Merge tag 'iommu-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux/fpc-iii.git] / net / mac80211 / sta_info.c
blobec6973ee88ef49d9169ce9141642859166c6059f
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2013-2014 Intel Mobile Communications GmbH
6 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
7 * Copyright (C) 2018-2020 Intel Corporation
8 */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
21 #include <net/codel.h>
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
31 /**
32 * DOC: STA information lifetime rules
34 * STA info structures (&struct sta_info) are managed in a hash table
35 * for faster lookup and a list for iteration. They are managed using
36 * RCU, i.e. access to the list and hash table is protected by RCU.
38 * Upon allocating a STA info structure with sta_info_alloc(), the caller
39 * owns that structure. It must then insert it into the hash table using
40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41 * case (which acquires an rcu read section but must not be called from
42 * within one) will the pointer still be valid after the call. Note that
43 * the caller may not do much with the STA info before inserting it, in
44 * particular, it may not start any mesh peer link management or add
45 * encryption keys.
47 * When the insertion fails (sta_info_insert()) returns non-zero), the
48 * structure will have been freed by sta_info_insert()!
50 * Station entries are added by mac80211 when you establish a link with a
51 * peer. This means different things for the different type of interfaces
52 * we support. For a regular station this mean we add the AP sta when we
53 * receive an association response from the AP. For IBSS this occurs when
54 * get to know about a peer on the same IBSS. For WDS we add the sta for
55 * the peer immediately upon device open. When using AP mode we add stations
56 * for each respective station upon request from userspace through nl80211.
58 * In order to remove a STA info structure, various sta_info_destroy_*()
59 * calls are available.
61 * There is no concept of ownership on a STA entry, each structure is
62 * owned by the global hash table/list until it is removed. All users of
63 * the structure need to be RCU protected so that the structure won't be
64 * freed before they are done using it.
67 static const struct rhashtable_params sta_rht_params = {
68 .nelem_hint = 3, /* start small */
69 .automatic_shrinking = true,
70 .head_offset = offsetof(struct sta_info, hash_node),
71 .key_offset = offsetof(struct sta_info, addr),
72 .key_len = ETH_ALEN,
73 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
76 /* Caller must hold local->sta_mtx */
77 static int sta_info_hash_del(struct ieee80211_local *local,
78 struct sta_info *sta)
80 return rhltable_remove(&local->sta_hash, &sta->hash_node,
81 sta_rht_params);
84 static void __cleanup_single_sta(struct sta_info *sta)
86 int ac, i;
87 struct tid_ampdu_tx *tid_tx;
88 struct ieee80211_sub_if_data *sdata = sta->sdata;
89 struct ieee80211_local *local = sdata->local;
90 struct ps_data *ps;
92 if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
93 test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
94 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
95 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
96 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
97 ps = &sdata->bss->ps;
98 else if (ieee80211_vif_is_mesh(&sdata->vif))
99 ps = &sdata->u.mesh.ps;
100 else
101 return;
103 clear_sta_flag(sta, WLAN_STA_PS_STA);
104 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
105 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
107 atomic_dec(&ps->num_sta_ps);
110 if (sta->sta.txq[0]) {
111 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
112 struct txq_info *txqi;
114 if (!sta->sta.txq[i])
115 continue;
117 txqi = to_txq_info(sta->sta.txq[i]);
119 ieee80211_txq_purge(local, txqi);
123 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
124 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
125 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
126 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
129 if (ieee80211_vif_is_mesh(&sdata->vif))
130 mesh_sta_cleanup(sta);
132 cancel_work_sync(&sta->drv_deliver_wk);
135 * Destroy aggregation state here. It would be nice to wait for the
136 * driver to finish aggregation stop and then clean up, but for now
137 * drivers have to handle aggregation stop being requested, followed
138 * directly by station destruction.
140 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
141 kfree(sta->ampdu_mlme.tid_start_tx[i]);
142 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
143 if (!tid_tx)
144 continue;
145 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
146 kfree(tid_tx);
150 static void cleanup_single_sta(struct sta_info *sta)
152 struct ieee80211_sub_if_data *sdata = sta->sdata;
153 struct ieee80211_local *local = sdata->local;
155 __cleanup_single_sta(sta);
156 sta_info_free(local, sta);
159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
160 const u8 *addr)
162 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
165 /* protected by RCU */
166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
167 const u8 *addr)
169 struct ieee80211_local *local = sdata->local;
170 struct rhlist_head *tmp;
171 struct sta_info *sta;
173 rcu_read_lock();
174 for_each_sta_info(local, addr, sta, tmp) {
175 if (sta->sdata == sdata) {
176 rcu_read_unlock();
177 /* this is safe as the caller must already hold
178 * another rcu read section or the mutex
180 return sta;
183 rcu_read_unlock();
184 return NULL;
188 * Get sta info either from the specified interface
189 * or from one of its vlans
191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
192 const u8 *addr)
194 struct ieee80211_local *local = sdata->local;
195 struct rhlist_head *tmp;
196 struct sta_info *sta;
198 rcu_read_lock();
199 for_each_sta_info(local, addr, sta, tmp) {
200 if (sta->sdata == sdata ||
201 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
202 rcu_read_unlock();
203 /* this is safe as the caller must already hold
204 * another rcu read section or the mutex
206 return sta;
209 rcu_read_unlock();
210 return NULL;
213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local,
214 const u8 *sta_addr, const u8 *vif_addr)
216 struct rhlist_head *tmp;
217 struct sta_info *sta;
219 for_each_sta_info(local, sta_addr, sta, tmp) {
220 if (ether_addr_equal(vif_addr, sta->sdata->vif.addr))
221 return sta;
224 return NULL;
227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
228 int idx)
230 struct ieee80211_local *local = sdata->local;
231 struct sta_info *sta;
232 int i = 0;
234 list_for_each_entry_rcu(sta, &local->sta_list, list,
235 lockdep_is_held(&local->sta_mtx)) {
236 if (sdata != sta->sdata)
237 continue;
238 if (i < idx) {
239 ++i;
240 continue;
242 return sta;
245 return NULL;
249 * sta_info_free - free STA
251 * @local: pointer to the global information
252 * @sta: STA info to free
254 * This function must undo everything done by sta_info_alloc()
255 * that may happen before sta_info_insert(). It may only be
256 * called when sta_info_insert() has not been attempted (and
257 * if that fails, the station is freed anyway.)
259 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
262 * If we had used sta_info_pre_move_state() then we might not
263 * have gone through the state transitions down again, so do
264 * it here now (and warn if it's inserted).
266 * This will clear state such as fast TX/RX that may have been
267 * allocated during state transitions.
269 while (sta->sta_state > IEEE80211_STA_NONE) {
270 int ret;
272 WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED));
274 ret = sta_info_move_state(sta, sta->sta_state - 1);
275 if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret))
276 break;
279 if (sta->rate_ctrl)
280 rate_control_free_sta(sta);
282 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
284 if (sta->sta.txq[0])
285 kfree(to_txq_info(sta->sta.txq[0]));
286 kfree(rcu_dereference_raw(sta->sta.rates));
287 #ifdef CONFIG_MAC80211_MESH
288 kfree(sta->mesh);
289 #endif
290 free_percpu(sta->pcpu_rx_stats);
291 kfree(sta);
294 /* Caller must hold local->sta_mtx */
295 static int sta_info_hash_add(struct ieee80211_local *local,
296 struct sta_info *sta)
298 return rhltable_insert(&local->sta_hash, &sta->hash_node,
299 sta_rht_params);
302 static void sta_deliver_ps_frames(struct work_struct *wk)
304 struct sta_info *sta;
306 sta = container_of(wk, struct sta_info, drv_deliver_wk);
308 if (sta->dead)
309 return;
311 local_bh_disable();
312 if (!test_sta_flag(sta, WLAN_STA_PS_STA))
313 ieee80211_sta_ps_deliver_wakeup(sta);
314 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
315 ieee80211_sta_ps_deliver_poll_response(sta);
316 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
317 ieee80211_sta_ps_deliver_uapsd(sta);
318 local_bh_enable();
321 static int sta_prepare_rate_control(struct ieee80211_local *local,
322 struct sta_info *sta, gfp_t gfp)
324 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
325 return 0;
327 sta->rate_ctrl = local->rate_ctrl;
328 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
329 sta, gfp);
330 if (!sta->rate_ctrl_priv)
331 return -ENOMEM;
333 return 0;
336 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
337 const u8 *addr, gfp_t gfp)
339 struct ieee80211_local *local = sdata->local;
340 struct ieee80211_hw *hw = &local->hw;
341 struct sta_info *sta;
342 int i;
344 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
345 if (!sta)
346 return NULL;
348 if (ieee80211_hw_check(hw, USES_RSS)) {
349 sta->pcpu_rx_stats =
350 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp);
351 if (!sta->pcpu_rx_stats)
352 goto free;
355 spin_lock_init(&sta->lock);
356 spin_lock_init(&sta->ps_lock);
357 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
358 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
359 mutex_init(&sta->ampdu_mlme.mtx);
360 #ifdef CONFIG_MAC80211_MESH
361 if (ieee80211_vif_is_mesh(&sdata->vif)) {
362 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
363 if (!sta->mesh)
364 goto free;
365 sta->mesh->plink_sta = sta;
366 spin_lock_init(&sta->mesh->plink_lock);
367 if (ieee80211_vif_is_mesh(&sdata->vif) &&
368 !sdata->u.mesh.user_mpm)
369 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer,
371 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
373 #endif
375 memcpy(sta->addr, addr, ETH_ALEN);
376 memcpy(sta->sta.addr, addr, ETH_ALEN);
377 sta->sta.max_rx_aggregation_subframes =
378 local->hw.max_rx_aggregation_subframes;
380 /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only.
381 * The Tx path starts to use a key as soon as the key slot ptk_idx
382 * references to is not NULL. To not use the initial Rx-only key
383 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid
384 * which always will refer to a NULL key.
386 BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX);
387 sta->ptk_idx = INVALID_PTK_KEYIDX;
389 sta->local = local;
390 sta->sdata = sdata;
391 sta->rx_stats.last_rx = jiffies;
393 u64_stats_init(&sta->rx_stats.syncp);
395 sta->sta_state = IEEE80211_STA_NONE;
397 /* Mark TID as unreserved */
398 sta->reserved_tid = IEEE80211_TID_UNRESERVED;
400 sta->last_connected = ktime_get_seconds();
401 ewma_signal_init(&sta->rx_stats_avg.signal);
402 ewma_avg_signal_init(&sta->status_stats.avg_ack_signal);
403 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
404 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
406 if (local->ops->wake_tx_queue) {
407 void *txq_data;
408 int size = sizeof(struct txq_info) +
409 ALIGN(hw->txq_data_size, sizeof(void *));
411 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
412 if (!txq_data)
413 goto free;
415 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
416 struct txq_info *txq = txq_data + i * size;
418 /* might not do anything for the bufferable MMPDU TXQ */
419 ieee80211_txq_init(sdata, sta, txq, i);
423 if (sta_prepare_rate_control(local, sta, gfp))
424 goto free_txq;
426 sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT;
428 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
429 skb_queue_head_init(&sta->ps_tx_buf[i]);
430 skb_queue_head_init(&sta->tx_filtered[i]);
431 sta->airtime[i].deficit = sta->airtime_weight;
432 atomic_set(&sta->airtime[i].aql_tx_pending, 0);
433 sta->airtime[i].aql_limit_low = local->aql_txq_limit_low[i];
434 sta->airtime[i].aql_limit_high = local->aql_txq_limit_high[i];
437 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
438 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
440 for (i = 0; i < NUM_NL80211_BANDS; i++) {
441 u32 mandatory = 0;
442 int r;
444 if (!hw->wiphy->bands[i])
445 continue;
447 switch (i) {
448 case NL80211_BAND_2GHZ:
450 * We use both here, even if we cannot really know for
451 * sure the station will support both, but the only use
452 * for this is when we don't know anything yet and send
453 * management frames, and then we'll pick the lowest
454 * possible rate anyway.
455 * If we don't include _G here, we cannot find a rate
456 * in P2P, and thus trigger the WARN_ONCE() in rate.c
458 mandatory = IEEE80211_RATE_MANDATORY_B |
459 IEEE80211_RATE_MANDATORY_G;
460 break;
461 case NL80211_BAND_5GHZ:
462 mandatory = IEEE80211_RATE_MANDATORY_A;
463 break;
464 case NL80211_BAND_60GHZ:
465 WARN_ON(1);
466 mandatory = 0;
467 break;
470 for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) {
471 struct ieee80211_rate *rate;
473 rate = &hw->wiphy->bands[i]->bitrates[r];
475 if (!(rate->flags & mandatory))
476 continue;
477 sta->sta.supp_rates[i] |= BIT(r);
481 sta->sta.smps_mode = IEEE80211_SMPS_OFF;
482 if (sdata->vif.type == NL80211_IFTYPE_AP ||
483 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
484 struct ieee80211_supported_band *sband;
485 u8 smps;
487 sband = ieee80211_get_sband(sdata);
488 if (!sband)
489 goto free_txq;
491 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
492 IEEE80211_HT_CAP_SM_PS_SHIFT;
494 * Assume that hostapd advertises our caps in the beacon and
495 * this is the known_smps_mode for a station that just assciated
497 switch (smps) {
498 case WLAN_HT_SMPS_CONTROL_DISABLED:
499 sta->known_smps_mode = IEEE80211_SMPS_OFF;
500 break;
501 case WLAN_HT_SMPS_CONTROL_STATIC:
502 sta->known_smps_mode = IEEE80211_SMPS_STATIC;
503 break;
504 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
505 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
506 break;
507 default:
508 WARN_ON(1);
512 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
514 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD;
515 sta->cparams.target = MS2TIME(20);
516 sta->cparams.interval = MS2TIME(100);
517 sta->cparams.ecn = true;
519 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
521 return sta;
523 free_txq:
524 if (sta->sta.txq[0])
525 kfree(to_txq_info(sta->sta.txq[0]));
526 free:
527 free_percpu(sta->pcpu_rx_stats);
528 #ifdef CONFIG_MAC80211_MESH
529 kfree(sta->mesh);
530 #endif
531 kfree(sta);
532 return NULL;
535 static int sta_info_insert_check(struct sta_info *sta)
537 struct ieee80211_sub_if_data *sdata = sta->sdata;
540 * Can't be a WARN_ON because it can be triggered through a race:
541 * something inserts a STA (on one CPU) without holding the RTNL
542 * and another CPU turns off the net device.
544 if (unlikely(!ieee80211_sdata_running(sdata)))
545 return -ENETDOWN;
547 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
548 is_multicast_ether_addr(sta->sta.addr)))
549 return -EINVAL;
551 /* The RCU read lock is required by rhashtable due to
552 * asynchronous resize/rehash. We also require the mutex
553 * for correctness.
555 rcu_read_lock();
556 lockdep_assert_held(&sdata->local->sta_mtx);
557 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
558 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
559 rcu_read_unlock();
560 return -ENOTUNIQ;
562 rcu_read_unlock();
564 return 0;
567 static int sta_info_insert_drv_state(struct ieee80211_local *local,
568 struct ieee80211_sub_if_data *sdata,
569 struct sta_info *sta)
571 enum ieee80211_sta_state state;
572 int err = 0;
574 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
575 err = drv_sta_state(local, sdata, sta, state, state + 1);
576 if (err)
577 break;
580 if (!err) {
582 * Drivers using legacy sta_add/sta_remove callbacks only
583 * get uploaded set to true after sta_add is called.
585 if (!local->ops->sta_add)
586 sta->uploaded = true;
587 return 0;
590 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
591 sdata_info(sdata,
592 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
593 sta->sta.addr, state + 1, err);
594 err = 0;
597 /* unwind on error */
598 for (; state > IEEE80211_STA_NOTEXIST; state--)
599 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
601 return err;
604 static void
605 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
607 struct ieee80211_local *local = sdata->local;
608 bool allow_p2p_go_ps = sdata->vif.p2p;
609 struct sta_info *sta;
611 rcu_read_lock();
612 list_for_each_entry_rcu(sta, &local->sta_list, list) {
613 if (sdata != sta->sdata ||
614 !test_sta_flag(sta, WLAN_STA_ASSOC))
615 continue;
616 if (!sta->sta.support_p2p_ps) {
617 allow_p2p_go_ps = false;
618 break;
621 rcu_read_unlock();
623 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
624 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
625 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
630 * should be called with sta_mtx locked
631 * this function replaces the mutex lock
632 * with a RCU lock
634 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
636 struct ieee80211_local *local = sta->local;
637 struct ieee80211_sub_if_data *sdata = sta->sdata;
638 struct station_info *sinfo = NULL;
639 int err = 0;
641 lockdep_assert_held(&local->sta_mtx);
643 /* check if STA exists already */
644 if (sta_info_get_bss(sdata, sta->sta.addr)) {
645 err = -EEXIST;
646 goto out_err;
649 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
650 if (!sinfo) {
651 err = -ENOMEM;
652 goto out_err;
655 local->num_sta++;
656 local->sta_generation++;
657 smp_mb();
659 /* simplify things and don't accept BA sessions yet */
660 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
662 /* make the station visible */
663 err = sta_info_hash_add(local, sta);
664 if (err)
665 goto out_drop_sta;
667 list_add_tail_rcu(&sta->list, &local->sta_list);
669 /* notify driver */
670 err = sta_info_insert_drv_state(local, sdata, sta);
671 if (err)
672 goto out_remove;
674 set_sta_flag(sta, WLAN_STA_INSERTED);
676 if (sta->sta_state >= IEEE80211_STA_ASSOC) {
677 ieee80211_recalc_min_chandef(sta->sdata);
678 if (!sta->sta.support_p2p_ps)
679 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
682 /* accept BA sessions now */
683 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
685 ieee80211_sta_debugfs_add(sta);
686 rate_control_add_sta_debugfs(sta);
688 sinfo->generation = local->sta_generation;
689 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
690 kfree(sinfo);
692 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
694 /* move reference to rcu-protected */
695 rcu_read_lock();
696 mutex_unlock(&local->sta_mtx);
698 if (ieee80211_vif_is_mesh(&sdata->vif))
699 mesh_accept_plinks_update(sdata);
701 return 0;
702 out_remove:
703 sta_info_hash_del(local, sta);
704 list_del_rcu(&sta->list);
705 out_drop_sta:
706 local->num_sta--;
707 synchronize_net();
708 cleanup_single_sta(sta);
709 out_err:
710 mutex_unlock(&local->sta_mtx);
711 kfree(sinfo);
712 rcu_read_lock();
713 return err;
716 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
718 struct ieee80211_local *local = sta->local;
719 int err;
721 might_sleep();
723 mutex_lock(&local->sta_mtx);
725 err = sta_info_insert_check(sta);
726 if (err) {
727 sta_info_free(local, sta);
728 mutex_unlock(&local->sta_mtx);
729 rcu_read_lock();
730 return err;
733 return sta_info_insert_finish(sta);
736 int sta_info_insert(struct sta_info *sta)
738 int err = sta_info_insert_rcu(sta);
740 rcu_read_unlock();
742 return err;
745 static inline void __bss_tim_set(u8 *tim, u16 id)
748 * This format has been mandated by the IEEE specifications,
749 * so this line may not be changed to use the __set_bit() format.
751 tim[id / 8] |= (1 << (id % 8));
754 static inline void __bss_tim_clear(u8 *tim, u16 id)
757 * This format has been mandated by the IEEE specifications,
758 * so this line may not be changed to use the __clear_bit() format.
760 tim[id / 8] &= ~(1 << (id % 8));
763 static inline bool __bss_tim_get(u8 *tim, u16 id)
766 * This format has been mandated by the IEEE specifications,
767 * so this line may not be changed to use the test_bit() format.
769 return tim[id / 8] & (1 << (id % 8));
772 static unsigned long ieee80211_tids_for_ac(int ac)
774 /* If we ever support TIDs > 7, this obviously needs to be adjusted */
775 switch (ac) {
776 case IEEE80211_AC_VO:
777 return BIT(6) | BIT(7);
778 case IEEE80211_AC_VI:
779 return BIT(4) | BIT(5);
780 case IEEE80211_AC_BE:
781 return BIT(0) | BIT(3);
782 case IEEE80211_AC_BK:
783 return BIT(1) | BIT(2);
784 default:
785 WARN_ON(1);
786 return 0;
790 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
792 struct ieee80211_local *local = sta->local;
793 struct ps_data *ps;
794 bool indicate_tim = false;
795 u8 ignore_for_tim = sta->sta.uapsd_queues;
796 int ac;
797 u16 id = sta->sta.aid;
799 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
800 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
801 if (WARN_ON_ONCE(!sta->sdata->bss))
802 return;
804 ps = &sta->sdata->bss->ps;
805 #ifdef CONFIG_MAC80211_MESH
806 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
807 ps = &sta->sdata->u.mesh.ps;
808 #endif
809 } else {
810 return;
813 /* No need to do anything if the driver does all */
814 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
815 return;
817 if (sta->dead)
818 goto done;
821 * If all ACs are delivery-enabled then we should build
822 * the TIM bit for all ACs anyway; if only some are then
823 * we ignore those and build the TIM bit using only the
824 * non-enabled ones.
826 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
827 ignore_for_tim = 0;
829 if (ignore_pending)
830 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
832 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
833 unsigned long tids;
835 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
836 continue;
838 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
839 !skb_queue_empty(&sta->ps_tx_buf[ac]);
840 if (indicate_tim)
841 break;
843 tids = ieee80211_tids_for_ac(ac);
845 indicate_tim |=
846 sta->driver_buffered_tids & tids;
847 indicate_tim |=
848 sta->txq_buffered_tids & tids;
851 done:
852 spin_lock_bh(&local->tim_lock);
854 if (indicate_tim == __bss_tim_get(ps->tim, id))
855 goto out_unlock;
857 if (indicate_tim)
858 __bss_tim_set(ps->tim, id);
859 else
860 __bss_tim_clear(ps->tim, id);
862 if (local->ops->set_tim && !WARN_ON(sta->dead)) {
863 local->tim_in_locked_section = true;
864 drv_set_tim(local, &sta->sta, indicate_tim);
865 local->tim_in_locked_section = false;
868 out_unlock:
869 spin_unlock_bh(&local->tim_lock);
872 void sta_info_recalc_tim(struct sta_info *sta)
874 __sta_info_recalc_tim(sta, false);
877 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
879 struct ieee80211_tx_info *info;
880 int timeout;
882 if (!skb)
883 return false;
885 info = IEEE80211_SKB_CB(skb);
887 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
888 timeout = (sta->listen_interval *
889 sta->sdata->vif.bss_conf.beacon_int *
890 32 / 15625) * HZ;
891 if (timeout < STA_TX_BUFFER_EXPIRE)
892 timeout = STA_TX_BUFFER_EXPIRE;
893 return time_after(jiffies, info->control.jiffies + timeout);
897 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
898 struct sta_info *sta, int ac)
900 unsigned long flags;
901 struct sk_buff *skb;
904 * First check for frames that should expire on the filtered
905 * queue. Frames here were rejected by the driver and are on
906 * a separate queue to avoid reordering with normal PS-buffered
907 * frames. They also aren't accounted for right now in the
908 * total_ps_buffered counter.
910 for (;;) {
911 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
912 skb = skb_peek(&sta->tx_filtered[ac]);
913 if (sta_info_buffer_expired(sta, skb))
914 skb = __skb_dequeue(&sta->tx_filtered[ac]);
915 else
916 skb = NULL;
917 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
920 * Frames are queued in order, so if this one
921 * hasn't expired yet we can stop testing. If
922 * we actually reached the end of the queue we
923 * also need to stop, of course.
925 if (!skb)
926 break;
927 ieee80211_free_txskb(&local->hw, skb);
931 * Now also check the normal PS-buffered queue, this will
932 * only find something if the filtered queue was emptied
933 * since the filtered frames are all before the normal PS
934 * buffered frames.
936 for (;;) {
937 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
938 skb = skb_peek(&sta->ps_tx_buf[ac]);
939 if (sta_info_buffer_expired(sta, skb))
940 skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
941 else
942 skb = NULL;
943 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
946 * frames are queued in order, so if this one
947 * hasn't expired yet (or we reached the end of
948 * the queue) we can stop testing
950 if (!skb)
951 break;
953 local->total_ps_buffered--;
954 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
955 sta->sta.addr);
956 ieee80211_free_txskb(&local->hw, skb);
960 * Finally, recalculate the TIM bit for this station -- it might
961 * now be clear because the station was too slow to retrieve its
962 * frames.
964 sta_info_recalc_tim(sta);
967 * Return whether there are any frames still buffered, this is
968 * used to check whether the cleanup timer still needs to run,
969 * if there are no frames we don't need to rearm the timer.
971 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
972 skb_queue_empty(&sta->tx_filtered[ac]));
975 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
976 struct sta_info *sta)
978 bool have_buffered = false;
979 int ac;
981 /* This is only necessary for stations on BSS/MBSS interfaces */
982 if (!sta->sdata->bss &&
983 !ieee80211_vif_is_mesh(&sta->sdata->vif))
984 return false;
986 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
987 have_buffered |=
988 sta_info_cleanup_expire_buffered_ac(local, sta, ac);
990 return have_buffered;
993 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
995 struct ieee80211_local *local;
996 struct ieee80211_sub_if_data *sdata;
997 int ret;
999 might_sleep();
1001 if (!sta)
1002 return -ENOENT;
1004 local = sta->local;
1005 sdata = sta->sdata;
1007 lockdep_assert_held(&local->sta_mtx);
1010 * Before removing the station from the driver and
1011 * rate control, it might still start new aggregation
1012 * sessions -- block that to make sure the tear-down
1013 * will be sufficient.
1015 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
1016 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
1019 * Before removing the station from the driver there might be pending
1020 * rx frames on RSS queues sent prior to the disassociation - wait for
1021 * all such frames to be processed.
1023 drv_sync_rx_queues(local, sta);
1025 ret = sta_info_hash_del(local, sta);
1026 if (WARN_ON(ret))
1027 return ret;
1030 * for TDLS peers, make sure to return to the base channel before
1031 * removal.
1033 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
1034 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
1035 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
1038 list_del_rcu(&sta->list);
1039 sta->removed = true;
1041 drv_sta_pre_rcu_remove(local, sta->sdata, sta);
1043 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1044 rcu_access_pointer(sdata->u.vlan.sta) == sta)
1045 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
1047 return 0;
1050 static void __sta_info_destroy_part2(struct sta_info *sta)
1052 struct ieee80211_local *local = sta->local;
1053 struct ieee80211_sub_if_data *sdata = sta->sdata;
1054 struct station_info *sinfo;
1055 int ret;
1058 * NOTE: This assumes at least synchronize_net() was done
1059 * after _part1 and before _part2!
1062 might_sleep();
1063 lockdep_assert_held(&local->sta_mtx);
1065 if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1066 ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
1067 WARN_ON_ONCE(ret);
1070 /* now keys can no longer be reached */
1071 ieee80211_free_sta_keys(local, sta);
1073 /* disable TIM bit - last chance to tell driver */
1074 __sta_info_recalc_tim(sta, true);
1076 sta->dead = true;
1078 local->num_sta--;
1079 local->sta_generation++;
1081 while (sta->sta_state > IEEE80211_STA_NONE) {
1082 ret = sta_info_move_state(sta, sta->sta_state - 1);
1083 if (ret) {
1084 WARN_ON_ONCE(1);
1085 break;
1089 if (sta->uploaded) {
1090 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
1091 IEEE80211_STA_NOTEXIST);
1092 WARN_ON_ONCE(ret != 0);
1095 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
1097 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1098 if (sinfo)
1099 sta_set_sinfo(sta, sinfo, true);
1100 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
1101 kfree(sinfo);
1103 ieee80211_sta_debugfs_remove(sta);
1105 cleanup_single_sta(sta);
1108 int __must_check __sta_info_destroy(struct sta_info *sta)
1110 int err = __sta_info_destroy_part1(sta);
1112 if (err)
1113 return err;
1115 synchronize_net();
1117 __sta_info_destroy_part2(sta);
1119 return 0;
1122 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1124 struct sta_info *sta;
1125 int ret;
1127 mutex_lock(&sdata->local->sta_mtx);
1128 sta = sta_info_get(sdata, addr);
1129 ret = __sta_info_destroy(sta);
1130 mutex_unlock(&sdata->local->sta_mtx);
1132 return ret;
1135 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1136 const u8 *addr)
1138 struct sta_info *sta;
1139 int ret;
1141 mutex_lock(&sdata->local->sta_mtx);
1142 sta = sta_info_get_bss(sdata, addr);
1143 ret = __sta_info_destroy(sta);
1144 mutex_unlock(&sdata->local->sta_mtx);
1146 return ret;
1149 static void sta_info_cleanup(struct timer_list *t)
1151 struct ieee80211_local *local = from_timer(local, t, sta_cleanup);
1152 struct sta_info *sta;
1153 bool timer_needed = false;
1155 rcu_read_lock();
1156 list_for_each_entry_rcu(sta, &local->sta_list, list)
1157 if (sta_info_cleanup_expire_buffered(local, sta))
1158 timer_needed = true;
1159 rcu_read_unlock();
1161 if (local->quiescing)
1162 return;
1164 if (!timer_needed)
1165 return;
1167 mod_timer(&local->sta_cleanup,
1168 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1171 int sta_info_init(struct ieee80211_local *local)
1173 int err;
1175 err = rhltable_init(&local->sta_hash, &sta_rht_params);
1176 if (err)
1177 return err;
1179 spin_lock_init(&local->tim_lock);
1180 mutex_init(&local->sta_mtx);
1181 INIT_LIST_HEAD(&local->sta_list);
1183 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0);
1184 return 0;
1187 void sta_info_stop(struct ieee80211_local *local)
1189 del_timer_sync(&local->sta_cleanup);
1190 rhltable_destroy(&local->sta_hash);
1194 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1196 struct ieee80211_local *local = sdata->local;
1197 struct sta_info *sta, *tmp;
1198 LIST_HEAD(free_list);
1199 int ret = 0;
1201 might_sleep();
1203 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1204 WARN_ON(vlans && !sdata->bss);
1206 mutex_lock(&local->sta_mtx);
1207 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1208 if (sdata == sta->sdata ||
1209 (vlans && sdata->bss == sta->sdata->bss)) {
1210 if (!WARN_ON(__sta_info_destroy_part1(sta)))
1211 list_add(&sta->free_list, &free_list);
1212 ret++;
1216 if (!list_empty(&free_list)) {
1217 synchronize_net();
1218 list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1219 __sta_info_destroy_part2(sta);
1221 mutex_unlock(&local->sta_mtx);
1223 return ret;
1226 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1227 unsigned long exp_time)
1229 struct ieee80211_local *local = sdata->local;
1230 struct sta_info *sta, *tmp;
1232 mutex_lock(&local->sta_mtx);
1234 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1235 unsigned long last_active = ieee80211_sta_last_active(sta);
1237 if (sdata != sta->sdata)
1238 continue;
1240 if (time_is_before_jiffies(last_active + exp_time)) {
1241 sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1242 sta->sta.addr);
1244 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1245 test_sta_flag(sta, WLAN_STA_PS_STA))
1246 atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1248 WARN_ON(__sta_info_destroy(sta));
1252 mutex_unlock(&local->sta_mtx);
1255 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1256 const u8 *addr,
1257 const u8 *localaddr)
1259 struct ieee80211_local *local = hw_to_local(hw);
1260 struct rhlist_head *tmp;
1261 struct sta_info *sta;
1264 * Just return a random station if localaddr is NULL
1265 * ... first in list.
1267 for_each_sta_info(local, addr, sta, tmp) {
1268 if (localaddr &&
1269 !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1270 continue;
1271 if (!sta->uploaded)
1272 return NULL;
1273 return &sta->sta;
1276 return NULL;
1278 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1280 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1281 const u8 *addr)
1283 struct sta_info *sta;
1285 if (!vif)
1286 return NULL;
1288 sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1289 if (!sta)
1290 return NULL;
1292 if (!sta->uploaded)
1293 return NULL;
1295 return &sta->sta;
1297 EXPORT_SYMBOL(ieee80211_find_sta);
1299 /* powersave support code */
1300 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1302 struct ieee80211_sub_if_data *sdata = sta->sdata;
1303 struct ieee80211_local *local = sdata->local;
1304 struct sk_buff_head pending;
1305 int filtered = 0, buffered = 0, ac, i;
1306 unsigned long flags;
1307 struct ps_data *ps;
1309 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1310 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1311 u.ap);
1313 if (sdata->vif.type == NL80211_IFTYPE_AP)
1314 ps = &sdata->bss->ps;
1315 else if (ieee80211_vif_is_mesh(&sdata->vif))
1316 ps = &sdata->u.mesh.ps;
1317 else
1318 return;
1320 clear_sta_flag(sta, WLAN_STA_SP);
1322 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1323 sta->driver_buffered_tids = 0;
1324 sta->txq_buffered_tids = 0;
1326 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1327 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1329 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1330 if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i]))
1331 continue;
1333 schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i]));
1336 skb_queue_head_init(&pending);
1338 /* sync with ieee80211_tx_h_unicast_ps_buf */
1339 spin_lock(&sta->ps_lock);
1340 /* Send all buffered frames to the station */
1341 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1342 int count = skb_queue_len(&pending), tmp;
1344 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1345 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1346 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1347 tmp = skb_queue_len(&pending);
1348 filtered += tmp - count;
1349 count = tmp;
1351 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1352 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1353 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1354 tmp = skb_queue_len(&pending);
1355 buffered += tmp - count;
1358 ieee80211_add_pending_skbs(local, &pending);
1360 /* now we're no longer in the deliver code */
1361 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1363 /* The station might have polled and then woken up before we responded,
1364 * so clear these flags now to avoid them sticking around.
1366 clear_sta_flag(sta, WLAN_STA_PSPOLL);
1367 clear_sta_flag(sta, WLAN_STA_UAPSD);
1368 spin_unlock(&sta->ps_lock);
1370 atomic_dec(&ps->num_sta_ps);
1372 local->total_ps_buffered -= buffered;
1374 sta_info_recalc_tim(sta);
1376 ps_dbg(sdata,
1377 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1378 sta->sta.addr, sta->sta.aid, filtered, buffered);
1380 ieee80211_check_fast_xmit(sta);
1383 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1384 enum ieee80211_frame_release_type reason,
1385 bool call_driver, bool more_data)
1387 struct ieee80211_sub_if_data *sdata = sta->sdata;
1388 struct ieee80211_local *local = sdata->local;
1389 struct ieee80211_qos_hdr *nullfunc;
1390 struct sk_buff *skb;
1391 int size = sizeof(*nullfunc);
1392 __le16 fc;
1393 bool qos = sta->sta.wme;
1394 struct ieee80211_tx_info *info;
1395 struct ieee80211_chanctx_conf *chanctx_conf;
1397 /* Don't send NDPs when STA is connected HE */
1398 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1399 !(sdata->u.mgd.flags & IEEE80211_STA_DISABLE_HE))
1400 return;
1402 if (qos) {
1403 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1404 IEEE80211_STYPE_QOS_NULLFUNC |
1405 IEEE80211_FCTL_FROMDS);
1406 } else {
1407 size -= 2;
1408 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1409 IEEE80211_STYPE_NULLFUNC |
1410 IEEE80211_FCTL_FROMDS);
1413 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1414 if (!skb)
1415 return;
1417 skb_reserve(skb, local->hw.extra_tx_headroom);
1419 nullfunc = skb_put(skb, size);
1420 nullfunc->frame_control = fc;
1421 nullfunc->duration_id = 0;
1422 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1423 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1424 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1425 nullfunc->seq_ctrl = 0;
1427 skb->priority = tid;
1428 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1429 if (qos) {
1430 nullfunc->qos_ctrl = cpu_to_le16(tid);
1432 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1433 nullfunc->qos_ctrl |=
1434 cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1435 if (more_data)
1436 nullfunc->frame_control |=
1437 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1441 info = IEEE80211_SKB_CB(skb);
1444 * Tell TX path to send this frame even though the
1445 * STA may still remain is PS mode after this frame
1446 * exchange. Also set EOSP to indicate this packet
1447 * ends the poll/service period.
1449 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1450 IEEE80211_TX_STATUS_EOSP |
1451 IEEE80211_TX_CTL_REQ_TX_STATUS;
1453 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1455 if (call_driver)
1456 drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1457 reason, false);
1459 skb->dev = sdata->dev;
1461 rcu_read_lock();
1462 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1463 if (WARN_ON(!chanctx_conf)) {
1464 rcu_read_unlock();
1465 kfree_skb(skb);
1466 return;
1469 info->band = chanctx_conf->def.chan->band;
1470 ieee80211_xmit(sdata, sta, skb);
1471 rcu_read_unlock();
1474 static int find_highest_prio_tid(unsigned long tids)
1476 /* lower 3 TIDs aren't ordered perfectly */
1477 if (tids & 0xF8)
1478 return fls(tids) - 1;
1479 /* TID 0 is BE just like TID 3 */
1480 if (tids & BIT(0))
1481 return 0;
1482 return fls(tids) - 1;
1485 /* Indicates if the MORE_DATA bit should be set in the last
1486 * frame obtained by ieee80211_sta_ps_get_frames.
1487 * Note that driver_release_tids is relevant only if
1488 * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1490 static bool
1491 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1492 enum ieee80211_frame_release_type reason,
1493 unsigned long driver_release_tids)
1495 int ac;
1497 /* If the driver has data on more than one TID then
1498 * certainly there's more data if we release just a
1499 * single frame now (from a single TID). This will
1500 * only happen for PS-Poll.
1502 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1503 hweight16(driver_release_tids) > 1)
1504 return true;
1506 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1507 if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1508 continue;
1510 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1511 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1512 return true;
1515 return false;
1518 static void
1519 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1520 enum ieee80211_frame_release_type reason,
1521 struct sk_buff_head *frames,
1522 unsigned long *driver_release_tids)
1524 struct ieee80211_sub_if_data *sdata = sta->sdata;
1525 struct ieee80211_local *local = sdata->local;
1526 int ac;
1528 /* Get response frame(s) and more data bit for the last one. */
1529 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1530 unsigned long tids;
1532 if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1533 continue;
1535 tids = ieee80211_tids_for_ac(ac);
1537 /* if we already have frames from software, then we can't also
1538 * release from hardware queues
1540 if (skb_queue_empty(frames)) {
1541 *driver_release_tids |=
1542 sta->driver_buffered_tids & tids;
1543 *driver_release_tids |= sta->txq_buffered_tids & tids;
1546 if (!*driver_release_tids) {
1547 struct sk_buff *skb;
1549 while (n_frames > 0) {
1550 skb = skb_dequeue(&sta->tx_filtered[ac]);
1551 if (!skb) {
1552 skb = skb_dequeue(
1553 &sta->ps_tx_buf[ac]);
1554 if (skb)
1555 local->total_ps_buffered--;
1557 if (!skb)
1558 break;
1559 n_frames--;
1560 __skb_queue_tail(frames, skb);
1564 /* If we have more frames buffered on this AC, then abort the
1565 * loop since we can't send more data from other ACs before
1566 * the buffered frames from this.
1568 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1569 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1570 break;
1574 static void
1575 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1576 int n_frames, u8 ignored_acs,
1577 enum ieee80211_frame_release_type reason)
1579 struct ieee80211_sub_if_data *sdata = sta->sdata;
1580 struct ieee80211_local *local = sdata->local;
1581 unsigned long driver_release_tids = 0;
1582 struct sk_buff_head frames;
1583 bool more_data;
1585 /* Service or PS-Poll period starts */
1586 set_sta_flag(sta, WLAN_STA_SP);
1588 __skb_queue_head_init(&frames);
1590 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1591 &frames, &driver_release_tids);
1593 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1595 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1596 driver_release_tids =
1597 BIT(find_highest_prio_tid(driver_release_tids));
1599 if (skb_queue_empty(&frames) && !driver_release_tids) {
1600 int tid, ac;
1603 * For PS-Poll, this can only happen due to a race condition
1604 * when we set the TIM bit and the station notices it, but
1605 * before it can poll for the frame we expire it.
1607 * For uAPSD, this is said in the standard (11.2.1.5 h):
1608 * At each unscheduled SP for a non-AP STA, the AP shall
1609 * attempt to transmit at least one MSDU or MMPDU, but no
1610 * more than the value specified in the Max SP Length field
1611 * in the QoS Capability element from delivery-enabled ACs,
1612 * that are destined for the non-AP STA.
1614 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1617 /* This will evaluate to 1, 3, 5 or 7. */
1618 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1619 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1620 break;
1621 tid = 7 - 2 * ac;
1623 ieee80211_send_null_response(sta, tid, reason, true, false);
1624 } else if (!driver_release_tids) {
1625 struct sk_buff_head pending;
1626 struct sk_buff *skb;
1627 int num = 0;
1628 u16 tids = 0;
1629 bool need_null = false;
1631 skb_queue_head_init(&pending);
1633 while ((skb = __skb_dequeue(&frames))) {
1634 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1635 struct ieee80211_hdr *hdr = (void *) skb->data;
1636 u8 *qoshdr = NULL;
1638 num++;
1641 * Tell TX path to send this frame even though the
1642 * STA may still remain is PS mode after this frame
1643 * exchange.
1645 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1646 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1649 * Use MoreData flag to indicate whether there are
1650 * more buffered frames for this STA
1652 if (more_data || !skb_queue_empty(&frames))
1653 hdr->frame_control |=
1654 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1655 else
1656 hdr->frame_control &=
1657 cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1659 if (ieee80211_is_data_qos(hdr->frame_control) ||
1660 ieee80211_is_qos_nullfunc(hdr->frame_control))
1661 qoshdr = ieee80211_get_qos_ctl(hdr);
1663 tids |= BIT(skb->priority);
1665 __skb_queue_tail(&pending, skb);
1667 /* end service period after last frame or add one */
1668 if (!skb_queue_empty(&frames))
1669 continue;
1671 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1672 /* for PS-Poll, there's only one frame */
1673 info->flags |= IEEE80211_TX_STATUS_EOSP |
1674 IEEE80211_TX_CTL_REQ_TX_STATUS;
1675 break;
1678 /* For uAPSD, things are a bit more complicated. If the
1679 * last frame has a QoS header (i.e. is a QoS-data or
1680 * QoS-nulldata frame) then just set the EOSP bit there
1681 * and be done.
1682 * If the frame doesn't have a QoS header (which means
1683 * it should be a bufferable MMPDU) then we can't set
1684 * the EOSP bit in the QoS header; add a QoS-nulldata
1685 * frame to the list to send it after the MMPDU.
1687 * Note that this code is only in the mac80211-release
1688 * code path, we assume that the driver will not buffer
1689 * anything but QoS-data frames, or if it does, will
1690 * create the QoS-nulldata frame by itself if needed.
1692 * Cf. 802.11-2012 10.2.1.10 (c).
1694 if (qoshdr) {
1695 *qoshdr |= IEEE80211_QOS_CTL_EOSP;
1697 info->flags |= IEEE80211_TX_STATUS_EOSP |
1698 IEEE80211_TX_CTL_REQ_TX_STATUS;
1699 } else {
1700 /* The standard isn't completely clear on this
1701 * as it says the more-data bit should be set
1702 * if there are more BUs. The QoS-Null frame
1703 * we're about to send isn't buffered yet, we
1704 * only create it below, but let's pretend it
1705 * was buffered just in case some clients only
1706 * expect more-data=0 when eosp=1.
1708 hdr->frame_control |=
1709 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1710 need_null = true;
1711 num++;
1713 break;
1716 drv_allow_buffered_frames(local, sta, tids, num,
1717 reason, more_data);
1719 ieee80211_add_pending_skbs(local, &pending);
1721 if (need_null)
1722 ieee80211_send_null_response(
1723 sta, find_highest_prio_tid(tids),
1724 reason, false, false);
1726 sta_info_recalc_tim(sta);
1727 } else {
1728 int tid;
1731 * We need to release a frame that is buffered somewhere in the
1732 * driver ... it'll have to handle that.
1733 * Note that the driver also has to check the number of frames
1734 * on the TIDs we're releasing from - if there are more than
1735 * n_frames it has to set the more-data bit (if we didn't ask
1736 * it to set it anyway due to other buffered frames); if there
1737 * are fewer than n_frames it has to make sure to adjust that
1738 * to allow the service period to end properly.
1740 drv_release_buffered_frames(local, sta, driver_release_tids,
1741 n_frames, reason, more_data);
1744 * Note that we don't recalculate the TIM bit here as it would
1745 * most likely have no effect at all unless the driver told us
1746 * that the TID(s) became empty before returning here from the
1747 * release function.
1748 * Either way, however, when the driver tells us that the TID(s)
1749 * became empty or we find that a txq became empty, we'll do the
1750 * TIM recalculation.
1753 if (!sta->sta.txq[0])
1754 return;
1756 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1757 if (!sta->sta.txq[tid] ||
1758 !(driver_release_tids & BIT(tid)) ||
1759 txq_has_queue(sta->sta.txq[tid]))
1760 continue;
1762 sta_info_recalc_tim(sta);
1763 break;
1768 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1770 u8 ignore_for_response = sta->sta.uapsd_queues;
1773 * If all ACs are delivery-enabled then we should reply
1774 * from any of them, if only some are enabled we reply
1775 * only from the non-enabled ones.
1777 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1778 ignore_for_response = 0;
1780 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1781 IEEE80211_FRAME_RELEASE_PSPOLL);
1784 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1786 int n_frames = sta->sta.max_sp;
1787 u8 delivery_enabled = sta->sta.uapsd_queues;
1790 * If we ever grow support for TSPEC this might happen if
1791 * the TSPEC update from hostapd comes in between a trigger
1792 * frame setting WLAN_STA_UAPSD in the RX path and this
1793 * actually getting called.
1795 if (!delivery_enabled)
1796 return;
1798 switch (sta->sta.max_sp) {
1799 case 1:
1800 n_frames = 2;
1801 break;
1802 case 2:
1803 n_frames = 4;
1804 break;
1805 case 3:
1806 n_frames = 6;
1807 break;
1808 case 0:
1809 /* XXX: what is a good value? */
1810 n_frames = 128;
1811 break;
1814 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1815 IEEE80211_FRAME_RELEASE_UAPSD);
1818 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1819 struct ieee80211_sta *pubsta, bool block)
1821 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1823 trace_api_sta_block_awake(sta->local, pubsta, block);
1825 if (block) {
1826 set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1827 ieee80211_clear_fast_xmit(sta);
1828 return;
1831 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1832 return;
1834 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1835 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1836 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1837 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1838 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1839 test_sta_flag(sta, WLAN_STA_UAPSD)) {
1840 /* must be asleep in this case */
1841 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1842 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1843 } else {
1844 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1845 ieee80211_check_fast_xmit(sta);
1848 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1850 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1852 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1853 struct ieee80211_local *local = sta->local;
1855 trace_api_eosp(local, pubsta);
1857 clear_sta_flag(sta, WLAN_STA_SP);
1859 EXPORT_SYMBOL(ieee80211_sta_eosp);
1861 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1863 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1864 enum ieee80211_frame_release_type reason;
1865 bool more_data;
1867 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1869 reason = IEEE80211_FRAME_RELEASE_UAPSD;
1870 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1871 reason, 0);
1873 ieee80211_send_null_response(sta, tid, reason, false, more_data);
1875 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1877 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1878 u8 tid, bool buffered)
1880 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1882 if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1883 return;
1885 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1887 if (buffered)
1888 set_bit(tid, &sta->driver_buffered_tids);
1889 else
1890 clear_bit(tid, &sta->driver_buffered_tids);
1892 sta_info_recalc_tim(sta);
1894 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1896 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid,
1897 u32 tx_airtime, u32 rx_airtime)
1899 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1900 struct ieee80211_local *local = sta->sdata->local;
1901 u8 ac = ieee80211_ac_from_tid(tid);
1902 u32 airtime = 0;
1904 if (sta->local->airtime_flags & AIRTIME_USE_TX)
1905 airtime += tx_airtime;
1906 if (sta->local->airtime_flags & AIRTIME_USE_RX)
1907 airtime += rx_airtime;
1909 spin_lock_bh(&local->active_txq_lock[ac]);
1910 sta->airtime[ac].tx_airtime += tx_airtime;
1911 sta->airtime[ac].rx_airtime += rx_airtime;
1912 sta->airtime[ac].deficit -= airtime;
1913 spin_unlock_bh(&local->active_txq_lock[ac]);
1915 EXPORT_SYMBOL(ieee80211_sta_register_airtime);
1917 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local,
1918 struct sta_info *sta, u8 ac,
1919 u16 tx_airtime, bool tx_completed)
1921 int tx_pending;
1923 if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL))
1924 return;
1926 if (!tx_completed) {
1927 if (sta)
1928 atomic_add(tx_airtime,
1929 &sta->airtime[ac].aql_tx_pending);
1931 atomic_add(tx_airtime, &local->aql_total_pending_airtime);
1932 return;
1935 if (sta) {
1936 tx_pending = atomic_sub_return(tx_airtime,
1937 &sta->airtime[ac].aql_tx_pending);
1938 if (tx_pending < 0)
1939 atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending,
1940 tx_pending, 0);
1943 tx_pending = atomic_sub_return(tx_airtime,
1944 &local->aql_total_pending_airtime);
1945 if (WARN_ONCE(tx_pending < 0,
1946 "Device %s AC %d pending airtime underflow: %u, %u",
1947 wiphy_name(local->hw.wiphy), ac, tx_pending,
1948 tx_airtime))
1949 atomic_cmpxchg(&local->aql_total_pending_airtime,
1950 tx_pending, 0);
1953 int sta_info_move_state(struct sta_info *sta,
1954 enum ieee80211_sta_state new_state)
1956 might_sleep();
1958 if (sta->sta_state == new_state)
1959 return 0;
1961 /* check allowed transitions first */
1963 switch (new_state) {
1964 case IEEE80211_STA_NONE:
1965 if (sta->sta_state != IEEE80211_STA_AUTH)
1966 return -EINVAL;
1967 break;
1968 case IEEE80211_STA_AUTH:
1969 if (sta->sta_state != IEEE80211_STA_NONE &&
1970 sta->sta_state != IEEE80211_STA_ASSOC)
1971 return -EINVAL;
1972 break;
1973 case IEEE80211_STA_ASSOC:
1974 if (sta->sta_state != IEEE80211_STA_AUTH &&
1975 sta->sta_state != IEEE80211_STA_AUTHORIZED)
1976 return -EINVAL;
1977 break;
1978 case IEEE80211_STA_AUTHORIZED:
1979 if (sta->sta_state != IEEE80211_STA_ASSOC)
1980 return -EINVAL;
1981 break;
1982 default:
1983 WARN(1, "invalid state %d", new_state);
1984 return -EINVAL;
1987 sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1988 sta->sta.addr, new_state);
1991 * notify the driver before the actual changes so it can
1992 * fail the transition
1994 if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1995 int err = drv_sta_state(sta->local, sta->sdata, sta,
1996 sta->sta_state, new_state);
1997 if (err)
1998 return err;
2001 /* reflect the change in all state variables */
2003 switch (new_state) {
2004 case IEEE80211_STA_NONE:
2005 if (sta->sta_state == IEEE80211_STA_AUTH)
2006 clear_bit(WLAN_STA_AUTH, &sta->_flags);
2007 break;
2008 case IEEE80211_STA_AUTH:
2009 if (sta->sta_state == IEEE80211_STA_NONE) {
2010 set_bit(WLAN_STA_AUTH, &sta->_flags);
2011 } else if (sta->sta_state == IEEE80211_STA_ASSOC) {
2012 clear_bit(WLAN_STA_ASSOC, &sta->_flags);
2013 ieee80211_recalc_min_chandef(sta->sdata);
2014 if (!sta->sta.support_p2p_ps)
2015 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2017 break;
2018 case IEEE80211_STA_ASSOC:
2019 if (sta->sta_state == IEEE80211_STA_AUTH) {
2020 set_bit(WLAN_STA_ASSOC, &sta->_flags);
2021 sta->assoc_at = ktime_get_boottime_ns();
2022 ieee80211_recalc_min_chandef(sta->sdata);
2023 if (!sta->sta.support_p2p_ps)
2024 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2025 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
2026 ieee80211_vif_dec_num_mcast(sta->sdata);
2027 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2028 ieee80211_clear_fast_xmit(sta);
2029 ieee80211_clear_fast_rx(sta);
2031 break;
2032 case IEEE80211_STA_AUTHORIZED:
2033 if (sta->sta_state == IEEE80211_STA_ASSOC) {
2034 ieee80211_vif_inc_num_mcast(sta->sdata);
2035 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2036 ieee80211_check_fast_xmit(sta);
2037 ieee80211_check_fast_rx(sta);
2039 if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
2040 sta->sdata->vif.type == NL80211_IFTYPE_AP)
2041 cfg80211_send_layer2_update(sta->sdata->dev,
2042 sta->sta.addr);
2043 break;
2044 default:
2045 break;
2048 sta->sta_state = new_state;
2050 return 0;
2053 u8 sta_info_tx_streams(struct sta_info *sta)
2055 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
2056 u8 rx_streams;
2058 if (!sta->sta.ht_cap.ht_supported)
2059 return 1;
2061 if (sta->sta.vht_cap.vht_supported) {
2062 int i;
2063 u16 tx_mcs_map =
2064 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
2066 for (i = 7; i >= 0; i--)
2067 if ((tx_mcs_map & (0x3 << (i * 2))) !=
2068 IEEE80211_VHT_MCS_NOT_SUPPORTED)
2069 return i + 1;
2072 if (ht_cap->mcs.rx_mask[3])
2073 rx_streams = 4;
2074 else if (ht_cap->mcs.rx_mask[2])
2075 rx_streams = 3;
2076 else if (ht_cap->mcs.rx_mask[1])
2077 rx_streams = 2;
2078 else
2079 rx_streams = 1;
2081 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
2082 return rx_streams;
2084 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
2085 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
2088 static struct ieee80211_sta_rx_stats *
2089 sta_get_last_rx_stats(struct sta_info *sta)
2091 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
2092 struct ieee80211_local *local = sta->local;
2093 int cpu;
2095 if (!ieee80211_hw_check(&local->hw, USES_RSS))
2096 return stats;
2098 for_each_possible_cpu(cpu) {
2099 struct ieee80211_sta_rx_stats *cpustats;
2101 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2103 if (time_after(cpustats->last_rx, stats->last_rx))
2104 stats = cpustats;
2107 return stats;
2110 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate,
2111 struct rate_info *rinfo)
2113 rinfo->bw = STA_STATS_GET(BW, rate);
2115 switch (STA_STATS_GET(TYPE, rate)) {
2116 case STA_STATS_RATE_TYPE_VHT:
2117 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
2118 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
2119 rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
2120 if (STA_STATS_GET(SGI, rate))
2121 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2122 break;
2123 case STA_STATS_RATE_TYPE_HT:
2124 rinfo->flags = RATE_INFO_FLAGS_MCS;
2125 rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
2126 if (STA_STATS_GET(SGI, rate))
2127 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2128 break;
2129 case STA_STATS_RATE_TYPE_LEGACY: {
2130 struct ieee80211_supported_band *sband;
2131 u16 brate;
2132 unsigned int shift;
2133 int band = STA_STATS_GET(LEGACY_BAND, rate);
2134 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
2136 sband = local->hw.wiphy->bands[band];
2138 if (WARN_ON_ONCE(!sband->bitrates))
2139 break;
2141 brate = sband->bitrates[rate_idx].bitrate;
2142 if (rinfo->bw == RATE_INFO_BW_5)
2143 shift = 2;
2144 else if (rinfo->bw == RATE_INFO_BW_10)
2145 shift = 1;
2146 else
2147 shift = 0;
2148 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2149 break;
2151 case STA_STATS_RATE_TYPE_HE:
2152 rinfo->flags = RATE_INFO_FLAGS_HE_MCS;
2153 rinfo->mcs = STA_STATS_GET(HE_MCS, rate);
2154 rinfo->nss = STA_STATS_GET(HE_NSS, rate);
2155 rinfo->he_gi = STA_STATS_GET(HE_GI, rate);
2156 rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate);
2157 rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate);
2158 break;
2162 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2164 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2166 if (rate == STA_STATS_RATE_INVALID)
2167 return -EINVAL;
2169 sta_stats_decode_rate(sta->local, rate, rinfo);
2170 return 0;
2173 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats,
2174 int tid)
2176 unsigned int start;
2177 u64 value;
2179 do {
2180 start = u64_stats_fetch_begin(&rxstats->syncp);
2181 value = rxstats->msdu[tid];
2182 } while (u64_stats_fetch_retry(&rxstats->syncp, start));
2184 return value;
2187 static void sta_set_tidstats(struct sta_info *sta,
2188 struct cfg80211_tid_stats *tidstats,
2189 int tid)
2191 struct ieee80211_local *local = sta->local;
2192 int cpu;
2194 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2195 if (!ieee80211_hw_check(&local->hw, USES_RSS))
2196 tidstats->rx_msdu +=
2197 sta_get_tidstats_msdu(&sta->rx_stats, tid);
2199 if (sta->pcpu_rx_stats) {
2200 for_each_possible_cpu(cpu) {
2201 struct ieee80211_sta_rx_stats *cpurxs;
2203 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2204 tidstats->rx_msdu +=
2205 sta_get_tidstats_msdu(cpurxs, tid);
2209 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2212 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2213 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2214 tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2217 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2218 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2219 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2220 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2223 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2224 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2225 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2226 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2229 if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) {
2230 spin_lock_bh(&local->fq.lock);
2231 rcu_read_lock();
2233 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS);
2234 ieee80211_fill_txq_stats(&tidstats->txq_stats,
2235 to_txq_info(sta->sta.txq[tid]));
2237 rcu_read_unlock();
2238 spin_unlock_bh(&local->fq.lock);
2242 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2244 unsigned int start;
2245 u64 value;
2247 do {
2248 start = u64_stats_fetch_begin(&rxstats->syncp);
2249 value = rxstats->bytes;
2250 } while (u64_stats_fetch_retry(&rxstats->syncp, start));
2252 return value;
2255 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo,
2256 bool tidstats)
2258 struct ieee80211_sub_if_data *sdata = sta->sdata;
2259 struct ieee80211_local *local = sdata->local;
2260 u32 thr = 0;
2261 int i, ac, cpu;
2262 struct ieee80211_sta_rx_stats *last_rxstats;
2264 last_rxstats = sta_get_last_rx_stats(sta);
2266 sinfo->generation = sdata->local->sta_generation;
2268 /* do before driver, so beacon filtering drivers have a
2269 * chance to e.g. just add the number of filtered beacons
2270 * (or just modify the value entirely, of course)
2272 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2273 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2275 drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2277 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) |
2278 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) |
2279 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) |
2280 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) |
2281 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) |
2282 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC);
2284 if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2285 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2286 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS);
2289 sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2290 sinfo->assoc_at = sta->assoc_at;
2291 sinfo->inactive_time =
2292 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2294 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) |
2295 BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) {
2296 sinfo->tx_bytes = 0;
2297 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2298 sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2299 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64);
2302 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) {
2303 sinfo->tx_packets = 0;
2304 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2305 sinfo->tx_packets += sta->tx_stats.packets[ac];
2306 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS);
2309 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) |
2310 BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) {
2311 if (!ieee80211_hw_check(&local->hw, USES_RSS))
2312 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2314 if (sta->pcpu_rx_stats) {
2315 for_each_possible_cpu(cpu) {
2316 struct ieee80211_sta_rx_stats *cpurxs;
2318 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2319 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2323 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64);
2326 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) {
2327 sinfo->rx_packets = sta->rx_stats.packets;
2328 if (sta->pcpu_rx_stats) {
2329 for_each_possible_cpu(cpu) {
2330 struct ieee80211_sta_rx_stats *cpurxs;
2332 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2333 sinfo->rx_packets += cpurxs->packets;
2336 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
2339 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) {
2340 sinfo->tx_retries = sta->status_stats.retry_count;
2341 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES);
2344 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) {
2345 sinfo->tx_failed = sta->status_stats.retry_failed;
2346 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED);
2349 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) {
2350 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2351 sinfo->rx_duration += sta->airtime[ac].rx_airtime;
2352 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
2355 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) {
2356 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2357 sinfo->tx_duration += sta->airtime[ac].tx_airtime;
2358 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION);
2361 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) {
2362 sinfo->airtime_weight = sta->airtime_weight;
2363 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT);
2366 sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2367 if (sta->pcpu_rx_stats) {
2368 for_each_possible_cpu(cpu) {
2369 struct ieee80211_sta_rx_stats *cpurxs;
2371 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2372 sinfo->rx_dropped_misc += cpurxs->dropped;
2376 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2377 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2378 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) |
2379 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2380 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2383 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2384 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2385 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) {
2386 sinfo->signal = (s8)last_rxstats->last_signal;
2387 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
2390 if (!sta->pcpu_rx_stats &&
2391 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) {
2392 sinfo->signal_avg =
2393 -ewma_signal_read(&sta->rx_stats_avg.signal);
2394 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG);
2398 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2399 * the sta->rx_stats struct, so the check here is fine with and without
2400 * pcpu statistics
2402 if (last_rxstats->chains &&
2403 !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) |
2404 BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2405 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL);
2406 if (!sta->pcpu_rx_stats)
2407 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2409 sinfo->chains = last_rxstats->chains;
2411 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2412 sinfo->chain_signal[i] =
2413 last_rxstats->chain_signal_last[i];
2414 sinfo->chain_signal_avg[i] =
2415 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2419 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) {
2420 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2421 &sinfo->txrate);
2422 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
2425 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) {
2426 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2427 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE);
2430 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) {
2431 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
2432 sta_set_tidstats(sta, &sinfo->pertid[i], i);
2435 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2436 #ifdef CONFIG_MAC80211_MESH
2437 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) |
2438 BIT_ULL(NL80211_STA_INFO_PLID) |
2439 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) |
2440 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) |
2441 BIT_ULL(NL80211_STA_INFO_PEER_PM) |
2442 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) |
2443 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) |
2444 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS);
2446 sinfo->llid = sta->mesh->llid;
2447 sinfo->plid = sta->mesh->plid;
2448 sinfo->plink_state = sta->mesh->plink_state;
2449 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2450 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET);
2451 sinfo->t_offset = sta->mesh->t_offset;
2453 sinfo->local_pm = sta->mesh->local_pm;
2454 sinfo->peer_pm = sta->mesh->peer_pm;
2455 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2456 sinfo->connected_to_gate = sta->mesh->connected_to_gate;
2457 sinfo->connected_to_as = sta->mesh->connected_to_as;
2458 #endif
2461 sinfo->bss_param.flags = 0;
2462 if (sdata->vif.bss_conf.use_cts_prot)
2463 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2464 if (sdata->vif.bss_conf.use_short_preamble)
2465 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2466 if (sdata->vif.bss_conf.use_short_slot)
2467 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2468 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2469 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2471 sinfo->sta_flags.set = 0;
2472 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2473 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2474 BIT(NL80211_STA_FLAG_WME) |
2475 BIT(NL80211_STA_FLAG_MFP) |
2476 BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2477 BIT(NL80211_STA_FLAG_ASSOCIATED) |
2478 BIT(NL80211_STA_FLAG_TDLS_PEER);
2479 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2480 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2481 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2482 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2483 if (sta->sta.wme)
2484 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2485 if (test_sta_flag(sta, WLAN_STA_MFP))
2486 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2487 if (test_sta_flag(sta, WLAN_STA_AUTH))
2488 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2489 if (test_sta_flag(sta, WLAN_STA_ASSOC))
2490 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2491 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2492 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2494 thr = sta_get_expected_throughput(sta);
2496 if (thr != 0) {
2497 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2498 sinfo->expected_throughput = thr;
2501 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) &&
2502 sta->status_stats.ack_signal_filled) {
2503 sinfo->ack_signal = sta->status_stats.last_ack_signal;
2504 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL);
2507 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) &&
2508 sta->status_stats.ack_signal_filled) {
2509 sinfo->avg_ack_signal =
2510 -(s8)ewma_avg_signal_read(
2511 &sta->status_stats.avg_ack_signal);
2512 sinfo->filled |=
2513 BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG);
2516 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2517 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC);
2518 sinfo->airtime_link_metric =
2519 airtime_link_metric_get(local, sta);
2523 u32 sta_get_expected_throughput(struct sta_info *sta)
2525 struct ieee80211_sub_if_data *sdata = sta->sdata;
2526 struct ieee80211_local *local = sdata->local;
2527 struct rate_control_ref *ref = NULL;
2528 u32 thr = 0;
2530 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2531 ref = local->rate_ctrl;
2533 /* check if the driver has a SW RC implementation */
2534 if (ref && ref->ops->get_expected_throughput)
2535 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2536 else
2537 thr = drv_get_expected_throughput(local, sta);
2539 return thr;
2542 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2544 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2546 if (!sta->status_stats.last_ack ||
2547 time_after(stats->last_rx, sta->status_stats.last_ack))
2548 return stats->last_rx;
2549 return sta->status_stats.last_ack;
2552 static void sta_update_codel_params(struct sta_info *sta, u32 thr)
2554 if (!sta->sdata->local->ops->wake_tx_queue)
2555 return;
2557 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {
2558 sta->cparams.target = MS2TIME(50);
2559 sta->cparams.interval = MS2TIME(300);
2560 sta->cparams.ecn = false;
2561 } else {
2562 sta->cparams.target = MS2TIME(20);
2563 sta->cparams.interval = MS2TIME(100);
2564 sta->cparams.ecn = true;
2568 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta,
2569 u32 thr)
2571 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2573 sta_update_codel_params(sta, thr);