Merge tag 'iommu-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux/fpc-iii.git] / net / core / dev.c
blob8fa739259041aaa03585b5a7b8ebce862f4b7d1d
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148 #include <linux/prandom.h>
150 #include "net-sysfs.h"
152 #define MAX_GRO_SKBS 8
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly; /* Taps */
161 static struct list_head offload_base __read_mostly;
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167 struct net_device *dev,
168 struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173 * semaphore.
175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
177 * Writers must hold the rtnl semaphore while they loop through the
178 * dev_base_head list, and hold dev_base_lock for writing when they do the
179 * actual updates. This allows pure readers to access the list even
180 * while a writer is preparing to update it.
182 * To put it another way, dev_base_lock is held for writing only to
183 * protect against pure readers; the rtnl semaphore provides the
184 * protection against other writers.
186 * See, for example usages, register_netdevice() and
187 * unregister_netdevice(), which must be called with the rtnl
188 * semaphore held.
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
193 static DEFINE_MUTEX(ifalias_mutex);
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
201 static DECLARE_RWSEM(devnet_rename_sem);
203 static inline void dev_base_seq_inc(struct net *net)
205 while (++net->dev_base_seq == 0)
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 static inline void rps_lock(struct softnet_data *sd)
223 #ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225 #endif
228 static inline void rps_unlock(struct softnet_data *sd)
230 #ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236 const char *name)
238 struct netdev_name_node *name_node;
240 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241 if (!name_node)
242 return NULL;
243 INIT_HLIST_NODE(&name_node->hlist);
244 name_node->dev = dev;
245 name_node->name = name;
246 return name_node;
249 static struct netdev_name_node *
250 netdev_name_node_head_alloc(struct net_device *dev)
252 struct netdev_name_node *name_node;
254 name_node = netdev_name_node_alloc(dev, dev->name);
255 if (!name_node)
256 return NULL;
257 INIT_LIST_HEAD(&name_node->list);
258 return name_node;
261 static void netdev_name_node_free(struct netdev_name_node *name_node)
263 kfree(name_node);
266 static void netdev_name_node_add(struct net *net,
267 struct netdev_name_node *name_node)
269 hlist_add_head_rcu(&name_node->hlist,
270 dev_name_hash(net, name_node->name));
273 static void netdev_name_node_del(struct netdev_name_node *name_node)
275 hlist_del_rcu(&name_node->hlist);
278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279 const char *name)
281 struct hlist_head *head = dev_name_hash(net, name);
282 struct netdev_name_node *name_node;
284 hlist_for_each_entry(name_node, head, hlist)
285 if (!strcmp(name_node->name, name))
286 return name_node;
287 return NULL;
290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291 const char *name)
293 struct hlist_head *head = dev_name_hash(net, name);
294 struct netdev_name_node *name_node;
296 hlist_for_each_entry_rcu(name_node, head, hlist)
297 if (!strcmp(name_node->name, name))
298 return name_node;
299 return NULL;
302 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
304 struct netdev_name_node *name_node;
305 struct net *net = dev_net(dev);
307 name_node = netdev_name_node_lookup(net, name);
308 if (name_node)
309 return -EEXIST;
310 name_node = netdev_name_node_alloc(dev, name);
311 if (!name_node)
312 return -ENOMEM;
313 netdev_name_node_add(net, name_node);
314 /* The node that holds dev->name acts as a head of per-device list. */
315 list_add_tail(&name_node->list, &dev->name_node->list);
317 return 0;
319 EXPORT_SYMBOL(netdev_name_node_alt_create);
321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
323 list_del(&name_node->list);
324 netdev_name_node_del(name_node);
325 kfree(name_node->name);
326 netdev_name_node_free(name_node);
329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
331 struct netdev_name_node *name_node;
332 struct net *net = dev_net(dev);
334 name_node = netdev_name_node_lookup(net, name);
335 if (!name_node)
336 return -ENOENT;
337 /* lookup might have found our primary name or a name belonging
338 * to another device.
340 if (name_node == dev->name_node || name_node->dev != dev)
341 return -EINVAL;
343 __netdev_name_node_alt_destroy(name_node);
345 return 0;
347 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
349 static void netdev_name_node_alt_flush(struct net_device *dev)
351 struct netdev_name_node *name_node, *tmp;
353 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354 __netdev_name_node_alt_destroy(name_node);
357 /* Device list insertion */
358 static void list_netdevice(struct net_device *dev)
360 struct net *net = dev_net(dev);
362 ASSERT_RTNL();
364 write_lock_bh(&dev_base_lock);
365 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
366 netdev_name_node_add(net, dev->name_node);
367 hlist_add_head_rcu(&dev->index_hlist,
368 dev_index_hash(net, dev->ifindex));
369 write_unlock_bh(&dev_base_lock);
371 dev_base_seq_inc(net);
374 /* Device list removal
375 * caller must respect a RCU grace period before freeing/reusing dev
377 static void unlist_netdevice(struct net_device *dev)
379 ASSERT_RTNL();
381 /* Unlink dev from the device chain */
382 write_lock_bh(&dev_base_lock);
383 list_del_rcu(&dev->dev_list);
384 netdev_name_node_del(dev->name_node);
385 hlist_del_rcu(&dev->index_hlist);
386 write_unlock_bh(&dev_base_lock);
388 dev_base_seq_inc(dev_net(dev));
392 * Our notifier list
395 static RAW_NOTIFIER_HEAD(netdev_chain);
398 * Device drivers call our routines to queue packets here. We empty the
399 * queue in the local softnet handler.
402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
403 EXPORT_PER_CPU_SYMBOL(softnet_data);
405 #ifdef CONFIG_LOCKDEP
407 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408 * according to dev->type
410 static const unsigned short netdev_lock_type[] = {
411 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
427 static const char *const netdev_lock_name[] = {
428 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
449 int i;
451 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452 if (netdev_lock_type[i] == dev_type)
453 return i;
454 /* the last key is used by default */
455 return ARRAY_SIZE(netdev_lock_type) - 1;
458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459 unsigned short dev_type)
461 int i;
463 i = netdev_lock_pos(dev_type);
464 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465 netdev_lock_name[i]);
468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
470 int i;
472 i = netdev_lock_pos(dev->type);
473 lockdep_set_class_and_name(&dev->addr_list_lock,
474 &netdev_addr_lock_key[i],
475 netdev_lock_name[i]);
477 #else
478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479 unsigned short dev_type)
483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486 #endif
488 /*******************************************************************************
490 * Protocol management and registration routines
492 *******************************************************************************/
496 * Add a protocol ID to the list. Now that the input handler is
497 * smarter we can dispense with all the messy stuff that used to be
498 * here.
500 * BEWARE!!! Protocol handlers, mangling input packets,
501 * MUST BE last in hash buckets and checking protocol handlers
502 * MUST start from promiscuous ptype_all chain in net_bh.
503 * It is true now, do not change it.
504 * Explanation follows: if protocol handler, mangling packet, will
505 * be the first on list, it is not able to sense, that packet
506 * is cloned and should be copied-on-write, so that it will
507 * change it and subsequent readers will get broken packet.
508 * --ANK (980803)
511 static inline struct list_head *ptype_head(const struct packet_type *pt)
513 if (pt->type == htons(ETH_P_ALL))
514 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
515 else
516 return pt->dev ? &pt->dev->ptype_specific :
517 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
521 * dev_add_pack - add packet handler
522 * @pt: packet type declaration
524 * Add a protocol handler to the networking stack. The passed &packet_type
525 * is linked into kernel lists and may not be freed until it has been
526 * removed from the kernel lists.
528 * This call does not sleep therefore it can not
529 * guarantee all CPU's that are in middle of receiving packets
530 * will see the new packet type (until the next received packet).
533 void dev_add_pack(struct packet_type *pt)
535 struct list_head *head = ptype_head(pt);
537 spin_lock(&ptype_lock);
538 list_add_rcu(&pt->list, head);
539 spin_unlock(&ptype_lock);
541 EXPORT_SYMBOL(dev_add_pack);
544 * __dev_remove_pack - remove packet handler
545 * @pt: packet type declaration
547 * Remove a protocol handler that was previously added to the kernel
548 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
549 * from the kernel lists and can be freed or reused once this function
550 * returns.
552 * The packet type might still be in use by receivers
553 * and must not be freed until after all the CPU's have gone
554 * through a quiescent state.
556 void __dev_remove_pack(struct packet_type *pt)
558 struct list_head *head = ptype_head(pt);
559 struct packet_type *pt1;
561 spin_lock(&ptype_lock);
563 list_for_each_entry(pt1, head, list) {
564 if (pt == pt1) {
565 list_del_rcu(&pt->list);
566 goto out;
570 pr_warn("dev_remove_pack: %p not found\n", pt);
571 out:
572 spin_unlock(&ptype_lock);
574 EXPORT_SYMBOL(__dev_remove_pack);
577 * dev_remove_pack - remove packet handler
578 * @pt: packet type declaration
580 * Remove a protocol handler that was previously added to the kernel
581 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
582 * from the kernel lists and can be freed or reused once this function
583 * returns.
585 * This call sleeps to guarantee that no CPU is looking at the packet
586 * type after return.
588 void dev_remove_pack(struct packet_type *pt)
590 __dev_remove_pack(pt);
592 synchronize_net();
594 EXPORT_SYMBOL(dev_remove_pack);
598 * dev_add_offload - register offload handlers
599 * @po: protocol offload declaration
601 * Add protocol offload handlers to the networking stack. The passed
602 * &proto_offload is linked into kernel lists and may not be freed until
603 * it has been removed from the kernel lists.
605 * This call does not sleep therefore it can not
606 * guarantee all CPU's that are in middle of receiving packets
607 * will see the new offload handlers (until the next received packet).
609 void dev_add_offload(struct packet_offload *po)
611 struct packet_offload *elem;
613 spin_lock(&offload_lock);
614 list_for_each_entry(elem, &offload_base, list) {
615 if (po->priority < elem->priority)
616 break;
618 list_add_rcu(&po->list, elem->list.prev);
619 spin_unlock(&offload_lock);
621 EXPORT_SYMBOL(dev_add_offload);
624 * __dev_remove_offload - remove offload handler
625 * @po: packet offload declaration
627 * Remove a protocol offload handler that was previously added to the
628 * kernel offload handlers by dev_add_offload(). The passed &offload_type
629 * is removed from the kernel lists and can be freed or reused once this
630 * function returns.
632 * The packet type might still be in use by receivers
633 * and must not be freed until after all the CPU's have gone
634 * through a quiescent state.
636 static void __dev_remove_offload(struct packet_offload *po)
638 struct list_head *head = &offload_base;
639 struct packet_offload *po1;
641 spin_lock(&offload_lock);
643 list_for_each_entry(po1, head, list) {
644 if (po == po1) {
645 list_del_rcu(&po->list);
646 goto out;
650 pr_warn("dev_remove_offload: %p not found\n", po);
651 out:
652 spin_unlock(&offload_lock);
656 * dev_remove_offload - remove packet offload handler
657 * @po: packet offload declaration
659 * Remove a packet offload handler that was previously added to the kernel
660 * offload handlers by dev_add_offload(). The passed &offload_type is
661 * removed from the kernel lists and can be freed or reused once this
662 * function returns.
664 * This call sleeps to guarantee that no CPU is looking at the packet
665 * type after return.
667 void dev_remove_offload(struct packet_offload *po)
669 __dev_remove_offload(po);
671 synchronize_net();
673 EXPORT_SYMBOL(dev_remove_offload);
675 /******************************************************************************
677 * Device Boot-time Settings Routines
679 ******************************************************************************/
681 /* Boot time configuration table */
682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685 * netdev_boot_setup_add - add new setup entry
686 * @name: name of the device
687 * @map: configured settings for the device
689 * Adds new setup entry to the dev_boot_setup list. The function
690 * returns 0 on error and 1 on success. This is a generic routine to
691 * all netdevices.
693 static int netdev_boot_setup_add(char *name, struct ifmap *map)
695 struct netdev_boot_setup *s;
696 int i;
698 s = dev_boot_setup;
699 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701 memset(s[i].name, 0, sizeof(s[i].name));
702 strlcpy(s[i].name, name, IFNAMSIZ);
703 memcpy(&s[i].map, map, sizeof(s[i].map));
704 break;
708 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
712 * netdev_boot_setup_check - check boot time settings
713 * @dev: the netdevice
715 * Check boot time settings for the device.
716 * The found settings are set for the device to be used
717 * later in the device probing.
718 * Returns 0 if no settings found, 1 if they are.
720 int netdev_boot_setup_check(struct net_device *dev)
722 struct netdev_boot_setup *s = dev_boot_setup;
723 int i;
725 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
727 !strcmp(dev->name, s[i].name)) {
728 dev->irq = s[i].map.irq;
729 dev->base_addr = s[i].map.base_addr;
730 dev->mem_start = s[i].map.mem_start;
731 dev->mem_end = s[i].map.mem_end;
732 return 1;
735 return 0;
737 EXPORT_SYMBOL(netdev_boot_setup_check);
741 * netdev_boot_base - get address from boot time settings
742 * @prefix: prefix for network device
743 * @unit: id for network device
745 * Check boot time settings for the base address of device.
746 * The found settings are set for the device to be used
747 * later in the device probing.
748 * Returns 0 if no settings found.
750 unsigned long netdev_boot_base(const char *prefix, int unit)
752 const struct netdev_boot_setup *s = dev_boot_setup;
753 char name[IFNAMSIZ];
754 int i;
756 sprintf(name, "%s%d", prefix, unit);
759 * If device already registered then return base of 1
760 * to indicate not to probe for this interface
762 if (__dev_get_by_name(&init_net, name))
763 return 1;
765 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766 if (!strcmp(name, s[i].name))
767 return s[i].map.base_addr;
768 return 0;
772 * Saves at boot time configured settings for any netdevice.
774 int __init netdev_boot_setup(char *str)
776 int ints[5];
777 struct ifmap map;
779 str = get_options(str, ARRAY_SIZE(ints), ints);
780 if (!str || !*str)
781 return 0;
783 /* Save settings */
784 memset(&map, 0, sizeof(map));
785 if (ints[0] > 0)
786 map.irq = ints[1];
787 if (ints[0] > 1)
788 map.base_addr = ints[2];
789 if (ints[0] > 2)
790 map.mem_start = ints[3];
791 if (ints[0] > 3)
792 map.mem_end = ints[4];
794 /* Add new entry to the list */
795 return netdev_boot_setup_add(str, &map);
798 __setup("netdev=", netdev_boot_setup);
800 /*******************************************************************************
802 * Device Interface Subroutines
804 *******************************************************************************/
807 * dev_get_iflink - get 'iflink' value of a interface
808 * @dev: targeted interface
810 * Indicates the ifindex the interface is linked to.
811 * Physical interfaces have the same 'ifindex' and 'iflink' values.
814 int dev_get_iflink(const struct net_device *dev)
816 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817 return dev->netdev_ops->ndo_get_iflink(dev);
819 return dev->ifindex;
821 EXPORT_SYMBOL(dev_get_iflink);
824 * dev_fill_metadata_dst - Retrieve tunnel egress information.
825 * @dev: targeted interface
826 * @skb: The packet.
828 * For better visibility of tunnel traffic OVS needs to retrieve
829 * egress tunnel information for a packet. Following API allows
830 * user to get this info.
832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
834 struct ip_tunnel_info *info;
836 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
837 return -EINVAL;
839 info = skb_tunnel_info_unclone(skb);
840 if (!info)
841 return -ENOMEM;
842 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843 return -EINVAL;
845 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850 * __dev_get_by_name - find a device by its name
851 * @net: the applicable net namespace
852 * @name: name to find
854 * Find an interface by name. Must be called under RTNL semaphore
855 * or @dev_base_lock. If the name is found a pointer to the device
856 * is returned. If the name is not found then %NULL is returned. The
857 * reference counters are not incremented so the caller must be
858 * careful with locks.
861 struct net_device *__dev_get_by_name(struct net *net, const char *name)
863 struct netdev_name_node *node_name;
865 node_name = netdev_name_node_lookup(net, name);
866 return node_name ? node_name->dev : NULL;
868 EXPORT_SYMBOL(__dev_get_by_name);
871 * dev_get_by_name_rcu - find a device by its name
872 * @net: the applicable net namespace
873 * @name: name to find
875 * Find an interface by name.
876 * If the name is found a pointer to the device is returned.
877 * If the name is not found then %NULL is returned.
878 * The reference counters are not incremented so the caller must be
879 * careful with locks. The caller must hold RCU lock.
882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
884 struct netdev_name_node *node_name;
886 node_name = netdev_name_node_lookup_rcu(net, name);
887 return node_name ? node_name->dev : NULL;
889 EXPORT_SYMBOL(dev_get_by_name_rcu);
892 * dev_get_by_name - find a device by its name
893 * @net: the applicable net namespace
894 * @name: name to find
896 * Find an interface by name. This can be called from any
897 * context and does its own locking. The returned handle has
898 * the usage count incremented and the caller must use dev_put() to
899 * release it when it is no longer needed. %NULL is returned if no
900 * matching device is found.
903 struct net_device *dev_get_by_name(struct net *net, const char *name)
905 struct net_device *dev;
907 rcu_read_lock();
908 dev = dev_get_by_name_rcu(net, name);
909 if (dev)
910 dev_hold(dev);
911 rcu_read_unlock();
912 return dev;
914 EXPORT_SYMBOL(dev_get_by_name);
917 * __dev_get_by_index - find a device by its ifindex
918 * @net: the applicable net namespace
919 * @ifindex: index of device
921 * Search for an interface by index. Returns %NULL if the device
922 * is not found or a pointer to the device. The device has not
923 * had its reference counter increased so the caller must be careful
924 * about locking. The caller must hold either the RTNL semaphore
925 * or @dev_base_lock.
928 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
930 struct net_device *dev;
931 struct hlist_head *head = dev_index_hash(net, ifindex);
933 hlist_for_each_entry(dev, head, index_hlist)
934 if (dev->ifindex == ifindex)
935 return dev;
937 return NULL;
939 EXPORT_SYMBOL(__dev_get_by_index);
942 * dev_get_by_index_rcu - find a device by its ifindex
943 * @net: the applicable net namespace
944 * @ifindex: index of device
946 * Search for an interface by index. Returns %NULL if the device
947 * is not found or a pointer to the device. The device has not
948 * had its reference counter increased so the caller must be careful
949 * about locking. The caller must hold RCU lock.
952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
954 struct net_device *dev;
955 struct hlist_head *head = dev_index_hash(net, ifindex);
957 hlist_for_each_entry_rcu(dev, head, index_hlist)
958 if (dev->ifindex == ifindex)
959 return dev;
961 return NULL;
963 EXPORT_SYMBOL(dev_get_by_index_rcu);
967 * dev_get_by_index - find a device by its ifindex
968 * @net: the applicable net namespace
969 * @ifindex: index of device
971 * Search for an interface by index. Returns NULL if the device
972 * is not found or a pointer to the device. The device returned has
973 * had a reference added and the pointer is safe until the user calls
974 * dev_put to indicate they have finished with it.
977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
979 struct net_device *dev;
981 rcu_read_lock();
982 dev = dev_get_by_index_rcu(net, ifindex);
983 if (dev)
984 dev_hold(dev);
985 rcu_read_unlock();
986 return dev;
988 EXPORT_SYMBOL(dev_get_by_index);
991 * dev_get_by_napi_id - find a device by napi_id
992 * @napi_id: ID of the NAPI struct
994 * Search for an interface by NAPI ID. Returns %NULL if the device
995 * is not found or a pointer to the device. The device has not had
996 * its reference counter increased so the caller must be careful
997 * about locking. The caller must hold RCU lock.
1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1002 struct napi_struct *napi;
1004 WARN_ON_ONCE(!rcu_read_lock_held());
1006 if (napi_id < MIN_NAPI_ID)
1007 return NULL;
1009 napi = napi_by_id(napi_id);
1011 return napi ? napi->dev : NULL;
1013 EXPORT_SYMBOL(dev_get_by_napi_id);
1016 * netdev_get_name - get a netdevice name, knowing its ifindex.
1017 * @net: network namespace
1018 * @name: a pointer to the buffer where the name will be stored.
1019 * @ifindex: the ifindex of the interface to get the name from.
1021 int netdev_get_name(struct net *net, char *name, int ifindex)
1023 struct net_device *dev;
1024 int ret;
1026 down_read(&devnet_rename_sem);
1027 rcu_read_lock();
1029 dev = dev_get_by_index_rcu(net, ifindex);
1030 if (!dev) {
1031 ret = -ENODEV;
1032 goto out;
1035 strcpy(name, dev->name);
1037 ret = 0;
1038 out:
1039 rcu_read_unlock();
1040 up_read(&devnet_rename_sem);
1041 return ret;
1045 * dev_getbyhwaddr_rcu - find a device by its hardware address
1046 * @net: the applicable net namespace
1047 * @type: media type of device
1048 * @ha: hardware address
1050 * Search for an interface by MAC address. Returns NULL if the device
1051 * is not found or a pointer to the device.
1052 * The caller must hold RCU or RTNL.
1053 * The returned device has not had its ref count increased
1054 * and the caller must therefore be careful about locking
1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059 const char *ha)
1061 struct net_device *dev;
1063 for_each_netdev_rcu(net, dev)
1064 if (dev->type == type &&
1065 !memcmp(dev->dev_addr, ha, dev->addr_len))
1066 return dev;
1068 return NULL;
1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1072 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1074 struct net_device *dev, *ret = NULL;
1076 rcu_read_lock();
1077 for_each_netdev_rcu(net, dev)
1078 if (dev->type == type) {
1079 dev_hold(dev);
1080 ret = dev;
1081 break;
1083 rcu_read_unlock();
1084 return ret;
1086 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1089 * __dev_get_by_flags - find any device with given flags
1090 * @net: the applicable net namespace
1091 * @if_flags: IFF_* values
1092 * @mask: bitmask of bits in if_flags to check
1094 * Search for any interface with the given flags. Returns NULL if a device
1095 * is not found or a pointer to the device. Must be called inside
1096 * rtnl_lock(), and result refcount is unchanged.
1099 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1100 unsigned short mask)
1102 struct net_device *dev, *ret;
1104 ASSERT_RTNL();
1106 ret = NULL;
1107 for_each_netdev(net, dev) {
1108 if (((dev->flags ^ if_flags) & mask) == 0) {
1109 ret = dev;
1110 break;
1113 return ret;
1115 EXPORT_SYMBOL(__dev_get_by_flags);
1118 * dev_valid_name - check if name is okay for network device
1119 * @name: name string
1121 * Network device names need to be valid file names to
1122 * allow sysfs to work. We also disallow any kind of
1123 * whitespace.
1125 bool dev_valid_name(const char *name)
1127 if (*name == '\0')
1128 return false;
1129 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1130 return false;
1131 if (!strcmp(name, ".") || !strcmp(name, ".."))
1132 return false;
1134 while (*name) {
1135 if (*name == '/' || *name == ':' || isspace(*name))
1136 return false;
1137 name++;
1139 return true;
1141 EXPORT_SYMBOL(dev_valid_name);
1144 * __dev_alloc_name - allocate a name for a device
1145 * @net: network namespace to allocate the device name in
1146 * @name: name format string
1147 * @buf: scratch buffer and result name string
1149 * Passed a format string - eg "lt%d" it will try and find a suitable
1150 * id. It scans list of devices to build up a free map, then chooses
1151 * the first empty slot. The caller must hold the dev_base or rtnl lock
1152 * while allocating the name and adding the device in order to avoid
1153 * duplicates.
1154 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1155 * Returns the number of the unit assigned or a negative errno code.
1158 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1160 int i = 0;
1161 const char *p;
1162 const int max_netdevices = 8*PAGE_SIZE;
1163 unsigned long *inuse;
1164 struct net_device *d;
1166 if (!dev_valid_name(name))
1167 return -EINVAL;
1169 p = strchr(name, '%');
1170 if (p) {
1172 * Verify the string as this thing may have come from
1173 * the user. There must be either one "%d" and no other "%"
1174 * characters.
1176 if (p[1] != 'd' || strchr(p + 2, '%'))
1177 return -EINVAL;
1179 /* Use one page as a bit array of possible slots */
1180 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1181 if (!inuse)
1182 return -ENOMEM;
1184 for_each_netdev(net, d) {
1185 if (!sscanf(d->name, name, &i))
1186 continue;
1187 if (i < 0 || i >= max_netdevices)
1188 continue;
1190 /* avoid cases where sscanf is not exact inverse of printf */
1191 snprintf(buf, IFNAMSIZ, name, i);
1192 if (!strncmp(buf, d->name, IFNAMSIZ))
1193 set_bit(i, inuse);
1196 i = find_first_zero_bit(inuse, max_netdevices);
1197 free_page((unsigned long) inuse);
1200 snprintf(buf, IFNAMSIZ, name, i);
1201 if (!__dev_get_by_name(net, buf))
1202 return i;
1204 /* It is possible to run out of possible slots
1205 * when the name is long and there isn't enough space left
1206 * for the digits, or if all bits are used.
1208 return -ENFILE;
1211 static int dev_alloc_name_ns(struct net *net,
1212 struct net_device *dev,
1213 const char *name)
1215 char buf[IFNAMSIZ];
1216 int ret;
1218 BUG_ON(!net);
1219 ret = __dev_alloc_name(net, name, buf);
1220 if (ret >= 0)
1221 strlcpy(dev->name, buf, IFNAMSIZ);
1222 return ret;
1226 * dev_alloc_name - allocate a name for a device
1227 * @dev: device
1228 * @name: name format string
1230 * Passed a format string - eg "lt%d" it will try and find a suitable
1231 * id. It scans list of devices to build up a free map, then chooses
1232 * the first empty slot. The caller must hold the dev_base or rtnl lock
1233 * while allocating the name and adding the device in order to avoid
1234 * duplicates.
1235 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1236 * Returns the number of the unit assigned or a negative errno code.
1239 int dev_alloc_name(struct net_device *dev, const char *name)
1241 return dev_alloc_name_ns(dev_net(dev), dev, name);
1243 EXPORT_SYMBOL(dev_alloc_name);
1245 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1246 const char *name)
1248 BUG_ON(!net);
1250 if (!dev_valid_name(name))
1251 return -EINVAL;
1253 if (strchr(name, '%'))
1254 return dev_alloc_name_ns(net, dev, name);
1255 else if (__dev_get_by_name(net, name))
1256 return -EEXIST;
1257 else if (dev->name != name)
1258 strlcpy(dev->name, name, IFNAMSIZ);
1260 return 0;
1264 * dev_change_name - change name of a device
1265 * @dev: device
1266 * @newname: name (or format string) must be at least IFNAMSIZ
1268 * Change name of a device, can pass format strings "eth%d".
1269 * for wildcarding.
1271 int dev_change_name(struct net_device *dev, const char *newname)
1273 unsigned char old_assign_type;
1274 char oldname[IFNAMSIZ];
1275 int err = 0;
1276 int ret;
1277 struct net *net;
1279 ASSERT_RTNL();
1280 BUG_ON(!dev_net(dev));
1282 net = dev_net(dev);
1284 /* Some auto-enslaved devices e.g. failover slaves are
1285 * special, as userspace might rename the device after
1286 * the interface had been brought up and running since
1287 * the point kernel initiated auto-enslavement. Allow
1288 * live name change even when these slave devices are
1289 * up and running.
1291 * Typically, users of these auto-enslaving devices
1292 * don't actually care about slave name change, as
1293 * they are supposed to operate on master interface
1294 * directly.
1296 if (dev->flags & IFF_UP &&
1297 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1298 return -EBUSY;
1300 down_write(&devnet_rename_sem);
1302 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1303 up_write(&devnet_rename_sem);
1304 return 0;
1307 memcpy(oldname, dev->name, IFNAMSIZ);
1309 err = dev_get_valid_name(net, dev, newname);
1310 if (err < 0) {
1311 up_write(&devnet_rename_sem);
1312 return err;
1315 if (oldname[0] && !strchr(oldname, '%'))
1316 netdev_info(dev, "renamed from %s\n", oldname);
1318 old_assign_type = dev->name_assign_type;
1319 dev->name_assign_type = NET_NAME_RENAMED;
1321 rollback:
1322 ret = device_rename(&dev->dev, dev->name);
1323 if (ret) {
1324 memcpy(dev->name, oldname, IFNAMSIZ);
1325 dev->name_assign_type = old_assign_type;
1326 up_write(&devnet_rename_sem);
1327 return ret;
1330 up_write(&devnet_rename_sem);
1332 netdev_adjacent_rename_links(dev, oldname);
1334 write_lock_bh(&dev_base_lock);
1335 netdev_name_node_del(dev->name_node);
1336 write_unlock_bh(&dev_base_lock);
1338 synchronize_rcu();
1340 write_lock_bh(&dev_base_lock);
1341 netdev_name_node_add(net, dev->name_node);
1342 write_unlock_bh(&dev_base_lock);
1344 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1345 ret = notifier_to_errno(ret);
1347 if (ret) {
1348 /* err >= 0 after dev_alloc_name() or stores the first errno */
1349 if (err >= 0) {
1350 err = ret;
1351 down_write(&devnet_rename_sem);
1352 memcpy(dev->name, oldname, IFNAMSIZ);
1353 memcpy(oldname, newname, IFNAMSIZ);
1354 dev->name_assign_type = old_assign_type;
1355 old_assign_type = NET_NAME_RENAMED;
1356 goto rollback;
1357 } else {
1358 pr_err("%s: name change rollback failed: %d\n",
1359 dev->name, ret);
1363 return err;
1367 * dev_set_alias - change ifalias of a device
1368 * @dev: device
1369 * @alias: name up to IFALIASZ
1370 * @len: limit of bytes to copy from info
1372 * Set ifalias for a device,
1374 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1376 struct dev_ifalias *new_alias = NULL;
1378 if (len >= IFALIASZ)
1379 return -EINVAL;
1381 if (len) {
1382 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1383 if (!new_alias)
1384 return -ENOMEM;
1386 memcpy(new_alias->ifalias, alias, len);
1387 new_alias->ifalias[len] = 0;
1390 mutex_lock(&ifalias_mutex);
1391 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1392 mutex_is_locked(&ifalias_mutex));
1393 mutex_unlock(&ifalias_mutex);
1395 if (new_alias)
1396 kfree_rcu(new_alias, rcuhead);
1398 return len;
1400 EXPORT_SYMBOL(dev_set_alias);
1403 * dev_get_alias - get ifalias of a device
1404 * @dev: device
1405 * @name: buffer to store name of ifalias
1406 * @len: size of buffer
1408 * get ifalias for a device. Caller must make sure dev cannot go
1409 * away, e.g. rcu read lock or own a reference count to device.
1411 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1413 const struct dev_ifalias *alias;
1414 int ret = 0;
1416 rcu_read_lock();
1417 alias = rcu_dereference(dev->ifalias);
1418 if (alias)
1419 ret = snprintf(name, len, "%s", alias->ifalias);
1420 rcu_read_unlock();
1422 return ret;
1426 * netdev_features_change - device changes features
1427 * @dev: device to cause notification
1429 * Called to indicate a device has changed features.
1431 void netdev_features_change(struct net_device *dev)
1433 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1435 EXPORT_SYMBOL(netdev_features_change);
1438 * netdev_state_change - device changes state
1439 * @dev: device to cause notification
1441 * Called to indicate a device has changed state. This function calls
1442 * the notifier chains for netdev_chain and sends a NEWLINK message
1443 * to the routing socket.
1445 void netdev_state_change(struct net_device *dev)
1447 if (dev->flags & IFF_UP) {
1448 struct netdev_notifier_change_info change_info = {
1449 .info.dev = dev,
1452 call_netdevice_notifiers_info(NETDEV_CHANGE,
1453 &change_info.info);
1454 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1457 EXPORT_SYMBOL(netdev_state_change);
1460 * __netdev_notify_peers - notify network peers about existence of @dev,
1461 * to be called when rtnl lock is already held.
1462 * @dev: network device
1464 * Generate traffic such that interested network peers are aware of
1465 * @dev, such as by generating a gratuitous ARP. This may be used when
1466 * a device wants to inform the rest of the network about some sort of
1467 * reconfiguration such as a failover event or virtual machine
1468 * migration.
1470 void __netdev_notify_peers(struct net_device *dev)
1472 ASSERT_RTNL();
1473 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1474 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1476 EXPORT_SYMBOL(__netdev_notify_peers);
1479 * netdev_notify_peers - notify network peers about existence of @dev
1480 * @dev: network device
1482 * Generate traffic such that interested network peers are aware of
1483 * @dev, such as by generating a gratuitous ARP. This may be used when
1484 * a device wants to inform the rest of the network about some sort of
1485 * reconfiguration such as a failover event or virtual machine
1486 * migration.
1488 void netdev_notify_peers(struct net_device *dev)
1490 rtnl_lock();
1491 __netdev_notify_peers(dev);
1492 rtnl_unlock();
1494 EXPORT_SYMBOL(netdev_notify_peers);
1496 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1498 const struct net_device_ops *ops = dev->netdev_ops;
1499 int ret;
1501 ASSERT_RTNL();
1503 if (!netif_device_present(dev)) {
1504 /* may be detached because parent is runtime-suspended */
1505 if (dev->dev.parent)
1506 pm_runtime_resume(dev->dev.parent);
1507 if (!netif_device_present(dev))
1508 return -ENODEV;
1511 /* Block netpoll from trying to do any rx path servicing.
1512 * If we don't do this there is a chance ndo_poll_controller
1513 * or ndo_poll may be running while we open the device
1515 netpoll_poll_disable(dev);
1517 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1518 ret = notifier_to_errno(ret);
1519 if (ret)
1520 return ret;
1522 set_bit(__LINK_STATE_START, &dev->state);
1524 if (ops->ndo_validate_addr)
1525 ret = ops->ndo_validate_addr(dev);
1527 if (!ret && ops->ndo_open)
1528 ret = ops->ndo_open(dev);
1530 netpoll_poll_enable(dev);
1532 if (ret)
1533 clear_bit(__LINK_STATE_START, &dev->state);
1534 else {
1535 dev->flags |= IFF_UP;
1536 dev_set_rx_mode(dev);
1537 dev_activate(dev);
1538 add_device_randomness(dev->dev_addr, dev->addr_len);
1541 return ret;
1545 * dev_open - prepare an interface for use.
1546 * @dev: device to open
1547 * @extack: netlink extended ack
1549 * Takes a device from down to up state. The device's private open
1550 * function is invoked and then the multicast lists are loaded. Finally
1551 * the device is moved into the up state and a %NETDEV_UP message is
1552 * sent to the netdev notifier chain.
1554 * Calling this function on an active interface is a nop. On a failure
1555 * a negative errno code is returned.
1557 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1559 int ret;
1561 if (dev->flags & IFF_UP)
1562 return 0;
1564 ret = __dev_open(dev, extack);
1565 if (ret < 0)
1566 return ret;
1568 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1569 call_netdevice_notifiers(NETDEV_UP, dev);
1571 return ret;
1573 EXPORT_SYMBOL(dev_open);
1575 static void __dev_close_many(struct list_head *head)
1577 struct net_device *dev;
1579 ASSERT_RTNL();
1580 might_sleep();
1582 list_for_each_entry(dev, head, close_list) {
1583 /* Temporarily disable netpoll until the interface is down */
1584 netpoll_poll_disable(dev);
1586 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1588 clear_bit(__LINK_STATE_START, &dev->state);
1590 /* Synchronize to scheduled poll. We cannot touch poll list, it
1591 * can be even on different cpu. So just clear netif_running().
1593 * dev->stop() will invoke napi_disable() on all of it's
1594 * napi_struct instances on this device.
1596 smp_mb__after_atomic(); /* Commit netif_running(). */
1599 dev_deactivate_many(head);
1601 list_for_each_entry(dev, head, close_list) {
1602 const struct net_device_ops *ops = dev->netdev_ops;
1605 * Call the device specific close. This cannot fail.
1606 * Only if device is UP
1608 * We allow it to be called even after a DETACH hot-plug
1609 * event.
1611 if (ops->ndo_stop)
1612 ops->ndo_stop(dev);
1614 dev->flags &= ~IFF_UP;
1615 netpoll_poll_enable(dev);
1619 static void __dev_close(struct net_device *dev)
1621 LIST_HEAD(single);
1623 list_add(&dev->close_list, &single);
1624 __dev_close_many(&single);
1625 list_del(&single);
1628 void dev_close_many(struct list_head *head, bool unlink)
1630 struct net_device *dev, *tmp;
1632 /* Remove the devices that don't need to be closed */
1633 list_for_each_entry_safe(dev, tmp, head, close_list)
1634 if (!(dev->flags & IFF_UP))
1635 list_del_init(&dev->close_list);
1637 __dev_close_many(head);
1639 list_for_each_entry_safe(dev, tmp, head, close_list) {
1640 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1641 call_netdevice_notifiers(NETDEV_DOWN, dev);
1642 if (unlink)
1643 list_del_init(&dev->close_list);
1646 EXPORT_SYMBOL(dev_close_many);
1649 * dev_close - shutdown an interface.
1650 * @dev: device to shutdown
1652 * This function moves an active device into down state. A
1653 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1654 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1655 * chain.
1657 void dev_close(struct net_device *dev)
1659 if (dev->flags & IFF_UP) {
1660 LIST_HEAD(single);
1662 list_add(&dev->close_list, &single);
1663 dev_close_many(&single, true);
1664 list_del(&single);
1667 EXPORT_SYMBOL(dev_close);
1671 * dev_disable_lro - disable Large Receive Offload on a device
1672 * @dev: device
1674 * Disable Large Receive Offload (LRO) on a net device. Must be
1675 * called under RTNL. This is needed if received packets may be
1676 * forwarded to another interface.
1678 void dev_disable_lro(struct net_device *dev)
1680 struct net_device *lower_dev;
1681 struct list_head *iter;
1683 dev->wanted_features &= ~NETIF_F_LRO;
1684 netdev_update_features(dev);
1686 if (unlikely(dev->features & NETIF_F_LRO))
1687 netdev_WARN(dev, "failed to disable LRO!\n");
1689 netdev_for_each_lower_dev(dev, lower_dev, iter)
1690 dev_disable_lro(lower_dev);
1692 EXPORT_SYMBOL(dev_disable_lro);
1695 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1696 * @dev: device
1698 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1699 * called under RTNL. This is needed if Generic XDP is installed on
1700 * the device.
1702 static void dev_disable_gro_hw(struct net_device *dev)
1704 dev->wanted_features &= ~NETIF_F_GRO_HW;
1705 netdev_update_features(dev);
1707 if (unlikely(dev->features & NETIF_F_GRO_HW))
1708 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1711 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1713 #define N(val) \
1714 case NETDEV_##val: \
1715 return "NETDEV_" __stringify(val);
1716 switch (cmd) {
1717 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1718 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1719 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1720 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1721 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1722 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1723 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1724 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1725 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1726 N(PRE_CHANGEADDR)
1728 #undef N
1729 return "UNKNOWN_NETDEV_EVENT";
1731 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1733 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1734 struct net_device *dev)
1736 struct netdev_notifier_info info = {
1737 .dev = dev,
1740 return nb->notifier_call(nb, val, &info);
1743 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1744 struct net_device *dev)
1746 int err;
1748 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1749 err = notifier_to_errno(err);
1750 if (err)
1751 return err;
1753 if (!(dev->flags & IFF_UP))
1754 return 0;
1756 call_netdevice_notifier(nb, NETDEV_UP, dev);
1757 return 0;
1760 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1761 struct net_device *dev)
1763 if (dev->flags & IFF_UP) {
1764 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1765 dev);
1766 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1768 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1771 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1772 struct net *net)
1774 struct net_device *dev;
1775 int err;
1777 for_each_netdev(net, dev) {
1778 err = call_netdevice_register_notifiers(nb, dev);
1779 if (err)
1780 goto rollback;
1782 return 0;
1784 rollback:
1785 for_each_netdev_continue_reverse(net, dev)
1786 call_netdevice_unregister_notifiers(nb, dev);
1787 return err;
1790 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1791 struct net *net)
1793 struct net_device *dev;
1795 for_each_netdev(net, dev)
1796 call_netdevice_unregister_notifiers(nb, dev);
1799 static int dev_boot_phase = 1;
1802 * register_netdevice_notifier - register a network notifier block
1803 * @nb: notifier
1805 * Register a notifier to be called when network device events occur.
1806 * The notifier passed is linked into the kernel structures and must
1807 * not be reused until it has been unregistered. A negative errno code
1808 * is returned on a failure.
1810 * When registered all registration and up events are replayed
1811 * to the new notifier to allow device to have a race free
1812 * view of the network device list.
1815 int register_netdevice_notifier(struct notifier_block *nb)
1817 struct net *net;
1818 int err;
1820 /* Close race with setup_net() and cleanup_net() */
1821 down_write(&pernet_ops_rwsem);
1822 rtnl_lock();
1823 err = raw_notifier_chain_register(&netdev_chain, nb);
1824 if (err)
1825 goto unlock;
1826 if (dev_boot_phase)
1827 goto unlock;
1828 for_each_net(net) {
1829 err = call_netdevice_register_net_notifiers(nb, net);
1830 if (err)
1831 goto rollback;
1834 unlock:
1835 rtnl_unlock();
1836 up_write(&pernet_ops_rwsem);
1837 return err;
1839 rollback:
1840 for_each_net_continue_reverse(net)
1841 call_netdevice_unregister_net_notifiers(nb, net);
1843 raw_notifier_chain_unregister(&netdev_chain, nb);
1844 goto unlock;
1846 EXPORT_SYMBOL(register_netdevice_notifier);
1849 * unregister_netdevice_notifier - unregister a network notifier block
1850 * @nb: notifier
1852 * Unregister a notifier previously registered by
1853 * register_netdevice_notifier(). The notifier is unlinked into the
1854 * kernel structures and may then be reused. A negative errno code
1855 * is returned on a failure.
1857 * After unregistering unregister and down device events are synthesized
1858 * for all devices on the device list to the removed notifier to remove
1859 * the need for special case cleanup code.
1862 int unregister_netdevice_notifier(struct notifier_block *nb)
1864 struct net *net;
1865 int err;
1867 /* Close race with setup_net() and cleanup_net() */
1868 down_write(&pernet_ops_rwsem);
1869 rtnl_lock();
1870 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1871 if (err)
1872 goto unlock;
1874 for_each_net(net)
1875 call_netdevice_unregister_net_notifiers(nb, net);
1877 unlock:
1878 rtnl_unlock();
1879 up_write(&pernet_ops_rwsem);
1880 return err;
1882 EXPORT_SYMBOL(unregister_netdevice_notifier);
1884 static int __register_netdevice_notifier_net(struct net *net,
1885 struct notifier_block *nb,
1886 bool ignore_call_fail)
1888 int err;
1890 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1891 if (err)
1892 return err;
1893 if (dev_boot_phase)
1894 return 0;
1896 err = call_netdevice_register_net_notifiers(nb, net);
1897 if (err && !ignore_call_fail)
1898 goto chain_unregister;
1900 return 0;
1902 chain_unregister:
1903 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1904 return err;
1907 static int __unregister_netdevice_notifier_net(struct net *net,
1908 struct notifier_block *nb)
1910 int err;
1912 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1913 if (err)
1914 return err;
1916 call_netdevice_unregister_net_notifiers(nb, net);
1917 return 0;
1921 * register_netdevice_notifier_net - register a per-netns network notifier block
1922 * @net: network namespace
1923 * @nb: notifier
1925 * Register a notifier to be called when network device events occur.
1926 * The notifier passed is linked into the kernel structures and must
1927 * not be reused until it has been unregistered. A negative errno code
1928 * is returned on a failure.
1930 * When registered all registration and up events are replayed
1931 * to the new notifier to allow device to have a race free
1932 * view of the network device list.
1935 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1937 int err;
1939 rtnl_lock();
1940 err = __register_netdevice_notifier_net(net, nb, false);
1941 rtnl_unlock();
1942 return err;
1944 EXPORT_SYMBOL(register_netdevice_notifier_net);
1947 * unregister_netdevice_notifier_net - unregister a per-netns
1948 * network notifier block
1949 * @net: network namespace
1950 * @nb: notifier
1952 * Unregister a notifier previously registered by
1953 * register_netdevice_notifier(). The notifier is unlinked into the
1954 * kernel structures and may then be reused. A negative errno code
1955 * is returned on a failure.
1957 * After unregistering unregister and down device events are synthesized
1958 * for all devices on the device list to the removed notifier to remove
1959 * the need for special case cleanup code.
1962 int unregister_netdevice_notifier_net(struct net *net,
1963 struct notifier_block *nb)
1965 int err;
1967 rtnl_lock();
1968 err = __unregister_netdevice_notifier_net(net, nb);
1969 rtnl_unlock();
1970 return err;
1972 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1974 int register_netdevice_notifier_dev_net(struct net_device *dev,
1975 struct notifier_block *nb,
1976 struct netdev_net_notifier *nn)
1978 int err;
1980 rtnl_lock();
1981 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1982 if (!err) {
1983 nn->nb = nb;
1984 list_add(&nn->list, &dev->net_notifier_list);
1986 rtnl_unlock();
1987 return err;
1989 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1991 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1992 struct notifier_block *nb,
1993 struct netdev_net_notifier *nn)
1995 int err;
1997 rtnl_lock();
1998 list_del(&nn->list);
1999 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2000 rtnl_unlock();
2001 return err;
2003 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2005 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2006 struct net *net)
2008 struct netdev_net_notifier *nn;
2010 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2011 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2012 __register_netdevice_notifier_net(net, nn->nb, true);
2017 * call_netdevice_notifiers_info - call all network notifier blocks
2018 * @val: value passed unmodified to notifier function
2019 * @info: notifier information data
2021 * Call all network notifier blocks. Parameters and return value
2022 * are as for raw_notifier_call_chain().
2025 static int call_netdevice_notifiers_info(unsigned long val,
2026 struct netdev_notifier_info *info)
2028 struct net *net = dev_net(info->dev);
2029 int ret;
2031 ASSERT_RTNL();
2033 /* Run per-netns notifier block chain first, then run the global one.
2034 * Hopefully, one day, the global one is going to be removed after
2035 * all notifier block registrators get converted to be per-netns.
2037 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2038 if (ret & NOTIFY_STOP_MASK)
2039 return ret;
2040 return raw_notifier_call_chain(&netdev_chain, val, info);
2043 static int call_netdevice_notifiers_extack(unsigned long val,
2044 struct net_device *dev,
2045 struct netlink_ext_ack *extack)
2047 struct netdev_notifier_info info = {
2048 .dev = dev,
2049 .extack = extack,
2052 return call_netdevice_notifiers_info(val, &info);
2056 * call_netdevice_notifiers - call all network notifier blocks
2057 * @val: value passed unmodified to notifier function
2058 * @dev: net_device pointer passed unmodified to notifier function
2060 * Call all network notifier blocks. Parameters and return value
2061 * are as for raw_notifier_call_chain().
2064 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2066 return call_netdevice_notifiers_extack(val, dev, NULL);
2068 EXPORT_SYMBOL(call_netdevice_notifiers);
2071 * call_netdevice_notifiers_mtu - call all network notifier blocks
2072 * @val: value passed unmodified to notifier function
2073 * @dev: net_device pointer passed unmodified to notifier function
2074 * @arg: additional u32 argument passed to the notifier function
2076 * Call all network notifier blocks. Parameters and return value
2077 * are as for raw_notifier_call_chain().
2079 static int call_netdevice_notifiers_mtu(unsigned long val,
2080 struct net_device *dev, u32 arg)
2082 struct netdev_notifier_info_ext info = {
2083 .info.dev = dev,
2084 .ext.mtu = arg,
2087 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2089 return call_netdevice_notifiers_info(val, &info.info);
2092 #ifdef CONFIG_NET_INGRESS
2093 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2095 void net_inc_ingress_queue(void)
2097 static_branch_inc(&ingress_needed_key);
2099 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2101 void net_dec_ingress_queue(void)
2103 static_branch_dec(&ingress_needed_key);
2105 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2106 #endif
2108 #ifdef CONFIG_NET_EGRESS
2109 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2111 void net_inc_egress_queue(void)
2113 static_branch_inc(&egress_needed_key);
2115 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2117 void net_dec_egress_queue(void)
2119 static_branch_dec(&egress_needed_key);
2121 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2122 #endif
2124 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2125 #ifdef CONFIG_JUMP_LABEL
2126 static atomic_t netstamp_needed_deferred;
2127 static atomic_t netstamp_wanted;
2128 static void netstamp_clear(struct work_struct *work)
2130 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2131 int wanted;
2133 wanted = atomic_add_return(deferred, &netstamp_wanted);
2134 if (wanted > 0)
2135 static_branch_enable(&netstamp_needed_key);
2136 else
2137 static_branch_disable(&netstamp_needed_key);
2139 static DECLARE_WORK(netstamp_work, netstamp_clear);
2140 #endif
2142 void net_enable_timestamp(void)
2144 #ifdef CONFIG_JUMP_LABEL
2145 int wanted;
2147 while (1) {
2148 wanted = atomic_read(&netstamp_wanted);
2149 if (wanted <= 0)
2150 break;
2151 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2152 return;
2154 atomic_inc(&netstamp_needed_deferred);
2155 schedule_work(&netstamp_work);
2156 #else
2157 static_branch_inc(&netstamp_needed_key);
2158 #endif
2160 EXPORT_SYMBOL(net_enable_timestamp);
2162 void net_disable_timestamp(void)
2164 #ifdef CONFIG_JUMP_LABEL
2165 int wanted;
2167 while (1) {
2168 wanted = atomic_read(&netstamp_wanted);
2169 if (wanted <= 1)
2170 break;
2171 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2172 return;
2174 atomic_dec(&netstamp_needed_deferred);
2175 schedule_work(&netstamp_work);
2176 #else
2177 static_branch_dec(&netstamp_needed_key);
2178 #endif
2180 EXPORT_SYMBOL(net_disable_timestamp);
2182 static inline void net_timestamp_set(struct sk_buff *skb)
2184 skb->tstamp = 0;
2185 if (static_branch_unlikely(&netstamp_needed_key))
2186 __net_timestamp(skb);
2189 #define net_timestamp_check(COND, SKB) \
2190 if (static_branch_unlikely(&netstamp_needed_key)) { \
2191 if ((COND) && !(SKB)->tstamp) \
2192 __net_timestamp(SKB); \
2195 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2197 unsigned int len;
2199 if (!(dev->flags & IFF_UP))
2200 return false;
2202 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2203 if (skb->len <= len)
2204 return true;
2206 /* if TSO is enabled, we don't care about the length as the packet
2207 * could be forwarded without being segmented before
2209 if (skb_is_gso(skb))
2210 return true;
2212 return false;
2214 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2216 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2218 int ret = ____dev_forward_skb(dev, skb);
2220 if (likely(!ret)) {
2221 skb->protocol = eth_type_trans(skb, dev);
2222 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2225 return ret;
2227 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2230 * dev_forward_skb - loopback an skb to another netif
2232 * @dev: destination network device
2233 * @skb: buffer to forward
2235 * return values:
2236 * NET_RX_SUCCESS (no congestion)
2237 * NET_RX_DROP (packet was dropped, but freed)
2239 * dev_forward_skb can be used for injecting an skb from the
2240 * start_xmit function of one device into the receive queue
2241 * of another device.
2243 * The receiving device may be in another namespace, so
2244 * we have to clear all information in the skb that could
2245 * impact namespace isolation.
2247 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2249 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2251 EXPORT_SYMBOL_GPL(dev_forward_skb);
2253 static inline int deliver_skb(struct sk_buff *skb,
2254 struct packet_type *pt_prev,
2255 struct net_device *orig_dev)
2257 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2258 return -ENOMEM;
2259 refcount_inc(&skb->users);
2260 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2263 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2264 struct packet_type **pt,
2265 struct net_device *orig_dev,
2266 __be16 type,
2267 struct list_head *ptype_list)
2269 struct packet_type *ptype, *pt_prev = *pt;
2271 list_for_each_entry_rcu(ptype, ptype_list, list) {
2272 if (ptype->type != type)
2273 continue;
2274 if (pt_prev)
2275 deliver_skb(skb, pt_prev, orig_dev);
2276 pt_prev = ptype;
2278 *pt = pt_prev;
2281 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2283 if (!ptype->af_packet_priv || !skb->sk)
2284 return false;
2286 if (ptype->id_match)
2287 return ptype->id_match(ptype, skb->sk);
2288 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2289 return true;
2291 return false;
2295 * dev_nit_active - return true if any network interface taps are in use
2297 * @dev: network device to check for the presence of taps
2299 bool dev_nit_active(struct net_device *dev)
2301 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2303 EXPORT_SYMBOL_GPL(dev_nit_active);
2306 * Support routine. Sends outgoing frames to any network
2307 * taps currently in use.
2310 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2312 struct packet_type *ptype;
2313 struct sk_buff *skb2 = NULL;
2314 struct packet_type *pt_prev = NULL;
2315 struct list_head *ptype_list = &ptype_all;
2317 rcu_read_lock();
2318 again:
2319 list_for_each_entry_rcu(ptype, ptype_list, list) {
2320 if (ptype->ignore_outgoing)
2321 continue;
2323 /* Never send packets back to the socket
2324 * they originated from - MvS (miquels@drinkel.ow.org)
2326 if (skb_loop_sk(ptype, skb))
2327 continue;
2329 if (pt_prev) {
2330 deliver_skb(skb2, pt_prev, skb->dev);
2331 pt_prev = ptype;
2332 continue;
2335 /* need to clone skb, done only once */
2336 skb2 = skb_clone(skb, GFP_ATOMIC);
2337 if (!skb2)
2338 goto out_unlock;
2340 net_timestamp_set(skb2);
2342 /* skb->nh should be correctly
2343 * set by sender, so that the second statement is
2344 * just protection against buggy protocols.
2346 skb_reset_mac_header(skb2);
2348 if (skb_network_header(skb2) < skb2->data ||
2349 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2350 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2351 ntohs(skb2->protocol),
2352 dev->name);
2353 skb_reset_network_header(skb2);
2356 skb2->transport_header = skb2->network_header;
2357 skb2->pkt_type = PACKET_OUTGOING;
2358 pt_prev = ptype;
2361 if (ptype_list == &ptype_all) {
2362 ptype_list = &dev->ptype_all;
2363 goto again;
2365 out_unlock:
2366 if (pt_prev) {
2367 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2368 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2369 else
2370 kfree_skb(skb2);
2372 rcu_read_unlock();
2374 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2377 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2378 * @dev: Network device
2379 * @txq: number of queues available
2381 * If real_num_tx_queues is changed the tc mappings may no longer be
2382 * valid. To resolve this verify the tc mapping remains valid and if
2383 * not NULL the mapping. With no priorities mapping to this
2384 * offset/count pair it will no longer be used. In the worst case TC0
2385 * is invalid nothing can be done so disable priority mappings. If is
2386 * expected that drivers will fix this mapping if they can before
2387 * calling netif_set_real_num_tx_queues.
2389 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2391 int i;
2392 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2394 /* If TC0 is invalidated disable TC mapping */
2395 if (tc->offset + tc->count > txq) {
2396 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2397 dev->num_tc = 0;
2398 return;
2401 /* Invalidated prio to tc mappings set to TC0 */
2402 for (i = 1; i < TC_BITMASK + 1; i++) {
2403 int q = netdev_get_prio_tc_map(dev, i);
2405 tc = &dev->tc_to_txq[q];
2406 if (tc->offset + tc->count > txq) {
2407 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2408 i, q);
2409 netdev_set_prio_tc_map(dev, i, 0);
2414 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2416 if (dev->num_tc) {
2417 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2418 int i;
2420 /* walk through the TCs and see if it falls into any of them */
2421 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2422 if ((txq - tc->offset) < tc->count)
2423 return i;
2426 /* didn't find it, just return -1 to indicate no match */
2427 return -1;
2430 return 0;
2432 EXPORT_SYMBOL(netdev_txq_to_tc);
2434 #ifdef CONFIG_XPS
2435 struct static_key xps_needed __read_mostly;
2436 EXPORT_SYMBOL(xps_needed);
2437 struct static_key xps_rxqs_needed __read_mostly;
2438 EXPORT_SYMBOL(xps_rxqs_needed);
2439 static DEFINE_MUTEX(xps_map_mutex);
2440 #define xmap_dereference(P) \
2441 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2443 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2444 int tci, u16 index)
2446 struct xps_map *map = NULL;
2447 int pos;
2449 if (dev_maps)
2450 map = xmap_dereference(dev_maps->attr_map[tci]);
2451 if (!map)
2452 return false;
2454 for (pos = map->len; pos--;) {
2455 if (map->queues[pos] != index)
2456 continue;
2458 if (map->len > 1) {
2459 map->queues[pos] = map->queues[--map->len];
2460 break;
2463 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2464 kfree_rcu(map, rcu);
2465 return false;
2468 return true;
2471 static bool remove_xps_queue_cpu(struct net_device *dev,
2472 struct xps_dev_maps *dev_maps,
2473 int cpu, u16 offset, u16 count)
2475 int num_tc = dev->num_tc ? : 1;
2476 bool active = false;
2477 int tci;
2479 for (tci = cpu * num_tc; num_tc--; tci++) {
2480 int i, j;
2482 for (i = count, j = offset; i--; j++) {
2483 if (!remove_xps_queue(dev_maps, tci, j))
2484 break;
2487 active |= i < 0;
2490 return active;
2493 static void reset_xps_maps(struct net_device *dev,
2494 struct xps_dev_maps *dev_maps,
2495 bool is_rxqs_map)
2497 if (is_rxqs_map) {
2498 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2499 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2500 } else {
2501 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2503 static_key_slow_dec_cpuslocked(&xps_needed);
2504 kfree_rcu(dev_maps, rcu);
2507 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2508 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2509 u16 offset, u16 count, bool is_rxqs_map)
2511 bool active = false;
2512 int i, j;
2514 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2515 j < nr_ids;)
2516 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2517 count);
2518 if (!active)
2519 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2521 if (!is_rxqs_map) {
2522 for (i = offset + (count - 1); count--; i--) {
2523 netdev_queue_numa_node_write(
2524 netdev_get_tx_queue(dev, i),
2525 NUMA_NO_NODE);
2530 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2531 u16 count)
2533 const unsigned long *possible_mask = NULL;
2534 struct xps_dev_maps *dev_maps;
2535 unsigned int nr_ids;
2537 if (!static_key_false(&xps_needed))
2538 return;
2540 cpus_read_lock();
2541 mutex_lock(&xps_map_mutex);
2543 if (static_key_false(&xps_rxqs_needed)) {
2544 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2545 if (dev_maps) {
2546 nr_ids = dev->num_rx_queues;
2547 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2548 offset, count, true);
2552 dev_maps = xmap_dereference(dev->xps_cpus_map);
2553 if (!dev_maps)
2554 goto out_no_maps;
2556 if (num_possible_cpus() > 1)
2557 possible_mask = cpumask_bits(cpu_possible_mask);
2558 nr_ids = nr_cpu_ids;
2559 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2560 false);
2562 out_no_maps:
2563 mutex_unlock(&xps_map_mutex);
2564 cpus_read_unlock();
2567 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2569 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2572 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2573 u16 index, bool is_rxqs_map)
2575 struct xps_map *new_map;
2576 int alloc_len = XPS_MIN_MAP_ALLOC;
2577 int i, pos;
2579 for (pos = 0; map && pos < map->len; pos++) {
2580 if (map->queues[pos] != index)
2581 continue;
2582 return map;
2585 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2586 if (map) {
2587 if (pos < map->alloc_len)
2588 return map;
2590 alloc_len = map->alloc_len * 2;
2593 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2594 * map
2596 if (is_rxqs_map)
2597 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2598 else
2599 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2600 cpu_to_node(attr_index));
2601 if (!new_map)
2602 return NULL;
2604 for (i = 0; i < pos; i++)
2605 new_map->queues[i] = map->queues[i];
2606 new_map->alloc_len = alloc_len;
2607 new_map->len = pos;
2609 return new_map;
2612 /* Must be called under cpus_read_lock */
2613 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2614 u16 index, bool is_rxqs_map)
2616 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2617 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2618 int i, j, tci, numa_node_id = -2;
2619 int maps_sz, num_tc = 1, tc = 0;
2620 struct xps_map *map, *new_map;
2621 bool active = false;
2622 unsigned int nr_ids;
2624 if (dev->num_tc) {
2625 /* Do not allow XPS on subordinate device directly */
2626 num_tc = dev->num_tc;
2627 if (num_tc < 0)
2628 return -EINVAL;
2630 /* If queue belongs to subordinate dev use its map */
2631 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2633 tc = netdev_txq_to_tc(dev, index);
2634 if (tc < 0)
2635 return -EINVAL;
2638 mutex_lock(&xps_map_mutex);
2639 if (is_rxqs_map) {
2640 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2641 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2642 nr_ids = dev->num_rx_queues;
2643 } else {
2644 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2645 if (num_possible_cpus() > 1) {
2646 online_mask = cpumask_bits(cpu_online_mask);
2647 possible_mask = cpumask_bits(cpu_possible_mask);
2649 dev_maps = xmap_dereference(dev->xps_cpus_map);
2650 nr_ids = nr_cpu_ids;
2653 if (maps_sz < L1_CACHE_BYTES)
2654 maps_sz = L1_CACHE_BYTES;
2656 /* allocate memory for queue storage */
2657 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2658 j < nr_ids;) {
2659 if (!new_dev_maps)
2660 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2661 if (!new_dev_maps) {
2662 mutex_unlock(&xps_map_mutex);
2663 return -ENOMEM;
2666 tci = j * num_tc + tc;
2667 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2668 NULL;
2670 map = expand_xps_map(map, j, index, is_rxqs_map);
2671 if (!map)
2672 goto error;
2674 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2677 if (!new_dev_maps)
2678 goto out_no_new_maps;
2680 if (!dev_maps) {
2681 /* Increment static keys at most once per type */
2682 static_key_slow_inc_cpuslocked(&xps_needed);
2683 if (is_rxqs_map)
2684 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2687 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2688 j < nr_ids;) {
2689 /* copy maps belonging to foreign traffic classes */
2690 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2691 /* fill in the new device map from the old device map */
2692 map = xmap_dereference(dev_maps->attr_map[tci]);
2693 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2696 /* We need to explicitly update tci as prevous loop
2697 * could break out early if dev_maps is NULL.
2699 tci = j * num_tc + tc;
2701 if (netif_attr_test_mask(j, mask, nr_ids) &&
2702 netif_attr_test_online(j, online_mask, nr_ids)) {
2703 /* add tx-queue to CPU/rx-queue maps */
2704 int pos = 0;
2706 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2707 while ((pos < map->len) && (map->queues[pos] != index))
2708 pos++;
2710 if (pos == map->len)
2711 map->queues[map->len++] = index;
2712 #ifdef CONFIG_NUMA
2713 if (!is_rxqs_map) {
2714 if (numa_node_id == -2)
2715 numa_node_id = cpu_to_node(j);
2716 else if (numa_node_id != cpu_to_node(j))
2717 numa_node_id = -1;
2719 #endif
2720 } else if (dev_maps) {
2721 /* fill in the new device map from the old device map */
2722 map = xmap_dereference(dev_maps->attr_map[tci]);
2723 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2726 /* copy maps belonging to foreign traffic classes */
2727 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2728 /* fill in the new device map from the old device map */
2729 map = xmap_dereference(dev_maps->attr_map[tci]);
2730 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2734 if (is_rxqs_map)
2735 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2736 else
2737 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2739 /* Cleanup old maps */
2740 if (!dev_maps)
2741 goto out_no_old_maps;
2743 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2744 j < nr_ids;) {
2745 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2746 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2747 map = xmap_dereference(dev_maps->attr_map[tci]);
2748 if (map && map != new_map)
2749 kfree_rcu(map, rcu);
2753 kfree_rcu(dev_maps, rcu);
2755 out_no_old_maps:
2756 dev_maps = new_dev_maps;
2757 active = true;
2759 out_no_new_maps:
2760 if (!is_rxqs_map) {
2761 /* update Tx queue numa node */
2762 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2763 (numa_node_id >= 0) ?
2764 numa_node_id : NUMA_NO_NODE);
2767 if (!dev_maps)
2768 goto out_no_maps;
2770 /* removes tx-queue from unused CPUs/rx-queues */
2771 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2772 j < nr_ids;) {
2773 for (i = tc, tci = j * num_tc; i--; tci++)
2774 active |= remove_xps_queue(dev_maps, tci, index);
2775 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2776 !netif_attr_test_online(j, online_mask, nr_ids))
2777 active |= remove_xps_queue(dev_maps, tci, index);
2778 for (i = num_tc - tc, tci++; --i; tci++)
2779 active |= remove_xps_queue(dev_maps, tci, index);
2782 /* free map if not active */
2783 if (!active)
2784 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2786 out_no_maps:
2787 mutex_unlock(&xps_map_mutex);
2789 return 0;
2790 error:
2791 /* remove any maps that we added */
2792 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2793 j < nr_ids;) {
2794 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2795 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2796 map = dev_maps ?
2797 xmap_dereference(dev_maps->attr_map[tci]) :
2798 NULL;
2799 if (new_map && new_map != map)
2800 kfree(new_map);
2804 mutex_unlock(&xps_map_mutex);
2806 kfree(new_dev_maps);
2807 return -ENOMEM;
2809 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2811 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2812 u16 index)
2814 int ret;
2816 cpus_read_lock();
2817 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2818 cpus_read_unlock();
2820 return ret;
2822 EXPORT_SYMBOL(netif_set_xps_queue);
2824 #endif
2825 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2827 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2829 /* Unbind any subordinate channels */
2830 while (txq-- != &dev->_tx[0]) {
2831 if (txq->sb_dev)
2832 netdev_unbind_sb_channel(dev, txq->sb_dev);
2836 void netdev_reset_tc(struct net_device *dev)
2838 #ifdef CONFIG_XPS
2839 netif_reset_xps_queues_gt(dev, 0);
2840 #endif
2841 netdev_unbind_all_sb_channels(dev);
2843 /* Reset TC configuration of device */
2844 dev->num_tc = 0;
2845 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2846 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2848 EXPORT_SYMBOL(netdev_reset_tc);
2850 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2852 if (tc >= dev->num_tc)
2853 return -EINVAL;
2855 #ifdef CONFIG_XPS
2856 netif_reset_xps_queues(dev, offset, count);
2857 #endif
2858 dev->tc_to_txq[tc].count = count;
2859 dev->tc_to_txq[tc].offset = offset;
2860 return 0;
2862 EXPORT_SYMBOL(netdev_set_tc_queue);
2864 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2866 if (num_tc > TC_MAX_QUEUE)
2867 return -EINVAL;
2869 #ifdef CONFIG_XPS
2870 netif_reset_xps_queues_gt(dev, 0);
2871 #endif
2872 netdev_unbind_all_sb_channels(dev);
2874 dev->num_tc = num_tc;
2875 return 0;
2877 EXPORT_SYMBOL(netdev_set_num_tc);
2879 void netdev_unbind_sb_channel(struct net_device *dev,
2880 struct net_device *sb_dev)
2882 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2884 #ifdef CONFIG_XPS
2885 netif_reset_xps_queues_gt(sb_dev, 0);
2886 #endif
2887 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2888 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2890 while (txq-- != &dev->_tx[0]) {
2891 if (txq->sb_dev == sb_dev)
2892 txq->sb_dev = NULL;
2895 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2897 int netdev_bind_sb_channel_queue(struct net_device *dev,
2898 struct net_device *sb_dev,
2899 u8 tc, u16 count, u16 offset)
2901 /* Make certain the sb_dev and dev are already configured */
2902 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2903 return -EINVAL;
2905 /* We cannot hand out queues we don't have */
2906 if ((offset + count) > dev->real_num_tx_queues)
2907 return -EINVAL;
2909 /* Record the mapping */
2910 sb_dev->tc_to_txq[tc].count = count;
2911 sb_dev->tc_to_txq[tc].offset = offset;
2913 /* Provide a way for Tx queue to find the tc_to_txq map or
2914 * XPS map for itself.
2916 while (count--)
2917 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2919 return 0;
2921 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2923 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2925 /* Do not use a multiqueue device to represent a subordinate channel */
2926 if (netif_is_multiqueue(dev))
2927 return -ENODEV;
2929 /* We allow channels 1 - 32767 to be used for subordinate channels.
2930 * Channel 0 is meant to be "native" mode and used only to represent
2931 * the main root device. We allow writing 0 to reset the device back
2932 * to normal mode after being used as a subordinate channel.
2934 if (channel > S16_MAX)
2935 return -EINVAL;
2937 dev->num_tc = -channel;
2939 return 0;
2941 EXPORT_SYMBOL(netdev_set_sb_channel);
2944 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2945 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2947 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2949 bool disabling;
2950 int rc;
2952 disabling = txq < dev->real_num_tx_queues;
2954 if (txq < 1 || txq > dev->num_tx_queues)
2955 return -EINVAL;
2957 if (dev->reg_state == NETREG_REGISTERED ||
2958 dev->reg_state == NETREG_UNREGISTERING) {
2959 ASSERT_RTNL();
2961 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2962 txq);
2963 if (rc)
2964 return rc;
2966 if (dev->num_tc)
2967 netif_setup_tc(dev, txq);
2969 dev->real_num_tx_queues = txq;
2971 if (disabling) {
2972 synchronize_net();
2973 qdisc_reset_all_tx_gt(dev, txq);
2974 #ifdef CONFIG_XPS
2975 netif_reset_xps_queues_gt(dev, txq);
2976 #endif
2978 } else {
2979 dev->real_num_tx_queues = txq;
2982 return 0;
2984 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2986 #ifdef CONFIG_SYSFS
2988 * netif_set_real_num_rx_queues - set actual number of RX queues used
2989 * @dev: Network device
2990 * @rxq: Actual number of RX queues
2992 * This must be called either with the rtnl_lock held or before
2993 * registration of the net device. Returns 0 on success, or a
2994 * negative error code. If called before registration, it always
2995 * succeeds.
2997 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2999 int rc;
3001 if (rxq < 1 || rxq > dev->num_rx_queues)
3002 return -EINVAL;
3004 if (dev->reg_state == NETREG_REGISTERED) {
3005 ASSERT_RTNL();
3007 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3008 rxq);
3009 if (rc)
3010 return rc;
3013 dev->real_num_rx_queues = rxq;
3014 return 0;
3016 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3017 #endif
3020 * netif_get_num_default_rss_queues - default number of RSS queues
3022 * This routine should set an upper limit on the number of RSS queues
3023 * used by default by multiqueue devices.
3025 int netif_get_num_default_rss_queues(void)
3027 return is_kdump_kernel() ?
3028 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3030 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3032 static void __netif_reschedule(struct Qdisc *q)
3034 struct softnet_data *sd;
3035 unsigned long flags;
3037 local_irq_save(flags);
3038 sd = this_cpu_ptr(&softnet_data);
3039 q->next_sched = NULL;
3040 *sd->output_queue_tailp = q;
3041 sd->output_queue_tailp = &q->next_sched;
3042 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3043 local_irq_restore(flags);
3046 void __netif_schedule(struct Qdisc *q)
3048 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3049 __netif_reschedule(q);
3051 EXPORT_SYMBOL(__netif_schedule);
3053 struct dev_kfree_skb_cb {
3054 enum skb_free_reason reason;
3057 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3059 return (struct dev_kfree_skb_cb *)skb->cb;
3062 void netif_schedule_queue(struct netdev_queue *txq)
3064 rcu_read_lock();
3065 if (!netif_xmit_stopped(txq)) {
3066 struct Qdisc *q = rcu_dereference(txq->qdisc);
3068 __netif_schedule(q);
3070 rcu_read_unlock();
3072 EXPORT_SYMBOL(netif_schedule_queue);
3074 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3076 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3077 struct Qdisc *q;
3079 rcu_read_lock();
3080 q = rcu_dereference(dev_queue->qdisc);
3081 __netif_schedule(q);
3082 rcu_read_unlock();
3085 EXPORT_SYMBOL(netif_tx_wake_queue);
3087 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3089 unsigned long flags;
3091 if (unlikely(!skb))
3092 return;
3094 if (likely(refcount_read(&skb->users) == 1)) {
3095 smp_rmb();
3096 refcount_set(&skb->users, 0);
3097 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3098 return;
3100 get_kfree_skb_cb(skb)->reason = reason;
3101 local_irq_save(flags);
3102 skb->next = __this_cpu_read(softnet_data.completion_queue);
3103 __this_cpu_write(softnet_data.completion_queue, skb);
3104 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3105 local_irq_restore(flags);
3107 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3109 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3111 if (in_irq() || irqs_disabled())
3112 __dev_kfree_skb_irq(skb, reason);
3113 else
3114 dev_kfree_skb(skb);
3116 EXPORT_SYMBOL(__dev_kfree_skb_any);
3120 * netif_device_detach - mark device as removed
3121 * @dev: network device
3123 * Mark device as removed from system and therefore no longer available.
3125 void netif_device_detach(struct net_device *dev)
3127 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3128 netif_running(dev)) {
3129 netif_tx_stop_all_queues(dev);
3132 EXPORT_SYMBOL(netif_device_detach);
3135 * netif_device_attach - mark device as attached
3136 * @dev: network device
3138 * Mark device as attached from system and restart if needed.
3140 void netif_device_attach(struct net_device *dev)
3142 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3143 netif_running(dev)) {
3144 netif_tx_wake_all_queues(dev);
3145 __netdev_watchdog_up(dev);
3148 EXPORT_SYMBOL(netif_device_attach);
3151 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3152 * to be used as a distribution range.
3154 static u16 skb_tx_hash(const struct net_device *dev,
3155 const struct net_device *sb_dev,
3156 struct sk_buff *skb)
3158 u32 hash;
3159 u16 qoffset = 0;
3160 u16 qcount = dev->real_num_tx_queues;
3162 if (dev->num_tc) {
3163 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3165 qoffset = sb_dev->tc_to_txq[tc].offset;
3166 qcount = sb_dev->tc_to_txq[tc].count;
3169 if (skb_rx_queue_recorded(skb)) {
3170 hash = skb_get_rx_queue(skb);
3171 if (hash >= qoffset)
3172 hash -= qoffset;
3173 while (unlikely(hash >= qcount))
3174 hash -= qcount;
3175 return hash + qoffset;
3178 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3181 static void skb_warn_bad_offload(const struct sk_buff *skb)
3183 static const netdev_features_t null_features;
3184 struct net_device *dev = skb->dev;
3185 const char *name = "";
3187 if (!net_ratelimit())
3188 return;
3190 if (dev) {
3191 if (dev->dev.parent)
3192 name = dev_driver_string(dev->dev.parent);
3193 else
3194 name = netdev_name(dev);
3196 skb_dump(KERN_WARNING, skb, false);
3197 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3198 name, dev ? &dev->features : &null_features,
3199 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3203 * Invalidate hardware checksum when packet is to be mangled, and
3204 * complete checksum manually on outgoing path.
3206 int skb_checksum_help(struct sk_buff *skb)
3208 __wsum csum;
3209 int ret = 0, offset;
3211 if (skb->ip_summed == CHECKSUM_COMPLETE)
3212 goto out_set_summed;
3214 if (unlikely(skb_is_gso(skb))) {
3215 skb_warn_bad_offload(skb);
3216 return -EINVAL;
3219 /* Before computing a checksum, we should make sure no frag could
3220 * be modified by an external entity : checksum could be wrong.
3222 if (skb_has_shared_frag(skb)) {
3223 ret = __skb_linearize(skb);
3224 if (ret)
3225 goto out;
3228 offset = skb_checksum_start_offset(skb);
3229 BUG_ON(offset >= skb_headlen(skb));
3230 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3232 offset += skb->csum_offset;
3233 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3235 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3236 if (ret)
3237 goto out;
3239 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3240 out_set_summed:
3241 skb->ip_summed = CHECKSUM_NONE;
3242 out:
3243 return ret;
3245 EXPORT_SYMBOL(skb_checksum_help);
3247 int skb_crc32c_csum_help(struct sk_buff *skb)
3249 __le32 crc32c_csum;
3250 int ret = 0, offset, start;
3252 if (skb->ip_summed != CHECKSUM_PARTIAL)
3253 goto out;
3255 if (unlikely(skb_is_gso(skb)))
3256 goto out;
3258 /* Before computing a checksum, we should make sure no frag could
3259 * be modified by an external entity : checksum could be wrong.
3261 if (unlikely(skb_has_shared_frag(skb))) {
3262 ret = __skb_linearize(skb);
3263 if (ret)
3264 goto out;
3266 start = skb_checksum_start_offset(skb);
3267 offset = start + offsetof(struct sctphdr, checksum);
3268 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3269 ret = -EINVAL;
3270 goto out;
3273 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3274 if (ret)
3275 goto out;
3277 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3278 skb->len - start, ~(__u32)0,
3279 crc32c_csum_stub));
3280 *(__le32 *)(skb->data + offset) = crc32c_csum;
3281 skb->ip_summed = CHECKSUM_NONE;
3282 skb->csum_not_inet = 0;
3283 out:
3284 return ret;
3287 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3289 __be16 type = skb->protocol;
3291 /* Tunnel gso handlers can set protocol to ethernet. */
3292 if (type == htons(ETH_P_TEB)) {
3293 struct ethhdr *eth;
3295 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3296 return 0;
3298 eth = (struct ethhdr *)skb->data;
3299 type = eth->h_proto;
3302 return __vlan_get_protocol(skb, type, depth);
3306 * skb_mac_gso_segment - mac layer segmentation handler.
3307 * @skb: buffer to segment
3308 * @features: features for the output path (see dev->features)
3310 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3311 netdev_features_t features)
3313 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3314 struct packet_offload *ptype;
3315 int vlan_depth = skb->mac_len;
3316 __be16 type = skb_network_protocol(skb, &vlan_depth);
3318 if (unlikely(!type))
3319 return ERR_PTR(-EINVAL);
3321 __skb_pull(skb, vlan_depth);
3323 rcu_read_lock();
3324 list_for_each_entry_rcu(ptype, &offload_base, list) {
3325 if (ptype->type == type && ptype->callbacks.gso_segment) {
3326 segs = ptype->callbacks.gso_segment(skb, features);
3327 break;
3330 rcu_read_unlock();
3332 __skb_push(skb, skb->data - skb_mac_header(skb));
3334 return segs;
3336 EXPORT_SYMBOL(skb_mac_gso_segment);
3339 /* openvswitch calls this on rx path, so we need a different check.
3341 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3343 if (tx_path)
3344 return skb->ip_summed != CHECKSUM_PARTIAL &&
3345 skb->ip_summed != CHECKSUM_UNNECESSARY;
3347 return skb->ip_summed == CHECKSUM_NONE;
3351 * __skb_gso_segment - Perform segmentation on skb.
3352 * @skb: buffer to segment
3353 * @features: features for the output path (see dev->features)
3354 * @tx_path: whether it is called in TX path
3356 * This function segments the given skb and returns a list of segments.
3358 * It may return NULL if the skb requires no segmentation. This is
3359 * only possible when GSO is used for verifying header integrity.
3361 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3363 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3364 netdev_features_t features, bool tx_path)
3366 struct sk_buff *segs;
3368 if (unlikely(skb_needs_check(skb, tx_path))) {
3369 int err;
3371 /* We're going to init ->check field in TCP or UDP header */
3372 err = skb_cow_head(skb, 0);
3373 if (err < 0)
3374 return ERR_PTR(err);
3377 /* Only report GSO partial support if it will enable us to
3378 * support segmentation on this frame without needing additional
3379 * work.
3381 if (features & NETIF_F_GSO_PARTIAL) {
3382 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3383 struct net_device *dev = skb->dev;
3385 partial_features |= dev->features & dev->gso_partial_features;
3386 if (!skb_gso_ok(skb, features | partial_features))
3387 features &= ~NETIF_F_GSO_PARTIAL;
3390 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3391 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3393 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3394 SKB_GSO_CB(skb)->encap_level = 0;
3396 skb_reset_mac_header(skb);
3397 skb_reset_mac_len(skb);
3399 segs = skb_mac_gso_segment(skb, features);
3401 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3402 skb_warn_bad_offload(skb);
3404 return segs;
3406 EXPORT_SYMBOL(__skb_gso_segment);
3408 /* Take action when hardware reception checksum errors are detected. */
3409 #ifdef CONFIG_BUG
3410 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3412 if (net_ratelimit()) {
3413 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3414 skb_dump(KERN_ERR, skb, true);
3415 dump_stack();
3418 EXPORT_SYMBOL(netdev_rx_csum_fault);
3419 #endif
3421 /* XXX: check that highmem exists at all on the given machine. */
3422 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3424 #ifdef CONFIG_HIGHMEM
3425 int i;
3427 if (!(dev->features & NETIF_F_HIGHDMA)) {
3428 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3429 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3431 if (PageHighMem(skb_frag_page(frag)))
3432 return 1;
3435 #endif
3436 return 0;
3439 /* If MPLS offload request, verify we are testing hardware MPLS features
3440 * instead of standard features for the netdev.
3442 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3443 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3444 netdev_features_t features,
3445 __be16 type)
3447 if (eth_p_mpls(type))
3448 features &= skb->dev->mpls_features;
3450 return features;
3452 #else
3453 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454 netdev_features_t features,
3455 __be16 type)
3457 return features;
3459 #endif
3461 static netdev_features_t harmonize_features(struct sk_buff *skb,
3462 netdev_features_t features)
3464 __be16 type;
3466 type = skb_network_protocol(skb, NULL);
3467 features = net_mpls_features(skb, features, type);
3469 if (skb->ip_summed != CHECKSUM_NONE &&
3470 !can_checksum_protocol(features, type)) {
3471 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3473 if (illegal_highdma(skb->dev, skb))
3474 features &= ~NETIF_F_SG;
3476 return features;
3479 netdev_features_t passthru_features_check(struct sk_buff *skb,
3480 struct net_device *dev,
3481 netdev_features_t features)
3483 return features;
3485 EXPORT_SYMBOL(passthru_features_check);
3487 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3488 struct net_device *dev,
3489 netdev_features_t features)
3491 return vlan_features_check(skb, features);
3494 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3495 struct net_device *dev,
3496 netdev_features_t features)
3498 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3500 if (gso_segs > dev->gso_max_segs)
3501 return features & ~NETIF_F_GSO_MASK;
3503 if (!skb_shinfo(skb)->gso_type) {
3504 skb_warn_bad_offload(skb);
3505 return features & ~NETIF_F_GSO_MASK;
3508 /* Support for GSO partial features requires software
3509 * intervention before we can actually process the packets
3510 * so we need to strip support for any partial features now
3511 * and we can pull them back in after we have partially
3512 * segmented the frame.
3514 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3515 features &= ~dev->gso_partial_features;
3517 /* Make sure to clear the IPv4 ID mangling feature if the
3518 * IPv4 header has the potential to be fragmented.
3520 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3521 struct iphdr *iph = skb->encapsulation ?
3522 inner_ip_hdr(skb) : ip_hdr(skb);
3524 if (!(iph->frag_off & htons(IP_DF)))
3525 features &= ~NETIF_F_TSO_MANGLEID;
3528 return features;
3531 netdev_features_t netif_skb_features(struct sk_buff *skb)
3533 struct net_device *dev = skb->dev;
3534 netdev_features_t features = dev->features;
3536 if (skb_is_gso(skb))
3537 features = gso_features_check(skb, dev, features);
3539 /* If encapsulation offload request, verify we are testing
3540 * hardware encapsulation features instead of standard
3541 * features for the netdev
3543 if (skb->encapsulation)
3544 features &= dev->hw_enc_features;
3546 if (skb_vlan_tagged(skb))
3547 features = netdev_intersect_features(features,
3548 dev->vlan_features |
3549 NETIF_F_HW_VLAN_CTAG_TX |
3550 NETIF_F_HW_VLAN_STAG_TX);
3552 if (dev->netdev_ops->ndo_features_check)
3553 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3554 features);
3555 else
3556 features &= dflt_features_check(skb, dev, features);
3558 return harmonize_features(skb, features);
3560 EXPORT_SYMBOL(netif_skb_features);
3562 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3563 struct netdev_queue *txq, bool more)
3565 unsigned int len;
3566 int rc;
3568 if (dev_nit_active(dev))
3569 dev_queue_xmit_nit(skb, dev);
3571 len = skb->len;
3572 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3573 trace_net_dev_start_xmit(skb, dev);
3574 rc = netdev_start_xmit(skb, dev, txq, more);
3575 trace_net_dev_xmit(skb, rc, dev, len);
3577 return rc;
3580 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3581 struct netdev_queue *txq, int *ret)
3583 struct sk_buff *skb = first;
3584 int rc = NETDEV_TX_OK;
3586 while (skb) {
3587 struct sk_buff *next = skb->next;
3589 skb_mark_not_on_list(skb);
3590 rc = xmit_one(skb, dev, txq, next != NULL);
3591 if (unlikely(!dev_xmit_complete(rc))) {
3592 skb->next = next;
3593 goto out;
3596 skb = next;
3597 if (netif_tx_queue_stopped(txq) && skb) {
3598 rc = NETDEV_TX_BUSY;
3599 break;
3603 out:
3604 *ret = rc;
3605 return skb;
3608 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3609 netdev_features_t features)
3611 if (skb_vlan_tag_present(skb) &&
3612 !vlan_hw_offload_capable(features, skb->vlan_proto))
3613 skb = __vlan_hwaccel_push_inside(skb);
3614 return skb;
3617 int skb_csum_hwoffload_help(struct sk_buff *skb,
3618 const netdev_features_t features)
3620 if (unlikely(skb->csum_not_inet))
3621 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3622 skb_crc32c_csum_help(skb);
3624 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3626 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3628 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3630 netdev_features_t features;
3632 features = netif_skb_features(skb);
3633 skb = validate_xmit_vlan(skb, features);
3634 if (unlikely(!skb))
3635 goto out_null;
3637 skb = sk_validate_xmit_skb(skb, dev);
3638 if (unlikely(!skb))
3639 goto out_null;
3641 if (netif_needs_gso(skb, features)) {
3642 struct sk_buff *segs;
3644 segs = skb_gso_segment(skb, features);
3645 if (IS_ERR(segs)) {
3646 goto out_kfree_skb;
3647 } else if (segs) {
3648 consume_skb(skb);
3649 skb = segs;
3651 } else {
3652 if (skb_needs_linearize(skb, features) &&
3653 __skb_linearize(skb))
3654 goto out_kfree_skb;
3656 /* If packet is not checksummed and device does not
3657 * support checksumming for this protocol, complete
3658 * checksumming here.
3660 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3661 if (skb->encapsulation)
3662 skb_set_inner_transport_header(skb,
3663 skb_checksum_start_offset(skb));
3664 else
3665 skb_set_transport_header(skb,
3666 skb_checksum_start_offset(skb));
3667 if (skb_csum_hwoffload_help(skb, features))
3668 goto out_kfree_skb;
3672 skb = validate_xmit_xfrm(skb, features, again);
3674 return skb;
3676 out_kfree_skb:
3677 kfree_skb(skb);
3678 out_null:
3679 atomic_long_inc(&dev->tx_dropped);
3680 return NULL;
3683 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3685 struct sk_buff *next, *head = NULL, *tail;
3687 for (; skb != NULL; skb = next) {
3688 next = skb->next;
3689 skb_mark_not_on_list(skb);
3691 /* in case skb wont be segmented, point to itself */
3692 skb->prev = skb;
3694 skb = validate_xmit_skb(skb, dev, again);
3695 if (!skb)
3696 continue;
3698 if (!head)
3699 head = skb;
3700 else
3701 tail->next = skb;
3702 /* If skb was segmented, skb->prev points to
3703 * the last segment. If not, it still contains skb.
3705 tail = skb->prev;
3707 return head;
3709 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3711 static void qdisc_pkt_len_init(struct sk_buff *skb)
3713 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3715 qdisc_skb_cb(skb)->pkt_len = skb->len;
3717 /* To get more precise estimation of bytes sent on wire,
3718 * we add to pkt_len the headers size of all segments
3720 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3721 unsigned int hdr_len;
3722 u16 gso_segs = shinfo->gso_segs;
3724 /* mac layer + network layer */
3725 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3727 /* + transport layer */
3728 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3729 const struct tcphdr *th;
3730 struct tcphdr _tcphdr;
3732 th = skb_header_pointer(skb, skb_transport_offset(skb),
3733 sizeof(_tcphdr), &_tcphdr);
3734 if (likely(th))
3735 hdr_len += __tcp_hdrlen(th);
3736 } else {
3737 struct udphdr _udphdr;
3739 if (skb_header_pointer(skb, skb_transport_offset(skb),
3740 sizeof(_udphdr), &_udphdr))
3741 hdr_len += sizeof(struct udphdr);
3744 if (shinfo->gso_type & SKB_GSO_DODGY)
3745 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3746 shinfo->gso_size);
3748 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3752 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3753 struct net_device *dev,
3754 struct netdev_queue *txq)
3756 spinlock_t *root_lock = qdisc_lock(q);
3757 struct sk_buff *to_free = NULL;
3758 bool contended;
3759 int rc;
3761 qdisc_calculate_pkt_len(skb, q);
3763 if (q->flags & TCQ_F_NOLOCK) {
3764 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3765 qdisc_run(q);
3767 if (unlikely(to_free))
3768 kfree_skb_list(to_free);
3769 return rc;
3773 * Heuristic to force contended enqueues to serialize on a
3774 * separate lock before trying to get qdisc main lock.
3775 * This permits qdisc->running owner to get the lock more
3776 * often and dequeue packets faster.
3778 contended = qdisc_is_running(q);
3779 if (unlikely(contended))
3780 spin_lock(&q->busylock);
3782 spin_lock(root_lock);
3783 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3784 __qdisc_drop(skb, &to_free);
3785 rc = NET_XMIT_DROP;
3786 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3787 qdisc_run_begin(q)) {
3789 * This is a work-conserving queue; there are no old skbs
3790 * waiting to be sent out; and the qdisc is not running -
3791 * xmit the skb directly.
3794 qdisc_bstats_update(q, skb);
3796 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3797 if (unlikely(contended)) {
3798 spin_unlock(&q->busylock);
3799 contended = false;
3801 __qdisc_run(q);
3804 qdisc_run_end(q);
3805 rc = NET_XMIT_SUCCESS;
3806 } else {
3807 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3808 if (qdisc_run_begin(q)) {
3809 if (unlikely(contended)) {
3810 spin_unlock(&q->busylock);
3811 contended = false;
3813 __qdisc_run(q);
3814 qdisc_run_end(q);
3817 spin_unlock(root_lock);
3818 if (unlikely(to_free))
3819 kfree_skb_list(to_free);
3820 if (unlikely(contended))
3821 spin_unlock(&q->busylock);
3822 return rc;
3825 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3826 static void skb_update_prio(struct sk_buff *skb)
3828 const struct netprio_map *map;
3829 const struct sock *sk;
3830 unsigned int prioidx;
3832 if (skb->priority)
3833 return;
3834 map = rcu_dereference_bh(skb->dev->priomap);
3835 if (!map)
3836 return;
3837 sk = skb_to_full_sk(skb);
3838 if (!sk)
3839 return;
3841 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3843 if (prioidx < map->priomap_len)
3844 skb->priority = map->priomap[prioidx];
3846 #else
3847 #define skb_update_prio(skb)
3848 #endif
3851 * dev_loopback_xmit - loop back @skb
3852 * @net: network namespace this loopback is happening in
3853 * @sk: sk needed to be a netfilter okfn
3854 * @skb: buffer to transmit
3856 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3858 skb_reset_mac_header(skb);
3859 __skb_pull(skb, skb_network_offset(skb));
3860 skb->pkt_type = PACKET_LOOPBACK;
3861 skb->ip_summed = CHECKSUM_UNNECESSARY;
3862 WARN_ON(!skb_dst(skb));
3863 skb_dst_force(skb);
3864 netif_rx_ni(skb);
3865 return 0;
3867 EXPORT_SYMBOL(dev_loopback_xmit);
3869 #ifdef CONFIG_NET_EGRESS
3870 static struct sk_buff *
3871 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3873 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3874 struct tcf_result cl_res;
3876 if (!miniq)
3877 return skb;
3879 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3880 qdisc_skb_cb(skb)->mru = 0;
3881 mini_qdisc_bstats_cpu_update(miniq, skb);
3883 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3884 case TC_ACT_OK:
3885 case TC_ACT_RECLASSIFY:
3886 skb->tc_index = TC_H_MIN(cl_res.classid);
3887 break;
3888 case TC_ACT_SHOT:
3889 mini_qdisc_qstats_cpu_drop(miniq);
3890 *ret = NET_XMIT_DROP;
3891 kfree_skb(skb);
3892 return NULL;
3893 case TC_ACT_STOLEN:
3894 case TC_ACT_QUEUED:
3895 case TC_ACT_TRAP:
3896 *ret = NET_XMIT_SUCCESS;
3897 consume_skb(skb);
3898 return NULL;
3899 case TC_ACT_REDIRECT:
3900 /* No need to push/pop skb's mac_header here on egress! */
3901 skb_do_redirect(skb);
3902 *ret = NET_XMIT_SUCCESS;
3903 return NULL;
3904 default:
3905 break;
3908 return skb;
3910 #endif /* CONFIG_NET_EGRESS */
3912 #ifdef CONFIG_XPS
3913 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3914 struct xps_dev_maps *dev_maps, unsigned int tci)
3916 struct xps_map *map;
3917 int queue_index = -1;
3919 if (dev->num_tc) {
3920 tci *= dev->num_tc;
3921 tci += netdev_get_prio_tc_map(dev, skb->priority);
3924 map = rcu_dereference(dev_maps->attr_map[tci]);
3925 if (map) {
3926 if (map->len == 1)
3927 queue_index = map->queues[0];
3928 else
3929 queue_index = map->queues[reciprocal_scale(
3930 skb_get_hash(skb), map->len)];
3931 if (unlikely(queue_index >= dev->real_num_tx_queues))
3932 queue_index = -1;
3934 return queue_index;
3936 #endif
3938 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3939 struct sk_buff *skb)
3941 #ifdef CONFIG_XPS
3942 struct xps_dev_maps *dev_maps;
3943 struct sock *sk = skb->sk;
3944 int queue_index = -1;
3946 if (!static_key_false(&xps_needed))
3947 return -1;
3949 rcu_read_lock();
3950 if (!static_key_false(&xps_rxqs_needed))
3951 goto get_cpus_map;
3953 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3954 if (dev_maps) {
3955 int tci = sk_rx_queue_get(sk);
3957 if (tci >= 0 && tci < dev->num_rx_queues)
3958 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3959 tci);
3962 get_cpus_map:
3963 if (queue_index < 0) {
3964 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3965 if (dev_maps) {
3966 unsigned int tci = skb->sender_cpu - 1;
3968 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3969 tci);
3972 rcu_read_unlock();
3974 return queue_index;
3975 #else
3976 return -1;
3977 #endif
3980 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3981 struct net_device *sb_dev)
3983 return 0;
3985 EXPORT_SYMBOL(dev_pick_tx_zero);
3987 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3988 struct net_device *sb_dev)
3990 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3992 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3994 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3995 struct net_device *sb_dev)
3997 struct sock *sk = skb->sk;
3998 int queue_index = sk_tx_queue_get(sk);
4000 sb_dev = sb_dev ? : dev;
4002 if (queue_index < 0 || skb->ooo_okay ||
4003 queue_index >= dev->real_num_tx_queues) {
4004 int new_index = get_xps_queue(dev, sb_dev, skb);
4006 if (new_index < 0)
4007 new_index = skb_tx_hash(dev, sb_dev, skb);
4009 if (queue_index != new_index && sk &&
4010 sk_fullsock(sk) &&
4011 rcu_access_pointer(sk->sk_dst_cache))
4012 sk_tx_queue_set(sk, new_index);
4014 queue_index = new_index;
4017 return queue_index;
4019 EXPORT_SYMBOL(netdev_pick_tx);
4021 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4022 struct sk_buff *skb,
4023 struct net_device *sb_dev)
4025 int queue_index = 0;
4027 #ifdef CONFIG_XPS
4028 u32 sender_cpu = skb->sender_cpu - 1;
4030 if (sender_cpu >= (u32)NR_CPUS)
4031 skb->sender_cpu = raw_smp_processor_id() + 1;
4032 #endif
4034 if (dev->real_num_tx_queues != 1) {
4035 const struct net_device_ops *ops = dev->netdev_ops;
4037 if (ops->ndo_select_queue)
4038 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4039 else
4040 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4042 queue_index = netdev_cap_txqueue(dev, queue_index);
4045 skb_set_queue_mapping(skb, queue_index);
4046 return netdev_get_tx_queue(dev, queue_index);
4050 * __dev_queue_xmit - transmit a buffer
4051 * @skb: buffer to transmit
4052 * @sb_dev: suboordinate device used for L2 forwarding offload
4054 * Queue a buffer for transmission to a network device. The caller must
4055 * have set the device and priority and built the buffer before calling
4056 * this function. The function can be called from an interrupt.
4058 * A negative errno code is returned on a failure. A success does not
4059 * guarantee the frame will be transmitted as it may be dropped due
4060 * to congestion or traffic shaping.
4062 * -----------------------------------------------------------------------------------
4063 * I notice this method can also return errors from the queue disciplines,
4064 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4065 * be positive.
4067 * Regardless of the return value, the skb is consumed, so it is currently
4068 * difficult to retry a send to this method. (You can bump the ref count
4069 * before sending to hold a reference for retry if you are careful.)
4071 * When calling this method, interrupts MUST be enabled. This is because
4072 * the BH enable code must have IRQs enabled so that it will not deadlock.
4073 * --BLG
4075 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4077 struct net_device *dev = skb->dev;
4078 struct netdev_queue *txq;
4079 struct Qdisc *q;
4080 int rc = -ENOMEM;
4081 bool again = false;
4083 skb_reset_mac_header(skb);
4085 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4086 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4088 /* Disable soft irqs for various locks below. Also
4089 * stops preemption for RCU.
4091 rcu_read_lock_bh();
4093 skb_update_prio(skb);
4095 qdisc_pkt_len_init(skb);
4096 #ifdef CONFIG_NET_CLS_ACT
4097 skb->tc_at_ingress = 0;
4098 # ifdef CONFIG_NET_EGRESS
4099 if (static_branch_unlikely(&egress_needed_key)) {
4100 skb = sch_handle_egress(skb, &rc, dev);
4101 if (!skb)
4102 goto out;
4104 # endif
4105 #endif
4106 /* If device/qdisc don't need skb->dst, release it right now while
4107 * its hot in this cpu cache.
4109 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4110 skb_dst_drop(skb);
4111 else
4112 skb_dst_force(skb);
4114 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4115 q = rcu_dereference_bh(txq->qdisc);
4117 trace_net_dev_queue(skb);
4118 if (q->enqueue) {
4119 rc = __dev_xmit_skb(skb, q, dev, txq);
4120 goto out;
4123 /* The device has no queue. Common case for software devices:
4124 * loopback, all the sorts of tunnels...
4126 * Really, it is unlikely that netif_tx_lock protection is necessary
4127 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4128 * counters.)
4129 * However, it is possible, that they rely on protection
4130 * made by us here.
4132 * Check this and shot the lock. It is not prone from deadlocks.
4133 *Either shot noqueue qdisc, it is even simpler 8)
4135 if (dev->flags & IFF_UP) {
4136 int cpu = smp_processor_id(); /* ok because BHs are off */
4138 if (txq->xmit_lock_owner != cpu) {
4139 if (dev_xmit_recursion())
4140 goto recursion_alert;
4142 skb = validate_xmit_skb(skb, dev, &again);
4143 if (!skb)
4144 goto out;
4146 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4147 HARD_TX_LOCK(dev, txq, cpu);
4149 if (!netif_xmit_stopped(txq)) {
4150 dev_xmit_recursion_inc();
4151 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4152 dev_xmit_recursion_dec();
4153 if (dev_xmit_complete(rc)) {
4154 HARD_TX_UNLOCK(dev, txq);
4155 goto out;
4158 HARD_TX_UNLOCK(dev, txq);
4159 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4160 dev->name);
4161 } else {
4162 /* Recursion is detected! It is possible,
4163 * unfortunately
4165 recursion_alert:
4166 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4167 dev->name);
4171 rc = -ENETDOWN;
4172 rcu_read_unlock_bh();
4174 atomic_long_inc(&dev->tx_dropped);
4175 kfree_skb_list(skb);
4176 return rc;
4177 out:
4178 rcu_read_unlock_bh();
4179 return rc;
4182 int dev_queue_xmit(struct sk_buff *skb)
4184 return __dev_queue_xmit(skb, NULL);
4186 EXPORT_SYMBOL(dev_queue_xmit);
4188 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4190 return __dev_queue_xmit(skb, sb_dev);
4192 EXPORT_SYMBOL(dev_queue_xmit_accel);
4194 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4196 struct net_device *dev = skb->dev;
4197 struct sk_buff *orig_skb = skb;
4198 struct netdev_queue *txq;
4199 int ret = NETDEV_TX_BUSY;
4200 bool again = false;
4202 if (unlikely(!netif_running(dev) ||
4203 !netif_carrier_ok(dev)))
4204 goto drop;
4206 skb = validate_xmit_skb_list(skb, dev, &again);
4207 if (skb != orig_skb)
4208 goto drop;
4210 skb_set_queue_mapping(skb, queue_id);
4211 txq = skb_get_tx_queue(dev, skb);
4212 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4214 local_bh_disable();
4216 dev_xmit_recursion_inc();
4217 HARD_TX_LOCK(dev, txq, smp_processor_id());
4218 if (!netif_xmit_frozen_or_drv_stopped(txq))
4219 ret = netdev_start_xmit(skb, dev, txq, false);
4220 HARD_TX_UNLOCK(dev, txq);
4221 dev_xmit_recursion_dec();
4223 local_bh_enable();
4224 return ret;
4225 drop:
4226 atomic_long_inc(&dev->tx_dropped);
4227 kfree_skb_list(skb);
4228 return NET_XMIT_DROP;
4230 EXPORT_SYMBOL(__dev_direct_xmit);
4232 /*************************************************************************
4233 * Receiver routines
4234 *************************************************************************/
4236 int netdev_max_backlog __read_mostly = 1000;
4237 EXPORT_SYMBOL(netdev_max_backlog);
4239 int netdev_tstamp_prequeue __read_mostly = 1;
4240 int netdev_budget __read_mostly = 300;
4241 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4242 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4243 int weight_p __read_mostly = 64; /* old backlog weight */
4244 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4245 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4246 int dev_rx_weight __read_mostly = 64;
4247 int dev_tx_weight __read_mostly = 64;
4248 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4249 int gro_normal_batch __read_mostly = 8;
4251 /* Called with irq disabled */
4252 static inline void ____napi_schedule(struct softnet_data *sd,
4253 struct napi_struct *napi)
4255 list_add_tail(&napi->poll_list, &sd->poll_list);
4256 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4259 #ifdef CONFIG_RPS
4261 /* One global table that all flow-based protocols share. */
4262 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4263 EXPORT_SYMBOL(rps_sock_flow_table);
4264 u32 rps_cpu_mask __read_mostly;
4265 EXPORT_SYMBOL(rps_cpu_mask);
4267 struct static_key_false rps_needed __read_mostly;
4268 EXPORT_SYMBOL(rps_needed);
4269 struct static_key_false rfs_needed __read_mostly;
4270 EXPORT_SYMBOL(rfs_needed);
4272 static struct rps_dev_flow *
4273 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4274 struct rps_dev_flow *rflow, u16 next_cpu)
4276 if (next_cpu < nr_cpu_ids) {
4277 #ifdef CONFIG_RFS_ACCEL
4278 struct netdev_rx_queue *rxqueue;
4279 struct rps_dev_flow_table *flow_table;
4280 struct rps_dev_flow *old_rflow;
4281 u32 flow_id;
4282 u16 rxq_index;
4283 int rc;
4285 /* Should we steer this flow to a different hardware queue? */
4286 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4287 !(dev->features & NETIF_F_NTUPLE))
4288 goto out;
4289 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4290 if (rxq_index == skb_get_rx_queue(skb))
4291 goto out;
4293 rxqueue = dev->_rx + rxq_index;
4294 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4295 if (!flow_table)
4296 goto out;
4297 flow_id = skb_get_hash(skb) & flow_table->mask;
4298 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4299 rxq_index, flow_id);
4300 if (rc < 0)
4301 goto out;
4302 old_rflow = rflow;
4303 rflow = &flow_table->flows[flow_id];
4304 rflow->filter = rc;
4305 if (old_rflow->filter == rflow->filter)
4306 old_rflow->filter = RPS_NO_FILTER;
4307 out:
4308 #endif
4309 rflow->last_qtail =
4310 per_cpu(softnet_data, next_cpu).input_queue_head;
4313 rflow->cpu = next_cpu;
4314 return rflow;
4318 * get_rps_cpu is called from netif_receive_skb and returns the target
4319 * CPU from the RPS map of the receiving queue for a given skb.
4320 * rcu_read_lock must be held on entry.
4322 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4323 struct rps_dev_flow **rflowp)
4325 const struct rps_sock_flow_table *sock_flow_table;
4326 struct netdev_rx_queue *rxqueue = dev->_rx;
4327 struct rps_dev_flow_table *flow_table;
4328 struct rps_map *map;
4329 int cpu = -1;
4330 u32 tcpu;
4331 u32 hash;
4333 if (skb_rx_queue_recorded(skb)) {
4334 u16 index = skb_get_rx_queue(skb);
4336 if (unlikely(index >= dev->real_num_rx_queues)) {
4337 WARN_ONCE(dev->real_num_rx_queues > 1,
4338 "%s received packet on queue %u, but number "
4339 "of RX queues is %u\n",
4340 dev->name, index, dev->real_num_rx_queues);
4341 goto done;
4343 rxqueue += index;
4346 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4348 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4349 map = rcu_dereference(rxqueue->rps_map);
4350 if (!flow_table && !map)
4351 goto done;
4353 skb_reset_network_header(skb);
4354 hash = skb_get_hash(skb);
4355 if (!hash)
4356 goto done;
4358 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4359 if (flow_table && sock_flow_table) {
4360 struct rps_dev_flow *rflow;
4361 u32 next_cpu;
4362 u32 ident;
4364 /* First check into global flow table if there is a match */
4365 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4366 if ((ident ^ hash) & ~rps_cpu_mask)
4367 goto try_rps;
4369 next_cpu = ident & rps_cpu_mask;
4371 /* OK, now we know there is a match,
4372 * we can look at the local (per receive queue) flow table
4374 rflow = &flow_table->flows[hash & flow_table->mask];
4375 tcpu = rflow->cpu;
4378 * If the desired CPU (where last recvmsg was done) is
4379 * different from current CPU (one in the rx-queue flow
4380 * table entry), switch if one of the following holds:
4381 * - Current CPU is unset (>= nr_cpu_ids).
4382 * - Current CPU is offline.
4383 * - The current CPU's queue tail has advanced beyond the
4384 * last packet that was enqueued using this table entry.
4385 * This guarantees that all previous packets for the flow
4386 * have been dequeued, thus preserving in order delivery.
4388 if (unlikely(tcpu != next_cpu) &&
4389 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4390 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4391 rflow->last_qtail)) >= 0)) {
4392 tcpu = next_cpu;
4393 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4396 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4397 *rflowp = rflow;
4398 cpu = tcpu;
4399 goto done;
4403 try_rps:
4405 if (map) {
4406 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4407 if (cpu_online(tcpu)) {
4408 cpu = tcpu;
4409 goto done;
4413 done:
4414 return cpu;
4417 #ifdef CONFIG_RFS_ACCEL
4420 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4421 * @dev: Device on which the filter was set
4422 * @rxq_index: RX queue index
4423 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4424 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4426 * Drivers that implement ndo_rx_flow_steer() should periodically call
4427 * this function for each installed filter and remove the filters for
4428 * which it returns %true.
4430 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4431 u32 flow_id, u16 filter_id)
4433 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4434 struct rps_dev_flow_table *flow_table;
4435 struct rps_dev_flow *rflow;
4436 bool expire = true;
4437 unsigned int cpu;
4439 rcu_read_lock();
4440 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4441 if (flow_table && flow_id <= flow_table->mask) {
4442 rflow = &flow_table->flows[flow_id];
4443 cpu = READ_ONCE(rflow->cpu);
4444 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4445 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4446 rflow->last_qtail) <
4447 (int)(10 * flow_table->mask)))
4448 expire = false;
4450 rcu_read_unlock();
4451 return expire;
4453 EXPORT_SYMBOL(rps_may_expire_flow);
4455 #endif /* CONFIG_RFS_ACCEL */
4457 /* Called from hardirq (IPI) context */
4458 static void rps_trigger_softirq(void *data)
4460 struct softnet_data *sd = data;
4462 ____napi_schedule(sd, &sd->backlog);
4463 sd->received_rps++;
4466 #endif /* CONFIG_RPS */
4469 * Check if this softnet_data structure is another cpu one
4470 * If yes, queue it to our IPI list and return 1
4471 * If no, return 0
4473 static int rps_ipi_queued(struct softnet_data *sd)
4475 #ifdef CONFIG_RPS
4476 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4478 if (sd != mysd) {
4479 sd->rps_ipi_next = mysd->rps_ipi_list;
4480 mysd->rps_ipi_list = sd;
4482 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4483 return 1;
4485 #endif /* CONFIG_RPS */
4486 return 0;
4489 #ifdef CONFIG_NET_FLOW_LIMIT
4490 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4491 #endif
4493 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4495 #ifdef CONFIG_NET_FLOW_LIMIT
4496 struct sd_flow_limit *fl;
4497 struct softnet_data *sd;
4498 unsigned int old_flow, new_flow;
4500 if (qlen < (netdev_max_backlog >> 1))
4501 return false;
4503 sd = this_cpu_ptr(&softnet_data);
4505 rcu_read_lock();
4506 fl = rcu_dereference(sd->flow_limit);
4507 if (fl) {
4508 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4509 old_flow = fl->history[fl->history_head];
4510 fl->history[fl->history_head] = new_flow;
4512 fl->history_head++;
4513 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4515 if (likely(fl->buckets[old_flow]))
4516 fl->buckets[old_flow]--;
4518 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4519 fl->count++;
4520 rcu_read_unlock();
4521 return true;
4524 rcu_read_unlock();
4525 #endif
4526 return false;
4530 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4531 * queue (may be a remote CPU queue).
4533 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4534 unsigned int *qtail)
4536 struct softnet_data *sd;
4537 unsigned long flags;
4538 unsigned int qlen;
4540 sd = &per_cpu(softnet_data, cpu);
4542 local_irq_save(flags);
4544 rps_lock(sd);
4545 if (!netif_running(skb->dev))
4546 goto drop;
4547 qlen = skb_queue_len(&sd->input_pkt_queue);
4548 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4549 if (qlen) {
4550 enqueue:
4551 __skb_queue_tail(&sd->input_pkt_queue, skb);
4552 input_queue_tail_incr_save(sd, qtail);
4553 rps_unlock(sd);
4554 local_irq_restore(flags);
4555 return NET_RX_SUCCESS;
4558 /* Schedule NAPI for backlog device
4559 * We can use non atomic operation since we own the queue lock
4561 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4562 if (!rps_ipi_queued(sd))
4563 ____napi_schedule(sd, &sd->backlog);
4565 goto enqueue;
4568 drop:
4569 sd->dropped++;
4570 rps_unlock(sd);
4572 local_irq_restore(flags);
4574 atomic_long_inc(&skb->dev->rx_dropped);
4575 kfree_skb(skb);
4576 return NET_RX_DROP;
4579 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4581 struct net_device *dev = skb->dev;
4582 struct netdev_rx_queue *rxqueue;
4584 rxqueue = dev->_rx;
4586 if (skb_rx_queue_recorded(skb)) {
4587 u16 index = skb_get_rx_queue(skb);
4589 if (unlikely(index >= dev->real_num_rx_queues)) {
4590 WARN_ONCE(dev->real_num_rx_queues > 1,
4591 "%s received packet on queue %u, but number "
4592 "of RX queues is %u\n",
4593 dev->name, index, dev->real_num_rx_queues);
4595 return rxqueue; /* Return first rxqueue */
4597 rxqueue += index;
4599 return rxqueue;
4602 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4603 struct xdp_buff *xdp,
4604 struct bpf_prog *xdp_prog)
4606 struct netdev_rx_queue *rxqueue;
4607 void *orig_data, *orig_data_end;
4608 u32 metalen, act = XDP_DROP;
4609 __be16 orig_eth_type;
4610 struct ethhdr *eth;
4611 bool orig_bcast;
4612 int hlen, off;
4613 u32 mac_len;
4615 /* Reinjected packets coming from act_mirred or similar should
4616 * not get XDP generic processing.
4618 if (skb_is_redirected(skb))
4619 return XDP_PASS;
4621 /* XDP packets must be linear and must have sufficient headroom
4622 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4623 * native XDP provides, thus we need to do it here as well.
4625 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4626 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4627 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4628 int troom = skb->tail + skb->data_len - skb->end;
4630 /* In case we have to go down the path and also linearize,
4631 * then lets do the pskb_expand_head() work just once here.
4633 if (pskb_expand_head(skb,
4634 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4635 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4636 goto do_drop;
4637 if (skb_linearize(skb))
4638 goto do_drop;
4641 /* The XDP program wants to see the packet starting at the MAC
4642 * header.
4644 mac_len = skb->data - skb_mac_header(skb);
4645 hlen = skb_headlen(skb) + mac_len;
4646 xdp->data = skb->data - mac_len;
4647 xdp->data_meta = xdp->data;
4648 xdp->data_end = xdp->data + hlen;
4649 xdp->data_hard_start = skb->data - skb_headroom(skb);
4651 /* SKB "head" area always have tailroom for skb_shared_info */
4652 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4653 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4655 orig_data_end = xdp->data_end;
4656 orig_data = xdp->data;
4657 eth = (struct ethhdr *)xdp->data;
4658 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4659 orig_eth_type = eth->h_proto;
4661 rxqueue = netif_get_rxqueue(skb);
4662 xdp->rxq = &rxqueue->xdp_rxq;
4664 act = bpf_prog_run_xdp(xdp_prog, xdp);
4666 /* check if bpf_xdp_adjust_head was used */
4667 off = xdp->data - orig_data;
4668 if (off) {
4669 if (off > 0)
4670 __skb_pull(skb, off);
4671 else if (off < 0)
4672 __skb_push(skb, -off);
4674 skb->mac_header += off;
4675 skb_reset_network_header(skb);
4678 /* check if bpf_xdp_adjust_tail was used */
4679 off = xdp->data_end - orig_data_end;
4680 if (off != 0) {
4681 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4682 skb->len += off; /* positive on grow, negative on shrink */
4685 /* check if XDP changed eth hdr such SKB needs update */
4686 eth = (struct ethhdr *)xdp->data;
4687 if ((orig_eth_type != eth->h_proto) ||
4688 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4689 __skb_push(skb, ETH_HLEN);
4690 skb->protocol = eth_type_trans(skb, skb->dev);
4693 switch (act) {
4694 case XDP_REDIRECT:
4695 case XDP_TX:
4696 __skb_push(skb, mac_len);
4697 break;
4698 case XDP_PASS:
4699 metalen = xdp->data - xdp->data_meta;
4700 if (metalen)
4701 skb_metadata_set(skb, metalen);
4702 break;
4703 default:
4704 bpf_warn_invalid_xdp_action(act);
4705 fallthrough;
4706 case XDP_ABORTED:
4707 trace_xdp_exception(skb->dev, xdp_prog, act);
4708 fallthrough;
4709 case XDP_DROP:
4710 do_drop:
4711 kfree_skb(skb);
4712 break;
4715 return act;
4718 /* When doing generic XDP we have to bypass the qdisc layer and the
4719 * network taps in order to match in-driver-XDP behavior.
4721 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4723 struct net_device *dev = skb->dev;
4724 struct netdev_queue *txq;
4725 bool free_skb = true;
4726 int cpu, rc;
4728 txq = netdev_core_pick_tx(dev, skb, NULL);
4729 cpu = smp_processor_id();
4730 HARD_TX_LOCK(dev, txq, cpu);
4731 if (!netif_xmit_stopped(txq)) {
4732 rc = netdev_start_xmit(skb, dev, txq, 0);
4733 if (dev_xmit_complete(rc))
4734 free_skb = false;
4736 HARD_TX_UNLOCK(dev, txq);
4737 if (free_skb) {
4738 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4739 kfree_skb(skb);
4743 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4745 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4747 if (xdp_prog) {
4748 struct xdp_buff xdp;
4749 u32 act;
4750 int err;
4752 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4753 if (act != XDP_PASS) {
4754 switch (act) {
4755 case XDP_REDIRECT:
4756 err = xdp_do_generic_redirect(skb->dev, skb,
4757 &xdp, xdp_prog);
4758 if (err)
4759 goto out_redir;
4760 break;
4761 case XDP_TX:
4762 generic_xdp_tx(skb, xdp_prog);
4763 break;
4765 return XDP_DROP;
4768 return XDP_PASS;
4769 out_redir:
4770 kfree_skb(skb);
4771 return XDP_DROP;
4773 EXPORT_SYMBOL_GPL(do_xdp_generic);
4775 static int netif_rx_internal(struct sk_buff *skb)
4777 int ret;
4779 net_timestamp_check(netdev_tstamp_prequeue, skb);
4781 trace_netif_rx(skb);
4783 #ifdef CONFIG_RPS
4784 if (static_branch_unlikely(&rps_needed)) {
4785 struct rps_dev_flow voidflow, *rflow = &voidflow;
4786 int cpu;
4788 preempt_disable();
4789 rcu_read_lock();
4791 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4792 if (cpu < 0)
4793 cpu = smp_processor_id();
4795 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4797 rcu_read_unlock();
4798 preempt_enable();
4799 } else
4800 #endif
4802 unsigned int qtail;
4804 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4805 put_cpu();
4807 return ret;
4811 * netif_rx - post buffer to the network code
4812 * @skb: buffer to post
4814 * This function receives a packet from a device driver and queues it for
4815 * the upper (protocol) levels to process. It always succeeds. The buffer
4816 * may be dropped during processing for congestion control or by the
4817 * protocol layers.
4819 * return values:
4820 * NET_RX_SUCCESS (no congestion)
4821 * NET_RX_DROP (packet was dropped)
4825 int netif_rx(struct sk_buff *skb)
4827 int ret;
4829 trace_netif_rx_entry(skb);
4831 ret = netif_rx_internal(skb);
4832 trace_netif_rx_exit(ret);
4834 return ret;
4836 EXPORT_SYMBOL(netif_rx);
4838 int netif_rx_ni(struct sk_buff *skb)
4840 int err;
4842 trace_netif_rx_ni_entry(skb);
4844 preempt_disable();
4845 err = netif_rx_internal(skb);
4846 if (local_softirq_pending())
4847 do_softirq();
4848 preempt_enable();
4849 trace_netif_rx_ni_exit(err);
4851 return err;
4853 EXPORT_SYMBOL(netif_rx_ni);
4855 int netif_rx_any_context(struct sk_buff *skb)
4858 * If invoked from contexts which do not invoke bottom half
4859 * processing either at return from interrupt or when softrqs are
4860 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4861 * directly.
4863 if (in_interrupt())
4864 return netif_rx(skb);
4865 else
4866 return netif_rx_ni(skb);
4868 EXPORT_SYMBOL(netif_rx_any_context);
4870 static __latent_entropy void net_tx_action(struct softirq_action *h)
4872 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4874 if (sd->completion_queue) {
4875 struct sk_buff *clist;
4877 local_irq_disable();
4878 clist = sd->completion_queue;
4879 sd->completion_queue = NULL;
4880 local_irq_enable();
4882 while (clist) {
4883 struct sk_buff *skb = clist;
4885 clist = clist->next;
4887 WARN_ON(refcount_read(&skb->users));
4888 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4889 trace_consume_skb(skb);
4890 else
4891 trace_kfree_skb(skb, net_tx_action);
4893 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4894 __kfree_skb(skb);
4895 else
4896 __kfree_skb_defer(skb);
4899 __kfree_skb_flush();
4902 if (sd->output_queue) {
4903 struct Qdisc *head;
4905 local_irq_disable();
4906 head = sd->output_queue;
4907 sd->output_queue = NULL;
4908 sd->output_queue_tailp = &sd->output_queue;
4909 local_irq_enable();
4911 while (head) {
4912 struct Qdisc *q = head;
4913 spinlock_t *root_lock = NULL;
4915 head = head->next_sched;
4917 if (!(q->flags & TCQ_F_NOLOCK)) {
4918 root_lock = qdisc_lock(q);
4919 spin_lock(root_lock);
4921 /* We need to make sure head->next_sched is read
4922 * before clearing __QDISC_STATE_SCHED
4924 smp_mb__before_atomic();
4925 clear_bit(__QDISC_STATE_SCHED, &q->state);
4926 qdisc_run(q);
4927 if (root_lock)
4928 spin_unlock(root_lock);
4932 xfrm_dev_backlog(sd);
4935 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4936 /* This hook is defined here for ATM LANE */
4937 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4938 unsigned char *addr) __read_mostly;
4939 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4940 #endif
4942 static inline struct sk_buff *
4943 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4944 struct net_device *orig_dev, bool *another)
4946 #ifdef CONFIG_NET_CLS_ACT
4947 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4948 struct tcf_result cl_res;
4950 /* If there's at least one ingress present somewhere (so
4951 * we get here via enabled static key), remaining devices
4952 * that are not configured with an ingress qdisc will bail
4953 * out here.
4955 if (!miniq)
4956 return skb;
4958 if (*pt_prev) {
4959 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4960 *pt_prev = NULL;
4963 qdisc_skb_cb(skb)->pkt_len = skb->len;
4964 qdisc_skb_cb(skb)->mru = 0;
4965 skb->tc_at_ingress = 1;
4966 mini_qdisc_bstats_cpu_update(miniq, skb);
4968 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4969 &cl_res, false)) {
4970 case TC_ACT_OK:
4971 case TC_ACT_RECLASSIFY:
4972 skb->tc_index = TC_H_MIN(cl_res.classid);
4973 break;
4974 case TC_ACT_SHOT:
4975 mini_qdisc_qstats_cpu_drop(miniq);
4976 kfree_skb(skb);
4977 return NULL;
4978 case TC_ACT_STOLEN:
4979 case TC_ACT_QUEUED:
4980 case TC_ACT_TRAP:
4981 consume_skb(skb);
4982 return NULL;
4983 case TC_ACT_REDIRECT:
4984 /* skb_mac_header check was done by cls/act_bpf, so
4985 * we can safely push the L2 header back before
4986 * redirecting to another netdev
4988 __skb_push(skb, skb->mac_len);
4989 if (skb_do_redirect(skb) == -EAGAIN) {
4990 __skb_pull(skb, skb->mac_len);
4991 *another = true;
4992 break;
4994 return NULL;
4995 case TC_ACT_CONSUMED:
4996 return NULL;
4997 default:
4998 break;
5000 #endif /* CONFIG_NET_CLS_ACT */
5001 return skb;
5005 * netdev_is_rx_handler_busy - check if receive handler is registered
5006 * @dev: device to check
5008 * Check if a receive handler is already registered for a given device.
5009 * Return true if there one.
5011 * The caller must hold the rtnl_mutex.
5013 bool netdev_is_rx_handler_busy(struct net_device *dev)
5015 ASSERT_RTNL();
5016 return dev && rtnl_dereference(dev->rx_handler);
5018 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5021 * netdev_rx_handler_register - register receive handler
5022 * @dev: device to register a handler for
5023 * @rx_handler: receive handler to register
5024 * @rx_handler_data: data pointer that is used by rx handler
5026 * Register a receive handler for a device. This handler will then be
5027 * called from __netif_receive_skb. A negative errno code is returned
5028 * on a failure.
5030 * The caller must hold the rtnl_mutex.
5032 * For a general description of rx_handler, see enum rx_handler_result.
5034 int netdev_rx_handler_register(struct net_device *dev,
5035 rx_handler_func_t *rx_handler,
5036 void *rx_handler_data)
5038 if (netdev_is_rx_handler_busy(dev))
5039 return -EBUSY;
5041 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5042 return -EINVAL;
5044 /* Note: rx_handler_data must be set before rx_handler */
5045 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5046 rcu_assign_pointer(dev->rx_handler, rx_handler);
5048 return 0;
5050 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5053 * netdev_rx_handler_unregister - unregister receive handler
5054 * @dev: device to unregister a handler from
5056 * Unregister a receive handler from a device.
5058 * The caller must hold the rtnl_mutex.
5060 void netdev_rx_handler_unregister(struct net_device *dev)
5063 ASSERT_RTNL();
5064 RCU_INIT_POINTER(dev->rx_handler, NULL);
5065 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5066 * section has a guarantee to see a non NULL rx_handler_data
5067 * as well.
5069 synchronize_net();
5070 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5072 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5075 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5076 * the special handling of PFMEMALLOC skbs.
5078 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5080 switch (skb->protocol) {
5081 case htons(ETH_P_ARP):
5082 case htons(ETH_P_IP):
5083 case htons(ETH_P_IPV6):
5084 case htons(ETH_P_8021Q):
5085 case htons(ETH_P_8021AD):
5086 return true;
5087 default:
5088 return false;
5092 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5093 int *ret, struct net_device *orig_dev)
5095 if (nf_hook_ingress_active(skb)) {
5096 int ingress_retval;
5098 if (*pt_prev) {
5099 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5100 *pt_prev = NULL;
5103 rcu_read_lock();
5104 ingress_retval = nf_hook_ingress(skb);
5105 rcu_read_unlock();
5106 return ingress_retval;
5108 return 0;
5111 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5112 struct packet_type **ppt_prev)
5114 struct packet_type *ptype, *pt_prev;
5115 rx_handler_func_t *rx_handler;
5116 struct sk_buff *skb = *pskb;
5117 struct net_device *orig_dev;
5118 bool deliver_exact = false;
5119 int ret = NET_RX_DROP;
5120 __be16 type;
5122 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5124 trace_netif_receive_skb(skb);
5126 orig_dev = skb->dev;
5128 skb_reset_network_header(skb);
5129 if (!skb_transport_header_was_set(skb))
5130 skb_reset_transport_header(skb);
5131 skb_reset_mac_len(skb);
5133 pt_prev = NULL;
5135 another_round:
5136 skb->skb_iif = skb->dev->ifindex;
5138 __this_cpu_inc(softnet_data.processed);
5140 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5141 int ret2;
5143 preempt_disable();
5144 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5145 preempt_enable();
5147 if (ret2 != XDP_PASS) {
5148 ret = NET_RX_DROP;
5149 goto out;
5151 skb_reset_mac_len(skb);
5154 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5155 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5156 skb = skb_vlan_untag(skb);
5157 if (unlikely(!skb))
5158 goto out;
5161 if (skb_skip_tc_classify(skb))
5162 goto skip_classify;
5164 if (pfmemalloc)
5165 goto skip_taps;
5167 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5168 if (pt_prev)
5169 ret = deliver_skb(skb, pt_prev, orig_dev);
5170 pt_prev = ptype;
5173 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5174 if (pt_prev)
5175 ret = deliver_skb(skb, pt_prev, orig_dev);
5176 pt_prev = ptype;
5179 skip_taps:
5180 #ifdef CONFIG_NET_INGRESS
5181 if (static_branch_unlikely(&ingress_needed_key)) {
5182 bool another = false;
5184 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5185 &another);
5186 if (another)
5187 goto another_round;
5188 if (!skb)
5189 goto out;
5191 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5192 goto out;
5194 #endif
5195 skb_reset_redirect(skb);
5196 skip_classify:
5197 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5198 goto drop;
5200 if (skb_vlan_tag_present(skb)) {
5201 if (pt_prev) {
5202 ret = deliver_skb(skb, pt_prev, orig_dev);
5203 pt_prev = NULL;
5205 if (vlan_do_receive(&skb))
5206 goto another_round;
5207 else if (unlikely(!skb))
5208 goto out;
5211 rx_handler = rcu_dereference(skb->dev->rx_handler);
5212 if (rx_handler) {
5213 if (pt_prev) {
5214 ret = deliver_skb(skb, pt_prev, orig_dev);
5215 pt_prev = NULL;
5217 switch (rx_handler(&skb)) {
5218 case RX_HANDLER_CONSUMED:
5219 ret = NET_RX_SUCCESS;
5220 goto out;
5221 case RX_HANDLER_ANOTHER:
5222 goto another_round;
5223 case RX_HANDLER_EXACT:
5224 deliver_exact = true;
5225 case RX_HANDLER_PASS:
5226 break;
5227 default:
5228 BUG();
5232 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5233 check_vlan_id:
5234 if (skb_vlan_tag_get_id(skb)) {
5235 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5236 * find vlan device.
5238 skb->pkt_type = PACKET_OTHERHOST;
5239 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5240 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5241 /* Outer header is 802.1P with vlan 0, inner header is
5242 * 802.1Q or 802.1AD and vlan_do_receive() above could
5243 * not find vlan dev for vlan id 0.
5245 __vlan_hwaccel_clear_tag(skb);
5246 skb = skb_vlan_untag(skb);
5247 if (unlikely(!skb))
5248 goto out;
5249 if (vlan_do_receive(&skb))
5250 /* After stripping off 802.1P header with vlan 0
5251 * vlan dev is found for inner header.
5253 goto another_round;
5254 else if (unlikely(!skb))
5255 goto out;
5256 else
5257 /* We have stripped outer 802.1P vlan 0 header.
5258 * But could not find vlan dev.
5259 * check again for vlan id to set OTHERHOST.
5261 goto check_vlan_id;
5263 /* Note: we might in the future use prio bits
5264 * and set skb->priority like in vlan_do_receive()
5265 * For the time being, just ignore Priority Code Point
5267 __vlan_hwaccel_clear_tag(skb);
5270 type = skb->protocol;
5272 /* deliver only exact match when indicated */
5273 if (likely(!deliver_exact)) {
5274 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5275 &ptype_base[ntohs(type) &
5276 PTYPE_HASH_MASK]);
5279 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5280 &orig_dev->ptype_specific);
5282 if (unlikely(skb->dev != orig_dev)) {
5283 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5284 &skb->dev->ptype_specific);
5287 if (pt_prev) {
5288 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5289 goto drop;
5290 *ppt_prev = pt_prev;
5291 } else {
5292 drop:
5293 if (!deliver_exact)
5294 atomic_long_inc(&skb->dev->rx_dropped);
5295 else
5296 atomic_long_inc(&skb->dev->rx_nohandler);
5297 kfree_skb(skb);
5298 /* Jamal, now you will not able to escape explaining
5299 * me how you were going to use this. :-)
5301 ret = NET_RX_DROP;
5304 out:
5305 /* The invariant here is that if *ppt_prev is not NULL
5306 * then skb should also be non-NULL.
5308 * Apparently *ppt_prev assignment above holds this invariant due to
5309 * skb dereferencing near it.
5311 *pskb = skb;
5312 return ret;
5315 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5317 struct net_device *orig_dev = skb->dev;
5318 struct packet_type *pt_prev = NULL;
5319 int ret;
5321 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5322 if (pt_prev)
5323 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5324 skb->dev, pt_prev, orig_dev);
5325 return ret;
5329 * netif_receive_skb_core - special purpose version of netif_receive_skb
5330 * @skb: buffer to process
5332 * More direct receive version of netif_receive_skb(). It should
5333 * only be used by callers that have a need to skip RPS and Generic XDP.
5334 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5336 * This function may only be called from softirq context and interrupts
5337 * should be enabled.
5339 * Return values (usually ignored):
5340 * NET_RX_SUCCESS: no congestion
5341 * NET_RX_DROP: packet was dropped
5343 int netif_receive_skb_core(struct sk_buff *skb)
5345 int ret;
5347 rcu_read_lock();
5348 ret = __netif_receive_skb_one_core(skb, false);
5349 rcu_read_unlock();
5351 return ret;
5353 EXPORT_SYMBOL(netif_receive_skb_core);
5355 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5356 struct packet_type *pt_prev,
5357 struct net_device *orig_dev)
5359 struct sk_buff *skb, *next;
5361 if (!pt_prev)
5362 return;
5363 if (list_empty(head))
5364 return;
5365 if (pt_prev->list_func != NULL)
5366 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5367 ip_list_rcv, head, pt_prev, orig_dev);
5368 else
5369 list_for_each_entry_safe(skb, next, head, list) {
5370 skb_list_del_init(skb);
5371 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5375 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5377 /* Fast-path assumptions:
5378 * - There is no RX handler.
5379 * - Only one packet_type matches.
5380 * If either of these fails, we will end up doing some per-packet
5381 * processing in-line, then handling the 'last ptype' for the whole
5382 * sublist. This can't cause out-of-order delivery to any single ptype,
5383 * because the 'last ptype' must be constant across the sublist, and all
5384 * other ptypes are handled per-packet.
5386 /* Current (common) ptype of sublist */
5387 struct packet_type *pt_curr = NULL;
5388 /* Current (common) orig_dev of sublist */
5389 struct net_device *od_curr = NULL;
5390 struct list_head sublist;
5391 struct sk_buff *skb, *next;
5393 INIT_LIST_HEAD(&sublist);
5394 list_for_each_entry_safe(skb, next, head, list) {
5395 struct net_device *orig_dev = skb->dev;
5396 struct packet_type *pt_prev = NULL;
5398 skb_list_del_init(skb);
5399 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5400 if (!pt_prev)
5401 continue;
5402 if (pt_curr != pt_prev || od_curr != orig_dev) {
5403 /* dispatch old sublist */
5404 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5405 /* start new sublist */
5406 INIT_LIST_HEAD(&sublist);
5407 pt_curr = pt_prev;
5408 od_curr = orig_dev;
5410 list_add_tail(&skb->list, &sublist);
5413 /* dispatch final sublist */
5414 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5417 static int __netif_receive_skb(struct sk_buff *skb)
5419 int ret;
5421 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5422 unsigned int noreclaim_flag;
5425 * PFMEMALLOC skbs are special, they should
5426 * - be delivered to SOCK_MEMALLOC sockets only
5427 * - stay away from userspace
5428 * - have bounded memory usage
5430 * Use PF_MEMALLOC as this saves us from propagating the allocation
5431 * context down to all allocation sites.
5433 noreclaim_flag = memalloc_noreclaim_save();
5434 ret = __netif_receive_skb_one_core(skb, true);
5435 memalloc_noreclaim_restore(noreclaim_flag);
5436 } else
5437 ret = __netif_receive_skb_one_core(skb, false);
5439 return ret;
5442 static void __netif_receive_skb_list(struct list_head *head)
5444 unsigned long noreclaim_flag = 0;
5445 struct sk_buff *skb, *next;
5446 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5448 list_for_each_entry_safe(skb, next, head, list) {
5449 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5450 struct list_head sublist;
5452 /* Handle the previous sublist */
5453 list_cut_before(&sublist, head, &skb->list);
5454 if (!list_empty(&sublist))
5455 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5456 pfmemalloc = !pfmemalloc;
5457 /* See comments in __netif_receive_skb */
5458 if (pfmemalloc)
5459 noreclaim_flag = memalloc_noreclaim_save();
5460 else
5461 memalloc_noreclaim_restore(noreclaim_flag);
5464 /* Handle the remaining sublist */
5465 if (!list_empty(head))
5466 __netif_receive_skb_list_core(head, pfmemalloc);
5467 /* Restore pflags */
5468 if (pfmemalloc)
5469 memalloc_noreclaim_restore(noreclaim_flag);
5472 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5474 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5475 struct bpf_prog *new = xdp->prog;
5476 int ret = 0;
5478 if (new) {
5479 u32 i;
5481 mutex_lock(&new->aux->used_maps_mutex);
5483 /* generic XDP does not work with DEVMAPs that can
5484 * have a bpf_prog installed on an entry
5486 for (i = 0; i < new->aux->used_map_cnt; i++) {
5487 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5488 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5489 mutex_unlock(&new->aux->used_maps_mutex);
5490 return -EINVAL;
5494 mutex_unlock(&new->aux->used_maps_mutex);
5497 switch (xdp->command) {
5498 case XDP_SETUP_PROG:
5499 rcu_assign_pointer(dev->xdp_prog, new);
5500 if (old)
5501 bpf_prog_put(old);
5503 if (old && !new) {
5504 static_branch_dec(&generic_xdp_needed_key);
5505 } else if (new && !old) {
5506 static_branch_inc(&generic_xdp_needed_key);
5507 dev_disable_lro(dev);
5508 dev_disable_gro_hw(dev);
5510 break;
5512 default:
5513 ret = -EINVAL;
5514 break;
5517 return ret;
5520 static int netif_receive_skb_internal(struct sk_buff *skb)
5522 int ret;
5524 net_timestamp_check(netdev_tstamp_prequeue, skb);
5526 if (skb_defer_rx_timestamp(skb))
5527 return NET_RX_SUCCESS;
5529 rcu_read_lock();
5530 #ifdef CONFIG_RPS
5531 if (static_branch_unlikely(&rps_needed)) {
5532 struct rps_dev_flow voidflow, *rflow = &voidflow;
5533 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5535 if (cpu >= 0) {
5536 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5537 rcu_read_unlock();
5538 return ret;
5541 #endif
5542 ret = __netif_receive_skb(skb);
5543 rcu_read_unlock();
5544 return ret;
5547 static void netif_receive_skb_list_internal(struct list_head *head)
5549 struct sk_buff *skb, *next;
5550 struct list_head sublist;
5552 INIT_LIST_HEAD(&sublist);
5553 list_for_each_entry_safe(skb, next, head, list) {
5554 net_timestamp_check(netdev_tstamp_prequeue, skb);
5555 skb_list_del_init(skb);
5556 if (!skb_defer_rx_timestamp(skb))
5557 list_add_tail(&skb->list, &sublist);
5559 list_splice_init(&sublist, head);
5561 rcu_read_lock();
5562 #ifdef CONFIG_RPS
5563 if (static_branch_unlikely(&rps_needed)) {
5564 list_for_each_entry_safe(skb, next, head, list) {
5565 struct rps_dev_flow voidflow, *rflow = &voidflow;
5566 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5568 if (cpu >= 0) {
5569 /* Will be handled, remove from list */
5570 skb_list_del_init(skb);
5571 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5575 #endif
5576 __netif_receive_skb_list(head);
5577 rcu_read_unlock();
5581 * netif_receive_skb - process receive buffer from network
5582 * @skb: buffer to process
5584 * netif_receive_skb() is the main receive data processing function.
5585 * It always succeeds. The buffer may be dropped during processing
5586 * for congestion control or by the protocol layers.
5588 * This function may only be called from softirq context and interrupts
5589 * should be enabled.
5591 * Return values (usually ignored):
5592 * NET_RX_SUCCESS: no congestion
5593 * NET_RX_DROP: packet was dropped
5595 int netif_receive_skb(struct sk_buff *skb)
5597 int ret;
5599 trace_netif_receive_skb_entry(skb);
5601 ret = netif_receive_skb_internal(skb);
5602 trace_netif_receive_skb_exit(ret);
5604 return ret;
5606 EXPORT_SYMBOL(netif_receive_skb);
5609 * netif_receive_skb_list - process many receive buffers from network
5610 * @head: list of skbs to process.
5612 * Since return value of netif_receive_skb() is normally ignored, and
5613 * wouldn't be meaningful for a list, this function returns void.
5615 * This function may only be called from softirq context and interrupts
5616 * should be enabled.
5618 void netif_receive_skb_list(struct list_head *head)
5620 struct sk_buff *skb;
5622 if (list_empty(head))
5623 return;
5624 if (trace_netif_receive_skb_list_entry_enabled()) {
5625 list_for_each_entry(skb, head, list)
5626 trace_netif_receive_skb_list_entry(skb);
5628 netif_receive_skb_list_internal(head);
5629 trace_netif_receive_skb_list_exit(0);
5631 EXPORT_SYMBOL(netif_receive_skb_list);
5633 static DEFINE_PER_CPU(struct work_struct, flush_works);
5635 /* Network device is going away, flush any packets still pending */
5636 static void flush_backlog(struct work_struct *work)
5638 struct sk_buff *skb, *tmp;
5639 struct softnet_data *sd;
5641 local_bh_disable();
5642 sd = this_cpu_ptr(&softnet_data);
5644 local_irq_disable();
5645 rps_lock(sd);
5646 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5647 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5648 __skb_unlink(skb, &sd->input_pkt_queue);
5649 dev_kfree_skb_irq(skb);
5650 input_queue_head_incr(sd);
5653 rps_unlock(sd);
5654 local_irq_enable();
5656 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5657 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5658 __skb_unlink(skb, &sd->process_queue);
5659 kfree_skb(skb);
5660 input_queue_head_incr(sd);
5663 local_bh_enable();
5666 static bool flush_required(int cpu)
5668 #if IS_ENABLED(CONFIG_RPS)
5669 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5670 bool do_flush;
5672 local_irq_disable();
5673 rps_lock(sd);
5675 /* as insertion into process_queue happens with the rps lock held,
5676 * process_queue access may race only with dequeue
5678 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5679 !skb_queue_empty_lockless(&sd->process_queue);
5680 rps_unlock(sd);
5681 local_irq_enable();
5683 return do_flush;
5684 #endif
5685 /* without RPS we can't safely check input_pkt_queue: during a
5686 * concurrent remote skb_queue_splice() we can detect as empty both
5687 * input_pkt_queue and process_queue even if the latter could end-up
5688 * containing a lot of packets.
5690 return true;
5693 static void flush_all_backlogs(void)
5695 static cpumask_t flush_cpus;
5696 unsigned int cpu;
5698 /* since we are under rtnl lock protection we can use static data
5699 * for the cpumask and avoid allocating on stack the possibly
5700 * large mask
5702 ASSERT_RTNL();
5704 get_online_cpus();
5706 cpumask_clear(&flush_cpus);
5707 for_each_online_cpu(cpu) {
5708 if (flush_required(cpu)) {
5709 queue_work_on(cpu, system_highpri_wq,
5710 per_cpu_ptr(&flush_works, cpu));
5711 cpumask_set_cpu(cpu, &flush_cpus);
5715 /* we can have in flight packet[s] on the cpus we are not flushing,
5716 * synchronize_net() in rollback_registered_many() will take care of
5717 * them
5719 for_each_cpu(cpu, &flush_cpus)
5720 flush_work(per_cpu_ptr(&flush_works, cpu));
5722 put_online_cpus();
5725 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5726 static void gro_normal_list(struct napi_struct *napi)
5728 if (!napi->rx_count)
5729 return;
5730 netif_receive_skb_list_internal(&napi->rx_list);
5731 INIT_LIST_HEAD(&napi->rx_list);
5732 napi->rx_count = 0;
5735 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5736 * pass the whole batch up to the stack.
5738 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5740 list_add_tail(&skb->list, &napi->rx_list);
5741 if (++napi->rx_count >= gro_normal_batch)
5742 gro_normal_list(napi);
5745 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5746 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5747 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5749 struct packet_offload *ptype;
5750 __be16 type = skb->protocol;
5751 struct list_head *head = &offload_base;
5752 int err = -ENOENT;
5754 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5756 if (NAPI_GRO_CB(skb)->count == 1) {
5757 skb_shinfo(skb)->gso_size = 0;
5758 goto out;
5761 rcu_read_lock();
5762 list_for_each_entry_rcu(ptype, head, list) {
5763 if (ptype->type != type || !ptype->callbacks.gro_complete)
5764 continue;
5766 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5767 ipv6_gro_complete, inet_gro_complete,
5768 skb, 0);
5769 break;
5771 rcu_read_unlock();
5773 if (err) {
5774 WARN_ON(&ptype->list == head);
5775 kfree_skb(skb);
5776 return NET_RX_SUCCESS;
5779 out:
5780 gro_normal_one(napi, skb);
5781 return NET_RX_SUCCESS;
5784 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5785 bool flush_old)
5787 struct list_head *head = &napi->gro_hash[index].list;
5788 struct sk_buff *skb, *p;
5790 list_for_each_entry_safe_reverse(skb, p, head, list) {
5791 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5792 return;
5793 skb_list_del_init(skb);
5794 napi_gro_complete(napi, skb);
5795 napi->gro_hash[index].count--;
5798 if (!napi->gro_hash[index].count)
5799 __clear_bit(index, &napi->gro_bitmask);
5802 /* napi->gro_hash[].list contains packets ordered by age.
5803 * youngest packets at the head of it.
5804 * Complete skbs in reverse order to reduce latencies.
5806 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5808 unsigned long bitmask = napi->gro_bitmask;
5809 unsigned int i, base = ~0U;
5811 while ((i = ffs(bitmask)) != 0) {
5812 bitmask >>= i;
5813 base += i;
5814 __napi_gro_flush_chain(napi, base, flush_old);
5817 EXPORT_SYMBOL(napi_gro_flush);
5819 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5820 struct sk_buff *skb)
5822 unsigned int maclen = skb->dev->hard_header_len;
5823 u32 hash = skb_get_hash_raw(skb);
5824 struct list_head *head;
5825 struct sk_buff *p;
5827 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5828 list_for_each_entry(p, head, list) {
5829 unsigned long diffs;
5831 NAPI_GRO_CB(p)->flush = 0;
5833 if (hash != skb_get_hash_raw(p)) {
5834 NAPI_GRO_CB(p)->same_flow = 0;
5835 continue;
5838 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5839 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5840 if (skb_vlan_tag_present(p))
5841 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5842 diffs |= skb_metadata_dst_cmp(p, skb);
5843 diffs |= skb_metadata_differs(p, skb);
5844 if (maclen == ETH_HLEN)
5845 diffs |= compare_ether_header(skb_mac_header(p),
5846 skb_mac_header(skb));
5847 else if (!diffs)
5848 diffs = memcmp(skb_mac_header(p),
5849 skb_mac_header(skb),
5850 maclen);
5851 NAPI_GRO_CB(p)->same_flow = !diffs;
5854 return head;
5857 static void skb_gro_reset_offset(struct sk_buff *skb)
5859 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5860 const skb_frag_t *frag0 = &pinfo->frags[0];
5862 NAPI_GRO_CB(skb)->data_offset = 0;
5863 NAPI_GRO_CB(skb)->frag0 = NULL;
5864 NAPI_GRO_CB(skb)->frag0_len = 0;
5866 if (!skb_headlen(skb) && pinfo->nr_frags &&
5867 !PageHighMem(skb_frag_page(frag0))) {
5868 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5869 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5870 skb_frag_size(frag0),
5871 skb->end - skb->tail);
5875 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5877 struct skb_shared_info *pinfo = skb_shinfo(skb);
5879 BUG_ON(skb->end - skb->tail < grow);
5881 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5883 skb->data_len -= grow;
5884 skb->tail += grow;
5886 skb_frag_off_add(&pinfo->frags[0], grow);
5887 skb_frag_size_sub(&pinfo->frags[0], grow);
5889 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5890 skb_frag_unref(skb, 0);
5891 memmove(pinfo->frags, pinfo->frags + 1,
5892 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5896 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5898 struct sk_buff *oldest;
5900 oldest = list_last_entry(head, struct sk_buff, list);
5902 /* We are called with head length >= MAX_GRO_SKBS, so this is
5903 * impossible.
5905 if (WARN_ON_ONCE(!oldest))
5906 return;
5908 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5909 * SKB to the chain.
5911 skb_list_del_init(oldest);
5912 napi_gro_complete(napi, oldest);
5915 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5916 struct sk_buff *));
5917 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5918 struct sk_buff *));
5919 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5921 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5922 struct list_head *head = &offload_base;
5923 struct packet_offload *ptype;
5924 __be16 type = skb->protocol;
5925 struct list_head *gro_head;
5926 struct sk_buff *pp = NULL;
5927 enum gro_result ret;
5928 int same_flow;
5929 int grow;
5931 if (netif_elide_gro(skb->dev))
5932 goto normal;
5934 gro_head = gro_list_prepare(napi, skb);
5936 rcu_read_lock();
5937 list_for_each_entry_rcu(ptype, head, list) {
5938 if (ptype->type != type || !ptype->callbacks.gro_receive)
5939 continue;
5941 skb_set_network_header(skb, skb_gro_offset(skb));
5942 skb_reset_mac_len(skb);
5943 NAPI_GRO_CB(skb)->same_flow = 0;
5944 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5945 NAPI_GRO_CB(skb)->free = 0;
5946 NAPI_GRO_CB(skb)->encap_mark = 0;
5947 NAPI_GRO_CB(skb)->recursion_counter = 0;
5948 NAPI_GRO_CB(skb)->is_fou = 0;
5949 NAPI_GRO_CB(skb)->is_atomic = 1;
5950 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5952 /* Setup for GRO checksum validation */
5953 switch (skb->ip_summed) {
5954 case CHECKSUM_COMPLETE:
5955 NAPI_GRO_CB(skb)->csum = skb->csum;
5956 NAPI_GRO_CB(skb)->csum_valid = 1;
5957 NAPI_GRO_CB(skb)->csum_cnt = 0;
5958 break;
5959 case CHECKSUM_UNNECESSARY:
5960 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5961 NAPI_GRO_CB(skb)->csum_valid = 0;
5962 break;
5963 default:
5964 NAPI_GRO_CB(skb)->csum_cnt = 0;
5965 NAPI_GRO_CB(skb)->csum_valid = 0;
5968 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5969 ipv6_gro_receive, inet_gro_receive,
5970 gro_head, skb);
5971 break;
5973 rcu_read_unlock();
5975 if (&ptype->list == head)
5976 goto normal;
5978 if (PTR_ERR(pp) == -EINPROGRESS) {
5979 ret = GRO_CONSUMED;
5980 goto ok;
5983 same_flow = NAPI_GRO_CB(skb)->same_flow;
5984 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5986 if (pp) {
5987 skb_list_del_init(pp);
5988 napi_gro_complete(napi, pp);
5989 napi->gro_hash[hash].count--;
5992 if (same_flow)
5993 goto ok;
5995 if (NAPI_GRO_CB(skb)->flush)
5996 goto normal;
5998 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5999 gro_flush_oldest(napi, gro_head);
6000 } else {
6001 napi->gro_hash[hash].count++;
6003 NAPI_GRO_CB(skb)->count = 1;
6004 NAPI_GRO_CB(skb)->age = jiffies;
6005 NAPI_GRO_CB(skb)->last = skb;
6006 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6007 list_add(&skb->list, gro_head);
6008 ret = GRO_HELD;
6010 pull:
6011 grow = skb_gro_offset(skb) - skb_headlen(skb);
6012 if (grow > 0)
6013 gro_pull_from_frag0(skb, grow);
6015 if (napi->gro_hash[hash].count) {
6016 if (!test_bit(hash, &napi->gro_bitmask))
6017 __set_bit(hash, &napi->gro_bitmask);
6018 } else if (test_bit(hash, &napi->gro_bitmask)) {
6019 __clear_bit(hash, &napi->gro_bitmask);
6022 return ret;
6024 normal:
6025 ret = GRO_NORMAL;
6026 goto pull;
6029 struct packet_offload *gro_find_receive_by_type(__be16 type)
6031 struct list_head *offload_head = &offload_base;
6032 struct packet_offload *ptype;
6034 list_for_each_entry_rcu(ptype, offload_head, list) {
6035 if (ptype->type != type || !ptype->callbacks.gro_receive)
6036 continue;
6037 return ptype;
6039 return NULL;
6041 EXPORT_SYMBOL(gro_find_receive_by_type);
6043 struct packet_offload *gro_find_complete_by_type(__be16 type)
6045 struct list_head *offload_head = &offload_base;
6046 struct packet_offload *ptype;
6048 list_for_each_entry_rcu(ptype, offload_head, list) {
6049 if (ptype->type != type || !ptype->callbacks.gro_complete)
6050 continue;
6051 return ptype;
6053 return NULL;
6055 EXPORT_SYMBOL(gro_find_complete_by_type);
6057 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6059 skb_dst_drop(skb);
6060 skb_ext_put(skb);
6061 kmem_cache_free(skbuff_head_cache, skb);
6064 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6065 struct sk_buff *skb,
6066 gro_result_t ret)
6068 switch (ret) {
6069 case GRO_NORMAL:
6070 gro_normal_one(napi, skb);
6071 break;
6073 case GRO_DROP:
6074 kfree_skb(skb);
6075 break;
6077 case GRO_MERGED_FREE:
6078 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6079 napi_skb_free_stolen_head(skb);
6080 else
6081 __kfree_skb(skb);
6082 break;
6084 case GRO_HELD:
6085 case GRO_MERGED:
6086 case GRO_CONSUMED:
6087 break;
6090 return ret;
6093 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6095 gro_result_t ret;
6097 skb_mark_napi_id(skb, napi);
6098 trace_napi_gro_receive_entry(skb);
6100 skb_gro_reset_offset(skb);
6102 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6103 trace_napi_gro_receive_exit(ret);
6105 return ret;
6107 EXPORT_SYMBOL(napi_gro_receive);
6109 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6111 if (unlikely(skb->pfmemalloc)) {
6112 consume_skb(skb);
6113 return;
6115 __skb_pull(skb, skb_headlen(skb));
6116 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6117 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6118 __vlan_hwaccel_clear_tag(skb);
6119 skb->dev = napi->dev;
6120 skb->skb_iif = 0;
6122 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6123 skb->pkt_type = PACKET_HOST;
6125 skb->encapsulation = 0;
6126 skb_shinfo(skb)->gso_type = 0;
6127 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6128 skb_ext_reset(skb);
6130 napi->skb = skb;
6133 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6135 struct sk_buff *skb = napi->skb;
6137 if (!skb) {
6138 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6139 if (skb) {
6140 napi->skb = skb;
6141 skb_mark_napi_id(skb, napi);
6144 return skb;
6146 EXPORT_SYMBOL(napi_get_frags);
6148 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6149 struct sk_buff *skb,
6150 gro_result_t ret)
6152 switch (ret) {
6153 case GRO_NORMAL:
6154 case GRO_HELD:
6155 __skb_push(skb, ETH_HLEN);
6156 skb->protocol = eth_type_trans(skb, skb->dev);
6157 if (ret == GRO_NORMAL)
6158 gro_normal_one(napi, skb);
6159 break;
6161 case GRO_DROP:
6162 napi_reuse_skb(napi, skb);
6163 break;
6165 case GRO_MERGED_FREE:
6166 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6167 napi_skb_free_stolen_head(skb);
6168 else
6169 napi_reuse_skb(napi, skb);
6170 break;
6172 case GRO_MERGED:
6173 case GRO_CONSUMED:
6174 break;
6177 return ret;
6180 /* Upper GRO stack assumes network header starts at gro_offset=0
6181 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6182 * We copy ethernet header into skb->data to have a common layout.
6184 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6186 struct sk_buff *skb = napi->skb;
6187 const struct ethhdr *eth;
6188 unsigned int hlen = sizeof(*eth);
6190 napi->skb = NULL;
6192 skb_reset_mac_header(skb);
6193 skb_gro_reset_offset(skb);
6195 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6196 eth = skb_gro_header_slow(skb, hlen, 0);
6197 if (unlikely(!eth)) {
6198 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6199 __func__, napi->dev->name);
6200 napi_reuse_skb(napi, skb);
6201 return NULL;
6203 } else {
6204 eth = (const struct ethhdr *)skb->data;
6205 gro_pull_from_frag0(skb, hlen);
6206 NAPI_GRO_CB(skb)->frag0 += hlen;
6207 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6209 __skb_pull(skb, hlen);
6212 * This works because the only protocols we care about don't require
6213 * special handling.
6214 * We'll fix it up properly in napi_frags_finish()
6216 skb->protocol = eth->h_proto;
6218 return skb;
6221 gro_result_t napi_gro_frags(struct napi_struct *napi)
6223 gro_result_t ret;
6224 struct sk_buff *skb = napi_frags_skb(napi);
6226 if (!skb)
6227 return GRO_DROP;
6229 trace_napi_gro_frags_entry(skb);
6231 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6232 trace_napi_gro_frags_exit(ret);
6234 return ret;
6236 EXPORT_SYMBOL(napi_gro_frags);
6238 /* Compute the checksum from gro_offset and return the folded value
6239 * after adding in any pseudo checksum.
6241 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6243 __wsum wsum;
6244 __sum16 sum;
6246 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6248 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6249 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6250 /* See comments in __skb_checksum_complete(). */
6251 if (likely(!sum)) {
6252 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6253 !skb->csum_complete_sw)
6254 netdev_rx_csum_fault(skb->dev, skb);
6257 NAPI_GRO_CB(skb)->csum = wsum;
6258 NAPI_GRO_CB(skb)->csum_valid = 1;
6260 return sum;
6262 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6264 static void net_rps_send_ipi(struct softnet_data *remsd)
6266 #ifdef CONFIG_RPS
6267 while (remsd) {
6268 struct softnet_data *next = remsd->rps_ipi_next;
6270 if (cpu_online(remsd->cpu))
6271 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6272 remsd = next;
6274 #endif
6278 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6279 * Note: called with local irq disabled, but exits with local irq enabled.
6281 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6283 #ifdef CONFIG_RPS
6284 struct softnet_data *remsd = sd->rps_ipi_list;
6286 if (remsd) {
6287 sd->rps_ipi_list = NULL;
6289 local_irq_enable();
6291 /* Send pending IPI's to kick RPS processing on remote cpus. */
6292 net_rps_send_ipi(remsd);
6293 } else
6294 #endif
6295 local_irq_enable();
6298 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6300 #ifdef CONFIG_RPS
6301 return sd->rps_ipi_list != NULL;
6302 #else
6303 return false;
6304 #endif
6307 static int process_backlog(struct napi_struct *napi, int quota)
6309 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6310 bool again = true;
6311 int work = 0;
6313 /* Check if we have pending ipi, its better to send them now,
6314 * not waiting net_rx_action() end.
6316 if (sd_has_rps_ipi_waiting(sd)) {
6317 local_irq_disable();
6318 net_rps_action_and_irq_enable(sd);
6321 napi->weight = dev_rx_weight;
6322 while (again) {
6323 struct sk_buff *skb;
6325 while ((skb = __skb_dequeue(&sd->process_queue))) {
6326 rcu_read_lock();
6327 __netif_receive_skb(skb);
6328 rcu_read_unlock();
6329 input_queue_head_incr(sd);
6330 if (++work >= quota)
6331 return work;
6335 local_irq_disable();
6336 rps_lock(sd);
6337 if (skb_queue_empty(&sd->input_pkt_queue)) {
6339 * Inline a custom version of __napi_complete().
6340 * only current cpu owns and manipulates this napi,
6341 * and NAPI_STATE_SCHED is the only possible flag set
6342 * on backlog.
6343 * We can use a plain write instead of clear_bit(),
6344 * and we dont need an smp_mb() memory barrier.
6346 napi->state = 0;
6347 again = false;
6348 } else {
6349 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6350 &sd->process_queue);
6352 rps_unlock(sd);
6353 local_irq_enable();
6356 return work;
6360 * __napi_schedule - schedule for receive
6361 * @n: entry to schedule
6363 * The entry's receive function will be scheduled to run.
6364 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6366 void __napi_schedule(struct napi_struct *n)
6368 unsigned long flags;
6370 local_irq_save(flags);
6371 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6372 local_irq_restore(flags);
6374 EXPORT_SYMBOL(__napi_schedule);
6377 * napi_schedule_prep - check if napi can be scheduled
6378 * @n: napi context
6380 * Test if NAPI routine is already running, and if not mark
6381 * it as running. This is used as a condition variable to
6382 * insure only one NAPI poll instance runs. We also make
6383 * sure there is no pending NAPI disable.
6385 bool napi_schedule_prep(struct napi_struct *n)
6387 unsigned long val, new;
6389 do {
6390 val = READ_ONCE(n->state);
6391 if (unlikely(val & NAPIF_STATE_DISABLE))
6392 return false;
6393 new = val | NAPIF_STATE_SCHED;
6395 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6396 * This was suggested by Alexander Duyck, as compiler
6397 * emits better code than :
6398 * if (val & NAPIF_STATE_SCHED)
6399 * new |= NAPIF_STATE_MISSED;
6401 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6402 NAPIF_STATE_MISSED;
6403 } while (cmpxchg(&n->state, val, new) != val);
6405 return !(val & NAPIF_STATE_SCHED);
6407 EXPORT_SYMBOL(napi_schedule_prep);
6410 * __napi_schedule_irqoff - schedule for receive
6411 * @n: entry to schedule
6413 * Variant of __napi_schedule() assuming hard irqs are masked
6415 void __napi_schedule_irqoff(struct napi_struct *n)
6417 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6419 EXPORT_SYMBOL(__napi_schedule_irqoff);
6421 bool napi_complete_done(struct napi_struct *n, int work_done)
6423 unsigned long flags, val, new, timeout = 0;
6424 bool ret = true;
6427 * 1) Don't let napi dequeue from the cpu poll list
6428 * just in case its running on a different cpu.
6429 * 2) If we are busy polling, do nothing here, we have
6430 * the guarantee we will be called later.
6432 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6433 NAPIF_STATE_IN_BUSY_POLL)))
6434 return false;
6436 if (work_done) {
6437 if (n->gro_bitmask)
6438 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6439 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6441 if (n->defer_hard_irqs_count > 0) {
6442 n->defer_hard_irqs_count--;
6443 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6444 if (timeout)
6445 ret = false;
6447 if (n->gro_bitmask) {
6448 /* When the NAPI instance uses a timeout and keeps postponing
6449 * it, we need to bound somehow the time packets are kept in
6450 * the GRO layer
6452 napi_gro_flush(n, !!timeout);
6455 gro_normal_list(n);
6457 if (unlikely(!list_empty(&n->poll_list))) {
6458 /* If n->poll_list is not empty, we need to mask irqs */
6459 local_irq_save(flags);
6460 list_del_init(&n->poll_list);
6461 local_irq_restore(flags);
6464 do {
6465 val = READ_ONCE(n->state);
6467 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6469 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6470 NAPIF_STATE_PREFER_BUSY_POLL);
6472 /* If STATE_MISSED was set, leave STATE_SCHED set,
6473 * because we will call napi->poll() one more time.
6474 * This C code was suggested by Alexander Duyck to help gcc.
6476 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6477 NAPIF_STATE_SCHED;
6478 } while (cmpxchg(&n->state, val, new) != val);
6480 if (unlikely(val & NAPIF_STATE_MISSED)) {
6481 __napi_schedule(n);
6482 return false;
6485 if (timeout)
6486 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6487 HRTIMER_MODE_REL_PINNED);
6488 return ret;
6490 EXPORT_SYMBOL(napi_complete_done);
6492 /* must be called under rcu_read_lock(), as we dont take a reference */
6493 static struct napi_struct *napi_by_id(unsigned int napi_id)
6495 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6496 struct napi_struct *napi;
6498 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6499 if (napi->napi_id == napi_id)
6500 return napi;
6502 return NULL;
6505 #if defined(CONFIG_NET_RX_BUSY_POLL)
6507 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6509 if (!skip_schedule) {
6510 gro_normal_list(napi);
6511 __napi_schedule(napi);
6512 return;
6515 if (napi->gro_bitmask) {
6516 /* flush too old packets
6517 * If HZ < 1000, flush all packets.
6519 napi_gro_flush(napi, HZ >= 1000);
6522 gro_normal_list(napi);
6523 clear_bit(NAPI_STATE_SCHED, &napi->state);
6526 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6527 u16 budget)
6529 bool skip_schedule = false;
6530 unsigned long timeout;
6531 int rc;
6533 /* Busy polling means there is a high chance device driver hard irq
6534 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6535 * set in napi_schedule_prep().
6536 * Since we are about to call napi->poll() once more, we can safely
6537 * clear NAPI_STATE_MISSED.
6539 * Note: x86 could use a single "lock and ..." instruction
6540 * to perform these two clear_bit()
6542 clear_bit(NAPI_STATE_MISSED, &napi->state);
6543 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6545 local_bh_disable();
6547 if (prefer_busy_poll) {
6548 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6549 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6550 if (napi->defer_hard_irqs_count && timeout) {
6551 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6552 skip_schedule = true;
6556 /* All we really want here is to re-enable device interrupts.
6557 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6559 rc = napi->poll(napi, budget);
6560 /* We can't gro_normal_list() here, because napi->poll() might have
6561 * rearmed the napi (napi_complete_done()) in which case it could
6562 * already be running on another CPU.
6564 trace_napi_poll(napi, rc, budget);
6565 netpoll_poll_unlock(have_poll_lock);
6566 if (rc == budget)
6567 __busy_poll_stop(napi, skip_schedule);
6568 local_bh_enable();
6571 void napi_busy_loop(unsigned int napi_id,
6572 bool (*loop_end)(void *, unsigned long),
6573 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6575 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6576 int (*napi_poll)(struct napi_struct *napi, int budget);
6577 void *have_poll_lock = NULL;
6578 struct napi_struct *napi;
6580 restart:
6581 napi_poll = NULL;
6583 rcu_read_lock();
6585 napi = napi_by_id(napi_id);
6586 if (!napi)
6587 goto out;
6589 preempt_disable();
6590 for (;;) {
6591 int work = 0;
6593 local_bh_disable();
6594 if (!napi_poll) {
6595 unsigned long val = READ_ONCE(napi->state);
6597 /* If multiple threads are competing for this napi,
6598 * we avoid dirtying napi->state as much as we can.
6600 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6601 NAPIF_STATE_IN_BUSY_POLL)) {
6602 if (prefer_busy_poll)
6603 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6604 goto count;
6606 if (cmpxchg(&napi->state, val,
6607 val | NAPIF_STATE_IN_BUSY_POLL |
6608 NAPIF_STATE_SCHED) != val) {
6609 if (prefer_busy_poll)
6610 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6611 goto count;
6613 have_poll_lock = netpoll_poll_lock(napi);
6614 napi_poll = napi->poll;
6616 work = napi_poll(napi, budget);
6617 trace_napi_poll(napi, work, budget);
6618 gro_normal_list(napi);
6619 count:
6620 if (work > 0)
6621 __NET_ADD_STATS(dev_net(napi->dev),
6622 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6623 local_bh_enable();
6625 if (!loop_end || loop_end(loop_end_arg, start_time))
6626 break;
6628 if (unlikely(need_resched())) {
6629 if (napi_poll)
6630 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6631 preempt_enable();
6632 rcu_read_unlock();
6633 cond_resched();
6634 if (loop_end(loop_end_arg, start_time))
6635 return;
6636 goto restart;
6638 cpu_relax();
6640 if (napi_poll)
6641 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6642 preempt_enable();
6643 out:
6644 rcu_read_unlock();
6646 EXPORT_SYMBOL(napi_busy_loop);
6648 #endif /* CONFIG_NET_RX_BUSY_POLL */
6650 static void napi_hash_add(struct napi_struct *napi)
6652 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6653 return;
6655 spin_lock(&napi_hash_lock);
6657 /* 0..NR_CPUS range is reserved for sender_cpu use */
6658 do {
6659 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6660 napi_gen_id = MIN_NAPI_ID;
6661 } while (napi_by_id(napi_gen_id));
6662 napi->napi_id = napi_gen_id;
6664 hlist_add_head_rcu(&napi->napi_hash_node,
6665 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6667 spin_unlock(&napi_hash_lock);
6670 /* Warning : caller is responsible to make sure rcu grace period
6671 * is respected before freeing memory containing @napi
6673 static void napi_hash_del(struct napi_struct *napi)
6675 spin_lock(&napi_hash_lock);
6677 hlist_del_init_rcu(&napi->napi_hash_node);
6679 spin_unlock(&napi_hash_lock);
6682 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6684 struct napi_struct *napi;
6686 napi = container_of(timer, struct napi_struct, timer);
6688 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6689 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6691 if (!napi_disable_pending(napi) &&
6692 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6693 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6694 __napi_schedule_irqoff(napi);
6697 return HRTIMER_NORESTART;
6700 static void init_gro_hash(struct napi_struct *napi)
6702 int i;
6704 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6705 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6706 napi->gro_hash[i].count = 0;
6708 napi->gro_bitmask = 0;
6711 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6712 int (*poll)(struct napi_struct *, int), int weight)
6714 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6715 return;
6717 INIT_LIST_HEAD(&napi->poll_list);
6718 INIT_HLIST_NODE(&napi->napi_hash_node);
6719 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6720 napi->timer.function = napi_watchdog;
6721 init_gro_hash(napi);
6722 napi->skb = NULL;
6723 INIT_LIST_HEAD(&napi->rx_list);
6724 napi->rx_count = 0;
6725 napi->poll = poll;
6726 if (weight > NAPI_POLL_WEIGHT)
6727 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6728 weight);
6729 napi->weight = weight;
6730 napi->dev = dev;
6731 #ifdef CONFIG_NETPOLL
6732 napi->poll_owner = -1;
6733 #endif
6734 set_bit(NAPI_STATE_SCHED, &napi->state);
6735 set_bit(NAPI_STATE_NPSVC, &napi->state);
6736 list_add_rcu(&napi->dev_list, &dev->napi_list);
6737 napi_hash_add(napi);
6739 EXPORT_SYMBOL(netif_napi_add);
6741 void napi_disable(struct napi_struct *n)
6743 might_sleep();
6744 set_bit(NAPI_STATE_DISABLE, &n->state);
6746 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6747 msleep(1);
6748 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6749 msleep(1);
6751 hrtimer_cancel(&n->timer);
6753 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6754 clear_bit(NAPI_STATE_DISABLE, &n->state);
6756 EXPORT_SYMBOL(napi_disable);
6758 static void flush_gro_hash(struct napi_struct *napi)
6760 int i;
6762 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6763 struct sk_buff *skb, *n;
6765 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6766 kfree_skb(skb);
6767 napi->gro_hash[i].count = 0;
6771 /* Must be called in process context */
6772 void __netif_napi_del(struct napi_struct *napi)
6774 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6775 return;
6777 napi_hash_del(napi);
6778 list_del_rcu(&napi->dev_list);
6779 napi_free_frags(napi);
6781 flush_gro_hash(napi);
6782 napi->gro_bitmask = 0;
6784 EXPORT_SYMBOL(__netif_napi_del);
6786 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6788 void *have;
6789 int work, weight;
6791 list_del_init(&n->poll_list);
6793 have = netpoll_poll_lock(n);
6795 weight = n->weight;
6797 /* This NAPI_STATE_SCHED test is for avoiding a race
6798 * with netpoll's poll_napi(). Only the entity which
6799 * obtains the lock and sees NAPI_STATE_SCHED set will
6800 * actually make the ->poll() call. Therefore we avoid
6801 * accidentally calling ->poll() when NAPI is not scheduled.
6803 work = 0;
6804 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6805 work = n->poll(n, weight);
6806 trace_napi_poll(n, work, weight);
6809 if (unlikely(work > weight))
6810 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6811 n->poll, work, weight);
6813 if (likely(work < weight))
6814 goto out_unlock;
6816 /* Drivers must not modify the NAPI state if they
6817 * consume the entire weight. In such cases this code
6818 * still "owns" the NAPI instance and therefore can
6819 * move the instance around on the list at-will.
6821 if (unlikely(napi_disable_pending(n))) {
6822 napi_complete(n);
6823 goto out_unlock;
6826 /* The NAPI context has more processing work, but busy-polling
6827 * is preferred. Exit early.
6829 if (napi_prefer_busy_poll(n)) {
6830 if (napi_complete_done(n, work)) {
6831 /* If timeout is not set, we need to make sure
6832 * that the NAPI is re-scheduled.
6834 napi_schedule(n);
6836 goto out_unlock;
6839 if (n->gro_bitmask) {
6840 /* flush too old packets
6841 * If HZ < 1000, flush all packets.
6843 napi_gro_flush(n, HZ >= 1000);
6846 gro_normal_list(n);
6848 /* Some drivers may have called napi_schedule
6849 * prior to exhausting their budget.
6851 if (unlikely(!list_empty(&n->poll_list))) {
6852 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6853 n->dev ? n->dev->name : "backlog");
6854 goto out_unlock;
6857 list_add_tail(&n->poll_list, repoll);
6859 out_unlock:
6860 netpoll_poll_unlock(have);
6862 return work;
6865 static __latent_entropy void net_rx_action(struct softirq_action *h)
6867 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6868 unsigned long time_limit = jiffies +
6869 usecs_to_jiffies(netdev_budget_usecs);
6870 int budget = netdev_budget;
6871 LIST_HEAD(list);
6872 LIST_HEAD(repoll);
6874 local_irq_disable();
6875 list_splice_init(&sd->poll_list, &list);
6876 local_irq_enable();
6878 for (;;) {
6879 struct napi_struct *n;
6881 if (list_empty(&list)) {
6882 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6883 goto out;
6884 break;
6887 n = list_first_entry(&list, struct napi_struct, poll_list);
6888 budget -= napi_poll(n, &repoll);
6890 /* If softirq window is exhausted then punt.
6891 * Allow this to run for 2 jiffies since which will allow
6892 * an average latency of 1.5/HZ.
6894 if (unlikely(budget <= 0 ||
6895 time_after_eq(jiffies, time_limit))) {
6896 sd->time_squeeze++;
6897 break;
6901 local_irq_disable();
6903 list_splice_tail_init(&sd->poll_list, &list);
6904 list_splice_tail(&repoll, &list);
6905 list_splice(&list, &sd->poll_list);
6906 if (!list_empty(&sd->poll_list))
6907 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6909 net_rps_action_and_irq_enable(sd);
6910 out:
6911 __kfree_skb_flush();
6914 struct netdev_adjacent {
6915 struct net_device *dev;
6917 /* upper master flag, there can only be one master device per list */
6918 bool master;
6920 /* lookup ignore flag */
6921 bool ignore;
6923 /* counter for the number of times this device was added to us */
6924 u16 ref_nr;
6926 /* private field for the users */
6927 void *private;
6929 struct list_head list;
6930 struct rcu_head rcu;
6933 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6934 struct list_head *adj_list)
6936 struct netdev_adjacent *adj;
6938 list_for_each_entry(adj, adj_list, list) {
6939 if (adj->dev == adj_dev)
6940 return adj;
6942 return NULL;
6945 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6946 struct netdev_nested_priv *priv)
6948 struct net_device *dev = (struct net_device *)priv->data;
6950 return upper_dev == dev;
6954 * netdev_has_upper_dev - Check if device is linked to an upper device
6955 * @dev: device
6956 * @upper_dev: upper device to check
6958 * Find out if a device is linked to specified upper device and return true
6959 * in case it is. Note that this checks only immediate upper device,
6960 * not through a complete stack of devices. The caller must hold the RTNL lock.
6962 bool netdev_has_upper_dev(struct net_device *dev,
6963 struct net_device *upper_dev)
6965 struct netdev_nested_priv priv = {
6966 .data = (void *)upper_dev,
6969 ASSERT_RTNL();
6971 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6972 &priv);
6974 EXPORT_SYMBOL(netdev_has_upper_dev);
6977 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6978 * @dev: device
6979 * @upper_dev: upper device to check
6981 * Find out if a device is linked to specified upper device and return true
6982 * in case it is. Note that this checks the entire upper device chain.
6983 * The caller must hold rcu lock.
6986 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6987 struct net_device *upper_dev)
6989 struct netdev_nested_priv priv = {
6990 .data = (void *)upper_dev,
6993 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6994 &priv);
6996 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6999 * netdev_has_any_upper_dev - Check if device is linked to some device
7000 * @dev: device
7002 * Find out if a device is linked to an upper device and return true in case
7003 * it is. The caller must hold the RTNL lock.
7005 bool netdev_has_any_upper_dev(struct net_device *dev)
7007 ASSERT_RTNL();
7009 return !list_empty(&dev->adj_list.upper);
7011 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7014 * netdev_master_upper_dev_get - Get master upper device
7015 * @dev: device
7017 * Find a master upper device and return pointer to it or NULL in case
7018 * it's not there. The caller must hold the RTNL lock.
7020 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7022 struct netdev_adjacent *upper;
7024 ASSERT_RTNL();
7026 if (list_empty(&dev->adj_list.upper))
7027 return NULL;
7029 upper = list_first_entry(&dev->adj_list.upper,
7030 struct netdev_adjacent, list);
7031 if (likely(upper->master))
7032 return upper->dev;
7033 return NULL;
7035 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7037 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7039 struct netdev_adjacent *upper;
7041 ASSERT_RTNL();
7043 if (list_empty(&dev->adj_list.upper))
7044 return NULL;
7046 upper = list_first_entry(&dev->adj_list.upper,
7047 struct netdev_adjacent, list);
7048 if (likely(upper->master) && !upper->ignore)
7049 return upper->dev;
7050 return NULL;
7054 * netdev_has_any_lower_dev - Check if device is linked to some device
7055 * @dev: device
7057 * Find out if a device is linked to a lower device and return true in case
7058 * it is. The caller must hold the RTNL lock.
7060 static bool netdev_has_any_lower_dev(struct net_device *dev)
7062 ASSERT_RTNL();
7064 return !list_empty(&dev->adj_list.lower);
7067 void *netdev_adjacent_get_private(struct list_head *adj_list)
7069 struct netdev_adjacent *adj;
7071 adj = list_entry(adj_list, struct netdev_adjacent, list);
7073 return adj->private;
7075 EXPORT_SYMBOL(netdev_adjacent_get_private);
7078 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7079 * @dev: device
7080 * @iter: list_head ** of the current position
7082 * Gets the next device from the dev's upper list, starting from iter
7083 * position. The caller must hold RCU read lock.
7085 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7086 struct list_head **iter)
7088 struct netdev_adjacent *upper;
7090 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7092 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7094 if (&upper->list == &dev->adj_list.upper)
7095 return NULL;
7097 *iter = &upper->list;
7099 return upper->dev;
7101 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7103 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7104 struct list_head **iter,
7105 bool *ignore)
7107 struct netdev_adjacent *upper;
7109 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7111 if (&upper->list == &dev->adj_list.upper)
7112 return NULL;
7114 *iter = &upper->list;
7115 *ignore = upper->ignore;
7117 return upper->dev;
7120 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7121 struct list_head **iter)
7123 struct netdev_adjacent *upper;
7125 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7127 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7129 if (&upper->list == &dev->adj_list.upper)
7130 return NULL;
7132 *iter = &upper->list;
7134 return upper->dev;
7137 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7138 int (*fn)(struct net_device *dev,
7139 struct netdev_nested_priv *priv),
7140 struct netdev_nested_priv *priv)
7142 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7143 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7144 int ret, cur = 0;
7145 bool ignore;
7147 now = dev;
7148 iter = &dev->adj_list.upper;
7150 while (1) {
7151 if (now != dev) {
7152 ret = fn(now, priv);
7153 if (ret)
7154 return ret;
7157 next = NULL;
7158 while (1) {
7159 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7160 if (!udev)
7161 break;
7162 if (ignore)
7163 continue;
7165 next = udev;
7166 niter = &udev->adj_list.upper;
7167 dev_stack[cur] = now;
7168 iter_stack[cur++] = iter;
7169 break;
7172 if (!next) {
7173 if (!cur)
7174 return 0;
7175 next = dev_stack[--cur];
7176 niter = iter_stack[cur];
7179 now = next;
7180 iter = niter;
7183 return 0;
7186 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7187 int (*fn)(struct net_device *dev,
7188 struct netdev_nested_priv *priv),
7189 struct netdev_nested_priv *priv)
7191 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7192 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7193 int ret, cur = 0;
7195 now = dev;
7196 iter = &dev->adj_list.upper;
7198 while (1) {
7199 if (now != dev) {
7200 ret = fn(now, priv);
7201 if (ret)
7202 return ret;
7205 next = NULL;
7206 while (1) {
7207 udev = netdev_next_upper_dev_rcu(now, &iter);
7208 if (!udev)
7209 break;
7211 next = udev;
7212 niter = &udev->adj_list.upper;
7213 dev_stack[cur] = now;
7214 iter_stack[cur++] = iter;
7215 break;
7218 if (!next) {
7219 if (!cur)
7220 return 0;
7221 next = dev_stack[--cur];
7222 niter = iter_stack[cur];
7225 now = next;
7226 iter = niter;
7229 return 0;
7231 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7233 static bool __netdev_has_upper_dev(struct net_device *dev,
7234 struct net_device *upper_dev)
7236 struct netdev_nested_priv priv = {
7237 .flags = 0,
7238 .data = (void *)upper_dev,
7241 ASSERT_RTNL();
7243 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7244 &priv);
7248 * netdev_lower_get_next_private - Get the next ->private from the
7249 * lower neighbour list
7250 * @dev: device
7251 * @iter: list_head ** of the current position
7253 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7254 * list, starting from iter position. The caller must hold either hold the
7255 * RTNL lock or its own locking that guarantees that the neighbour lower
7256 * list will remain unchanged.
7258 void *netdev_lower_get_next_private(struct net_device *dev,
7259 struct list_head **iter)
7261 struct netdev_adjacent *lower;
7263 lower = list_entry(*iter, struct netdev_adjacent, list);
7265 if (&lower->list == &dev->adj_list.lower)
7266 return NULL;
7268 *iter = lower->list.next;
7270 return lower->private;
7272 EXPORT_SYMBOL(netdev_lower_get_next_private);
7275 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7276 * lower neighbour list, RCU
7277 * variant
7278 * @dev: device
7279 * @iter: list_head ** of the current position
7281 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7282 * list, starting from iter position. The caller must hold RCU read lock.
7284 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7285 struct list_head **iter)
7287 struct netdev_adjacent *lower;
7289 WARN_ON_ONCE(!rcu_read_lock_held());
7291 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7293 if (&lower->list == &dev->adj_list.lower)
7294 return NULL;
7296 *iter = &lower->list;
7298 return lower->private;
7300 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7303 * netdev_lower_get_next - Get the next device from the lower neighbour
7304 * list
7305 * @dev: device
7306 * @iter: list_head ** of the current position
7308 * Gets the next netdev_adjacent from the dev's lower neighbour
7309 * list, starting from iter position. The caller must hold RTNL lock or
7310 * its own locking that guarantees that the neighbour lower
7311 * list will remain unchanged.
7313 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7315 struct netdev_adjacent *lower;
7317 lower = list_entry(*iter, struct netdev_adjacent, list);
7319 if (&lower->list == &dev->adj_list.lower)
7320 return NULL;
7322 *iter = lower->list.next;
7324 return lower->dev;
7326 EXPORT_SYMBOL(netdev_lower_get_next);
7328 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7329 struct list_head **iter)
7331 struct netdev_adjacent *lower;
7333 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7335 if (&lower->list == &dev->adj_list.lower)
7336 return NULL;
7338 *iter = &lower->list;
7340 return lower->dev;
7343 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7344 struct list_head **iter,
7345 bool *ignore)
7347 struct netdev_adjacent *lower;
7349 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7351 if (&lower->list == &dev->adj_list.lower)
7352 return NULL;
7354 *iter = &lower->list;
7355 *ignore = lower->ignore;
7357 return lower->dev;
7360 int netdev_walk_all_lower_dev(struct net_device *dev,
7361 int (*fn)(struct net_device *dev,
7362 struct netdev_nested_priv *priv),
7363 struct netdev_nested_priv *priv)
7365 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7366 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7367 int ret, cur = 0;
7369 now = dev;
7370 iter = &dev->adj_list.lower;
7372 while (1) {
7373 if (now != dev) {
7374 ret = fn(now, priv);
7375 if (ret)
7376 return ret;
7379 next = NULL;
7380 while (1) {
7381 ldev = netdev_next_lower_dev(now, &iter);
7382 if (!ldev)
7383 break;
7385 next = ldev;
7386 niter = &ldev->adj_list.lower;
7387 dev_stack[cur] = now;
7388 iter_stack[cur++] = iter;
7389 break;
7392 if (!next) {
7393 if (!cur)
7394 return 0;
7395 next = dev_stack[--cur];
7396 niter = iter_stack[cur];
7399 now = next;
7400 iter = niter;
7403 return 0;
7405 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7407 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7408 int (*fn)(struct net_device *dev,
7409 struct netdev_nested_priv *priv),
7410 struct netdev_nested_priv *priv)
7412 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7413 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7414 int ret, cur = 0;
7415 bool ignore;
7417 now = dev;
7418 iter = &dev->adj_list.lower;
7420 while (1) {
7421 if (now != dev) {
7422 ret = fn(now, priv);
7423 if (ret)
7424 return ret;
7427 next = NULL;
7428 while (1) {
7429 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7430 if (!ldev)
7431 break;
7432 if (ignore)
7433 continue;
7435 next = ldev;
7436 niter = &ldev->adj_list.lower;
7437 dev_stack[cur] = now;
7438 iter_stack[cur++] = iter;
7439 break;
7442 if (!next) {
7443 if (!cur)
7444 return 0;
7445 next = dev_stack[--cur];
7446 niter = iter_stack[cur];
7449 now = next;
7450 iter = niter;
7453 return 0;
7456 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7457 struct list_head **iter)
7459 struct netdev_adjacent *lower;
7461 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7462 if (&lower->list == &dev->adj_list.lower)
7463 return NULL;
7465 *iter = &lower->list;
7467 return lower->dev;
7469 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7471 static u8 __netdev_upper_depth(struct net_device *dev)
7473 struct net_device *udev;
7474 struct list_head *iter;
7475 u8 max_depth = 0;
7476 bool ignore;
7478 for (iter = &dev->adj_list.upper,
7479 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7480 udev;
7481 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7482 if (ignore)
7483 continue;
7484 if (max_depth < udev->upper_level)
7485 max_depth = udev->upper_level;
7488 return max_depth;
7491 static u8 __netdev_lower_depth(struct net_device *dev)
7493 struct net_device *ldev;
7494 struct list_head *iter;
7495 u8 max_depth = 0;
7496 bool ignore;
7498 for (iter = &dev->adj_list.lower,
7499 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7500 ldev;
7501 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7502 if (ignore)
7503 continue;
7504 if (max_depth < ldev->lower_level)
7505 max_depth = ldev->lower_level;
7508 return max_depth;
7511 static int __netdev_update_upper_level(struct net_device *dev,
7512 struct netdev_nested_priv *__unused)
7514 dev->upper_level = __netdev_upper_depth(dev) + 1;
7515 return 0;
7518 static int __netdev_update_lower_level(struct net_device *dev,
7519 struct netdev_nested_priv *priv)
7521 dev->lower_level = __netdev_lower_depth(dev) + 1;
7523 #ifdef CONFIG_LOCKDEP
7524 if (!priv)
7525 return 0;
7527 if (priv->flags & NESTED_SYNC_IMM)
7528 dev->nested_level = dev->lower_level - 1;
7529 if (priv->flags & NESTED_SYNC_TODO)
7530 net_unlink_todo(dev);
7531 #endif
7532 return 0;
7535 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7536 int (*fn)(struct net_device *dev,
7537 struct netdev_nested_priv *priv),
7538 struct netdev_nested_priv *priv)
7540 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7541 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7542 int ret, cur = 0;
7544 now = dev;
7545 iter = &dev->adj_list.lower;
7547 while (1) {
7548 if (now != dev) {
7549 ret = fn(now, priv);
7550 if (ret)
7551 return ret;
7554 next = NULL;
7555 while (1) {
7556 ldev = netdev_next_lower_dev_rcu(now, &iter);
7557 if (!ldev)
7558 break;
7560 next = ldev;
7561 niter = &ldev->adj_list.lower;
7562 dev_stack[cur] = now;
7563 iter_stack[cur++] = iter;
7564 break;
7567 if (!next) {
7568 if (!cur)
7569 return 0;
7570 next = dev_stack[--cur];
7571 niter = iter_stack[cur];
7574 now = next;
7575 iter = niter;
7578 return 0;
7580 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7583 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7584 * lower neighbour list, RCU
7585 * variant
7586 * @dev: device
7588 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7589 * list. The caller must hold RCU read lock.
7591 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7593 struct netdev_adjacent *lower;
7595 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7596 struct netdev_adjacent, list);
7597 if (lower)
7598 return lower->private;
7599 return NULL;
7601 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7604 * netdev_master_upper_dev_get_rcu - Get master upper device
7605 * @dev: device
7607 * Find a master upper device and return pointer to it or NULL in case
7608 * it's not there. The caller must hold the RCU read lock.
7610 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7612 struct netdev_adjacent *upper;
7614 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7615 struct netdev_adjacent, list);
7616 if (upper && likely(upper->master))
7617 return upper->dev;
7618 return NULL;
7620 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7622 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7623 struct net_device *adj_dev,
7624 struct list_head *dev_list)
7626 char linkname[IFNAMSIZ+7];
7628 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7629 "upper_%s" : "lower_%s", adj_dev->name);
7630 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7631 linkname);
7633 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7634 char *name,
7635 struct list_head *dev_list)
7637 char linkname[IFNAMSIZ+7];
7639 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7640 "upper_%s" : "lower_%s", name);
7641 sysfs_remove_link(&(dev->dev.kobj), linkname);
7644 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7645 struct net_device *adj_dev,
7646 struct list_head *dev_list)
7648 return (dev_list == &dev->adj_list.upper ||
7649 dev_list == &dev->adj_list.lower) &&
7650 net_eq(dev_net(dev), dev_net(adj_dev));
7653 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7654 struct net_device *adj_dev,
7655 struct list_head *dev_list,
7656 void *private, bool master)
7658 struct netdev_adjacent *adj;
7659 int ret;
7661 adj = __netdev_find_adj(adj_dev, dev_list);
7663 if (adj) {
7664 adj->ref_nr += 1;
7665 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7666 dev->name, adj_dev->name, adj->ref_nr);
7668 return 0;
7671 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7672 if (!adj)
7673 return -ENOMEM;
7675 adj->dev = adj_dev;
7676 adj->master = master;
7677 adj->ref_nr = 1;
7678 adj->private = private;
7679 adj->ignore = false;
7680 dev_hold(adj_dev);
7682 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7683 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7685 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7686 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7687 if (ret)
7688 goto free_adj;
7691 /* Ensure that master link is always the first item in list. */
7692 if (master) {
7693 ret = sysfs_create_link(&(dev->dev.kobj),
7694 &(adj_dev->dev.kobj), "master");
7695 if (ret)
7696 goto remove_symlinks;
7698 list_add_rcu(&adj->list, dev_list);
7699 } else {
7700 list_add_tail_rcu(&adj->list, dev_list);
7703 return 0;
7705 remove_symlinks:
7706 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7707 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7708 free_adj:
7709 kfree(adj);
7710 dev_put(adj_dev);
7712 return ret;
7715 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7716 struct net_device *adj_dev,
7717 u16 ref_nr,
7718 struct list_head *dev_list)
7720 struct netdev_adjacent *adj;
7722 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7723 dev->name, adj_dev->name, ref_nr);
7725 adj = __netdev_find_adj(adj_dev, dev_list);
7727 if (!adj) {
7728 pr_err("Adjacency does not exist for device %s from %s\n",
7729 dev->name, adj_dev->name);
7730 WARN_ON(1);
7731 return;
7734 if (adj->ref_nr > ref_nr) {
7735 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7736 dev->name, adj_dev->name, ref_nr,
7737 adj->ref_nr - ref_nr);
7738 adj->ref_nr -= ref_nr;
7739 return;
7742 if (adj->master)
7743 sysfs_remove_link(&(dev->dev.kobj), "master");
7745 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7746 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7748 list_del_rcu(&adj->list);
7749 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7750 adj_dev->name, dev->name, adj_dev->name);
7751 dev_put(adj_dev);
7752 kfree_rcu(adj, rcu);
7755 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7756 struct net_device *upper_dev,
7757 struct list_head *up_list,
7758 struct list_head *down_list,
7759 void *private, bool master)
7761 int ret;
7763 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7764 private, master);
7765 if (ret)
7766 return ret;
7768 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7769 private, false);
7770 if (ret) {
7771 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7772 return ret;
7775 return 0;
7778 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7779 struct net_device *upper_dev,
7780 u16 ref_nr,
7781 struct list_head *up_list,
7782 struct list_head *down_list)
7784 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7785 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7788 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7789 struct net_device *upper_dev,
7790 void *private, bool master)
7792 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7793 &dev->adj_list.upper,
7794 &upper_dev->adj_list.lower,
7795 private, master);
7798 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7799 struct net_device *upper_dev)
7801 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7802 &dev->adj_list.upper,
7803 &upper_dev->adj_list.lower);
7806 static int __netdev_upper_dev_link(struct net_device *dev,
7807 struct net_device *upper_dev, bool master,
7808 void *upper_priv, void *upper_info,
7809 struct netdev_nested_priv *priv,
7810 struct netlink_ext_ack *extack)
7812 struct netdev_notifier_changeupper_info changeupper_info = {
7813 .info = {
7814 .dev = dev,
7815 .extack = extack,
7817 .upper_dev = upper_dev,
7818 .master = master,
7819 .linking = true,
7820 .upper_info = upper_info,
7822 struct net_device *master_dev;
7823 int ret = 0;
7825 ASSERT_RTNL();
7827 if (dev == upper_dev)
7828 return -EBUSY;
7830 /* To prevent loops, check if dev is not upper device to upper_dev. */
7831 if (__netdev_has_upper_dev(upper_dev, dev))
7832 return -EBUSY;
7834 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7835 return -EMLINK;
7837 if (!master) {
7838 if (__netdev_has_upper_dev(dev, upper_dev))
7839 return -EEXIST;
7840 } else {
7841 master_dev = __netdev_master_upper_dev_get(dev);
7842 if (master_dev)
7843 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7846 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7847 &changeupper_info.info);
7848 ret = notifier_to_errno(ret);
7849 if (ret)
7850 return ret;
7852 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7853 master);
7854 if (ret)
7855 return ret;
7857 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7858 &changeupper_info.info);
7859 ret = notifier_to_errno(ret);
7860 if (ret)
7861 goto rollback;
7863 __netdev_update_upper_level(dev, NULL);
7864 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7866 __netdev_update_lower_level(upper_dev, priv);
7867 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7868 priv);
7870 return 0;
7872 rollback:
7873 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7875 return ret;
7879 * netdev_upper_dev_link - Add a link to the upper device
7880 * @dev: device
7881 * @upper_dev: new upper device
7882 * @extack: netlink extended ack
7884 * Adds a link to device which is upper to this one. The caller must hold
7885 * the RTNL lock. On a failure a negative errno code is returned.
7886 * On success the reference counts are adjusted and the function
7887 * returns zero.
7889 int netdev_upper_dev_link(struct net_device *dev,
7890 struct net_device *upper_dev,
7891 struct netlink_ext_ack *extack)
7893 struct netdev_nested_priv priv = {
7894 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7895 .data = NULL,
7898 return __netdev_upper_dev_link(dev, upper_dev, false,
7899 NULL, NULL, &priv, extack);
7901 EXPORT_SYMBOL(netdev_upper_dev_link);
7904 * netdev_master_upper_dev_link - Add a master link to the upper device
7905 * @dev: device
7906 * @upper_dev: new upper device
7907 * @upper_priv: upper device private
7908 * @upper_info: upper info to be passed down via notifier
7909 * @extack: netlink extended ack
7911 * Adds a link to device which is upper to this one. In this case, only
7912 * one master upper device can be linked, although other non-master devices
7913 * might be linked as well. The caller must hold the RTNL lock.
7914 * On a failure a negative errno code is returned. On success the reference
7915 * counts are adjusted and the function returns zero.
7917 int netdev_master_upper_dev_link(struct net_device *dev,
7918 struct net_device *upper_dev,
7919 void *upper_priv, void *upper_info,
7920 struct netlink_ext_ack *extack)
7922 struct netdev_nested_priv priv = {
7923 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7924 .data = NULL,
7927 return __netdev_upper_dev_link(dev, upper_dev, true,
7928 upper_priv, upper_info, &priv, extack);
7930 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7932 static void __netdev_upper_dev_unlink(struct net_device *dev,
7933 struct net_device *upper_dev,
7934 struct netdev_nested_priv *priv)
7936 struct netdev_notifier_changeupper_info changeupper_info = {
7937 .info = {
7938 .dev = dev,
7940 .upper_dev = upper_dev,
7941 .linking = false,
7944 ASSERT_RTNL();
7946 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7948 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7949 &changeupper_info.info);
7951 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7953 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7954 &changeupper_info.info);
7956 __netdev_update_upper_level(dev, NULL);
7957 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7959 __netdev_update_lower_level(upper_dev, priv);
7960 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7961 priv);
7965 * netdev_upper_dev_unlink - Removes a link to upper device
7966 * @dev: device
7967 * @upper_dev: new upper device
7969 * Removes a link to device which is upper to this one. The caller must hold
7970 * the RTNL lock.
7972 void netdev_upper_dev_unlink(struct net_device *dev,
7973 struct net_device *upper_dev)
7975 struct netdev_nested_priv priv = {
7976 .flags = NESTED_SYNC_TODO,
7977 .data = NULL,
7980 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7982 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7984 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7985 struct net_device *lower_dev,
7986 bool val)
7988 struct netdev_adjacent *adj;
7990 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7991 if (adj)
7992 adj->ignore = val;
7994 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7995 if (adj)
7996 adj->ignore = val;
7999 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8000 struct net_device *lower_dev)
8002 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8005 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8006 struct net_device *lower_dev)
8008 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8011 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8012 struct net_device *new_dev,
8013 struct net_device *dev,
8014 struct netlink_ext_ack *extack)
8016 struct netdev_nested_priv priv = {
8017 .flags = 0,
8018 .data = NULL,
8020 int err;
8022 if (!new_dev)
8023 return 0;
8025 if (old_dev && new_dev != old_dev)
8026 netdev_adjacent_dev_disable(dev, old_dev);
8027 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8028 extack);
8029 if (err) {
8030 if (old_dev && new_dev != old_dev)
8031 netdev_adjacent_dev_enable(dev, old_dev);
8032 return err;
8035 return 0;
8037 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8039 void netdev_adjacent_change_commit(struct net_device *old_dev,
8040 struct net_device *new_dev,
8041 struct net_device *dev)
8043 struct netdev_nested_priv priv = {
8044 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8045 .data = NULL,
8048 if (!new_dev || !old_dev)
8049 return;
8051 if (new_dev == old_dev)
8052 return;
8054 netdev_adjacent_dev_enable(dev, old_dev);
8055 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8057 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8059 void netdev_adjacent_change_abort(struct net_device *old_dev,
8060 struct net_device *new_dev,
8061 struct net_device *dev)
8063 struct netdev_nested_priv priv = {
8064 .flags = 0,
8065 .data = NULL,
8068 if (!new_dev)
8069 return;
8071 if (old_dev && new_dev != old_dev)
8072 netdev_adjacent_dev_enable(dev, old_dev);
8074 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8076 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8079 * netdev_bonding_info_change - Dispatch event about slave change
8080 * @dev: device
8081 * @bonding_info: info to dispatch
8083 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8084 * The caller must hold the RTNL lock.
8086 void netdev_bonding_info_change(struct net_device *dev,
8087 struct netdev_bonding_info *bonding_info)
8089 struct netdev_notifier_bonding_info info = {
8090 .info.dev = dev,
8093 memcpy(&info.bonding_info, bonding_info,
8094 sizeof(struct netdev_bonding_info));
8095 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8096 &info.info);
8098 EXPORT_SYMBOL(netdev_bonding_info_change);
8101 * netdev_get_xmit_slave - Get the xmit slave of master device
8102 * @dev: device
8103 * @skb: The packet
8104 * @all_slaves: assume all the slaves are active
8106 * The reference counters are not incremented so the caller must be
8107 * careful with locks. The caller must hold RCU lock.
8108 * %NULL is returned if no slave is found.
8111 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8112 struct sk_buff *skb,
8113 bool all_slaves)
8115 const struct net_device_ops *ops = dev->netdev_ops;
8117 if (!ops->ndo_get_xmit_slave)
8118 return NULL;
8119 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8121 EXPORT_SYMBOL(netdev_get_xmit_slave);
8123 static void netdev_adjacent_add_links(struct net_device *dev)
8125 struct netdev_adjacent *iter;
8127 struct net *net = dev_net(dev);
8129 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8130 if (!net_eq(net, dev_net(iter->dev)))
8131 continue;
8132 netdev_adjacent_sysfs_add(iter->dev, dev,
8133 &iter->dev->adj_list.lower);
8134 netdev_adjacent_sysfs_add(dev, iter->dev,
8135 &dev->adj_list.upper);
8138 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8139 if (!net_eq(net, dev_net(iter->dev)))
8140 continue;
8141 netdev_adjacent_sysfs_add(iter->dev, dev,
8142 &iter->dev->adj_list.upper);
8143 netdev_adjacent_sysfs_add(dev, iter->dev,
8144 &dev->adj_list.lower);
8148 static void netdev_adjacent_del_links(struct net_device *dev)
8150 struct netdev_adjacent *iter;
8152 struct net *net = dev_net(dev);
8154 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8155 if (!net_eq(net, dev_net(iter->dev)))
8156 continue;
8157 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8158 &iter->dev->adj_list.lower);
8159 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8160 &dev->adj_list.upper);
8163 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8164 if (!net_eq(net, dev_net(iter->dev)))
8165 continue;
8166 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8167 &iter->dev->adj_list.upper);
8168 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8169 &dev->adj_list.lower);
8173 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8175 struct netdev_adjacent *iter;
8177 struct net *net = dev_net(dev);
8179 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8180 if (!net_eq(net, dev_net(iter->dev)))
8181 continue;
8182 netdev_adjacent_sysfs_del(iter->dev, oldname,
8183 &iter->dev->adj_list.lower);
8184 netdev_adjacent_sysfs_add(iter->dev, dev,
8185 &iter->dev->adj_list.lower);
8188 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8189 if (!net_eq(net, dev_net(iter->dev)))
8190 continue;
8191 netdev_adjacent_sysfs_del(iter->dev, oldname,
8192 &iter->dev->adj_list.upper);
8193 netdev_adjacent_sysfs_add(iter->dev, dev,
8194 &iter->dev->adj_list.upper);
8198 void *netdev_lower_dev_get_private(struct net_device *dev,
8199 struct net_device *lower_dev)
8201 struct netdev_adjacent *lower;
8203 if (!lower_dev)
8204 return NULL;
8205 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8206 if (!lower)
8207 return NULL;
8209 return lower->private;
8211 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8215 * netdev_lower_state_changed - Dispatch event about lower device state change
8216 * @lower_dev: device
8217 * @lower_state_info: state to dispatch
8219 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8220 * The caller must hold the RTNL lock.
8222 void netdev_lower_state_changed(struct net_device *lower_dev,
8223 void *lower_state_info)
8225 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8226 .info.dev = lower_dev,
8229 ASSERT_RTNL();
8230 changelowerstate_info.lower_state_info = lower_state_info;
8231 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8232 &changelowerstate_info.info);
8234 EXPORT_SYMBOL(netdev_lower_state_changed);
8236 static void dev_change_rx_flags(struct net_device *dev, int flags)
8238 const struct net_device_ops *ops = dev->netdev_ops;
8240 if (ops->ndo_change_rx_flags)
8241 ops->ndo_change_rx_flags(dev, flags);
8244 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8246 unsigned int old_flags = dev->flags;
8247 kuid_t uid;
8248 kgid_t gid;
8250 ASSERT_RTNL();
8252 dev->flags |= IFF_PROMISC;
8253 dev->promiscuity += inc;
8254 if (dev->promiscuity == 0) {
8256 * Avoid overflow.
8257 * If inc causes overflow, untouch promisc and return error.
8259 if (inc < 0)
8260 dev->flags &= ~IFF_PROMISC;
8261 else {
8262 dev->promiscuity -= inc;
8263 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8264 dev->name);
8265 return -EOVERFLOW;
8268 if (dev->flags != old_flags) {
8269 pr_info("device %s %s promiscuous mode\n",
8270 dev->name,
8271 dev->flags & IFF_PROMISC ? "entered" : "left");
8272 if (audit_enabled) {
8273 current_uid_gid(&uid, &gid);
8274 audit_log(audit_context(), GFP_ATOMIC,
8275 AUDIT_ANOM_PROMISCUOUS,
8276 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8277 dev->name, (dev->flags & IFF_PROMISC),
8278 (old_flags & IFF_PROMISC),
8279 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8280 from_kuid(&init_user_ns, uid),
8281 from_kgid(&init_user_ns, gid),
8282 audit_get_sessionid(current));
8285 dev_change_rx_flags(dev, IFF_PROMISC);
8287 if (notify)
8288 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8289 return 0;
8293 * dev_set_promiscuity - update promiscuity count on a device
8294 * @dev: device
8295 * @inc: modifier
8297 * Add or remove promiscuity from a device. While the count in the device
8298 * remains above zero the interface remains promiscuous. Once it hits zero
8299 * the device reverts back to normal filtering operation. A negative inc
8300 * value is used to drop promiscuity on the device.
8301 * Return 0 if successful or a negative errno code on error.
8303 int dev_set_promiscuity(struct net_device *dev, int inc)
8305 unsigned int old_flags = dev->flags;
8306 int err;
8308 err = __dev_set_promiscuity(dev, inc, true);
8309 if (err < 0)
8310 return err;
8311 if (dev->flags != old_flags)
8312 dev_set_rx_mode(dev);
8313 return err;
8315 EXPORT_SYMBOL(dev_set_promiscuity);
8317 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8319 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8321 ASSERT_RTNL();
8323 dev->flags |= IFF_ALLMULTI;
8324 dev->allmulti += inc;
8325 if (dev->allmulti == 0) {
8327 * Avoid overflow.
8328 * If inc causes overflow, untouch allmulti and return error.
8330 if (inc < 0)
8331 dev->flags &= ~IFF_ALLMULTI;
8332 else {
8333 dev->allmulti -= inc;
8334 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8335 dev->name);
8336 return -EOVERFLOW;
8339 if (dev->flags ^ old_flags) {
8340 dev_change_rx_flags(dev, IFF_ALLMULTI);
8341 dev_set_rx_mode(dev);
8342 if (notify)
8343 __dev_notify_flags(dev, old_flags,
8344 dev->gflags ^ old_gflags);
8346 return 0;
8350 * dev_set_allmulti - update allmulti count on a device
8351 * @dev: device
8352 * @inc: modifier
8354 * Add or remove reception of all multicast frames to a device. While the
8355 * count in the device remains above zero the interface remains listening
8356 * to all interfaces. Once it hits zero the device reverts back to normal
8357 * filtering operation. A negative @inc value is used to drop the counter
8358 * when releasing a resource needing all multicasts.
8359 * Return 0 if successful or a negative errno code on error.
8362 int dev_set_allmulti(struct net_device *dev, int inc)
8364 return __dev_set_allmulti(dev, inc, true);
8366 EXPORT_SYMBOL(dev_set_allmulti);
8369 * Upload unicast and multicast address lists to device and
8370 * configure RX filtering. When the device doesn't support unicast
8371 * filtering it is put in promiscuous mode while unicast addresses
8372 * are present.
8374 void __dev_set_rx_mode(struct net_device *dev)
8376 const struct net_device_ops *ops = dev->netdev_ops;
8378 /* dev_open will call this function so the list will stay sane. */
8379 if (!(dev->flags&IFF_UP))
8380 return;
8382 if (!netif_device_present(dev))
8383 return;
8385 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8386 /* Unicast addresses changes may only happen under the rtnl,
8387 * therefore calling __dev_set_promiscuity here is safe.
8389 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8390 __dev_set_promiscuity(dev, 1, false);
8391 dev->uc_promisc = true;
8392 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8393 __dev_set_promiscuity(dev, -1, false);
8394 dev->uc_promisc = false;
8398 if (ops->ndo_set_rx_mode)
8399 ops->ndo_set_rx_mode(dev);
8402 void dev_set_rx_mode(struct net_device *dev)
8404 netif_addr_lock_bh(dev);
8405 __dev_set_rx_mode(dev);
8406 netif_addr_unlock_bh(dev);
8410 * dev_get_flags - get flags reported to userspace
8411 * @dev: device
8413 * Get the combination of flag bits exported through APIs to userspace.
8415 unsigned int dev_get_flags(const struct net_device *dev)
8417 unsigned int flags;
8419 flags = (dev->flags & ~(IFF_PROMISC |
8420 IFF_ALLMULTI |
8421 IFF_RUNNING |
8422 IFF_LOWER_UP |
8423 IFF_DORMANT)) |
8424 (dev->gflags & (IFF_PROMISC |
8425 IFF_ALLMULTI));
8427 if (netif_running(dev)) {
8428 if (netif_oper_up(dev))
8429 flags |= IFF_RUNNING;
8430 if (netif_carrier_ok(dev))
8431 flags |= IFF_LOWER_UP;
8432 if (netif_dormant(dev))
8433 flags |= IFF_DORMANT;
8436 return flags;
8438 EXPORT_SYMBOL(dev_get_flags);
8440 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8441 struct netlink_ext_ack *extack)
8443 unsigned int old_flags = dev->flags;
8444 int ret;
8446 ASSERT_RTNL();
8449 * Set the flags on our device.
8452 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8453 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8454 IFF_AUTOMEDIA)) |
8455 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8456 IFF_ALLMULTI));
8459 * Load in the correct multicast list now the flags have changed.
8462 if ((old_flags ^ flags) & IFF_MULTICAST)
8463 dev_change_rx_flags(dev, IFF_MULTICAST);
8465 dev_set_rx_mode(dev);
8468 * Have we downed the interface. We handle IFF_UP ourselves
8469 * according to user attempts to set it, rather than blindly
8470 * setting it.
8473 ret = 0;
8474 if ((old_flags ^ flags) & IFF_UP) {
8475 if (old_flags & IFF_UP)
8476 __dev_close(dev);
8477 else
8478 ret = __dev_open(dev, extack);
8481 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8482 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8483 unsigned int old_flags = dev->flags;
8485 dev->gflags ^= IFF_PROMISC;
8487 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8488 if (dev->flags != old_flags)
8489 dev_set_rx_mode(dev);
8492 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8493 * is important. Some (broken) drivers set IFF_PROMISC, when
8494 * IFF_ALLMULTI is requested not asking us and not reporting.
8496 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8497 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8499 dev->gflags ^= IFF_ALLMULTI;
8500 __dev_set_allmulti(dev, inc, false);
8503 return ret;
8506 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8507 unsigned int gchanges)
8509 unsigned int changes = dev->flags ^ old_flags;
8511 if (gchanges)
8512 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8514 if (changes & IFF_UP) {
8515 if (dev->flags & IFF_UP)
8516 call_netdevice_notifiers(NETDEV_UP, dev);
8517 else
8518 call_netdevice_notifiers(NETDEV_DOWN, dev);
8521 if (dev->flags & IFF_UP &&
8522 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8523 struct netdev_notifier_change_info change_info = {
8524 .info = {
8525 .dev = dev,
8527 .flags_changed = changes,
8530 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8535 * dev_change_flags - change device settings
8536 * @dev: device
8537 * @flags: device state flags
8538 * @extack: netlink extended ack
8540 * Change settings on device based state flags. The flags are
8541 * in the userspace exported format.
8543 int dev_change_flags(struct net_device *dev, unsigned int flags,
8544 struct netlink_ext_ack *extack)
8546 int ret;
8547 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8549 ret = __dev_change_flags(dev, flags, extack);
8550 if (ret < 0)
8551 return ret;
8553 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8554 __dev_notify_flags(dev, old_flags, changes);
8555 return ret;
8557 EXPORT_SYMBOL(dev_change_flags);
8559 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8561 const struct net_device_ops *ops = dev->netdev_ops;
8563 if (ops->ndo_change_mtu)
8564 return ops->ndo_change_mtu(dev, new_mtu);
8566 /* Pairs with all the lockless reads of dev->mtu in the stack */
8567 WRITE_ONCE(dev->mtu, new_mtu);
8568 return 0;
8570 EXPORT_SYMBOL(__dev_set_mtu);
8572 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8573 struct netlink_ext_ack *extack)
8575 /* MTU must be positive, and in range */
8576 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8577 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8578 return -EINVAL;
8581 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8582 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8583 return -EINVAL;
8585 return 0;
8589 * dev_set_mtu_ext - Change maximum transfer unit
8590 * @dev: device
8591 * @new_mtu: new transfer unit
8592 * @extack: netlink extended ack
8594 * Change the maximum transfer size of the network device.
8596 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8597 struct netlink_ext_ack *extack)
8599 int err, orig_mtu;
8601 if (new_mtu == dev->mtu)
8602 return 0;
8604 err = dev_validate_mtu(dev, new_mtu, extack);
8605 if (err)
8606 return err;
8608 if (!netif_device_present(dev))
8609 return -ENODEV;
8611 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8612 err = notifier_to_errno(err);
8613 if (err)
8614 return err;
8616 orig_mtu = dev->mtu;
8617 err = __dev_set_mtu(dev, new_mtu);
8619 if (!err) {
8620 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8621 orig_mtu);
8622 err = notifier_to_errno(err);
8623 if (err) {
8624 /* setting mtu back and notifying everyone again,
8625 * so that they have a chance to revert changes.
8627 __dev_set_mtu(dev, orig_mtu);
8628 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8629 new_mtu);
8632 return err;
8635 int dev_set_mtu(struct net_device *dev, int new_mtu)
8637 struct netlink_ext_ack extack;
8638 int err;
8640 memset(&extack, 0, sizeof(extack));
8641 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8642 if (err && extack._msg)
8643 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8644 return err;
8646 EXPORT_SYMBOL(dev_set_mtu);
8649 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8650 * @dev: device
8651 * @new_len: new tx queue length
8653 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8655 unsigned int orig_len = dev->tx_queue_len;
8656 int res;
8658 if (new_len != (unsigned int)new_len)
8659 return -ERANGE;
8661 if (new_len != orig_len) {
8662 dev->tx_queue_len = new_len;
8663 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8664 res = notifier_to_errno(res);
8665 if (res)
8666 goto err_rollback;
8667 res = dev_qdisc_change_tx_queue_len(dev);
8668 if (res)
8669 goto err_rollback;
8672 return 0;
8674 err_rollback:
8675 netdev_err(dev, "refused to change device tx_queue_len\n");
8676 dev->tx_queue_len = orig_len;
8677 return res;
8681 * dev_set_group - Change group this device belongs to
8682 * @dev: device
8683 * @new_group: group this device should belong to
8685 void dev_set_group(struct net_device *dev, int new_group)
8687 dev->group = new_group;
8689 EXPORT_SYMBOL(dev_set_group);
8692 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8693 * @dev: device
8694 * @addr: new address
8695 * @extack: netlink extended ack
8697 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8698 struct netlink_ext_ack *extack)
8700 struct netdev_notifier_pre_changeaddr_info info = {
8701 .info.dev = dev,
8702 .info.extack = extack,
8703 .dev_addr = addr,
8705 int rc;
8707 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8708 return notifier_to_errno(rc);
8710 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8713 * dev_set_mac_address - Change Media Access Control Address
8714 * @dev: device
8715 * @sa: new address
8716 * @extack: netlink extended ack
8718 * Change the hardware (MAC) address of the device
8720 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8721 struct netlink_ext_ack *extack)
8723 const struct net_device_ops *ops = dev->netdev_ops;
8724 int err;
8726 if (!ops->ndo_set_mac_address)
8727 return -EOPNOTSUPP;
8728 if (sa->sa_family != dev->type)
8729 return -EINVAL;
8730 if (!netif_device_present(dev))
8731 return -ENODEV;
8732 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8733 if (err)
8734 return err;
8735 err = ops->ndo_set_mac_address(dev, sa);
8736 if (err)
8737 return err;
8738 dev->addr_assign_type = NET_ADDR_SET;
8739 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8740 add_device_randomness(dev->dev_addr, dev->addr_len);
8741 return 0;
8743 EXPORT_SYMBOL(dev_set_mac_address);
8746 * dev_change_carrier - Change device carrier
8747 * @dev: device
8748 * @new_carrier: new value
8750 * Change device carrier
8752 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8754 const struct net_device_ops *ops = dev->netdev_ops;
8756 if (!ops->ndo_change_carrier)
8757 return -EOPNOTSUPP;
8758 if (!netif_device_present(dev))
8759 return -ENODEV;
8760 return ops->ndo_change_carrier(dev, new_carrier);
8762 EXPORT_SYMBOL(dev_change_carrier);
8765 * dev_get_phys_port_id - Get device physical port ID
8766 * @dev: device
8767 * @ppid: port ID
8769 * Get device physical port ID
8771 int dev_get_phys_port_id(struct net_device *dev,
8772 struct netdev_phys_item_id *ppid)
8774 const struct net_device_ops *ops = dev->netdev_ops;
8776 if (!ops->ndo_get_phys_port_id)
8777 return -EOPNOTSUPP;
8778 return ops->ndo_get_phys_port_id(dev, ppid);
8780 EXPORT_SYMBOL(dev_get_phys_port_id);
8783 * dev_get_phys_port_name - Get device physical port name
8784 * @dev: device
8785 * @name: port name
8786 * @len: limit of bytes to copy to name
8788 * Get device physical port name
8790 int dev_get_phys_port_name(struct net_device *dev,
8791 char *name, size_t len)
8793 const struct net_device_ops *ops = dev->netdev_ops;
8794 int err;
8796 if (ops->ndo_get_phys_port_name) {
8797 err = ops->ndo_get_phys_port_name(dev, name, len);
8798 if (err != -EOPNOTSUPP)
8799 return err;
8801 return devlink_compat_phys_port_name_get(dev, name, len);
8803 EXPORT_SYMBOL(dev_get_phys_port_name);
8806 * dev_get_port_parent_id - Get the device's port parent identifier
8807 * @dev: network device
8808 * @ppid: pointer to a storage for the port's parent identifier
8809 * @recurse: allow/disallow recursion to lower devices
8811 * Get the devices's port parent identifier
8813 int dev_get_port_parent_id(struct net_device *dev,
8814 struct netdev_phys_item_id *ppid,
8815 bool recurse)
8817 const struct net_device_ops *ops = dev->netdev_ops;
8818 struct netdev_phys_item_id first = { };
8819 struct net_device *lower_dev;
8820 struct list_head *iter;
8821 int err;
8823 if (ops->ndo_get_port_parent_id) {
8824 err = ops->ndo_get_port_parent_id(dev, ppid);
8825 if (err != -EOPNOTSUPP)
8826 return err;
8829 err = devlink_compat_switch_id_get(dev, ppid);
8830 if (!err || err != -EOPNOTSUPP)
8831 return err;
8833 if (!recurse)
8834 return -EOPNOTSUPP;
8836 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8837 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8838 if (err)
8839 break;
8840 if (!first.id_len)
8841 first = *ppid;
8842 else if (memcmp(&first, ppid, sizeof(*ppid)))
8843 return -EOPNOTSUPP;
8846 return err;
8848 EXPORT_SYMBOL(dev_get_port_parent_id);
8851 * netdev_port_same_parent_id - Indicate if two network devices have
8852 * the same port parent identifier
8853 * @a: first network device
8854 * @b: second network device
8856 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8858 struct netdev_phys_item_id a_id = { };
8859 struct netdev_phys_item_id b_id = { };
8861 if (dev_get_port_parent_id(a, &a_id, true) ||
8862 dev_get_port_parent_id(b, &b_id, true))
8863 return false;
8865 return netdev_phys_item_id_same(&a_id, &b_id);
8867 EXPORT_SYMBOL(netdev_port_same_parent_id);
8870 * dev_change_proto_down - update protocol port state information
8871 * @dev: device
8872 * @proto_down: new value
8874 * This info can be used by switch drivers to set the phys state of the
8875 * port.
8877 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8879 const struct net_device_ops *ops = dev->netdev_ops;
8881 if (!ops->ndo_change_proto_down)
8882 return -EOPNOTSUPP;
8883 if (!netif_device_present(dev))
8884 return -ENODEV;
8885 return ops->ndo_change_proto_down(dev, proto_down);
8887 EXPORT_SYMBOL(dev_change_proto_down);
8890 * dev_change_proto_down_generic - generic implementation for
8891 * ndo_change_proto_down that sets carrier according to
8892 * proto_down.
8894 * @dev: device
8895 * @proto_down: new value
8897 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8899 if (proto_down)
8900 netif_carrier_off(dev);
8901 else
8902 netif_carrier_on(dev);
8903 dev->proto_down = proto_down;
8904 return 0;
8906 EXPORT_SYMBOL(dev_change_proto_down_generic);
8909 * dev_change_proto_down_reason - proto down reason
8911 * @dev: device
8912 * @mask: proto down mask
8913 * @value: proto down value
8915 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8916 u32 value)
8918 int b;
8920 if (!mask) {
8921 dev->proto_down_reason = value;
8922 } else {
8923 for_each_set_bit(b, &mask, 32) {
8924 if (value & (1 << b))
8925 dev->proto_down_reason |= BIT(b);
8926 else
8927 dev->proto_down_reason &= ~BIT(b);
8931 EXPORT_SYMBOL(dev_change_proto_down_reason);
8933 struct bpf_xdp_link {
8934 struct bpf_link link;
8935 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8936 int flags;
8939 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8941 if (flags & XDP_FLAGS_HW_MODE)
8942 return XDP_MODE_HW;
8943 if (flags & XDP_FLAGS_DRV_MODE)
8944 return XDP_MODE_DRV;
8945 if (flags & XDP_FLAGS_SKB_MODE)
8946 return XDP_MODE_SKB;
8947 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8950 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8952 switch (mode) {
8953 case XDP_MODE_SKB:
8954 return generic_xdp_install;
8955 case XDP_MODE_DRV:
8956 case XDP_MODE_HW:
8957 return dev->netdev_ops->ndo_bpf;
8958 default:
8959 return NULL;
8963 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8964 enum bpf_xdp_mode mode)
8966 return dev->xdp_state[mode].link;
8969 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8970 enum bpf_xdp_mode mode)
8972 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8974 if (link)
8975 return link->link.prog;
8976 return dev->xdp_state[mode].prog;
8979 static u8 dev_xdp_prog_count(struct net_device *dev)
8981 u8 count = 0;
8982 int i;
8984 for (i = 0; i < __MAX_XDP_MODE; i++)
8985 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8986 count++;
8987 return count;
8990 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8992 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8994 return prog ? prog->aux->id : 0;
8997 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8998 struct bpf_xdp_link *link)
9000 dev->xdp_state[mode].link = link;
9001 dev->xdp_state[mode].prog = NULL;
9004 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9005 struct bpf_prog *prog)
9007 dev->xdp_state[mode].link = NULL;
9008 dev->xdp_state[mode].prog = prog;
9011 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9012 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9013 u32 flags, struct bpf_prog *prog)
9015 struct netdev_bpf xdp;
9016 int err;
9018 memset(&xdp, 0, sizeof(xdp));
9019 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9020 xdp.extack = extack;
9021 xdp.flags = flags;
9022 xdp.prog = prog;
9024 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9025 * "moved" into driver), so they don't increment it on their own, but
9026 * they do decrement refcnt when program is detached or replaced.
9027 * Given net_device also owns link/prog, we need to bump refcnt here
9028 * to prevent drivers from underflowing it.
9030 if (prog)
9031 bpf_prog_inc(prog);
9032 err = bpf_op(dev, &xdp);
9033 if (err) {
9034 if (prog)
9035 bpf_prog_put(prog);
9036 return err;
9039 if (mode != XDP_MODE_HW)
9040 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9042 return 0;
9045 static void dev_xdp_uninstall(struct net_device *dev)
9047 struct bpf_xdp_link *link;
9048 struct bpf_prog *prog;
9049 enum bpf_xdp_mode mode;
9050 bpf_op_t bpf_op;
9052 ASSERT_RTNL();
9054 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9055 prog = dev_xdp_prog(dev, mode);
9056 if (!prog)
9057 continue;
9059 bpf_op = dev_xdp_bpf_op(dev, mode);
9060 if (!bpf_op)
9061 continue;
9063 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9065 /* auto-detach link from net device */
9066 link = dev_xdp_link(dev, mode);
9067 if (link)
9068 link->dev = NULL;
9069 else
9070 bpf_prog_put(prog);
9072 dev_xdp_set_link(dev, mode, NULL);
9076 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9077 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9078 struct bpf_prog *old_prog, u32 flags)
9080 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9081 struct bpf_prog *cur_prog;
9082 enum bpf_xdp_mode mode;
9083 bpf_op_t bpf_op;
9084 int err;
9086 ASSERT_RTNL();
9088 /* either link or prog attachment, never both */
9089 if (link && (new_prog || old_prog))
9090 return -EINVAL;
9091 /* link supports only XDP mode flags */
9092 if (link && (flags & ~XDP_FLAGS_MODES)) {
9093 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9094 return -EINVAL;
9096 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9097 if (num_modes > 1) {
9098 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9099 return -EINVAL;
9101 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9102 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9103 NL_SET_ERR_MSG(extack,
9104 "More than one program loaded, unset mode is ambiguous");
9105 return -EINVAL;
9107 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9108 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9109 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9110 return -EINVAL;
9113 mode = dev_xdp_mode(dev, flags);
9114 /* can't replace attached link */
9115 if (dev_xdp_link(dev, mode)) {
9116 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9117 return -EBUSY;
9120 cur_prog = dev_xdp_prog(dev, mode);
9121 /* can't replace attached prog with link */
9122 if (link && cur_prog) {
9123 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9124 return -EBUSY;
9126 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9127 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9128 return -EEXIST;
9131 /* put effective new program into new_prog */
9132 if (link)
9133 new_prog = link->link.prog;
9135 if (new_prog) {
9136 bool offload = mode == XDP_MODE_HW;
9137 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9138 ? XDP_MODE_DRV : XDP_MODE_SKB;
9140 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9141 NL_SET_ERR_MSG(extack, "XDP program already attached");
9142 return -EBUSY;
9144 if (!offload && dev_xdp_prog(dev, other_mode)) {
9145 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9146 return -EEXIST;
9148 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9149 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9150 return -EINVAL;
9152 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9153 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9154 return -EINVAL;
9156 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9157 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9158 return -EINVAL;
9162 /* don't call drivers if the effective program didn't change */
9163 if (new_prog != cur_prog) {
9164 bpf_op = dev_xdp_bpf_op(dev, mode);
9165 if (!bpf_op) {
9166 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9167 return -EOPNOTSUPP;
9170 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9171 if (err)
9172 return err;
9175 if (link)
9176 dev_xdp_set_link(dev, mode, link);
9177 else
9178 dev_xdp_set_prog(dev, mode, new_prog);
9179 if (cur_prog)
9180 bpf_prog_put(cur_prog);
9182 return 0;
9185 static int dev_xdp_attach_link(struct net_device *dev,
9186 struct netlink_ext_ack *extack,
9187 struct bpf_xdp_link *link)
9189 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9192 static int dev_xdp_detach_link(struct net_device *dev,
9193 struct netlink_ext_ack *extack,
9194 struct bpf_xdp_link *link)
9196 enum bpf_xdp_mode mode;
9197 bpf_op_t bpf_op;
9199 ASSERT_RTNL();
9201 mode = dev_xdp_mode(dev, link->flags);
9202 if (dev_xdp_link(dev, mode) != link)
9203 return -EINVAL;
9205 bpf_op = dev_xdp_bpf_op(dev, mode);
9206 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9207 dev_xdp_set_link(dev, mode, NULL);
9208 return 0;
9211 static void bpf_xdp_link_release(struct bpf_link *link)
9213 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9215 rtnl_lock();
9217 /* if racing with net_device's tear down, xdp_link->dev might be
9218 * already NULL, in which case link was already auto-detached
9220 if (xdp_link->dev) {
9221 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9222 xdp_link->dev = NULL;
9225 rtnl_unlock();
9228 static int bpf_xdp_link_detach(struct bpf_link *link)
9230 bpf_xdp_link_release(link);
9231 return 0;
9234 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9236 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9238 kfree(xdp_link);
9241 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9242 struct seq_file *seq)
9244 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9245 u32 ifindex = 0;
9247 rtnl_lock();
9248 if (xdp_link->dev)
9249 ifindex = xdp_link->dev->ifindex;
9250 rtnl_unlock();
9252 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9255 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9256 struct bpf_link_info *info)
9258 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9259 u32 ifindex = 0;
9261 rtnl_lock();
9262 if (xdp_link->dev)
9263 ifindex = xdp_link->dev->ifindex;
9264 rtnl_unlock();
9266 info->xdp.ifindex = ifindex;
9267 return 0;
9270 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9271 struct bpf_prog *old_prog)
9273 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9274 enum bpf_xdp_mode mode;
9275 bpf_op_t bpf_op;
9276 int err = 0;
9278 rtnl_lock();
9280 /* link might have been auto-released already, so fail */
9281 if (!xdp_link->dev) {
9282 err = -ENOLINK;
9283 goto out_unlock;
9286 if (old_prog && link->prog != old_prog) {
9287 err = -EPERM;
9288 goto out_unlock;
9290 old_prog = link->prog;
9291 if (old_prog == new_prog) {
9292 /* no-op, don't disturb drivers */
9293 bpf_prog_put(new_prog);
9294 goto out_unlock;
9297 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9298 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9299 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9300 xdp_link->flags, new_prog);
9301 if (err)
9302 goto out_unlock;
9304 old_prog = xchg(&link->prog, new_prog);
9305 bpf_prog_put(old_prog);
9307 out_unlock:
9308 rtnl_unlock();
9309 return err;
9312 static const struct bpf_link_ops bpf_xdp_link_lops = {
9313 .release = bpf_xdp_link_release,
9314 .dealloc = bpf_xdp_link_dealloc,
9315 .detach = bpf_xdp_link_detach,
9316 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9317 .fill_link_info = bpf_xdp_link_fill_link_info,
9318 .update_prog = bpf_xdp_link_update,
9321 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9323 struct net *net = current->nsproxy->net_ns;
9324 struct bpf_link_primer link_primer;
9325 struct bpf_xdp_link *link;
9326 struct net_device *dev;
9327 int err, fd;
9329 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9330 if (!dev)
9331 return -EINVAL;
9333 link = kzalloc(sizeof(*link), GFP_USER);
9334 if (!link) {
9335 err = -ENOMEM;
9336 goto out_put_dev;
9339 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9340 link->dev = dev;
9341 link->flags = attr->link_create.flags;
9343 err = bpf_link_prime(&link->link, &link_primer);
9344 if (err) {
9345 kfree(link);
9346 goto out_put_dev;
9349 rtnl_lock();
9350 err = dev_xdp_attach_link(dev, NULL, link);
9351 rtnl_unlock();
9353 if (err) {
9354 bpf_link_cleanup(&link_primer);
9355 goto out_put_dev;
9358 fd = bpf_link_settle(&link_primer);
9359 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9360 dev_put(dev);
9361 return fd;
9363 out_put_dev:
9364 dev_put(dev);
9365 return err;
9369 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9370 * @dev: device
9371 * @extack: netlink extended ack
9372 * @fd: new program fd or negative value to clear
9373 * @expected_fd: old program fd that userspace expects to replace or clear
9374 * @flags: xdp-related flags
9376 * Set or clear a bpf program for a device
9378 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9379 int fd, int expected_fd, u32 flags)
9381 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9382 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9383 int err;
9385 ASSERT_RTNL();
9387 if (fd >= 0) {
9388 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9389 mode != XDP_MODE_SKB);
9390 if (IS_ERR(new_prog))
9391 return PTR_ERR(new_prog);
9394 if (expected_fd >= 0) {
9395 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9396 mode != XDP_MODE_SKB);
9397 if (IS_ERR(old_prog)) {
9398 err = PTR_ERR(old_prog);
9399 old_prog = NULL;
9400 goto err_out;
9404 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9406 err_out:
9407 if (err && new_prog)
9408 bpf_prog_put(new_prog);
9409 if (old_prog)
9410 bpf_prog_put(old_prog);
9411 return err;
9415 * dev_new_index - allocate an ifindex
9416 * @net: the applicable net namespace
9418 * Returns a suitable unique value for a new device interface
9419 * number. The caller must hold the rtnl semaphore or the
9420 * dev_base_lock to be sure it remains unique.
9422 static int dev_new_index(struct net *net)
9424 int ifindex = net->ifindex;
9426 for (;;) {
9427 if (++ifindex <= 0)
9428 ifindex = 1;
9429 if (!__dev_get_by_index(net, ifindex))
9430 return net->ifindex = ifindex;
9434 /* Delayed registration/unregisteration */
9435 static LIST_HEAD(net_todo_list);
9436 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9438 static void net_set_todo(struct net_device *dev)
9440 list_add_tail(&dev->todo_list, &net_todo_list);
9441 dev_net(dev)->dev_unreg_count++;
9444 static void rollback_registered_many(struct list_head *head)
9446 struct net_device *dev, *tmp;
9447 LIST_HEAD(close_head);
9449 BUG_ON(dev_boot_phase);
9450 ASSERT_RTNL();
9452 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9453 /* Some devices call without registering
9454 * for initialization unwind. Remove those
9455 * devices and proceed with the remaining.
9457 if (dev->reg_state == NETREG_UNINITIALIZED) {
9458 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9459 dev->name, dev);
9461 WARN_ON(1);
9462 list_del(&dev->unreg_list);
9463 continue;
9465 dev->dismantle = true;
9466 BUG_ON(dev->reg_state != NETREG_REGISTERED);
9469 /* If device is running, close it first. */
9470 list_for_each_entry(dev, head, unreg_list)
9471 list_add_tail(&dev->close_list, &close_head);
9472 dev_close_many(&close_head, true);
9474 list_for_each_entry(dev, head, unreg_list) {
9475 /* And unlink it from device chain. */
9476 unlist_netdevice(dev);
9478 dev->reg_state = NETREG_UNREGISTERING;
9480 flush_all_backlogs();
9482 synchronize_net();
9484 list_for_each_entry(dev, head, unreg_list) {
9485 struct sk_buff *skb = NULL;
9487 /* Shutdown queueing discipline. */
9488 dev_shutdown(dev);
9490 dev_xdp_uninstall(dev);
9492 /* Notify protocols, that we are about to destroy
9493 * this device. They should clean all the things.
9495 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9497 if (!dev->rtnl_link_ops ||
9498 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9499 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9500 GFP_KERNEL, NULL, 0);
9503 * Flush the unicast and multicast chains
9505 dev_uc_flush(dev);
9506 dev_mc_flush(dev);
9508 netdev_name_node_alt_flush(dev);
9509 netdev_name_node_free(dev->name_node);
9511 if (dev->netdev_ops->ndo_uninit)
9512 dev->netdev_ops->ndo_uninit(dev);
9514 if (skb)
9515 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9517 /* Notifier chain MUST detach us all upper devices. */
9518 WARN_ON(netdev_has_any_upper_dev(dev));
9519 WARN_ON(netdev_has_any_lower_dev(dev));
9521 /* Remove entries from kobject tree */
9522 netdev_unregister_kobject(dev);
9523 #ifdef CONFIG_XPS
9524 /* Remove XPS queueing entries */
9525 netif_reset_xps_queues_gt(dev, 0);
9526 #endif
9529 synchronize_net();
9531 list_for_each_entry(dev, head, unreg_list)
9532 dev_put(dev);
9535 static void rollback_registered(struct net_device *dev)
9537 LIST_HEAD(single);
9539 list_add(&dev->unreg_list, &single);
9540 rollback_registered_many(&single);
9541 list_del(&single);
9544 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9545 struct net_device *upper, netdev_features_t features)
9547 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9548 netdev_features_t feature;
9549 int feature_bit;
9551 for_each_netdev_feature(upper_disables, feature_bit) {
9552 feature = __NETIF_F_BIT(feature_bit);
9553 if (!(upper->wanted_features & feature)
9554 && (features & feature)) {
9555 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9556 &feature, upper->name);
9557 features &= ~feature;
9561 return features;
9564 static void netdev_sync_lower_features(struct net_device *upper,
9565 struct net_device *lower, netdev_features_t features)
9567 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9568 netdev_features_t feature;
9569 int feature_bit;
9571 for_each_netdev_feature(upper_disables, feature_bit) {
9572 feature = __NETIF_F_BIT(feature_bit);
9573 if (!(features & feature) && (lower->features & feature)) {
9574 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9575 &feature, lower->name);
9576 lower->wanted_features &= ~feature;
9577 __netdev_update_features(lower);
9579 if (unlikely(lower->features & feature))
9580 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9581 &feature, lower->name);
9582 else
9583 netdev_features_change(lower);
9588 static netdev_features_t netdev_fix_features(struct net_device *dev,
9589 netdev_features_t features)
9591 /* Fix illegal checksum combinations */
9592 if ((features & NETIF_F_HW_CSUM) &&
9593 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9594 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9595 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9598 /* TSO requires that SG is present as well. */
9599 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9600 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9601 features &= ~NETIF_F_ALL_TSO;
9604 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9605 !(features & NETIF_F_IP_CSUM)) {
9606 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9607 features &= ~NETIF_F_TSO;
9608 features &= ~NETIF_F_TSO_ECN;
9611 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9612 !(features & NETIF_F_IPV6_CSUM)) {
9613 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9614 features &= ~NETIF_F_TSO6;
9617 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9618 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9619 features &= ~NETIF_F_TSO_MANGLEID;
9621 /* TSO ECN requires that TSO is present as well. */
9622 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9623 features &= ~NETIF_F_TSO_ECN;
9625 /* Software GSO depends on SG. */
9626 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9627 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9628 features &= ~NETIF_F_GSO;
9631 /* GSO partial features require GSO partial be set */
9632 if ((features & dev->gso_partial_features) &&
9633 !(features & NETIF_F_GSO_PARTIAL)) {
9634 netdev_dbg(dev,
9635 "Dropping partially supported GSO features since no GSO partial.\n");
9636 features &= ~dev->gso_partial_features;
9639 if (!(features & NETIF_F_RXCSUM)) {
9640 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9641 * successfully merged by hardware must also have the
9642 * checksum verified by hardware. If the user does not
9643 * want to enable RXCSUM, logically, we should disable GRO_HW.
9645 if (features & NETIF_F_GRO_HW) {
9646 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9647 features &= ~NETIF_F_GRO_HW;
9651 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9652 if (features & NETIF_F_RXFCS) {
9653 if (features & NETIF_F_LRO) {
9654 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9655 features &= ~NETIF_F_LRO;
9658 if (features & NETIF_F_GRO_HW) {
9659 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9660 features &= ~NETIF_F_GRO_HW;
9664 if ((features & NETIF_F_HW_TLS_TX) && !(features & NETIF_F_HW_CSUM)) {
9665 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9666 features &= ~NETIF_F_HW_TLS_TX;
9669 return features;
9672 int __netdev_update_features(struct net_device *dev)
9674 struct net_device *upper, *lower;
9675 netdev_features_t features;
9676 struct list_head *iter;
9677 int err = -1;
9679 ASSERT_RTNL();
9681 features = netdev_get_wanted_features(dev);
9683 if (dev->netdev_ops->ndo_fix_features)
9684 features = dev->netdev_ops->ndo_fix_features(dev, features);
9686 /* driver might be less strict about feature dependencies */
9687 features = netdev_fix_features(dev, features);
9689 /* some features can't be enabled if they're off on an upper device */
9690 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9691 features = netdev_sync_upper_features(dev, upper, features);
9693 if (dev->features == features)
9694 goto sync_lower;
9696 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9697 &dev->features, &features);
9699 if (dev->netdev_ops->ndo_set_features)
9700 err = dev->netdev_ops->ndo_set_features(dev, features);
9701 else
9702 err = 0;
9704 if (unlikely(err < 0)) {
9705 netdev_err(dev,
9706 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9707 err, &features, &dev->features);
9708 /* return non-0 since some features might have changed and
9709 * it's better to fire a spurious notification than miss it
9711 return -1;
9714 sync_lower:
9715 /* some features must be disabled on lower devices when disabled
9716 * on an upper device (think: bonding master or bridge)
9718 netdev_for_each_lower_dev(dev, lower, iter)
9719 netdev_sync_lower_features(dev, lower, features);
9721 if (!err) {
9722 netdev_features_t diff = features ^ dev->features;
9724 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9725 /* udp_tunnel_{get,drop}_rx_info both need
9726 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9727 * device, or they won't do anything.
9728 * Thus we need to update dev->features
9729 * *before* calling udp_tunnel_get_rx_info,
9730 * but *after* calling udp_tunnel_drop_rx_info.
9732 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9733 dev->features = features;
9734 udp_tunnel_get_rx_info(dev);
9735 } else {
9736 udp_tunnel_drop_rx_info(dev);
9740 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9741 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9742 dev->features = features;
9743 err |= vlan_get_rx_ctag_filter_info(dev);
9744 } else {
9745 vlan_drop_rx_ctag_filter_info(dev);
9749 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9750 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9751 dev->features = features;
9752 err |= vlan_get_rx_stag_filter_info(dev);
9753 } else {
9754 vlan_drop_rx_stag_filter_info(dev);
9758 dev->features = features;
9761 return err < 0 ? 0 : 1;
9765 * netdev_update_features - recalculate device features
9766 * @dev: the device to check
9768 * Recalculate dev->features set and send notifications if it
9769 * has changed. Should be called after driver or hardware dependent
9770 * conditions might have changed that influence the features.
9772 void netdev_update_features(struct net_device *dev)
9774 if (__netdev_update_features(dev))
9775 netdev_features_change(dev);
9777 EXPORT_SYMBOL(netdev_update_features);
9780 * netdev_change_features - recalculate device features
9781 * @dev: the device to check
9783 * Recalculate dev->features set and send notifications even
9784 * if they have not changed. Should be called instead of
9785 * netdev_update_features() if also dev->vlan_features might
9786 * have changed to allow the changes to be propagated to stacked
9787 * VLAN devices.
9789 void netdev_change_features(struct net_device *dev)
9791 __netdev_update_features(dev);
9792 netdev_features_change(dev);
9794 EXPORT_SYMBOL(netdev_change_features);
9797 * netif_stacked_transfer_operstate - transfer operstate
9798 * @rootdev: the root or lower level device to transfer state from
9799 * @dev: the device to transfer operstate to
9801 * Transfer operational state from root to device. This is normally
9802 * called when a stacking relationship exists between the root
9803 * device and the device(a leaf device).
9805 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9806 struct net_device *dev)
9808 if (rootdev->operstate == IF_OPER_DORMANT)
9809 netif_dormant_on(dev);
9810 else
9811 netif_dormant_off(dev);
9813 if (rootdev->operstate == IF_OPER_TESTING)
9814 netif_testing_on(dev);
9815 else
9816 netif_testing_off(dev);
9818 if (netif_carrier_ok(rootdev))
9819 netif_carrier_on(dev);
9820 else
9821 netif_carrier_off(dev);
9823 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9825 static int netif_alloc_rx_queues(struct net_device *dev)
9827 unsigned int i, count = dev->num_rx_queues;
9828 struct netdev_rx_queue *rx;
9829 size_t sz = count * sizeof(*rx);
9830 int err = 0;
9832 BUG_ON(count < 1);
9834 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9835 if (!rx)
9836 return -ENOMEM;
9838 dev->_rx = rx;
9840 for (i = 0; i < count; i++) {
9841 rx[i].dev = dev;
9843 /* XDP RX-queue setup */
9844 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9845 if (err < 0)
9846 goto err_rxq_info;
9848 return 0;
9850 err_rxq_info:
9851 /* Rollback successful reg's and free other resources */
9852 while (i--)
9853 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9854 kvfree(dev->_rx);
9855 dev->_rx = NULL;
9856 return err;
9859 static void netif_free_rx_queues(struct net_device *dev)
9861 unsigned int i, count = dev->num_rx_queues;
9863 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9864 if (!dev->_rx)
9865 return;
9867 for (i = 0; i < count; i++)
9868 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9870 kvfree(dev->_rx);
9873 static void netdev_init_one_queue(struct net_device *dev,
9874 struct netdev_queue *queue, void *_unused)
9876 /* Initialize queue lock */
9877 spin_lock_init(&queue->_xmit_lock);
9878 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9879 queue->xmit_lock_owner = -1;
9880 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9881 queue->dev = dev;
9882 #ifdef CONFIG_BQL
9883 dql_init(&queue->dql, HZ);
9884 #endif
9887 static void netif_free_tx_queues(struct net_device *dev)
9889 kvfree(dev->_tx);
9892 static int netif_alloc_netdev_queues(struct net_device *dev)
9894 unsigned int count = dev->num_tx_queues;
9895 struct netdev_queue *tx;
9896 size_t sz = count * sizeof(*tx);
9898 if (count < 1 || count > 0xffff)
9899 return -EINVAL;
9901 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9902 if (!tx)
9903 return -ENOMEM;
9905 dev->_tx = tx;
9907 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9908 spin_lock_init(&dev->tx_global_lock);
9910 return 0;
9913 void netif_tx_stop_all_queues(struct net_device *dev)
9915 unsigned int i;
9917 for (i = 0; i < dev->num_tx_queues; i++) {
9918 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9920 netif_tx_stop_queue(txq);
9923 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9926 * register_netdevice - register a network device
9927 * @dev: device to register
9929 * Take a completed network device structure and add it to the kernel
9930 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9931 * chain. 0 is returned on success. A negative errno code is returned
9932 * on a failure to set up the device, or if the name is a duplicate.
9934 * Callers must hold the rtnl semaphore. You may want
9935 * register_netdev() instead of this.
9937 * BUGS:
9938 * The locking appears insufficient to guarantee two parallel registers
9939 * will not get the same name.
9942 int register_netdevice(struct net_device *dev)
9944 int ret;
9945 struct net *net = dev_net(dev);
9947 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9948 NETDEV_FEATURE_COUNT);
9949 BUG_ON(dev_boot_phase);
9950 ASSERT_RTNL();
9952 might_sleep();
9954 /* When net_device's are persistent, this will be fatal. */
9955 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9956 BUG_ON(!net);
9958 ret = ethtool_check_ops(dev->ethtool_ops);
9959 if (ret)
9960 return ret;
9962 spin_lock_init(&dev->addr_list_lock);
9963 netdev_set_addr_lockdep_class(dev);
9965 ret = dev_get_valid_name(net, dev, dev->name);
9966 if (ret < 0)
9967 goto out;
9969 ret = -ENOMEM;
9970 dev->name_node = netdev_name_node_head_alloc(dev);
9971 if (!dev->name_node)
9972 goto out;
9974 /* Init, if this function is available */
9975 if (dev->netdev_ops->ndo_init) {
9976 ret = dev->netdev_ops->ndo_init(dev);
9977 if (ret) {
9978 if (ret > 0)
9979 ret = -EIO;
9980 goto err_free_name;
9984 if (((dev->hw_features | dev->features) &
9985 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9986 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9987 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9988 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9989 ret = -EINVAL;
9990 goto err_uninit;
9993 ret = -EBUSY;
9994 if (!dev->ifindex)
9995 dev->ifindex = dev_new_index(net);
9996 else if (__dev_get_by_index(net, dev->ifindex))
9997 goto err_uninit;
9999 /* Transfer changeable features to wanted_features and enable
10000 * software offloads (GSO and GRO).
10002 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10003 dev->features |= NETIF_F_SOFT_FEATURES;
10005 if (dev->netdev_ops->ndo_udp_tunnel_add) {
10006 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10007 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10010 dev->wanted_features = dev->features & dev->hw_features;
10012 if (!(dev->flags & IFF_LOOPBACK))
10013 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10015 /* If IPv4 TCP segmentation offload is supported we should also
10016 * allow the device to enable segmenting the frame with the option
10017 * of ignoring a static IP ID value. This doesn't enable the
10018 * feature itself but allows the user to enable it later.
10020 if (dev->hw_features & NETIF_F_TSO)
10021 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10022 if (dev->vlan_features & NETIF_F_TSO)
10023 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10024 if (dev->mpls_features & NETIF_F_TSO)
10025 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10026 if (dev->hw_enc_features & NETIF_F_TSO)
10027 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10029 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10031 dev->vlan_features |= NETIF_F_HIGHDMA;
10033 /* Make NETIF_F_SG inheritable to tunnel devices.
10035 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10037 /* Make NETIF_F_SG inheritable to MPLS.
10039 dev->mpls_features |= NETIF_F_SG;
10041 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10042 ret = notifier_to_errno(ret);
10043 if (ret)
10044 goto err_uninit;
10046 ret = netdev_register_kobject(dev);
10047 if (ret) {
10048 dev->reg_state = NETREG_UNREGISTERED;
10049 goto err_uninit;
10051 dev->reg_state = NETREG_REGISTERED;
10053 __netdev_update_features(dev);
10056 * Default initial state at registry is that the
10057 * device is present.
10060 set_bit(__LINK_STATE_PRESENT, &dev->state);
10062 linkwatch_init_dev(dev);
10064 dev_init_scheduler(dev);
10065 dev_hold(dev);
10066 list_netdevice(dev);
10067 add_device_randomness(dev->dev_addr, dev->addr_len);
10069 /* If the device has permanent device address, driver should
10070 * set dev_addr and also addr_assign_type should be set to
10071 * NET_ADDR_PERM (default value).
10073 if (dev->addr_assign_type == NET_ADDR_PERM)
10074 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10076 /* Notify protocols, that a new device appeared. */
10077 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10078 ret = notifier_to_errno(ret);
10079 if (ret) {
10080 rollback_registered(dev);
10081 rcu_barrier();
10083 dev->reg_state = NETREG_UNREGISTERED;
10084 /* We should put the kobject that hold in
10085 * netdev_unregister_kobject(), otherwise
10086 * the net device cannot be freed when
10087 * driver calls free_netdev(), because the
10088 * kobject is being hold.
10090 kobject_put(&dev->dev.kobj);
10093 * Prevent userspace races by waiting until the network
10094 * device is fully setup before sending notifications.
10096 if (!dev->rtnl_link_ops ||
10097 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10098 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10100 out:
10101 return ret;
10103 err_uninit:
10104 if (dev->netdev_ops->ndo_uninit)
10105 dev->netdev_ops->ndo_uninit(dev);
10106 if (dev->priv_destructor)
10107 dev->priv_destructor(dev);
10108 err_free_name:
10109 netdev_name_node_free(dev->name_node);
10110 goto out;
10112 EXPORT_SYMBOL(register_netdevice);
10115 * init_dummy_netdev - init a dummy network device for NAPI
10116 * @dev: device to init
10118 * This takes a network device structure and initialize the minimum
10119 * amount of fields so it can be used to schedule NAPI polls without
10120 * registering a full blown interface. This is to be used by drivers
10121 * that need to tie several hardware interfaces to a single NAPI
10122 * poll scheduler due to HW limitations.
10124 int init_dummy_netdev(struct net_device *dev)
10126 /* Clear everything. Note we don't initialize spinlocks
10127 * are they aren't supposed to be taken by any of the
10128 * NAPI code and this dummy netdev is supposed to be
10129 * only ever used for NAPI polls
10131 memset(dev, 0, sizeof(struct net_device));
10133 /* make sure we BUG if trying to hit standard
10134 * register/unregister code path
10136 dev->reg_state = NETREG_DUMMY;
10138 /* NAPI wants this */
10139 INIT_LIST_HEAD(&dev->napi_list);
10141 /* a dummy interface is started by default */
10142 set_bit(__LINK_STATE_PRESENT, &dev->state);
10143 set_bit(__LINK_STATE_START, &dev->state);
10145 /* napi_busy_loop stats accounting wants this */
10146 dev_net_set(dev, &init_net);
10148 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10149 * because users of this 'device' dont need to change
10150 * its refcount.
10153 return 0;
10155 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10159 * register_netdev - register a network device
10160 * @dev: device to register
10162 * Take a completed network device structure and add it to the kernel
10163 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10164 * chain. 0 is returned on success. A negative errno code is returned
10165 * on a failure to set up the device, or if the name is a duplicate.
10167 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10168 * and expands the device name if you passed a format string to
10169 * alloc_netdev.
10171 int register_netdev(struct net_device *dev)
10173 int err;
10175 if (rtnl_lock_killable())
10176 return -EINTR;
10177 err = register_netdevice(dev);
10178 rtnl_unlock();
10179 return err;
10181 EXPORT_SYMBOL(register_netdev);
10183 int netdev_refcnt_read(const struct net_device *dev)
10185 int i, refcnt = 0;
10187 for_each_possible_cpu(i)
10188 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10189 return refcnt;
10191 EXPORT_SYMBOL(netdev_refcnt_read);
10193 #define WAIT_REFS_MIN_MSECS 1
10194 #define WAIT_REFS_MAX_MSECS 250
10196 * netdev_wait_allrefs - wait until all references are gone.
10197 * @dev: target net_device
10199 * This is called when unregistering network devices.
10201 * Any protocol or device that holds a reference should register
10202 * for netdevice notification, and cleanup and put back the
10203 * reference if they receive an UNREGISTER event.
10204 * We can get stuck here if buggy protocols don't correctly
10205 * call dev_put.
10207 static void netdev_wait_allrefs(struct net_device *dev)
10209 unsigned long rebroadcast_time, warning_time;
10210 int wait = 0, refcnt;
10212 linkwatch_forget_dev(dev);
10214 rebroadcast_time = warning_time = jiffies;
10215 refcnt = netdev_refcnt_read(dev);
10217 while (refcnt != 0) {
10218 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10219 rtnl_lock();
10221 /* Rebroadcast unregister notification */
10222 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10224 __rtnl_unlock();
10225 rcu_barrier();
10226 rtnl_lock();
10228 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10229 &dev->state)) {
10230 /* We must not have linkwatch events
10231 * pending on unregister. If this
10232 * happens, we simply run the queue
10233 * unscheduled, resulting in a noop
10234 * for this device.
10236 linkwatch_run_queue();
10239 __rtnl_unlock();
10241 rebroadcast_time = jiffies;
10244 if (!wait) {
10245 rcu_barrier();
10246 wait = WAIT_REFS_MIN_MSECS;
10247 } else {
10248 msleep(wait);
10249 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10252 refcnt = netdev_refcnt_read(dev);
10254 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10255 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10256 dev->name, refcnt);
10257 warning_time = jiffies;
10262 /* The sequence is:
10264 * rtnl_lock();
10265 * ...
10266 * register_netdevice(x1);
10267 * register_netdevice(x2);
10268 * ...
10269 * unregister_netdevice(y1);
10270 * unregister_netdevice(y2);
10271 * ...
10272 * rtnl_unlock();
10273 * free_netdev(y1);
10274 * free_netdev(y2);
10276 * We are invoked by rtnl_unlock().
10277 * This allows us to deal with problems:
10278 * 1) We can delete sysfs objects which invoke hotplug
10279 * without deadlocking with linkwatch via keventd.
10280 * 2) Since we run with the RTNL semaphore not held, we can sleep
10281 * safely in order to wait for the netdev refcnt to drop to zero.
10283 * We must not return until all unregister events added during
10284 * the interval the lock was held have been completed.
10286 void netdev_run_todo(void)
10288 struct list_head list;
10289 #ifdef CONFIG_LOCKDEP
10290 struct list_head unlink_list;
10292 list_replace_init(&net_unlink_list, &unlink_list);
10294 while (!list_empty(&unlink_list)) {
10295 struct net_device *dev = list_first_entry(&unlink_list,
10296 struct net_device,
10297 unlink_list);
10298 list_del_init(&dev->unlink_list);
10299 dev->nested_level = dev->lower_level - 1;
10301 #endif
10303 /* Snapshot list, allow later requests */
10304 list_replace_init(&net_todo_list, &list);
10306 __rtnl_unlock();
10309 /* Wait for rcu callbacks to finish before next phase */
10310 if (!list_empty(&list))
10311 rcu_barrier();
10313 while (!list_empty(&list)) {
10314 struct net_device *dev
10315 = list_first_entry(&list, struct net_device, todo_list);
10316 list_del(&dev->todo_list);
10318 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10319 pr_err("network todo '%s' but state %d\n",
10320 dev->name, dev->reg_state);
10321 dump_stack();
10322 continue;
10325 dev->reg_state = NETREG_UNREGISTERED;
10327 netdev_wait_allrefs(dev);
10329 /* paranoia */
10330 BUG_ON(netdev_refcnt_read(dev));
10331 BUG_ON(!list_empty(&dev->ptype_all));
10332 BUG_ON(!list_empty(&dev->ptype_specific));
10333 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10334 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10335 #if IS_ENABLED(CONFIG_DECNET)
10336 WARN_ON(dev->dn_ptr);
10337 #endif
10338 if (dev->priv_destructor)
10339 dev->priv_destructor(dev);
10340 if (dev->needs_free_netdev)
10341 free_netdev(dev);
10343 /* Report a network device has been unregistered */
10344 rtnl_lock();
10345 dev_net(dev)->dev_unreg_count--;
10346 __rtnl_unlock();
10347 wake_up(&netdev_unregistering_wq);
10349 /* Free network device */
10350 kobject_put(&dev->dev.kobj);
10354 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10355 * all the same fields in the same order as net_device_stats, with only
10356 * the type differing, but rtnl_link_stats64 may have additional fields
10357 * at the end for newer counters.
10359 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10360 const struct net_device_stats *netdev_stats)
10362 #if BITS_PER_LONG == 64
10363 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10364 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10365 /* zero out counters that only exist in rtnl_link_stats64 */
10366 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10367 sizeof(*stats64) - sizeof(*netdev_stats));
10368 #else
10369 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10370 const unsigned long *src = (const unsigned long *)netdev_stats;
10371 u64 *dst = (u64 *)stats64;
10373 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10374 for (i = 0; i < n; i++)
10375 dst[i] = src[i];
10376 /* zero out counters that only exist in rtnl_link_stats64 */
10377 memset((char *)stats64 + n * sizeof(u64), 0,
10378 sizeof(*stats64) - n * sizeof(u64));
10379 #endif
10381 EXPORT_SYMBOL(netdev_stats_to_stats64);
10384 * dev_get_stats - get network device statistics
10385 * @dev: device to get statistics from
10386 * @storage: place to store stats
10388 * Get network statistics from device. Return @storage.
10389 * The device driver may provide its own method by setting
10390 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10391 * otherwise the internal statistics structure is used.
10393 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10394 struct rtnl_link_stats64 *storage)
10396 const struct net_device_ops *ops = dev->netdev_ops;
10398 if (ops->ndo_get_stats64) {
10399 memset(storage, 0, sizeof(*storage));
10400 ops->ndo_get_stats64(dev, storage);
10401 } else if (ops->ndo_get_stats) {
10402 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10403 } else {
10404 netdev_stats_to_stats64(storage, &dev->stats);
10406 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10407 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10408 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10409 return storage;
10411 EXPORT_SYMBOL(dev_get_stats);
10414 * dev_fetch_sw_netstats - get per-cpu network device statistics
10415 * @s: place to store stats
10416 * @netstats: per-cpu network stats to read from
10418 * Read per-cpu network statistics and populate the related fields in @s.
10420 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10421 const struct pcpu_sw_netstats __percpu *netstats)
10423 int cpu;
10425 for_each_possible_cpu(cpu) {
10426 const struct pcpu_sw_netstats *stats;
10427 struct pcpu_sw_netstats tmp;
10428 unsigned int start;
10430 stats = per_cpu_ptr(netstats, cpu);
10431 do {
10432 start = u64_stats_fetch_begin_irq(&stats->syncp);
10433 tmp.rx_packets = stats->rx_packets;
10434 tmp.rx_bytes = stats->rx_bytes;
10435 tmp.tx_packets = stats->tx_packets;
10436 tmp.tx_bytes = stats->tx_bytes;
10437 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10439 s->rx_packets += tmp.rx_packets;
10440 s->rx_bytes += tmp.rx_bytes;
10441 s->tx_packets += tmp.tx_packets;
10442 s->tx_bytes += tmp.tx_bytes;
10445 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10448 * dev_get_tstats64 - ndo_get_stats64 implementation
10449 * @dev: device to get statistics from
10450 * @s: place to store stats
10452 * Populate @s from dev->stats and dev->tstats. Can be used as
10453 * ndo_get_stats64() callback.
10455 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10457 netdev_stats_to_stats64(s, &dev->stats);
10458 dev_fetch_sw_netstats(s, dev->tstats);
10460 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10462 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10464 struct netdev_queue *queue = dev_ingress_queue(dev);
10466 #ifdef CONFIG_NET_CLS_ACT
10467 if (queue)
10468 return queue;
10469 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10470 if (!queue)
10471 return NULL;
10472 netdev_init_one_queue(dev, queue, NULL);
10473 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10474 queue->qdisc_sleeping = &noop_qdisc;
10475 rcu_assign_pointer(dev->ingress_queue, queue);
10476 #endif
10477 return queue;
10480 static const struct ethtool_ops default_ethtool_ops;
10482 void netdev_set_default_ethtool_ops(struct net_device *dev,
10483 const struct ethtool_ops *ops)
10485 if (dev->ethtool_ops == &default_ethtool_ops)
10486 dev->ethtool_ops = ops;
10488 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10490 void netdev_freemem(struct net_device *dev)
10492 char *addr = (char *)dev - dev->padded;
10494 kvfree(addr);
10498 * alloc_netdev_mqs - allocate network device
10499 * @sizeof_priv: size of private data to allocate space for
10500 * @name: device name format string
10501 * @name_assign_type: origin of device name
10502 * @setup: callback to initialize device
10503 * @txqs: the number of TX subqueues to allocate
10504 * @rxqs: the number of RX subqueues to allocate
10506 * Allocates a struct net_device with private data area for driver use
10507 * and performs basic initialization. Also allocates subqueue structs
10508 * for each queue on the device.
10510 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10511 unsigned char name_assign_type,
10512 void (*setup)(struct net_device *),
10513 unsigned int txqs, unsigned int rxqs)
10515 struct net_device *dev;
10516 unsigned int alloc_size;
10517 struct net_device *p;
10519 BUG_ON(strlen(name) >= sizeof(dev->name));
10521 if (txqs < 1) {
10522 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10523 return NULL;
10526 if (rxqs < 1) {
10527 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10528 return NULL;
10531 alloc_size = sizeof(struct net_device);
10532 if (sizeof_priv) {
10533 /* ensure 32-byte alignment of private area */
10534 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10535 alloc_size += sizeof_priv;
10537 /* ensure 32-byte alignment of whole construct */
10538 alloc_size += NETDEV_ALIGN - 1;
10540 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10541 if (!p)
10542 return NULL;
10544 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10545 dev->padded = (char *)dev - (char *)p;
10547 dev->pcpu_refcnt = alloc_percpu(int);
10548 if (!dev->pcpu_refcnt)
10549 goto free_dev;
10551 if (dev_addr_init(dev))
10552 goto free_pcpu;
10554 dev_mc_init(dev);
10555 dev_uc_init(dev);
10557 dev_net_set(dev, &init_net);
10559 dev->gso_max_size = GSO_MAX_SIZE;
10560 dev->gso_max_segs = GSO_MAX_SEGS;
10561 dev->upper_level = 1;
10562 dev->lower_level = 1;
10563 #ifdef CONFIG_LOCKDEP
10564 dev->nested_level = 0;
10565 INIT_LIST_HEAD(&dev->unlink_list);
10566 #endif
10568 INIT_LIST_HEAD(&dev->napi_list);
10569 INIT_LIST_HEAD(&dev->unreg_list);
10570 INIT_LIST_HEAD(&dev->close_list);
10571 INIT_LIST_HEAD(&dev->link_watch_list);
10572 INIT_LIST_HEAD(&dev->adj_list.upper);
10573 INIT_LIST_HEAD(&dev->adj_list.lower);
10574 INIT_LIST_HEAD(&dev->ptype_all);
10575 INIT_LIST_HEAD(&dev->ptype_specific);
10576 INIT_LIST_HEAD(&dev->net_notifier_list);
10577 #ifdef CONFIG_NET_SCHED
10578 hash_init(dev->qdisc_hash);
10579 #endif
10580 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10581 setup(dev);
10583 if (!dev->tx_queue_len) {
10584 dev->priv_flags |= IFF_NO_QUEUE;
10585 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10588 dev->num_tx_queues = txqs;
10589 dev->real_num_tx_queues = txqs;
10590 if (netif_alloc_netdev_queues(dev))
10591 goto free_all;
10593 dev->num_rx_queues = rxqs;
10594 dev->real_num_rx_queues = rxqs;
10595 if (netif_alloc_rx_queues(dev))
10596 goto free_all;
10598 strcpy(dev->name, name);
10599 dev->name_assign_type = name_assign_type;
10600 dev->group = INIT_NETDEV_GROUP;
10601 if (!dev->ethtool_ops)
10602 dev->ethtool_ops = &default_ethtool_ops;
10604 nf_hook_ingress_init(dev);
10606 return dev;
10608 free_all:
10609 free_netdev(dev);
10610 return NULL;
10612 free_pcpu:
10613 free_percpu(dev->pcpu_refcnt);
10614 free_dev:
10615 netdev_freemem(dev);
10616 return NULL;
10618 EXPORT_SYMBOL(alloc_netdev_mqs);
10621 * free_netdev - free network device
10622 * @dev: device
10624 * This function does the last stage of destroying an allocated device
10625 * interface. The reference to the device object is released. If this
10626 * is the last reference then it will be freed.Must be called in process
10627 * context.
10629 void free_netdev(struct net_device *dev)
10631 struct napi_struct *p, *n;
10633 might_sleep();
10634 netif_free_tx_queues(dev);
10635 netif_free_rx_queues(dev);
10637 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10639 /* Flush device addresses */
10640 dev_addr_flush(dev);
10642 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10643 netif_napi_del(p);
10645 free_percpu(dev->pcpu_refcnt);
10646 dev->pcpu_refcnt = NULL;
10647 free_percpu(dev->xdp_bulkq);
10648 dev->xdp_bulkq = NULL;
10650 /* Compatibility with error handling in drivers */
10651 if (dev->reg_state == NETREG_UNINITIALIZED) {
10652 netdev_freemem(dev);
10653 return;
10656 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10657 dev->reg_state = NETREG_RELEASED;
10659 /* will free via device release */
10660 put_device(&dev->dev);
10662 EXPORT_SYMBOL(free_netdev);
10665 * synchronize_net - Synchronize with packet receive processing
10667 * Wait for packets currently being received to be done.
10668 * Does not block later packets from starting.
10670 void synchronize_net(void)
10672 might_sleep();
10673 if (rtnl_is_locked())
10674 synchronize_rcu_expedited();
10675 else
10676 synchronize_rcu();
10678 EXPORT_SYMBOL(synchronize_net);
10681 * unregister_netdevice_queue - remove device from the kernel
10682 * @dev: device
10683 * @head: list
10685 * This function shuts down a device interface and removes it
10686 * from the kernel tables.
10687 * If head not NULL, device is queued to be unregistered later.
10689 * Callers must hold the rtnl semaphore. You may want
10690 * unregister_netdev() instead of this.
10693 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10695 ASSERT_RTNL();
10697 if (head) {
10698 list_move_tail(&dev->unreg_list, head);
10699 } else {
10700 rollback_registered(dev);
10701 /* Finish processing unregister after unlock */
10702 net_set_todo(dev);
10705 EXPORT_SYMBOL(unregister_netdevice_queue);
10708 * unregister_netdevice_many - unregister many devices
10709 * @head: list of devices
10711 * Note: As most callers use a stack allocated list_head,
10712 * we force a list_del() to make sure stack wont be corrupted later.
10714 void unregister_netdevice_many(struct list_head *head)
10716 struct net_device *dev;
10718 if (!list_empty(head)) {
10719 rollback_registered_many(head);
10720 list_for_each_entry(dev, head, unreg_list)
10721 net_set_todo(dev);
10722 list_del(head);
10725 EXPORT_SYMBOL(unregister_netdevice_many);
10728 * unregister_netdev - remove device from the kernel
10729 * @dev: device
10731 * This function shuts down a device interface and removes it
10732 * from the kernel tables.
10734 * This is just a wrapper for unregister_netdevice that takes
10735 * the rtnl semaphore. In general you want to use this and not
10736 * unregister_netdevice.
10738 void unregister_netdev(struct net_device *dev)
10740 rtnl_lock();
10741 unregister_netdevice(dev);
10742 rtnl_unlock();
10744 EXPORT_SYMBOL(unregister_netdev);
10747 * dev_change_net_namespace - move device to different nethost namespace
10748 * @dev: device
10749 * @net: network namespace
10750 * @pat: If not NULL name pattern to try if the current device name
10751 * is already taken in the destination network namespace.
10753 * This function shuts down a device interface and moves it
10754 * to a new network namespace. On success 0 is returned, on
10755 * a failure a netagive errno code is returned.
10757 * Callers must hold the rtnl semaphore.
10760 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10762 struct net *net_old = dev_net(dev);
10763 int err, new_nsid, new_ifindex;
10765 ASSERT_RTNL();
10767 /* Don't allow namespace local devices to be moved. */
10768 err = -EINVAL;
10769 if (dev->features & NETIF_F_NETNS_LOCAL)
10770 goto out;
10772 /* Ensure the device has been registrered */
10773 if (dev->reg_state != NETREG_REGISTERED)
10774 goto out;
10776 /* Get out if there is nothing todo */
10777 err = 0;
10778 if (net_eq(net_old, net))
10779 goto out;
10781 /* Pick the destination device name, and ensure
10782 * we can use it in the destination network namespace.
10784 err = -EEXIST;
10785 if (__dev_get_by_name(net, dev->name)) {
10786 /* We get here if we can't use the current device name */
10787 if (!pat)
10788 goto out;
10789 err = dev_get_valid_name(net, dev, pat);
10790 if (err < 0)
10791 goto out;
10795 * And now a mini version of register_netdevice unregister_netdevice.
10798 /* If device is running close it first. */
10799 dev_close(dev);
10801 /* And unlink it from device chain */
10802 unlist_netdevice(dev);
10804 synchronize_net();
10806 /* Shutdown queueing discipline. */
10807 dev_shutdown(dev);
10809 /* Notify protocols, that we are about to destroy
10810 * this device. They should clean all the things.
10812 * Note that dev->reg_state stays at NETREG_REGISTERED.
10813 * This is wanted because this way 8021q and macvlan know
10814 * the device is just moving and can keep their slaves up.
10816 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10817 rcu_barrier();
10819 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10820 /* If there is an ifindex conflict assign a new one */
10821 if (__dev_get_by_index(net, dev->ifindex))
10822 new_ifindex = dev_new_index(net);
10823 else
10824 new_ifindex = dev->ifindex;
10826 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10827 new_ifindex);
10830 * Flush the unicast and multicast chains
10832 dev_uc_flush(dev);
10833 dev_mc_flush(dev);
10835 /* Send a netdev-removed uevent to the old namespace */
10836 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10837 netdev_adjacent_del_links(dev);
10839 /* Move per-net netdevice notifiers that are following the netdevice */
10840 move_netdevice_notifiers_dev_net(dev, net);
10842 /* Actually switch the network namespace */
10843 dev_net_set(dev, net);
10844 dev->ifindex = new_ifindex;
10846 /* Send a netdev-add uevent to the new namespace */
10847 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10848 netdev_adjacent_add_links(dev);
10850 /* Fixup kobjects */
10851 err = device_rename(&dev->dev, dev->name);
10852 WARN_ON(err);
10854 /* Adapt owner in case owning user namespace of target network
10855 * namespace is different from the original one.
10857 err = netdev_change_owner(dev, net_old, net);
10858 WARN_ON(err);
10860 /* Add the device back in the hashes */
10861 list_netdevice(dev);
10863 /* Notify protocols, that a new device appeared. */
10864 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10867 * Prevent userspace races by waiting until the network
10868 * device is fully setup before sending notifications.
10870 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10872 synchronize_net();
10873 err = 0;
10874 out:
10875 return err;
10877 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10879 static int dev_cpu_dead(unsigned int oldcpu)
10881 struct sk_buff **list_skb;
10882 struct sk_buff *skb;
10883 unsigned int cpu;
10884 struct softnet_data *sd, *oldsd, *remsd = NULL;
10886 local_irq_disable();
10887 cpu = smp_processor_id();
10888 sd = &per_cpu(softnet_data, cpu);
10889 oldsd = &per_cpu(softnet_data, oldcpu);
10891 /* Find end of our completion_queue. */
10892 list_skb = &sd->completion_queue;
10893 while (*list_skb)
10894 list_skb = &(*list_skb)->next;
10895 /* Append completion queue from offline CPU. */
10896 *list_skb = oldsd->completion_queue;
10897 oldsd->completion_queue = NULL;
10899 /* Append output queue from offline CPU. */
10900 if (oldsd->output_queue) {
10901 *sd->output_queue_tailp = oldsd->output_queue;
10902 sd->output_queue_tailp = oldsd->output_queue_tailp;
10903 oldsd->output_queue = NULL;
10904 oldsd->output_queue_tailp = &oldsd->output_queue;
10906 /* Append NAPI poll list from offline CPU, with one exception :
10907 * process_backlog() must be called by cpu owning percpu backlog.
10908 * We properly handle process_queue & input_pkt_queue later.
10910 while (!list_empty(&oldsd->poll_list)) {
10911 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10912 struct napi_struct,
10913 poll_list);
10915 list_del_init(&napi->poll_list);
10916 if (napi->poll == process_backlog)
10917 napi->state = 0;
10918 else
10919 ____napi_schedule(sd, napi);
10922 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10923 local_irq_enable();
10925 #ifdef CONFIG_RPS
10926 remsd = oldsd->rps_ipi_list;
10927 oldsd->rps_ipi_list = NULL;
10928 #endif
10929 /* send out pending IPI's on offline CPU */
10930 net_rps_send_ipi(remsd);
10932 /* Process offline CPU's input_pkt_queue */
10933 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10934 netif_rx_ni(skb);
10935 input_queue_head_incr(oldsd);
10937 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10938 netif_rx_ni(skb);
10939 input_queue_head_incr(oldsd);
10942 return 0;
10946 * netdev_increment_features - increment feature set by one
10947 * @all: current feature set
10948 * @one: new feature set
10949 * @mask: mask feature set
10951 * Computes a new feature set after adding a device with feature set
10952 * @one to the master device with current feature set @all. Will not
10953 * enable anything that is off in @mask. Returns the new feature set.
10955 netdev_features_t netdev_increment_features(netdev_features_t all,
10956 netdev_features_t one, netdev_features_t mask)
10958 if (mask & NETIF_F_HW_CSUM)
10959 mask |= NETIF_F_CSUM_MASK;
10960 mask |= NETIF_F_VLAN_CHALLENGED;
10962 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10963 all &= one | ~NETIF_F_ALL_FOR_ALL;
10965 /* If one device supports hw checksumming, set for all. */
10966 if (all & NETIF_F_HW_CSUM)
10967 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10969 return all;
10971 EXPORT_SYMBOL(netdev_increment_features);
10973 static struct hlist_head * __net_init netdev_create_hash(void)
10975 int i;
10976 struct hlist_head *hash;
10978 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10979 if (hash != NULL)
10980 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10981 INIT_HLIST_HEAD(&hash[i]);
10983 return hash;
10986 /* Initialize per network namespace state */
10987 static int __net_init netdev_init(struct net *net)
10989 BUILD_BUG_ON(GRO_HASH_BUCKETS >
10990 8 * sizeof_field(struct napi_struct, gro_bitmask));
10992 if (net != &init_net)
10993 INIT_LIST_HEAD(&net->dev_base_head);
10995 net->dev_name_head = netdev_create_hash();
10996 if (net->dev_name_head == NULL)
10997 goto err_name;
10999 net->dev_index_head = netdev_create_hash();
11000 if (net->dev_index_head == NULL)
11001 goto err_idx;
11003 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11005 return 0;
11007 err_idx:
11008 kfree(net->dev_name_head);
11009 err_name:
11010 return -ENOMEM;
11014 * netdev_drivername - network driver for the device
11015 * @dev: network device
11017 * Determine network driver for device.
11019 const char *netdev_drivername(const struct net_device *dev)
11021 const struct device_driver *driver;
11022 const struct device *parent;
11023 const char *empty = "";
11025 parent = dev->dev.parent;
11026 if (!parent)
11027 return empty;
11029 driver = parent->driver;
11030 if (driver && driver->name)
11031 return driver->name;
11032 return empty;
11035 static void __netdev_printk(const char *level, const struct net_device *dev,
11036 struct va_format *vaf)
11038 if (dev && dev->dev.parent) {
11039 dev_printk_emit(level[1] - '0',
11040 dev->dev.parent,
11041 "%s %s %s%s: %pV",
11042 dev_driver_string(dev->dev.parent),
11043 dev_name(dev->dev.parent),
11044 netdev_name(dev), netdev_reg_state(dev),
11045 vaf);
11046 } else if (dev) {
11047 printk("%s%s%s: %pV",
11048 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11049 } else {
11050 printk("%s(NULL net_device): %pV", level, vaf);
11054 void netdev_printk(const char *level, const struct net_device *dev,
11055 const char *format, ...)
11057 struct va_format vaf;
11058 va_list args;
11060 va_start(args, format);
11062 vaf.fmt = format;
11063 vaf.va = &args;
11065 __netdev_printk(level, dev, &vaf);
11067 va_end(args);
11069 EXPORT_SYMBOL(netdev_printk);
11071 #define define_netdev_printk_level(func, level) \
11072 void func(const struct net_device *dev, const char *fmt, ...) \
11074 struct va_format vaf; \
11075 va_list args; \
11077 va_start(args, fmt); \
11079 vaf.fmt = fmt; \
11080 vaf.va = &args; \
11082 __netdev_printk(level, dev, &vaf); \
11084 va_end(args); \
11086 EXPORT_SYMBOL(func);
11088 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11089 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11090 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11091 define_netdev_printk_level(netdev_err, KERN_ERR);
11092 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11093 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11094 define_netdev_printk_level(netdev_info, KERN_INFO);
11096 static void __net_exit netdev_exit(struct net *net)
11098 kfree(net->dev_name_head);
11099 kfree(net->dev_index_head);
11100 if (net != &init_net)
11101 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11104 static struct pernet_operations __net_initdata netdev_net_ops = {
11105 .init = netdev_init,
11106 .exit = netdev_exit,
11109 static void __net_exit default_device_exit(struct net *net)
11111 struct net_device *dev, *aux;
11113 * Push all migratable network devices back to the
11114 * initial network namespace
11116 rtnl_lock();
11117 for_each_netdev_safe(net, dev, aux) {
11118 int err;
11119 char fb_name[IFNAMSIZ];
11121 /* Ignore unmoveable devices (i.e. loopback) */
11122 if (dev->features & NETIF_F_NETNS_LOCAL)
11123 continue;
11125 /* Leave virtual devices for the generic cleanup */
11126 if (dev->rtnl_link_ops)
11127 continue;
11129 /* Push remaining network devices to init_net */
11130 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11131 if (__dev_get_by_name(&init_net, fb_name))
11132 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11133 err = dev_change_net_namespace(dev, &init_net, fb_name);
11134 if (err) {
11135 pr_emerg("%s: failed to move %s to init_net: %d\n",
11136 __func__, dev->name, err);
11137 BUG();
11140 rtnl_unlock();
11143 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11145 /* Return with the rtnl_lock held when there are no network
11146 * devices unregistering in any network namespace in net_list.
11148 struct net *net;
11149 bool unregistering;
11150 DEFINE_WAIT_FUNC(wait, woken_wake_function);
11152 add_wait_queue(&netdev_unregistering_wq, &wait);
11153 for (;;) {
11154 unregistering = false;
11155 rtnl_lock();
11156 list_for_each_entry(net, net_list, exit_list) {
11157 if (net->dev_unreg_count > 0) {
11158 unregistering = true;
11159 break;
11162 if (!unregistering)
11163 break;
11164 __rtnl_unlock();
11166 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11168 remove_wait_queue(&netdev_unregistering_wq, &wait);
11171 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11173 /* At exit all network devices most be removed from a network
11174 * namespace. Do this in the reverse order of registration.
11175 * Do this across as many network namespaces as possible to
11176 * improve batching efficiency.
11178 struct net_device *dev;
11179 struct net *net;
11180 LIST_HEAD(dev_kill_list);
11182 /* To prevent network device cleanup code from dereferencing
11183 * loopback devices or network devices that have been freed
11184 * wait here for all pending unregistrations to complete,
11185 * before unregistring the loopback device and allowing the
11186 * network namespace be freed.
11188 * The netdev todo list containing all network devices
11189 * unregistrations that happen in default_device_exit_batch
11190 * will run in the rtnl_unlock() at the end of
11191 * default_device_exit_batch.
11193 rtnl_lock_unregistering(net_list);
11194 list_for_each_entry(net, net_list, exit_list) {
11195 for_each_netdev_reverse(net, dev) {
11196 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11197 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11198 else
11199 unregister_netdevice_queue(dev, &dev_kill_list);
11202 unregister_netdevice_many(&dev_kill_list);
11203 rtnl_unlock();
11206 static struct pernet_operations __net_initdata default_device_ops = {
11207 .exit = default_device_exit,
11208 .exit_batch = default_device_exit_batch,
11212 * Initialize the DEV module. At boot time this walks the device list and
11213 * unhooks any devices that fail to initialise (normally hardware not
11214 * present) and leaves us with a valid list of present and active devices.
11219 * This is called single threaded during boot, so no need
11220 * to take the rtnl semaphore.
11222 static int __init net_dev_init(void)
11224 int i, rc = -ENOMEM;
11226 BUG_ON(!dev_boot_phase);
11228 if (dev_proc_init())
11229 goto out;
11231 if (netdev_kobject_init())
11232 goto out;
11234 INIT_LIST_HEAD(&ptype_all);
11235 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11236 INIT_LIST_HEAD(&ptype_base[i]);
11238 INIT_LIST_HEAD(&offload_base);
11240 if (register_pernet_subsys(&netdev_net_ops))
11241 goto out;
11244 * Initialise the packet receive queues.
11247 for_each_possible_cpu(i) {
11248 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11249 struct softnet_data *sd = &per_cpu(softnet_data, i);
11251 INIT_WORK(flush, flush_backlog);
11253 skb_queue_head_init(&sd->input_pkt_queue);
11254 skb_queue_head_init(&sd->process_queue);
11255 #ifdef CONFIG_XFRM_OFFLOAD
11256 skb_queue_head_init(&sd->xfrm_backlog);
11257 #endif
11258 INIT_LIST_HEAD(&sd->poll_list);
11259 sd->output_queue_tailp = &sd->output_queue;
11260 #ifdef CONFIG_RPS
11261 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11262 sd->cpu = i;
11263 #endif
11265 init_gro_hash(&sd->backlog);
11266 sd->backlog.poll = process_backlog;
11267 sd->backlog.weight = weight_p;
11270 dev_boot_phase = 0;
11272 /* The loopback device is special if any other network devices
11273 * is present in a network namespace the loopback device must
11274 * be present. Since we now dynamically allocate and free the
11275 * loopback device ensure this invariant is maintained by
11276 * keeping the loopback device as the first device on the
11277 * list of network devices. Ensuring the loopback devices
11278 * is the first device that appears and the last network device
11279 * that disappears.
11281 if (register_pernet_device(&loopback_net_ops))
11282 goto out;
11284 if (register_pernet_device(&default_device_ops))
11285 goto out;
11287 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11288 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11290 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11291 NULL, dev_cpu_dead);
11292 WARN_ON(rc < 0);
11293 rc = 0;
11294 out:
11295 return rc;
11298 subsys_initcall(net_dev_init);