1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Routines having to do with the 'struct sk_buff' memory handlers.
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
9 * Alan Cox : Fixed the worst of the load
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
32 * The functions in this file will not compile correctly with gcc 2.4.x
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
41 #include <linux/interrupt.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
64 #include <net/protocol.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
71 #include <net/mptcp.h>
73 #include <linux/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 #include <linux/capability.h>
77 #include <linux/user_namespace.h>
78 #include <linux/indirect_call_wrapper.h>
82 struct kmem_cache
*skbuff_head_cache __ro_after_init
;
83 static struct kmem_cache
*skbuff_fclone_cache __ro_after_init
;
84 #ifdef CONFIG_SKB_EXTENSIONS
85 static struct kmem_cache
*skbuff_ext_cache __ro_after_init
;
87 int sysctl_max_skb_frags __read_mostly
= MAX_SKB_FRAGS
;
88 EXPORT_SYMBOL(sysctl_max_skb_frags
);
91 * skb_panic - private function for out-of-line support
95 * @msg: skb_over_panic or skb_under_panic
97 * Out-of-line support for skb_put() and skb_push().
98 * Called via the wrapper skb_over_panic() or skb_under_panic().
99 * Keep out of line to prevent kernel bloat.
100 * __builtin_return_address is not used because it is not always reliable.
102 static void skb_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
,
105 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
106 msg
, addr
, skb
->len
, sz
, skb
->head
, skb
->data
,
107 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
108 skb
->dev
? skb
->dev
->name
: "<NULL>");
112 static void skb_over_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
114 skb_panic(skb
, sz
, addr
, __func__
);
117 static void skb_under_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
119 skb_panic(skb
, sz
, addr
, __func__
);
123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
124 * the caller if emergency pfmemalloc reserves are being used. If it is and
125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
126 * may be used. Otherwise, the packet data may be discarded until enough
129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
132 static void *__kmalloc_reserve(size_t size
, gfp_t flags
, int node
,
133 unsigned long ip
, bool *pfmemalloc
)
136 bool ret_pfmemalloc
= false;
139 * Try a regular allocation, when that fails and we're not entitled
140 * to the reserves, fail.
142 obj
= kmalloc_node_track_caller(size
,
143 flags
| __GFP_NOMEMALLOC
| __GFP_NOWARN
,
145 if (obj
|| !(gfp_pfmemalloc_allowed(flags
)))
148 /* Try again but now we are using pfmemalloc reserves */
149 ret_pfmemalloc
= true;
150 obj
= kmalloc_node_track_caller(size
, flags
, node
);
154 *pfmemalloc
= ret_pfmemalloc
;
159 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
160 * 'private' fields and also do memory statistics to find all the
166 * __alloc_skb - allocate a network buffer
167 * @size: size to allocate
168 * @gfp_mask: allocation mask
169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
170 * instead of head cache and allocate a cloned (child) skb.
171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
172 * allocations in case the data is required for writeback
173 * @node: numa node to allocate memory on
175 * Allocate a new &sk_buff. The returned buffer has no headroom and a
176 * tail room of at least size bytes. The object has a reference count
177 * of one. The return is the buffer. On a failure the return is %NULL.
179 * Buffers may only be allocated from interrupts using a @gfp_mask of
182 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
185 struct kmem_cache
*cache
;
186 struct skb_shared_info
*shinfo
;
191 cache
= (flags
& SKB_ALLOC_FCLONE
)
192 ? skbuff_fclone_cache
: skbuff_head_cache
;
194 if (sk_memalloc_socks() && (flags
& SKB_ALLOC_RX
))
195 gfp_mask
|= __GFP_MEMALLOC
;
198 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
203 /* We do our best to align skb_shared_info on a separate cache
204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
205 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
206 * Both skb->head and skb_shared_info are cache line aligned.
208 size
= SKB_DATA_ALIGN(size
);
209 size
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
210 data
= kmalloc_reserve(size
, gfp_mask
, node
, &pfmemalloc
);
213 /* kmalloc(size) might give us more room than requested.
214 * Put skb_shared_info exactly at the end of allocated zone,
215 * to allow max possible filling before reallocation.
217 size
= SKB_WITH_OVERHEAD(ksize(data
));
218 prefetchw(data
+ size
);
221 * Only clear those fields we need to clear, not those that we will
222 * actually initialise below. Hence, don't put any more fields after
223 * the tail pointer in struct sk_buff!
225 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
226 /* Account for allocated memory : skb + skb->head */
227 skb
->truesize
= SKB_TRUESIZE(size
);
228 skb
->pfmemalloc
= pfmemalloc
;
229 refcount_set(&skb
->users
, 1);
232 skb_reset_tail_pointer(skb
);
233 skb
->end
= skb
->tail
+ size
;
234 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
235 skb
->transport_header
= (typeof(skb
->transport_header
))~0U;
237 /* make sure we initialize shinfo sequentially */
238 shinfo
= skb_shinfo(skb
);
239 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
240 atomic_set(&shinfo
->dataref
, 1);
242 if (flags
& SKB_ALLOC_FCLONE
) {
243 struct sk_buff_fclones
*fclones
;
245 fclones
= container_of(skb
, struct sk_buff_fclones
, skb1
);
247 skb
->fclone
= SKB_FCLONE_ORIG
;
248 refcount_set(&fclones
->fclone_ref
, 1);
250 fclones
->skb2
.fclone
= SKB_FCLONE_CLONE
;
253 skb_set_kcov_handle(skb
, kcov_common_handle());
258 kmem_cache_free(cache
, skb
);
262 EXPORT_SYMBOL(__alloc_skb
);
264 /* Caller must provide SKB that is memset cleared */
265 static struct sk_buff
*__build_skb_around(struct sk_buff
*skb
,
266 void *data
, unsigned int frag_size
)
268 struct skb_shared_info
*shinfo
;
269 unsigned int size
= frag_size
? : ksize(data
);
271 size
-= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
273 /* Assumes caller memset cleared SKB */
274 skb
->truesize
= SKB_TRUESIZE(size
);
275 refcount_set(&skb
->users
, 1);
278 skb_reset_tail_pointer(skb
);
279 skb
->end
= skb
->tail
+ size
;
280 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
281 skb
->transport_header
= (typeof(skb
->transport_header
))~0U;
283 /* make sure we initialize shinfo sequentially */
284 shinfo
= skb_shinfo(skb
);
285 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
286 atomic_set(&shinfo
->dataref
, 1);
288 skb_set_kcov_handle(skb
, kcov_common_handle());
294 * __build_skb - build a network buffer
295 * @data: data buffer provided by caller
296 * @frag_size: size of data, or 0 if head was kmalloced
298 * Allocate a new &sk_buff. Caller provides space holding head and
299 * skb_shared_info. @data must have been allocated by kmalloc() only if
300 * @frag_size is 0, otherwise data should come from the page allocator
302 * The return is the new skb buffer.
303 * On a failure the return is %NULL, and @data is not freed.
305 * Before IO, driver allocates only data buffer where NIC put incoming frame
306 * Driver should add room at head (NET_SKB_PAD) and
307 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
308 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
309 * before giving packet to stack.
310 * RX rings only contains data buffers, not full skbs.
312 struct sk_buff
*__build_skb(void *data
, unsigned int frag_size
)
316 skb
= kmem_cache_alloc(skbuff_head_cache
, GFP_ATOMIC
);
320 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
322 return __build_skb_around(skb
, data
, frag_size
);
325 /* build_skb() is wrapper over __build_skb(), that specifically
326 * takes care of skb->head and skb->pfmemalloc
327 * This means that if @frag_size is not zero, then @data must be backed
328 * by a page fragment, not kmalloc() or vmalloc()
330 struct sk_buff
*build_skb(void *data
, unsigned int frag_size
)
332 struct sk_buff
*skb
= __build_skb(data
, frag_size
);
334 if (skb
&& frag_size
) {
336 if (page_is_pfmemalloc(virt_to_head_page(data
)))
341 EXPORT_SYMBOL(build_skb
);
344 * build_skb_around - build a network buffer around provided skb
345 * @skb: sk_buff provide by caller, must be memset cleared
346 * @data: data buffer provided by caller
347 * @frag_size: size of data, or 0 if head was kmalloced
349 struct sk_buff
*build_skb_around(struct sk_buff
*skb
,
350 void *data
, unsigned int frag_size
)
355 skb
= __build_skb_around(skb
, data
, frag_size
);
357 if (skb
&& frag_size
) {
359 if (page_is_pfmemalloc(virt_to_head_page(data
)))
364 EXPORT_SYMBOL(build_skb_around
);
366 #define NAPI_SKB_CACHE_SIZE 64
368 struct napi_alloc_cache
{
369 struct page_frag_cache page
;
370 unsigned int skb_count
;
371 void *skb_cache
[NAPI_SKB_CACHE_SIZE
];
374 static DEFINE_PER_CPU(struct page_frag_cache
, netdev_alloc_cache
);
375 static DEFINE_PER_CPU(struct napi_alloc_cache
, napi_alloc_cache
);
377 static void *__napi_alloc_frag(unsigned int fragsz
, gfp_t gfp_mask
)
379 struct napi_alloc_cache
*nc
= this_cpu_ptr(&napi_alloc_cache
);
381 return page_frag_alloc(&nc
->page
, fragsz
, gfp_mask
);
384 void *napi_alloc_frag(unsigned int fragsz
)
386 fragsz
= SKB_DATA_ALIGN(fragsz
);
388 return __napi_alloc_frag(fragsz
, GFP_ATOMIC
);
390 EXPORT_SYMBOL(napi_alloc_frag
);
393 * netdev_alloc_frag - allocate a page fragment
394 * @fragsz: fragment size
396 * Allocates a frag from a page for receive buffer.
397 * Uses GFP_ATOMIC allocations.
399 void *netdev_alloc_frag(unsigned int fragsz
)
401 struct page_frag_cache
*nc
;
404 fragsz
= SKB_DATA_ALIGN(fragsz
);
405 if (in_irq() || irqs_disabled()) {
406 nc
= this_cpu_ptr(&netdev_alloc_cache
);
407 data
= page_frag_alloc(nc
, fragsz
, GFP_ATOMIC
);
410 data
= __napi_alloc_frag(fragsz
, GFP_ATOMIC
);
415 EXPORT_SYMBOL(netdev_alloc_frag
);
418 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
419 * @dev: network device to receive on
420 * @len: length to allocate
421 * @gfp_mask: get_free_pages mask, passed to alloc_skb
423 * Allocate a new &sk_buff and assign it a usage count of one. The
424 * buffer has NET_SKB_PAD headroom built in. Users should allocate
425 * the headroom they think they need without accounting for the
426 * built in space. The built in space is used for optimisations.
428 * %NULL is returned if there is no free memory.
430 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
, unsigned int len
,
433 struct page_frag_cache
*nc
;
440 if ((len
> SKB_WITH_OVERHEAD(PAGE_SIZE
)) ||
441 (gfp_mask
& (__GFP_DIRECT_RECLAIM
| GFP_DMA
))) {
442 skb
= __alloc_skb(len
, gfp_mask
, SKB_ALLOC_RX
, NUMA_NO_NODE
);
448 len
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
449 len
= SKB_DATA_ALIGN(len
);
451 if (sk_memalloc_socks())
452 gfp_mask
|= __GFP_MEMALLOC
;
454 if (in_irq() || irqs_disabled()) {
455 nc
= this_cpu_ptr(&netdev_alloc_cache
);
456 data
= page_frag_alloc(nc
, len
, gfp_mask
);
457 pfmemalloc
= nc
->pfmemalloc
;
460 nc
= this_cpu_ptr(&napi_alloc_cache
.page
);
461 data
= page_frag_alloc(nc
, len
, gfp_mask
);
462 pfmemalloc
= nc
->pfmemalloc
;
469 skb
= __build_skb(data
, len
);
470 if (unlikely(!skb
)) {
480 skb_reserve(skb
, NET_SKB_PAD
);
486 EXPORT_SYMBOL(__netdev_alloc_skb
);
489 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
490 * @napi: napi instance this buffer was allocated for
491 * @len: length to allocate
492 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
494 * Allocate a new sk_buff for use in NAPI receive. This buffer will
495 * attempt to allocate the head from a special reserved region used
496 * only for NAPI Rx allocation. By doing this we can save several
497 * CPU cycles by avoiding having to disable and re-enable IRQs.
499 * %NULL is returned if there is no free memory.
501 struct sk_buff
*__napi_alloc_skb(struct napi_struct
*napi
, unsigned int len
,
504 struct napi_alloc_cache
*nc
= this_cpu_ptr(&napi_alloc_cache
);
508 len
+= NET_SKB_PAD
+ NET_IP_ALIGN
;
510 if ((len
> SKB_WITH_OVERHEAD(PAGE_SIZE
)) ||
511 (gfp_mask
& (__GFP_DIRECT_RECLAIM
| GFP_DMA
))) {
512 skb
= __alloc_skb(len
, gfp_mask
, SKB_ALLOC_RX
, NUMA_NO_NODE
);
518 len
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
519 len
= SKB_DATA_ALIGN(len
);
521 if (sk_memalloc_socks())
522 gfp_mask
|= __GFP_MEMALLOC
;
524 data
= page_frag_alloc(&nc
->page
, len
, gfp_mask
);
528 skb
= __build_skb(data
, len
);
529 if (unlikely(!skb
)) {
534 if (nc
->page
.pfmemalloc
)
539 skb_reserve(skb
, NET_SKB_PAD
+ NET_IP_ALIGN
);
540 skb
->dev
= napi
->dev
;
545 EXPORT_SYMBOL(__napi_alloc_skb
);
547 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
548 int size
, unsigned int truesize
)
550 skb_fill_page_desc(skb
, i
, page
, off
, size
);
552 skb
->data_len
+= size
;
553 skb
->truesize
+= truesize
;
555 EXPORT_SYMBOL(skb_add_rx_frag
);
557 void skb_coalesce_rx_frag(struct sk_buff
*skb
, int i
, int size
,
558 unsigned int truesize
)
560 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
562 skb_frag_size_add(frag
, size
);
564 skb
->data_len
+= size
;
565 skb
->truesize
+= truesize
;
567 EXPORT_SYMBOL(skb_coalesce_rx_frag
);
569 static void skb_drop_list(struct sk_buff
**listp
)
571 kfree_skb_list(*listp
);
575 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
577 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
580 static void skb_clone_fraglist(struct sk_buff
*skb
)
582 struct sk_buff
*list
;
584 skb_walk_frags(skb
, list
)
588 static void skb_free_head(struct sk_buff
*skb
)
590 unsigned char *head
= skb
->head
;
598 static void skb_release_data(struct sk_buff
*skb
)
600 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
604 atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
608 for (i
= 0; i
< shinfo
->nr_frags
; i
++)
609 __skb_frag_unref(&shinfo
->frags
[i
]);
611 if (shinfo
->frag_list
)
612 kfree_skb_list(shinfo
->frag_list
);
614 skb_zcopy_clear(skb
, true);
619 * Free an skbuff by memory without cleaning the state.
621 static void kfree_skbmem(struct sk_buff
*skb
)
623 struct sk_buff_fclones
*fclones
;
625 switch (skb
->fclone
) {
626 case SKB_FCLONE_UNAVAILABLE
:
627 kmem_cache_free(skbuff_head_cache
, skb
);
630 case SKB_FCLONE_ORIG
:
631 fclones
= container_of(skb
, struct sk_buff_fclones
, skb1
);
633 /* We usually free the clone (TX completion) before original skb
634 * This test would have no chance to be true for the clone,
635 * while here, branch prediction will be good.
637 if (refcount_read(&fclones
->fclone_ref
) == 1)
641 default: /* SKB_FCLONE_CLONE */
642 fclones
= container_of(skb
, struct sk_buff_fclones
, skb2
);
645 if (!refcount_dec_and_test(&fclones
->fclone_ref
))
648 kmem_cache_free(skbuff_fclone_cache
, fclones
);
651 void skb_release_head_state(struct sk_buff
*skb
)
654 if (skb
->destructor
) {
656 skb
->destructor(skb
);
658 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
659 nf_conntrack_put(skb_nfct(skb
));
664 /* Free everything but the sk_buff shell. */
665 static void skb_release_all(struct sk_buff
*skb
)
667 skb_release_head_state(skb
);
668 if (likely(skb
->head
))
669 skb_release_data(skb
);
673 * __kfree_skb - private function
676 * Free an sk_buff. Release anything attached to the buffer.
677 * Clean the state. This is an internal helper function. Users should
678 * always call kfree_skb
681 void __kfree_skb(struct sk_buff
*skb
)
683 skb_release_all(skb
);
686 EXPORT_SYMBOL(__kfree_skb
);
689 * kfree_skb - free an sk_buff
690 * @skb: buffer to free
692 * Drop a reference to the buffer and free it if the usage count has
695 void kfree_skb(struct sk_buff
*skb
)
700 trace_kfree_skb(skb
, __builtin_return_address(0));
703 EXPORT_SYMBOL(kfree_skb
);
705 void kfree_skb_list(struct sk_buff
*segs
)
708 struct sk_buff
*next
= segs
->next
;
714 EXPORT_SYMBOL(kfree_skb_list
);
716 /* Dump skb information and contents.
718 * Must only be called from net_ratelimit()-ed paths.
720 * Dumps whole packets if full_pkt, only headers otherwise.
722 void skb_dump(const char *level
, const struct sk_buff
*skb
, bool full_pkt
)
724 struct skb_shared_info
*sh
= skb_shinfo(skb
);
725 struct net_device
*dev
= skb
->dev
;
726 struct sock
*sk
= skb
->sk
;
727 struct sk_buff
*list_skb
;
728 bool has_mac
, has_trans
;
729 int headroom
, tailroom
;
735 len
= min_t(int, skb
->len
, MAX_HEADER
+ 128);
737 headroom
= skb_headroom(skb
);
738 tailroom
= skb_tailroom(skb
);
740 has_mac
= skb_mac_header_was_set(skb
);
741 has_trans
= skb_transport_header_was_set(skb
);
743 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
744 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
745 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
746 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
747 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
748 level
, skb
->len
, headroom
, skb_headlen(skb
), tailroom
,
749 has_mac
? skb
->mac_header
: -1,
750 has_mac
? skb_mac_header_len(skb
) : -1,
752 has_trans
? skb_network_header_len(skb
) : -1,
753 has_trans
? skb
->transport_header
: -1,
754 sh
->tx_flags
, sh
->nr_frags
,
755 sh
->gso_size
, sh
->gso_type
, sh
->gso_segs
,
756 skb
->csum
, skb
->ip_summed
, skb
->csum_complete_sw
,
757 skb
->csum_valid
, skb
->csum_level
,
758 skb
->hash
, skb
->sw_hash
, skb
->l4_hash
,
759 ntohs(skb
->protocol
), skb
->pkt_type
, skb
->skb_iif
);
762 printk("%sdev name=%s feat=0x%pNF\n",
763 level
, dev
->name
, &dev
->features
);
765 printk("%ssk family=%hu type=%u proto=%u\n",
766 level
, sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
);
768 if (full_pkt
&& headroom
)
769 print_hex_dump(level
, "skb headroom: ", DUMP_PREFIX_OFFSET
,
770 16, 1, skb
->head
, headroom
, false);
772 seg_len
= min_t(int, skb_headlen(skb
), len
);
774 print_hex_dump(level
, "skb linear: ", DUMP_PREFIX_OFFSET
,
775 16, 1, skb
->data
, seg_len
, false);
778 if (full_pkt
&& tailroom
)
779 print_hex_dump(level
, "skb tailroom: ", DUMP_PREFIX_OFFSET
,
780 16, 1, skb_tail_pointer(skb
), tailroom
, false);
782 for (i
= 0; len
&& i
< skb_shinfo(skb
)->nr_frags
; i
++) {
783 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
784 u32 p_off
, p_len
, copied
;
788 skb_frag_foreach_page(frag
, skb_frag_off(frag
),
789 skb_frag_size(frag
), p
, p_off
, p_len
,
791 seg_len
= min_t(int, p_len
, len
);
792 vaddr
= kmap_atomic(p
);
793 print_hex_dump(level
, "skb frag: ",
795 16, 1, vaddr
+ p_off
, seg_len
, false);
796 kunmap_atomic(vaddr
);
803 if (full_pkt
&& skb_has_frag_list(skb
)) {
804 printk("skb fraglist:\n");
805 skb_walk_frags(skb
, list_skb
)
806 skb_dump(level
, list_skb
, true);
809 EXPORT_SYMBOL(skb_dump
);
812 * skb_tx_error - report an sk_buff xmit error
813 * @skb: buffer that triggered an error
815 * Report xmit error if a device callback is tracking this skb.
816 * skb must be freed afterwards.
818 void skb_tx_error(struct sk_buff
*skb
)
820 skb_zcopy_clear(skb
, true);
822 EXPORT_SYMBOL(skb_tx_error
);
824 #ifdef CONFIG_TRACEPOINTS
826 * consume_skb - free an skbuff
827 * @skb: buffer to free
829 * Drop a ref to the buffer and free it if the usage count has hit zero
830 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
831 * is being dropped after a failure and notes that
833 void consume_skb(struct sk_buff
*skb
)
838 trace_consume_skb(skb
);
841 EXPORT_SYMBOL(consume_skb
);
845 * __consume_stateless_skb - free an skbuff, assuming it is stateless
846 * @skb: buffer to free
848 * Alike consume_skb(), but this variant assumes that this is the last
849 * skb reference and all the head states have been already dropped
851 void __consume_stateless_skb(struct sk_buff
*skb
)
853 trace_consume_skb(skb
);
854 skb_release_data(skb
);
858 void __kfree_skb_flush(void)
860 struct napi_alloc_cache
*nc
= this_cpu_ptr(&napi_alloc_cache
);
862 /* flush skb_cache if containing objects */
864 kmem_cache_free_bulk(skbuff_head_cache
, nc
->skb_count
,
870 static inline void _kfree_skb_defer(struct sk_buff
*skb
)
872 struct napi_alloc_cache
*nc
= this_cpu_ptr(&napi_alloc_cache
);
874 /* drop skb->head and call any destructors for packet */
875 skb_release_all(skb
);
877 /* record skb to CPU local list */
878 nc
->skb_cache
[nc
->skb_count
++] = skb
;
881 /* SLUB writes into objects when freeing */
885 /* flush skb_cache if it is filled */
886 if (unlikely(nc
->skb_count
== NAPI_SKB_CACHE_SIZE
)) {
887 kmem_cache_free_bulk(skbuff_head_cache
, NAPI_SKB_CACHE_SIZE
,
892 void __kfree_skb_defer(struct sk_buff
*skb
)
894 _kfree_skb_defer(skb
);
897 void napi_consume_skb(struct sk_buff
*skb
, int budget
)
899 /* Zero budget indicate non-NAPI context called us, like netpoll */
900 if (unlikely(!budget
)) {
901 dev_consume_skb_any(skb
);
905 lockdep_assert_in_softirq();
910 /* if reaching here SKB is ready to free */
911 trace_consume_skb(skb
);
913 /* if SKB is a clone, don't handle this case */
914 if (skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
) {
919 _kfree_skb_defer(skb
);
921 EXPORT_SYMBOL(napi_consume_skb
);
923 /* Make sure a field is enclosed inside headers_start/headers_end section */
924 #define CHECK_SKB_FIELD(field) \
925 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
926 offsetof(struct sk_buff, headers_start)); \
927 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
928 offsetof(struct sk_buff, headers_end)); \
930 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
932 new->tstamp
= old
->tstamp
;
933 /* We do not copy old->sk */
935 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
936 skb_dst_copy(new, old
);
937 __skb_ext_copy(new, old
);
938 __nf_copy(new, old
, false);
940 /* Note : this field could be in headers_start/headers_end section
941 * It is not yet because we do not want to have a 16 bit hole
943 new->queue_mapping
= old
->queue_mapping
;
945 memcpy(&new->headers_start
, &old
->headers_start
,
946 offsetof(struct sk_buff
, headers_end
) -
947 offsetof(struct sk_buff
, headers_start
));
948 CHECK_SKB_FIELD(protocol
);
949 CHECK_SKB_FIELD(csum
);
950 CHECK_SKB_FIELD(hash
);
951 CHECK_SKB_FIELD(priority
);
952 CHECK_SKB_FIELD(skb_iif
);
953 CHECK_SKB_FIELD(vlan_proto
);
954 CHECK_SKB_FIELD(vlan_tci
);
955 CHECK_SKB_FIELD(transport_header
);
956 CHECK_SKB_FIELD(network_header
);
957 CHECK_SKB_FIELD(mac_header
);
958 CHECK_SKB_FIELD(inner_protocol
);
959 CHECK_SKB_FIELD(inner_transport_header
);
960 CHECK_SKB_FIELD(inner_network_header
);
961 CHECK_SKB_FIELD(inner_mac_header
);
962 CHECK_SKB_FIELD(mark
);
963 #ifdef CONFIG_NETWORK_SECMARK
964 CHECK_SKB_FIELD(secmark
);
966 #ifdef CONFIG_NET_RX_BUSY_POLL
967 CHECK_SKB_FIELD(napi_id
);
970 CHECK_SKB_FIELD(sender_cpu
);
972 #ifdef CONFIG_NET_SCHED
973 CHECK_SKB_FIELD(tc_index
);
979 * You should not add any new code to this function. Add it to
980 * __copy_skb_header above instead.
982 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
984 #define C(x) n->x = skb->x
986 n
->next
= n
->prev
= NULL
;
988 __copy_skb_header(n
, skb
);
993 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
998 n
->destructor
= NULL
;
1005 refcount_set(&n
->users
, 1);
1007 atomic_inc(&(skb_shinfo(skb
)->dataref
));
1015 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1016 * @first: first sk_buff of the msg
1018 struct sk_buff
*alloc_skb_for_msg(struct sk_buff
*first
)
1022 n
= alloc_skb(0, GFP_ATOMIC
);
1026 n
->len
= first
->len
;
1027 n
->data_len
= first
->len
;
1028 n
->truesize
= first
->truesize
;
1030 skb_shinfo(n
)->frag_list
= first
;
1032 __copy_skb_header(n
, first
);
1033 n
->destructor
= NULL
;
1037 EXPORT_SYMBOL_GPL(alloc_skb_for_msg
);
1040 * skb_morph - morph one skb into another
1041 * @dst: the skb to receive the contents
1042 * @src: the skb to supply the contents
1044 * This is identical to skb_clone except that the target skb is
1045 * supplied by the user.
1047 * The target skb is returned upon exit.
1049 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
1051 skb_release_all(dst
);
1052 return __skb_clone(dst
, src
);
1054 EXPORT_SYMBOL_GPL(skb_morph
);
1056 int mm_account_pinned_pages(struct mmpin
*mmp
, size_t size
)
1058 unsigned long max_pg
, num_pg
, new_pg
, old_pg
;
1059 struct user_struct
*user
;
1061 if (capable(CAP_IPC_LOCK
) || !size
)
1064 num_pg
= (size
>> PAGE_SHIFT
) + 2; /* worst case */
1065 max_pg
= rlimit(RLIMIT_MEMLOCK
) >> PAGE_SHIFT
;
1066 user
= mmp
->user
? : current_user();
1069 old_pg
= atomic_long_read(&user
->locked_vm
);
1070 new_pg
= old_pg
+ num_pg
;
1071 if (new_pg
> max_pg
)
1073 } while (atomic_long_cmpxchg(&user
->locked_vm
, old_pg
, new_pg
) !=
1077 mmp
->user
= get_uid(user
);
1078 mmp
->num_pg
= num_pg
;
1080 mmp
->num_pg
+= num_pg
;
1085 EXPORT_SYMBOL_GPL(mm_account_pinned_pages
);
1087 void mm_unaccount_pinned_pages(struct mmpin
*mmp
)
1090 atomic_long_sub(mmp
->num_pg
, &mmp
->user
->locked_vm
);
1091 free_uid(mmp
->user
);
1094 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages
);
1096 struct ubuf_info
*sock_zerocopy_alloc(struct sock
*sk
, size_t size
)
1098 struct ubuf_info
*uarg
;
1099 struct sk_buff
*skb
;
1101 WARN_ON_ONCE(!in_task());
1103 skb
= sock_omalloc(sk
, 0, GFP_KERNEL
);
1107 BUILD_BUG_ON(sizeof(*uarg
) > sizeof(skb
->cb
));
1108 uarg
= (void *)skb
->cb
;
1109 uarg
->mmp
.user
= NULL
;
1111 if (mm_account_pinned_pages(&uarg
->mmp
, size
)) {
1116 uarg
->callback
= sock_zerocopy_callback
;
1117 uarg
->id
= ((u32
)atomic_inc_return(&sk
->sk_zckey
)) - 1;
1119 uarg
->bytelen
= size
;
1121 refcount_set(&uarg
->refcnt
, 1);
1126 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc
);
1128 static inline struct sk_buff
*skb_from_uarg(struct ubuf_info
*uarg
)
1130 return container_of((void *)uarg
, struct sk_buff
, cb
);
1133 struct ubuf_info
*sock_zerocopy_realloc(struct sock
*sk
, size_t size
,
1134 struct ubuf_info
*uarg
)
1137 const u32 byte_limit
= 1 << 19; /* limit to a few TSO */
1140 /* realloc only when socket is locked (TCP, UDP cork),
1141 * so uarg->len and sk_zckey access is serialized
1143 if (!sock_owned_by_user(sk
)) {
1148 bytelen
= uarg
->bytelen
+ size
;
1149 if (uarg
->len
== USHRT_MAX
- 1 || bytelen
> byte_limit
) {
1150 /* TCP can create new skb to attach new uarg */
1151 if (sk
->sk_type
== SOCK_STREAM
)
1156 next
= (u32
)atomic_read(&sk
->sk_zckey
);
1157 if ((u32
)(uarg
->id
+ uarg
->len
) == next
) {
1158 if (mm_account_pinned_pages(&uarg
->mmp
, size
))
1161 uarg
->bytelen
= bytelen
;
1162 atomic_set(&sk
->sk_zckey
, ++next
);
1164 /* no extra ref when appending to datagram (MSG_MORE) */
1165 if (sk
->sk_type
== SOCK_STREAM
)
1166 sock_zerocopy_get(uarg
);
1173 return sock_zerocopy_alloc(sk
, size
);
1175 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc
);
1177 static bool skb_zerocopy_notify_extend(struct sk_buff
*skb
, u32 lo
, u16 len
)
1179 struct sock_exterr_skb
*serr
= SKB_EXT_ERR(skb
);
1183 old_lo
= serr
->ee
.ee_info
;
1184 old_hi
= serr
->ee
.ee_data
;
1185 sum_len
= old_hi
- old_lo
+ 1ULL + len
;
1187 if (sum_len
>= (1ULL << 32))
1190 if (lo
!= old_hi
+ 1)
1193 serr
->ee
.ee_data
+= len
;
1197 void sock_zerocopy_callback(struct ubuf_info
*uarg
, bool success
)
1199 struct sk_buff
*tail
, *skb
= skb_from_uarg(uarg
);
1200 struct sock_exterr_skb
*serr
;
1201 struct sock
*sk
= skb
->sk
;
1202 struct sk_buff_head
*q
;
1203 unsigned long flags
;
1207 mm_unaccount_pinned_pages(&uarg
->mmp
);
1209 /* if !len, there was only 1 call, and it was aborted
1210 * so do not queue a completion notification
1212 if (!uarg
->len
|| sock_flag(sk
, SOCK_DEAD
))
1217 hi
= uarg
->id
+ len
- 1;
1219 serr
= SKB_EXT_ERR(skb
);
1220 memset(serr
, 0, sizeof(*serr
));
1221 serr
->ee
.ee_errno
= 0;
1222 serr
->ee
.ee_origin
= SO_EE_ORIGIN_ZEROCOPY
;
1223 serr
->ee
.ee_data
= hi
;
1224 serr
->ee
.ee_info
= lo
;
1226 serr
->ee
.ee_code
|= SO_EE_CODE_ZEROCOPY_COPIED
;
1228 q
= &sk
->sk_error_queue
;
1229 spin_lock_irqsave(&q
->lock
, flags
);
1230 tail
= skb_peek_tail(q
);
1231 if (!tail
|| SKB_EXT_ERR(tail
)->ee
.ee_origin
!= SO_EE_ORIGIN_ZEROCOPY
||
1232 !skb_zerocopy_notify_extend(tail
, lo
, len
)) {
1233 __skb_queue_tail(q
, skb
);
1236 spin_unlock_irqrestore(&q
->lock
, flags
);
1238 sk
->sk_error_report(sk
);
1244 EXPORT_SYMBOL_GPL(sock_zerocopy_callback
);
1246 void sock_zerocopy_put(struct ubuf_info
*uarg
)
1248 if (uarg
&& refcount_dec_and_test(&uarg
->refcnt
)) {
1250 uarg
->callback(uarg
, uarg
->zerocopy
);
1252 consume_skb(skb_from_uarg(uarg
));
1255 EXPORT_SYMBOL_GPL(sock_zerocopy_put
);
1257 void sock_zerocopy_put_abort(struct ubuf_info
*uarg
, bool have_uref
)
1260 struct sock
*sk
= skb_from_uarg(uarg
)->sk
;
1262 atomic_dec(&sk
->sk_zckey
);
1266 sock_zerocopy_put(uarg
);
1269 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort
);
1271 int skb_zerocopy_iter_dgram(struct sk_buff
*skb
, struct msghdr
*msg
, int len
)
1273 return __zerocopy_sg_from_iter(skb
->sk
, skb
, &msg
->msg_iter
, len
);
1275 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram
);
1277 int skb_zerocopy_iter_stream(struct sock
*sk
, struct sk_buff
*skb
,
1278 struct msghdr
*msg
, int len
,
1279 struct ubuf_info
*uarg
)
1281 struct ubuf_info
*orig_uarg
= skb_zcopy(skb
);
1282 struct iov_iter orig_iter
= msg
->msg_iter
;
1283 int err
, orig_len
= skb
->len
;
1285 /* An skb can only point to one uarg. This edge case happens when
1286 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1288 if (orig_uarg
&& uarg
!= orig_uarg
)
1291 err
= __zerocopy_sg_from_iter(sk
, skb
, &msg
->msg_iter
, len
);
1292 if (err
== -EFAULT
|| (err
== -EMSGSIZE
&& skb
->len
== orig_len
)) {
1293 struct sock
*save_sk
= skb
->sk
;
1295 /* Streams do not free skb on error. Reset to prev state. */
1296 msg
->msg_iter
= orig_iter
;
1298 ___pskb_trim(skb
, orig_len
);
1303 skb_zcopy_set(skb
, uarg
, NULL
);
1304 return skb
->len
- orig_len
;
1306 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream
);
1308 static int skb_zerocopy_clone(struct sk_buff
*nskb
, struct sk_buff
*orig
,
1311 if (skb_zcopy(orig
)) {
1312 if (skb_zcopy(nskb
)) {
1313 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1318 if (skb_uarg(nskb
) == skb_uarg(orig
))
1320 if (skb_copy_ubufs(nskb
, GFP_ATOMIC
))
1323 skb_zcopy_set(nskb
, skb_uarg(orig
), NULL
);
1329 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1330 * @skb: the skb to modify
1331 * @gfp_mask: allocation priority
1333 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1334 * It will copy all frags into kernel and drop the reference
1335 * to userspace pages.
1337 * If this function is called from an interrupt gfp_mask() must be
1340 * Returns 0 on success or a negative error code on failure
1341 * to allocate kernel memory to copy to.
1343 int skb_copy_ubufs(struct sk_buff
*skb
, gfp_t gfp_mask
)
1345 int num_frags
= skb_shinfo(skb
)->nr_frags
;
1346 struct page
*page
, *head
= NULL
;
1350 if (skb_shared(skb
) || skb_unclone(skb
, gfp_mask
))
1356 new_frags
= (__skb_pagelen(skb
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1357 for (i
= 0; i
< new_frags
; i
++) {
1358 page
= alloc_page(gfp_mask
);
1361 struct page
*next
= (struct page
*)page_private(head
);
1367 set_page_private(page
, (unsigned long)head
);
1373 for (i
= 0; i
< num_frags
; i
++) {
1374 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
1375 u32 p_off
, p_len
, copied
;
1379 skb_frag_foreach_page(f
, skb_frag_off(f
), skb_frag_size(f
),
1380 p
, p_off
, p_len
, copied
) {
1382 vaddr
= kmap_atomic(p
);
1384 while (done
< p_len
) {
1385 if (d_off
== PAGE_SIZE
) {
1387 page
= (struct page
*)page_private(page
);
1389 copy
= min_t(u32
, PAGE_SIZE
- d_off
, p_len
- done
);
1390 memcpy(page_address(page
) + d_off
,
1391 vaddr
+ p_off
+ done
, copy
);
1395 kunmap_atomic(vaddr
);
1399 /* skb frags release userspace buffers */
1400 for (i
= 0; i
< num_frags
; i
++)
1401 skb_frag_unref(skb
, i
);
1403 /* skb frags point to kernel buffers */
1404 for (i
= 0; i
< new_frags
- 1; i
++) {
1405 __skb_fill_page_desc(skb
, i
, head
, 0, PAGE_SIZE
);
1406 head
= (struct page
*)page_private(head
);
1408 __skb_fill_page_desc(skb
, new_frags
- 1, head
, 0, d_off
);
1409 skb_shinfo(skb
)->nr_frags
= new_frags
;
1412 skb_zcopy_clear(skb
, false);
1415 EXPORT_SYMBOL_GPL(skb_copy_ubufs
);
1418 * skb_clone - duplicate an sk_buff
1419 * @skb: buffer to clone
1420 * @gfp_mask: allocation priority
1422 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1423 * copies share the same packet data but not structure. The new
1424 * buffer has a reference count of 1. If the allocation fails the
1425 * function returns %NULL otherwise the new buffer is returned.
1427 * If this function is called from an interrupt gfp_mask() must be
1431 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
1433 struct sk_buff_fclones
*fclones
= container_of(skb
,
1434 struct sk_buff_fclones
,
1438 if (skb_orphan_frags(skb
, gfp_mask
))
1441 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
1442 refcount_read(&fclones
->fclone_ref
) == 1) {
1444 refcount_set(&fclones
->fclone_ref
, 2);
1446 if (skb_pfmemalloc(skb
))
1447 gfp_mask
|= __GFP_MEMALLOC
;
1449 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
1453 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
1456 return __skb_clone(n
, skb
);
1458 EXPORT_SYMBOL(skb_clone
);
1460 void skb_headers_offset_update(struct sk_buff
*skb
, int off
)
1462 /* Only adjust this if it actually is csum_start rather than csum */
1463 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1464 skb
->csum_start
+= off
;
1465 /* {transport,network,mac}_header and tail are relative to skb->head */
1466 skb
->transport_header
+= off
;
1467 skb
->network_header
+= off
;
1468 if (skb_mac_header_was_set(skb
))
1469 skb
->mac_header
+= off
;
1470 skb
->inner_transport_header
+= off
;
1471 skb
->inner_network_header
+= off
;
1472 skb
->inner_mac_header
+= off
;
1474 EXPORT_SYMBOL(skb_headers_offset_update
);
1476 void skb_copy_header(struct sk_buff
*new, const struct sk_buff
*old
)
1478 __copy_skb_header(new, old
);
1480 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
1481 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
1482 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
1484 EXPORT_SYMBOL(skb_copy_header
);
1486 static inline int skb_alloc_rx_flag(const struct sk_buff
*skb
)
1488 if (skb_pfmemalloc(skb
))
1489 return SKB_ALLOC_RX
;
1494 * skb_copy - create private copy of an sk_buff
1495 * @skb: buffer to copy
1496 * @gfp_mask: allocation priority
1498 * Make a copy of both an &sk_buff and its data. This is used when the
1499 * caller wishes to modify the data and needs a private copy of the
1500 * data to alter. Returns %NULL on failure or the pointer to the buffer
1501 * on success. The returned buffer has a reference count of 1.
1503 * As by-product this function converts non-linear &sk_buff to linear
1504 * one, so that &sk_buff becomes completely private and caller is allowed
1505 * to modify all the data of returned buffer. This means that this
1506 * function is not recommended for use in circumstances when only
1507 * header is going to be modified. Use pskb_copy() instead.
1510 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
1512 int headerlen
= skb_headroom(skb
);
1513 unsigned int size
= skb_end_offset(skb
) + skb
->data_len
;
1514 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
,
1515 skb_alloc_rx_flag(skb
), NUMA_NO_NODE
);
1520 /* Set the data pointer */
1521 skb_reserve(n
, headerlen
);
1522 /* Set the tail pointer and length */
1523 skb_put(n
, skb
->len
);
1525 BUG_ON(skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
));
1527 skb_copy_header(n
, skb
);
1530 EXPORT_SYMBOL(skb_copy
);
1533 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1534 * @skb: buffer to copy
1535 * @headroom: headroom of new skb
1536 * @gfp_mask: allocation priority
1537 * @fclone: if true allocate the copy of the skb from the fclone
1538 * cache instead of the head cache; it is recommended to set this
1539 * to true for the cases where the copy will likely be cloned
1541 * Make a copy of both an &sk_buff and part of its data, located
1542 * in header. Fragmented data remain shared. This is used when
1543 * the caller wishes to modify only header of &sk_buff and needs
1544 * private copy of the header to alter. Returns %NULL on failure
1545 * or the pointer to the buffer on success.
1546 * The returned buffer has a reference count of 1.
1549 struct sk_buff
*__pskb_copy_fclone(struct sk_buff
*skb
, int headroom
,
1550 gfp_t gfp_mask
, bool fclone
)
1552 unsigned int size
= skb_headlen(skb
) + headroom
;
1553 int flags
= skb_alloc_rx_flag(skb
) | (fclone
? SKB_ALLOC_FCLONE
: 0);
1554 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
, flags
, NUMA_NO_NODE
);
1559 /* Set the data pointer */
1560 skb_reserve(n
, headroom
);
1561 /* Set the tail pointer and length */
1562 skb_put(n
, skb_headlen(skb
));
1563 /* Copy the bytes */
1564 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
1566 n
->truesize
+= skb
->data_len
;
1567 n
->data_len
= skb
->data_len
;
1570 if (skb_shinfo(skb
)->nr_frags
) {
1573 if (skb_orphan_frags(skb
, gfp_mask
) ||
1574 skb_zerocopy_clone(n
, skb
, gfp_mask
)) {
1579 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1580 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
1581 skb_frag_ref(skb
, i
);
1583 skb_shinfo(n
)->nr_frags
= i
;
1586 if (skb_has_frag_list(skb
)) {
1587 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
1588 skb_clone_fraglist(n
);
1591 skb_copy_header(n
, skb
);
1595 EXPORT_SYMBOL(__pskb_copy_fclone
);
1598 * pskb_expand_head - reallocate header of &sk_buff
1599 * @skb: buffer to reallocate
1600 * @nhead: room to add at head
1601 * @ntail: room to add at tail
1602 * @gfp_mask: allocation priority
1604 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1605 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1606 * reference count of 1. Returns zero in the case of success or error,
1607 * if expansion failed. In the last case, &sk_buff is not changed.
1609 * All the pointers pointing into skb header may change and must be
1610 * reloaded after call to this function.
1613 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
1616 int i
, osize
= skb_end_offset(skb
);
1617 int size
= osize
+ nhead
+ ntail
;
1623 BUG_ON(skb_shared(skb
));
1625 size
= SKB_DATA_ALIGN(size
);
1627 if (skb_pfmemalloc(skb
))
1628 gfp_mask
|= __GFP_MEMALLOC
;
1629 data
= kmalloc_reserve(size
+ SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)),
1630 gfp_mask
, NUMA_NO_NODE
, NULL
);
1633 size
= SKB_WITH_OVERHEAD(ksize(data
));
1635 /* Copy only real data... and, alas, header. This should be
1636 * optimized for the cases when header is void.
1638 memcpy(data
+ nhead
, skb
->head
, skb_tail_pointer(skb
) - skb
->head
);
1640 memcpy((struct skb_shared_info
*)(data
+ size
),
1642 offsetof(struct skb_shared_info
, frags
[skb_shinfo(skb
)->nr_frags
]));
1645 * if shinfo is shared we must drop the old head gracefully, but if it
1646 * is not we can just drop the old head and let the existing refcount
1647 * be since all we did is relocate the values
1649 if (skb_cloned(skb
)) {
1650 if (skb_orphan_frags(skb
, gfp_mask
))
1653 refcount_inc(&skb_uarg(skb
)->refcnt
);
1654 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1655 skb_frag_ref(skb
, i
);
1657 if (skb_has_frag_list(skb
))
1658 skb_clone_fraglist(skb
);
1660 skb_release_data(skb
);
1664 off
= (data
+ nhead
) - skb
->head
;
1669 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1673 skb
->end
= skb
->head
+ size
;
1676 skb_headers_offset_update(skb
, nhead
);
1680 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
1682 skb_metadata_clear(skb
);
1684 /* It is not generally safe to change skb->truesize.
1685 * For the moment, we really care of rx path, or
1686 * when skb is orphaned (not attached to a socket).
1688 if (!skb
->sk
|| skb
->destructor
== sock_edemux
)
1689 skb
->truesize
+= size
- osize
;
1698 EXPORT_SYMBOL(pskb_expand_head
);
1700 /* Make private copy of skb with writable head and some headroom */
1702 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
1704 struct sk_buff
*skb2
;
1705 int delta
= headroom
- skb_headroom(skb
);
1708 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
1710 skb2
= skb_clone(skb
, GFP_ATOMIC
);
1711 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
1719 EXPORT_SYMBOL(skb_realloc_headroom
);
1722 * skb_copy_expand - copy and expand sk_buff
1723 * @skb: buffer to copy
1724 * @newheadroom: new free bytes at head
1725 * @newtailroom: new free bytes at tail
1726 * @gfp_mask: allocation priority
1728 * Make a copy of both an &sk_buff and its data and while doing so
1729 * allocate additional space.
1731 * This is used when the caller wishes to modify the data and needs a
1732 * private copy of the data to alter as well as more space for new fields.
1733 * Returns %NULL on failure or the pointer to the buffer
1734 * on success. The returned buffer has a reference count of 1.
1736 * You must pass %GFP_ATOMIC as the allocation priority if this function
1737 * is called from an interrupt.
1739 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
1740 int newheadroom
, int newtailroom
,
1744 * Allocate the copy buffer
1746 struct sk_buff
*n
= __alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
1747 gfp_mask
, skb_alloc_rx_flag(skb
),
1749 int oldheadroom
= skb_headroom(skb
);
1750 int head_copy_len
, head_copy_off
;
1755 skb_reserve(n
, newheadroom
);
1757 /* Set the tail pointer and length */
1758 skb_put(n
, skb
->len
);
1760 head_copy_len
= oldheadroom
;
1762 if (newheadroom
<= head_copy_len
)
1763 head_copy_len
= newheadroom
;
1765 head_copy_off
= newheadroom
- head_copy_len
;
1767 /* Copy the linear header and data. */
1768 BUG_ON(skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
1769 skb
->len
+ head_copy_len
));
1771 skb_copy_header(n
, skb
);
1773 skb_headers_offset_update(n
, newheadroom
- oldheadroom
);
1777 EXPORT_SYMBOL(skb_copy_expand
);
1780 * __skb_pad - zero pad the tail of an skb
1781 * @skb: buffer to pad
1782 * @pad: space to pad
1783 * @free_on_error: free buffer on error
1785 * Ensure that a buffer is followed by a padding area that is zero
1786 * filled. Used by network drivers which may DMA or transfer data
1787 * beyond the buffer end onto the wire.
1789 * May return error in out of memory cases. The skb is freed on error
1790 * if @free_on_error is true.
1793 int __skb_pad(struct sk_buff
*skb
, int pad
, bool free_on_error
)
1798 /* If the skbuff is non linear tailroom is always zero.. */
1799 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
1800 memset(skb
->data
+skb
->len
, 0, pad
);
1804 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
1805 if (likely(skb_cloned(skb
) || ntail
> 0)) {
1806 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
1811 /* FIXME: The use of this function with non-linear skb's really needs
1814 err
= skb_linearize(skb
);
1818 memset(skb
->data
+ skb
->len
, 0, pad
);
1826 EXPORT_SYMBOL(__skb_pad
);
1829 * pskb_put - add data to the tail of a potentially fragmented buffer
1830 * @skb: start of the buffer to use
1831 * @tail: tail fragment of the buffer to use
1832 * @len: amount of data to add
1834 * This function extends the used data area of the potentially
1835 * fragmented buffer. @tail must be the last fragment of @skb -- or
1836 * @skb itself. If this would exceed the total buffer size the kernel
1837 * will panic. A pointer to the first byte of the extra data is
1841 void *pskb_put(struct sk_buff
*skb
, struct sk_buff
*tail
, int len
)
1844 skb
->data_len
+= len
;
1847 return skb_put(tail
, len
);
1849 EXPORT_SYMBOL_GPL(pskb_put
);
1852 * skb_put - add data to a buffer
1853 * @skb: buffer to use
1854 * @len: amount of data to add
1856 * This function extends the used data area of the buffer. If this would
1857 * exceed the total buffer size the kernel will panic. A pointer to the
1858 * first byte of the extra data is returned.
1860 void *skb_put(struct sk_buff
*skb
, unsigned int len
)
1862 void *tmp
= skb_tail_pointer(skb
);
1863 SKB_LINEAR_ASSERT(skb
);
1866 if (unlikely(skb
->tail
> skb
->end
))
1867 skb_over_panic(skb
, len
, __builtin_return_address(0));
1870 EXPORT_SYMBOL(skb_put
);
1873 * skb_push - add data to the start of a buffer
1874 * @skb: buffer to use
1875 * @len: amount of data to add
1877 * This function extends the used data area of the buffer at the buffer
1878 * start. If this would exceed the total buffer headroom the kernel will
1879 * panic. A pointer to the first byte of the extra data is returned.
1881 void *skb_push(struct sk_buff
*skb
, unsigned int len
)
1885 if (unlikely(skb
->data
< skb
->head
))
1886 skb_under_panic(skb
, len
, __builtin_return_address(0));
1889 EXPORT_SYMBOL(skb_push
);
1892 * skb_pull - remove data from the start of a buffer
1893 * @skb: buffer to use
1894 * @len: amount of data to remove
1896 * This function removes data from the start of a buffer, returning
1897 * the memory to the headroom. A pointer to the next data in the buffer
1898 * is returned. Once the data has been pulled future pushes will overwrite
1901 void *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1903 return skb_pull_inline(skb
, len
);
1905 EXPORT_SYMBOL(skb_pull
);
1908 * skb_trim - remove end from a buffer
1909 * @skb: buffer to alter
1912 * Cut the length of a buffer down by removing data from the tail. If
1913 * the buffer is already under the length specified it is not modified.
1914 * The skb must be linear.
1916 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1919 __skb_trim(skb
, len
);
1921 EXPORT_SYMBOL(skb_trim
);
1923 /* Trims skb to length len. It can change skb pointers.
1926 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1928 struct sk_buff
**fragp
;
1929 struct sk_buff
*frag
;
1930 int offset
= skb_headlen(skb
);
1931 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1935 if (skb_cloned(skb
) &&
1936 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1943 for (; i
< nfrags
; i
++) {
1944 int end
= offset
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1951 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
++], len
- offset
);
1954 skb_shinfo(skb
)->nr_frags
= i
;
1956 for (; i
< nfrags
; i
++)
1957 skb_frag_unref(skb
, i
);
1959 if (skb_has_frag_list(skb
))
1960 skb_drop_fraglist(skb
);
1964 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1965 fragp
= &frag
->next
) {
1966 int end
= offset
+ frag
->len
;
1968 if (skb_shared(frag
)) {
1969 struct sk_buff
*nfrag
;
1971 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1972 if (unlikely(!nfrag
))
1975 nfrag
->next
= frag
->next
;
1987 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1991 skb_drop_list(&frag
->next
);
1996 if (len
> skb_headlen(skb
)) {
1997 skb
->data_len
-= skb
->len
- len
;
2002 skb_set_tail_pointer(skb
, len
);
2005 if (!skb
->sk
|| skb
->destructor
== sock_edemux
)
2009 EXPORT_SYMBOL(___pskb_trim
);
2011 /* Note : use pskb_trim_rcsum() instead of calling this directly
2013 int pskb_trim_rcsum_slow(struct sk_buff
*skb
, unsigned int len
)
2015 if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
2016 int delta
= skb
->len
- len
;
2018 skb
->csum
= csum_block_sub(skb
->csum
,
2019 skb_checksum(skb
, len
, delta
, 0),
2021 } else if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2022 int hdlen
= (len
> skb_headlen(skb
)) ? skb_headlen(skb
) : len
;
2023 int offset
= skb_checksum_start_offset(skb
) + skb
->csum_offset
;
2025 if (offset
+ sizeof(__sum16
) > hdlen
)
2028 return __pskb_trim(skb
, len
);
2030 EXPORT_SYMBOL(pskb_trim_rcsum_slow
);
2033 * __pskb_pull_tail - advance tail of skb header
2034 * @skb: buffer to reallocate
2035 * @delta: number of bytes to advance tail
2037 * The function makes a sense only on a fragmented &sk_buff,
2038 * it expands header moving its tail forward and copying necessary
2039 * data from fragmented part.
2041 * &sk_buff MUST have reference count of 1.
2043 * Returns %NULL (and &sk_buff does not change) if pull failed
2044 * or value of new tail of skb in the case of success.
2046 * All the pointers pointing into skb header may change and must be
2047 * reloaded after call to this function.
2050 /* Moves tail of skb head forward, copying data from fragmented part,
2051 * when it is necessary.
2052 * 1. It may fail due to malloc failure.
2053 * 2. It may change skb pointers.
2055 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2057 void *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
2059 /* If skb has not enough free space at tail, get new one
2060 * plus 128 bytes for future expansions. If we have enough
2061 * room at tail, reallocate without expansion only if skb is cloned.
2063 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
2065 if (eat
> 0 || skb_cloned(skb
)) {
2066 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
2071 BUG_ON(skb_copy_bits(skb
, skb_headlen(skb
),
2072 skb_tail_pointer(skb
), delta
));
2074 /* Optimization: no fragments, no reasons to preestimate
2075 * size of pulled pages. Superb.
2077 if (!skb_has_frag_list(skb
))
2080 /* Estimate size of pulled pages. */
2082 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2083 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2090 /* If we need update frag list, we are in troubles.
2091 * Certainly, it is possible to add an offset to skb data,
2092 * but taking into account that pulling is expected to
2093 * be very rare operation, it is worth to fight against
2094 * further bloating skb head and crucify ourselves here instead.
2095 * Pure masohism, indeed. 8)8)
2098 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
2099 struct sk_buff
*clone
= NULL
;
2100 struct sk_buff
*insp
= NULL
;
2103 if (list
->len
<= eat
) {
2104 /* Eaten as whole. */
2109 /* Eaten partially. */
2111 if (skb_shared(list
)) {
2112 /* Sucks! We need to fork list. :-( */
2113 clone
= skb_clone(list
, GFP_ATOMIC
);
2119 /* This may be pulled without
2123 if (!pskb_pull(list
, eat
)) {
2131 /* Free pulled out fragments. */
2132 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
2133 skb_shinfo(skb
)->frag_list
= list
->next
;
2136 /* And insert new clone at head. */
2139 skb_shinfo(skb
)->frag_list
= clone
;
2142 /* Success! Now we may commit changes to skb data. */
2147 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2148 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2151 skb_frag_unref(skb
, i
);
2154 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[k
];
2156 *frag
= skb_shinfo(skb
)->frags
[i
];
2158 skb_frag_off_add(frag
, eat
);
2159 skb_frag_size_sub(frag
, eat
);
2167 skb_shinfo(skb
)->nr_frags
= k
;
2171 skb
->data_len
-= delta
;
2174 skb_zcopy_clear(skb
, false);
2176 return skb_tail_pointer(skb
);
2178 EXPORT_SYMBOL(__pskb_pull_tail
);
2181 * skb_copy_bits - copy bits from skb to kernel buffer
2183 * @offset: offset in source
2184 * @to: destination buffer
2185 * @len: number of bytes to copy
2187 * Copy the specified number of bytes from the source skb to the
2188 * destination buffer.
2191 * If its prototype is ever changed,
2192 * check arch/{*}/net/{*}.S files,
2193 * since it is called from BPF assembly code.
2195 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
2197 int start
= skb_headlen(skb
);
2198 struct sk_buff
*frag_iter
;
2201 if (offset
> (int)skb
->len
- len
)
2205 if ((copy
= start
- offset
) > 0) {
2208 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
2209 if ((len
-= copy
) == 0)
2215 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2217 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
2219 WARN_ON(start
> offset
+ len
);
2221 end
= start
+ skb_frag_size(f
);
2222 if ((copy
= end
- offset
) > 0) {
2223 u32 p_off
, p_len
, copied
;
2230 skb_frag_foreach_page(f
,
2231 skb_frag_off(f
) + offset
- start
,
2232 copy
, p
, p_off
, p_len
, copied
) {
2233 vaddr
= kmap_atomic(p
);
2234 memcpy(to
+ copied
, vaddr
+ p_off
, p_len
);
2235 kunmap_atomic(vaddr
);
2238 if ((len
-= copy
) == 0)
2246 skb_walk_frags(skb
, frag_iter
) {
2249 WARN_ON(start
> offset
+ len
);
2251 end
= start
+ frag_iter
->len
;
2252 if ((copy
= end
- offset
) > 0) {
2255 if (skb_copy_bits(frag_iter
, offset
- start
, to
, copy
))
2257 if ((len
-= copy
) == 0)
2271 EXPORT_SYMBOL(skb_copy_bits
);
2274 * Callback from splice_to_pipe(), if we need to release some pages
2275 * at the end of the spd in case we error'ed out in filling the pipe.
2277 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
2279 put_page(spd
->pages
[i
]);
2282 static struct page
*linear_to_page(struct page
*page
, unsigned int *len
,
2283 unsigned int *offset
,
2286 struct page_frag
*pfrag
= sk_page_frag(sk
);
2288 if (!sk_page_frag_refill(sk
, pfrag
))
2291 *len
= min_t(unsigned int, *len
, pfrag
->size
- pfrag
->offset
);
2293 memcpy(page_address(pfrag
->page
) + pfrag
->offset
,
2294 page_address(page
) + *offset
, *len
);
2295 *offset
= pfrag
->offset
;
2296 pfrag
->offset
+= *len
;
2301 static bool spd_can_coalesce(const struct splice_pipe_desc
*spd
,
2303 unsigned int offset
)
2305 return spd
->nr_pages
&&
2306 spd
->pages
[spd
->nr_pages
- 1] == page
&&
2307 (spd
->partial
[spd
->nr_pages
- 1].offset
+
2308 spd
->partial
[spd
->nr_pages
- 1].len
== offset
);
2312 * Fill page/offset/length into spd, if it can hold more pages.
2314 static bool spd_fill_page(struct splice_pipe_desc
*spd
,
2315 struct pipe_inode_info
*pipe
, struct page
*page
,
2316 unsigned int *len
, unsigned int offset
,
2320 if (unlikely(spd
->nr_pages
== MAX_SKB_FRAGS
))
2324 page
= linear_to_page(page
, len
, &offset
, sk
);
2328 if (spd_can_coalesce(spd
, page
, offset
)) {
2329 spd
->partial
[spd
->nr_pages
- 1].len
+= *len
;
2333 spd
->pages
[spd
->nr_pages
] = page
;
2334 spd
->partial
[spd
->nr_pages
].len
= *len
;
2335 spd
->partial
[spd
->nr_pages
].offset
= offset
;
2341 static bool __splice_segment(struct page
*page
, unsigned int poff
,
2342 unsigned int plen
, unsigned int *off
,
2344 struct splice_pipe_desc
*spd
, bool linear
,
2346 struct pipe_inode_info
*pipe
)
2351 /* skip this segment if already processed */
2357 /* ignore any bits we already processed */
2363 unsigned int flen
= min(*len
, plen
);
2365 if (spd_fill_page(spd
, pipe
, page
, &flen
, poff
,
2371 } while (*len
&& plen
);
2377 * Map linear and fragment data from the skb to spd. It reports true if the
2378 * pipe is full or if we already spliced the requested length.
2380 static bool __skb_splice_bits(struct sk_buff
*skb
, struct pipe_inode_info
*pipe
,
2381 unsigned int *offset
, unsigned int *len
,
2382 struct splice_pipe_desc
*spd
, struct sock
*sk
)
2385 struct sk_buff
*iter
;
2387 /* map the linear part :
2388 * If skb->head_frag is set, this 'linear' part is backed by a
2389 * fragment, and if the head is not shared with any clones then
2390 * we can avoid a copy since we own the head portion of this page.
2392 if (__splice_segment(virt_to_page(skb
->data
),
2393 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
2396 skb_head_is_locked(skb
),
2401 * then map the fragments
2403 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
2404 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
2406 if (__splice_segment(skb_frag_page(f
),
2407 skb_frag_off(f
), skb_frag_size(f
),
2408 offset
, len
, spd
, false, sk
, pipe
))
2412 skb_walk_frags(skb
, iter
) {
2413 if (*offset
>= iter
->len
) {
2414 *offset
-= iter
->len
;
2417 /* __skb_splice_bits() only fails if the output has no room
2418 * left, so no point in going over the frag_list for the error
2421 if (__skb_splice_bits(iter
, pipe
, offset
, len
, spd
, sk
))
2429 * Map data from the skb to a pipe. Should handle both the linear part,
2430 * the fragments, and the frag list.
2432 int skb_splice_bits(struct sk_buff
*skb
, struct sock
*sk
, unsigned int offset
,
2433 struct pipe_inode_info
*pipe
, unsigned int tlen
,
2436 struct partial_page partial
[MAX_SKB_FRAGS
];
2437 struct page
*pages
[MAX_SKB_FRAGS
];
2438 struct splice_pipe_desc spd
= {
2441 .nr_pages_max
= MAX_SKB_FRAGS
,
2442 .ops
= &nosteal_pipe_buf_ops
,
2443 .spd_release
= sock_spd_release
,
2447 __skb_splice_bits(skb
, pipe
, &offset
, &tlen
, &spd
, sk
);
2450 ret
= splice_to_pipe(pipe
, &spd
);
2454 EXPORT_SYMBOL_GPL(skb_splice_bits
);
2456 /* Send skb data on a socket. Socket must be locked. */
2457 int skb_send_sock_locked(struct sock
*sk
, struct sk_buff
*skb
, int offset
,
2460 unsigned int orig_len
= len
;
2461 struct sk_buff
*head
= skb
;
2462 unsigned short fragidx
;
2467 /* Deal with head data */
2468 while (offset
< skb_headlen(skb
) && len
) {
2472 slen
= min_t(int, len
, skb_headlen(skb
) - offset
);
2473 kv
.iov_base
= skb
->data
+ offset
;
2475 memset(&msg
, 0, sizeof(msg
));
2476 msg
.msg_flags
= MSG_DONTWAIT
;
2478 ret
= kernel_sendmsg_locked(sk
, &msg
, &kv
, 1, slen
);
2486 /* All the data was skb head? */
2490 /* Make offset relative to start of frags */
2491 offset
-= skb_headlen(skb
);
2493 /* Find where we are in frag list */
2494 for (fragidx
= 0; fragidx
< skb_shinfo(skb
)->nr_frags
; fragidx
++) {
2495 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[fragidx
];
2497 if (offset
< skb_frag_size(frag
))
2500 offset
-= skb_frag_size(frag
);
2503 for (; len
&& fragidx
< skb_shinfo(skb
)->nr_frags
; fragidx
++) {
2504 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[fragidx
];
2506 slen
= min_t(size_t, len
, skb_frag_size(frag
) - offset
);
2509 ret
= kernel_sendpage_locked(sk
, skb_frag_page(frag
),
2510 skb_frag_off(frag
) + offset
,
2511 slen
, MSG_DONTWAIT
);
2524 /* Process any frag lists */
2527 if (skb_has_frag_list(skb
)) {
2528 skb
= skb_shinfo(skb
)->frag_list
;
2531 } else if (skb
->next
) {
2538 return orig_len
- len
;
2541 return orig_len
== len
? ret
: orig_len
- len
;
2543 EXPORT_SYMBOL_GPL(skb_send_sock_locked
);
2546 * skb_store_bits - store bits from kernel buffer to skb
2547 * @skb: destination buffer
2548 * @offset: offset in destination
2549 * @from: source buffer
2550 * @len: number of bytes to copy
2552 * Copy the specified number of bytes from the source buffer to the
2553 * destination skb. This function handles all the messy bits of
2554 * traversing fragment lists and such.
2557 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
2559 int start
= skb_headlen(skb
);
2560 struct sk_buff
*frag_iter
;
2563 if (offset
> (int)skb
->len
- len
)
2566 if ((copy
= start
- offset
) > 0) {
2569 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
2570 if ((len
-= copy
) == 0)
2576 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2577 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2580 WARN_ON(start
> offset
+ len
);
2582 end
= start
+ skb_frag_size(frag
);
2583 if ((copy
= end
- offset
) > 0) {
2584 u32 p_off
, p_len
, copied
;
2591 skb_frag_foreach_page(frag
,
2592 skb_frag_off(frag
) + offset
- start
,
2593 copy
, p
, p_off
, p_len
, copied
) {
2594 vaddr
= kmap_atomic(p
);
2595 memcpy(vaddr
+ p_off
, from
+ copied
, p_len
);
2596 kunmap_atomic(vaddr
);
2599 if ((len
-= copy
) == 0)
2607 skb_walk_frags(skb
, frag_iter
) {
2610 WARN_ON(start
> offset
+ len
);
2612 end
= start
+ frag_iter
->len
;
2613 if ((copy
= end
- offset
) > 0) {
2616 if (skb_store_bits(frag_iter
, offset
- start
,
2619 if ((len
-= copy
) == 0)
2632 EXPORT_SYMBOL(skb_store_bits
);
2634 /* Checksum skb data. */
2635 __wsum
__skb_checksum(const struct sk_buff
*skb
, int offset
, int len
,
2636 __wsum csum
, const struct skb_checksum_ops
*ops
)
2638 int start
= skb_headlen(skb
);
2639 int i
, copy
= start
- offset
;
2640 struct sk_buff
*frag_iter
;
2643 /* Checksum header. */
2647 csum
= INDIRECT_CALL_1(ops
->update
, csum_partial_ext
,
2648 skb
->data
+ offset
, copy
, csum
);
2649 if ((len
-= copy
) == 0)
2655 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2657 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2659 WARN_ON(start
> offset
+ len
);
2661 end
= start
+ skb_frag_size(frag
);
2662 if ((copy
= end
- offset
) > 0) {
2663 u32 p_off
, p_len
, copied
;
2671 skb_frag_foreach_page(frag
,
2672 skb_frag_off(frag
) + offset
- start
,
2673 copy
, p
, p_off
, p_len
, copied
) {
2674 vaddr
= kmap_atomic(p
);
2675 csum2
= INDIRECT_CALL_1(ops
->update
,
2677 vaddr
+ p_off
, p_len
, 0);
2678 kunmap_atomic(vaddr
);
2679 csum
= INDIRECT_CALL_1(ops
->combine
,
2680 csum_block_add_ext
, csum
,
2692 skb_walk_frags(skb
, frag_iter
) {
2695 WARN_ON(start
> offset
+ len
);
2697 end
= start
+ frag_iter
->len
;
2698 if ((copy
= end
- offset
) > 0) {
2702 csum2
= __skb_checksum(frag_iter
, offset
- start
,
2704 csum
= INDIRECT_CALL_1(ops
->combine
, csum_block_add_ext
,
2705 csum
, csum2
, pos
, copy
);
2706 if ((len
-= copy
) == 0)
2717 EXPORT_SYMBOL(__skb_checksum
);
2719 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
2720 int len
, __wsum csum
)
2722 const struct skb_checksum_ops ops
= {
2723 .update
= csum_partial_ext
,
2724 .combine
= csum_block_add_ext
,
2727 return __skb_checksum(skb
, offset
, len
, csum
, &ops
);
2729 EXPORT_SYMBOL(skb_checksum
);
2731 /* Both of above in one bottle. */
2733 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
2736 int start
= skb_headlen(skb
);
2737 int i
, copy
= start
- offset
;
2738 struct sk_buff
*frag_iter
;
2746 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
2748 if ((len
-= copy
) == 0)
2755 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2758 WARN_ON(start
> offset
+ len
);
2760 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2761 if ((copy
= end
- offset
) > 0) {
2762 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2763 u32 p_off
, p_len
, copied
;
2771 skb_frag_foreach_page(frag
,
2772 skb_frag_off(frag
) + offset
- start
,
2773 copy
, p
, p_off
, p_len
, copied
) {
2774 vaddr
= kmap_atomic(p
);
2775 csum2
= csum_partial_copy_nocheck(vaddr
+ p_off
,
2778 kunmap_atomic(vaddr
);
2779 csum
= csum_block_add(csum
, csum2
, pos
);
2791 skb_walk_frags(skb
, frag_iter
) {
2795 WARN_ON(start
> offset
+ len
);
2797 end
= start
+ frag_iter
->len
;
2798 if ((copy
= end
- offset
) > 0) {
2801 csum2
= skb_copy_and_csum_bits(frag_iter
,
2804 csum
= csum_block_add(csum
, csum2
, pos
);
2805 if ((len
-= copy
) == 0)
2816 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
2818 __sum16
__skb_checksum_complete_head(struct sk_buff
*skb
, int len
)
2822 sum
= csum_fold(skb_checksum(skb
, 0, len
, skb
->csum
));
2823 /* See comments in __skb_checksum_complete(). */
2825 if (unlikely(skb
->ip_summed
== CHECKSUM_COMPLETE
) &&
2826 !skb
->csum_complete_sw
)
2827 netdev_rx_csum_fault(skb
->dev
, skb
);
2829 if (!skb_shared(skb
))
2830 skb
->csum_valid
= !sum
;
2833 EXPORT_SYMBOL(__skb_checksum_complete_head
);
2835 /* This function assumes skb->csum already holds pseudo header's checksum,
2836 * which has been changed from the hardware checksum, for example, by
2837 * __skb_checksum_validate_complete(). And, the original skb->csum must
2838 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2840 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2841 * zero. The new checksum is stored back into skb->csum unless the skb is
2844 __sum16
__skb_checksum_complete(struct sk_buff
*skb
)
2849 csum
= skb_checksum(skb
, 0, skb
->len
, 0);
2851 sum
= csum_fold(csum_add(skb
->csum
, csum
));
2852 /* This check is inverted, because we already knew the hardware
2853 * checksum is invalid before calling this function. So, if the
2854 * re-computed checksum is valid instead, then we have a mismatch
2855 * between the original skb->csum and skb_checksum(). This means either
2856 * the original hardware checksum is incorrect or we screw up skb->csum
2857 * when moving skb->data around.
2860 if (unlikely(skb
->ip_summed
== CHECKSUM_COMPLETE
) &&
2861 !skb
->csum_complete_sw
)
2862 netdev_rx_csum_fault(skb
->dev
, skb
);
2865 if (!skb_shared(skb
)) {
2866 /* Save full packet checksum */
2868 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2869 skb
->csum_complete_sw
= 1;
2870 skb
->csum_valid
= !sum
;
2875 EXPORT_SYMBOL(__skb_checksum_complete
);
2877 static __wsum
warn_crc32c_csum_update(const void *buff
, int len
, __wsum sum
)
2879 net_warn_ratelimited(
2880 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2885 static __wsum
warn_crc32c_csum_combine(__wsum csum
, __wsum csum2
,
2886 int offset
, int len
)
2888 net_warn_ratelimited(
2889 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2894 static const struct skb_checksum_ops default_crc32c_ops
= {
2895 .update
= warn_crc32c_csum_update
,
2896 .combine
= warn_crc32c_csum_combine
,
2899 const struct skb_checksum_ops
*crc32c_csum_stub __read_mostly
=
2900 &default_crc32c_ops
;
2901 EXPORT_SYMBOL(crc32c_csum_stub
);
2904 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2905 * @from: source buffer
2907 * Calculates the amount of linear headroom needed in the 'to' skb passed
2908 * into skb_zerocopy().
2911 skb_zerocopy_headlen(const struct sk_buff
*from
)
2913 unsigned int hlen
= 0;
2915 if (!from
->head_frag
||
2916 skb_headlen(from
) < L1_CACHE_BYTES
||
2917 skb_shinfo(from
)->nr_frags
>= MAX_SKB_FRAGS
)
2918 hlen
= skb_headlen(from
);
2920 if (skb_has_frag_list(from
))
2925 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen
);
2928 * skb_zerocopy - Zero copy skb to skb
2929 * @to: destination buffer
2930 * @from: source buffer
2931 * @len: number of bytes to copy from source buffer
2932 * @hlen: size of linear headroom in destination buffer
2934 * Copies up to `len` bytes from `from` to `to` by creating references
2935 * to the frags in the source buffer.
2937 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2938 * headroom in the `to` buffer.
2941 * 0: everything is OK
2942 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2943 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2946 skb_zerocopy(struct sk_buff
*to
, struct sk_buff
*from
, int len
, int hlen
)
2949 int plen
= 0; /* length of skb->head fragment */
2952 unsigned int offset
;
2954 BUG_ON(!from
->head_frag
&& !hlen
);
2956 /* dont bother with small payloads */
2957 if (len
<= skb_tailroom(to
))
2958 return skb_copy_bits(from
, 0, skb_put(to
, len
), len
);
2961 ret
= skb_copy_bits(from
, 0, skb_put(to
, hlen
), hlen
);
2966 plen
= min_t(int, skb_headlen(from
), len
);
2968 page
= virt_to_head_page(from
->head
);
2969 offset
= from
->data
- (unsigned char *)page_address(page
);
2970 __skb_fill_page_desc(to
, 0, page
, offset
, plen
);
2977 to
->truesize
+= len
+ plen
;
2978 to
->len
+= len
+ plen
;
2979 to
->data_len
+= len
+ plen
;
2981 if (unlikely(skb_orphan_frags(from
, GFP_ATOMIC
))) {
2985 skb_zerocopy_clone(to
, from
, GFP_ATOMIC
);
2987 for (i
= 0; i
< skb_shinfo(from
)->nr_frags
; i
++) {
2992 skb_shinfo(to
)->frags
[j
] = skb_shinfo(from
)->frags
[i
];
2993 size
= min_t(int, skb_frag_size(&skb_shinfo(to
)->frags
[j
]),
2995 skb_frag_size_set(&skb_shinfo(to
)->frags
[j
], size
);
2997 skb_frag_ref(to
, j
);
3000 skb_shinfo(to
)->nr_frags
= j
;
3004 EXPORT_SYMBOL_GPL(skb_zerocopy
);
3006 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
3011 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
3012 csstart
= skb_checksum_start_offset(skb
);
3014 csstart
= skb_headlen(skb
);
3016 BUG_ON(csstart
> skb_headlen(skb
));
3018 skb_copy_from_linear_data(skb
, to
, csstart
);
3021 if (csstart
!= skb
->len
)
3022 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
3023 skb
->len
- csstart
);
3025 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
3026 long csstuff
= csstart
+ skb
->csum_offset
;
3028 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
3031 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
3034 * skb_dequeue - remove from the head of the queue
3035 * @list: list to dequeue from
3037 * Remove the head of the list. The list lock is taken so the function
3038 * may be used safely with other locking list functions. The head item is
3039 * returned or %NULL if the list is empty.
3042 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
3044 unsigned long flags
;
3045 struct sk_buff
*result
;
3047 spin_lock_irqsave(&list
->lock
, flags
);
3048 result
= __skb_dequeue(list
);
3049 spin_unlock_irqrestore(&list
->lock
, flags
);
3052 EXPORT_SYMBOL(skb_dequeue
);
3055 * skb_dequeue_tail - remove from the tail of the queue
3056 * @list: list to dequeue from
3058 * Remove the tail of the list. The list lock is taken so the function
3059 * may be used safely with other locking list functions. The tail item is
3060 * returned or %NULL if the list is empty.
3062 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
3064 unsigned long flags
;
3065 struct sk_buff
*result
;
3067 spin_lock_irqsave(&list
->lock
, flags
);
3068 result
= __skb_dequeue_tail(list
);
3069 spin_unlock_irqrestore(&list
->lock
, flags
);
3072 EXPORT_SYMBOL(skb_dequeue_tail
);
3075 * skb_queue_purge - empty a list
3076 * @list: list to empty
3078 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3079 * the list and one reference dropped. This function takes the list
3080 * lock and is atomic with respect to other list locking functions.
3082 void skb_queue_purge(struct sk_buff_head
*list
)
3084 struct sk_buff
*skb
;
3085 while ((skb
= skb_dequeue(list
)) != NULL
)
3088 EXPORT_SYMBOL(skb_queue_purge
);
3091 * skb_rbtree_purge - empty a skb rbtree
3092 * @root: root of the rbtree to empty
3093 * Return value: the sum of truesizes of all purged skbs.
3095 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3096 * the list and one reference dropped. This function does not take
3097 * any lock. Synchronization should be handled by the caller (e.g., TCP
3098 * out-of-order queue is protected by the socket lock).
3100 unsigned int skb_rbtree_purge(struct rb_root
*root
)
3102 struct rb_node
*p
= rb_first(root
);
3103 unsigned int sum
= 0;
3106 struct sk_buff
*skb
= rb_entry(p
, struct sk_buff
, rbnode
);
3109 rb_erase(&skb
->rbnode
, root
);
3110 sum
+= skb
->truesize
;
3117 * skb_queue_head - queue a buffer at the list head
3118 * @list: list to use
3119 * @newsk: buffer to queue
3121 * Queue a buffer at the start of the list. This function takes the
3122 * list lock and can be used safely with other locking &sk_buff functions
3125 * A buffer cannot be placed on two lists at the same time.
3127 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
3129 unsigned long flags
;
3131 spin_lock_irqsave(&list
->lock
, flags
);
3132 __skb_queue_head(list
, newsk
);
3133 spin_unlock_irqrestore(&list
->lock
, flags
);
3135 EXPORT_SYMBOL(skb_queue_head
);
3138 * skb_queue_tail - queue a buffer at the list tail
3139 * @list: list to use
3140 * @newsk: buffer to queue
3142 * Queue a buffer at the tail of the list. This function takes the
3143 * list lock and can be used safely with other locking &sk_buff functions
3146 * A buffer cannot be placed on two lists at the same time.
3148 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
3150 unsigned long flags
;
3152 spin_lock_irqsave(&list
->lock
, flags
);
3153 __skb_queue_tail(list
, newsk
);
3154 spin_unlock_irqrestore(&list
->lock
, flags
);
3156 EXPORT_SYMBOL(skb_queue_tail
);
3159 * skb_unlink - remove a buffer from a list
3160 * @skb: buffer to remove
3161 * @list: list to use
3163 * Remove a packet from a list. The list locks are taken and this
3164 * function is atomic with respect to other list locked calls
3166 * You must know what list the SKB is on.
3168 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
3170 unsigned long flags
;
3172 spin_lock_irqsave(&list
->lock
, flags
);
3173 __skb_unlink(skb
, list
);
3174 spin_unlock_irqrestore(&list
->lock
, flags
);
3176 EXPORT_SYMBOL(skb_unlink
);
3179 * skb_append - append a buffer
3180 * @old: buffer to insert after
3181 * @newsk: buffer to insert
3182 * @list: list to use
3184 * Place a packet after a given packet in a list. The list locks are taken
3185 * and this function is atomic with respect to other list locked calls.
3186 * A buffer cannot be placed on two lists at the same time.
3188 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
3190 unsigned long flags
;
3192 spin_lock_irqsave(&list
->lock
, flags
);
3193 __skb_queue_after(list
, old
, newsk
);
3194 spin_unlock_irqrestore(&list
->lock
, flags
);
3196 EXPORT_SYMBOL(skb_append
);
3198 static inline void skb_split_inside_header(struct sk_buff
*skb
,
3199 struct sk_buff
* skb1
,
3200 const u32 len
, const int pos
)
3204 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
3206 /* And move data appendix as is. */
3207 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
3208 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
3210 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
3211 skb_shinfo(skb
)->nr_frags
= 0;
3212 skb1
->data_len
= skb
->data_len
;
3213 skb1
->len
+= skb1
->data_len
;
3216 skb_set_tail_pointer(skb
, len
);
3219 static inline void skb_split_no_header(struct sk_buff
*skb
,
3220 struct sk_buff
* skb1
,
3221 const u32 len
, int pos
)
3224 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
3226 skb_shinfo(skb
)->nr_frags
= 0;
3227 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
3229 skb
->data_len
= len
- pos
;
3231 for (i
= 0; i
< nfrags
; i
++) {
3232 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
3234 if (pos
+ size
> len
) {
3235 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
3239 * We have two variants in this case:
3240 * 1. Move all the frag to the second
3241 * part, if it is possible. F.e.
3242 * this approach is mandatory for TUX,
3243 * where splitting is expensive.
3244 * 2. Split is accurately. We make this.
3246 skb_frag_ref(skb
, i
);
3247 skb_frag_off_add(&skb_shinfo(skb1
)->frags
[0], len
- pos
);
3248 skb_frag_size_sub(&skb_shinfo(skb1
)->frags
[0], len
- pos
);
3249 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
], len
- pos
);
3250 skb_shinfo(skb
)->nr_frags
++;
3254 skb_shinfo(skb
)->nr_frags
++;
3257 skb_shinfo(skb1
)->nr_frags
= k
;
3261 * skb_split - Split fragmented skb to two parts at length len.
3262 * @skb: the buffer to split
3263 * @skb1: the buffer to receive the second part
3264 * @len: new length for skb
3266 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
3268 int pos
= skb_headlen(skb
);
3270 skb_shinfo(skb1
)->tx_flags
|= skb_shinfo(skb
)->tx_flags
&
3272 skb_zerocopy_clone(skb1
, skb
, 0);
3273 if (len
< pos
) /* Split line is inside header. */
3274 skb_split_inside_header(skb
, skb1
, len
, pos
);
3275 else /* Second chunk has no header, nothing to copy. */
3276 skb_split_no_header(skb
, skb1
, len
, pos
);
3278 EXPORT_SYMBOL(skb_split
);
3280 /* Shifting from/to a cloned skb is a no-go.
3282 * Caller cannot keep skb_shinfo related pointers past calling here!
3284 static int skb_prepare_for_shift(struct sk_buff
*skb
)
3286 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
3290 * skb_shift - Shifts paged data partially from skb to another
3291 * @tgt: buffer into which tail data gets added
3292 * @skb: buffer from which the paged data comes from
3293 * @shiftlen: shift up to this many bytes
3295 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3296 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3297 * It's up to caller to free skb if everything was shifted.
3299 * If @tgt runs out of frags, the whole operation is aborted.
3301 * Skb cannot include anything else but paged data while tgt is allowed
3302 * to have non-paged data as well.
3304 * TODO: full sized shift could be optimized but that would need
3305 * specialized skb free'er to handle frags without up-to-date nr_frags.
3307 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
3309 int from
, to
, merge
, todo
;
3310 skb_frag_t
*fragfrom
, *fragto
;
3312 BUG_ON(shiftlen
> skb
->len
);
3314 if (skb_headlen(skb
))
3316 if (skb_zcopy(tgt
) || skb_zcopy(skb
))
3321 to
= skb_shinfo(tgt
)->nr_frags
;
3322 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
3324 /* Actual merge is delayed until the point when we know we can
3325 * commit all, so that we don't have to undo partial changes
3328 !skb_can_coalesce(tgt
, to
, skb_frag_page(fragfrom
),
3329 skb_frag_off(fragfrom
))) {
3334 todo
-= skb_frag_size(fragfrom
);
3336 if (skb_prepare_for_shift(skb
) ||
3337 skb_prepare_for_shift(tgt
))
3340 /* All previous frag pointers might be stale! */
3341 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
3342 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
3344 skb_frag_size_add(fragto
, shiftlen
);
3345 skb_frag_size_sub(fragfrom
, shiftlen
);
3346 skb_frag_off_add(fragfrom
, shiftlen
);
3354 /* Skip full, not-fitting skb to avoid expensive operations */
3355 if ((shiftlen
== skb
->len
) &&
3356 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
3359 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
3362 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
3363 if (to
== MAX_SKB_FRAGS
)
3366 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
3367 fragto
= &skb_shinfo(tgt
)->frags
[to
];
3369 if (todo
>= skb_frag_size(fragfrom
)) {
3370 *fragto
= *fragfrom
;
3371 todo
-= skb_frag_size(fragfrom
);
3376 __skb_frag_ref(fragfrom
);
3377 skb_frag_page_copy(fragto
, fragfrom
);
3378 skb_frag_off_copy(fragto
, fragfrom
);
3379 skb_frag_size_set(fragto
, todo
);
3381 skb_frag_off_add(fragfrom
, todo
);
3382 skb_frag_size_sub(fragfrom
, todo
);
3390 /* Ready to "commit" this state change to tgt */
3391 skb_shinfo(tgt
)->nr_frags
= to
;
3394 fragfrom
= &skb_shinfo(skb
)->frags
[0];
3395 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
3397 skb_frag_size_add(fragto
, skb_frag_size(fragfrom
));
3398 __skb_frag_unref(fragfrom
);
3401 /* Reposition in the original skb */
3403 while (from
< skb_shinfo(skb
)->nr_frags
)
3404 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
3405 skb_shinfo(skb
)->nr_frags
= to
;
3407 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
3410 /* Most likely the tgt won't ever need its checksum anymore, skb on
3411 * the other hand might need it if it needs to be resent
3413 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
3414 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3416 /* Yak, is it really working this way? Some helper please? */
3417 skb
->len
-= shiftlen
;
3418 skb
->data_len
-= shiftlen
;
3419 skb
->truesize
-= shiftlen
;
3420 tgt
->len
+= shiftlen
;
3421 tgt
->data_len
+= shiftlen
;
3422 tgt
->truesize
+= shiftlen
;
3428 * skb_prepare_seq_read - Prepare a sequential read of skb data
3429 * @skb: the buffer to read
3430 * @from: lower offset of data to be read
3431 * @to: upper offset of data to be read
3432 * @st: state variable
3434 * Initializes the specified state variable. Must be called before
3435 * invoking skb_seq_read() for the first time.
3437 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
3438 unsigned int to
, struct skb_seq_state
*st
)
3440 st
->lower_offset
= from
;
3441 st
->upper_offset
= to
;
3442 st
->root_skb
= st
->cur_skb
= skb
;
3443 st
->frag_idx
= st
->stepped_offset
= 0;
3444 st
->frag_data
= NULL
;
3446 EXPORT_SYMBOL(skb_prepare_seq_read
);
3449 * skb_seq_read - Sequentially read skb data
3450 * @consumed: number of bytes consumed by the caller so far
3451 * @data: destination pointer for data to be returned
3452 * @st: state variable
3454 * Reads a block of skb data at @consumed relative to the
3455 * lower offset specified to skb_prepare_seq_read(). Assigns
3456 * the head of the data block to @data and returns the length
3457 * of the block or 0 if the end of the skb data or the upper
3458 * offset has been reached.
3460 * The caller is not required to consume all of the data
3461 * returned, i.e. @consumed is typically set to the number
3462 * of bytes already consumed and the next call to
3463 * skb_seq_read() will return the remaining part of the block.
3465 * Note 1: The size of each block of data returned can be arbitrary,
3466 * this limitation is the cost for zerocopy sequential
3467 * reads of potentially non linear data.
3469 * Note 2: Fragment lists within fragments are not implemented
3470 * at the moment, state->root_skb could be replaced with
3471 * a stack for this purpose.
3473 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
3474 struct skb_seq_state
*st
)
3476 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
3479 if (unlikely(abs_offset
>= st
->upper_offset
)) {
3480 if (st
->frag_data
) {
3481 kunmap_atomic(st
->frag_data
);
3482 st
->frag_data
= NULL
;
3488 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
3490 if (abs_offset
< block_limit
&& !st
->frag_data
) {
3491 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
3492 return block_limit
- abs_offset
;
3495 if (st
->frag_idx
== 0 && !st
->frag_data
)
3496 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
3498 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
3499 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
3500 block_limit
= skb_frag_size(frag
) + st
->stepped_offset
;
3502 if (abs_offset
< block_limit
) {
3504 st
->frag_data
= kmap_atomic(skb_frag_page(frag
));
3506 *data
= (u8
*) st
->frag_data
+ skb_frag_off(frag
) +
3507 (abs_offset
- st
->stepped_offset
);
3509 return block_limit
- abs_offset
;
3512 if (st
->frag_data
) {
3513 kunmap_atomic(st
->frag_data
);
3514 st
->frag_data
= NULL
;
3518 st
->stepped_offset
+= skb_frag_size(frag
);
3521 if (st
->frag_data
) {
3522 kunmap_atomic(st
->frag_data
);
3523 st
->frag_data
= NULL
;
3526 if (st
->root_skb
== st
->cur_skb
&& skb_has_frag_list(st
->root_skb
)) {
3527 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
3530 } else if (st
->cur_skb
->next
) {
3531 st
->cur_skb
= st
->cur_skb
->next
;
3538 EXPORT_SYMBOL(skb_seq_read
);
3541 * skb_abort_seq_read - Abort a sequential read of skb data
3542 * @st: state variable
3544 * Must be called if skb_seq_read() was not called until it
3547 void skb_abort_seq_read(struct skb_seq_state
*st
)
3550 kunmap_atomic(st
->frag_data
);
3552 EXPORT_SYMBOL(skb_abort_seq_read
);
3554 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3556 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
3557 struct ts_config
*conf
,
3558 struct ts_state
*state
)
3560 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
3563 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
3565 skb_abort_seq_read(TS_SKB_CB(state
));
3569 * skb_find_text - Find a text pattern in skb data
3570 * @skb: the buffer to look in
3571 * @from: search offset
3573 * @config: textsearch configuration
3575 * Finds a pattern in the skb data according to the specified
3576 * textsearch configuration. Use textsearch_next() to retrieve
3577 * subsequent occurrences of the pattern. Returns the offset
3578 * to the first occurrence or UINT_MAX if no match was found.
3580 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
3581 unsigned int to
, struct ts_config
*config
)
3583 struct ts_state state
;
3586 config
->get_next_block
= skb_ts_get_next_block
;
3587 config
->finish
= skb_ts_finish
;
3589 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(&state
));
3591 ret
= textsearch_find(config
, &state
);
3592 return (ret
<= to
- from
? ret
: UINT_MAX
);
3594 EXPORT_SYMBOL(skb_find_text
);
3596 int skb_append_pagefrags(struct sk_buff
*skb
, struct page
*page
,
3597 int offset
, size_t size
)
3599 int i
= skb_shinfo(skb
)->nr_frags
;
3601 if (skb_can_coalesce(skb
, i
, page
, offset
)) {
3602 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], size
);
3603 } else if (i
< MAX_SKB_FRAGS
) {
3605 skb_fill_page_desc(skb
, i
, page
, offset
, size
);
3612 EXPORT_SYMBOL_GPL(skb_append_pagefrags
);
3615 * skb_pull_rcsum - pull skb and update receive checksum
3616 * @skb: buffer to update
3617 * @len: length of data pulled
3619 * This function performs an skb_pull on the packet and updates
3620 * the CHECKSUM_COMPLETE checksum. It should be used on
3621 * receive path processing instead of skb_pull unless you know
3622 * that the checksum difference is zero (e.g., a valid IP header)
3623 * or you are setting ip_summed to CHECKSUM_NONE.
3625 void *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
3627 unsigned char *data
= skb
->data
;
3629 BUG_ON(len
> skb
->len
);
3630 __skb_pull(skb
, len
);
3631 skb_postpull_rcsum(skb
, data
, len
);
3634 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
3636 static inline skb_frag_t
skb_head_frag_to_page_desc(struct sk_buff
*frag_skb
)
3638 skb_frag_t head_frag
;
3641 page
= virt_to_head_page(frag_skb
->head
);
3642 __skb_frag_set_page(&head_frag
, page
);
3643 skb_frag_off_set(&head_frag
, frag_skb
->data
-
3644 (unsigned char *)page_address(page
));
3645 skb_frag_size_set(&head_frag
, skb_headlen(frag_skb
));
3649 struct sk_buff
*skb_segment_list(struct sk_buff
*skb
,
3650 netdev_features_t features
,
3651 unsigned int offset
)
3653 struct sk_buff
*list_skb
= skb_shinfo(skb
)->frag_list
;
3654 unsigned int tnl_hlen
= skb_tnl_header_len(skb
);
3655 unsigned int delta_truesize
= 0;
3656 unsigned int delta_len
= 0;
3657 struct sk_buff
*tail
= NULL
;
3658 struct sk_buff
*nskb
;
3660 skb_push(skb
, -skb_network_offset(skb
) + offset
);
3662 skb_shinfo(skb
)->frag_list
= NULL
;
3666 list_skb
= list_skb
->next
;
3675 delta_len
+= nskb
->len
;
3676 delta_truesize
+= nskb
->truesize
;
3678 skb_push(nskb
, -skb_network_offset(nskb
) + offset
);
3680 skb_release_head_state(nskb
);
3681 __copy_skb_header(nskb
, skb
);
3683 skb_headers_offset_update(nskb
, skb_headroom(nskb
) - skb_headroom(skb
));
3684 skb_copy_from_linear_data_offset(skb
, -tnl_hlen
,
3685 nskb
->data
- tnl_hlen
,
3688 if (skb_needs_linearize(nskb
, features
) &&
3689 __skb_linearize(nskb
))
3694 skb
->truesize
= skb
->truesize
- delta_truesize
;
3695 skb
->data_len
= skb
->data_len
- delta_len
;
3696 skb
->len
= skb
->len
- delta_len
;
3702 if (skb_needs_linearize(skb
, features
) &&
3703 __skb_linearize(skb
))
3711 kfree_skb_list(skb
->next
);
3713 return ERR_PTR(-ENOMEM
);
3715 EXPORT_SYMBOL_GPL(skb_segment_list
);
3717 int skb_gro_receive_list(struct sk_buff
*p
, struct sk_buff
*skb
)
3719 if (unlikely(p
->len
+ skb
->len
>= 65536))
3722 if (NAPI_GRO_CB(p
)->last
== p
)
3723 skb_shinfo(p
)->frag_list
= skb
;
3725 NAPI_GRO_CB(p
)->last
->next
= skb
;
3727 skb_pull(skb
, skb_gro_offset(skb
));
3729 NAPI_GRO_CB(p
)->last
= skb
;
3730 NAPI_GRO_CB(p
)->count
++;
3731 p
->data_len
+= skb
->len
;
3732 p
->truesize
+= skb
->truesize
;
3735 NAPI_GRO_CB(skb
)->same_flow
= 1;
3741 * skb_segment - Perform protocol segmentation on skb.
3742 * @head_skb: buffer to segment
3743 * @features: features for the output path (see dev->features)
3745 * This function performs segmentation on the given skb. It returns
3746 * a pointer to the first in a list of new skbs for the segments.
3747 * In case of error it returns ERR_PTR(err).
3749 struct sk_buff
*skb_segment(struct sk_buff
*head_skb
,
3750 netdev_features_t features
)
3752 struct sk_buff
*segs
= NULL
;
3753 struct sk_buff
*tail
= NULL
;
3754 struct sk_buff
*list_skb
= skb_shinfo(head_skb
)->frag_list
;
3755 skb_frag_t
*frag
= skb_shinfo(head_skb
)->frags
;
3756 unsigned int mss
= skb_shinfo(head_skb
)->gso_size
;
3757 unsigned int doffset
= head_skb
->data
- skb_mac_header(head_skb
);
3758 struct sk_buff
*frag_skb
= head_skb
;
3759 unsigned int offset
= doffset
;
3760 unsigned int tnl_hlen
= skb_tnl_header_len(head_skb
);
3761 unsigned int partial_segs
= 0;
3762 unsigned int headroom
;
3763 unsigned int len
= head_skb
->len
;
3766 int nfrags
= skb_shinfo(head_skb
)->nr_frags
;
3771 if (list_skb
&& !list_skb
->head_frag
&& skb_headlen(list_skb
) &&
3772 (skb_shinfo(head_skb
)->gso_type
& SKB_GSO_DODGY
)) {
3773 /* gso_size is untrusted, and we have a frag_list with a linear
3774 * non head_frag head.
3776 * (we assume checking the first list_skb member suffices;
3777 * i.e if either of the list_skb members have non head_frag
3778 * head, then the first one has too).
3780 * If head_skb's headlen does not fit requested gso_size, it
3781 * means that the frag_list members do NOT terminate on exact
3782 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3783 * sharing. Therefore we must fallback to copying the frag_list
3784 * skbs; we do so by disabling SG.
3786 if (mss
!= GSO_BY_FRAGS
&& mss
!= skb_headlen(head_skb
))
3787 features
&= ~NETIF_F_SG
;
3790 __skb_push(head_skb
, doffset
);
3791 proto
= skb_network_protocol(head_skb
, NULL
);
3792 if (unlikely(!proto
))
3793 return ERR_PTR(-EINVAL
);
3795 sg
= !!(features
& NETIF_F_SG
);
3796 csum
= !!can_checksum_protocol(features
, proto
);
3798 if (sg
&& csum
&& (mss
!= GSO_BY_FRAGS
)) {
3799 if (!(features
& NETIF_F_GSO_PARTIAL
)) {
3800 struct sk_buff
*iter
;
3801 unsigned int frag_len
;
3804 !net_gso_ok(features
, skb_shinfo(head_skb
)->gso_type
))
3807 /* If we get here then all the required
3808 * GSO features except frag_list are supported.
3809 * Try to split the SKB to multiple GSO SKBs
3810 * with no frag_list.
3811 * Currently we can do that only when the buffers don't
3812 * have a linear part and all the buffers except
3813 * the last are of the same length.
3815 frag_len
= list_skb
->len
;
3816 skb_walk_frags(head_skb
, iter
) {
3817 if (frag_len
!= iter
->len
&& iter
->next
)
3819 if (skb_headlen(iter
) && !iter
->head_frag
)
3825 if (len
!= frag_len
)
3829 /* GSO partial only requires that we trim off any excess that
3830 * doesn't fit into an MSS sized block, so take care of that
3833 partial_segs
= len
/ mss
;
3834 if (partial_segs
> 1)
3835 mss
*= partial_segs
;
3841 headroom
= skb_headroom(head_skb
);
3842 pos
= skb_headlen(head_skb
);
3845 struct sk_buff
*nskb
;
3846 skb_frag_t
*nskb_frag
;
3850 if (unlikely(mss
== GSO_BY_FRAGS
)) {
3851 len
= list_skb
->len
;
3853 len
= head_skb
->len
- offset
;
3858 hsize
= skb_headlen(head_skb
) - offset
;
3861 if (hsize
> len
|| !sg
)
3864 if (!hsize
&& i
>= nfrags
&& skb_headlen(list_skb
) &&
3865 (skb_headlen(list_skb
) == len
|| sg
)) {
3866 BUG_ON(skb_headlen(list_skb
) > len
);
3869 nfrags
= skb_shinfo(list_skb
)->nr_frags
;
3870 frag
= skb_shinfo(list_skb
)->frags
;
3871 frag_skb
= list_skb
;
3872 pos
+= skb_headlen(list_skb
);
3874 while (pos
< offset
+ len
) {
3875 BUG_ON(i
>= nfrags
);
3877 size
= skb_frag_size(frag
);
3878 if (pos
+ size
> offset
+ len
)
3886 nskb
= skb_clone(list_skb
, GFP_ATOMIC
);
3887 list_skb
= list_skb
->next
;
3889 if (unlikely(!nskb
))
3892 if (unlikely(pskb_trim(nskb
, len
))) {
3897 hsize
= skb_end_offset(nskb
);
3898 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
3903 nskb
->truesize
+= skb_end_offset(nskb
) - hsize
;
3904 skb_release_head_state(nskb
);
3905 __skb_push(nskb
, doffset
);
3907 nskb
= __alloc_skb(hsize
+ doffset
+ headroom
,
3908 GFP_ATOMIC
, skb_alloc_rx_flag(head_skb
),
3911 if (unlikely(!nskb
))
3914 skb_reserve(nskb
, headroom
);
3915 __skb_put(nskb
, doffset
);
3924 __copy_skb_header(nskb
, head_skb
);
3926 skb_headers_offset_update(nskb
, skb_headroom(nskb
) - headroom
);
3927 skb_reset_mac_len(nskb
);
3929 skb_copy_from_linear_data_offset(head_skb
, -tnl_hlen
,
3930 nskb
->data
- tnl_hlen
,
3931 doffset
+ tnl_hlen
);
3933 if (nskb
->len
== len
+ doffset
)
3934 goto perform_csum_check
;
3938 if (!nskb
->remcsum_offload
)
3939 nskb
->ip_summed
= CHECKSUM_NONE
;
3940 SKB_GSO_CB(nskb
)->csum
=
3941 skb_copy_and_csum_bits(head_skb
, offset
,
3945 SKB_GSO_CB(nskb
)->csum_start
=
3946 skb_headroom(nskb
) + doffset
;
3948 skb_copy_bits(head_skb
, offset
,
3955 nskb_frag
= skb_shinfo(nskb
)->frags
;
3957 skb_copy_from_linear_data_offset(head_skb
, offset
,
3958 skb_put(nskb
, hsize
), hsize
);
3960 skb_shinfo(nskb
)->tx_flags
|= skb_shinfo(head_skb
)->tx_flags
&
3963 if (skb_orphan_frags(frag_skb
, GFP_ATOMIC
) ||
3964 skb_zerocopy_clone(nskb
, frag_skb
, GFP_ATOMIC
))
3967 while (pos
< offset
+ len
) {
3970 nfrags
= skb_shinfo(list_skb
)->nr_frags
;
3971 frag
= skb_shinfo(list_skb
)->frags
;
3972 frag_skb
= list_skb
;
3973 if (!skb_headlen(list_skb
)) {
3976 BUG_ON(!list_skb
->head_frag
);
3978 /* to make room for head_frag. */
3982 if (skb_orphan_frags(frag_skb
, GFP_ATOMIC
) ||
3983 skb_zerocopy_clone(nskb
, frag_skb
,
3987 list_skb
= list_skb
->next
;
3990 if (unlikely(skb_shinfo(nskb
)->nr_frags
>=
3992 net_warn_ratelimited(
3993 "skb_segment: too many frags: %u %u\n",
3999 *nskb_frag
= (i
< 0) ? skb_head_frag_to_page_desc(frag_skb
) : *frag
;
4000 __skb_frag_ref(nskb_frag
);
4001 size
= skb_frag_size(nskb_frag
);
4004 skb_frag_off_add(nskb_frag
, offset
- pos
);
4005 skb_frag_size_sub(nskb_frag
, offset
- pos
);
4008 skb_shinfo(nskb
)->nr_frags
++;
4010 if (pos
+ size
<= offset
+ len
) {
4015 skb_frag_size_sub(nskb_frag
, pos
+ size
- (offset
+ len
));
4023 nskb
->data_len
= len
- hsize
;
4024 nskb
->len
+= nskb
->data_len
;
4025 nskb
->truesize
+= nskb
->data_len
;
4029 if (skb_has_shared_frag(nskb
) &&
4030 __skb_linearize(nskb
))
4033 if (!nskb
->remcsum_offload
)
4034 nskb
->ip_summed
= CHECKSUM_NONE
;
4035 SKB_GSO_CB(nskb
)->csum
=
4036 skb_checksum(nskb
, doffset
,
4037 nskb
->len
- doffset
, 0);
4038 SKB_GSO_CB(nskb
)->csum_start
=
4039 skb_headroom(nskb
) + doffset
;
4041 } while ((offset
+= len
) < head_skb
->len
);
4043 /* Some callers want to get the end of the list.
4044 * Put it in segs->prev to avoid walking the list.
4045 * (see validate_xmit_skb_list() for example)
4050 struct sk_buff
*iter
;
4051 int type
= skb_shinfo(head_skb
)->gso_type
;
4052 unsigned short gso_size
= skb_shinfo(head_skb
)->gso_size
;
4054 /* Update type to add partial and then remove dodgy if set */
4055 type
|= (features
& NETIF_F_GSO_PARTIAL
) / NETIF_F_GSO_PARTIAL
* SKB_GSO_PARTIAL
;
4056 type
&= ~SKB_GSO_DODGY
;
4058 /* Update GSO info and prepare to start updating headers on
4059 * our way back down the stack of protocols.
4061 for (iter
= segs
; iter
; iter
= iter
->next
) {
4062 skb_shinfo(iter
)->gso_size
= gso_size
;
4063 skb_shinfo(iter
)->gso_segs
= partial_segs
;
4064 skb_shinfo(iter
)->gso_type
= type
;
4065 SKB_GSO_CB(iter
)->data_offset
= skb_headroom(iter
) + doffset
;
4068 if (tail
->len
- doffset
<= gso_size
)
4069 skb_shinfo(tail
)->gso_size
= 0;
4070 else if (tail
!= segs
)
4071 skb_shinfo(tail
)->gso_segs
= DIV_ROUND_UP(tail
->len
- doffset
, gso_size
);
4074 /* Following permits correct backpressure, for protocols
4075 * using skb_set_owner_w().
4076 * Idea is to tranfert ownership from head_skb to last segment.
4078 if (head_skb
->destructor
== sock_wfree
) {
4079 swap(tail
->truesize
, head_skb
->truesize
);
4080 swap(tail
->destructor
, head_skb
->destructor
);
4081 swap(tail
->sk
, head_skb
->sk
);
4086 kfree_skb_list(segs
);
4087 return ERR_PTR(err
);
4089 EXPORT_SYMBOL_GPL(skb_segment
);
4091 int skb_gro_receive(struct sk_buff
*p
, struct sk_buff
*skb
)
4093 struct skb_shared_info
*pinfo
, *skbinfo
= skb_shinfo(skb
);
4094 unsigned int offset
= skb_gro_offset(skb
);
4095 unsigned int headlen
= skb_headlen(skb
);
4096 unsigned int len
= skb_gro_len(skb
);
4097 unsigned int delta_truesize
;
4100 if (unlikely(p
->len
+ len
>= 65536 || NAPI_GRO_CB(skb
)->flush
))
4103 lp
= NAPI_GRO_CB(p
)->last
;
4104 pinfo
= skb_shinfo(lp
);
4106 if (headlen
<= offset
) {
4109 int i
= skbinfo
->nr_frags
;
4110 int nr_frags
= pinfo
->nr_frags
+ i
;
4112 if (nr_frags
> MAX_SKB_FRAGS
)
4116 pinfo
->nr_frags
= nr_frags
;
4117 skbinfo
->nr_frags
= 0;
4119 frag
= pinfo
->frags
+ nr_frags
;
4120 frag2
= skbinfo
->frags
+ i
;
4125 skb_frag_off_add(frag
, offset
);
4126 skb_frag_size_sub(frag
, offset
);
4128 /* all fragments truesize : remove (head size + sk_buff) */
4129 delta_truesize
= skb
->truesize
-
4130 SKB_TRUESIZE(skb_end_offset(skb
));
4132 skb
->truesize
-= skb
->data_len
;
4133 skb
->len
-= skb
->data_len
;
4136 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE
;
4138 } else if (skb
->head_frag
) {
4139 int nr_frags
= pinfo
->nr_frags
;
4140 skb_frag_t
*frag
= pinfo
->frags
+ nr_frags
;
4141 struct page
*page
= virt_to_head_page(skb
->head
);
4142 unsigned int first_size
= headlen
- offset
;
4143 unsigned int first_offset
;
4145 if (nr_frags
+ 1 + skbinfo
->nr_frags
> MAX_SKB_FRAGS
)
4148 first_offset
= skb
->data
-
4149 (unsigned char *)page_address(page
) +
4152 pinfo
->nr_frags
= nr_frags
+ 1 + skbinfo
->nr_frags
;
4154 __skb_frag_set_page(frag
, page
);
4155 skb_frag_off_set(frag
, first_offset
);
4156 skb_frag_size_set(frag
, first_size
);
4158 memcpy(frag
+ 1, skbinfo
->frags
, sizeof(*frag
) * skbinfo
->nr_frags
);
4159 /* We dont need to clear skbinfo->nr_frags here */
4161 delta_truesize
= skb
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
4162 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE_STOLEN_HEAD
;
4167 delta_truesize
= skb
->truesize
;
4168 if (offset
> headlen
) {
4169 unsigned int eat
= offset
- headlen
;
4171 skb_frag_off_add(&skbinfo
->frags
[0], eat
);
4172 skb_frag_size_sub(&skbinfo
->frags
[0], eat
);
4173 skb
->data_len
-= eat
;
4178 __skb_pull(skb
, offset
);
4180 if (NAPI_GRO_CB(p
)->last
== p
)
4181 skb_shinfo(p
)->frag_list
= skb
;
4183 NAPI_GRO_CB(p
)->last
->next
= skb
;
4184 NAPI_GRO_CB(p
)->last
= skb
;
4185 __skb_header_release(skb
);
4189 NAPI_GRO_CB(p
)->count
++;
4191 p
->truesize
+= delta_truesize
;
4194 lp
->data_len
+= len
;
4195 lp
->truesize
+= delta_truesize
;
4198 NAPI_GRO_CB(skb
)->same_flow
= 1;
4202 #ifdef CONFIG_SKB_EXTENSIONS
4203 #define SKB_EXT_ALIGN_VALUE 8
4204 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4206 static const u8 skb_ext_type_len
[] = {
4207 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4208 [SKB_EXT_BRIDGE_NF
] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info
),
4211 [SKB_EXT_SEC_PATH
] = SKB_EXT_CHUNKSIZEOF(struct sec_path
),
4213 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4214 [TC_SKB_EXT
] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext
),
4216 #if IS_ENABLED(CONFIG_MPTCP)
4217 [SKB_EXT_MPTCP
] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext
),
4221 static __always_inline
unsigned int skb_ext_total_length(void)
4223 return SKB_EXT_CHUNKSIZEOF(struct skb_ext
) +
4224 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4225 skb_ext_type_len
[SKB_EXT_BRIDGE_NF
] +
4228 skb_ext_type_len
[SKB_EXT_SEC_PATH
] +
4230 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4231 skb_ext_type_len
[TC_SKB_EXT
] +
4233 #if IS_ENABLED(CONFIG_MPTCP)
4234 skb_ext_type_len
[SKB_EXT_MPTCP
] +
4239 static void skb_extensions_init(void)
4241 BUILD_BUG_ON(SKB_EXT_NUM
>= 8);
4242 BUILD_BUG_ON(skb_ext_total_length() > 255);
4244 skbuff_ext_cache
= kmem_cache_create("skbuff_ext_cache",
4245 SKB_EXT_ALIGN_VALUE
* skb_ext_total_length(),
4247 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
4251 static void skb_extensions_init(void) {}
4254 void __init
skb_init(void)
4256 skbuff_head_cache
= kmem_cache_create_usercopy("skbuff_head_cache",
4257 sizeof(struct sk_buff
),
4259 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
4260 offsetof(struct sk_buff
, cb
),
4261 sizeof_field(struct sk_buff
, cb
),
4263 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
4264 sizeof(struct sk_buff_fclones
),
4266 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
4268 skb_extensions_init();
4272 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
,
4273 unsigned int recursion_level
)
4275 int start
= skb_headlen(skb
);
4276 int i
, copy
= start
- offset
;
4277 struct sk_buff
*frag_iter
;
4280 if (unlikely(recursion_level
>= 24))
4286 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
4288 if ((len
-= copy
) == 0)
4293 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
4296 WARN_ON(start
> offset
+ len
);
4298 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
4299 if ((copy
= end
- offset
) > 0) {
4300 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4301 if (unlikely(elt
&& sg_is_last(&sg
[elt
- 1])))
4306 sg_set_page(&sg
[elt
], skb_frag_page(frag
), copy
,
4307 skb_frag_off(frag
) + offset
- start
);
4316 skb_walk_frags(skb
, frag_iter
) {
4319 WARN_ON(start
> offset
+ len
);
4321 end
= start
+ frag_iter
->len
;
4322 if ((copy
= end
- offset
) > 0) {
4323 if (unlikely(elt
&& sg_is_last(&sg
[elt
- 1])))
4328 ret
= __skb_to_sgvec(frag_iter
, sg
+elt
, offset
- start
,
4329 copy
, recursion_level
+ 1);
4330 if (unlikely(ret
< 0))
4333 if ((len
-= copy
) == 0)
4344 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4345 * @skb: Socket buffer containing the buffers to be mapped
4346 * @sg: The scatter-gather list to map into
4347 * @offset: The offset into the buffer's contents to start mapping
4348 * @len: Length of buffer space to be mapped
4350 * Fill the specified scatter-gather list with mappings/pointers into a
4351 * region of the buffer space attached to a socket buffer. Returns either
4352 * the number of scatterlist items used, or -EMSGSIZE if the contents
4355 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
4357 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
, 0);
4362 sg_mark_end(&sg
[nsg
- 1]);
4366 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
4368 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4369 * sglist without mark the sg which contain last skb data as the end.
4370 * So the caller can mannipulate sg list as will when padding new data after
4371 * the first call without calling sg_unmark_end to expend sg list.
4373 * Scenario to use skb_to_sgvec_nomark:
4375 * 2. skb_to_sgvec_nomark(payload1)
4376 * 3. skb_to_sgvec_nomark(payload2)
4378 * This is equivalent to:
4380 * 2. skb_to_sgvec(payload1)
4382 * 4. skb_to_sgvec(payload2)
4384 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4385 * is more preferable.
4387 int skb_to_sgvec_nomark(struct sk_buff
*skb
, struct scatterlist
*sg
,
4388 int offset
, int len
)
4390 return __skb_to_sgvec(skb
, sg
, offset
, len
, 0);
4392 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark
);
4397 * skb_cow_data - Check that a socket buffer's data buffers are writable
4398 * @skb: The socket buffer to check.
4399 * @tailbits: Amount of trailing space to be added
4400 * @trailer: Returned pointer to the skb where the @tailbits space begins
4402 * Make sure that the data buffers attached to a socket buffer are
4403 * writable. If they are not, private copies are made of the data buffers
4404 * and the socket buffer is set to use these instead.
4406 * If @tailbits is given, make sure that there is space to write @tailbits
4407 * bytes of data beyond current end of socket buffer. @trailer will be
4408 * set to point to the skb in which this space begins.
4410 * The number of scatterlist elements required to completely map the
4411 * COW'd and extended socket buffer will be returned.
4413 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
4417 struct sk_buff
*skb1
, **skb_p
;
4419 /* If skb is cloned or its head is paged, reallocate
4420 * head pulling out all the pages (pages are considered not writable
4421 * at the moment even if they are anonymous).
4423 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
4424 !__pskb_pull_tail(skb
, __skb_pagelen(skb
)))
4427 /* Easy case. Most of packets will go this way. */
4428 if (!skb_has_frag_list(skb
)) {
4429 /* A little of trouble, not enough of space for trailer.
4430 * This should not happen, when stack is tuned to generate
4431 * good frames. OK, on miss we reallocate and reserve even more
4432 * space, 128 bytes is fair. */
4434 if (skb_tailroom(skb
) < tailbits
&&
4435 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
4443 /* Misery. We are in troubles, going to mincer fragments... */
4446 skb_p
= &skb_shinfo(skb
)->frag_list
;
4449 while ((skb1
= *skb_p
) != NULL
) {
4452 /* The fragment is partially pulled by someone,
4453 * this can happen on input. Copy it and everything
4456 if (skb_shared(skb1
))
4459 /* If the skb is the last, worry about trailer. */
4461 if (skb1
->next
== NULL
&& tailbits
) {
4462 if (skb_shinfo(skb1
)->nr_frags
||
4463 skb_has_frag_list(skb1
) ||
4464 skb_tailroom(skb1
) < tailbits
)
4465 ntail
= tailbits
+ 128;
4471 skb_shinfo(skb1
)->nr_frags
||
4472 skb_has_frag_list(skb1
)) {
4473 struct sk_buff
*skb2
;
4475 /* Fuck, we are miserable poor guys... */
4477 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
4479 skb2
= skb_copy_expand(skb1
,
4483 if (unlikely(skb2
== NULL
))
4487 skb_set_owner_w(skb2
, skb1
->sk
);
4489 /* Looking around. Are we still alive?
4490 * OK, link new skb, drop old one */
4492 skb2
->next
= skb1
->next
;
4499 skb_p
= &skb1
->next
;
4504 EXPORT_SYMBOL_GPL(skb_cow_data
);
4506 static void sock_rmem_free(struct sk_buff
*skb
)
4508 struct sock
*sk
= skb
->sk
;
4510 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
4513 static void skb_set_err_queue(struct sk_buff
*skb
)
4515 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4516 * So, it is safe to (mis)use it to mark skbs on the error queue.
4518 skb
->pkt_type
= PACKET_OUTGOING
;
4519 BUILD_BUG_ON(PACKET_OUTGOING
== 0);
4523 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4525 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
)
4527 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
4528 (unsigned int)READ_ONCE(sk
->sk_rcvbuf
))
4533 skb
->destructor
= sock_rmem_free
;
4534 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
4535 skb_set_err_queue(skb
);
4537 /* before exiting rcu section, make sure dst is refcounted */
4540 skb_queue_tail(&sk
->sk_error_queue
, skb
);
4541 if (!sock_flag(sk
, SOCK_DEAD
))
4542 sk
->sk_error_report(sk
);
4545 EXPORT_SYMBOL(sock_queue_err_skb
);
4547 static bool is_icmp_err_skb(const struct sk_buff
*skb
)
4549 return skb
&& (SKB_EXT_ERR(skb
)->ee
.ee_origin
== SO_EE_ORIGIN_ICMP
||
4550 SKB_EXT_ERR(skb
)->ee
.ee_origin
== SO_EE_ORIGIN_ICMP6
);
4553 struct sk_buff
*sock_dequeue_err_skb(struct sock
*sk
)
4555 struct sk_buff_head
*q
= &sk
->sk_error_queue
;
4556 struct sk_buff
*skb
, *skb_next
= NULL
;
4557 bool icmp_next
= false;
4558 unsigned long flags
;
4560 spin_lock_irqsave(&q
->lock
, flags
);
4561 skb
= __skb_dequeue(q
);
4562 if (skb
&& (skb_next
= skb_peek(q
))) {
4563 icmp_next
= is_icmp_err_skb(skb_next
);
4565 sk
->sk_err
= SKB_EXT_ERR(skb_next
)->ee
.ee_errno
;
4567 spin_unlock_irqrestore(&q
->lock
, flags
);
4569 if (is_icmp_err_skb(skb
) && !icmp_next
)
4573 sk
->sk_error_report(sk
);
4577 EXPORT_SYMBOL(sock_dequeue_err_skb
);
4580 * skb_clone_sk - create clone of skb, and take reference to socket
4581 * @skb: the skb to clone
4583 * This function creates a clone of a buffer that holds a reference on
4584 * sk_refcnt. Buffers created via this function are meant to be
4585 * returned using sock_queue_err_skb, or free via kfree_skb.
4587 * When passing buffers allocated with this function to sock_queue_err_skb
4588 * it is necessary to wrap the call with sock_hold/sock_put in order to
4589 * prevent the socket from being released prior to being enqueued on
4590 * the sk_error_queue.
4592 struct sk_buff
*skb_clone_sk(struct sk_buff
*skb
)
4594 struct sock
*sk
= skb
->sk
;
4595 struct sk_buff
*clone
;
4597 if (!sk
|| !refcount_inc_not_zero(&sk
->sk_refcnt
))
4600 clone
= skb_clone(skb
, GFP_ATOMIC
);
4607 clone
->destructor
= sock_efree
;
4611 EXPORT_SYMBOL(skb_clone_sk
);
4613 static void __skb_complete_tx_timestamp(struct sk_buff
*skb
,
4618 struct sock_exterr_skb
*serr
;
4621 BUILD_BUG_ON(sizeof(struct sock_exterr_skb
) > sizeof(skb
->cb
));
4623 serr
= SKB_EXT_ERR(skb
);
4624 memset(serr
, 0, sizeof(*serr
));
4625 serr
->ee
.ee_errno
= ENOMSG
;
4626 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TIMESTAMPING
;
4627 serr
->ee
.ee_info
= tstype
;
4628 serr
->opt_stats
= opt_stats
;
4629 serr
->header
.h4
.iif
= skb
->dev
? skb
->dev
->ifindex
: 0;
4630 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
) {
4631 serr
->ee
.ee_data
= skb_shinfo(skb
)->tskey
;
4632 if (sk
->sk_protocol
== IPPROTO_TCP
&&
4633 sk
->sk_type
== SOCK_STREAM
)
4634 serr
->ee
.ee_data
-= sk
->sk_tskey
;
4637 err
= sock_queue_err_skb(sk
, skb
);
4643 static bool skb_may_tx_timestamp(struct sock
*sk
, bool tsonly
)
4647 if (likely(sysctl_tstamp_allow_data
|| tsonly
))
4650 read_lock_bh(&sk
->sk_callback_lock
);
4651 ret
= sk
->sk_socket
&& sk
->sk_socket
->file
&&
4652 file_ns_capable(sk
->sk_socket
->file
, &init_user_ns
, CAP_NET_RAW
);
4653 read_unlock_bh(&sk
->sk_callback_lock
);
4657 void skb_complete_tx_timestamp(struct sk_buff
*skb
,
4658 struct skb_shared_hwtstamps
*hwtstamps
)
4660 struct sock
*sk
= skb
->sk
;
4662 if (!skb_may_tx_timestamp(sk
, false))
4665 /* Take a reference to prevent skb_orphan() from freeing the socket,
4666 * but only if the socket refcount is not zero.
4668 if (likely(refcount_inc_not_zero(&sk
->sk_refcnt
))) {
4669 *skb_hwtstamps(skb
) = *hwtstamps
;
4670 __skb_complete_tx_timestamp(skb
, sk
, SCM_TSTAMP_SND
, false);
4678 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp
);
4680 void __skb_tstamp_tx(struct sk_buff
*orig_skb
,
4681 struct skb_shared_hwtstamps
*hwtstamps
,
4682 struct sock
*sk
, int tstype
)
4684 struct sk_buff
*skb
;
4685 bool tsonly
, opt_stats
= false;
4690 if (!hwtstamps
&& !(sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_TX_SWHW
) &&
4691 skb_shinfo(orig_skb
)->tx_flags
& SKBTX_IN_PROGRESS
)
4694 tsonly
= sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_TSONLY
;
4695 if (!skb_may_tx_timestamp(sk
, tsonly
))
4700 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_STATS
) &&
4701 sk
->sk_protocol
== IPPROTO_TCP
&&
4702 sk
->sk_type
== SOCK_STREAM
) {
4703 skb
= tcp_get_timestamping_opt_stats(sk
, orig_skb
);
4707 skb
= alloc_skb(0, GFP_ATOMIC
);
4709 skb
= skb_clone(orig_skb
, GFP_ATOMIC
);
4715 skb_shinfo(skb
)->tx_flags
|= skb_shinfo(orig_skb
)->tx_flags
&
4717 skb_shinfo(skb
)->tskey
= skb_shinfo(orig_skb
)->tskey
;
4721 *skb_hwtstamps(skb
) = *hwtstamps
;
4723 skb
->tstamp
= ktime_get_real();
4725 __skb_complete_tx_timestamp(skb
, sk
, tstype
, opt_stats
);
4727 EXPORT_SYMBOL_GPL(__skb_tstamp_tx
);
4729 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
4730 struct skb_shared_hwtstamps
*hwtstamps
)
4732 return __skb_tstamp_tx(orig_skb
, hwtstamps
, orig_skb
->sk
,
4735 EXPORT_SYMBOL_GPL(skb_tstamp_tx
);
4737 void skb_complete_wifi_ack(struct sk_buff
*skb
, bool acked
)
4739 struct sock
*sk
= skb
->sk
;
4740 struct sock_exterr_skb
*serr
;
4743 skb
->wifi_acked_valid
= 1;
4744 skb
->wifi_acked
= acked
;
4746 serr
= SKB_EXT_ERR(skb
);
4747 memset(serr
, 0, sizeof(*serr
));
4748 serr
->ee
.ee_errno
= ENOMSG
;
4749 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TXSTATUS
;
4751 /* Take a reference to prevent skb_orphan() from freeing the socket,
4752 * but only if the socket refcount is not zero.
4754 if (likely(refcount_inc_not_zero(&sk
->sk_refcnt
))) {
4755 err
= sock_queue_err_skb(sk
, skb
);
4761 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack
);
4764 * skb_partial_csum_set - set up and verify partial csum values for packet
4765 * @skb: the skb to set
4766 * @start: the number of bytes after skb->data to start checksumming.
4767 * @off: the offset from start to place the checksum.
4769 * For untrusted partially-checksummed packets, we need to make sure the values
4770 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4772 * This function checks and sets those values and skb->ip_summed: if this
4773 * returns false you should drop the packet.
4775 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
4777 u32 csum_end
= (u32
)start
+ (u32
)off
+ sizeof(__sum16
);
4778 u32 csum_start
= skb_headroom(skb
) + (u32
)start
;
4780 if (unlikely(csum_start
> U16_MAX
|| csum_end
> skb_headlen(skb
))) {
4781 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4782 start
, off
, skb_headroom(skb
), skb_headlen(skb
));
4785 skb
->ip_summed
= CHECKSUM_PARTIAL
;
4786 skb
->csum_start
= csum_start
;
4787 skb
->csum_offset
= off
;
4788 skb_set_transport_header(skb
, start
);
4791 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);
4793 static int skb_maybe_pull_tail(struct sk_buff
*skb
, unsigned int len
,
4796 if (skb_headlen(skb
) >= len
)
4799 /* If we need to pullup then pullup to the max, so we
4800 * won't need to do it again.
4805 if (__pskb_pull_tail(skb
, max
- skb_headlen(skb
)) == NULL
)
4808 if (skb_headlen(skb
) < len
)
4814 #define MAX_TCP_HDR_LEN (15 * 4)
4816 static __sum16
*skb_checksum_setup_ip(struct sk_buff
*skb
,
4817 typeof(IPPROTO_IP
) proto
,
4824 err
= skb_maybe_pull_tail(skb
, off
+ sizeof(struct tcphdr
),
4825 off
+ MAX_TCP_HDR_LEN
);
4826 if (!err
&& !skb_partial_csum_set(skb
, off
,
4827 offsetof(struct tcphdr
,
4830 return err
? ERR_PTR(err
) : &tcp_hdr(skb
)->check
;
4833 err
= skb_maybe_pull_tail(skb
, off
+ sizeof(struct udphdr
),
4834 off
+ sizeof(struct udphdr
));
4835 if (!err
&& !skb_partial_csum_set(skb
, off
,
4836 offsetof(struct udphdr
,
4839 return err
? ERR_PTR(err
) : &udp_hdr(skb
)->check
;
4842 return ERR_PTR(-EPROTO
);
4845 /* This value should be large enough to cover a tagged ethernet header plus
4846 * maximally sized IP and TCP or UDP headers.
4848 #define MAX_IP_HDR_LEN 128
4850 static int skb_checksum_setup_ipv4(struct sk_buff
*skb
, bool recalculate
)
4859 err
= skb_maybe_pull_tail(skb
,
4860 sizeof(struct iphdr
),
4865 if (ip_is_fragment(ip_hdr(skb
)))
4868 off
= ip_hdrlen(skb
);
4875 csum
= skb_checksum_setup_ip(skb
, ip_hdr(skb
)->protocol
, off
);
4877 return PTR_ERR(csum
);
4880 *csum
= ~csum_tcpudp_magic(ip_hdr(skb
)->saddr
,
4883 ip_hdr(skb
)->protocol
, 0);
4890 /* This value should be large enough to cover a tagged ethernet header plus
4891 * an IPv6 header, all options, and a maximal TCP or UDP header.
4893 #define MAX_IPV6_HDR_LEN 256
4895 #define OPT_HDR(type, skb, off) \
4896 (type *)(skb_network_header(skb) + (off))
4898 static int skb_checksum_setup_ipv6(struct sk_buff
*skb
, bool recalculate
)
4911 off
= sizeof(struct ipv6hdr
);
4913 err
= skb_maybe_pull_tail(skb
, off
, MAX_IPV6_HDR_LEN
);
4917 nexthdr
= ipv6_hdr(skb
)->nexthdr
;
4919 len
= sizeof(struct ipv6hdr
) + ntohs(ipv6_hdr(skb
)->payload_len
);
4920 while (off
<= len
&& !done
) {
4922 case IPPROTO_DSTOPTS
:
4923 case IPPROTO_HOPOPTS
:
4924 case IPPROTO_ROUTING
: {
4925 struct ipv6_opt_hdr
*hp
;
4927 err
= skb_maybe_pull_tail(skb
,
4929 sizeof(struct ipv6_opt_hdr
),
4934 hp
= OPT_HDR(struct ipv6_opt_hdr
, skb
, off
);
4935 nexthdr
= hp
->nexthdr
;
4936 off
+= ipv6_optlen(hp
);
4940 struct ip_auth_hdr
*hp
;
4942 err
= skb_maybe_pull_tail(skb
,
4944 sizeof(struct ip_auth_hdr
),
4949 hp
= OPT_HDR(struct ip_auth_hdr
, skb
, off
);
4950 nexthdr
= hp
->nexthdr
;
4951 off
+= ipv6_authlen(hp
);
4954 case IPPROTO_FRAGMENT
: {
4955 struct frag_hdr
*hp
;
4957 err
= skb_maybe_pull_tail(skb
,
4959 sizeof(struct frag_hdr
),
4964 hp
= OPT_HDR(struct frag_hdr
, skb
, off
);
4966 if (hp
->frag_off
& htons(IP6_OFFSET
| IP6_MF
))
4969 nexthdr
= hp
->nexthdr
;
4970 off
+= sizeof(struct frag_hdr
);
4981 if (!done
|| fragment
)
4984 csum
= skb_checksum_setup_ip(skb
, nexthdr
, off
);
4986 return PTR_ERR(csum
);
4989 *csum
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
4990 &ipv6_hdr(skb
)->daddr
,
4991 skb
->len
- off
, nexthdr
, 0);
4999 * skb_checksum_setup - set up partial checksum offset
5000 * @skb: the skb to set up
5001 * @recalculate: if true the pseudo-header checksum will be recalculated
5003 int skb_checksum_setup(struct sk_buff
*skb
, bool recalculate
)
5007 switch (skb
->protocol
) {
5008 case htons(ETH_P_IP
):
5009 err
= skb_checksum_setup_ipv4(skb
, recalculate
);
5012 case htons(ETH_P_IPV6
):
5013 err
= skb_checksum_setup_ipv6(skb
, recalculate
);
5023 EXPORT_SYMBOL(skb_checksum_setup
);
5026 * skb_checksum_maybe_trim - maybe trims the given skb
5027 * @skb: the skb to check
5028 * @transport_len: the data length beyond the network header
5030 * Checks whether the given skb has data beyond the given transport length.
5031 * If so, returns a cloned skb trimmed to this transport length.
5032 * Otherwise returns the provided skb. Returns NULL in error cases
5033 * (e.g. transport_len exceeds skb length or out-of-memory).
5035 * Caller needs to set the skb transport header and free any returned skb if it
5036 * differs from the provided skb.
5038 static struct sk_buff
*skb_checksum_maybe_trim(struct sk_buff
*skb
,
5039 unsigned int transport_len
)
5041 struct sk_buff
*skb_chk
;
5042 unsigned int len
= skb_transport_offset(skb
) + transport_len
;
5047 else if (skb
->len
== len
)
5050 skb_chk
= skb_clone(skb
, GFP_ATOMIC
);
5054 ret
= pskb_trim_rcsum(skb_chk
, len
);
5064 * skb_checksum_trimmed - validate checksum of an skb
5065 * @skb: the skb to check
5066 * @transport_len: the data length beyond the network header
5067 * @skb_chkf: checksum function to use
5069 * Applies the given checksum function skb_chkf to the provided skb.
5070 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5072 * If the skb has data beyond the given transport length, then a
5073 * trimmed & cloned skb is checked and returned.
5075 * Caller needs to set the skb transport header and free any returned skb if it
5076 * differs from the provided skb.
5078 struct sk_buff
*skb_checksum_trimmed(struct sk_buff
*skb
,
5079 unsigned int transport_len
,
5080 __sum16(*skb_chkf
)(struct sk_buff
*skb
))
5082 struct sk_buff
*skb_chk
;
5083 unsigned int offset
= skb_transport_offset(skb
);
5086 skb_chk
= skb_checksum_maybe_trim(skb
, transport_len
);
5090 if (!pskb_may_pull(skb_chk
, offset
))
5093 skb_pull_rcsum(skb_chk
, offset
);
5094 ret
= skb_chkf(skb_chk
);
5095 skb_push_rcsum(skb_chk
, offset
);
5103 if (skb_chk
&& skb_chk
!= skb
)
5109 EXPORT_SYMBOL(skb_checksum_trimmed
);
5111 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
5113 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5116 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);
5118 void kfree_skb_partial(struct sk_buff
*skb
, bool head_stolen
)
5121 skb_release_head_state(skb
);
5122 kmem_cache_free(skbuff_head_cache
, skb
);
5127 EXPORT_SYMBOL(kfree_skb_partial
);
5130 * skb_try_coalesce - try to merge skb to prior one
5132 * @from: buffer to add
5133 * @fragstolen: pointer to boolean
5134 * @delta_truesize: how much more was allocated than was requested
5136 bool skb_try_coalesce(struct sk_buff
*to
, struct sk_buff
*from
,
5137 bool *fragstolen
, int *delta_truesize
)
5139 struct skb_shared_info
*to_shinfo
, *from_shinfo
;
5140 int i
, delta
, len
= from
->len
;
5142 *fragstolen
= false;
5147 if (len
<= skb_tailroom(to
)) {
5149 BUG_ON(skb_copy_bits(from
, 0, skb_put(to
, len
), len
));
5150 *delta_truesize
= 0;
5154 to_shinfo
= skb_shinfo(to
);
5155 from_shinfo
= skb_shinfo(from
);
5156 if (to_shinfo
->frag_list
|| from_shinfo
->frag_list
)
5158 if (skb_zcopy(to
) || skb_zcopy(from
))
5161 if (skb_headlen(from
) != 0) {
5163 unsigned int offset
;
5165 if (to_shinfo
->nr_frags
+
5166 from_shinfo
->nr_frags
>= MAX_SKB_FRAGS
)
5169 if (skb_head_is_locked(from
))
5172 delta
= from
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
5174 page
= virt_to_head_page(from
->head
);
5175 offset
= from
->data
- (unsigned char *)page_address(page
);
5177 skb_fill_page_desc(to
, to_shinfo
->nr_frags
,
5178 page
, offset
, skb_headlen(from
));
5181 if (to_shinfo
->nr_frags
+
5182 from_shinfo
->nr_frags
> MAX_SKB_FRAGS
)
5185 delta
= from
->truesize
- SKB_TRUESIZE(skb_end_offset(from
));
5188 WARN_ON_ONCE(delta
< len
);
5190 memcpy(to_shinfo
->frags
+ to_shinfo
->nr_frags
,
5192 from_shinfo
->nr_frags
* sizeof(skb_frag_t
));
5193 to_shinfo
->nr_frags
+= from_shinfo
->nr_frags
;
5195 if (!skb_cloned(from
))
5196 from_shinfo
->nr_frags
= 0;
5198 /* if the skb is not cloned this does nothing
5199 * since we set nr_frags to 0.
5201 for (i
= 0; i
< from_shinfo
->nr_frags
; i
++)
5202 __skb_frag_ref(&from_shinfo
->frags
[i
]);
5204 to
->truesize
+= delta
;
5206 to
->data_len
+= len
;
5208 *delta_truesize
= delta
;
5211 EXPORT_SYMBOL(skb_try_coalesce
);
5214 * skb_scrub_packet - scrub an skb
5216 * @skb: buffer to clean
5217 * @xnet: packet is crossing netns
5219 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5220 * into/from a tunnel. Some information have to be cleared during these
5222 * skb_scrub_packet can also be used to clean a skb before injecting it in
5223 * another namespace (@xnet == true). We have to clear all information in the
5224 * skb that could impact namespace isolation.
5226 void skb_scrub_packet(struct sk_buff
*skb
, bool xnet
)
5228 skb
->pkt_type
= PACKET_HOST
;
5234 nf_reset_trace(skb
);
5236 #ifdef CONFIG_NET_SWITCHDEV
5237 skb
->offload_fwd_mark
= 0;
5238 skb
->offload_l3_fwd_mark
= 0;
5248 EXPORT_SYMBOL_GPL(skb_scrub_packet
);
5251 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5255 * skb_gso_transport_seglen is used to determine the real size of the
5256 * individual segments, including Layer4 headers (TCP/UDP).
5258 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5260 static unsigned int skb_gso_transport_seglen(const struct sk_buff
*skb
)
5262 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
5263 unsigned int thlen
= 0;
5265 if (skb
->encapsulation
) {
5266 thlen
= skb_inner_transport_header(skb
) -
5267 skb_transport_header(skb
);
5269 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)))
5270 thlen
+= inner_tcp_hdrlen(skb
);
5271 } else if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
))) {
5272 thlen
= tcp_hdrlen(skb
);
5273 } else if (unlikely(skb_is_gso_sctp(skb
))) {
5274 thlen
= sizeof(struct sctphdr
);
5275 } else if (shinfo
->gso_type
& SKB_GSO_UDP_L4
) {
5276 thlen
= sizeof(struct udphdr
);
5278 /* UFO sets gso_size to the size of the fragmentation
5279 * payload, i.e. the size of the L4 (UDP) header is already
5282 return thlen
+ shinfo
->gso_size
;
5286 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5290 * skb_gso_network_seglen is used to determine the real size of the
5291 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5293 * The MAC/L2 header is not accounted for.
5295 static unsigned int skb_gso_network_seglen(const struct sk_buff
*skb
)
5297 unsigned int hdr_len
= skb_transport_header(skb
) -
5298 skb_network_header(skb
);
5300 return hdr_len
+ skb_gso_transport_seglen(skb
);
5304 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5308 * skb_gso_mac_seglen is used to determine the real size of the
5309 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5310 * headers (TCP/UDP).
5312 static unsigned int skb_gso_mac_seglen(const struct sk_buff
*skb
)
5314 unsigned int hdr_len
= skb_transport_header(skb
) - skb_mac_header(skb
);
5316 return hdr_len
+ skb_gso_transport_seglen(skb
);
5320 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5322 * There are a couple of instances where we have a GSO skb, and we
5323 * want to determine what size it would be after it is segmented.
5325 * We might want to check:
5326 * - L3+L4+payload size (e.g. IP forwarding)
5327 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5329 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5333 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5334 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5336 * @max_len: The maximum permissible length.
5338 * Returns true if the segmented length <= max length.
5340 static inline bool skb_gso_size_check(const struct sk_buff
*skb
,
5341 unsigned int seg_len
,
5342 unsigned int max_len
) {
5343 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
5344 const struct sk_buff
*iter
;
5346 if (shinfo
->gso_size
!= GSO_BY_FRAGS
)
5347 return seg_len
<= max_len
;
5349 /* Undo this so we can re-use header sizes */
5350 seg_len
-= GSO_BY_FRAGS
;
5352 skb_walk_frags(skb
, iter
) {
5353 if (seg_len
+ skb_headlen(iter
) > max_len
)
5361 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5364 * @mtu: MTU to validate against
5366 * skb_gso_validate_network_len validates if a given skb will fit a
5367 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5370 bool skb_gso_validate_network_len(const struct sk_buff
*skb
, unsigned int mtu
)
5372 return skb_gso_size_check(skb
, skb_gso_network_seglen(skb
), mtu
);
5374 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len
);
5377 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5380 * @len: length to validate against
5382 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5383 * length once split, including L2, L3 and L4 headers and the payload.
5385 bool skb_gso_validate_mac_len(const struct sk_buff
*skb
, unsigned int len
)
5387 return skb_gso_size_check(skb
, skb_gso_mac_seglen(skb
), len
);
5389 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len
);
5391 static struct sk_buff
*skb_reorder_vlan_header(struct sk_buff
*skb
)
5393 int mac_len
, meta_len
;
5396 if (skb_cow(skb
, skb_headroom(skb
)) < 0) {
5401 mac_len
= skb
->data
- skb_mac_header(skb
);
5402 if (likely(mac_len
> VLAN_HLEN
+ ETH_TLEN
)) {
5403 memmove(skb_mac_header(skb
) + VLAN_HLEN
, skb_mac_header(skb
),
5404 mac_len
- VLAN_HLEN
- ETH_TLEN
);
5407 meta_len
= skb_metadata_len(skb
);
5409 meta
= skb_metadata_end(skb
) - meta_len
;
5410 memmove(meta
+ VLAN_HLEN
, meta
, meta_len
);
5413 skb
->mac_header
+= VLAN_HLEN
;
5417 struct sk_buff
*skb_vlan_untag(struct sk_buff
*skb
)
5419 struct vlan_hdr
*vhdr
;
5422 if (unlikely(skb_vlan_tag_present(skb
))) {
5423 /* vlan_tci is already set-up so leave this for another time */
5427 skb
= skb_share_check(skb
, GFP_ATOMIC
);
5430 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5431 if (unlikely(!pskb_may_pull(skb
, VLAN_HLEN
+ sizeof(unsigned short))))
5434 vhdr
= (struct vlan_hdr
*)skb
->data
;
5435 vlan_tci
= ntohs(vhdr
->h_vlan_TCI
);
5436 __vlan_hwaccel_put_tag(skb
, skb
->protocol
, vlan_tci
);
5438 skb_pull_rcsum(skb
, VLAN_HLEN
);
5439 vlan_set_encap_proto(skb
, vhdr
);
5441 skb
= skb_reorder_vlan_header(skb
);
5445 skb_reset_network_header(skb
);
5446 if (!skb_transport_header_was_set(skb
))
5447 skb_reset_transport_header(skb
);
5448 skb_reset_mac_len(skb
);
5456 EXPORT_SYMBOL(skb_vlan_untag
);
5458 int skb_ensure_writable(struct sk_buff
*skb
, int write_len
)
5460 if (!pskb_may_pull(skb
, write_len
))
5463 if (!skb_cloned(skb
) || skb_clone_writable(skb
, write_len
))
5466 return pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
5468 EXPORT_SYMBOL(skb_ensure_writable
);
5470 /* remove VLAN header from packet and update csum accordingly.
5471 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5473 int __skb_vlan_pop(struct sk_buff
*skb
, u16
*vlan_tci
)
5475 struct vlan_hdr
*vhdr
;
5476 int offset
= skb
->data
- skb_mac_header(skb
);
5479 if (WARN_ONCE(offset
,
5480 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5485 err
= skb_ensure_writable(skb
, VLAN_ETH_HLEN
);
5489 skb_postpull_rcsum(skb
, skb
->data
+ (2 * ETH_ALEN
), VLAN_HLEN
);
5491 vhdr
= (struct vlan_hdr
*)(skb
->data
+ ETH_HLEN
);
5492 *vlan_tci
= ntohs(vhdr
->h_vlan_TCI
);
5494 memmove(skb
->data
+ VLAN_HLEN
, skb
->data
, 2 * ETH_ALEN
);
5495 __skb_pull(skb
, VLAN_HLEN
);
5497 vlan_set_encap_proto(skb
, vhdr
);
5498 skb
->mac_header
+= VLAN_HLEN
;
5500 if (skb_network_offset(skb
) < ETH_HLEN
)
5501 skb_set_network_header(skb
, ETH_HLEN
);
5503 skb_reset_mac_len(skb
);
5507 EXPORT_SYMBOL(__skb_vlan_pop
);
5509 /* Pop a vlan tag either from hwaccel or from payload.
5510 * Expects skb->data at mac header.
5512 int skb_vlan_pop(struct sk_buff
*skb
)
5518 if (likely(skb_vlan_tag_present(skb
))) {
5519 __vlan_hwaccel_clear_tag(skb
);
5521 if (unlikely(!eth_type_vlan(skb
->protocol
)))
5524 err
= __skb_vlan_pop(skb
, &vlan_tci
);
5528 /* move next vlan tag to hw accel tag */
5529 if (likely(!eth_type_vlan(skb
->protocol
)))
5532 vlan_proto
= skb
->protocol
;
5533 err
= __skb_vlan_pop(skb
, &vlan_tci
);
5537 __vlan_hwaccel_put_tag(skb
, vlan_proto
, vlan_tci
);
5540 EXPORT_SYMBOL(skb_vlan_pop
);
5542 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5543 * Expects skb->data at mac header.
5545 int skb_vlan_push(struct sk_buff
*skb
, __be16 vlan_proto
, u16 vlan_tci
)
5547 if (skb_vlan_tag_present(skb
)) {
5548 int offset
= skb
->data
- skb_mac_header(skb
);
5551 if (WARN_ONCE(offset
,
5552 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5557 err
= __vlan_insert_tag(skb
, skb
->vlan_proto
,
5558 skb_vlan_tag_get(skb
));
5562 skb
->protocol
= skb
->vlan_proto
;
5563 skb
->mac_len
+= VLAN_HLEN
;
5565 skb_postpush_rcsum(skb
, skb
->data
+ (2 * ETH_ALEN
), VLAN_HLEN
);
5567 __vlan_hwaccel_put_tag(skb
, vlan_proto
, vlan_tci
);
5570 EXPORT_SYMBOL(skb_vlan_push
);
5573 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5575 * @skb: Socket buffer to modify
5577 * Drop the Ethernet header of @skb.
5579 * Expects that skb->data points to the mac header and that no VLAN tags are
5582 * Returns 0 on success, -errno otherwise.
5584 int skb_eth_pop(struct sk_buff
*skb
)
5586 if (!pskb_may_pull(skb
, ETH_HLEN
) || skb_vlan_tagged(skb
) ||
5587 skb_network_offset(skb
) < ETH_HLEN
)
5590 skb_pull_rcsum(skb
, ETH_HLEN
);
5591 skb_reset_mac_header(skb
);
5592 skb_reset_mac_len(skb
);
5596 EXPORT_SYMBOL(skb_eth_pop
);
5599 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5601 * @skb: Socket buffer to modify
5602 * @dst: Destination MAC address of the new header
5603 * @src: Source MAC address of the new header
5605 * Prepend @skb with a new Ethernet header.
5607 * Expects that skb->data points to the mac header, which must be empty.
5609 * Returns 0 on success, -errno otherwise.
5611 int skb_eth_push(struct sk_buff
*skb
, const unsigned char *dst
,
5612 const unsigned char *src
)
5617 if (skb_network_offset(skb
) || skb_vlan_tag_present(skb
))
5620 err
= skb_cow_head(skb
, sizeof(*eth
));
5624 skb_push(skb
, sizeof(*eth
));
5625 skb_reset_mac_header(skb
);
5626 skb_reset_mac_len(skb
);
5629 ether_addr_copy(eth
->h_dest
, dst
);
5630 ether_addr_copy(eth
->h_source
, src
);
5631 eth
->h_proto
= skb
->protocol
;
5633 skb_postpush_rcsum(skb
, eth
, sizeof(*eth
));
5637 EXPORT_SYMBOL(skb_eth_push
);
5639 /* Update the ethertype of hdr and the skb csum value if required. */
5640 static void skb_mod_eth_type(struct sk_buff
*skb
, struct ethhdr
*hdr
,
5643 if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
5644 __be16 diff
[] = { ~hdr
->h_proto
, ethertype
};
5646 skb
->csum
= csum_partial((char *)diff
, sizeof(diff
), skb
->csum
);
5649 hdr
->h_proto
= ethertype
;
5653 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5657 * @mpls_lse: MPLS label stack entry to push
5658 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5659 * @mac_len: length of the MAC header
5660 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5663 * Expects skb->data at mac header.
5665 * Returns 0 on success, -errno otherwise.
5667 int skb_mpls_push(struct sk_buff
*skb
, __be32 mpls_lse
, __be16 mpls_proto
,
5668 int mac_len
, bool ethernet
)
5670 struct mpls_shim_hdr
*lse
;
5673 if (unlikely(!eth_p_mpls(mpls_proto
)))
5676 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5677 if (skb
->encapsulation
)
5680 err
= skb_cow_head(skb
, MPLS_HLEN
);
5684 if (!skb
->inner_protocol
) {
5685 skb_set_inner_network_header(skb
, skb_network_offset(skb
));
5686 skb_set_inner_protocol(skb
, skb
->protocol
);
5689 skb_push(skb
, MPLS_HLEN
);
5690 memmove(skb_mac_header(skb
) - MPLS_HLEN
, skb_mac_header(skb
),
5692 skb_reset_mac_header(skb
);
5693 skb_set_network_header(skb
, mac_len
);
5694 skb_reset_mac_len(skb
);
5696 lse
= mpls_hdr(skb
);
5697 lse
->label_stack_entry
= mpls_lse
;
5698 skb_postpush_rcsum(skb
, lse
, MPLS_HLEN
);
5700 if (ethernet
&& mac_len
>= ETH_HLEN
)
5701 skb_mod_eth_type(skb
, eth_hdr(skb
), mpls_proto
);
5702 skb
->protocol
= mpls_proto
;
5706 EXPORT_SYMBOL_GPL(skb_mpls_push
);
5709 * skb_mpls_pop() - pop the outermost MPLS header
5712 * @next_proto: ethertype of header after popped MPLS header
5713 * @mac_len: length of the MAC header
5714 * @ethernet: flag to indicate if the packet is ethernet
5716 * Expects skb->data at mac header.
5718 * Returns 0 on success, -errno otherwise.
5720 int skb_mpls_pop(struct sk_buff
*skb
, __be16 next_proto
, int mac_len
,
5725 if (unlikely(!eth_p_mpls(skb
->protocol
)))
5728 err
= skb_ensure_writable(skb
, mac_len
+ MPLS_HLEN
);
5732 skb_postpull_rcsum(skb
, mpls_hdr(skb
), MPLS_HLEN
);
5733 memmove(skb_mac_header(skb
) + MPLS_HLEN
, skb_mac_header(skb
),
5736 __skb_pull(skb
, MPLS_HLEN
);
5737 skb_reset_mac_header(skb
);
5738 skb_set_network_header(skb
, mac_len
);
5740 if (ethernet
&& mac_len
>= ETH_HLEN
) {
5743 /* use mpls_hdr() to get ethertype to account for VLANs. */
5744 hdr
= (struct ethhdr
*)((void *)mpls_hdr(skb
) - ETH_HLEN
);
5745 skb_mod_eth_type(skb
, hdr
, next_proto
);
5747 skb
->protocol
= next_proto
;
5751 EXPORT_SYMBOL_GPL(skb_mpls_pop
);
5754 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5757 * @mpls_lse: new MPLS label stack entry to update to
5759 * Expects skb->data at mac header.
5761 * Returns 0 on success, -errno otherwise.
5763 int skb_mpls_update_lse(struct sk_buff
*skb
, __be32 mpls_lse
)
5767 if (unlikely(!eth_p_mpls(skb
->protocol
)))
5770 err
= skb_ensure_writable(skb
, skb
->mac_len
+ MPLS_HLEN
);
5774 if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
5775 __be32 diff
[] = { ~mpls_hdr(skb
)->label_stack_entry
, mpls_lse
};
5777 skb
->csum
= csum_partial((char *)diff
, sizeof(diff
), skb
->csum
);
5780 mpls_hdr(skb
)->label_stack_entry
= mpls_lse
;
5784 EXPORT_SYMBOL_GPL(skb_mpls_update_lse
);
5787 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5791 * Expects skb->data at mac header.
5793 * Returns 0 on success, -errno otherwise.
5795 int skb_mpls_dec_ttl(struct sk_buff
*skb
)
5800 if (unlikely(!eth_p_mpls(skb
->protocol
)))
5803 if (!pskb_may_pull(skb
, skb_network_offset(skb
) + MPLS_HLEN
))
5806 lse
= be32_to_cpu(mpls_hdr(skb
)->label_stack_entry
);
5807 ttl
= (lse
& MPLS_LS_TTL_MASK
) >> MPLS_LS_TTL_SHIFT
;
5811 lse
&= ~MPLS_LS_TTL_MASK
;
5812 lse
|= ttl
<< MPLS_LS_TTL_SHIFT
;
5814 return skb_mpls_update_lse(skb
, cpu_to_be32(lse
));
5816 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl
);
5819 * alloc_skb_with_frags - allocate skb with page frags
5821 * @header_len: size of linear part
5822 * @data_len: needed length in frags
5823 * @max_page_order: max page order desired.
5824 * @errcode: pointer to error code if any
5825 * @gfp_mask: allocation mask
5827 * This can be used to allocate a paged skb, given a maximal order for frags.
5829 struct sk_buff
*alloc_skb_with_frags(unsigned long header_len
,
5830 unsigned long data_len
,
5835 int npages
= (data_len
+ (PAGE_SIZE
- 1)) >> PAGE_SHIFT
;
5836 unsigned long chunk
;
5837 struct sk_buff
*skb
;
5841 *errcode
= -EMSGSIZE
;
5842 /* Note this test could be relaxed, if we succeed to allocate
5843 * high order pages...
5845 if (npages
> MAX_SKB_FRAGS
)
5848 *errcode
= -ENOBUFS
;
5849 skb
= alloc_skb(header_len
, gfp_mask
);
5853 skb
->truesize
+= npages
<< PAGE_SHIFT
;
5855 for (i
= 0; npages
> 0; i
++) {
5856 int order
= max_page_order
;
5859 if (npages
>= 1 << order
) {
5860 page
= alloc_pages((gfp_mask
& ~__GFP_DIRECT_RECLAIM
) |
5866 /* Do not retry other high order allocations */
5872 page
= alloc_page(gfp_mask
);
5876 chunk
= min_t(unsigned long, data_len
,
5877 PAGE_SIZE
<< order
);
5878 skb_fill_page_desc(skb
, i
, page
, 0, chunk
);
5880 npages
-= 1 << order
;
5888 EXPORT_SYMBOL(alloc_skb_with_frags
);
5890 /* carve out the first off bytes from skb when off < headlen */
5891 static int pskb_carve_inside_header(struct sk_buff
*skb
, const u32 off
,
5892 const int headlen
, gfp_t gfp_mask
)
5895 int size
= skb_end_offset(skb
);
5896 int new_hlen
= headlen
- off
;
5899 size
= SKB_DATA_ALIGN(size
);
5901 if (skb_pfmemalloc(skb
))
5902 gfp_mask
|= __GFP_MEMALLOC
;
5903 data
= kmalloc_reserve(size
+
5904 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)),
5905 gfp_mask
, NUMA_NO_NODE
, NULL
);
5909 size
= SKB_WITH_OVERHEAD(ksize(data
));
5911 /* Copy real data, and all frags */
5912 skb_copy_from_linear_data_offset(skb
, off
, data
, new_hlen
);
5915 memcpy((struct skb_shared_info
*)(data
+ size
),
5917 offsetof(struct skb_shared_info
,
5918 frags
[skb_shinfo(skb
)->nr_frags
]));
5919 if (skb_cloned(skb
)) {
5920 /* drop the old head gracefully */
5921 if (skb_orphan_frags(skb
, gfp_mask
)) {
5925 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
5926 skb_frag_ref(skb
, i
);
5927 if (skb_has_frag_list(skb
))
5928 skb_clone_fraglist(skb
);
5929 skb_release_data(skb
);
5931 /* we can reuse existing recount- all we did was
5940 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5943 skb
->end
= skb
->head
+ size
;
5945 skb_set_tail_pointer(skb
, skb_headlen(skb
));
5946 skb_headers_offset_update(skb
, 0);
5950 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
5955 static int pskb_carve(struct sk_buff
*skb
, const u32 off
, gfp_t gfp
);
5957 /* carve out the first eat bytes from skb's frag_list. May recurse into
5960 static int pskb_carve_frag_list(struct sk_buff
*skb
,
5961 struct skb_shared_info
*shinfo
, int eat
,
5964 struct sk_buff
*list
= shinfo
->frag_list
;
5965 struct sk_buff
*clone
= NULL
;
5966 struct sk_buff
*insp
= NULL
;
5970 pr_err("Not enough bytes to eat. Want %d\n", eat
);
5973 if (list
->len
<= eat
) {
5974 /* Eaten as whole. */
5979 /* Eaten partially. */
5980 if (skb_shared(list
)) {
5981 clone
= skb_clone(list
, gfp_mask
);
5987 /* This may be pulled without problems. */
5990 if (pskb_carve(list
, eat
, gfp_mask
) < 0) {
5998 /* Free pulled out fragments. */
5999 while ((list
= shinfo
->frag_list
) != insp
) {
6000 shinfo
->frag_list
= list
->next
;
6003 /* And insert new clone at head. */
6006 shinfo
->frag_list
= clone
;
6011 /* carve off first len bytes from skb. Split line (off) is in the
6012 * non-linear part of skb
6014 static int pskb_carve_inside_nonlinear(struct sk_buff
*skb
, const u32 off
,
6015 int pos
, gfp_t gfp_mask
)
6018 int size
= skb_end_offset(skb
);
6020 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
6021 struct skb_shared_info
*shinfo
;
6023 size
= SKB_DATA_ALIGN(size
);
6025 if (skb_pfmemalloc(skb
))
6026 gfp_mask
|= __GFP_MEMALLOC
;
6027 data
= kmalloc_reserve(size
+
6028 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)),
6029 gfp_mask
, NUMA_NO_NODE
, NULL
);
6033 size
= SKB_WITH_OVERHEAD(ksize(data
));
6035 memcpy((struct skb_shared_info
*)(data
+ size
),
6036 skb_shinfo(skb
), offsetof(struct skb_shared_info
, frags
[0]));
6037 if (skb_orphan_frags(skb
, gfp_mask
)) {
6041 shinfo
= (struct skb_shared_info
*)(data
+ size
);
6042 for (i
= 0; i
< nfrags
; i
++) {
6043 int fsize
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
6045 if (pos
+ fsize
> off
) {
6046 shinfo
->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
6050 * We have two variants in this case:
6051 * 1. Move all the frag to the second
6052 * part, if it is possible. F.e.
6053 * this approach is mandatory for TUX,
6054 * where splitting is expensive.
6055 * 2. Split is accurately. We make this.
6057 skb_frag_off_add(&shinfo
->frags
[0], off
- pos
);
6058 skb_frag_size_sub(&shinfo
->frags
[0], off
- pos
);
6060 skb_frag_ref(skb
, i
);
6065 shinfo
->nr_frags
= k
;
6066 if (skb_has_frag_list(skb
))
6067 skb_clone_fraglist(skb
);
6069 /* split line is in frag list */
6070 if (k
== 0 && pskb_carve_frag_list(skb
, shinfo
, off
- pos
, gfp_mask
)) {
6071 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6072 if (skb_has_frag_list(skb
))
6073 kfree_skb_list(skb_shinfo(skb
)->frag_list
);
6077 skb_release_data(skb
);
6082 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6085 skb
->end
= skb
->head
+ size
;
6087 skb_reset_tail_pointer(skb
);
6088 skb_headers_offset_update(skb
, 0);
6093 skb
->data_len
= skb
->len
;
6094 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
6098 /* remove len bytes from the beginning of the skb */
6099 static int pskb_carve(struct sk_buff
*skb
, const u32 len
, gfp_t gfp
)
6101 int headlen
= skb_headlen(skb
);
6104 return pskb_carve_inside_header(skb
, len
, headlen
, gfp
);
6106 return pskb_carve_inside_nonlinear(skb
, len
, headlen
, gfp
);
6109 /* Extract to_copy bytes starting at off from skb, and return this in
6112 struct sk_buff
*pskb_extract(struct sk_buff
*skb
, int off
,
6113 int to_copy
, gfp_t gfp
)
6115 struct sk_buff
*clone
= skb_clone(skb
, gfp
);
6120 if (pskb_carve(clone
, off
, gfp
) < 0 ||
6121 pskb_trim(clone
, to_copy
)) {
6127 EXPORT_SYMBOL(pskb_extract
);
6130 * skb_condense - try to get rid of fragments/frag_list if possible
6133 * Can be used to save memory before skb is added to a busy queue.
6134 * If packet has bytes in frags and enough tail room in skb->head,
6135 * pull all of them, so that we can free the frags right now and adjust
6138 * We do not reallocate skb->head thus can not fail.
6139 * Caller must re-evaluate skb->truesize if needed.
6141 void skb_condense(struct sk_buff
*skb
)
6143 if (skb
->data_len
) {
6144 if (skb
->data_len
> skb
->end
- skb
->tail
||
6148 /* Nice, we can free page frag(s) right now */
6149 __pskb_pull_tail(skb
, skb
->data_len
);
6151 /* At this point, skb->truesize might be over estimated,
6152 * because skb had a fragment, and fragments do not tell
6154 * When we pulled its content into skb->head, fragment
6155 * was freed, but __pskb_pull_tail() could not possibly
6156 * adjust skb->truesize, not knowing the frag truesize.
6158 skb
->truesize
= SKB_TRUESIZE(skb_end_offset(skb
));
6161 #ifdef CONFIG_SKB_EXTENSIONS
6162 static void *skb_ext_get_ptr(struct skb_ext
*ext
, enum skb_ext_id id
)
6164 return (void *)ext
+ (ext
->offset
[id
] * SKB_EXT_ALIGN_VALUE
);
6168 * __skb_ext_alloc - allocate a new skb extensions storage
6170 * @flags: See kmalloc().
6172 * Returns the newly allocated pointer. The pointer can later attached to a
6173 * skb via __skb_ext_set().
6174 * Note: caller must handle the skb_ext as an opaque data.
6176 struct skb_ext
*__skb_ext_alloc(gfp_t flags
)
6178 struct skb_ext
*new = kmem_cache_alloc(skbuff_ext_cache
, flags
);
6181 memset(new->offset
, 0, sizeof(new->offset
));
6182 refcount_set(&new->refcnt
, 1);
6188 static struct skb_ext
*skb_ext_maybe_cow(struct skb_ext
*old
,
6189 unsigned int old_active
)
6191 struct skb_ext
*new;
6193 if (refcount_read(&old
->refcnt
) == 1)
6196 new = kmem_cache_alloc(skbuff_ext_cache
, GFP_ATOMIC
);
6200 memcpy(new, old
, old
->chunks
* SKB_EXT_ALIGN_VALUE
);
6201 refcount_set(&new->refcnt
, 1);
6204 if (old_active
& (1 << SKB_EXT_SEC_PATH
)) {
6205 struct sec_path
*sp
= skb_ext_get_ptr(old
, SKB_EXT_SEC_PATH
);
6208 for (i
= 0; i
< sp
->len
; i
++)
6209 xfrm_state_hold(sp
->xvec
[i
]);
6217 * __skb_ext_set - attach the specified extension storage to this skb
6220 * @ext: extension storage previously allocated via __skb_ext_alloc()
6222 * Existing extensions, if any, are cleared.
6224 * Returns the pointer to the extension.
6226 void *__skb_ext_set(struct sk_buff
*skb
, enum skb_ext_id id
,
6227 struct skb_ext
*ext
)
6229 unsigned int newlen
, newoff
= SKB_EXT_CHUNKSIZEOF(*ext
);
6232 newlen
= newoff
+ skb_ext_type_len
[id
];
6233 ext
->chunks
= newlen
;
6234 ext
->offset
[id
] = newoff
;
6235 skb
->extensions
= ext
;
6236 skb
->active_extensions
= 1 << id
;
6237 return skb_ext_get_ptr(ext
, id
);
6241 * skb_ext_add - allocate space for given extension, COW if needed
6243 * @id: extension to allocate space for
6245 * Allocates enough space for the given extension.
6246 * If the extension is already present, a pointer to that extension
6249 * If the skb was cloned, COW applies and the returned memory can be
6250 * modified without changing the extension space of clones buffers.
6252 * Returns pointer to the extension or NULL on allocation failure.
6254 void *skb_ext_add(struct sk_buff
*skb
, enum skb_ext_id id
)
6256 struct skb_ext
*new, *old
= NULL
;
6257 unsigned int newlen
, newoff
;
6259 if (skb
->active_extensions
) {
6260 old
= skb
->extensions
;
6262 new = skb_ext_maybe_cow(old
, skb
->active_extensions
);
6266 if (__skb_ext_exist(new, id
))
6269 newoff
= new->chunks
;
6271 newoff
= SKB_EXT_CHUNKSIZEOF(*new);
6273 new = __skb_ext_alloc(GFP_ATOMIC
);
6278 newlen
= newoff
+ skb_ext_type_len
[id
];
6279 new->chunks
= newlen
;
6280 new->offset
[id
] = newoff
;
6282 skb
->extensions
= new;
6283 skb
->active_extensions
|= 1 << id
;
6284 return skb_ext_get_ptr(new, id
);
6286 EXPORT_SYMBOL(skb_ext_add
);
6289 static void skb_ext_put_sp(struct sec_path
*sp
)
6293 for (i
= 0; i
< sp
->len
; i
++)
6294 xfrm_state_put(sp
->xvec
[i
]);
6298 void __skb_ext_del(struct sk_buff
*skb
, enum skb_ext_id id
)
6300 struct skb_ext
*ext
= skb
->extensions
;
6302 skb
->active_extensions
&= ~(1 << id
);
6303 if (skb
->active_extensions
== 0) {
6304 skb
->extensions
= NULL
;
6307 } else if (id
== SKB_EXT_SEC_PATH
&&
6308 refcount_read(&ext
->refcnt
) == 1) {
6309 struct sec_path
*sp
= skb_ext_get_ptr(ext
, SKB_EXT_SEC_PATH
);
6316 EXPORT_SYMBOL(__skb_ext_del
);
6318 void __skb_ext_put(struct skb_ext
*ext
)
6320 /* If this is last clone, nothing can increment
6321 * it after check passes. Avoids one atomic op.
6323 if (refcount_read(&ext
->refcnt
) == 1)
6326 if (!refcount_dec_and_test(&ext
->refcnt
))
6330 if (__skb_ext_exist(ext
, SKB_EXT_SEC_PATH
))
6331 skb_ext_put_sp(skb_ext_get_ptr(ext
, SKB_EXT_SEC_PATH
));
6334 kmem_cache_free(skbuff_ext_cache
, ext
);
6336 EXPORT_SYMBOL(__skb_ext_put
);
6337 #endif /* CONFIG_SKB_EXTENSIONS */