control sc = {
3245 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3246 .gfp_mask = current_gfp_context(gfp_mask),
3247 .reclaim_idx = gfp_zone(gfp_mask),
3248 .order = order,
3249 .nodemask = nodemask,
3250 .priority = DEF_PRIORITY,
3251 .may_writepage = !laptop_mode,
3252 .may_unmap = 1,
3253 .may_swap = 1,
3257 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3258 * Confirm they are large enough for max values.
3260 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3261 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3262 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3265 * Do not enter reclaim if fatal signal was delivered while throttled.
3266 * 1 is returned so that the page allocator does not OOM kill at this
3267 * point.
3269 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3270 return 1;
3272 set_task_reclaim_state(current, &sc.reclaim_state);
3273 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3275 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3277 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3278 set_task_reclaim_state(current, NULL);
3280 return nr_reclaimed;
3283 #ifdef CONFIG_MEMCG
3285 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3286 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3287 gfp_t gfp_mask, bool noswap,
3288 pg_data_t *pgdat,
3289 unsigned long *nr_scanned)
3291 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3292 struct scan_control sc = {
3293 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3294 .target_mem_cgroup = memcg,
3295 .may_writepage = !laptop_mode,
3296 .may_unmap = 1,
3297 .reclaim_idx = MAX_NR_ZONES - 1,
3298 .may_swap = !noswap,
3301 WARN_ON_ONCE(!current->reclaim_state);
3303 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3304 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3306 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3307 sc.gfp_mask);
3310 * NOTE: Although we can get the priority field, using it
3311 * here is not a good idea, since it limits the pages we can scan.
3312 * if we don't reclaim here, the shrink_node from balance_pgdat
3313 * will pick up pages from other mem cgroup's as well. We hack
3314 * the priority and make it zero.
3316 shrink_lruvec(lruvec, &sc);
3318 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3320 *nr_scanned = sc.nr_scanned;
3322 return sc.nr_reclaimed;
3325 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3326 unsigned long nr_pages,
3327 gfp_t gfp_mask,
3328 bool may_swap)
3330 unsigned long nr_reclaimed;
3331 unsigned int noreclaim_flag;
3332 struct scan_control sc = {
3333 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3334 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3335 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3336 .reclaim_idx = MAX_NR_ZONES - 1,
3337 .target_mem_cgroup = memcg,
3338 .priority = DEF_PRIORITY,
3339 .may_writepage = !laptop_mode,
3340 .may_unmap = 1,
3341 .may_swap = may_swap,
3344 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3345 * equal pressure on all the nodes. This is based on the assumption that
3346 * the reclaim does not bail out early.
3348 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3350 set_task_reclaim_state(current, &sc.reclaim_state);
3351 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3352 noreclaim_flag = memalloc_noreclaim_save();
3354 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3356 memalloc_noreclaim_restore(noreclaim_flag);
3357 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3358 set_task_reclaim_state(current, NULL);
3360 return nr_reclaimed;
3362 #endif
3364 static void age_active_anon(struct pglist_data *pgdat,
3365 struct scan_control *sc)
3367 struct mem_cgroup *memcg;
3368 struct lruvec *lruvec;
3370 if (!total_swap_pages)
3371 return;
3373 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3374 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3375 return;
3377 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3378 do {
3379 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3380 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3381 sc, LRU_ACTIVE_ANON);
3382 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3383 } while (memcg);
3386 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3388 int i;
3389 struct zone *zone;
3392 * Check for watermark boosts top-down as the higher zones
3393 * are more likely to be boosted. Both watermarks and boosts
3394 * should not be checked at the same time as reclaim would
3395 * start prematurely when there is no boosting and a lower
3396 * zone is balanced.
3398 for (i = highest_zoneidx; i >= 0; i--) {
3399 zone = pgdat->node_zones + i;
3400 if (!managed_zone(zone))
3401 continue;
3403 if (zone->watermark_boost)
3404 return true;
3407 return false;
3411 * Returns true if there is an eligible zone balanced for the request order
3412 * and highest_zoneidx
3414 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3416 int i;
3417 unsigned long mark = -1;
3418 struct zone *zone;
3421 * Check watermarks bottom-up as lower zones are more likely to
3422 * meet watermarks.
3424 for (i = 0; i <= highest_zoneidx; i++) {
3425 zone = pgdat->node_zones + i;
3427 if (!managed_zone(zone))
3428 continue;
3430 mark = high_wmark_pages(zone);
3431 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3432 return true;
3436 * If a node has no populated zone within highest_zoneidx, it does not
3437 * need balancing by definition. This can happen if a zone-restricted
3438 * allocation tries to wake a remote kswapd.
3440 if (mark == -1)
3441 return true;
3443 return false;
3446 /* Clear pgdat state for congested, dirty or under writeback. */
3447 static void clear_pgdat_congested(pg_data_t *pgdat)
3449 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3451 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3452 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3453 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3457 * Prepare kswapd for sleeping. This verifies that there are no processes
3458 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3460 * Returns true if kswapd is ready to sleep
3462 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3463 int highest_zoneidx)
3466 * The throttled processes are normally woken up in balance_pgdat() as
3467 * soon as allow_direct_reclaim() is true. But there is a potential
3468 * race between when kswapd checks the watermarks and a process gets
3469 * throttled. There is also a potential race if processes get
3470 * throttled, kswapd wakes, a large process exits thereby balancing the
3471 * zones, which causes kswapd to exit balance_pgdat() before reaching
3472 * the wake up checks. If kswapd is going to sleep, no process should
3473 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3474 * the wake up is premature, processes will wake kswapd and get
3475 * throttled again. The difference from wake ups in balance_pgdat() is
3476 * that here we are under prepare_to_wait().
3478 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3479 wake_up_all(&pgdat->pfmemalloc_wait);
3481 /* Hopeless node, leave it to direct reclaim */
3482 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3483 return true;
3485 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3486 clear_pgdat_congested(pgdat);
3487 return true;
3490 return false;
3494 * kswapd shrinks a node of pages that are at or below the highest usable
3495 * zone that is currently unbalanced.
3497 * Returns true if kswapd scanned at least the requested number of pages to
3498 * reclaim or if the lack of progress was due to pages under writeback.
3499 * This is used to determine if the scanning priority needs to be raised.
3501 static bool kswapd_shrink_node(pg_data_t *pgdat,
3502 struct scan_control *sc)
3504 struct zone *zone;
3505 int z;
3507 /* Reclaim a number of pages proportional to the number of zones */
3508 sc->nr_to_reclaim = 0;
3509 for (z = 0; z <= sc->reclaim_idx; z++) {
3510 zone = pgdat->node_zones + z;
3511 if (!managed_zone(zone))
3512 continue;
3514 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3518 * Historically care was taken to put equal pressure on all zones but
3519 * now pressure is applied based on node LRU order.
3521 shrink_node(pgdat, sc);
3524 * Fragmentation may mean that the system cannot be rebalanced for
3525 * high-order allocations. If twice the allocation size has been
3526 * reclaimed then recheck watermarks only at order-0 to prevent
3527 * excessive reclaim. Assume that a process requested a high-order
3528 * can direct reclaim/compact.
3530 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3531 sc->order = 0;
3533 return sc->nr_scanned >= sc->nr_to_reclaim;
3537 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3538 * that are eligible for use by the caller until at least one zone is
3539 * balanced.
3541 * Returns the order kswapd finished reclaiming at.
3543 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3544 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3545 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3546 * or lower is eligible for reclaim until at least one usable zone is
3547 * balanced.
3549 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3551 int i;
3552 unsigned long nr_soft_reclaimed;
3553 unsigned long nr_soft_scanned;
3554 unsigned long pflags;
3555 unsigned long nr_boost_reclaim;
3556 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3557 bool boosted;
3558 struct zone *zone;
3559 struct scan_control sc = {
3560 .gfp_mask = GFP_KERNEL,
3561 .order = order,
3562 .may_unmap = 1,
3565 set_task_reclaim_state(current, &sc.reclaim_state);
3566 psi_memstall_enter(&pflags);
3567 __fs_reclaim_acquire();
3569 count_vm_event(PAGEOUTRUN);
3572 * Account for the reclaim boost. Note that the zone boost is left in
3573 * place so that parallel allocations that are near the watermark will
3574 * stall or direct reclaim until kswapd is finished.
3576 nr_boost_reclaim = 0;
3577 for (i = 0; i <= highest_zoneidx; i++) {
3578 zone = pgdat->node_zones + i;
3579 if (!managed_zone(zone))
3580 continue;
3582 nr_boost_reclaim += zone->watermark_boost;
3583 zone_boosts[i] = zone->watermark_boost;
3585 boosted = nr_boost_reclaim;
3587 restart:
3588 sc.priority = DEF_PRIORITY;
3589 do {
3590 unsigned long nr_reclaimed = sc.nr_reclaimed;
3591 bool raise_priority = true;
3592 bool balanced;
3593 bool ret;
3595 sc.reclaim_idx = highest_zoneidx;
3598 * If the number of buffer_heads exceeds the maximum allowed
3599 * then consider reclaiming from all zones. This has a dual
3600 * purpose -- on 64-bit systems it is expected that
3601 * buffer_heads are stripped during active rotation. On 32-bit
3602 * systems, highmem pages can pin lowmem memory and shrinking
3603 * buffers can relieve lowmem pressure. Reclaim may still not
3604 * go ahead if all eligible zones for the original allocation
3605 * request are balanced to avoid excessive reclaim from kswapd.
3607 if (buffer_heads_over_limit) {
3608 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3609 zone = pgdat->node_zones + i;
3610 if (!managed_zone(zone))
3611 continue;
3613 sc.reclaim_idx = i;
3614 break;
3619 * If the pgdat is imbalanced then ignore boosting and preserve
3620 * the watermarks for a later time and restart. Note that the
3621 * zone watermarks will be still reset at the end of balancing
3622 * on the grounds that the normal reclaim should be enough to
3623 * re-evaluate if boosting is required when kswapd next wakes.
3625 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3626 if (!balanced && nr_boost_reclaim) {
3627 nr_boost_reclaim = 0;
3628 goto restart;
3632 * If boosting is not active then only reclaim if there are no
3633 * eligible zones. Note that sc.reclaim_idx is not used as
3634 * buffer_heads_over_limit may have adjusted it.
3636 if (!nr_boost_reclaim && balanced)
3637 goto out;
3639 /* Limit the priority of boosting to avoid reclaim writeback */
3640 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3641 raise_priority = false;
3644 * Do not writeback or swap pages for boosted reclaim. The
3645 * intent is to relieve pressure not issue sub-optimal IO
3646 * from reclaim context. If no pages are reclaimed, the
3647 * reclaim will be aborted.
3649 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3650 sc.may_swap = !nr_boost_reclaim;
3653 * Do some background aging of the anon list, to give
3654 * pages a chance to be referenced before reclaiming. All
3655 * pages are rotated regardless of classzone as this is
3656 * about consistent aging.
3658 age_active_anon(pgdat, &sc);
3661 * If we're getting trouble reclaiming, start doing writepage
3662 * even in laptop mode.
3664 if (sc.priority < DEF_PRIORITY - 2)
3665 sc.may_writepage = 1;
3667 /* Call soft limit reclaim before calling shrink_node. */
3668 sc.nr_scanned = 0;
3669 nr_soft_scanned = 0;
3670 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3671 sc.gfp_mask, &nr_soft_scanned);
3672 sc.nr_reclaimed += nr_soft_reclaimed;
3675 * There should be no need to raise the scanning priority if
3676 * enough pages are already being scanned that that high
3677 * watermark would be met at 100% efficiency.
3679 if (kswapd_shrink_node(pgdat, &sc))
3680 raise_priority = false;
3683 * If the low watermark is met there is no need for processes
3684 * to be throttled on pfmemalloc_wait as they should not be
3685 * able to safely make forward progress. Wake them
3687 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3688 allow_direct_reclaim(pgdat))
3689 wake_up_all(&pgdat->pfmemalloc_wait);
3691 /* Check if kswapd should be suspending */
3692 __fs_reclaim_release();
3693 ret = try_to_freeze();
3694 __fs_reclaim_acquire();
3695 if (ret || kthread_should_stop())
3696 break;
3699 * Raise priority if scanning rate is too low or there was no
3700 * progress in reclaiming pages
3702 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3703 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3706 * If reclaim made no progress for a boost, stop reclaim as
3707 * IO cannot be queued and it could be an infinite loop in
3708 * extreme circumstances.
3710 if (nr_boost_reclaim && !nr_reclaimed)
3711 break;
3713 if (raise_priority || !nr_reclaimed)
3714 sc.priority--;
3715 } while (sc.priority >= 1);
3717 if (!sc.nr_reclaimed)
3718 pgdat->kswapd_failures++;
3720 out:
3721 /* If reclaim was boosted, account for the reclaim done in this pass */
3722 if (boosted) {
3723 unsigned long flags;
3725 for (i = 0; i <= highest_zoneidx; i++) {
3726 if (!zone_boosts[i])
3727 continue;
3729 /* Increments are under the zone lock */
3730 zone = pgdat->node_zones + i;
3731 spin_lock_irqsave(&zone->lock, flags);
3732 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3733 spin_unlock_irqrestore(&zone->lock, flags);
3737 * As there is now likely space, wakeup kcompact to defragment
3738 * pageblocks.
3740 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3743 snapshot_refaults(NULL, pgdat);
3744 __fs_reclaim_release();
3745 psi_memstall_leave(&pflags);
3746 set_task_reclaim_state(current, NULL);
3749 * Return the order kswapd stopped reclaiming at as
3750 * prepare_kswapd_sleep() takes it into account. If another caller
3751 * entered the allocator slow path while kswapd was awake, order will
3752 * remain at the higher level.
3754 return sc.order;
3758 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3759 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3760 * not a valid index then either kswapd runs for first time or kswapd couldn't
3761 * sleep after previous reclaim attempt (node is still unbalanced). In that
3762 * case return the zone index of the previous kswapd reclaim cycle.
3764 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3765 enum zone_type prev_highest_zoneidx)
3767 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3769 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3772 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3773 unsigned int highest_zoneidx)
3775 long remaining = 0;
3776 DEFINE_WAIT(wait);
3778 if (freezing(current) || kthread_should_stop())
3779 return;
3781 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3784 * Try to sleep for a short interval. Note that kcompactd will only be
3785 * woken if it is possible to sleep for a short interval. This is
3786 * deliberate on the assumption that if reclaim cannot keep an
3787 * eligible zone balanced that it's also unlikely that compaction will
3788 * succeed.
3790 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3792 * Compaction records what page blocks it recently failed to
3793 * isolate pages from and skips them in the future scanning.
3794 * When kswapd is going to sleep, it is reasonable to assume
3795 * that pages and compaction may succeed so reset the cache.
3797 reset_isolation_suitable(pgdat);
3800 * We have freed the memory, now we should compact it to make
3801 * allocation of the requested order possible.
3803 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3805 remaining = schedule_timeout(HZ/10);
3808 * If woken prematurely then reset kswapd_highest_zoneidx and
3809 * order. The values will either be from a wakeup request or
3810 * the previous request that slept prematurely.
3812 if (remaining) {
3813 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3814 kswapd_highest_zoneidx(pgdat,
3815 highest_zoneidx));
3817 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3818 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3821 finish_wait(&pgdat->kswapd_wait, &wait);
3822 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3826 * After a short sleep, check if it was a premature sleep. If not, then
3827 * go fully to sleep until explicitly woken up.
3829 if (!remaining &&
3830 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3831 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3834 * vmstat counters are not perfectly accurate and the estimated
3835 * value for counters such as NR_FREE_PAGES can deviate from the
3836 * true value by nr_online_cpus * threshold. To avoid the zone
3837 * watermarks being breached while under pressure, we reduce the
3838 * per-cpu vmstat threshold while kswapd is awake and restore
3839 * them before going back to sleep.
3841 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3843 if (!kthread_should_stop())
3844 schedule();
3846 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3847 } else {
3848 if (remaining)
3849 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3850 else
3851 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3853 finish_wait(&pgdat->kswapd_wait, &wait);
3857 * The background pageout daemon, started as a kernel thread
3858 * from the init process.
3860 * This basically trickles out pages so that we have _some_
3861 * free memory available even if there is no other activity
3862 * that frees anything up. This is needed for things like routing
3863 * etc, where we otherwise might have all activity going on in
3864 * asynchronous contexts that cannot page things out.
3866 * If there are applications that are active memory-allocators
3867 * (most normal use), this basically shouldn't matter.
3869 static int kswapd(void *p)
3871 unsigned int alloc_order, reclaim_order;
3872 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3873 pg_data_t *pgdat = (pg_data_t*)p;
3874 struct task_struct *tsk = current;
3875 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3877 if (!cpumask_empty(cpumask))
3878 set_cpus_allowed_ptr(tsk, cpumask);
3881 * Tell the memory management that we're a "memory allocator",
3882 * and that if we need more memory we should get access to it
3883 * regardless (see "__alloc_pages()"). "kswapd" should
3884 * never get caught in the normal page freeing logic.
3886 * (Kswapd normally doesn't need memory anyway, but sometimes
3887 * you need a small amount of memory in order to be able to
3888 * page out something else, and this flag essentially protects
3889 * us from recursively trying to free more memory as we're
3890 * trying to free the first piece of memory in the first place).
3892 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3893 set_freezable();
3895 WRITE_ONCE(pgdat->kswapd_order, 0);
3896 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3897 for ( ; ; ) {
3898 bool ret;
3900 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3901 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3902 highest_zoneidx);
3904 kswapd_try_sleep:
3905 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3906 highest_zoneidx);
3908 /* Read the new order and highest_zoneidx */
3909 alloc_order = READ_ONCE(pgdat->kswapd_order);
3910 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3911 highest_zoneidx);
3912 WRITE_ONCE(pgdat->kswapd_order, 0);
3913 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3915 ret = try_to_freeze();
3916 if (kthread_should_stop())
3917 break;
3920 * We can speed up thawing tasks if we don't call balance_pgdat
3921 * after returning from the refrigerator
3923 if (ret)
3924 continue;
3927 * Reclaim begins at the requested order but if a high-order
3928 * reclaim fails then kswapd falls back to reclaiming for
3929 * order-0. If that happens, kswapd will consider sleeping
3930 * for the order it finished reclaiming at (reclaim_order)
3931 * but kcompactd is woken to compact for the original
3932 * request (alloc_order).
3934 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3935 alloc_order);
3936 reclaim_order = balance_pgdat(pgdat, alloc_order,
3937 highest_zoneidx);
3938 if (reclaim_order < alloc_order)
3939 goto kswapd_try_sleep;
3942 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3944 return 0;
3948 * A zone is low on free memory or too fragmented for high-order memory. If
3949 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3950 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3951 * has failed or is not needed, still wake up kcompactd if only compaction is
3952 * needed.
3954 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3955 enum zone_type highest_zoneidx)
3957 pg_data_t *pgdat;
3958 enum zone_type curr_idx;
3960 if (!managed_zone(zone))
3961 return;
3963 if (!cpuset_zone_allowed(zone, gfp_flags))
3964 return;
3966 pgdat = zone->zone_pgdat;
3967 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3969 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3970 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3972 if (READ_ONCE(pgdat->kswapd_order) < order)
3973 WRITE_ONCE(pgdat->kswapd_order, order);
3975 if (!waitqueue_active(&pgdat->kswapd_wait))
3976 return;
3978 /* Hopeless node, leave it to direct reclaim if possible */
3979 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3980 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3981 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
3983 * There may be plenty of free memory available, but it's too
3984 * fragmented for high-order allocations. Wake up kcompactd
3985 * and rely on compaction_suitable() to determine if it's
3986 * needed. If it fails, it will defer subsequent attempts to
3987 * ratelimit its work.
3989 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3990 wakeup_kcompactd(pgdat, order, highest_zoneidx);
3991 return;
3994 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
3995 gfp_flags);
3996 wake_up_interruptible(&pgdat->kswapd_wait);
3999 #ifdef CONFIG_HIBERNATION
4001 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4002 * freed pages.
4004 * Rather than trying to age LRUs the aim is to preserve the overall
4005 * LRU order by reclaiming preferentially
4006 * inactive > active > active referenced > active mapped
4008 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4010 struct scan_control sc = {
4011 .nr_to_reclaim = nr_to_reclaim,
4012 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4013 .reclaim_idx = MAX_NR_ZONES - 1,
4014 .priority = DEF_PRIORITY,
4015 .may_writepage = 1,
4016 .may_unmap = 1,
4017 .may_swap = 1,
4018 .hibernation_mode = 1,
4020 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4021 unsigned long nr_reclaimed;
4022 unsigned int noreclaim_flag;
4024 fs_reclaim_acquire(sc.gfp_mask);
4025 noreclaim_flag = memalloc_noreclaim_save();
4026 set_task_reclaim_state(current, &sc.reclaim_state);
4028 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4030 set_task_reclaim_state(current, NULL);
4031 memalloc_noreclaim_restore(noreclaim_flag);
4032 fs_reclaim_release(sc.gfp_mask);
4034 return nr_reclaimed;
4036 #endif /* CONFIG_HIBERNATION */
4039 * This kswapd start function will be called by init and node-hot-add.
4040 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4042 int kswapd_run(int nid)
4044 pg_data_t *pgdat = NODE_DATA(nid);
4045 int ret = 0;
4047 if (pgdat->kswapd)
4048 return 0;
4050 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4051 if (IS_ERR(pgdat->kswapd)) {
4052 /* failure at boot is fatal */
4053 BUG_ON(system_state < SYSTEM_RUNNING);
4054 pr_err("Failed to start kswapd on node %d\n", nid);
4055 ret = PTR_ERR(pgdat->kswapd);
4056 pgdat->kswapd = NULL;
4058 return ret;
4062 * Called by memory hotplug when all memory in a node is offlined. Caller must
4063 * hold mem_hotplug_begin/end().
4065 void kswapd_stop(int nid)
4067 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4069 if (kswapd) {
4070 kthread_stop(kswapd);
4071 NODE_DATA(nid)->kswapd = NULL;
4075 static int __init kswapd_init(void)
4077 int nid;
4079 swap_setup();
4080 for_each_node_state(nid, N_MEMORY)
4081 kswapd_run(nid);
4082 return 0;
4085 module_init(kswapd_init)
4087 #ifdef CONFIG_NUMA
4089 * Node reclaim mode
4091 * If non-zero call node_reclaim when the number of free pages falls below
4092 * the watermarks.
4094 int node_reclaim_mode __read_mostly;
4096 #define RECLAIM_WRITE (1<<0) /* Writeout pages during reclaim */
4097 #define RECLAIM_UNMAP (1<<1) /* Unmap pages during reclaim */
4100 * Priority for NODE_RECLAIM. This determines the fraction of pages
4101 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4102 * a zone.
4104 #define NODE_RECLAIM_PRIORITY 4
4107 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4108 * occur.
4110 int sysctl_min_unmapped_ratio = 1;
4113 * If the number of slab pages in a zone grows beyond this percentage then
4114 * slab reclaim needs to occur.
4116 int sysctl_min_slab_ratio = 5;
4118 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4120 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4121 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4122 node_page_state(pgdat, NR_ACTIVE_FILE);
4125 * It's possible for there to be more file mapped pages than
4126 * accounted for by the pages on the file LRU lists because
4127 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4129 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4132 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4133 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4135 unsigned long nr_pagecache_reclaimable;
4136 unsigned long delta = 0;
4139 * If RECLAIM_UNMAP is set, then all file pages are considered
4140 * potentially reclaimable. Otherwise, we have to worry about
4141 * pages like swapcache and node_unmapped_file_pages() provides
4142 * a better estimate
4144 if (node_reclaim_mode & RECLAIM_UNMAP)
4145 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4146 else
4147 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4149 /* If we can't clean pages, remove dirty pages from consideration */
4150 if (!(node_reclaim_mode & RECLAIM_WRITE))
4151 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4153 /* Watch for any possible underflows due to delta */
4154 if (unlikely(delta > nr_pagecache_reclaimable))
4155 delta = nr_pagecache_reclaimable;
4157 return nr_pagecache_reclaimable - delta;
4161 * Try to free up some pages from this node through reclaim.
4163 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4165 /* Minimum pages needed in order to stay on node */
4166 const unsigned long nr_pages = 1 << order;
4167 struct task_struct *p = current;
4168 unsigned int noreclaim_flag;
4169 struct scan_control sc = {
4170 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4171 .gfp_mask = current_gfp_context(gfp_mask),
4172 .order = order,
4173 .priority = NODE_RECLAIM_PRIORITY,
4174 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4175 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4176 .may_swap = 1,
4177 .reclaim_idx = gfp_zone(gfp_mask),
4180 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4181 sc.gfp_mask);
4183 cond_resched();
4184 fs_reclaim_acquire(sc.gfp_mask);
4186 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4187 * and we also need to be able to write out pages for RECLAIM_WRITE
4188 * and RECLAIM_UNMAP.
4190 noreclaim_flag = memalloc_noreclaim_save();
4191 p->flags |= PF_SWAPWRITE;
4192 set_task_reclaim_state(p, &sc.reclaim_state);
4194 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4196 * Free memory by calling shrink node with increasing
4197 * priorities until we have enough memory freed.
4199 do {
4200 shrink_node(pgdat, &sc);
4201 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4204 set_task_reclaim_state(p, NULL);
4205 current->flags &= ~PF_SWAPWRITE;
4206 memalloc_noreclaim_restore(noreclaim_flag);
4207 fs_reclaim_release(sc.gfp_mask);
4209 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4211 return sc.nr_reclaimed >= nr_pages;
4214 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4216 int ret;
4219 * Node reclaim reclaims unmapped file backed pages and
4220 * slab pages if we are over the defined limits.
4222 * A small portion of unmapped file backed pages is needed for
4223 * file I/O otherwise pages read by file I/O will be immediately
4224 * thrown out if the node is overallocated. So we do not reclaim
4225 * if less than a specified percentage of the node is used by
4226 * unmapped file backed pages.
4228 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4229 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4230 pgdat->min_slab_pages)
4231 return NODE_RECLAIM_FULL;
4234 * Do not scan if the allocation should not be delayed.
4236 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4237 return NODE_RECLAIM_NOSCAN;
4240 * Only run node reclaim on the local node or on nodes that do not
4241 * have associated processors. This will favor the local processor
4242 * over remote processors and spread off node memory allocations
4243 * as wide as possible.
4245 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4246 return NODE_RECLAIM_NOSCAN;
4248 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4249 return NODE_RECLAIM_NOSCAN;
4251 ret = __node_reclaim(pgdat, gfp_mask, order);
4252 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4254 if (!ret)
4255 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4257 return ret;
4259 #endif
4262 * check_move_unevictable_pages - check pages for evictability and move to
4263 * appropriate zone lru list
4264 * @pvec: pagevec with lru pages to check
4266 * Checks pages for evictability, if an evictable page is in the unevictable
4267 * lru list, moves it to the appropriate evictable lru list. This function
4268 * should be only used for lru pages.
4270 void check_move_unevictable_pages(struct pagevec *pvec)
4272 struct lruvec *lruvec = NULL;
4273 int pgscanned = 0;
4274 int pgrescued = 0;
4275 int i;
4277 for (i = 0; i < pvec->nr; i++) {
4278 struct page *page = pvec->pages[i];
4279 int nr_pages;
4281 if (PageTransTail(page))
4282 continue;
4284 nr_pages = thp_nr_pages(page);
4285 pgscanned += nr_pages;
4287 /* block memcg migration during page moving between lru */
4288 if (!TestClearPageLRU(page))
4289 continue;
4291 lruvec = relock_page_lruvec_irq(page, lruvec);
4292 if (page_evictable(page) && PageUnevictable(page)) {
4293 enum lru_list lru = page_lru_base_type(page);
4295 VM_BUG_ON_PAGE(PageActive(page), page);
4296 ClearPageUnevictable(page);
4297 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4298 add_page_to_lru_list(page, lruvec, lru);
4299 pgrescued += nr_pages;
4301 SetPageLRU(page);
4304 if (lruvec) {
4305 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4306 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4307 unlock_page_lruvec_irq(lruvec);
4308 } else if (pgscanned) {
4309 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4312 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);