Merge tag 'iommu-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux/fpc-iii.git] / net / wireless / reg.c
blobbb72447ad960271ab1aaec43867202763f8bc6f6
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2019 Intel Corporation
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
24 /**
25 * DOC: Wireless regulatory infrastructure
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
70 #define REG_ENFORCE_GRACE_MS 60000
72 /**
73 * enum reg_request_treatment - regulatory request treatment
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
82 enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
89 static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
102 static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
121 static int reg_num_devs_support_basehint;
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 return rcu_dereference_rtnl(cfg80211_regdomain);
142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
144 return rcu_dereference_rtnl(wiphy->regd);
147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
149 switch (dfs_region) {
150 case NL80211_DFS_UNSET:
151 return "unset";
152 case NL80211_DFS_FCC:
153 return "FCC";
154 case NL80211_DFS_ETSI:
155 return "ETSI";
156 case NL80211_DFS_JP:
157 return "JP";
159 return "Unknown";
162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
164 const struct ieee80211_regdomain *regd = NULL;
165 const struct ieee80211_regdomain *wiphy_regd = NULL;
167 regd = get_cfg80211_regdom();
168 if (!wiphy)
169 goto out;
171 wiphy_regd = get_wiphy_regdom(wiphy);
172 if (!wiphy_regd)
173 goto out;
175 if (wiphy_regd->dfs_region == regd->dfs_region)
176 goto out;
178 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179 dev_name(&wiphy->dev),
180 reg_dfs_region_str(wiphy_regd->dfs_region),
181 reg_dfs_region_str(regd->dfs_region));
183 out:
184 return regd->dfs_region;
187 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
189 if (!r)
190 return;
191 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
194 static struct regulatory_request *get_last_request(void)
196 return rcu_dereference_rtnl(last_request);
199 /* Used to queue up regulatory hints */
200 static LIST_HEAD(reg_requests_list);
201 static spinlock_t reg_requests_lock;
203 /* Used to queue up beacon hints for review */
204 static LIST_HEAD(reg_pending_beacons);
205 static spinlock_t reg_pending_beacons_lock;
207 /* Used to keep track of processed beacon hints */
208 static LIST_HEAD(reg_beacon_list);
210 struct reg_beacon {
211 struct list_head list;
212 struct ieee80211_channel chan;
215 static void reg_check_chans_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
218 static void reg_todo(struct work_struct *work);
219 static DECLARE_WORK(reg_work, reg_todo);
221 /* We keep a static world regulatory domain in case of the absence of CRDA */
222 static const struct ieee80211_regdomain world_regdom = {
223 .n_reg_rules = 8,
224 .alpha2 = "00",
225 .reg_rules = {
226 /* IEEE 802.11b/g, channels 1..11 */
227 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228 /* IEEE 802.11b/g, channels 12..13. */
229 REG_RULE(2467-10, 2472+10, 20, 6, 20,
230 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231 /* IEEE 802.11 channel 14 - Only JP enables
232 * this and for 802.11b only */
233 REG_RULE(2484-10, 2484+10, 20, 6, 20,
234 NL80211_RRF_NO_IR |
235 NL80211_RRF_NO_OFDM),
236 /* IEEE 802.11a, channel 36..48 */
237 REG_RULE(5180-10, 5240+10, 80, 6, 20,
238 NL80211_RRF_NO_IR |
239 NL80211_RRF_AUTO_BW),
241 /* IEEE 802.11a, channel 52..64 - DFS required */
242 REG_RULE(5260-10, 5320+10, 80, 6, 20,
243 NL80211_RRF_NO_IR |
244 NL80211_RRF_AUTO_BW |
245 NL80211_RRF_DFS),
247 /* IEEE 802.11a, channel 100..144 - DFS required */
248 REG_RULE(5500-10, 5720+10, 160, 6, 20,
249 NL80211_RRF_NO_IR |
250 NL80211_RRF_DFS),
252 /* IEEE 802.11a, channel 149..165 */
253 REG_RULE(5745-10, 5825+10, 80, 6, 20,
254 NL80211_RRF_NO_IR),
256 /* IEEE 802.11ad (60GHz), channels 1..3 */
257 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
261 /* protected by RTNL */
262 static const struct ieee80211_regdomain *cfg80211_world_regdom =
263 &world_regdom;
265 static char *ieee80211_regdom = "00";
266 static char user_alpha2[2];
267 static const struct ieee80211_regdomain *cfg80211_user_regdom;
269 module_param(ieee80211_regdom, charp, 0444);
270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
272 static void reg_free_request(struct regulatory_request *request)
274 if (request == &core_request_world)
275 return;
277 if (request != get_last_request())
278 kfree(request);
281 static void reg_free_last_request(void)
283 struct regulatory_request *lr = get_last_request();
285 if (lr != &core_request_world && lr)
286 kfree_rcu(lr, rcu_head);
289 static void reg_update_last_request(struct regulatory_request *request)
291 struct regulatory_request *lr;
293 lr = get_last_request();
294 if (lr == request)
295 return;
297 reg_free_last_request();
298 rcu_assign_pointer(last_request, request);
301 static void reset_regdomains(bool full_reset,
302 const struct ieee80211_regdomain *new_regdom)
304 const struct ieee80211_regdomain *r;
306 ASSERT_RTNL();
308 r = get_cfg80211_regdom();
310 /* avoid freeing static information or freeing something twice */
311 if (r == cfg80211_world_regdom)
312 r = NULL;
313 if (cfg80211_world_regdom == &world_regdom)
314 cfg80211_world_regdom = NULL;
315 if (r == &world_regdom)
316 r = NULL;
318 rcu_free_regdom(r);
319 rcu_free_regdom(cfg80211_world_regdom);
321 cfg80211_world_regdom = &world_regdom;
322 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
324 if (!full_reset)
325 return;
327 reg_update_last_request(&core_request_world);
331 * Dynamic world regulatory domain requested by the wireless
332 * core upon initialization
334 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
336 struct regulatory_request *lr;
338 lr = get_last_request();
340 WARN_ON(!lr);
342 reset_regdomains(false, rd);
344 cfg80211_world_regdom = rd;
347 bool is_world_regdom(const char *alpha2)
349 if (!alpha2)
350 return false;
351 return alpha2[0] == '0' && alpha2[1] == '0';
354 static bool is_alpha2_set(const char *alpha2)
356 if (!alpha2)
357 return false;
358 return alpha2[0] && alpha2[1];
361 static bool is_unknown_alpha2(const char *alpha2)
363 if (!alpha2)
364 return false;
366 * Special case where regulatory domain was built by driver
367 * but a specific alpha2 cannot be determined
369 return alpha2[0] == '9' && alpha2[1] == '9';
372 static bool is_intersected_alpha2(const char *alpha2)
374 if (!alpha2)
375 return false;
377 * Special case where regulatory domain is the
378 * result of an intersection between two regulatory domain
379 * structures
381 return alpha2[0] == '9' && alpha2[1] == '8';
384 static bool is_an_alpha2(const char *alpha2)
386 if (!alpha2)
387 return false;
388 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
393 if (!alpha2_x || !alpha2_y)
394 return false;
395 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
398 static bool regdom_changes(const char *alpha2)
400 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
402 if (!r)
403 return true;
404 return !alpha2_equal(r->alpha2, alpha2);
408 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410 * has ever been issued.
412 static bool is_user_regdom_saved(void)
414 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415 return false;
417 /* This would indicate a mistake on the design */
418 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419 "Unexpected user alpha2: %c%c\n",
420 user_alpha2[0], user_alpha2[1]))
421 return false;
423 return true;
426 static const struct ieee80211_regdomain *
427 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
429 struct ieee80211_regdomain *regd;
430 unsigned int i;
432 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
433 GFP_KERNEL);
434 if (!regd)
435 return ERR_PTR(-ENOMEM);
437 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
439 for (i = 0; i < src_regd->n_reg_rules; i++)
440 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
441 sizeof(struct ieee80211_reg_rule));
443 return regd;
446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
448 ASSERT_RTNL();
450 if (!IS_ERR(cfg80211_user_regdom))
451 kfree(cfg80211_user_regdom);
452 cfg80211_user_regdom = reg_copy_regd(rd);
455 struct reg_regdb_apply_request {
456 struct list_head list;
457 const struct ieee80211_regdomain *regdom;
460 static LIST_HEAD(reg_regdb_apply_list);
461 static DEFINE_MUTEX(reg_regdb_apply_mutex);
463 static void reg_regdb_apply(struct work_struct *work)
465 struct reg_regdb_apply_request *request;
467 rtnl_lock();
469 mutex_lock(&reg_regdb_apply_mutex);
470 while (!list_empty(&reg_regdb_apply_list)) {
471 request = list_first_entry(&reg_regdb_apply_list,
472 struct reg_regdb_apply_request,
473 list);
474 list_del(&request->list);
476 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
477 kfree(request);
479 mutex_unlock(&reg_regdb_apply_mutex);
481 rtnl_unlock();
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
488 struct reg_regdb_apply_request *request;
490 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
491 if (!request) {
492 kfree(regdom);
493 return -ENOMEM;
496 request->regdom = regdom;
498 mutex_lock(&reg_regdb_apply_mutex);
499 list_add_tail(&request->list, &reg_regdb_apply_list);
500 mutex_unlock(&reg_regdb_apply_mutex);
502 schedule_work(&reg_regdb_work);
503 return 0;
506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
507 /* Max number of consecutive attempts to communicate with CRDA */
508 #define REG_MAX_CRDA_TIMEOUTS 10
510 static u32 reg_crda_timeouts;
512 static void crda_timeout_work(struct work_struct *work);
513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
515 static void crda_timeout_work(struct work_struct *work)
517 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
518 rtnl_lock();
519 reg_crda_timeouts++;
520 restore_regulatory_settings(true, false);
521 rtnl_unlock();
524 static void cancel_crda_timeout(void)
526 cancel_delayed_work(&crda_timeout);
529 static void cancel_crda_timeout_sync(void)
531 cancel_delayed_work_sync(&crda_timeout);
534 static void reset_crda_timeouts(void)
536 reg_crda_timeouts = 0;
540 * This lets us keep regulatory code which is updated on a regulatory
541 * basis in userspace.
543 static int call_crda(const char *alpha2)
545 char country[12];
546 char *env[] = { country, NULL };
547 int ret;
549 snprintf(country, sizeof(country), "COUNTRY=%c%c",
550 alpha2[0], alpha2[1]);
552 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
553 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
554 return -EINVAL;
557 if (!is_world_regdom((char *) alpha2))
558 pr_debug("Calling CRDA for country: %c%c\n",
559 alpha2[0], alpha2[1]);
560 else
561 pr_debug("Calling CRDA to update world regulatory domain\n");
563 ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
564 if (ret)
565 return ret;
567 queue_delayed_work(system_power_efficient_wq,
568 &crda_timeout, msecs_to_jiffies(3142));
569 return 0;
571 #else
572 static inline void cancel_crda_timeout(void) {}
573 static inline void cancel_crda_timeout_sync(void) {}
574 static inline void reset_crda_timeouts(void) {}
575 static inline int call_crda(const char *alpha2)
577 return -ENODATA;
579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
581 /* code to directly load a firmware database through request_firmware */
582 static const struct fwdb_header *regdb;
584 struct fwdb_country {
585 u8 alpha2[2];
586 __be16 coll_ptr;
587 /* this struct cannot be extended */
588 } __packed __aligned(4);
590 struct fwdb_collection {
591 u8 len;
592 u8 n_rules;
593 u8 dfs_region;
594 /* no optional data yet */
595 /* aligned to 2, then followed by __be16 array of rule pointers */
596 } __packed __aligned(4);
598 enum fwdb_flags {
599 FWDB_FLAG_NO_OFDM = BIT(0),
600 FWDB_FLAG_NO_OUTDOOR = BIT(1),
601 FWDB_FLAG_DFS = BIT(2),
602 FWDB_FLAG_NO_IR = BIT(3),
603 FWDB_FLAG_AUTO_BW = BIT(4),
606 struct fwdb_wmm_ac {
607 u8 ecw;
608 u8 aifsn;
609 __be16 cot;
610 } __packed;
612 struct fwdb_wmm_rule {
613 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
614 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
615 } __packed;
617 struct fwdb_rule {
618 u8 len;
619 u8 flags;
620 __be16 max_eirp;
621 __be32 start, end, max_bw;
622 /* start of optional data */
623 __be16 cac_timeout;
624 __be16 wmm_ptr;
625 } __packed __aligned(4);
627 #define FWDB_MAGIC 0x52474442
628 #define FWDB_VERSION 20
630 struct fwdb_header {
631 __be32 magic;
632 __be32 version;
633 struct fwdb_country country[];
634 } __packed __aligned(4);
636 static int ecw2cw(int ecw)
638 return (1 << ecw) - 1;
641 static bool valid_wmm(struct fwdb_wmm_rule *rule)
643 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
644 int i;
646 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
647 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
648 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
649 u8 aifsn = ac[i].aifsn;
651 if (cw_min >= cw_max)
652 return false;
654 if (aifsn < 1)
655 return false;
658 return true;
661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
663 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
665 if ((u8 *)rule + sizeof(rule->len) > data + size)
666 return false;
668 /* mandatory fields */
669 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
670 return false;
671 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
672 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
673 struct fwdb_wmm_rule *wmm;
675 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
676 return false;
678 wmm = (void *)(data + wmm_ptr);
680 if (!valid_wmm(wmm))
681 return false;
683 return true;
686 static bool valid_country(const u8 *data, unsigned int size,
687 const struct fwdb_country *country)
689 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
690 struct fwdb_collection *coll = (void *)(data + ptr);
691 __be16 *rules_ptr;
692 unsigned int i;
694 /* make sure we can read len/n_rules */
695 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
696 return false;
698 /* make sure base struct and all rules fit */
699 if ((u8 *)coll + ALIGN(coll->len, 2) +
700 (coll->n_rules * 2) > data + size)
701 return false;
703 /* mandatory fields must exist */
704 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
705 return false;
707 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
709 for (i = 0; i < coll->n_rules; i++) {
710 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
712 if (!valid_rule(data, size, rule_ptr))
713 return false;
716 return true;
719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
720 static struct key *builtin_regdb_keys;
722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
724 const u8 *end = p + buflen;
725 size_t plen;
726 key_ref_t key;
728 while (p < end) {
729 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
730 * than 256 bytes in size.
732 if (end - p < 4)
733 goto dodgy_cert;
734 if (p[0] != 0x30 &&
735 p[1] != 0x82)
736 goto dodgy_cert;
737 plen = (p[2] << 8) | p[3];
738 plen += 4;
739 if (plen > end - p)
740 goto dodgy_cert;
742 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
743 "asymmetric", NULL, p, plen,
744 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
745 KEY_USR_VIEW | KEY_USR_READ),
746 KEY_ALLOC_NOT_IN_QUOTA |
747 KEY_ALLOC_BUILT_IN |
748 KEY_ALLOC_BYPASS_RESTRICTION);
749 if (IS_ERR(key)) {
750 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
751 PTR_ERR(key));
752 } else {
753 pr_notice("Loaded X.509 cert '%s'\n",
754 key_ref_to_ptr(key)->description);
755 key_ref_put(key);
757 p += plen;
760 return;
762 dodgy_cert:
763 pr_err("Problem parsing in-kernel X.509 certificate list\n");
766 static int __init load_builtin_regdb_keys(void)
768 builtin_regdb_keys =
769 keyring_alloc(".builtin_regdb_keys",
770 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
771 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
772 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
773 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
774 if (IS_ERR(builtin_regdb_keys))
775 return PTR_ERR(builtin_regdb_keys);
777 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
779 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
780 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
781 #endif
782 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
783 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
784 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
785 #endif
787 return 0;
790 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
792 const struct firmware *sig;
793 bool result;
795 if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
796 return false;
798 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
799 builtin_regdb_keys,
800 VERIFYING_UNSPECIFIED_SIGNATURE,
801 NULL, NULL) == 0;
803 release_firmware(sig);
805 return result;
808 static void free_regdb_keyring(void)
810 key_put(builtin_regdb_keys);
812 #else
813 static int load_builtin_regdb_keys(void)
815 return 0;
818 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
820 return true;
823 static void free_regdb_keyring(void)
826 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
828 static bool valid_regdb(const u8 *data, unsigned int size)
830 const struct fwdb_header *hdr = (void *)data;
831 const struct fwdb_country *country;
833 if (size < sizeof(*hdr))
834 return false;
836 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
837 return false;
839 if (hdr->version != cpu_to_be32(FWDB_VERSION))
840 return false;
842 if (!regdb_has_valid_signature(data, size))
843 return false;
845 country = &hdr->country[0];
846 while ((u8 *)(country + 1) <= data + size) {
847 if (!country->coll_ptr)
848 break;
849 if (!valid_country(data, size, country))
850 return false;
851 country++;
854 return true;
857 static void set_wmm_rule(const struct fwdb_header *db,
858 const struct fwdb_country *country,
859 const struct fwdb_rule *rule,
860 struct ieee80211_reg_rule *rrule)
862 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
863 struct fwdb_wmm_rule *wmm;
864 unsigned int i, wmm_ptr;
866 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
867 wmm = (void *)((u8 *)db + wmm_ptr);
869 if (!valid_wmm(wmm)) {
870 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
871 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
872 country->alpha2[0], country->alpha2[1]);
873 return;
876 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
877 wmm_rule->client[i].cw_min =
878 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
879 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
880 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
881 wmm_rule->client[i].cot =
882 1000 * be16_to_cpu(wmm->client[i].cot);
883 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
884 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
885 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
886 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
889 rrule->has_wmm = true;
892 static int __regdb_query_wmm(const struct fwdb_header *db,
893 const struct fwdb_country *country, int freq,
894 struct ieee80211_reg_rule *rrule)
896 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
897 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
898 int i;
900 for (i = 0; i < coll->n_rules; i++) {
901 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
902 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
903 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
905 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
906 continue;
908 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
909 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
910 set_wmm_rule(db, country, rule, rrule);
911 return 0;
915 return -ENODATA;
918 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
920 const struct fwdb_header *hdr = regdb;
921 const struct fwdb_country *country;
923 if (!regdb)
924 return -ENODATA;
926 if (IS_ERR(regdb))
927 return PTR_ERR(regdb);
929 country = &hdr->country[0];
930 while (country->coll_ptr) {
931 if (alpha2_equal(alpha2, country->alpha2))
932 return __regdb_query_wmm(regdb, country, freq, rule);
934 country++;
937 return -ENODATA;
939 EXPORT_SYMBOL(reg_query_regdb_wmm);
941 static int regdb_query_country(const struct fwdb_header *db,
942 const struct fwdb_country *country)
944 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
945 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
946 struct ieee80211_regdomain *regdom;
947 unsigned int i;
949 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
950 GFP_KERNEL);
951 if (!regdom)
952 return -ENOMEM;
954 regdom->n_reg_rules = coll->n_rules;
955 regdom->alpha2[0] = country->alpha2[0];
956 regdom->alpha2[1] = country->alpha2[1];
957 regdom->dfs_region = coll->dfs_region;
959 for (i = 0; i < regdom->n_reg_rules; i++) {
960 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
961 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
962 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
963 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
965 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
966 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
967 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
969 rrule->power_rule.max_antenna_gain = 0;
970 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
972 rrule->flags = 0;
973 if (rule->flags & FWDB_FLAG_NO_OFDM)
974 rrule->flags |= NL80211_RRF_NO_OFDM;
975 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
976 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
977 if (rule->flags & FWDB_FLAG_DFS)
978 rrule->flags |= NL80211_RRF_DFS;
979 if (rule->flags & FWDB_FLAG_NO_IR)
980 rrule->flags |= NL80211_RRF_NO_IR;
981 if (rule->flags & FWDB_FLAG_AUTO_BW)
982 rrule->flags |= NL80211_RRF_AUTO_BW;
984 rrule->dfs_cac_ms = 0;
986 /* handle optional data */
987 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
988 rrule->dfs_cac_ms =
989 1000 * be16_to_cpu(rule->cac_timeout);
990 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
991 set_wmm_rule(db, country, rule, rrule);
994 return reg_schedule_apply(regdom);
997 static int query_regdb(const char *alpha2)
999 const struct fwdb_header *hdr = regdb;
1000 const struct fwdb_country *country;
1002 ASSERT_RTNL();
1004 if (IS_ERR(regdb))
1005 return PTR_ERR(regdb);
1007 country = &hdr->country[0];
1008 while (country->coll_ptr) {
1009 if (alpha2_equal(alpha2, country->alpha2))
1010 return regdb_query_country(regdb, country);
1011 country++;
1014 return -ENODATA;
1017 static void regdb_fw_cb(const struct firmware *fw, void *context)
1019 int set_error = 0;
1020 bool restore = true;
1021 void *db;
1023 if (!fw) {
1024 pr_info("failed to load regulatory.db\n");
1025 set_error = -ENODATA;
1026 } else if (!valid_regdb(fw->data, fw->size)) {
1027 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1028 set_error = -EINVAL;
1031 rtnl_lock();
1032 if (regdb && !IS_ERR(regdb)) {
1033 /* negative case - a bug
1034 * positive case - can happen due to race in case of multiple cb's in
1035 * queue, due to usage of asynchronous callback
1037 * Either case, just restore and free new db.
1039 } else if (set_error) {
1040 regdb = ERR_PTR(set_error);
1041 } else if (fw) {
1042 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1043 if (db) {
1044 regdb = db;
1045 restore = context && query_regdb(context);
1046 } else {
1047 restore = true;
1051 if (restore)
1052 restore_regulatory_settings(true, false);
1054 rtnl_unlock();
1056 kfree(context);
1058 release_firmware(fw);
1061 static int query_regdb_file(const char *alpha2)
1063 ASSERT_RTNL();
1065 if (regdb)
1066 return query_regdb(alpha2);
1068 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1069 if (!alpha2)
1070 return -ENOMEM;
1072 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1073 &reg_pdev->dev, GFP_KERNEL,
1074 (void *)alpha2, regdb_fw_cb);
1077 int reg_reload_regdb(void)
1079 const struct firmware *fw;
1080 void *db;
1081 int err;
1083 err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1084 if (err)
1085 return err;
1087 if (!valid_regdb(fw->data, fw->size)) {
1088 err = -ENODATA;
1089 goto out;
1092 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1093 if (!db) {
1094 err = -ENOMEM;
1095 goto out;
1098 rtnl_lock();
1099 if (!IS_ERR_OR_NULL(regdb))
1100 kfree(regdb);
1101 regdb = db;
1102 rtnl_unlock();
1104 out:
1105 release_firmware(fw);
1106 return err;
1109 static bool reg_query_database(struct regulatory_request *request)
1111 if (query_regdb_file(request->alpha2) == 0)
1112 return true;
1114 if (call_crda(request->alpha2) == 0)
1115 return true;
1117 return false;
1120 bool reg_is_valid_request(const char *alpha2)
1122 struct regulatory_request *lr = get_last_request();
1124 if (!lr || lr->processed)
1125 return false;
1127 return alpha2_equal(lr->alpha2, alpha2);
1130 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1132 struct regulatory_request *lr = get_last_request();
1135 * Follow the driver's regulatory domain, if present, unless a country
1136 * IE has been processed or a user wants to help complaince further
1138 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1140 wiphy->regd)
1141 return get_wiphy_regdom(wiphy);
1143 return get_cfg80211_regdom();
1146 static unsigned int
1147 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1148 const struct ieee80211_reg_rule *rule)
1150 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1151 const struct ieee80211_freq_range *freq_range_tmp;
1152 const struct ieee80211_reg_rule *tmp;
1153 u32 start_freq, end_freq, idx, no;
1155 for (idx = 0; idx < rd->n_reg_rules; idx++)
1156 if (rule == &rd->reg_rules[idx])
1157 break;
1159 if (idx == rd->n_reg_rules)
1160 return 0;
1162 /* get start_freq */
1163 no = idx;
1165 while (no) {
1166 tmp = &rd->reg_rules[--no];
1167 freq_range_tmp = &tmp->freq_range;
1169 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1170 break;
1172 freq_range = freq_range_tmp;
1175 start_freq = freq_range->start_freq_khz;
1177 /* get end_freq */
1178 freq_range = &rule->freq_range;
1179 no = idx;
1181 while (no < rd->n_reg_rules - 1) {
1182 tmp = &rd->reg_rules[++no];
1183 freq_range_tmp = &tmp->freq_range;
1185 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1186 break;
1188 freq_range = freq_range_tmp;
1191 end_freq = freq_range->end_freq_khz;
1193 return end_freq - start_freq;
1196 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1197 const struct ieee80211_reg_rule *rule)
1199 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1201 if (rule->flags & NL80211_RRF_NO_160MHZ)
1202 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1203 if (rule->flags & NL80211_RRF_NO_80MHZ)
1204 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1207 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1208 * are not allowed.
1210 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1211 rule->flags & NL80211_RRF_NO_HT40PLUS)
1212 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1214 return bw;
1217 /* Sanity check on a regulatory rule */
1218 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1220 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1221 u32 freq_diff;
1223 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1224 return false;
1226 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1227 return false;
1229 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1231 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1232 freq_range->max_bandwidth_khz > freq_diff)
1233 return false;
1235 return true;
1238 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1240 const struct ieee80211_reg_rule *reg_rule = NULL;
1241 unsigned int i;
1243 if (!rd->n_reg_rules)
1244 return false;
1246 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1247 return false;
1249 for (i = 0; i < rd->n_reg_rules; i++) {
1250 reg_rule = &rd->reg_rules[i];
1251 if (!is_valid_reg_rule(reg_rule))
1252 return false;
1255 return true;
1259 * freq_in_rule_band - tells us if a frequency is in a frequency band
1260 * @freq_range: frequency rule we want to query
1261 * @freq_khz: frequency we are inquiring about
1263 * This lets us know if a specific frequency rule is or is not relevant to
1264 * a specific frequency's band. Bands are device specific and artificial
1265 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1266 * however it is safe for now to assume that a frequency rule should not be
1267 * part of a frequency's band if the start freq or end freq are off by more
1268 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1269 * 60 GHz band.
1270 * This resolution can be lowered and should be considered as we add
1271 * regulatory rule support for other "bands".
1273 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1274 u32 freq_khz)
1276 #define ONE_GHZ_IN_KHZ 1000000
1278 * From 802.11ad: directional multi-gigabit (DMG):
1279 * Pertaining to operation in a frequency band containing a channel
1280 * with the Channel starting frequency above 45 GHz.
1282 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1283 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1284 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1285 return true;
1286 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1287 return true;
1288 return false;
1289 #undef ONE_GHZ_IN_KHZ
1293 * Later on we can perhaps use the more restrictive DFS
1294 * region but we don't have information for that yet so
1295 * for now simply disallow conflicts.
1297 static enum nl80211_dfs_regions
1298 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1299 const enum nl80211_dfs_regions dfs_region2)
1301 if (dfs_region1 != dfs_region2)
1302 return NL80211_DFS_UNSET;
1303 return dfs_region1;
1306 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1307 const struct ieee80211_wmm_ac *wmm_ac2,
1308 struct ieee80211_wmm_ac *intersect)
1310 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1311 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1312 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1313 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1317 * Helper for regdom_intersect(), this does the real
1318 * mathematical intersection fun
1320 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1321 const struct ieee80211_regdomain *rd2,
1322 const struct ieee80211_reg_rule *rule1,
1323 const struct ieee80211_reg_rule *rule2,
1324 struct ieee80211_reg_rule *intersected_rule)
1326 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1327 struct ieee80211_freq_range *freq_range;
1328 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1329 struct ieee80211_power_rule *power_rule;
1330 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1331 struct ieee80211_wmm_rule *wmm_rule;
1332 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1334 freq_range1 = &rule1->freq_range;
1335 freq_range2 = &rule2->freq_range;
1336 freq_range = &intersected_rule->freq_range;
1338 power_rule1 = &rule1->power_rule;
1339 power_rule2 = &rule2->power_rule;
1340 power_rule = &intersected_rule->power_rule;
1342 wmm_rule1 = &rule1->wmm_rule;
1343 wmm_rule2 = &rule2->wmm_rule;
1344 wmm_rule = &intersected_rule->wmm_rule;
1346 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1347 freq_range2->start_freq_khz);
1348 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1349 freq_range2->end_freq_khz);
1351 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1352 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1354 if (rule1->flags & NL80211_RRF_AUTO_BW)
1355 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1356 if (rule2->flags & NL80211_RRF_AUTO_BW)
1357 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1359 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1361 intersected_rule->flags = rule1->flags | rule2->flags;
1364 * In case NL80211_RRF_AUTO_BW requested for both rules
1365 * set AUTO_BW in intersected rule also. Next we will
1366 * calculate BW correctly in handle_channel function.
1367 * In other case remove AUTO_BW flag while we calculate
1368 * maximum bandwidth correctly and auto calculation is
1369 * not required.
1371 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1372 (rule2->flags & NL80211_RRF_AUTO_BW))
1373 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1374 else
1375 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1377 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1378 if (freq_range->max_bandwidth_khz > freq_diff)
1379 freq_range->max_bandwidth_khz = freq_diff;
1381 power_rule->max_eirp = min(power_rule1->max_eirp,
1382 power_rule2->max_eirp);
1383 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1384 power_rule2->max_antenna_gain);
1386 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1387 rule2->dfs_cac_ms);
1389 if (rule1->has_wmm && rule2->has_wmm) {
1390 u8 ac;
1392 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1393 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1394 &wmm_rule2->client[ac],
1395 &wmm_rule->client[ac]);
1396 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1397 &wmm_rule2->ap[ac],
1398 &wmm_rule->ap[ac]);
1401 intersected_rule->has_wmm = true;
1402 } else if (rule1->has_wmm) {
1403 *wmm_rule = *wmm_rule1;
1404 intersected_rule->has_wmm = true;
1405 } else if (rule2->has_wmm) {
1406 *wmm_rule = *wmm_rule2;
1407 intersected_rule->has_wmm = true;
1408 } else {
1409 intersected_rule->has_wmm = false;
1412 if (!is_valid_reg_rule(intersected_rule))
1413 return -EINVAL;
1415 return 0;
1418 /* check whether old rule contains new rule */
1419 static bool rule_contains(struct ieee80211_reg_rule *r1,
1420 struct ieee80211_reg_rule *r2)
1422 /* for simplicity, currently consider only same flags */
1423 if (r1->flags != r2->flags)
1424 return false;
1426 /* verify r1 is more restrictive */
1427 if ((r1->power_rule.max_antenna_gain >
1428 r2->power_rule.max_antenna_gain) ||
1429 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1430 return false;
1432 /* make sure r2's range is contained within r1 */
1433 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1434 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1435 return false;
1437 /* and finally verify that r1.max_bw >= r2.max_bw */
1438 if (r1->freq_range.max_bandwidth_khz <
1439 r2->freq_range.max_bandwidth_khz)
1440 return false;
1442 return true;
1445 /* add or extend current rules. do nothing if rule is already contained */
1446 static void add_rule(struct ieee80211_reg_rule *rule,
1447 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1449 struct ieee80211_reg_rule *tmp_rule;
1450 int i;
1452 for (i = 0; i < *n_rules; i++) {
1453 tmp_rule = &reg_rules[i];
1454 /* rule is already contained - do nothing */
1455 if (rule_contains(tmp_rule, rule))
1456 return;
1458 /* extend rule if possible */
1459 if (rule_contains(rule, tmp_rule)) {
1460 memcpy(tmp_rule, rule, sizeof(*rule));
1461 return;
1465 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1466 (*n_rules)++;
1470 * regdom_intersect - do the intersection between two regulatory domains
1471 * @rd1: first regulatory domain
1472 * @rd2: second regulatory domain
1474 * Use this function to get the intersection between two regulatory domains.
1475 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1476 * as no one single alpha2 can represent this regulatory domain.
1478 * Returns a pointer to the regulatory domain structure which will hold the
1479 * resulting intersection of rules between rd1 and rd2. We will
1480 * kzalloc() this structure for you.
1482 static struct ieee80211_regdomain *
1483 regdom_intersect(const struct ieee80211_regdomain *rd1,
1484 const struct ieee80211_regdomain *rd2)
1486 int r;
1487 unsigned int x, y;
1488 unsigned int num_rules = 0;
1489 const struct ieee80211_reg_rule *rule1, *rule2;
1490 struct ieee80211_reg_rule intersected_rule;
1491 struct ieee80211_regdomain *rd;
1493 if (!rd1 || !rd2)
1494 return NULL;
1497 * First we get a count of the rules we'll need, then we actually
1498 * build them. This is to so we can malloc() and free() a
1499 * regdomain once. The reason we use reg_rules_intersect() here
1500 * is it will return -EINVAL if the rule computed makes no sense.
1501 * All rules that do check out OK are valid.
1504 for (x = 0; x < rd1->n_reg_rules; x++) {
1505 rule1 = &rd1->reg_rules[x];
1506 for (y = 0; y < rd2->n_reg_rules; y++) {
1507 rule2 = &rd2->reg_rules[y];
1508 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1509 &intersected_rule))
1510 num_rules++;
1514 if (!num_rules)
1515 return NULL;
1517 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1518 if (!rd)
1519 return NULL;
1521 for (x = 0; x < rd1->n_reg_rules; x++) {
1522 rule1 = &rd1->reg_rules[x];
1523 for (y = 0; y < rd2->n_reg_rules; y++) {
1524 rule2 = &rd2->reg_rules[y];
1525 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1526 &intersected_rule);
1528 * No need to memset here the intersected rule here as
1529 * we're not using the stack anymore
1531 if (r)
1532 continue;
1534 add_rule(&intersected_rule, rd->reg_rules,
1535 &rd->n_reg_rules);
1539 rd->alpha2[0] = '9';
1540 rd->alpha2[1] = '8';
1541 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1542 rd2->dfs_region);
1544 return rd;
1548 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1549 * want to just have the channel structure use these
1551 static u32 map_regdom_flags(u32 rd_flags)
1553 u32 channel_flags = 0;
1554 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1555 channel_flags |= IEEE80211_CHAN_NO_IR;
1556 if (rd_flags & NL80211_RRF_DFS)
1557 channel_flags |= IEEE80211_CHAN_RADAR;
1558 if (rd_flags & NL80211_RRF_NO_OFDM)
1559 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1560 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1561 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1562 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1563 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1564 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1565 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1566 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1567 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1568 if (rd_flags & NL80211_RRF_NO_80MHZ)
1569 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1570 if (rd_flags & NL80211_RRF_NO_160MHZ)
1571 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1572 if (rd_flags & NL80211_RRF_NO_HE)
1573 channel_flags |= IEEE80211_CHAN_NO_HE;
1574 return channel_flags;
1577 static const struct ieee80211_reg_rule *
1578 freq_reg_info_regd(u32 center_freq,
1579 const struct ieee80211_regdomain *regd, u32 bw)
1581 int i;
1582 bool band_rule_found = false;
1583 bool bw_fits = false;
1585 if (!regd)
1586 return ERR_PTR(-EINVAL);
1588 for (i = 0; i < regd->n_reg_rules; i++) {
1589 const struct ieee80211_reg_rule *rr;
1590 const struct ieee80211_freq_range *fr = NULL;
1592 rr = &regd->reg_rules[i];
1593 fr = &rr->freq_range;
1596 * We only need to know if one frequency rule was
1597 * in center_freq's band, that's enough, so let's
1598 * not overwrite it once found
1600 if (!band_rule_found)
1601 band_rule_found = freq_in_rule_band(fr, center_freq);
1603 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1605 if (band_rule_found && bw_fits)
1606 return rr;
1609 if (!band_rule_found)
1610 return ERR_PTR(-ERANGE);
1612 return ERR_PTR(-EINVAL);
1615 static const struct ieee80211_reg_rule *
1616 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1618 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1619 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1620 const struct ieee80211_reg_rule *reg_rule;
1621 int i = ARRAY_SIZE(bws) - 1;
1622 u32 bw;
1624 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1625 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1626 if (!IS_ERR(reg_rule))
1627 return reg_rule;
1630 return reg_rule;
1633 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1634 u32 center_freq)
1636 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1638 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1640 EXPORT_SYMBOL(freq_reg_info);
1642 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1644 switch (initiator) {
1645 case NL80211_REGDOM_SET_BY_CORE:
1646 return "core";
1647 case NL80211_REGDOM_SET_BY_USER:
1648 return "user";
1649 case NL80211_REGDOM_SET_BY_DRIVER:
1650 return "driver";
1651 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1652 return "country element";
1653 default:
1654 WARN_ON(1);
1655 return "bug";
1658 EXPORT_SYMBOL(reg_initiator_name);
1660 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1661 const struct ieee80211_reg_rule *reg_rule,
1662 const struct ieee80211_channel *chan)
1664 const struct ieee80211_freq_range *freq_range = NULL;
1665 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1666 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1668 freq_range = &reg_rule->freq_range;
1670 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1671 center_freq_khz = ieee80211_channel_to_khz(chan);
1672 /* Check if auto calculation requested */
1673 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1674 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1676 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1677 if (!cfg80211_does_bw_fit_range(freq_range,
1678 center_freq_khz,
1679 MHZ_TO_KHZ(10)))
1680 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1681 if (!cfg80211_does_bw_fit_range(freq_range,
1682 center_freq_khz,
1683 MHZ_TO_KHZ(20)))
1684 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1686 if (is_s1g) {
1687 /* S1G is strict about non overlapping channels. We can
1688 * calculate which bandwidth is allowed per channel by finding
1689 * the largest bandwidth which cleanly divides the freq_range.
1691 int edge_offset;
1692 int ch_bw = max_bandwidth_khz;
1694 while (ch_bw) {
1695 edge_offset = (center_freq_khz - ch_bw / 2) -
1696 freq_range->start_freq_khz;
1697 if (edge_offset % ch_bw == 0) {
1698 switch (KHZ_TO_MHZ(ch_bw)) {
1699 case 1:
1700 bw_flags |= IEEE80211_CHAN_1MHZ;
1701 break;
1702 case 2:
1703 bw_flags |= IEEE80211_CHAN_2MHZ;
1704 break;
1705 case 4:
1706 bw_flags |= IEEE80211_CHAN_4MHZ;
1707 break;
1708 case 8:
1709 bw_flags |= IEEE80211_CHAN_8MHZ;
1710 break;
1711 case 16:
1712 bw_flags |= IEEE80211_CHAN_16MHZ;
1713 break;
1714 default:
1715 /* If we got here, no bandwidths fit on
1716 * this frequency, ie. band edge.
1718 bw_flags |= IEEE80211_CHAN_DISABLED;
1719 break;
1721 break;
1723 ch_bw /= 2;
1725 } else {
1726 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1727 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1728 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1729 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1730 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1731 bw_flags |= IEEE80211_CHAN_NO_HT40;
1732 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1733 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1734 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1735 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1737 return bw_flags;
1740 static void handle_channel_single_rule(struct wiphy *wiphy,
1741 enum nl80211_reg_initiator initiator,
1742 struct ieee80211_channel *chan,
1743 u32 flags,
1744 struct regulatory_request *lr,
1745 struct wiphy *request_wiphy,
1746 const struct ieee80211_reg_rule *reg_rule)
1748 u32 bw_flags = 0;
1749 const struct ieee80211_power_rule *power_rule = NULL;
1750 const struct ieee80211_regdomain *regd;
1752 regd = reg_get_regdomain(wiphy);
1754 power_rule = &reg_rule->power_rule;
1755 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1757 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1758 request_wiphy && request_wiphy == wiphy &&
1759 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1761 * This guarantees the driver's requested regulatory domain
1762 * will always be used as a base for further regulatory
1763 * settings
1765 chan->flags = chan->orig_flags =
1766 map_regdom_flags(reg_rule->flags) | bw_flags;
1767 chan->max_antenna_gain = chan->orig_mag =
1768 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1769 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1770 (int) MBM_TO_DBM(power_rule->max_eirp);
1772 if (chan->flags & IEEE80211_CHAN_RADAR) {
1773 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1774 if (reg_rule->dfs_cac_ms)
1775 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1778 return;
1781 chan->dfs_state = NL80211_DFS_USABLE;
1782 chan->dfs_state_entered = jiffies;
1784 chan->beacon_found = false;
1785 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1786 chan->max_antenna_gain =
1787 min_t(int, chan->orig_mag,
1788 MBI_TO_DBI(power_rule->max_antenna_gain));
1789 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1791 if (chan->flags & IEEE80211_CHAN_RADAR) {
1792 if (reg_rule->dfs_cac_ms)
1793 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1794 else
1795 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1798 if (chan->orig_mpwr) {
1800 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1801 * will always follow the passed country IE power settings.
1803 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1804 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1805 chan->max_power = chan->max_reg_power;
1806 else
1807 chan->max_power = min(chan->orig_mpwr,
1808 chan->max_reg_power);
1809 } else
1810 chan->max_power = chan->max_reg_power;
1813 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1814 enum nl80211_reg_initiator initiator,
1815 struct ieee80211_channel *chan,
1816 u32 flags,
1817 struct regulatory_request *lr,
1818 struct wiphy *request_wiphy,
1819 const struct ieee80211_reg_rule *rrule1,
1820 const struct ieee80211_reg_rule *rrule2,
1821 struct ieee80211_freq_range *comb_range)
1823 u32 bw_flags1 = 0;
1824 u32 bw_flags2 = 0;
1825 const struct ieee80211_power_rule *power_rule1 = NULL;
1826 const struct ieee80211_power_rule *power_rule2 = NULL;
1827 const struct ieee80211_regdomain *regd;
1829 regd = reg_get_regdomain(wiphy);
1831 power_rule1 = &rrule1->power_rule;
1832 power_rule2 = &rrule2->power_rule;
1833 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1834 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1836 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1837 request_wiphy && request_wiphy == wiphy &&
1838 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1839 /* This guarantees the driver's requested regulatory domain
1840 * will always be used as a base for further regulatory
1841 * settings
1843 chan->flags =
1844 map_regdom_flags(rrule1->flags) |
1845 map_regdom_flags(rrule2->flags) |
1846 bw_flags1 |
1847 bw_flags2;
1848 chan->orig_flags = chan->flags;
1849 chan->max_antenna_gain =
1850 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1851 MBI_TO_DBI(power_rule2->max_antenna_gain));
1852 chan->orig_mag = chan->max_antenna_gain;
1853 chan->max_reg_power =
1854 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1855 MBM_TO_DBM(power_rule2->max_eirp));
1856 chan->max_power = chan->max_reg_power;
1857 chan->orig_mpwr = chan->max_reg_power;
1859 if (chan->flags & IEEE80211_CHAN_RADAR) {
1860 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1861 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1862 chan->dfs_cac_ms = max_t(unsigned int,
1863 rrule1->dfs_cac_ms,
1864 rrule2->dfs_cac_ms);
1867 return;
1870 chan->dfs_state = NL80211_DFS_USABLE;
1871 chan->dfs_state_entered = jiffies;
1873 chan->beacon_found = false;
1874 chan->flags = flags | bw_flags1 | bw_flags2 |
1875 map_regdom_flags(rrule1->flags) |
1876 map_regdom_flags(rrule2->flags);
1878 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1879 * (otherwise no adj. rule case), recheck therefore
1881 if (cfg80211_does_bw_fit_range(comb_range,
1882 ieee80211_channel_to_khz(chan),
1883 MHZ_TO_KHZ(10)))
1884 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1885 if (cfg80211_does_bw_fit_range(comb_range,
1886 ieee80211_channel_to_khz(chan),
1887 MHZ_TO_KHZ(20)))
1888 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1890 chan->max_antenna_gain =
1891 min_t(int, chan->orig_mag,
1892 min_t(int,
1893 MBI_TO_DBI(power_rule1->max_antenna_gain),
1894 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1895 chan->max_reg_power = min_t(int,
1896 MBM_TO_DBM(power_rule1->max_eirp),
1897 MBM_TO_DBM(power_rule2->max_eirp));
1899 if (chan->flags & IEEE80211_CHAN_RADAR) {
1900 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1901 chan->dfs_cac_ms = max_t(unsigned int,
1902 rrule1->dfs_cac_ms,
1903 rrule2->dfs_cac_ms);
1904 else
1905 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1908 if (chan->orig_mpwr) {
1909 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1910 * will always follow the passed country IE power settings.
1912 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1913 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1914 chan->max_power = chan->max_reg_power;
1915 else
1916 chan->max_power = min(chan->orig_mpwr,
1917 chan->max_reg_power);
1918 } else {
1919 chan->max_power = chan->max_reg_power;
1923 /* Note that right now we assume the desired channel bandwidth
1924 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1925 * per channel, the primary and the extension channel).
1927 static void handle_channel(struct wiphy *wiphy,
1928 enum nl80211_reg_initiator initiator,
1929 struct ieee80211_channel *chan)
1931 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1932 struct regulatory_request *lr = get_last_request();
1933 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1934 const struct ieee80211_reg_rule *rrule = NULL;
1935 const struct ieee80211_reg_rule *rrule1 = NULL;
1936 const struct ieee80211_reg_rule *rrule2 = NULL;
1938 u32 flags = chan->orig_flags;
1940 rrule = freq_reg_info(wiphy, orig_chan_freq);
1941 if (IS_ERR(rrule)) {
1942 /* check for adjacent match, therefore get rules for
1943 * chan - 20 MHz and chan + 20 MHz and test
1944 * if reg rules are adjacent
1946 rrule1 = freq_reg_info(wiphy,
1947 orig_chan_freq - MHZ_TO_KHZ(20));
1948 rrule2 = freq_reg_info(wiphy,
1949 orig_chan_freq + MHZ_TO_KHZ(20));
1950 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1951 struct ieee80211_freq_range comb_range;
1953 if (rrule1->freq_range.end_freq_khz !=
1954 rrule2->freq_range.start_freq_khz)
1955 goto disable_chan;
1957 comb_range.start_freq_khz =
1958 rrule1->freq_range.start_freq_khz;
1959 comb_range.end_freq_khz =
1960 rrule2->freq_range.end_freq_khz;
1961 comb_range.max_bandwidth_khz =
1962 min_t(u32,
1963 rrule1->freq_range.max_bandwidth_khz,
1964 rrule2->freq_range.max_bandwidth_khz);
1966 if (!cfg80211_does_bw_fit_range(&comb_range,
1967 orig_chan_freq,
1968 MHZ_TO_KHZ(20)))
1969 goto disable_chan;
1971 handle_channel_adjacent_rules(wiphy, initiator, chan,
1972 flags, lr, request_wiphy,
1973 rrule1, rrule2,
1974 &comb_range);
1975 return;
1978 disable_chan:
1979 /* We will disable all channels that do not match our
1980 * received regulatory rule unless the hint is coming
1981 * from a Country IE and the Country IE had no information
1982 * about a band. The IEEE 802.11 spec allows for an AP
1983 * to send only a subset of the regulatory rules allowed,
1984 * so an AP in the US that only supports 2.4 GHz may only send
1985 * a country IE with information for the 2.4 GHz band
1986 * while 5 GHz is still supported.
1988 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1989 PTR_ERR(rrule) == -ERANGE)
1990 return;
1992 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1993 request_wiphy && request_wiphy == wiphy &&
1994 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1995 pr_debug("Disabling freq %d.%03d MHz for good\n",
1996 chan->center_freq, chan->freq_offset);
1997 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1998 chan->flags = chan->orig_flags;
1999 } else {
2000 pr_debug("Disabling freq %d.%03d MHz\n",
2001 chan->center_freq, chan->freq_offset);
2002 chan->flags |= IEEE80211_CHAN_DISABLED;
2004 return;
2007 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2008 request_wiphy, rrule);
2011 static void handle_band(struct wiphy *wiphy,
2012 enum nl80211_reg_initiator initiator,
2013 struct ieee80211_supported_band *sband)
2015 unsigned int i;
2017 if (!sband)
2018 return;
2020 for (i = 0; i < sband->n_channels; i++)
2021 handle_channel(wiphy, initiator, &sband->channels[i]);
2024 static bool reg_request_cell_base(struct regulatory_request *request)
2026 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2027 return false;
2028 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2031 bool reg_last_request_cell_base(void)
2033 return reg_request_cell_base(get_last_request());
2036 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2037 /* Core specific check */
2038 static enum reg_request_treatment
2039 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2041 struct regulatory_request *lr = get_last_request();
2043 if (!reg_num_devs_support_basehint)
2044 return REG_REQ_IGNORE;
2046 if (reg_request_cell_base(lr) &&
2047 !regdom_changes(pending_request->alpha2))
2048 return REG_REQ_ALREADY_SET;
2050 return REG_REQ_OK;
2053 /* Device specific check */
2054 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2056 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2058 #else
2059 static enum reg_request_treatment
2060 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2062 return REG_REQ_IGNORE;
2065 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2067 return true;
2069 #endif
2071 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2073 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2074 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2075 return true;
2076 return false;
2079 static bool ignore_reg_update(struct wiphy *wiphy,
2080 enum nl80211_reg_initiator initiator)
2082 struct regulatory_request *lr = get_last_request();
2084 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2085 return true;
2087 if (!lr) {
2088 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2089 reg_initiator_name(initiator));
2090 return true;
2093 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2094 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2095 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2096 reg_initiator_name(initiator));
2097 return true;
2101 * wiphy->regd will be set once the device has its own
2102 * desired regulatory domain set
2104 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2105 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2106 !is_world_regdom(lr->alpha2)) {
2107 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2108 reg_initiator_name(initiator));
2109 return true;
2112 if (reg_request_cell_base(lr))
2113 return reg_dev_ignore_cell_hint(wiphy);
2115 return false;
2118 static bool reg_is_world_roaming(struct wiphy *wiphy)
2120 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2121 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2122 struct regulatory_request *lr = get_last_request();
2124 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2125 return true;
2127 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2128 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2129 return true;
2131 return false;
2134 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2135 struct reg_beacon *reg_beacon)
2137 struct ieee80211_supported_band *sband;
2138 struct ieee80211_channel *chan;
2139 bool channel_changed = false;
2140 struct ieee80211_channel chan_before;
2142 sband = wiphy->bands[reg_beacon->chan.band];
2143 chan = &sband->channels[chan_idx];
2145 if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2146 return;
2148 if (chan->beacon_found)
2149 return;
2151 chan->beacon_found = true;
2153 if (!reg_is_world_roaming(wiphy))
2154 return;
2156 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2157 return;
2159 chan_before = *chan;
2161 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2162 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2163 channel_changed = true;
2166 if (channel_changed)
2167 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2171 * Called when a scan on a wiphy finds a beacon on
2172 * new channel
2174 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2175 struct reg_beacon *reg_beacon)
2177 unsigned int i;
2178 struct ieee80211_supported_band *sband;
2180 if (!wiphy->bands[reg_beacon->chan.band])
2181 return;
2183 sband = wiphy->bands[reg_beacon->chan.band];
2185 for (i = 0; i < sband->n_channels; i++)
2186 handle_reg_beacon(wiphy, i, reg_beacon);
2190 * Called upon reg changes or a new wiphy is added
2192 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2194 unsigned int i;
2195 struct ieee80211_supported_band *sband;
2196 struct reg_beacon *reg_beacon;
2198 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2199 if (!wiphy->bands[reg_beacon->chan.band])
2200 continue;
2201 sband = wiphy->bands[reg_beacon->chan.band];
2202 for (i = 0; i < sband->n_channels; i++)
2203 handle_reg_beacon(wiphy, i, reg_beacon);
2207 /* Reap the advantages of previously found beacons */
2208 static void reg_process_beacons(struct wiphy *wiphy)
2211 * Means we are just firing up cfg80211, so no beacons would
2212 * have been processed yet.
2214 if (!last_request)
2215 return;
2216 wiphy_update_beacon_reg(wiphy);
2219 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2221 if (!chan)
2222 return false;
2223 if (chan->flags & IEEE80211_CHAN_DISABLED)
2224 return false;
2225 /* This would happen when regulatory rules disallow HT40 completely */
2226 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2227 return false;
2228 return true;
2231 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2232 struct ieee80211_channel *channel)
2234 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2235 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2236 const struct ieee80211_regdomain *regd;
2237 unsigned int i;
2238 u32 flags;
2240 if (!is_ht40_allowed(channel)) {
2241 channel->flags |= IEEE80211_CHAN_NO_HT40;
2242 return;
2246 * We need to ensure the extension channels exist to
2247 * be able to use HT40- or HT40+, this finds them (or not)
2249 for (i = 0; i < sband->n_channels; i++) {
2250 struct ieee80211_channel *c = &sband->channels[i];
2252 if (c->center_freq == (channel->center_freq - 20))
2253 channel_before = c;
2254 if (c->center_freq == (channel->center_freq + 20))
2255 channel_after = c;
2258 flags = 0;
2259 regd = get_wiphy_regdom(wiphy);
2260 if (regd) {
2261 const struct ieee80211_reg_rule *reg_rule =
2262 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2263 regd, MHZ_TO_KHZ(20));
2265 if (!IS_ERR(reg_rule))
2266 flags = reg_rule->flags;
2270 * Please note that this assumes target bandwidth is 20 MHz,
2271 * if that ever changes we also need to change the below logic
2272 * to include that as well.
2274 if (!is_ht40_allowed(channel_before) ||
2275 flags & NL80211_RRF_NO_HT40MINUS)
2276 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2277 else
2278 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2280 if (!is_ht40_allowed(channel_after) ||
2281 flags & NL80211_RRF_NO_HT40PLUS)
2282 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2283 else
2284 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2287 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2288 struct ieee80211_supported_band *sband)
2290 unsigned int i;
2292 if (!sband)
2293 return;
2295 for (i = 0; i < sband->n_channels; i++)
2296 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2299 static void reg_process_ht_flags(struct wiphy *wiphy)
2301 enum nl80211_band band;
2303 if (!wiphy)
2304 return;
2306 for (band = 0; band < NUM_NL80211_BANDS; band++)
2307 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2310 static void reg_call_notifier(struct wiphy *wiphy,
2311 struct regulatory_request *request)
2313 if (wiphy->reg_notifier)
2314 wiphy->reg_notifier(wiphy, request);
2317 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2319 struct cfg80211_chan_def chandef = {};
2320 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2321 enum nl80211_iftype iftype;
2323 wdev_lock(wdev);
2324 iftype = wdev->iftype;
2326 /* make sure the interface is active */
2327 if (!wdev->netdev || !netif_running(wdev->netdev))
2328 goto wdev_inactive_unlock;
2330 switch (iftype) {
2331 case NL80211_IFTYPE_AP:
2332 case NL80211_IFTYPE_P2P_GO:
2333 if (!wdev->beacon_interval)
2334 goto wdev_inactive_unlock;
2335 chandef = wdev->chandef;
2336 break;
2337 case NL80211_IFTYPE_ADHOC:
2338 if (!wdev->ssid_len)
2339 goto wdev_inactive_unlock;
2340 chandef = wdev->chandef;
2341 break;
2342 case NL80211_IFTYPE_STATION:
2343 case NL80211_IFTYPE_P2P_CLIENT:
2344 if (!wdev->current_bss ||
2345 !wdev->current_bss->pub.channel)
2346 goto wdev_inactive_unlock;
2348 if (!rdev->ops->get_channel ||
2349 rdev_get_channel(rdev, wdev, &chandef))
2350 cfg80211_chandef_create(&chandef,
2351 wdev->current_bss->pub.channel,
2352 NL80211_CHAN_NO_HT);
2353 break;
2354 case NL80211_IFTYPE_MONITOR:
2355 case NL80211_IFTYPE_AP_VLAN:
2356 case NL80211_IFTYPE_P2P_DEVICE:
2357 /* no enforcement required */
2358 break;
2359 default:
2360 /* others not implemented for now */
2361 WARN_ON(1);
2362 break;
2365 wdev_unlock(wdev);
2367 switch (iftype) {
2368 case NL80211_IFTYPE_AP:
2369 case NL80211_IFTYPE_P2P_GO:
2370 case NL80211_IFTYPE_ADHOC:
2371 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2372 case NL80211_IFTYPE_STATION:
2373 case NL80211_IFTYPE_P2P_CLIENT:
2374 return cfg80211_chandef_usable(wiphy, &chandef,
2375 IEEE80211_CHAN_DISABLED);
2376 default:
2377 break;
2380 return true;
2382 wdev_inactive_unlock:
2383 wdev_unlock(wdev);
2384 return true;
2387 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2389 struct wireless_dev *wdev;
2390 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2392 ASSERT_RTNL();
2394 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2395 if (!reg_wdev_chan_valid(wiphy, wdev))
2396 cfg80211_leave(rdev, wdev);
2399 static void reg_check_chans_work(struct work_struct *work)
2401 struct cfg80211_registered_device *rdev;
2403 pr_debug("Verifying active interfaces after reg change\n");
2404 rtnl_lock();
2406 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2407 if (!(rdev->wiphy.regulatory_flags &
2408 REGULATORY_IGNORE_STALE_KICKOFF))
2409 reg_leave_invalid_chans(&rdev->wiphy);
2411 rtnl_unlock();
2414 static void reg_check_channels(void)
2417 * Give usermode a chance to do something nicer (move to another
2418 * channel, orderly disconnection), before forcing a disconnection.
2420 mod_delayed_work(system_power_efficient_wq,
2421 &reg_check_chans,
2422 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2425 static void wiphy_update_regulatory(struct wiphy *wiphy,
2426 enum nl80211_reg_initiator initiator)
2428 enum nl80211_band band;
2429 struct regulatory_request *lr = get_last_request();
2431 if (ignore_reg_update(wiphy, initiator)) {
2433 * Regulatory updates set by CORE are ignored for custom
2434 * regulatory cards. Let us notify the changes to the driver,
2435 * as some drivers used this to restore its orig_* reg domain.
2437 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2438 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2439 !(wiphy->regulatory_flags &
2440 REGULATORY_WIPHY_SELF_MANAGED))
2441 reg_call_notifier(wiphy, lr);
2442 return;
2445 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2447 for (band = 0; band < NUM_NL80211_BANDS; band++)
2448 handle_band(wiphy, initiator, wiphy->bands[band]);
2450 reg_process_beacons(wiphy);
2451 reg_process_ht_flags(wiphy);
2452 reg_call_notifier(wiphy, lr);
2455 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2457 struct cfg80211_registered_device *rdev;
2458 struct wiphy *wiphy;
2460 ASSERT_RTNL();
2462 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2463 wiphy = &rdev->wiphy;
2464 wiphy_update_regulatory(wiphy, initiator);
2467 reg_check_channels();
2470 static void handle_channel_custom(struct wiphy *wiphy,
2471 struct ieee80211_channel *chan,
2472 const struct ieee80211_regdomain *regd,
2473 u32 min_bw)
2475 u32 bw_flags = 0;
2476 const struct ieee80211_reg_rule *reg_rule = NULL;
2477 const struct ieee80211_power_rule *power_rule = NULL;
2478 u32 bw, center_freq_khz;
2480 center_freq_khz = ieee80211_channel_to_khz(chan);
2481 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2482 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2483 if (!IS_ERR(reg_rule))
2484 break;
2487 if (IS_ERR_OR_NULL(reg_rule)) {
2488 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2489 chan->center_freq, chan->freq_offset);
2490 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2491 chan->flags |= IEEE80211_CHAN_DISABLED;
2492 } else {
2493 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2494 chan->flags = chan->orig_flags;
2496 return;
2499 power_rule = &reg_rule->power_rule;
2500 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2502 chan->dfs_state_entered = jiffies;
2503 chan->dfs_state = NL80211_DFS_USABLE;
2505 chan->beacon_found = false;
2507 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2508 chan->flags = chan->orig_flags | bw_flags |
2509 map_regdom_flags(reg_rule->flags);
2510 else
2511 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2513 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2514 chan->max_reg_power = chan->max_power =
2515 (int) MBM_TO_DBM(power_rule->max_eirp);
2517 if (chan->flags & IEEE80211_CHAN_RADAR) {
2518 if (reg_rule->dfs_cac_ms)
2519 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2520 else
2521 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2524 chan->max_power = chan->max_reg_power;
2527 static void handle_band_custom(struct wiphy *wiphy,
2528 struct ieee80211_supported_band *sband,
2529 const struct ieee80211_regdomain *regd)
2531 unsigned int i;
2533 if (!sband)
2534 return;
2537 * We currently assume that you always want at least 20 MHz,
2538 * otherwise channel 12 might get enabled if this rule is
2539 * compatible to US, which permits 2402 - 2472 MHz.
2541 for (i = 0; i < sband->n_channels; i++)
2542 handle_channel_custom(wiphy, &sband->channels[i], regd,
2543 MHZ_TO_KHZ(20));
2546 /* Used by drivers prior to wiphy registration */
2547 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2548 const struct ieee80211_regdomain *regd)
2550 const struct ieee80211_regdomain *new_regd, *tmp;
2551 enum nl80211_band band;
2552 unsigned int bands_set = 0;
2554 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2555 "wiphy should have REGULATORY_CUSTOM_REG\n");
2556 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2558 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2559 if (!wiphy->bands[band])
2560 continue;
2561 handle_band_custom(wiphy, wiphy->bands[band], regd);
2562 bands_set++;
2566 * no point in calling this if it won't have any effect
2567 * on your device's supported bands.
2569 WARN_ON(!bands_set);
2570 new_regd = reg_copy_regd(regd);
2571 if (IS_ERR(new_regd))
2572 return;
2574 tmp = get_wiphy_regdom(wiphy);
2575 rcu_assign_pointer(wiphy->regd, new_regd);
2576 rcu_free_regdom(tmp);
2578 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2580 static void reg_set_request_processed(void)
2582 bool need_more_processing = false;
2583 struct regulatory_request *lr = get_last_request();
2585 lr->processed = true;
2587 spin_lock(&reg_requests_lock);
2588 if (!list_empty(&reg_requests_list))
2589 need_more_processing = true;
2590 spin_unlock(&reg_requests_lock);
2592 cancel_crda_timeout();
2594 if (need_more_processing)
2595 schedule_work(&reg_work);
2599 * reg_process_hint_core - process core regulatory requests
2600 * @core_request: a pending core regulatory request
2602 * The wireless subsystem can use this function to process
2603 * a regulatory request issued by the regulatory core.
2605 static enum reg_request_treatment
2606 reg_process_hint_core(struct regulatory_request *core_request)
2608 if (reg_query_database(core_request)) {
2609 core_request->intersect = false;
2610 core_request->processed = false;
2611 reg_update_last_request(core_request);
2612 return REG_REQ_OK;
2615 return REG_REQ_IGNORE;
2618 static enum reg_request_treatment
2619 __reg_process_hint_user(struct regulatory_request *user_request)
2621 struct regulatory_request *lr = get_last_request();
2623 if (reg_request_cell_base(user_request))
2624 return reg_ignore_cell_hint(user_request);
2626 if (reg_request_cell_base(lr))
2627 return REG_REQ_IGNORE;
2629 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2630 return REG_REQ_INTERSECT;
2632 * If the user knows better the user should set the regdom
2633 * to their country before the IE is picked up
2635 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2636 lr->intersect)
2637 return REG_REQ_IGNORE;
2639 * Process user requests only after previous user/driver/core
2640 * requests have been processed
2642 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2643 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2644 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2645 regdom_changes(lr->alpha2))
2646 return REG_REQ_IGNORE;
2648 if (!regdom_changes(user_request->alpha2))
2649 return REG_REQ_ALREADY_SET;
2651 return REG_REQ_OK;
2655 * reg_process_hint_user - process user regulatory requests
2656 * @user_request: a pending user regulatory request
2658 * The wireless subsystem can use this function to process
2659 * a regulatory request initiated by userspace.
2661 static enum reg_request_treatment
2662 reg_process_hint_user(struct regulatory_request *user_request)
2664 enum reg_request_treatment treatment;
2666 treatment = __reg_process_hint_user(user_request);
2667 if (treatment == REG_REQ_IGNORE ||
2668 treatment == REG_REQ_ALREADY_SET)
2669 return REG_REQ_IGNORE;
2671 user_request->intersect = treatment == REG_REQ_INTERSECT;
2672 user_request->processed = false;
2674 if (reg_query_database(user_request)) {
2675 reg_update_last_request(user_request);
2676 user_alpha2[0] = user_request->alpha2[0];
2677 user_alpha2[1] = user_request->alpha2[1];
2678 return REG_REQ_OK;
2681 return REG_REQ_IGNORE;
2684 static enum reg_request_treatment
2685 __reg_process_hint_driver(struct regulatory_request *driver_request)
2687 struct regulatory_request *lr = get_last_request();
2689 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2690 if (regdom_changes(driver_request->alpha2))
2691 return REG_REQ_OK;
2692 return REG_REQ_ALREADY_SET;
2696 * This would happen if you unplug and plug your card
2697 * back in or if you add a new device for which the previously
2698 * loaded card also agrees on the regulatory domain.
2700 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2701 !regdom_changes(driver_request->alpha2))
2702 return REG_REQ_ALREADY_SET;
2704 return REG_REQ_INTERSECT;
2708 * reg_process_hint_driver - process driver regulatory requests
2709 * @wiphy: the wireless device for the regulatory request
2710 * @driver_request: a pending driver regulatory request
2712 * The wireless subsystem can use this function to process
2713 * a regulatory request issued by an 802.11 driver.
2715 * Returns one of the different reg request treatment values.
2717 static enum reg_request_treatment
2718 reg_process_hint_driver(struct wiphy *wiphy,
2719 struct regulatory_request *driver_request)
2721 const struct ieee80211_regdomain *regd, *tmp;
2722 enum reg_request_treatment treatment;
2724 treatment = __reg_process_hint_driver(driver_request);
2726 switch (treatment) {
2727 case REG_REQ_OK:
2728 break;
2729 case REG_REQ_IGNORE:
2730 return REG_REQ_IGNORE;
2731 case REG_REQ_INTERSECT:
2732 case REG_REQ_ALREADY_SET:
2733 regd = reg_copy_regd(get_cfg80211_regdom());
2734 if (IS_ERR(regd))
2735 return REG_REQ_IGNORE;
2737 tmp = get_wiphy_regdom(wiphy);
2738 rcu_assign_pointer(wiphy->regd, regd);
2739 rcu_free_regdom(tmp);
2743 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2744 driver_request->processed = false;
2747 * Since CRDA will not be called in this case as we already
2748 * have applied the requested regulatory domain before we just
2749 * inform userspace we have processed the request
2751 if (treatment == REG_REQ_ALREADY_SET) {
2752 nl80211_send_reg_change_event(driver_request);
2753 reg_update_last_request(driver_request);
2754 reg_set_request_processed();
2755 return REG_REQ_ALREADY_SET;
2758 if (reg_query_database(driver_request)) {
2759 reg_update_last_request(driver_request);
2760 return REG_REQ_OK;
2763 return REG_REQ_IGNORE;
2766 static enum reg_request_treatment
2767 __reg_process_hint_country_ie(struct wiphy *wiphy,
2768 struct regulatory_request *country_ie_request)
2770 struct wiphy *last_wiphy = NULL;
2771 struct regulatory_request *lr = get_last_request();
2773 if (reg_request_cell_base(lr)) {
2774 /* Trust a Cell base station over the AP's country IE */
2775 if (regdom_changes(country_ie_request->alpha2))
2776 return REG_REQ_IGNORE;
2777 return REG_REQ_ALREADY_SET;
2778 } else {
2779 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2780 return REG_REQ_IGNORE;
2783 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2784 return -EINVAL;
2786 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2787 return REG_REQ_OK;
2789 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2791 if (last_wiphy != wiphy) {
2793 * Two cards with two APs claiming different
2794 * Country IE alpha2s. We could
2795 * intersect them, but that seems unlikely
2796 * to be correct. Reject second one for now.
2798 if (regdom_changes(country_ie_request->alpha2))
2799 return REG_REQ_IGNORE;
2800 return REG_REQ_ALREADY_SET;
2803 if (regdom_changes(country_ie_request->alpha2))
2804 return REG_REQ_OK;
2805 return REG_REQ_ALREADY_SET;
2809 * reg_process_hint_country_ie - process regulatory requests from country IEs
2810 * @wiphy: the wireless device for the regulatory request
2811 * @country_ie_request: a regulatory request from a country IE
2813 * The wireless subsystem can use this function to process
2814 * a regulatory request issued by a country Information Element.
2816 * Returns one of the different reg request treatment values.
2818 static enum reg_request_treatment
2819 reg_process_hint_country_ie(struct wiphy *wiphy,
2820 struct regulatory_request *country_ie_request)
2822 enum reg_request_treatment treatment;
2824 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2826 switch (treatment) {
2827 case REG_REQ_OK:
2828 break;
2829 case REG_REQ_IGNORE:
2830 return REG_REQ_IGNORE;
2831 case REG_REQ_ALREADY_SET:
2832 reg_free_request(country_ie_request);
2833 return REG_REQ_ALREADY_SET;
2834 case REG_REQ_INTERSECT:
2836 * This doesn't happen yet, not sure we
2837 * ever want to support it for this case.
2839 WARN_ONCE(1, "Unexpected intersection for country elements");
2840 return REG_REQ_IGNORE;
2843 country_ie_request->intersect = false;
2844 country_ie_request->processed = false;
2846 if (reg_query_database(country_ie_request)) {
2847 reg_update_last_request(country_ie_request);
2848 return REG_REQ_OK;
2851 return REG_REQ_IGNORE;
2854 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2856 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2857 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2858 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2859 bool dfs_domain_same;
2861 rcu_read_lock();
2863 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2864 wiphy1_regd = rcu_dereference(wiphy1->regd);
2865 if (!wiphy1_regd)
2866 wiphy1_regd = cfg80211_regd;
2868 wiphy2_regd = rcu_dereference(wiphy2->regd);
2869 if (!wiphy2_regd)
2870 wiphy2_regd = cfg80211_regd;
2872 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2874 rcu_read_unlock();
2876 return dfs_domain_same;
2879 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2880 struct ieee80211_channel *src_chan)
2882 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2883 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2884 return;
2886 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2887 src_chan->flags & IEEE80211_CHAN_DISABLED)
2888 return;
2890 if (src_chan->center_freq == dst_chan->center_freq &&
2891 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2892 dst_chan->dfs_state = src_chan->dfs_state;
2893 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2897 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2898 struct wiphy *src_wiphy)
2900 struct ieee80211_supported_band *src_sband, *dst_sband;
2901 struct ieee80211_channel *src_chan, *dst_chan;
2902 int i, j, band;
2904 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2905 return;
2907 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2908 dst_sband = dst_wiphy->bands[band];
2909 src_sband = src_wiphy->bands[band];
2910 if (!dst_sband || !src_sband)
2911 continue;
2913 for (i = 0; i < dst_sband->n_channels; i++) {
2914 dst_chan = &dst_sband->channels[i];
2915 for (j = 0; j < src_sband->n_channels; j++) {
2916 src_chan = &src_sband->channels[j];
2917 reg_copy_dfs_chan_state(dst_chan, src_chan);
2923 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2925 struct cfg80211_registered_device *rdev;
2927 ASSERT_RTNL();
2929 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2930 if (wiphy == &rdev->wiphy)
2931 continue;
2932 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2936 /* This processes *all* regulatory hints */
2937 static void reg_process_hint(struct regulatory_request *reg_request)
2939 struct wiphy *wiphy = NULL;
2940 enum reg_request_treatment treatment;
2941 enum nl80211_reg_initiator initiator = reg_request->initiator;
2943 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2944 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2946 switch (initiator) {
2947 case NL80211_REGDOM_SET_BY_CORE:
2948 treatment = reg_process_hint_core(reg_request);
2949 break;
2950 case NL80211_REGDOM_SET_BY_USER:
2951 treatment = reg_process_hint_user(reg_request);
2952 break;
2953 case NL80211_REGDOM_SET_BY_DRIVER:
2954 if (!wiphy)
2955 goto out_free;
2956 treatment = reg_process_hint_driver(wiphy, reg_request);
2957 break;
2958 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2959 if (!wiphy)
2960 goto out_free;
2961 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2962 break;
2963 default:
2964 WARN(1, "invalid initiator %d\n", initiator);
2965 goto out_free;
2968 if (treatment == REG_REQ_IGNORE)
2969 goto out_free;
2971 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2972 "unexpected treatment value %d\n", treatment);
2974 /* This is required so that the orig_* parameters are saved.
2975 * NOTE: treatment must be set for any case that reaches here!
2977 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2978 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2979 wiphy_update_regulatory(wiphy, initiator);
2980 wiphy_all_share_dfs_chan_state(wiphy);
2981 reg_check_channels();
2984 return;
2986 out_free:
2987 reg_free_request(reg_request);
2990 static void notify_self_managed_wiphys(struct regulatory_request *request)
2992 struct cfg80211_registered_device *rdev;
2993 struct wiphy *wiphy;
2995 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2996 wiphy = &rdev->wiphy;
2997 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2998 request->initiator == NL80211_REGDOM_SET_BY_USER)
2999 reg_call_notifier(wiphy, request);
3004 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3005 * Regulatory hints come on a first come first serve basis and we
3006 * must process each one atomically.
3008 static void reg_process_pending_hints(void)
3010 struct regulatory_request *reg_request, *lr;
3012 lr = get_last_request();
3014 /* When last_request->processed becomes true this will be rescheduled */
3015 if (lr && !lr->processed) {
3016 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3017 return;
3020 spin_lock(&reg_requests_lock);
3022 if (list_empty(&reg_requests_list)) {
3023 spin_unlock(&reg_requests_lock);
3024 return;
3027 reg_request = list_first_entry(&reg_requests_list,
3028 struct regulatory_request,
3029 list);
3030 list_del_init(&reg_request->list);
3032 spin_unlock(&reg_requests_lock);
3034 notify_self_managed_wiphys(reg_request);
3036 reg_process_hint(reg_request);
3038 lr = get_last_request();
3040 spin_lock(&reg_requests_lock);
3041 if (!list_empty(&reg_requests_list) && lr && lr->processed)
3042 schedule_work(&reg_work);
3043 spin_unlock(&reg_requests_lock);
3046 /* Processes beacon hints -- this has nothing to do with country IEs */
3047 static void reg_process_pending_beacon_hints(void)
3049 struct cfg80211_registered_device *rdev;
3050 struct reg_beacon *pending_beacon, *tmp;
3052 /* This goes through the _pending_ beacon list */
3053 spin_lock_bh(&reg_pending_beacons_lock);
3055 list_for_each_entry_safe(pending_beacon, tmp,
3056 &reg_pending_beacons, list) {
3057 list_del_init(&pending_beacon->list);
3059 /* Applies the beacon hint to current wiphys */
3060 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3061 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3063 /* Remembers the beacon hint for new wiphys or reg changes */
3064 list_add_tail(&pending_beacon->list, &reg_beacon_list);
3067 spin_unlock_bh(&reg_pending_beacons_lock);
3070 static void reg_process_self_managed_hints(void)
3072 struct cfg80211_registered_device *rdev;
3073 struct wiphy *wiphy;
3074 const struct ieee80211_regdomain *tmp;
3075 const struct ieee80211_regdomain *regd;
3076 enum nl80211_band band;
3077 struct regulatory_request request = {};
3079 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3080 wiphy = &rdev->wiphy;
3082 spin_lock(&reg_requests_lock);
3083 regd = rdev->requested_regd;
3084 rdev->requested_regd = NULL;
3085 spin_unlock(&reg_requests_lock);
3087 if (regd == NULL)
3088 continue;
3090 tmp = get_wiphy_regdom(wiphy);
3091 rcu_assign_pointer(wiphy->regd, regd);
3092 rcu_free_regdom(tmp);
3094 for (band = 0; band < NUM_NL80211_BANDS; band++)
3095 handle_band_custom(wiphy, wiphy->bands[band], regd);
3097 reg_process_ht_flags(wiphy);
3099 request.wiphy_idx = get_wiphy_idx(wiphy);
3100 request.alpha2[0] = regd->alpha2[0];
3101 request.alpha2[1] = regd->alpha2[1];
3102 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3104 nl80211_send_wiphy_reg_change_event(&request);
3107 reg_check_channels();
3110 static void reg_todo(struct work_struct *work)
3112 rtnl_lock();
3113 reg_process_pending_hints();
3114 reg_process_pending_beacon_hints();
3115 reg_process_self_managed_hints();
3116 rtnl_unlock();
3119 static void queue_regulatory_request(struct regulatory_request *request)
3121 request->alpha2[0] = toupper(request->alpha2[0]);
3122 request->alpha2[1] = toupper(request->alpha2[1]);
3124 spin_lock(&reg_requests_lock);
3125 list_add_tail(&request->list, &reg_requests_list);
3126 spin_unlock(&reg_requests_lock);
3128 schedule_work(&reg_work);
3132 * Core regulatory hint -- happens during cfg80211_init()
3133 * and when we restore regulatory settings.
3135 static int regulatory_hint_core(const char *alpha2)
3137 struct regulatory_request *request;
3139 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3140 if (!request)
3141 return -ENOMEM;
3143 request->alpha2[0] = alpha2[0];
3144 request->alpha2[1] = alpha2[1];
3145 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3146 request->wiphy_idx = WIPHY_IDX_INVALID;
3148 queue_regulatory_request(request);
3150 return 0;
3153 /* User hints */
3154 int regulatory_hint_user(const char *alpha2,
3155 enum nl80211_user_reg_hint_type user_reg_hint_type)
3157 struct regulatory_request *request;
3159 if (WARN_ON(!alpha2))
3160 return -EINVAL;
3162 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3163 return -EINVAL;
3165 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3166 if (!request)
3167 return -ENOMEM;
3169 request->wiphy_idx = WIPHY_IDX_INVALID;
3170 request->alpha2[0] = alpha2[0];
3171 request->alpha2[1] = alpha2[1];
3172 request->initiator = NL80211_REGDOM_SET_BY_USER;
3173 request->user_reg_hint_type = user_reg_hint_type;
3175 /* Allow calling CRDA again */
3176 reset_crda_timeouts();
3178 queue_regulatory_request(request);
3180 return 0;
3183 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3185 spin_lock(&reg_indoor_lock);
3187 /* It is possible that more than one user space process is trying to
3188 * configure the indoor setting. To handle such cases, clear the indoor
3189 * setting in case that some process does not think that the device
3190 * is operating in an indoor environment. In addition, if a user space
3191 * process indicates that it is controlling the indoor setting, save its
3192 * portid, i.e., make it the owner.
3194 reg_is_indoor = is_indoor;
3195 if (reg_is_indoor) {
3196 if (!reg_is_indoor_portid)
3197 reg_is_indoor_portid = portid;
3198 } else {
3199 reg_is_indoor_portid = 0;
3202 spin_unlock(&reg_indoor_lock);
3204 if (!is_indoor)
3205 reg_check_channels();
3207 return 0;
3210 void regulatory_netlink_notify(u32 portid)
3212 spin_lock(&reg_indoor_lock);
3214 if (reg_is_indoor_portid != portid) {
3215 spin_unlock(&reg_indoor_lock);
3216 return;
3219 reg_is_indoor = false;
3220 reg_is_indoor_portid = 0;
3222 spin_unlock(&reg_indoor_lock);
3224 reg_check_channels();
3227 /* Driver hints */
3228 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3230 struct regulatory_request *request;
3232 if (WARN_ON(!alpha2 || !wiphy))
3233 return -EINVAL;
3235 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3237 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3238 if (!request)
3239 return -ENOMEM;
3241 request->wiphy_idx = get_wiphy_idx(wiphy);
3243 request->alpha2[0] = alpha2[0];
3244 request->alpha2[1] = alpha2[1];
3245 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3247 /* Allow calling CRDA again */
3248 reset_crda_timeouts();
3250 queue_regulatory_request(request);
3252 return 0;
3254 EXPORT_SYMBOL(regulatory_hint);
3256 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3257 const u8 *country_ie, u8 country_ie_len)
3259 char alpha2[2];
3260 enum environment_cap env = ENVIRON_ANY;
3261 struct regulatory_request *request = NULL, *lr;
3263 /* IE len must be evenly divisible by 2 */
3264 if (country_ie_len & 0x01)
3265 return;
3267 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3268 return;
3270 request = kzalloc(sizeof(*request), GFP_KERNEL);
3271 if (!request)
3272 return;
3274 alpha2[0] = country_ie[0];
3275 alpha2[1] = country_ie[1];
3277 if (country_ie[2] == 'I')
3278 env = ENVIRON_INDOOR;
3279 else if (country_ie[2] == 'O')
3280 env = ENVIRON_OUTDOOR;
3282 rcu_read_lock();
3283 lr = get_last_request();
3285 if (unlikely(!lr))
3286 goto out;
3289 * We will run this only upon a successful connection on cfg80211.
3290 * We leave conflict resolution to the workqueue, where can hold
3291 * the RTNL.
3293 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3294 lr->wiphy_idx != WIPHY_IDX_INVALID)
3295 goto out;
3297 request->wiphy_idx = get_wiphy_idx(wiphy);
3298 request->alpha2[0] = alpha2[0];
3299 request->alpha2[1] = alpha2[1];
3300 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3301 request->country_ie_env = env;
3303 /* Allow calling CRDA again */
3304 reset_crda_timeouts();
3306 queue_regulatory_request(request);
3307 request = NULL;
3308 out:
3309 kfree(request);
3310 rcu_read_unlock();
3313 static void restore_alpha2(char *alpha2, bool reset_user)
3315 /* indicates there is no alpha2 to consider for restoration */
3316 alpha2[0] = '9';
3317 alpha2[1] = '7';
3319 /* The user setting has precedence over the module parameter */
3320 if (is_user_regdom_saved()) {
3321 /* Unless we're asked to ignore it and reset it */
3322 if (reset_user) {
3323 pr_debug("Restoring regulatory settings including user preference\n");
3324 user_alpha2[0] = '9';
3325 user_alpha2[1] = '7';
3328 * If we're ignoring user settings, we still need to
3329 * check the module parameter to ensure we put things
3330 * back as they were for a full restore.
3332 if (!is_world_regdom(ieee80211_regdom)) {
3333 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3334 ieee80211_regdom[0], ieee80211_regdom[1]);
3335 alpha2[0] = ieee80211_regdom[0];
3336 alpha2[1] = ieee80211_regdom[1];
3338 } else {
3339 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3340 user_alpha2[0], user_alpha2[1]);
3341 alpha2[0] = user_alpha2[0];
3342 alpha2[1] = user_alpha2[1];
3344 } else if (!is_world_regdom(ieee80211_regdom)) {
3345 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3346 ieee80211_regdom[0], ieee80211_regdom[1]);
3347 alpha2[0] = ieee80211_regdom[0];
3348 alpha2[1] = ieee80211_regdom[1];
3349 } else
3350 pr_debug("Restoring regulatory settings\n");
3353 static void restore_custom_reg_settings(struct wiphy *wiphy)
3355 struct ieee80211_supported_band *sband;
3356 enum nl80211_band band;
3357 struct ieee80211_channel *chan;
3358 int i;
3360 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3361 sband = wiphy->bands[band];
3362 if (!sband)
3363 continue;
3364 for (i = 0; i < sband->n_channels; i++) {
3365 chan = &sband->channels[i];
3366 chan->flags = chan->orig_flags;
3367 chan->max_antenna_gain = chan->orig_mag;
3368 chan->max_power = chan->orig_mpwr;
3369 chan->beacon_found = false;
3375 * Restoring regulatory settings involves ingoring any
3376 * possibly stale country IE information and user regulatory
3377 * settings if so desired, this includes any beacon hints
3378 * learned as we could have traveled outside to another country
3379 * after disconnection. To restore regulatory settings we do
3380 * exactly what we did at bootup:
3382 * - send a core regulatory hint
3383 * - send a user regulatory hint if applicable
3385 * Device drivers that send a regulatory hint for a specific country
3386 * keep their own regulatory domain on wiphy->regd so that does
3387 * not need to be remembered.
3389 static void restore_regulatory_settings(bool reset_user, bool cached)
3391 char alpha2[2];
3392 char world_alpha2[2];
3393 struct reg_beacon *reg_beacon, *btmp;
3394 LIST_HEAD(tmp_reg_req_list);
3395 struct cfg80211_registered_device *rdev;
3397 ASSERT_RTNL();
3400 * Clear the indoor setting in case that it is not controlled by user
3401 * space, as otherwise there is no guarantee that the device is still
3402 * operating in an indoor environment.
3404 spin_lock(&reg_indoor_lock);
3405 if (reg_is_indoor && !reg_is_indoor_portid) {
3406 reg_is_indoor = false;
3407 reg_check_channels();
3409 spin_unlock(&reg_indoor_lock);
3411 reset_regdomains(true, &world_regdom);
3412 restore_alpha2(alpha2, reset_user);
3415 * If there's any pending requests we simply
3416 * stash them to a temporary pending queue and
3417 * add then after we've restored regulatory
3418 * settings.
3420 spin_lock(&reg_requests_lock);
3421 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3422 spin_unlock(&reg_requests_lock);
3424 /* Clear beacon hints */
3425 spin_lock_bh(&reg_pending_beacons_lock);
3426 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3427 list_del(&reg_beacon->list);
3428 kfree(reg_beacon);
3430 spin_unlock_bh(&reg_pending_beacons_lock);
3432 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3433 list_del(&reg_beacon->list);
3434 kfree(reg_beacon);
3437 /* First restore to the basic regulatory settings */
3438 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3439 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3441 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3442 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3443 continue;
3444 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3445 restore_custom_reg_settings(&rdev->wiphy);
3448 if (cached && (!is_an_alpha2(alpha2) ||
3449 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3450 reset_regdomains(false, cfg80211_world_regdom);
3451 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3452 print_regdomain(get_cfg80211_regdom());
3453 nl80211_send_reg_change_event(&core_request_world);
3454 reg_set_request_processed();
3456 if (is_an_alpha2(alpha2) &&
3457 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3458 struct regulatory_request *ureq;
3460 spin_lock(&reg_requests_lock);
3461 ureq = list_last_entry(&reg_requests_list,
3462 struct regulatory_request,
3463 list);
3464 list_del(&ureq->list);
3465 spin_unlock(&reg_requests_lock);
3467 notify_self_managed_wiphys(ureq);
3468 reg_update_last_request(ureq);
3469 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3470 REGD_SOURCE_CACHED);
3472 } else {
3473 regulatory_hint_core(world_alpha2);
3476 * This restores the ieee80211_regdom module parameter
3477 * preference or the last user requested regulatory
3478 * settings, user regulatory settings takes precedence.
3480 if (is_an_alpha2(alpha2))
3481 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3484 spin_lock(&reg_requests_lock);
3485 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3486 spin_unlock(&reg_requests_lock);
3488 pr_debug("Kicking the queue\n");
3490 schedule_work(&reg_work);
3493 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3495 struct cfg80211_registered_device *rdev;
3496 struct wireless_dev *wdev;
3498 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3499 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3500 wdev_lock(wdev);
3501 if (!(wdev->wiphy->regulatory_flags & flag)) {
3502 wdev_unlock(wdev);
3503 return false;
3505 wdev_unlock(wdev);
3509 return true;
3512 void regulatory_hint_disconnect(void)
3514 /* Restore of regulatory settings is not required when wiphy(s)
3515 * ignore IE from connected access point but clearance of beacon hints
3516 * is required when wiphy(s) supports beacon hints.
3518 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3519 struct reg_beacon *reg_beacon, *btmp;
3521 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3522 return;
3524 spin_lock_bh(&reg_pending_beacons_lock);
3525 list_for_each_entry_safe(reg_beacon, btmp,
3526 &reg_pending_beacons, list) {
3527 list_del(&reg_beacon->list);
3528 kfree(reg_beacon);
3530 spin_unlock_bh(&reg_pending_beacons_lock);
3532 list_for_each_entry_safe(reg_beacon, btmp,
3533 &reg_beacon_list, list) {
3534 list_del(&reg_beacon->list);
3535 kfree(reg_beacon);
3538 return;
3541 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3542 restore_regulatory_settings(false, true);
3545 static bool freq_is_chan_12_13_14(u32 freq)
3547 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3548 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3549 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3550 return true;
3551 return false;
3554 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3556 struct reg_beacon *pending_beacon;
3558 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3559 if (ieee80211_channel_equal(beacon_chan,
3560 &pending_beacon->chan))
3561 return true;
3562 return false;
3565 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3566 struct ieee80211_channel *beacon_chan,
3567 gfp_t gfp)
3569 struct reg_beacon *reg_beacon;
3570 bool processing;
3572 if (beacon_chan->beacon_found ||
3573 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3574 (beacon_chan->band == NL80211_BAND_2GHZ &&
3575 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3576 return 0;
3578 spin_lock_bh(&reg_pending_beacons_lock);
3579 processing = pending_reg_beacon(beacon_chan);
3580 spin_unlock_bh(&reg_pending_beacons_lock);
3582 if (processing)
3583 return 0;
3585 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3586 if (!reg_beacon)
3587 return -ENOMEM;
3589 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3590 beacon_chan->center_freq, beacon_chan->freq_offset,
3591 ieee80211_freq_khz_to_channel(
3592 ieee80211_channel_to_khz(beacon_chan)),
3593 wiphy_name(wiphy));
3595 memcpy(&reg_beacon->chan, beacon_chan,
3596 sizeof(struct ieee80211_channel));
3599 * Since we can be called from BH or and non-BH context
3600 * we must use spin_lock_bh()
3602 spin_lock_bh(&reg_pending_beacons_lock);
3603 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3604 spin_unlock_bh(&reg_pending_beacons_lock);
3606 schedule_work(&reg_work);
3608 return 0;
3611 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3613 unsigned int i;
3614 const struct ieee80211_reg_rule *reg_rule = NULL;
3615 const struct ieee80211_freq_range *freq_range = NULL;
3616 const struct ieee80211_power_rule *power_rule = NULL;
3617 char bw[32], cac_time[32];
3619 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3621 for (i = 0; i < rd->n_reg_rules; i++) {
3622 reg_rule = &rd->reg_rules[i];
3623 freq_range = &reg_rule->freq_range;
3624 power_rule = &reg_rule->power_rule;
3626 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3627 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3628 freq_range->max_bandwidth_khz,
3629 reg_get_max_bandwidth(rd, reg_rule));
3630 else
3631 snprintf(bw, sizeof(bw), "%d KHz",
3632 freq_range->max_bandwidth_khz);
3634 if (reg_rule->flags & NL80211_RRF_DFS)
3635 scnprintf(cac_time, sizeof(cac_time), "%u s",
3636 reg_rule->dfs_cac_ms/1000);
3637 else
3638 scnprintf(cac_time, sizeof(cac_time), "N/A");
3642 * There may not be documentation for max antenna gain
3643 * in certain regions
3645 if (power_rule->max_antenna_gain)
3646 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3647 freq_range->start_freq_khz,
3648 freq_range->end_freq_khz,
3650 power_rule->max_antenna_gain,
3651 power_rule->max_eirp,
3652 cac_time);
3653 else
3654 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3655 freq_range->start_freq_khz,
3656 freq_range->end_freq_khz,
3658 power_rule->max_eirp,
3659 cac_time);
3663 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3665 switch (dfs_region) {
3666 case NL80211_DFS_UNSET:
3667 case NL80211_DFS_FCC:
3668 case NL80211_DFS_ETSI:
3669 case NL80211_DFS_JP:
3670 return true;
3671 default:
3672 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3673 return false;
3677 static void print_regdomain(const struct ieee80211_regdomain *rd)
3679 struct regulatory_request *lr = get_last_request();
3681 if (is_intersected_alpha2(rd->alpha2)) {
3682 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3683 struct cfg80211_registered_device *rdev;
3684 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3685 if (rdev) {
3686 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3687 rdev->country_ie_alpha2[0],
3688 rdev->country_ie_alpha2[1]);
3689 } else
3690 pr_debug("Current regulatory domain intersected:\n");
3691 } else
3692 pr_debug("Current regulatory domain intersected:\n");
3693 } else if (is_world_regdom(rd->alpha2)) {
3694 pr_debug("World regulatory domain updated:\n");
3695 } else {
3696 if (is_unknown_alpha2(rd->alpha2))
3697 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3698 else {
3699 if (reg_request_cell_base(lr))
3700 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3701 rd->alpha2[0], rd->alpha2[1]);
3702 else
3703 pr_debug("Regulatory domain changed to country: %c%c\n",
3704 rd->alpha2[0], rd->alpha2[1]);
3708 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3709 print_rd_rules(rd);
3712 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3714 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3715 print_rd_rules(rd);
3718 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3720 if (!is_world_regdom(rd->alpha2))
3721 return -EINVAL;
3722 update_world_regdomain(rd);
3723 return 0;
3726 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3727 struct regulatory_request *user_request)
3729 const struct ieee80211_regdomain *intersected_rd = NULL;
3731 if (!regdom_changes(rd->alpha2))
3732 return -EALREADY;
3734 if (!is_valid_rd(rd)) {
3735 pr_err("Invalid regulatory domain detected: %c%c\n",
3736 rd->alpha2[0], rd->alpha2[1]);
3737 print_regdomain_info(rd);
3738 return -EINVAL;
3741 if (!user_request->intersect) {
3742 reset_regdomains(false, rd);
3743 return 0;
3746 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3747 if (!intersected_rd)
3748 return -EINVAL;
3750 kfree(rd);
3751 rd = NULL;
3752 reset_regdomains(false, intersected_rd);
3754 return 0;
3757 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3758 struct regulatory_request *driver_request)
3760 const struct ieee80211_regdomain *regd;
3761 const struct ieee80211_regdomain *intersected_rd = NULL;
3762 const struct ieee80211_regdomain *tmp;
3763 struct wiphy *request_wiphy;
3765 if (is_world_regdom(rd->alpha2))
3766 return -EINVAL;
3768 if (!regdom_changes(rd->alpha2))
3769 return -EALREADY;
3771 if (!is_valid_rd(rd)) {
3772 pr_err("Invalid regulatory domain detected: %c%c\n",
3773 rd->alpha2[0], rd->alpha2[1]);
3774 print_regdomain_info(rd);
3775 return -EINVAL;
3778 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3779 if (!request_wiphy)
3780 return -ENODEV;
3782 if (!driver_request->intersect) {
3783 if (request_wiphy->regd)
3784 return -EALREADY;
3786 regd = reg_copy_regd(rd);
3787 if (IS_ERR(regd))
3788 return PTR_ERR(regd);
3790 rcu_assign_pointer(request_wiphy->regd, regd);
3791 reset_regdomains(false, rd);
3792 return 0;
3795 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3796 if (!intersected_rd)
3797 return -EINVAL;
3800 * We can trash what CRDA provided now.
3801 * However if a driver requested this specific regulatory
3802 * domain we keep it for its private use
3804 tmp = get_wiphy_regdom(request_wiphy);
3805 rcu_assign_pointer(request_wiphy->regd, rd);
3806 rcu_free_regdom(tmp);
3808 rd = NULL;
3810 reset_regdomains(false, intersected_rd);
3812 return 0;
3815 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3816 struct regulatory_request *country_ie_request)
3818 struct wiphy *request_wiphy;
3820 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3821 !is_unknown_alpha2(rd->alpha2))
3822 return -EINVAL;
3825 * Lets only bother proceeding on the same alpha2 if the current
3826 * rd is non static (it means CRDA was present and was used last)
3827 * and the pending request came in from a country IE
3830 if (!is_valid_rd(rd)) {
3831 pr_err("Invalid regulatory domain detected: %c%c\n",
3832 rd->alpha2[0], rd->alpha2[1]);
3833 print_regdomain_info(rd);
3834 return -EINVAL;
3837 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3838 if (!request_wiphy)
3839 return -ENODEV;
3841 if (country_ie_request->intersect)
3842 return -EINVAL;
3844 reset_regdomains(false, rd);
3845 return 0;
3849 * Use this call to set the current regulatory domain. Conflicts with
3850 * multiple drivers can be ironed out later. Caller must've already
3851 * kmalloc'd the rd structure.
3853 int set_regdom(const struct ieee80211_regdomain *rd,
3854 enum ieee80211_regd_source regd_src)
3856 struct regulatory_request *lr;
3857 bool user_reset = false;
3858 int r;
3860 if (IS_ERR_OR_NULL(rd))
3861 return -ENODATA;
3863 if (!reg_is_valid_request(rd->alpha2)) {
3864 kfree(rd);
3865 return -EINVAL;
3868 if (regd_src == REGD_SOURCE_CRDA)
3869 reset_crda_timeouts();
3871 lr = get_last_request();
3873 /* Note that this doesn't update the wiphys, this is done below */
3874 switch (lr->initiator) {
3875 case NL80211_REGDOM_SET_BY_CORE:
3876 r = reg_set_rd_core(rd);
3877 break;
3878 case NL80211_REGDOM_SET_BY_USER:
3879 cfg80211_save_user_regdom(rd);
3880 r = reg_set_rd_user(rd, lr);
3881 user_reset = true;
3882 break;
3883 case NL80211_REGDOM_SET_BY_DRIVER:
3884 r = reg_set_rd_driver(rd, lr);
3885 break;
3886 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3887 r = reg_set_rd_country_ie(rd, lr);
3888 break;
3889 default:
3890 WARN(1, "invalid initiator %d\n", lr->initiator);
3891 kfree(rd);
3892 return -EINVAL;
3895 if (r) {
3896 switch (r) {
3897 case -EALREADY:
3898 reg_set_request_processed();
3899 break;
3900 default:
3901 /* Back to world regulatory in case of errors */
3902 restore_regulatory_settings(user_reset, false);
3905 kfree(rd);
3906 return r;
3909 /* This would make this whole thing pointless */
3910 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3911 return -EINVAL;
3913 /* update all wiphys now with the new established regulatory domain */
3914 update_all_wiphy_regulatory(lr->initiator);
3916 print_regdomain(get_cfg80211_regdom());
3918 nl80211_send_reg_change_event(lr);
3920 reg_set_request_processed();
3922 return 0;
3925 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3926 struct ieee80211_regdomain *rd)
3928 const struct ieee80211_regdomain *regd;
3929 const struct ieee80211_regdomain *prev_regd;
3930 struct cfg80211_registered_device *rdev;
3932 if (WARN_ON(!wiphy || !rd))
3933 return -EINVAL;
3935 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3936 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3937 return -EPERM;
3939 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3940 print_regdomain_info(rd);
3941 return -EINVAL;
3944 regd = reg_copy_regd(rd);
3945 if (IS_ERR(regd))
3946 return PTR_ERR(regd);
3948 rdev = wiphy_to_rdev(wiphy);
3950 spin_lock(&reg_requests_lock);
3951 prev_regd = rdev->requested_regd;
3952 rdev->requested_regd = regd;
3953 spin_unlock(&reg_requests_lock);
3955 kfree(prev_regd);
3956 return 0;
3959 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3960 struct ieee80211_regdomain *rd)
3962 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3964 if (ret)
3965 return ret;
3967 schedule_work(&reg_work);
3968 return 0;
3970 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3972 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3973 struct ieee80211_regdomain *rd)
3975 int ret;
3977 ASSERT_RTNL();
3979 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3980 if (ret)
3981 return ret;
3983 /* process the request immediately */
3984 reg_process_self_managed_hints();
3985 return 0;
3987 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3989 void wiphy_regulatory_register(struct wiphy *wiphy)
3991 struct regulatory_request *lr = get_last_request();
3993 /* self-managed devices ignore beacon hints and country IE */
3994 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3995 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3996 REGULATORY_COUNTRY_IE_IGNORE;
3999 * The last request may have been received before this
4000 * registration call. Call the driver notifier if
4001 * initiator is USER.
4003 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4004 reg_call_notifier(wiphy, lr);
4007 if (!reg_dev_ignore_cell_hint(wiphy))
4008 reg_num_devs_support_basehint++;
4010 wiphy_update_regulatory(wiphy, lr->initiator);
4011 wiphy_all_share_dfs_chan_state(wiphy);
4014 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4016 struct wiphy *request_wiphy = NULL;
4017 struct regulatory_request *lr;
4019 lr = get_last_request();
4021 if (!reg_dev_ignore_cell_hint(wiphy))
4022 reg_num_devs_support_basehint--;
4024 rcu_free_regdom(get_wiphy_regdom(wiphy));
4025 RCU_INIT_POINTER(wiphy->regd, NULL);
4027 if (lr)
4028 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4030 if (!request_wiphy || request_wiphy != wiphy)
4031 return;
4033 lr->wiphy_idx = WIPHY_IDX_INVALID;
4034 lr->country_ie_env = ENVIRON_ANY;
4038 * See FCC notices for UNII band definitions
4039 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4040 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4042 int cfg80211_get_unii(int freq)
4044 /* UNII-1 */
4045 if (freq >= 5150 && freq <= 5250)
4046 return 0;
4048 /* UNII-2A */
4049 if (freq > 5250 && freq <= 5350)
4050 return 1;
4052 /* UNII-2B */
4053 if (freq > 5350 && freq <= 5470)
4054 return 2;
4056 /* UNII-2C */
4057 if (freq > 5470 && freq <= 5725)
4058 return 3;
4060 /* UNII-3 */
4061 if (freq > 5725 && freq <= 5825)
4062 return 4;
4064 /* UNII-5 */
4065 if (freq > 5925 && freq <= 6425)
4066 return 5;
4068 /* UNII-6 */
4069 if (freq > 6425 && freq <= 6525)
4070 return 6;
4072 /* UNII-7 */
4073 if (freq > 6525 && freq <= 6875)
4074 return 7;
4076 /* UNII-8 */
4077 if (freq > 6875 && freq <= 7125)
4078 return 8;
4080 return -EINVAL;
4083 bool regulatory_indoor_allowed(void)
4085 return reg_is_indoor;
4088 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4090 const struct ieee80211_regdomain *regd = NULL;
4091 const struct ieee80211_regdomain *wiphy_regd = NULL;
4092 bool pre_cac_allowed = false;
4094 rcu_read_lock();
4096 regd = rcu_dereference(cfg80211_regdomain);
4097 wiphy_regd = rcu_dereference(wiphy->regd);
4098 if (!wiphy_regd) {
4099 if (regd->dfs_region == NL80211_DFS_ETSI)
4100 pre_cac_allowed = true;
4102 rcu_read_unlock();
4104 return pre_cac_allowed;
4107 if (regd->dfs_region == wiphy_regd->dfs_region &&
4108 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4109 pre_cac_allowed = true;
4111 rcu_read_unlock();
4113 return pre_cac_allowed;
4115 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4117 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4119 struct wireless_dev *wdev;
4120 /* If we finished CAC or received radar, we should end any
4121 * CAC running on the same channels.
4122 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4123 * either all channels are available - those the CAC_FINISHED
4124 * event has effected another wdev state, or there is a channel
4125 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4126 * event has effected another wdev state.
4127 * In both cases we should end the CAC on the wdev.
4129 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4130 if (wdev->cac_started &&
4131 !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4132 rdev_end_cac(rdev, wdev->netdev);
4136 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4137 struct cfg80211_chan_def *chandef,
4138 enum nl80211_dfs_state dfs_state,
4139 enum nl80211_radar_event event)
4141 struct cfg80211_registered_device *rdev;
4143 ASSERT_RTNL();
4145 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4146 return;
4148 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4149 if (wiphy == &rdev->wiphy)
4150 continue;
4152 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4153 continue;
4155 if (!ieee80211_get_channel(&rdev->wiphy,
4156 chandef->chan->center_freq))
4157 continue;
4159 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4161 if (event == NL80211_RADAR_DETECTED ||
4162 event == NL80211_RADAR_CAC_FINISHED) {
4163 cfg80211_sched_dfs_chan_update(rdev);
4164 cfg80211_check_and_end_cac(rdev);
4167 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4171 static int __init regulatory_init_db(void)
4173 int err;
4176 * It's possible that - due to other bugs/issues - cfg80211
4177 * never called regulatory_init() below, or that it failed;
4178 * in that case, don't try to do any further work here as
4179 * it's doomed to lead to crashes.
4181 if (IS_ERR_OR_NULL(reg_pdev))
4182 return -EINVAL;
4184 err = load_builtin_regdb_keys();
4185 if (err)
4186 return err;
4188 /* We always try to get an update for the static regdomain */
4189 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4190 if (err) {
4191 if (err == -ENOMEM) {
4192 platform_device_unregister(reg_pdev);
4193 return err;
4196 * N.B. kobject_uevent_env() can fail mainly for when we're out
4197 * memory which is handled and propagated appropriately above
4198 * but it can also fail during a netlink_broadcast() or during
4199 * early boot for call_usermodehelper(). For now treat these
4200 * errors as non-fatal.
4202 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4206 * Finally, if the user set the module parameter treat it
4207 * as a user hint.
4209 if (!is_world_regdom(ieee80211_regdom))
4210 regulatory_hint_user(ieee80211_regdom,
4211 NL80211_USER_REG_HINT_USER);
4213 return 0;
4215 #ifndef MODULE
4216 late_initcall(regulatory_init_db);
4217 #endif
4219 int __init regulatory_init(void)
4221 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4222 if (IS_ERR(reg_pdev))
4223 return PTR_ERR(reg_pdev);
4225 spin_lock_init(&reg_requests_lock);
4226 spin_lock_init(&reg_pending_beacons_lock);
4227 spin_lock_init(&reg_indoor_lock);
4229 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4231 user_alpha2[0] = '9';
4232 user_alpha2[1] = '7';
4234 #ifdef MODULE
4235 return regulatory_init_db();
4236 #else
4237 return 0;
4238 #endif
4241 void regulatory_exit(void)
4243 struct regulatory_request *reg_request, *tmp;
4244 struct reg_beacon *reg_beacon, *btmp;
4246 cancel_work_sync(&reg_work);
4247 cancel_crda_timeout_sync();
4248 cancel_delayed_work_sync(&reg_check_chans);
4250 /* Lock to suppress warnings */
4251 rtnl_lock();
4252 reset_regdomains(true, NULL);
4253 rtnl_unlock();
4255 dev_set_uevent_suppress(&reg_pdev->dev, true);
4257 platform_device_unregister(reg_pdev);
4259 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4260 list_del(&reg_beacon->list);
4261 kfree(reg_beacon);
4264 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4265 list_del(&reg_beacon->list);
4266 kfree(reg_beacon);
4269 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4270 list_del(&reg_request->list);
4271 kfree(reg_request);
4274 if (!IS_ERR_OR_NULL(regdb))
4275 kfree(regdb);
4276 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4277 kfree(cfg80211_user_regdom);
4279 free_regdb_keyring();