2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2019 Intel Corporation
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
25 * DOC: Wireless regulatory infrastructure
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
70 #define REG_ENFORCE_GRACE_MS 60000
73 * enum reg_request_treatment - regulatory request treatment
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
82 enum reg_request_treatment
{
89 static struct regulatory_request core_request_world
= {
90 .initiator
= NL80211_REGDOM_SET_BY_CORE
,
95 .country_ie_env
= ENVIRON_ANY
,
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
102 static struct regulatory_request __rcu
*last_request
=
103 (void __force __rcu
*)&core_request_world
;
105 /* To trigger userspace events and load firmware */
106 static struct platform_device
*reg_pdev
;
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
114 const struct ieee80211_regdomain __rcu
*cfg80211_regdomain
;
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
121 static int reg_num_devs_support_basehint
;
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
128 static bool reg_is_indoor
;
129 static spinlock_t reg_indoor_lock
;
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid
;
134 static void restore_regulatory_settings(bool reset_user
, bool cached
);
135 static void print_regdomain(const struct ieee80211_regdomain
*rd
);
137 static const struct ieee80211_regdomain
*get_cfg80211_regdom(void)
139 return rcu_dereference_rtnl(cfg80211_regdomain
);
142 const struct ieee80211_regdomain
*get_wiphy_regdom(struct wiphy
*wiphy
)
144 return rcu_dereference_rtnl(wiphy
->regd
);
147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region
)
149 switch (dfs_region
) {
150 case NL80211_DFS_UNSET
:
152 case NL80211_DFS_FCC
:
154 case NL80211_DFS_ETSI
:
162 enum nl80211_dfs_regions
reg_get_dfs_region(struct wiphy
*wiphy
)
164 const struct ieee80211_regdomain
*regd
= NULL
;
165 const struct ieee80211_regdomain
*wiphy_regd
= NULL
;
167 regd
= get_cfg80211_regdom();
171 wiphy_regd
= get_wiphy_regdom(wiphy
);
175 if (wiphy_regd
->dfs_region
== regd
->dfs_region
)
178 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179 dev_name(&wiphy
->dev
),
180 reg_dfs_region_str(wiphy_regd
->dfs_region
),
181 reg_dfs_region_str(regd
->dfs_region
));
184 return regd
->dfs_region
;
187 static void rcu_free_regdom(const struct ieee80211_regdomain
*r
)
191 kfree_rcu((struct ieee80211_regdomain
*)r
, rcu_head
);
194 static struct regulatory_request
*get_last_request(void)
196 return rcu_dereference_rtnl(last_request
);
199 /* Used to queue up regulatory hints */
200 static LIST_HEAD(reg_requests_list
);
201 static spinlock_t reg_requests_lock
;
203 /* Used to queue up beacon hints for review */
204 static LIST_HEAD(reg_pending_beacons
);
205 static spinlock_t reg_pending_beacons_lock
;
207 /* Used to keep track of processed beacon hints */
208 static LIST_HEAD(reg_beacon_list
);
211 struct list_head list
;
212 struct ieee80211_channel chan
;
215 static void reg_check_chans_work(struct work_struct
*work
);
216 static DECLARE_DELAYED_WORK(reg_check_chans
, reg_check_chans_work
);
218 static void reg_todo(struct work_struct
*work
);
219 static DECLARE_WORK(reg_work
, reg_todo
);
221 /* We keep a static world regulatory domain in case of the absence of CRDA */
222 static const struct ieee80211_regdomain world_regdom
= {
226 /* IEEE 802.11b/g, channels 1..11 */
227 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228 /* IEEE 802.11b/g, channels 12..13. */
229 REG_RULE(2467-10, 2472+10, 20, 6, 20,
230 NL80211_RRF_NO_IR
| NL80211_RRF_AUTO_BW
),
231 /* IEEE 802.11 channel 14 - Only JP enables
232 * this and for 802.11b only */
233 REG_RULE(2484-10, 2484+10, 20, 6, 20,
235 NL80211_RRF_NO_OFDM
),
236 /* IEEE 802.11a, channel 36..48 */
237 REG_RULE(5180-10, 5240+10, 80, 6, 20,
239 NL80211_RRF_AUTO_BW
),
241 /* IEEE 802.11a, channel 52..64 - DFS required */
242 REG_RULE(5260-10, 5320+10, 80, 6, 20,
244 NL80211_RRF_AUTO_BW
|
247 /* IEEE 802.11a, channel 100..144 - DFS required */
248 REG_RULE(5500-10, 5720+10, 160, 6, 20,
252 /* IEEE 802.11a, channel 149..165 */
253 REG_RULE(5745-10, 5825+10, 80, 6, 20,
256 /* IEEE 802.11ad (60GHz), channels 1..3 */
257 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
261 /* protected by RTNL */
262 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
265 static char *ieee80211_regdom
= "00";
266 static char user_alpha2
[2];
267 static const struct ieee80211_regdomain
*cfg80211_user_regdom
;
269 module_param(ieee80211_regdom
, charp
, 0444);
270 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
272 static void reg_free_request(struct regulatory_request
*request
)
274 if (request
== &core_request_world
)
277 if (request
!= get_last_request())
281 static void reg_free_last_request(void)
283 struct regulatory_request
*lr
= get_last_request();
285 if (lr
!= &core_request_world
&& lr
)
286 kfree_rcu(lr
, rcu_head
);
289 static void reg_update_last_request(struct regulatory_request
*request
)
291 struct regulatory_request
*lr
;
293 lr
= get_last_request();
297 reg_free_last_request();
298 rcu_assign_pointer(last_request
, request
);
301 static void reset_regdomains(bool full_reset
,
302 const struct ieee80211_regdomain
*new_regdom
)
304 const struct ieee80211_regdomain
*r
;
308 r
= get_cfg80211_regdom();
310 /* avoid freeing static information or freeing something twice */
311 if (r
== cfg80211_world_regdom
)
313 if (cfg80211_world_regdom
== &world_regdom
)
314 cfg80211_world_regdom
= NULL
;
315 if (r
== &world_regdom
)
319 rcu_free_regdom(cfg80211_world_regdom
);
321 cfg80211_world_regdom
= &world_regdom
;
322 rcu_assign_pointer(cfg80211_regdomain
, new_regdom
);
327 reg_update_last_request(&core_request_world
);
331 * Dynamic world regulatory domain requested by the wireless
332 * core upon initialization
334 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
336 struct regulatory_request
*lr
;
338 lr
= get_last_request();
342 reset_regdomains(false, rd
);
344 cfg80211_world_regdom
= rd
;
347 bool is_world_regdom(const char *alpha2
)
351 return alpha2
[0] == '0' && alpha2
[1] == '0';
354 static bool is_alpha2_set(const char *alpha2
)
358 return alpha2
[0] && alpha2
[1];
361 static bool is_unknown_alpha2(const char *alpha2
)
366 * Special case where regulatory domain was built by driver
367 * but a specific alpha2 cannot be determined
369 return alpha2
[0] == '9' && alpha2
[1] == '9';
372 static bool is_intersected_alpha2(const char *alpha2
)
377 * Special case where regulatory domain is the
378 * result of an intersection between two regulatory domain
381 return alpha2
[0] == '9' && alpha2
[1] == '8';
384 static bool is_an_alpha2(const char *alpha2
)
388 return isalpha(alpha2
[0]) && isalpha(alpha2
[1]);
391 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
393 if (!alpha2_x
|| !alpha2_y
)
395 return alpha2_x
[0] == alpha2_y
[0] && alpha2_x
[1] == alpha2_y
[1];
398 static bool regdom_changes(const char *alpha2
)
400 const struct ieee80211_regdomain
*r
= get_cfg80211_regdom();
404 return !alpha2_equal(r
->alpha2
, alpha2
);
408 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410 * has ever been issued.
412 static bool is_user_regdom_saved(void)
414 if (user_alpha2
[0] == '9' && user_alpha2
[1] == '7')
417 /* This would indicate a mistake on the design */
418 if (WARN(!is_world_regdom(user_alpha2
) && !is_an_alpha2(user_alpha2
),
419 "Unexpected user alpha2: %c%c\n",
420 user_alpha2
[0], user_alpha2
[1]))
426 static const struct ieee80211_regdomain
*
427 reg_copy_regd(const struct ieee80211_regdomain
*src_regd
)
429 struct ieee80211_regdomain
*regd
;
432 regd
= kzalloc(struct_size(regd
, reg_rules
, src_regd
->n_reg_rules
),
435 return ERR_PTR(-ENOMEM
);
437 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
439 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++)
440 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
441 sizeof(struct ieee80211_reg_rule
));
446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain
*rd
)
450 if (!IS_ERR(cfg80211_user_regdom
))
451 kfree(cfg80211_user_regdom
);
452 cfg80211_user_regdom
= reg_copy_regd(rd
);
455 struct reg_regdb_apply_request
{
456 struct list_head list
;
457 const struct ieee80211_regdomain
*regdom
;
460 static LIST_HEAD(reg_regdb_apply_list
);
461 static DEFINE_MUTEX(reg_regdb_apply_mutex
);
463 static void reg_regdb_apply(struct work_struct
*work
)
465 struct reg_regdb_apply_request
*request
;
469 mutex_lock(®_regdb_apply_mutex
);
470 while (!list_empty(®_regdb_apply_list
)) {
471 request
= list_first_entry(®_regdb_apply_list
,
472 struct reg_regdb_apply_request
,
474 list_del(&request
->list
);
476 set_regdom(request
->regdom
, REGD_SOURCE_INTERNAL_DB
);
479 mutex_unlock(®_regdb_apply_mutex
);
484 static DECLARE_WORK(reg_regdb_work
, reg_regdb_apply
);
486 static int reg_schedule_apply(const struct ieee80211_regdomain
*regdom
)
488 struct reg_regdb_apply_request
*request
;
490 request
= kzalloc(sizeof(struct reg_regdb_apply_request
), GFP_KERNEL
);
496 request
->regdom
= regdom
;
498 mutex_lock(®_regdb_apply_mutex
);
499 list_add_tail(&request
->list
, ®_regdb_apply_list
);
500 mutex_unlock(®_regdb_apply_mutex
);
502 schedule_work(®_regdb_work
);
506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
507 /* Max number of consecutive attempts to communicate with CRDA */
508 #define REG_MAX_CRDA_TIMEOUTS 10
510 static u32 reg_crda_timeouts
;
512 static void crda_timeout_work(struct work_struct
*work
);
513 static DECLARE_DELAYED_WORK(crda_timeout
, crda_timeout_work
);
515 static void crda_timeout_work(struct work_struct
*work
)
517 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
520 restore_regulatory_settings(true, false);
524 static void cancel_crda_timeout(void)
526 cancel_delayed_work(&crda_timeout
);
529 static void cancel_crda_timeout_sync(void)
531 cancel_delayed_work_sync(&crda_timeout
);
534 static void reset_crda_timeouts(void)
536 reg_crda_timeouts
= 0;
540 * This lets us keep regulatory code which is updated on a regulatory
541 * basis in userspace.
543 static int call_crda(const char *alpha2
)
546 char *env
[] = { country
, NULL
};
549 snprintf(country
, sizeof(country
), "COUNTRY=%c%c",
550 alpha2
[0], alpha2
[1]);
552 if (reg_crda_timeouts
> REG_MAX_CRDA_TIMEOUTS
) {
553 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
557 if (!is_world_regdom((char *) alpha2
))
558 pr_debug("Calling CRDA for country: %c%c\n",
559 alpha2
[0], alpha2
[1]);
561 pr_debug("Calling CRDA to update world regulatory domain\n");
563 ret
= kobject_uevent_env(®_pdev
->dev
.kobj
, KOBJ_CHANGE
, env
);
567 queue_delayed_work(system_power_efficient_wq
,
568 &crda_timeout
, msecs_to_jiffies(3142));
572 static inline void cancel_crda_timeout(void) {}
573 static inline void cancel_crda_timeout_sync(void) {}
574 static inline void reset_crda_timeouts(void) {}
575 static inline int call_crda(const char *alpha2
)
579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
581 /* code to directly load a firmware database through request_firmware */
582 static const struct fwdb_header
*regdb
;
584 struct fwdb_country
{
587 /* this struct cannot be extended */
588 } __packed
__aligned(4);
590 struct fwdb_collection
{
594 /* no optional data yet */
595 /* aligned to 2, then followed by __be16 array of rule pointers */
596 } __packed
__aligned(4);
599 FWDB_FLAG_NO_OFDM
= BIT(0),
600 FWDB_FLAG_NO_OUTDOOR
= BIT(1),
601 FWDB_FLAG_DFS
= BIT(2),
602 FWDB_FLAG_NO_IR
= BIT(3),
603 FWDB_FLAG_AUTO_BW
= BIT(4),
612 struct fwdb_wmm_rule
{
613 struct fwdb_wmm_ac client
[IEEE80211_NUM_ACS
];
614 struct fwdb_wmm_ac ap
[IEEE80211_NUM_ACS
];
621 __be32 start
, end
, max_bw
;
622 /* start of optional data */
625 } __packed
__aligned(4);
627 #define FWDB_MAGIC 0x52474442
628 #define FWDB_VERSION 20
633 struct fwdb_country country
[];
634 } __packed
__aligned(4);
636 static int ecw2cw(int ecw
)
638 return (1 << ecw
) - 1;
641 static bool valid_wmm(struct fwdb_wmm_rule
*rule
)
643 struct fwdb_wmm_ac
*ac
= (struct fwdb_wmm_ac
*)rule
;
646 for (i
= 0; i
< IEEE80211_NUM_ACS
* 2; i
++) {
647 u16 cw_min
= ecw2cw((ac
[i
].ecw
& 0xf0) >> 4);
648 u16 cw_max
= ecw2cw(ac
[i
].ecw
& 0x0f);
649 u8 aifsn
= ac
[i
].aifsn
;
651 if (cw_min
>= cw_max
)
661 static bool valid_rule(const u8
*data
, unsigned int size
, u16 rule_ptr
)
663 struct fwdb_rule
*rule
= (void *)(data
+ (rule_ptr
<< 2));
665 if ((u8
*)rule
+ sizeof(rule
->len
) > data
+ size
)
668 /* mandatory fields */
669 if (rule
->len
< offsetofend(struct fwdb_rule
, max_bw
))
671 if (rule
->len
>= offsetofend(struct fwdb_rule
, wmm_ptr
)) {
672 u32 wmm_ptr
= be16_to_cpu(rule
->wmm_ptr
) << 2;
673 struct fwdb_wmm_rule
*wmm
;
675 if (wmm_ptr
+ sizeof(struct fwdb_wmm_rule
) > size
)
678 wmm
= (void *)(data
+ wmm_ptr
);
686 static bool valid_country(const u8
*data
, unsigned int size
,
687 const struct fwdb_country
*country
)
689 unsigned int ptr
= be16_to_cpu(country
->coll_ptr
) << 2;
690 struct fwdb_collection
*coll
= (void *)(data
+ ptr
);
694 /* make sure we can read len/n_rules */
695 if ((u8
*)coll
+ offsetofend(typeof(*coll
), n_rules
) > data
+ size
)
698 /* make sure base struct and all rules fit */
699 if ((u8
*)coll
+ ALIGN(coll
->len
, 2) +
700 (coll
->n_rules
* 2) > data
+ size
)
703 /* mandatory fields must exist */
704 if (coll
->len
< offsetofend(struct fwdb_collection
, dfs_region
))
707 rules_ptr
= (void *)((u8
*)coll
+ ALIGN(coll
->len
, 2));
709 for (i
= 0; i
< coll
->n_rules
; i
++) {
710 u16 rule_ptr
= be16_to_cpu(rules_ptr
[i
]);
712 if (!valid_rule(data
, size
, rule_ptr
))
719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
720 static struct key
*builtin_regdb_keys
;
722 static void __init
load_keys_from_buffer(const u8
*p
, unsigned int buflen
)
724 const u8
*end
= p
+ buflen
;
729 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
730 * than 256 bytes in size.
737 plen
= (p
[2] << 8) | p
[3];
742 key
= key_create_or_update(make_key_ref(builtin_regdb_keys
, 1),
743 "asymmetric", NULL
, p
, plen
,
744 ((KEY_POS_ALL
& ~KEY_POS_SETATTR
) |
745 KEY_USR_VIEW
| KEY_USR_READ
),
746 KEY_ALLOC_NOT_IN_QUOTA
|
748 KEY_ALLOC_BYPASS_RESTRICTION
);
750 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
753 pr_notice("Loaded X.509 cert '%s'\n",
754 key_ref_to_ptr(key
)->description
);
763 pr_err("Problem parsing in-kernel X.509 certificate list\n");
766 static int __init
load_builtin_regdb_keys(void)
769 keyring_alloc(".builtin_regdb_keys",
770 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
771 ((KEY_POS_ALL
& ~KEY_POS_SETATTR
) |
772 KEY_USR_VIEW
| KEY_USR_READ
| KEY_USR_SEARCH
),
773 KEY_ALLOC_NOT_IN_QUOTA
, NULL
, NULL
);
774 if (IS_ERR(builtin_regdb_keys
))
775 return PTR_ERR(builtin_regdb_keys
);
777 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
779 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
780 load_keys_from_buffer(shipped_regdb_certs
, shipped_regdb_certs_len
);
782 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
783 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
[0] != '\0')
784 load_keys_from_buffer(extra_regdb_certs
, extra_regdb_certs_len
);
790 static bool regdb_has_valid_signature(const u8
*data
, unsigned int size
)
792 const struct firmware
*sig
;
795 if (request_firmware(&sig
, "regulatory.db.p7s", ®_pdev
->dev
))
798 result
= verify_pkcs7_signature(data
, size
, sig
->data
, sig
->size
,
800 VERIFYING_UNSPECIFIED_SIGNATURE
,
803 release_firmware(sig
);
808 static void free_regdb_keyring(void)
810 key_put(builtin_regdb_keys
);
813 static int load_builtin_regdb_keys(void)
818 static bool regdb_has_valid_signature(const u8
*data
, unsigned int size
)
823 static void free_regdb_keyring(void)
826 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
828 static bool valid_regdb(const u8
*data
, unsigned int size
)
830 const struct fwdb_header
*hdr
= (void *)data
;
831 const struct fwdb_country
*country
;
833 if (size
< sizeof(*hdr
))
836 if (hdr
->magic
!= cpu_to_be32(FWDB_MAGIC
))
839 if (hdr
->version
!= cpu_to_be32(FWDB_VERSION
))
842 if (!regdb_has_valid_signature(data
, size
))
845 country
= &hdr
->country
[0];
846 while ((u8
*)(country
+ 1) <= data
+ size
) {
847 if (!country
->coll_ptr
)
849 if (!valid_country(data
, size
, country
))
857 static void set_wmm_rule(const struct fwdb_header
*db
,
858 const struct fwdb_country
*country
,
859 const struct fwdb_rule
*rule
,
860 struct ieee80211_reg_rule
*rrule
)
862 struct ieee80211_wmm_rule
*wmm_rule
= &rrule
->wmm_rule
;
863 struct fwdb_wmm_rule
*wmm
;
864 unsigned int i
, wmm_ptr
;
866 wmm_ptr
= be16_to_cpu(rule
->wmm_ptr
) << 2;
867 wmm
= (void *)((u8
*)db
+ wmm_ptr
);
869 if (!valid_wmm(wmm
)) {
870 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
871 be32_to_cpu(rule
->start
), be32_to_cpu(rule
->end
),
872 country
->alpha2
[0], country
->alpha2
[1]);
876 for (i
= 0; i
< IEEE80211_NUM_ACS
; i
++) {
877 wmm_rule
->client
[i
].cw_min
=
878 ecw2cw((wmm
->client
[i
].ecw
& 0xf0) >> 4);
879 wmm_rule
->client
[i
].cw_max
= ecw2cw(wmm
->client
[i
].ecw
& 0x0f);
880 wmm_rule
->client
[i
].aifsn
= wmm
->client
[i
].aifsn
;
881 wmm_rule
->client
[i
].cot
=
882 1000 * be16_to_cpu(wmm
->client
[i
].cot
);
883 wmm_rule
->ap
[i
].cw_min
= ecw2cw((wmm
->ap
[i
].ecw
& 0xf0) >> 4);
884 wmm_rule
->ap
[i
].cw_max
= ecw2cw(wmm
->ap
[i
].ecw
& 0x0f);
885 wmm_rule
->ap
[i
].aifsn
= wmm
->ap
[i
].aifsn
;
886 wmm_rule
->ap
[i
].cot
= 1000 * be16_to_cpu(wmm
->ap
[i
].cot
);
889 rrule
->has_wmm
= true;
892 static int __regdb_query_wmm(const struct fwdb_header
*db
,
893 const struct fwdb_country
*country
, int freq
,
894 struct ieee80211_reg_rule
*rrule
)
896 unsigned int ptr
= be16_to_cpu(country
->coll_ptr
) << 2;
897 struct fwdb_collection
*coll
= (void *)((u8
*)db
+ ptr
);
900 for (i
= 0; i
< coll
->n_rules
; i
++) {
901 __be16
*rules_ptr
= (void *)((u8
*)coll
+ ALIGN(coll
->len
, 2));
902 unsigned int rule_ptr
= be16_to_cpu(rules_ptr
[i
]) << 2;
903 struct fwdb_rule
*rule
= (void *)((u8
*)db
+ rule_ptr
);
905 if (rule
->len
< offsetofend(struct fwdb_rule
, wmm_ptr
))
908 if (freq
>= KHZ_TO_MHZ(be32_to_cpu(rule
->start
)) &&
909 freq
<= KHZ_TO_MHZ(be32_to_cpu(rule
->end
))) {
910 set_wmm_rule(db
, country
, rule
, rrule
);
918 int reg_query_regdb_wmm(char *alpha2
, int freq
, struct ieee80211_reg_rule
*rule
)
920 const struct fwdb_header
*hdr
= regdb
;
921 const struct fwdb_country
*country
;
927 return PTR_ERR(regdb
);
929 country
= &hdr
->country
[0];
930 while (country
->coll_ptr
) {
931 if (alpha2_equal(alpha2
, country
->alpha2
))
932 return __regdb_query_wmm(regdb
, country
, freq
, rule
);
939 EXPORT_SYMBOL(reg_query_regdb_wmm
);
941 static int regdb_query_country(const struct fwdb_header
*db
,
942 const struct fwdb_country
*country
)
944 unsigned int ptr
= be16_to_cpu(country
->coll_ptr
) << 2;
945 struct fwdb_collection
*coll
= (void *)((u8
*)db
+ ptr
);
946 struct ieee80211_regdomain
*regdom
;
949 regdom
= kzalloc(struct_size(regdom
, reg_rules
, coll
->n_rules
),
954 regdom
->n_reg_rules
= coll
->n_rules
;
955 regdom
->alpha2
[0] = country
->alpha2
[0];
956 regdom
->alpha2
[1] = country
->alpha2
[1];
957 regdom
->dfs_region
= coll
->dfs_region
;
959 for (i
= 0; i
< regdom
->n_reg_rules
; i
++) {
960 __be16
*rules_ptr
= (void *)((u8
*)coll
+ ALIGN(coll
->len
, 2));
961 unsigned int rule_ptr
= be16_to_cpu(rules_ptr
[i
]) << 2;
962 struct fwdb_rule
*rule
= (void *)((u8
*)db
+ rule_ptr
);
963 struct ieee80211_reg_rule
*rrule
= ®dom
->reg_rules
[i
];
965 rrule
->freq_range
.start_freq_khz
= be32_to_cpu(rule
->start
);
966 rrule
->freq_range
.end_freq_khz
= be32_to_cpu(rule
->end
);
967 rrule
->freq_range
.max_bandwidth_khz
= be32_to_cpu(rule
->max_bw
);
969 rrule
->power_rule
.max_antenna_gain
= 0;
970 rrule
->power_rule
.max_eirp
= be16_to_cpu(rule
->max_eirp
);
973 if (rule
->flags
& FWDB_FLAG_NO_OFDM
)
974 rrule
->flags
|= NL80211_RRF_NO_OFDM
;
975 if (rule
->flags
& FWDB_FLAG_NO_OUTDOOR
)
976 rrule
->flags
|= NL80211_RRF_NO_OUTDOOR
;
977 if (rule
->flags
& FWDB_FLAG_DFS
)
978 rrule
->flags
|= NL80211_RRF_DFS
;
979 if (rule
->flags
& FWDB_FLAG_NO_IR
)
980 rrule
->flags
|= NL80211_RRF_NO_IR
;
981 if (rule
->flags
& FWDB_FLAG_AUTO_BW
)
982 rrule
->flags
|= NL80211_RRF_AUTO_BW
;
984 rrule
->dfs_cac_ms
= 0;
986 /* handle optional data */
987 if (rule
->len
>= offsetofend(struct fwdb_rule
, cac_timeout
))
989 1000 * be16_to_cpu(rule
->cac_timeout
);
990 if (rule
->len
>= offsetofend(struct fwdb_rule
, wmm_ptr
))
991 set_wmm_rule(db
, country
, rule
, rrule
);
994 return reg_schedule_apply(regdom
);
997 static int query_regdb(const char *alpha2
)
999 const struct fwdb_header
*hdr
= regdb
;
1000 const struct fwdb_country
*country
;
1005 return PTR_ERR(regdb
);
1007 country
= &hdr
->country
[0];
1008 while (country
->coll_ptr
) {
1009 if (alpha2_equal(alpha2
, country
->alpha2
))
1010 return regdb_query_country(regdb
, country
);
1017 static void regdb_fw_cb(const struct firmware
*fw
, void *context
)
1020 bool restore
= true;
1024 pr_info("failed to load regulatory.db\n");
1025 set_error
= -ENODATA
;
1026 } else if (!valid_regdb(fw
->data
, fw
->size
)) {
1027 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1028 set_error
= -EINVAL
;
1032 if (regdb
&& !IS_ERR(regdb
)) {
1033 /* negative case - a bug
1034 * positive case - can happen due to race in case of multiple cb's in
1035 * queue, due to usage of asynchronous callback
1037 * Either case, just restore and free new db.
1039 } else if (set_error
) {
1040 regdb
= ERR_PTR(set_error
);
1042 db
= kmemdup(fw
->data
, fw
->size
, GFP_KERNEL
);
1045 restore
= context
&& query_regdb(context
);
1052 restore_regulatory_settings(true, false);
1058 release_firmware(fw
);
1061 static int query_regdb_file(const char *alpha2
)
1066 return query_regdb(alpha2
);
1068 alpha2
= kmemdup(alpha2
, 2, GFP_KERNEL
);
1072 return request_firmware_nowait(THIS_MODULE
, true, "regulatory.db",
1073 ®_pdev
->dev
, GFP_KERNEL
,
1074 (void *)alpha2
, regdb_fw_cb
);
1077 int reg_reload_regdb(void)
1079 const struct firmware
*fw
;
1083 err
= request_firmware(&fw
, "regulatory.db", ®_pdev
->dev
);
1087 if (!valid_regdb(fw
->data
, fw
->size
)) {
1092 db
= kmemdup(fw
->data
, fw
->size
, GFP_KERNEL
);
1099 if (!IS_ERR_OR_NULL(regdb
))
1105 release_firmware(fw
);
1109 static bool reg_query_database(struct regulatory_request
*request
)
1111 if (query_regdb_file(request
->alpha2
) == 0)
1114 if (call_crda(request
->alpha2
) == 0)
1120 bool reg_is_valid_request(const char *alpha2
)
1122 struct regulatory_request
*lr
= get_last_request();
1124 if (!lr
|| lr
->processed
)
1127 return alpha2_equal(lr
->alpha2
, alpha2
);
1130 static const struct ieee80211_regdomain
*reg_get_regdomain(struct wiphy
*wiphy
)
1132 struct regulatory_request
*lr
= get_last_request();
1135 * Follow the driver's regulatory domain, if present, unless a country
1136 * IE has been processed or a user wants to help complaince further
1138 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1139 lr
->initiator
!= NL80211_REGDOM_SET_BY_USER
&&
1141 return get_wiphy_regdom(wiphy
);
1143 return get_cfg80211_regdom();
1147 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain
*rd
,
1148 const struct ieee80211_reg_rule
*rule
)
1150 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
1151 const struct ieee80211_freq_range
*freq_range_tmp
;
1152 const struct ieee80211_reg_rule
*tmp
;
1153 u32 start_freq
, end_freq
, idx
, no
;
1155 for (idx
= 0; idx
< rd
->n_reg_rules
; idx
++)
1156 if (rule
== &rd
->reg_rules
[idx
])
1159 if (idx
== rd
->n_reg_rules
)
1162 /* get start_freq */
1166 tmp
= &rd
->reg_rules
[--no
];
1167 freq_range_tmp
= &tmp
->freq_range
;
1169 if (freq_range_tmp
->end_freq_khz
< freq_range
->start_freq_khz
)
1172 freq_range
= freq_range_tmp
;
1175 start_freq
= freq_range
->start_freq_khz
;
1178 freq_range
= &rule
->freq_range
;
1181 while (no
< rd
->n_reg_rules
- 1) {
1182 tmp
= &rd
->reg_rules
[++no
];
1183 freq_range_tmp
= &tmp
->freq_range
;
1185 if (freq_range_tmp
->start_freq_khz
> freq_range
->end_freq_khz
)
1188 freq_range
= freq_range_tmp
;
1191 end_freq
= freq_range
->end_freq_khz
;
1193 return end_freq
- start_freq
;
1196 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain
*rd
,
1197 const struct ieee80211_reg_rule
*rule
)
1199 unsigned int bw
= reg_get_max_bandwidth_from_range(rd
, rule
);
1201 if (rule
->flags
& NL80211_RRF_NO_160MHZ
)
1202 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(80));
1203 if (rule
->flags
& NL80211_RRF_NO_80MHZ
)
1204 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(40));
1207 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1210 if (rule
->flags
& NL80211_RRF_NO_HT40MINUS
&&
1211 rule
->flags
& NL80211_RRF_NO_HT40PLUS
)
1212 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(20));
1217 /* Sanity check on a regulatory rule */
1218 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
1220 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
1223 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
1226 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
1229 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
1231 if (freq_range
->end_freq_khz
<= freq_range
->start_freq_khz
||
1232 freq_range
->max_bandwidth_khz
> freq_diff
)
1238 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
1240 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1243 if (!rd
->n_reg_rules
)
1246 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
1249 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
1250 reg_rule
= &rd
->reg_rules
[i
];
1251 if (!is_valid_reg_rule(reg_rule
))
1259 * freq_in_rule_band - tells us if a frequency is in a frequency band
1260 * @freq_range: frequency rule we want to query
1261 * @freq_khz: frequency we are inquiring about
1263 * This lets us know if a specific frequency rule is or is not relevant to
1264 * a specific frequency's band. Bands are device specific and artificial
1265 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1266 * however it is safe for now to assume that a frequency rule should not be
1267 * part of a frequency's band if the start freq or end freq are off by more
1268 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1270 * This resolution can be lowered and should be considered as we add
1271 * regulatory rule support for other "bands".
1273 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
1276 #define ONE_GHZ_IN_KHZ 1000000
1278 * From 802.11ad: directional multi-gigabit (DMG):
1279 * Pertaining to operation in a frequency band containing a channel
1280 * with the Channel starting frequency above 45 GHz.
1282 u32 limit
= freq_khz
> 45 * ONE_GHZ_IN_KHZ
?
1283 20 * ONE_GHZ_IN_KHZ
: 2 * ONE_GHZ_IN_KHZ
;
1284 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= limit
)
1286 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= limit
)
1289 #undef ONE_GHZ_IN_KHZ
1293 * Later on we can perhaps use the more restrictive DFS
1294 * region but we don't have information for that yet so
1295 * for now simply disallow conflicts.
1297 static enum nl80211_dfs_regions
1298 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1
,
1299 const enum nl80211_dfs_regions dfs_region2
)
1301 if (dfs_region1
!= dfs_region2
)
1302 return NL80211_DFS_UNSET
;
1306 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac
*wmm_ac1
,
1307 const struct ieee80211_wmm_ac
*wmm_ac2
,
1308 struct ieee80211_wmm_ac
*intersect
)
1310 intersect
->cw_min
= max_t(u16
, wmm_ac1
->cw_min
, wmm_ac2
->cw_min
);
1311 intersect
->cw_max
= max_t(u16
, wmm_ac1
->cw_max
, wmm_ac2
->cw_max
);
1312 intersect
->cot
= min_t(u16
, wmm_ac1
->cot
, wmm_ac2
->cot
);
1313 intersect
->aifsn
= max_t(u8
, wmm_ac1
->aifsn
, wmm_ac2
->aifsn
);
1317 * Helper for regdom_intersect(), this does the real
1318 * mathematical intersection fun
1320 static int reg_rules_intersect(const struct ieee80211_regdomain
*rd1
,
1321 const struct ieee80211_regdomain
*rd2
,
1322 const struct ieee80211_reg_rule
*rule1
,
1323 const struct ieee80211_reg_rule
*rule2
,
1324 struct ieee80211_reg_rule
*intersected_rule
)
1326 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
1327 struct ieee80211_freq_range
*freq_range
;
1328 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
1329 struct ieee80211_power_rule
*power_rule
;
1330 const struct ieee80211_wmm_rule
*wmm_rule1
, *wmm_rule2
;
1331 struct ieee80211_wmm_rule
*wmm_rule
;
1332 u32 freq_diff
, max_bandwidth1
, max_bandwidth2
;
1334 freq_range1
= &rule1
->freq_range
;
1335 freq_range2
= &rule2
->freq_range
;
1336 freq_range
= &intersected_rule
->freq_range
;
1338 power_rule1
= &rule1
->power_rule
;
1339 power_rule2
= &rule2
->power_rule
;
1340 power_rule
= &intersected_rule
->power_rule
;
1342 wmm_rule1
= &rule1
->wmm_rule
;
1343 wmm_rule2
= &rule2
->wmm_rule
;
1344 wmm_rule
= &intersected_rule
->wmm_rule
;
1346 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
1347 freq_range2
->start_freq_khz
);
1348 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
1349 freq_range2
->end_freq_khz
);
1351 max_bandwidth1
= freq_range1
->max_bandwidth_khz
;
1352 max_bandwidth2
= freq_range2
->max_bandwidth_khz
;
1354 if (rule1
->flags
& NL80211_RRF_AUTO_BW
)
1355 max_bandwidth1
= reg_get_max_bandwidth(rd1
, rule1
);
1356 if (rule2
->flags
& NL80211_RRF_AUTO_BW
)
1357 max_bandwidth2
= reg_get_max_bandwidth(rd2
, rule2
);
1359 freq_range
->max_bandwidth_khz
= min(max_bandwidth1
, max_bandwidth2
);
1361 intersected_rule
->flags
= rule1
->flags
| rule2
->flags
;
1364 * In case NL80211_RRF_AUTO_BW requested for both rules
1365 * set AUTO_BW in intersected rule also. Next we will
1366 * calculate BW correctly in handle_channel function.
1367 * In other case remove AUTO_BW flag while we calculate
1368 * maximum bandwidth correctly and auto calculation is
1371 if ((rule1
->flags
& NL80211_RRF_AUTO_BW
) &&
1372 (rule2
->flags
& NL80211_RRF_AUTO_BW
))
1373 intersected_rule
->flags
|= NL80211_RRF_AUTO_BW
;
1375 intersected_rule
->flags
&= ~NL80211_RRF_AUTO_BW
;
1377 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
1378 if (freq_range
->max_bandwidth_khz
> freq_diff
)
1379 freq_range
->max_bandwidth_khz
= freq_diff
;
1381 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
1382 power_rule2
->max_eirp
);
1383 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
1384 power_rule2
->max_antenna_gain
);
1386 intersected_rule
->dfs_cac_ms
= max(rule1
->dfs_cac_ms
,
1389 if (rule1
->has_wmm
&& rule2
->has_wmm
) {
1392 for (ac
= 0; ac
< IEEE80211_NUM_ACS
; ac
++) {
1393 reg_wmm_rules_intersect(&wmm_rule1
->client
[ac
],
1394 &wmm_rule2
->client
[ac
],
1395 &wmm_rule
->client
[ac
]);
1396 reg_wmm_rules_intersect(&wmm_rule1
->ap
[ac
],
1401 intersected_rule
->has_wmm
= true;
1402 } else if (rule1
->has_wmm
) {
1403 *wmm_rule
= *wmm_rule1
;
1404 intersected_rule
->has_wmm
= true;
1405 } else if (rule2
->has_wmm
) {
1406 *wmm_rule
= *wmm_rule2
;
1407 intersected_rule
->has_wmm
= true;
1409 intersected_rule
->has_wmm
= false;
1412 if (!is_valid_reg_rule(intersected_rule
))
1418 /* check whether old rule contains new rule */
1419 static bool rule_contains(struct ieee80211_reg_rule
*r1
,
1420 struct ieee80211_reg_rule
*r2
)
1422 /* for simplicity, currently consider only same flags */
1423 if (r1
->flags
!= r2
->flags
)
1426 /* verify r1 is more restrictive */
1427 if ((r1
->power_rule
.max_antenna_gain
>
1428 r2
->power_rule
.max_antenna_gain
) ||
1429 r1
->power_rule
.max_eirp
> r2
->power_rule
.max_eirp
)
1432 /* make sure r2's range is contained within r1 */
1433 if (r1
->freq_range
.start_freq_khz
> r2
->freq_range
.start_freq_khz
||
1434 r1
->freq_range
.end_freq_khz
< r2
->freq_range
.end_freq_khz
)
1437 /* and finally verify that r1.max_bw >= r2.max_bw */
1438 if (r1
->freq_range
.max_bandwidth_khz
<
1439 r2
->freq_range
.max_bandwidth_khz
)
1445 /* add or extend current rules. do nothing if rule is already contained */
1446 static void add_rule(struct ieee80211_reg_rule
*rule
,
1447 struct ieee80211_reg_rule
*reg_rules
, u32
*n_rules
)
1449 struct ieee80211_reg_rule
*tmp_rule
;
1452 for (i
= 0; i
< *n_rules
; i
++) {
1453 tmp_rule
= ®_rules
[i
];
1454 /* rule is already contained - do nothing */
1455 if (rule_contains(tmp_rule
, rule
))
1458 /* extend rule if possible */
1459 if (rule_contains(rule
, tmp_rule
)) {
1460 memcpy(tmp_rule
, rule
, sizeof(*rule
));
1465 memcpy(®_rules
[*n_rules
], rule
, sizeof(*rule
));
1470 * regdom_intersect - do the intersection between two regulatory domains
1471 * @rd1: first regulatory domain
1472 * @rd2: second regulatory domain
1474 * Use this function to get the intersection between two regulatory domains.
1475 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1476 * as no one single alpha2 can represent this regulatory domain.
1478 * Returns a pointer to the regulatory domain structure which will hold the
1479 * resulting intersection of rules between rd1 and rd2. We will
1480 * kzalloc() this structure for you.
1482 static struct ieee80211_regdomain
*
1483 regdom_intersect(const struct ieee80211_regdomain
*rd1
,
1484 const struct ieee80211_regdomain
*rd2
)
1488 unsigned int num_rules
= 0;
1489 const struct ieee80211_reg_rule
*rule1
, *rule2
;
1490 struct ieee80211_reg_rule intersected_rule
;
1491 struct ieee80211_regdomain
*rd
;
1497 * First we get a count of the rules we'll need, then we actually
1498 * build them. This is to so we can malloc() and free() a
1499 * regdomain once. The reason we use reg_rules_intersect() here
1500 * is it will return -EINVAL if the rule computed makes no sense.
1501 * All rules that do check out OK are valid.
1504 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
1505 rule1
= &rd1
->reg_rules
[x
];
1506 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
1507 rule2
= &rd2
->reg_rules
[y
];
1508 if (!reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
1517 rd
= kzalloc(struct_size(rd
, reg_rules
, num_rules
), GFP_KERNEL
);
1521 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
1522 rule1
= &rd1
->reg_rules
[x
];
1523 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
1524 rule2
= &rd2
->reg_rules
[y
];
1525 r
= reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
1528 * No need to memset here the intersected rule here as
1529 * we're not using the stack anymore
1534 add_rule(&intersected_rule
, rd
->reg_rules
,
1539 rd
->alpha2
[0] = '9';
1540 rd
->alpha2
[1] = '8';
1541 rd
->dfs_region
= reg_intersect_dfs_region(rd1
->dfs_region
,
1548 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1549 * want to just have the channel structure use these
1551 static u32
map_regdom_flags(u32 rd_flags
)
1553 u32 channel_flags
= 0;
1554 if (rd_flags
& NL80211_RRF_NO_IR_ALL
)
1555 channel_flags
|= IEEE80211_CHAN_NO_IR
;
1556 if (rd_flags
& NL80211_RRF_DFS
)
1557 channel_flags
|= IEEE80211_CHAN_RADAR
;
1558 if (rd_flags
& NL80211_RRF_NO_OFDM
)
1559 channel_flags
|= IEEE80211_CHAN_NO_OFDM
;
1560 if (rd_flags
& NL80211_RRF_NO_OUTDOOR
)
1561 channel_flags
|= IEEE80211_CHAN_INDOOR_ONLY
;
1562 if (rd_flags
& NL80211_RRF_IR_CONCURRENT
)
1563 channel_flags
|= IEEE80211_CHAN_IR_CONCURRENT
;
1564 if (rd_flags
& NL80211_RRF_NO_HT40MINUS
)
1565 channel_flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
1566 if (rd_flags
& NL80211_RRF_NO_HT40PLUS
)
1567 channel_flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
1568 if (rd_flags
& NL80211_RRF_NO_80MHZ
)
1569 channel_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1570 if (rd_flags
& NL80211_RRF_NO_160MHZ
)
1571 channel_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1572 if (rd_flags
& NL80211_RRF_NO_HE
)
1573 channel_flags
|= IEEE80211_CHAN_NO_HE
;
1574 return channel_flags
;
1577 static const struct ieee80211_reg_rule
*
1578 freq_reg_info_regd(u32 center_freq
,
1579 const struct ieee80211_regdomain
*regd
, u32 bw
)
1582 bool band_rule_found
= false;
1583 bool bw_fits
= false;
1586 return ERR_PTR(-EINVAL
);
1588 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
1589 const struct ieee80211_reg_rule
*rr
;
1590 const struct ieee80211_freq_range
*fr
= NULL
;
1592 rr
= ®d
->reg_rules
[i
];
1593 fr
= &rr
->freq_range
;
1596 * We only need to know if one frequency rule was
1597 * in center_freq's band, that's enough, so let's
1598 * not overwrite it once found
1600 if (!band_rule_found
)
1601 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
1603 bw_fits
= cfg80211_does_bw_fit_range(fr
, center_freq
, bw
);
1605 if (band_rule_found
&& bw_fits
)
1609 if (!band_rule_found
)
1610 return ERR_PTR(-ERANGE
);
1612 return ERR_PTR(-EINVAL
);
1615 static const struct ieee80211_reg_rule
*
1616 __freq_reg_info(struct wiphy
*wiphy
, u32 center_freq
, u32 min_bw
)
1618 const struct ieee80211_regdomain
*regd
= reg_get_regdomain(wiphy
);
1619 static const u32 bws
[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1620 const struct ieee80211_reg_rule
*reg_rule
;
1621 int i
= ARRAY_SIZE(bws
) - 1;
1624 for (bw
= MHZ_TO_KHZ(bws
[i
]); bw
>= min_bw
; bw
= MHZ_TO_KHZ(bws
[i
--])) {
1625 reg_rule
= freq_reg_info_regd(center_freq
, regd
, bw
);
1626 if (!IS_ERR(reg_rule
))
1633 const struct ieee80211_reg_rule
*freq_reg_info(struct wiphy
*wiphy
,
1636 u32 min_bw
= center_freq
< MHZ_TO_KHZ(1000) ? 1 : 20;
1638 return __freq_reg_info(wiphy
, center_freq
, MHZ_TO_KHZ(min_bw
));
1640 EXPORT_SYMBOL(freq_reg_info
);
1642 const char *reg_initiator_name(enum nl80211_reg_initiator initiator
)
1644 switch (initiator
) {
1645 case NL80211_REGDOM_SET_BY_CORE
:
1647 case NL80211_REGDOM_SET_BY_USER
:
1649 case NL80211_REGDOM_SET_BY_DRIVER
:
1651 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
1652 return "country element";
1658 EXPORT_SYMBOL(reg_initiator_name
);
1660 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain
*regd
,
1661 const struct ieee80211_reg_rule
*reg_rule
,
1662 const struct ieee80211_channel
*chan
)
1664 const struct ieee80211_freq_range
*freq_range
= NULL
;
1665 u32 max_bandwidth_khz
, center_freq_khz
, bw_flags
= 0;
1666 bool is_s1g
= chan
->band
== NL80211_BAND_S1GHZ
;
1668 freq_range
= ®_rule
->freq_range
;
1670 max_bandwidth_khz
= freq_range
->max_bandwidth_khz
;
1671 center_freq_khz
= ieee80211_channel_to_khz(chan
);
1672 /* Check if auto calculation requested */
1673 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
1674 max_bandwidth_khz
= reg_get_max_bandwidth(regd
, reg_rule
);
1676 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1677 if (!cfg80211_does_bw_fit_range(freq_range
,
1680 bw_flags
|= IEEE80211_CHAN_NO_10MHZ
;
1681 if (!cfg80211_does_bw_fit_range(freq_range
,
1684 bw_flags
|= IEEE80211_CHAN_NO_20MHZ
;
1687 /* S1G is strict about non overlapping channels. We can
1688 * calculate which bandwidth is allowed per channel by finding
1689 * the largest bandwidth which cleanly divides the freq_range.
1692 int ch_bw
= max_bandwidth_khz
;
1695 edge_offset
= (center_freq_khz
- ch_bw
/ 2) -
1696 freq_range
->start_freq_khz
;
1697 if (edge_offset
% ch_bw
== 0) {
1698 switch (KHZ_TO_MHZ(ch_bw
)) {
1700 bw_flags
|= IEEE80211_CHAN_1MHZ
;
1703 bw_flags
|= IEEE80211_CHAN_2MHZ
;
1706 bw_flags
|= IEEE80211_CHAN_4MHZ
;
1709 bw_flags
|= IEEE80211_CHAN_8MHZ
;
1712 bw_flags
|= IEEE80211_CHAN_16MHZ
;
1715 /* If we got here, no bandwidths fit on
1716 * this frequency, ie. band edge.
1718 bw_flags
|= IEEE80211_CHAN_DISABLED
;
1726 if (max_bandwidth_khz
< MHZ_TO_KHZ(10))
1727 bw_flags
|= IEEE80211_CHAN_NO_10MHZ
;
1728 if (max_bandwidth_khz
< MHZ_TO_KHZ(20))
1729 bw_flags
|= IEEE80211_CHAN_NO_20MHZ
;
1730 if (max_bandwidth_khz
< MHZ_TO_KHZ(40))
1731 bw_flags
|= IEEE80211_CHAN_NO_HT40
;
1732 if (max_bandwidth_khz
< MHZ_TO_KHZ(80))
1733 bw_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1734 if (max_bandwidth_khz
< MHZ_TO_KHZ(160))
1735 bw_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1740 static void handle_channel_single_rule(struct wiphy
*wiphy
,
1741 enum nl80211_reg_initiator initiator
,
1742 struct ieee80211_channel
*chan
,
1744 struct regulatory_request
*lr
,
1745 struct wiphy
*request_wiphy
,
1746 const struct ieee80211_reg_rule
*reg_rule
)
1749 const struct ieee80211_power_rule
*power_rule
= NULL
;
1750 const struct ieee80211_regdomain
*regd
;
1752 regd
= reg_get_regdomain(wiphy
);
1754 power_rule
= ®_rule
->power_rule
;
1755 bw_flags
= reg_rule_to_chan_bw_flags(regd
, reg_rule
, chan
);
1757 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1758 request_wiphy
&& request_wiphy
== wiphy
&&
1759 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1761 * This guarantees the driver's requested regulatory domain
1762 * will always be used as a base for further regulatory
1765 chan
->flags
= chan
->orig_flags
=
1766 map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1767 chan
->max_antenna_gain
= chan
->orig_mag
=
1768 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1769 chan
->max_reg_power
= chan
->max_power
= chan
->orig_mpwr
=
1770 (int) MBM_TO_DBM(power_rule
->max_eirp
);
1772 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1773 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1774 if (reg_rule
->dfs_cac_ms
)
1775 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1781 chan
->dfs_state
= NL80211_DFS_USABLE
;
1782 chan
->dfs_state_entered
= jiffies
;
1784 chan
->beacon_found
= false;
1785 chan
->flags
= flags
| bw_flags
| map_regdom_flags(reg_rule
->flags
);
1786 chan
->max_antenna_gain
=
1787 min_t(int, chan
->orig_mag
,
1788 MBI_TO_DBI(power_rule
->max_antenna_gain
));
1789 chan
->max_reg_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1791 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1792 if (reg_rule
->dfs_cac_ms
)
1793 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1795 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1798 if (chan
->orig_mpwr
) {
1800 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1801 * will always follow the passed country IE power settings.
1803 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1804 wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_FOLLOW_POWER
)
1805 chan
->max_power
= chan
->max_reg_power
;
1807 chan
->max_power
= min(chan
->orig_mpwr
,
1808 chan
->max_reg_power
);
1810 chan
->max_power
= chan
->max_reg_power
;
1813 static void handle_channel_adjacent_rules(struct wiphy
*wiphy
,
1814 enum nl80211_reg_initiator initiator
,
1815 struct ieee80211_channel
*chan
,
1817 struct regulatory_request
*lr
,
1818 struct wiphy
*request_wiphy
,
1819 const struct ieee80211_reg_rule
*rrule1
,
1820 const struct ieee80211_reg_rule
*rrule2
,
1821 struct ieee80211_freq_range
*comb_range
)
1825 const struct ieee80211_power_rule
*power_rule1
= NULL
;
1826 const struct ieee80211_power_rule
*power_rule2
= NULL
;
1827 const struct ieee80211_regdomain
*regd
;
1829 regd
= reg_get_regdomain(wiphy
);
1831 power_rule1
= &rrule1
->power_rule
;
1832 power_rule2
= &rrule2
->power_rule
;
1833 bw_flags1
= reg_rule_to_chan_bw_flags(regd
, rrule1
, chan
);
1834 bw_flags2
= reg_rule_to_chan_bw_flags(regd
, rrule2
, chan
);
1836 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1837 request_wiphy
&& request_wiphy
== wiphy
&&
1838 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1839 /* This guarantees the driver's requested regulatory domain
1840 * will always be used as a base for further regulatory
1844 map_regdom_flags(rrule1
->flags
) |
1845 map_regdom_flags(rrule2
->flags
) |
1848 chan
->orig_flags
= chan
->flags
;
1849 chan
->max_antenna_gain
=
1850 min_t(int, MBI_TO_DBI(power_rule1
->max_antenna_gain
),
1851 MBI_TO_DBI(power_rule2
->max_antenna_gain
));
1852 chan
->orig_mag
= chan
->max_antenna_gain
;
1853 chan
->max_reg_power
=
1854 min_t(int, MBM_TO_DBM(power_rule1
->max_eirp
),
1855 MBM_TO_DBM(power_rule2
->max_eirp
));
1856 chan
->max_power
= chan
->max_reg_power
;
1857 chan
->orig_mpwr
= chan
->max_reg_power
;
1859 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1860 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1861 if (rrule1
->dfs_cac_ms
|| rrule2
->dfs_cac_ms
)
1862 chan
->dfs_cac_ms
= max_t(unsigned int,
1864 rrule2
->dfs_cac_ms
);
1870 chan
->dfs_state
= NL80211_DFS_USABLE
;
1871 chan
->dfs_state_entered
= jiffies
;
1873 chan
->beacon_found
= false;
1874 chan
->flags
= flags
| bw_flags1
| bw_flags2
|
1875 map_regdom_flags(rrule1
->flags
) |
1876 map_regdom_flags(rrule2
->flags
);
1878 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1879 * (otherwise no adj. rule case), recheck therefore
1881 if (cfg80211_does_bw_fit_range(comb_range
,
1882 ieee80211_channel_to_khz(chan
),
1884 chan
->flags
&= ~IEEE80211_CHAN_NO_10MHZ
;
1885 if (cfg80211_does_bw_fit_range(comb_range
,
1886 ieee80211_channel_to_khz(chan
),
1888 chan
->flags
&= ~IEEE80211_CHAN_NO_20MHZ
;
1890 chan
->max_antenna_gain
=
1891 min_t(int, chan
->orig_mag
,
1893 MBI_TO_DBI(power_rule1
->max_antenna_gain
),
1894 MBI_TO_DBI(power_rule2
->max_antenna_gain
)));
1895 chan
->max_reg_power
= min_t(int,
1896 MBM_TO_DBM(power_rule1
->max_eirp
),
1897 MBM_TO_DBM(power_rule2
->max_eirp
));
1899 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1900 if (rrule1
->dfs_cac_ms
|| rrule2
->dfs_cac_ms
)
1901 chan
->dfs_cac_ms
= max_t(unsigned int,
1903 rrule2
->dfs_cac_ms
);
1905 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1908 if (chan
->orig_mpwr
) {
1909 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1910 * will always follow the passed country IE power settings.
1912 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1913 wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_FOLLOW_POWER
)
1914 chan
->max_power
= chan
->max_reg_power
;
1916 chan
->max_power
= min(chan
->orig_mpwr
,
1917 chan
->max_reg_power
);
1919 chan
->max_power
= chan
->max_reg_power
;
1923 /* Note that right now we assume the desired channel bandwidth
1924 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1925 * per channel, the primary and the extension channel).
1927 static void handle_channel(struct wiphy
*wiphy
,
1928 enum nl80211_reg_initiator initiator
,
1929 struct ieee80211_channel
*chan
)
1931 const u32 orig_chan_freq
= ieee80211_channel_to_khz(chan
);
1932 struct regulatory_request
*lr
= get_last_request();
1933 struct wiphy
*request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
1934 const struct ieee80211_reg_rule
*rrule
= NULL
;
1935 const struct ieee80211_reg_rule
*rrule1
= NULL
;
1936 const struct ieee80211_reg_rule
*rrule2
= NULL
;
1938 u32 flags
= chan
->orig_flags
;
1940 rrule
= freq_reg_info(wiphy
, orig_chan_freq
);
1941 if (IS_ERR(rrule
)) {
1942 /* check for adjacent match, therefore get rules for
1943 * chan - 20 MHz and chan + 20 MHz and test
1944 * if reg rules are adjacent
1946 rrule1
= freq_reg_info(wiphy
,
1947 orig_chan_freq
- MHZ_TO_KHZ(20));
1948 rrule2
= freq_reg_info(wiphy
,
1949 orig_chan_freq
+ MHZ_TO_KHZ(20));
1950 if (!IS_ERR(rrule1
) && !IS_ERR(rrule2
)) {
1951 struct ieee80211_freq_range comb_range
;
1953 if (rrule1
->freq_range
.end_freq_khz
!=
1954 rrule2
->freq_range
.start_freq_khz
)
1957 comb_range
.start_freq_khz
=
1958 rrule1
->freq_range
.start_freq_khz
;
1959 comb_range
.end_freq_khz
=
1960 rrule2
->freq_range
.end_freq_khz
;
1961 comb_range
.max_bandwidth_khz
=
1963 rrule1
->freq_range
.max_bandwidth_khz
,
1964 rrule2
->freq_range
.max_bandwidth_khz
);
1966 if (!cfg80211_does_bw_fit_range(&comb_range
,
1971 handle_channel_adjacent_rules(wiphy
, initiator
, chan
,
1972 flags
, lr
, request_wiphy
,
1979 /* We will disable all channels that do not match our
1980 * received regulatory rule unless the hint is coming
1981 * from a Country IE and the Country IE had no information
1982 * about a band. The IEEE 802.11 spec allows for an AP
1983 * to send only a subset of the regulatory rules allowed,
1984 * so an AP in the US that only supports 2.4 GHz may only send
1985 * a country IE with information for the 2.4 GHz band
1986 * while 5 GHz is still supported.
1988 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1989 PTR_ERR(rrule
) == -ERANGE
)
1992 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1993 request_wiphy
&& request_wiphy
== wiphy
&&
1994 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1995 pr_debug("Disabling freq %d.%03d MHz for good\n",
1996 chan
->center_freq
, chan
->freq_offset
);
1997 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
1998 chan
->flags
= chan
->orig_flags
;
2000 pr_debug("Disabling freq %d.%03d MHz\n",
2001 chan
->center_freq
, chan
->freq_offset
);
2002 chan
->flags
|= IEEE80211_CHAN_DISABLED
;
2007 handle_channel_single_rule(wiphy
, initiator
, chan
, flags
, lr
,
2008 request_wiphy
, rrule
);
2011 static void handle_band(struct wiphy
*wiphy
,
2012 enum nl80211_reg_initiator initiator
,
2013 struct ieee80211_supported_band
*sband
)
2020 for (i
= 0; i
< sband
->n_channels
; i
++)
2021 handle_channel(wiphy
, initiator
, &sband
->channels
[i
]);
2024 static bool reg_request_cell_base(struct regulatory_request
*request
)
2026 if (request
->initiator
!= NL80211_REGDOM_SET_BY_USER
)
2028 return request
->user_reg_hint_type
== NL80211_USER_REG_HINT_CELL_BASE
;
2031 bool reg_last_request_cell_base(void)
2033 return reg_request_cell_base(get_last_request());
2036 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2037 /* Core specific check */
2038 static enum reg_request_treatment
2039 reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
2041 struct regulatory_request
*lr
= get_last_request();
2043 if (!reg_num_devs_support_basehint
)
2044 return REG_REQ_IGNORE
;
2046 if (reg_request_cell_base(lr
) &&
2047 !regdom_changes(pending_request
->alpha2
))
2048 return REG_REQ_ALREADY_SET
;
2053 /* Device specific check */
2054 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
2056 return !(wiphy
->features
& NL80211_FEATURE_CELL_BASE_REG_HINTS
);
2059 static enum reg_request_treatment
2060 reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
2062 return REG_REQ_IGNORE
;
2065 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
2071 static bool wiphy_strict_alpha2_regd(struct wiphy
*wiphy
)
2073 if (wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
&&
2074 !(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
))
2079 static bool ignore_reg_update(struct wiphy
*wiphy
,
2080 enum nl80211_reg_initiator initiator
)
2082 struct regulatory_request
*lr
= get_last_request();
2084 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
2088 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2089 reg_initiator_name(initiator
));
2093 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
2094 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
) {
2095 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2096 reg_initiator_name(initiator
));
2101 * wiphy->regd will be set once the device has its own
2102 * desired regulatory domain set
2104 if (wiphy_strict_alpha2_regd(wiphy
) && !wiphy
->regd
&&
2105 initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
2106 !is_world_regdom(lr
->alpha2
)) {
2107 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2108 reg_initiator_name(initiator
));
2112 if (reg_request_cell_base(lr
))
2113 return reg_dev_ignore_cell_hint(wiphy
);
2118 static bool reg_is_world_roaming(struct wiphy
*wiphy
)
2120 const struct ieee80211_regdomain
*cr
= get_cfg80211_regdom();
2121 const struct ieee80211_regdomain
*wr
= get_wiphy_regdom(wiphy
);
2122 struct regulatory_request
*lr
= get_last_request();
2124 if (is_world_regdom(cr
->alpha2
) || (wr
&& is_world_regdom(wr
->alpha2
)))
2127 if (lr
&& lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
2128 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
)
2134 static void handle_reg_beacon(struct wiphy
*wiphy
, unsigned int chan_idx
,
2135 struct reg_beacon
*reg_beacon
)
2137 struct ieee80211_supported_band
*sband
;
2138 struct ieee80211_channel
*chan
;
2139 bool channel_changed
= false;
2140 struct ieee80211_channel chan_before
;
2142 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
2143 chan
= &sband
->channels
[chan_idx
];
2145 if (likely(!ieee80211_channel_equal(chan
, ®_beacon
->chan
)))
2148 if (chan
->beacon_found
)
2151 chan
->beacon_found
= true;
2153 if (!reg_is_world_roaming(wiphy
))
2156 if (wiphy
->regulatory_flags
& REGULATORY_DISABLE_BEACON_HINTS
)
2159 chan_before
= *chan
;
2161 if (chan
->flags
& IEEE80211_CHAN_NO_IR
) {
2162 chan
->flags
&= ~IEEE80211_CHAN_NO_IR
;
2163 channel_changed
= true;
2166 if (channel_changed
)
2167 nl80211_send_beacon_hint_event(wiphy
, &chan_before
, chan
);
2171 * Called when a scan on a wiphy finds a beacon on
2174 static void wiphy_update_new_beacon(struct wiphy
*wiphy
,
2175 struct reg_beacon
*reg_beacon
)
2178 struct ieee80211_supported_band
*sband
;
2180 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
2183 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
2185 for (i
= 0; i
< sband
->n_channels
; i
++)
2186 handle_reg_beacon(wiphy
, i
, reg_beacon
);
2190 * Called upon reg changes or a new wiphy is added
2192 static void wiphy_update_beacon_reg(struct wiphy
*wiphy
)
2195 struct ieee80211_supported_band
*sband
;
2196 struct reg_beacon
*reg_beacon
;
2198 list_for_each_entry(reg_beacon
, ®_beacon_list
, list
) {
2199 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
2201 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
2202 for (i
= 0; i
< sband
->n_channels
; i
++)
2203 handle_reg_beacon(wiphy
, i
, reg_beacon
);
2207 /* Reap the advantages of previously found beacons */
2208 static void reg_process_beacons(struct wiphy
*wiphy
)
2211 * Means we are just firing up cfg80211, so no beacons would
2212 * have been processed yet.
2216 wiphy_update_beacon_reg(wiphy
);
2219 static bool is_ht40_allowed(struct ieee80211_channel
*chan
)
2223 if (chan
->flags
& IEEE80211_CHAN_DISABLED
)
2225 /* This would happen when regulatory rules disallow HT40 completely */
2226 if ((chan
->flags
& IEEE80211_CHAN_NO_HT40
) == IEEE80211_CHAN_NO_HT40
)
2231 static void reg_process_ht_flags_channel(struct wiphy
*wiphy
,
2232 struct ieee80211_channel
*channel
)
2234 struct ieee80211_supported_band
*sband
= wiphy
->bands
[channel
->band
];
2235 struct ieee80211_channel
*channel_before
= NULL
, *channel_after
= NULL
;
2236 const struct ieee80211_regdomain
*regd
;
2240 if (!is_ht40_allowed(channel
)) {
2241 channel
->flags
|= IEEE80211_CHAN_NO_HT40
;
2246 * We need to ensure the extension channels exist to
2247 * be able to use HT40- or HT40+, this finds them (or not)
2249 for (i
= 0; i
< sband
->n_channels
; i
++) {
2250 struct ieee80211_channel
*c
= &sband
->channels
[i
];
2252 if (c
->center_freq
== (channel
->center_freq
- 20))
2254 if (c
->center_freq
== (channel
->center_freq
+ 20))
2259 regd
= get_wiphy_regdom(wiphy
);
2261 const struct ieee80211_reg_rule
*reg_rule
=
2262 freq_reg_info_regd(MHZ_TO_KHZ(channel
->center_freq
),
2263 regd
, MHZ_TO_KHZ(20));
2265 if (!IS_ERR(reg_rule
))
2266 flags
= reg_rule
->flags
;
2270 * Please note that this assumes target bandwidth is 20 MHz,
2271 * if that ever changes we also need to change the below logic
2272 * to include that as well.
2274 if (!is_ht40_allowed(channel_before
) ||
2275 flags
& NL80211_RRF_NO_HT40MINUS
)
2276 channel
->flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
2278 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
2280 if (!is_ht40_allowed(channel_after
) ||
2281 flags
& NL80211_RRF_NO_HT40PLUS
)
2282 channel
->flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
2284 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
2287 static void reg_process_ht_flags_band(struct wiphy
*wiphy
,
2288 struct ieee80211_supported_band
*sband
)
2295 for (i
= 0; i
< sband
->n_channels
; i
++)
2296 reg_process_ht_flags_channel(wiphy
, &sband
->channels
[i
]);
2299 static void reg_process_ht_flags(struct wiphy
*wiphy
)
2301 enum nl80211_band band
;
2306 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
2307 reg_process_ht_flags_band(wiphy
, wiphy
->bands
[band
]);
2310 static void reg_call_notifier(struct wiphy
*wiphy
,
2311 struct regulatory_request
*request
)
2313 if (wiphy
->reg_notifier
)
2314 wiphy
->reg_notifier(wiphy
, request
);
2317 static bool reg_wdev_chan_valid(struct wiphy
*wiphy
, struct wireless_dev
*wdev
)
2319 struct cfg80211_chan_def chandef
= {};
2320 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wiphy
);
2321 enum nl80211_iftype iftype
;
2324 iftype
= wdev
->iftype
;
2326 /* make sure the interface is active */
2327 if (!wdev
->netdev
|| !netif_running(wdev
->netdev
))
2328 goto wdev_inactive_unlock
;
2331 case NL80211_IFTYPE_AP
:
2332 case NL80211_IFTYPE_P2P_GO
:
2333 if (!wdev
->beacon_interval
)
2334 goto wdev_inactive_unlock
;
2335 chandef
= wdev
->chandef
;
2337 case NL80211_IFTYPE_ADHOC
:
2338 if (!wdev
->ssid_len
)
2339 goto wdev_inactive_unlock
;
2340 chandef
= wdev
->chandef
;
2342 case NL80211_IFTYPE_STATION
:
2343 case NL80211_IFTYPE_P2P_CLIENT
:
2344 if (!wdev
->current_bss
||
2345 !wdev
->current_bss
->pub
.channel
)
2346 goto wdev_inactive_unlock
;
2348 if (!rdev
->ops
->get_channel
||
2349 rdev_get_channel(rdev
, wdev
, &chandef
))
2350 cfg80211_chandef_create(&chandef
,
2351 wdev
->current_bss
->pub
.channel
,
2352 NL80211_CHAN_NO_HT
);
2354 case NL80211_IFTYPE_MONITOR
:
2355 case NL80211_IFTYPE_AP_VLAN
:
2356 case NL80211_IFTYPE_P2P_DEVICE
:
2357 /* no enforcement required */
2360 /* others not implemented for now */
2368 case NL80211_IFTYPE_AP
:
2369 case NL80211_IFTYPE_P2P_GO
:
2370 case NL80211_IFTYPE_ADHOC
:
2371 return cfg80211_reg_can_beacon_relax(wiphy
, &chandef
, iftype
);
2372 case NL80211_IFTYPE_STATION
:
2373 case NL80211_IFTYPE_P2P_CLIENT
:
2374 return cfg80211_chandef_usable(wiphy
, &chandef
,
2375 IEEE80211_CHAN_DISABLED
);
2382 wdev_inactive_unlock
:
2387 static void reg_leave_invalid_chans(struct wiphy
*wiphy
)
2389 struct wireless_dev
*wdev
;
2390 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wiphy
);
2394 list_for_each_entry(wdev
, &rdev
->wiphy
.wdev_list
, list
)
2395 if (!reg_wdev_chan_valid(wiphy
, wdev
))
2396 cfg80211_leave(rdev
, wdev
);
2399 static void reg_check_chans_work(struct work_struct
*work
)
2401 struct cfg80211_registered_device
*rdev
;
2403 pr_debug("Verifying active interfaces after reg change\n");
2406 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
2407 if (!(rdev
->wiphy
.regulatory_flags
&
2408 REGULATORY_IGNORE_STALE_KICKOFF
))
2409 reg_leave_invalid_chans(&rdev
->wiphy
);
2414 static void reg_check_channels(void)
2417 * Give usermode a chance to do something nicer (move to another
2418 * channel, orderly disconnection), before forcing a disconnection.
2420 mod_delayed_work(system_power_efficient_wq
,
2422 msecs_to_jiffies(REG_ENFORCE_GRACE_MS
));
2425 static void wiphy_update_regulatory(struct wiphy
*wiphy
,
2426 enum nl80211_reg_initiator initiator
)
2428 enum nl80211_band band
;
2429 struct regulatory_request
*lr
= get_last_request();
2431 if (ignore_reg_update(wiphy
, initiator
)) {
2433 * Regulatory updates set by CORE are ignored for custom
2434 * regulatory cards. Let us notify the changes to the driver,
2435 * as some drivers used this to restore its orig_* reg domain.
2437 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
2438 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
&&
2439 !(wiphy
->regulatory_flags
&
2440 REGULATORY_WIPHY_SELF_MANAGED
))
2441 reg_call_notifier(wiphy
, lr
);
2445 lr
->dfs_region
= get_cfg80211_regdom()->dfs_region
;
2447 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
2448 handle_band(wiphy
, initiator
, wiphy
->bands
[band
]);
2450 reg_process_beacons(wiphy
);
2451 reg_process_ht_flags(wiphy
);
2452 reg_call_notifier(wiphy
, lr
);
2455 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator
)
2457 struct cfg80211_registered_device
*rdev
;
2458 struct wiphy
*wiphy
;
2462 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2463 wiphy
= &rdev
->wiphy
;
2464 wiphy_update_regulatory(wiphy
, initiator
);
2467 reg_check_channels();
2470 static void handle_channel_custom(struct wiphy
*wiphy
,
2471 struct ieee80211_channel
*chan
,
2472 const struct ieee80211_regdomain
*regd
,
2476 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
2477 const struct ieee80211_power_rule
*power_rule
= NULL
;
2478 u32 bw
, center_freq_khz
;
2480 center_freq_khz
= ieee80211_channel_to_khz(chan
);
2481 for (bw
= MHZ_TO_KHZ(20); bw
>= min_bw
; bw
= bw
/ 2) {
2482 reg_rule
= freq_reg_info_regd(center_freq_khz
, regd
, bw
);
2483 if (!IS_ERR(reg_rule
))
2487 if (IS_ERR_OR_NULL(reg_rule
)) {
2488 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2489 chan
->center_freq
, chan
->freq_offset
);
2490 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
) {
2491 chan
->flags
|= IEEE80211_CHAN_DISABLED
;
2493 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
2494 chan
->flags
= chan
->orig_flags
;
2499 power_rule
= ®_rule
->power_rule
;
2500 bw_flags
= reg_rule_to_chan_bw_flags(regd
, reg_rule
, chan
);
2502 chan
->dfs_state_entered
= jiffies
;
2503 chan
->dfs_state
= NL80211_DFS_USABLE
;
2505 chan
->beacon_found
= false;
2507 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
2508 chan
->flags
= chan
->orig_flags
| bw_flags
|
2509 map_regdom_flags(reg_rule
->flags
);
2511 chan
->flags
|= map_regdom_flags(reg_rule
->flags
) | bw_flags
;
2513 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
2514 chan
->max_reg_power
= chan
->max_power
=
2515 (int) MBM_TO_DBM(power_rule
->max_eirp
);
2517 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
2518 if (reg_rule
->dfs_cac_ms
)
2519 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
2521 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
2524 chan
->max_power
= chan
->max_reg_power
;
2527 static void handle_band_custom(struct wiphy
*wiphy
,
2528 struct ieee80211_supported_band
*sband
,
2529 const struct ieee80211_regdomain
*regd
)
2537 * We currently assume that you always want at least 20 MHz,
2538 * otherwise channel 12 might get enabled if this rule is
2539 * compatible to US, which permits 2402 - 2472 MHz.
2541 for (i
= 0; i
< sband
->n_channels
; i
++)
2542 handle_channel_custom(wiphy
, &sband
->channels
[i
], regd
,
2546 /* Used by drivers prior to wiphy registration */
2547 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
2548 const struct ieee80211_regdomain
*regd
)
2550 const struct ieee80211_regdomain
*new_regd
, *tmp
;
2551 enum nl80211_band band
;
2552 unsigned int bands_set
= 0;
2554 WARN(!(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
),
2555 "wiphy should have REGULATORY_CUSTOM_REG\n");
2556 wiphy
->regulatory_flags
|= REGULATORY_CUSTOM_REG
;
2558 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
2559 if (!wiphy
->bands
[band
])
2561 handle_band_custom(wiphy
, wiphy
->bands
[band
], regd
);
2566 * no point in calling this if it won't have any effect
2567 * on your device's supported bands.
2569 WARN_ON(!bands_set
);
2570 new_regd
= reg_copy_regd(regd
);
2571 if (IS_ERR(new_regd
))
2574 tmp
= get_wiphy_regdom(wiphy
);
2575 rcu_assign_pointer(wiphy
->regd
, new_regd
);
2576 rcu_free_regdom(tmp
);
2578 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
2580 static void reg_set_request_processed(void)
2582 bool need_more_processing
= false;
2583 struct regulatory_request
*lr
= get_last_request();
2585 lr
->processed
= true;
2587 spin_lock(®_requests_lock
);
2588 if (!list_empty(®_requests_list
))
2589 need_more_processing
= true;
2590 spin_unlock(®_requests_lock
);
2592 cancel_crda_timeout();
2594 if (need_more_processing
)
2595 schedule_work(®_work
);
2599 * reg_process_hint_core - process core regulatory requests
2600 * @core_request: a pending core regulatory request
2602 * The wireless subsystem can use this function to process
2603 * a regulatory request issued by the regulatory core.
2605 static enum reg_request_treatment
2606 reg_process_hint_core(struct regulatory_request
*core_request
)
2608 if (reg_query_database(core_request
)) {
2609 core_request
->intersect
= false;
2610 core_request
->processed
= false;
2611 reg_update_last_request(core_request
);
2615 return REG_REQ_IGNORE
;
2618 static enum reg_request_treatment
2619 __reg_process_hint_user(struct regulatory_request
*user_request
)
2621 struct regulatory_request
*lr
= get_last_request();
2623 if (reg_request_cell_base(user_request
))
2624 return reg_ignore_cell_hint(user_request
);
2626 if (reg_request_cell_base(lr
))
2627 return REG_REQ_IGNORE
;
2629 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)
2630 return REG_REQ_INTERSECT
;
2632 * If the user knows better the user should set the regdom
2633 * to their country before the IE is picked up
2635 if (lr
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
2637 return REG_REQ_IGNORE
;
2639 * Process user requests only after previous user/driver/core
2640 * requests have been processed
2642 if ((lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
||
2643 lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
2644 lr
->initiator
== NL80211_REGDOM_SET_BY_USER
) &&
2645 regdom_changes(lr
->alpha2
))
2646 return REG_REQ_IGNORE
;
2648 if (!regdom_changes(user_request
->alpha2
))
2649 return REG_REQ_ALREADY_SET
;
2655 * reg_process_hint_user - process user regulatory requests
2656 * @user_request: a pending user regulatory request
2658 * The wireless subsystem can use this function to process
2659 * a regulatory request initiated by userspace.
2661 static enum reg_request_treatment
2662 reg_process_hint_user(struct regulatory_request
*user_request
)
2664 enum reg_request_treatment treatment
;
2666 treatment
= __reg_process_hint_user(user_request
);
2667 if (treatment
== REG_REQ_IGNORE
||
2668 treatment
== REG_REQ_ALREADY_SET
)
2669 return REG_REQ_IGNORE
;
2671 user_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
2672 user_request
->processed
= false;
2674 if (reg_query_database(user_request
)) {
2675 reg_update_last_request(user_request
);
2676 user_alpha2
[0] = user_request
->alpha2
[0];
2677 user_alpha2
[1] = user_request
->alpha2
[1];
2681 return REG_REQ_IGNORE
;
2684 static enum reg_request_treatment
2685 __reg_process_hint_driver(struct regulatory_request
*driver_request
)
2687 struct regulatory_request
*lr
= get_last_request();
2689 if (lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
) {
2690 if (regdom_changes(driver_request
->alpha2
))
2692 return REG_REQ_ALREADY_SET
;
2696 * This would happen if you unplug and plug your card
2697 * back in or if you add a new device for which the previously
2698 * loaded card also agrees on the regulatory domain.
2700 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
2701 !regdom_changes(driver_request
->alpha2
))
2702 return REG_REQ_ALREADY_SET
;
2704 return REG_REQ_INTERSECT
;
2708 * reg_process_hint_driver - process driver regulatory requests
2709 * @wiphy: the wireless device for the regulatory request
2710 * @driver_request: a pending driver regulatory request
2712 * The wireless subsystem can use this function to process
2713 * a regulatory request issued by an 802.11 driver.
2715 * Returns one of the different reg request treatment values.
2717 static enum reg_request_treatment
2718 reg_process_hint_driver(struct wiphy
*wiphy
,
2719 struct regulatory_request
*driver_request
)
2721 const struct ieee80211_regdomain
*regd
, *tmp
;
2722 enum reg_request_treatment treatment
;
2724 treatment
= __reg_process_hint_driver(driver_request
);
2726 switch (treatment
) {
2729 case REG_REQ_IGNORE
:
2730 return REG_REQ_IGNORE
;
2731 case REG_REQ_INTERSECT
:
2732 case REG_REQ_ALREADY_SET
:
2733 regd
= reg_copy_regd(get_cfg80211_regdom());
2735 return REG_REQ_IGNORE
;
2737 tmp
= get_wiphy_regdom(wiphy
);
2738 rcu_assign_pointer(wiphy
->regd
, regd
);
2739 rcu_free_regdom(tmp
);
2743 driver_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
2744 driver_request
->processed
= false;
2747 * Since CRDA will not be called in this case as we already
2748 * have applied the requested regulatory domain before we just
2749 * inform userspace we have processed the request
2751 if (treatment
== REG_REQ_ALREADY_SET
) {
2752 nl80211_send_reg_change_event(driver_request
);
2753 reg_update_last_request(driver_request
);
2754 reg_set_request_processed();
2755 return REG_REQ_ALREADY_SET
;
2758 if (reg_query_database(driver_request
)) {
2759 reg_update_last_request(driver_request
);
2763 return REG_REQ_IGNORE
;
2766 static enum reg_request_treatment
2767 __reg_process_hint_country_ie(struct wiphy
*wiphy
,
2768 struct regulatory_request
*country_ie_request
)
2770 struct wiphy
*last_wiphy
= NULL
;
2771 struct regulatory_request
*lr
= get_last_request();
2773 if (reg_request_cell_base(lr
)) {
2774 /* Trust a Cell base station over the AP's country IE */
2775 if (regdom_changes(country_ie_request
->alpha2
))
2776 return REG_REQ_IGNORE
;
2777 return REG_REQ_ALREADY_SET
;
2779 if (wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_IGNORE
)
2780 return REG_REQ_IGNORE
;
2783 if (unlikely(!is_an_alpha2(country_ie_request
->alpha2
)))
2786 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
)
2789 last_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
2791 if (last_wiphy
!= wiphy
) {
2793 * Two cards with two APs claiming different
2794 * Country IE alpha2s. We could
2795 * intersect them, but that seems unlikely
2796 * to be correct. Reject second one for now.
2798 if (regdom_changes(country_ie_request
->alpha2
))
2799 return REG_REQ_IGNORE
;
2800 return REG_REQ_ALREADY_SET
;
2803 if (regdom_changes(country_ie_request
->alpha2
))
2805 return REG_REQ_ALREADY_SET
;
2809 * reg_process_hint_country_ie - process regulatory requests from country IEs
2810 * @wiphy: the wireless device for the regulatory request
2811 * @country_ie_request: a regulatory request from a country IE
2813 * The wireless subsystem can use this function to process
2814 * a regulatory request issued by a country Information Element.
2816 * Returns one of the different reg request treatment values.
2818 static enum reg_request_treatment
2819 reg_process_hint_country_ie(struct wiphy
*wiphy
,
2820 struct regulatory_request
*country_ie_request
)
2822 enum reg_request_treatment treatment
;
2824 treatment
= __reg_process_hint_country_ie(wiphy
, country_ie_request
);
2826 switch (treatment
) {
2829 case REG_REQ_IGNORE
:
2830 return REG_REQ_IGNORE
;
2831 case REG_REQ_ALREADY_SET
:
2832 reg_free_request(country_ie_request
);
2833 return REG_REQ_ALREADY_SET
;
2834 case REG_REQ_INTERSECT
:
2836 * This doesn't happen yet, not sure we
2837 * ever want to support it for this case.
2839 WARN_ONCE(1, "Unexpected intersection for country elements");
2840 return REG_REQ_IGNORE
;
2843 country_ie_request
->intersect
= false;
2844 country_ie_request
->processed
= false;
2846 if (reg_query_database(country_ie_request
)) {
2847 reg_update_last_request(country_ie_request
);
2851 return REG_REQ_IGNORE
;
2854 bool reg_dfs_domain_same(struct wiphy
*wiphy1
, struct wiphy
*wiphy2
)
2856 const struct ieee80211_regdomain
*wiphy1_regd
= NULL
;
2857 const struct ieee80211_regdomain
*wiphy2_regd
= NULL
;
2858 const struct ieee80211_regdomain
*cfg80211_regd
= NULL
;
2859 bool dfs_domain_same
;
2863 cfg80211_regd
= rcu_dereference(cfg80211_regdomain
);
2864 wiphy1_regd
= rcu_dereference(wiphy1
->regd
);
2866 wiphy1_regd
= cfg80211_regd
;
2868 wiphy2_regd
= rcu_dereference(wiphy2
->regd
);
2870 wiphy2_regd
= cfg80211_regd
;
2872 dfs_domain_same
= wiphy1_regd
->dfs_region
== wiphy2_regd
->dfs_region
;
2876 return dfs_domain_same
;
2879 static void reg_copy_dfs_chan_state(struct ieee80211_channel
*dst_chan
,
2880 struct ieee80211_channel
*src_chan
)
2882 if (!(dst_chan
->flags
& IEEE80211_CHAN_RADAR
) ||
2883 !(src_chan
->flags
& IEEE80211_CHAN_RADAR
))
2886 if (dst_chan
->flags
& IEEE80211_CHAN_DISABLED
||
2887 src_chan
->flags
& IEEE80211_CHAN_DISABLED
)
2890 if (src_chan
->center_freq
== dst_chan
->center_freq
&&
2891 dst_chan
->dfs_state
== NL80211_DFS_USABLE
) {
2892 dst_chan
->dfs_state
= src_chan
->dfs_state
;
2893 dst_chan
->dfs_state_entered
= src_chan
->dfs_state_entered
;
2897 static void wiphy_share_dfs_chan_state(struct wiphy
*dst_wiphy
,
2898 struct wiphy
*src_wiphy
)
2900 struct ieee80211_supported_band
*src_sband
, *dst_sband
;
2901 struct ieee80211_channel
*src_chan
, *dst_chan
;
2904 if (!reg_dfs_domain_same(dst_wiphy
, src_wiphy
))
2907 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
2908 dst_sband
= dst_wiphy
->bands
[band
];
2909 src_sband
= src_wiphy
->bands
[band
];
2910 if (!dst_sband
|| !src_sband
)
2913 for (i
= 0; i
< dst_sband
->n_channels
; i
++) {
2914 dst_chan
= &dst_sband
->channels
[i
];
2915 for (j
= 0; j
< src_sband
->n_channels
; j
++) {
2916 src_chan
= &src_sband
->channels
[j
];
2917 reg_copy_dfs_chan_state(dst_chan
, src_chan
);
2923 static void wiphy_all_share_dfs_chan_state(struct wiphy
*wiphy
)
2925 struct cfg80211_registered_device
*rdev
;
2929 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2930 if (wiphy
== &rdev
->wiphy
)
2932 wiphy_share_dfs_chan_state(wiphy
, &rdev
->wiphy
);
2936 /* This processes *all* regulatory hints */
2937 static void reg_process_hint(struct regulatory_request
*reg_request
)
2939 struct wiphy
*wiphy
= NULL
;
2940 enum reg_request_treatment treatment
;
2941 enum nl80211_reg_initiator initiator
= reg_request
->initiator
;
2943 if (reg_request
->wiphy_idx
!= WIPHY_IDX_INVALID
)
2944 wiphy
= wiphy_idx_to_wiphy(reg_request
->wiphy_idx
);
2946 switch (initiator
) {
2947 case NL80211_REGDOM_SET_BY_CORE
:
2948 treatment
= reg_process_hint_core(reg_request
);
2950 case NL80211_REGDOM_SET_BY_USER
:
2951 treatment
= reg_process_hint_user(reg_request
);
2953 case NL80211_REGDOM_SET_BY_DRIVER
:
2956 treatment
= reg_process_hint_driver(wiphy
, reg_request
);
2958 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
2961 treatment
= reg_process_hint_country_ie(wiphy
, reg_request
);
2964 WARN(1, "invalid initiator %d\n", initiator
);
2968 if (treatment
== REG_REQ_IGNORE
)
2971 WARN(treatment
!= REG_REQ_OK
&& treatment
!= REG_REQ_ALREADY_SET
,
2972 "unexpected treatment value %d\n", treatment
);
2974 /* This is required so that the orig_* parameters are saved.
2975 * NOTE: treatment must be set for any case that reaches here!
2977 if (treatment
== REG_REQ_ALREADY_SET
&& wiphy
&&
2978 wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
2979 wiphy_update_regulatory(wiphy
, initiator
);
2980 wiphy_all_share_dfs_chan_state(wiphy
);
2981 reg_check_channels();
2987 reg_free_request(reg_request
);
2990 static void notify_self_managed_wiphys(struct regulatory_request
*request
)
2992 struct cfg80211_registered_device
*rdev
;
2993 struct wiphy
*wiphy
;
2995 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2996 wiphy
= &rdev
->wiphy
;
2997 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
&&
2998 request
->initiator
== NL80211_REGDOM_SET_BY_USER
)
2999 reg_call_notifier(wiphy
, request
);
3004 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3005 * Regulatory hints come on a first come first serve basis and we
3006 * must process each one atomically.
3008 static void reg_process_pending_hints(void)
3010 struct regulatory_request
*reg_request
, *lr
;
3012 lr
= get_last_request();
3014 /* When last_request->processed becomes true this will be rescheduled */
3015 if (lr
&& !lr
->processed
) {
3016 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3020 spin_lock(®_requests_lock
);
3022 if (list_empty(®_requests_list
)) {
3023 spin_unlock(®_requests_lock
);
3027 reg_request
= list_first_entry(®_requests_list
,
3028 struct regulatory_request
,
3030 list_del_init(®_request
->list
);
3032 spin_unlock(®_requests_lock
);
3034 notify_self_managed_wiphys(reg_request
);
3036 reg_process_hint(reg_request
);
3038 lr
= get_last_request();
3040 spin_lock(®_requests_lock
);
3041 if (!list_empty(®_requests_list
) && lr
&& lr
->processed
)
3042 schedule_work(®_work
);
3043 spin_unlock(®_requests_lock
);
3046 /* Processes beacon hints -- this has nothing to do with country IEs */
3047 static void reg_process_pending_beacon_hints(void)
3049 struct cfg80211_registered_device
*rdev
;
3050 struct reg_beacon
*pending_beacon
, *tmp
;
3052 /* This goes through the _pending_ beacon list */
3053 spin_lock_bh(®_pending_beacons_lock
);
3055 list_for_each_entry_safe(pending_beacon
, tmp
,
3056 ®_pending_beacons
, list
) {
3057 list_del_init(&pending_beacon
->list
);
3059 /* Applies the beacon hint to current wiphys */
3060 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
3061 wiphy_update_new_beacon(&rdev
->wiphy
, pending_beacon
);
3063 /* Remembers the beacon hint for new wiphys or reg changes */
3064 list_add_tail(&pending_beacon
->list
, ®_beacon_list
);
3067 spin_unlock_bh(®_pending_beacons_lock
);
3070 static void reg_process_self_managed_hints(void)
3072 struct cfg80211_registered_device
*rdev
;
3073 struct wiphy
*wiphy
;
3074 const struct ieee80211_regdomain
*tmp
;
3075 const struct ieee80211_regdomain
*regd
;
3076 enum nl80211_band band
;
3077 struct regulatory_request request
= {};
3079 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
3080 wiphy
= &rdev
->wiphy
;
3082 spin_lock(®_requests_lock
);
3083 regd
= rdev
->requested_regd
;
3084 rdev
->requested_regd
= NULL
;
3085 spin_unlock(®_requests_lock
);
3090 tmp
= get_wiphy_regdom(wiphy
);
3091 rcu_assign_pointer(wiphy
->regd
, regd
);
3092 rcu_free_regdom(tmp
);
3094 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
3095 handle_band_custom(wiphy
, wiphy
->bands
[band
], regd
);
3097 reg_process_ht_flags(wiphy
);
3099 request
.wiphy_idx
= get_wiphy_idx(wiphy
);
3100 request
.alpha2
[0] = regd
->alpha2
[0];
3101 request
.alpha2
[1] = regd
->alpha2
[1];
3102 request
.initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
3104 nl80211_send_wiphy_reg_change_event(&request
);
3107 reg_check_channels();
3110 static void reg_todo(struct work_struct
*work
)
3113 reg_process_pending_hints();
3114 reg_process_pending_beacon_hints();
3115 reg_process_self_managed_hints();
3119 static void queue_regulatory_request(struct regulatory_request
*request
)
3121 request
->alpha2
[0] = toupper(request
->alpha2
[0]);
3122 request
->alpha2
[1] = toupper(request
->alpha2
[1]);
3124 spin_lock(®_requests_lock
);
3125 list_add_tail(&request
->list
, ®_requests_list
);
3126 spin_unlock(®_requests_lock
);
3128 schedule_work(®_work
);
3132 * Core regulatory hint -- happens during cfg80211_init()
3133 * and when we restore regulatory settings.
3135 static int regulatory_hint_core(const char *alpha2
)
3137 struct regulatory_request
*request
;
3139 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
3143 request
->alpha2
[0] = alpha2
[0];
3144 request
->alpha2
[1] = alpha2
[1];
3145 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
3146 request
->wiphy_idx
= WIPHY_IDX_INVALID
;
3148 queue_regulatory_request(request
);
3154 int regulatory_hint_user(const char *alpha2
,
3155 enum nl80211_user_reg_hint_type user_reg_hint_type
)
3157 struct regulatory_request
*request
;
3159 if (WARN_ON(!alpha2
))
3162 if (!is_world_regdom(alpha2
) && !is_an_alpha2(alpha2
))
3165 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
3169 request
->wiphy_idx
= WIPHY_IDX_INVALID
;
3170 request
->alpha2
[0] = alpha2
[0];
3171 request
->alpha2
[1] = alpha2
[1];
3172 request
->initiator
= NL80211_REGDOM_SET_BY_USER
;
3173 request
->user_reg_hint_type
= user_reg_hint_type
;
3175 /* Allow calling CRDA again */
3176 reset_crda_timeouts();
3178 queue_regulatory_request(request
);
3183 int regulatory_hint_indoor(bool is_indoor
, u32 portid
)
3185 spin_lock(®_indoor_lock
);
3187 /* It is possible that more than one user space process is trying to
3188 * configure the indoor setting. To handle such cases, clear the indoor
3189 * setting in case that some process does not think that the device
3190 * is operating in an indoor environment. In addition, if a user space
3191 * process indicates that it is controlling the indoor setting, save its
3192 * portid, i.e., make it the owner.
3194 reg_is_indoor
= is_indoor
;
3195 if (reg_is_indoor
) {
3196 if (!reg_is_indoor_portid
)
3197 reg_is_indoor_portid
= portid
;
3199 reg_is_indoor_portid
= 0;
3202 spin_unlock(®_indoor_lock
);
3205 reg_check_channels();
3210 void regulatory_netlink_notify(u32 portid
)
3212 spin_lock(®_indoor_lock
);
3214 if (reg_is_indoor_portid
!= portid
) {
3215 spin_unlock(®_indoor_lock
);
3219 reg_is_indoor
= false;
3220 reg_is_indoor_portid
= 0;
3222 spin_unlock(®_indoor_lock
);
3224 reg_check_channels();
3228 int regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
3230 struct regulatory_request
*request
;
3232 if (WARN_ON(!alpha2
|| !wiphy
))
3235 wiphy
->regulatory_flags
&= ~REGULATORY_CUSTOM_REG
;
3237 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
3241 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
3243 request
->alpha2
[0] = alpha2
[0];
3244 request
->alpha2
[1] = alpha2
[1];
3245 request
->initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
3247 /* Allow calling CRDA again */
3248 reset_crda_timeouts();
3250 queue_regulatory_request(request
);
3254 EXPORT_SYMBOL(regulatory_hint
);
3256 void regulatory_hint_country_ie(struct wiphy
*wiphy
, enum nl80211_band band
,
3257 const u8
*country_ie
, u8 country_ie_len
)
3260 enum environment_cap env
= ENVIRON_ANY
;
3261 struct regulatory_request
*request
= NULL
, *lr
;
3263 /* IE len must be evenly divisible by 2 */
3264 if (country_ie_len
& 0x01)
3267 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
3270 request
= kzalloc(sizeof(*request
), GFP_KERNEL
);
3274 alpha2
[0] = country_ie
[0];
3275 alpha2
[1] = country_ie
[1];
3277 if (country_ie
[2] == 'I')
3278 env
= ENVIRON_INDOOR
;
3279 else if (country_ie
[2] == 'O')
3280 env
= ENVIRON_OUTDOOR
;
3283 lr
= get_last_request();
3289 * We will run this only upon a successful connection on cfg80211.
3290 * We leave conflict resolution to the workqueue, where can hold
3293 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
3294 lr
->wiphy_idx
!= WIPHY_IDX_INVALID
)
3297 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
3298 request
->alpha2
[0] = alpha2
[0];
3299 request
->alpha2
[1] = alpha2
[1];
3300 request
->initiator
= NL80211_REGDOM_SET_BY_COUNTRY_IE
;
3301 request
->country_ie_env
= env
;
3303 /* Allow calling CRDA again */
3304 reset_crda_timeouts();
3306 queue_regulatory_request(request
);
3313 static void restore_alpha2(char *alpha2
, bool reset_user
)
3315 /* indicates there is no alpha2 to consider for restoration */
3319 /* The user setting has precedence over the module parameter */
3320 if (is_user_regdom_saved()) {
3321 /* Unless we're asked to ignore it and reset it */
3323 pr_debug("Restoring regulatory settings including user preference\n");
3324 user_alpha2
[0] = '9';
3325 user_alpha2
[1] = '7';
3328 * If we're ignoring user settings, we still need to
3329 * check the module parameter to ensure we put things
3330 * back as they were for a full restore.
3332 if (!is_world_regdom(ieee80211_regdom
)) {
3333 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3334 ieee80211_regdom
[0], ieee80211_regdom
[1]);
3335 alpha2
[0] = ieee80211_regdom
[0];
3336 alpha2
[1] = ieee80211_regdom
[1];
3339 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3340 user_alpha2
[0], user_alpha2
[1]);
3341 alpha2
[0] = user_alpha2
[0];
3342 alpha2
[1] = user_alpha2
[1];
3344 } else if (!is_world_regdom(ieee80211_regdom
)) {
3345 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3346 ieee80211_regdom
[0], ieee80211_regdom
[1]);
3347 alpha2
[0] = ieee80211_regdom
[0];
3348 alpha2
[1] = ieee80211_regdom
[1];
3350 pr_debug("Restoring regulatory settings\n");
3353 static void restore_custom_reg_settings(struct wiphy
*wiphy
)
3355 struct ieee80211_supported_band
*sband
;
3356 enum nl80211_band band
;
3357 struct ieee80211_channel
*chan
;
3360 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
3361 sband
= wiphy
->bands
[band
];
3364 for (i
= 0; i
< sband
->n_channels
; i
++) {
3365 chan
= &sband
->channels
[i
];
3366 chan
->flags
= chan
->orig_flags
;
3367 chan
->max_antenna_gain
= chan
->orig_mag
;
3368 chan
->max_power
= chan
->orig_mpwr
;
3369 chan
->beacon_found
= false;
3375 * Restoring regulatory settings involves ingoring any
3376 * possibly stale country IE information and user regulatory
3377 * settings if so desired, this includes any beacon hints
3378 * learned as we could have traveled outside to another country
3379 * after disconnection. To restore regulatory settings we do
3380 * exactly what we did at bootup:
3382 * - send a core regulatory hint
3383 * - send a user regulatory hint if applicable
3385 * Device drivers that send a regulatory hint for a specific country
3386 * keep their own regulatory domain on wiphy->regd so that does
3387 * not need to be remembered.
3389 static void restore_regulatory_settings(bool reset_user
, bool cached
)
3392 char world_alpha2
[2];
3393 struct reg_beacon
*reg_beacon
, *btmp
;
3394 LIST_HEAD(tmp_reg_req_list
);
3395 struct cfg80211_registered_device
*rdev
;
3400 * Clear the indoor setting in case that it is not controlled by user
3401 * space, as otherwise there is no guarantee that the device is still
3402 * operating in an indoor environment.
3404 spin_lock(®_indoor_lock
);
3405 if (reg_is_indoor
&& !reg_is_indoor_portid
) {
3406 reg_is_indoor
= false;
3407 reg_check_channels();
3409 spin_unlock(®_indoor_lock
);
3411 reset_regdomains(true, &world_regdom
);
3412 restore_alpha2(alpha2
, reset_user
);
3415 * If there's any pending requests we simply
3416 * stash them to a temporary pending queue and
3417 * add then after we've restored regulatory
3420 spin_lock(®_requests_lock
);
3421 list_splice_tail_init(®_requests_list
, &tmp_reg_req_list
);
3422 spin_unlock(®_requests_lock
);
3424 /* Clear beacon hints */
3425 spin_lock_bh(®_pending_beacons_lock
);
3426 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
3427 list_del(®_beacon
->list
);
3430 spin_unlock_bh(®_pending_beacons_lock
);
3432 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
3433 list_del(®_beacon
->list
);
3437 /* First restore to the basic regulatory settings */
3438 world_alpha2
[0] = cfg80211_world_regdom
->alpha2
[0];
3439 world_alpha2
[1] = cfg80211_world_regdom
->alpha2
[1];
3441 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
3442 if (rdev
->wiphy
.regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
3444 if (rdev
->wiphy
.regulatory_flags
& REGULATORY_CUSTOM_REG
)
3445 restore_custom_reg_settings(&rdev
->wiphy
);
3448 if (cached
&& (!is_an_alpha2(alpha2
) ||
3449 !IS_ERR_OR_NULL(cfg80211_user_regdom
))) {
3450 reset_regdomains(false, cfg80211_world_regdom
);
3451 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE
);
3452 print_regdomain(get_cfg80211_regdom());
3453 nl80211_send_reg_change_event(&core_request_world
);
3454 reg_set_request_processed();
3456 if (is_an_alpha2(alpha2
) &&
3457 !regulatory_hint_user(alpha2
, NL80211_USER_REG_HINT_USER
)) {
3458 struct regulatory_request
*ureq
;
3460 spin_lock(®_requests_lock
);
3461 ureq
= list_last_entry(®_requests_list
,
3462 struct regulatory_request
,
3464 list_del(&ureq
->list
);
3465 spin_unlock(®_requests_lock
);
3467 notify_self_managed_wiphys(ureq
);
3468 reg_update_last_request(ureq
);
3469 set_regdom(reg_copy_regd(cfg80211_user_regdom
),
3470 REGD_SOURCE_CACHED
);
3473 regulatory_hint_core(world_alpha2
);
3476 * This restores the ieee80211_regdom module parameter
3477 * preference or the last user requested regulatory
3478 * settings, user regulatory settings takes precedence.
3480 if (is_an_alpha2(alpha2
))
3481 regulatory_hint_user(alpha2
, NL80211_USER_REG_HINT_USER
);
3484 spin_lock(®_requests_lock
);
3485 list_splice_tail_init(&tmp_reg_req_list
, ®_requests_list
);
3486 spin_unlock(®_requests_lock
);
3488 pr_debug("Kicking the queue\n");
3490 schedule_work(®_work
);
3493 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag
)
3495 struct cfg80211_registered_device
*rdev
;
3496 struct wireless_dev
*wdev
;
3498 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
3499 list_for_each_entry(wdev
, &rdev
->wiphy
.wdev_list
, list
) {
3501 if (!(wdev
->wiphy
->regulatory_flags
& flag
)) {
3512 void regulatory_hint_disconnect(void)
3514 /* Restore of regulatory settings is not required when wiphy(s)
3515 * ignore IE from connected access point but clearance of beacon hints
3516 * is required when wiphy(s) supports beacon hints.
3518 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE
)) {
3519 struct reg_beacon
*reg_beacon
, *btmp
;
3521 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS
))
3524 spin_lock_bh(®_pending_beacons_lock
);
3525 list_for_each_entry_safe(reg_beacon
, btmp
,
3526 ®_pending_beacons
, list
) {
3527 list_del(®_beacon
->list
);
3530 spin_unlock_bh(®_pending_beacons_lock
);
3532 list_for_each_entry_safe(reg_beacon
, btmp
,
3533 ®_beacon_list
, list
) {
3534 list_del(®_beacon
->list
);
3541 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3542 restore_regulatory_settings(false, true);
3545 static bool freq_is_chan_12_13_14(u32 freq
)
3547 if (freq
== ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ
) ||
3548 freq
== ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ
) ||
3549 freq
== ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ
))
3554 static bool pending_reg_beacon(struct ieee80211_channel
*beacon_chan
)
3556 struct reg_beacon
*pending_beacon
;
3558 list_for_each_entry(pending_beacon
, ®_pending_beacons
, list
)
3559 if (ieee80211_channel_equal(beacon_chan
,
3560 &pending_beacon
->chan
))
3565 int regulatory_hint_found_beacon(struct wiphy
*wiphy
,
3566 struct ieee80211_channel
*beacon_chan
,
3569 struct reg_beacon
*reg_beacon
;
3572 if (beacon_chan
->beacon_found
||
3573 beacon_chan
->flags
& IEEE80211_CHAN_RADAR
||
3574 (beacon_chan
->band
== NL80211_BAND_2GHZ
&&
3575 !freq_is_chan_12_13_14(beacon_chan
->center_freq
)))
3578 spin_lock_bh(®_pending_beacons_lock
);
3579 processing
= pending_reg_beacon(beacon_chan
);
3580 spin_unlock_bh(®_pending_beacons_lock
);
3585 reg_beacon
= kzalloc(sizeof(struct reg_beacon
), gfp
);
3589 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3590 beacon_chan
->center_freq
, beacon_chan
->freq_offset
,
3591 ieee80211_freq_khz_to_channel(
3592 ieee80211_channel_to_khz(beacon_chan
)),
3595 memcpy(®_beacon
->chan
, beacon_chan
,
3596 sizeof(struct ieee80211_channel
));
3599 * Since we can be called from BH or and non-BH context
3600 * we must use spin_lock_bh()
3602 spin_lock_bh(®_pending_beacons_lock
);
3603 list_add_tail(®_beacon
->list
, ®_pending_beacons
);
3604 spin_unlock_bh(®_pending_beacons_lock
);
3606 schedule_work(®_work
);
3611 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
3614 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
3615 const struct ieee80211_freq_range
*freq_range
= NULL
;
3616 const struct ieee80211_power_rule
*power_rule
= NULL
;
3617 char bw
[32], cac_time
[32];
3619 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3621 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
3622 reg_rule
= &rd
->reg_rules
[i
];
3623 freq_range
= ®_rule
->freq_range
;
3624 power_rule
= ®_rule
->power_rule
;
3626 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
3627 snprintf(bw
, sizeof(bw
), "%d KHz, %u KHz AUTO",
3628 freq_range
->max_bandwidth_khz
,
3629 reg_get_max_bandwidth(rd
, reg_rule
));
3631 snprintf(bw
, sizeof(bw
), "%d KHz",
3632 freq_range
->max_bandwidth_khz
);
3634 if (reg_rule
->flags
& NL80211_RRF_DFS
)
3635 scnprintf(cac_time
, sizeof(cac_time
), "%u s",
3636 reg_rule
->dfs_cac_ms
/1000);
3638 scnprintf(cac_time
, sizeof(cac_time
), "N/A");
3642 * There may not be documentation for max antenna gain
3643 * in certain regions
3645 if (power_rule
->max_antenna_gain
)
3646 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3647 freq_range
->start_freq_khz
,
3648 freq_range
->end_freq_khz
,
3650 power_rule
->max_antenna_gain
,
3651 power_rule
->max_eirp
,
3654 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3655 freq_range
->start_freq_khz
,
3656 freq_range
->end_freq_khz
,
3658 power_rule
->max_eirp
,
3663 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region
)
3665 switch (dfs_region
) {
3666 case NL80211_DFS_UNSET
:
3667 case NL80211_DFS_FCC
:
3668 case NL80211_DFS_ETSI
:
3669 case NL80211_DFS_JP
:
3672 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region
);
3677 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
3679 struct regulatory_request
*lr
= get_last_request();
3681 if (is_intersected_alpha2(rd
->alpha2
)) {
3682 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
3683 struct cfg80211_registered_device
*rdev
;
3684 rdev
= cfg80211_rdev_by_wiphy_idx(lr
->wiphy_idx
);
3686 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3687 rdev
->country_ie_alpha2
[0],
3688 rdev
->country_ie_alpha2
[1]);
3690 pr_debug("Current regulatory domain intersected:\n");
3692 pr_debug("Current regulatory domain intersected:\n");
3693 } else if (is_world_regdom(rd
->alpha2
)) {
3694 pr_debug("World regulatory domain updated:\n");
3696 if (is_unknown_alpha2(rd
->alpha2
))
3697 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3699 if (reg_request_cell_base(lr
))
3700 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3701 rd
->alpha2
[0], rd
->alpha2
[1]);
3703 pr_debug("Regulatory domain changed to country: %c%c\n",
3704 rd
->alpha2
[0], rd
->alpha2
[1]);
3708 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd
->dfs_region
));
3712 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
3714 pr_debug("Regulatory domain: %c%c\n", rd
->alpha2
[0], rd
->alpha2
[1]);
3718 static int reg_set_rd_core(const struct ieee80211_regdomain
*rd
)
3720 if (!is_world_regdom(rd
->alpha2
))
3722 update_world_regdomain(rd
);
3726 static int reg_set_rd_user(const struct ieee80211_regdomain
*rd
,
3727 struct regulatory_request
*user_request
)
3729 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
3731 if (!regdom_changes(rd
->alpha2
))
3734 if (!is_valid_rd(rd
)) {
3735 pr_err("Invalid regulatory domain detected: %c%c\n",
3736 rd
->alpha2
[0], rd
->alpha2
[1]);
3737 print_regdomain_info(rd
);
3741 if (!user_request
->intersect
) {
3742 reset_regdomains(false, rd
);
3746 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
3747 if (!intersected_rd
)
3752 reset_regdomains(false, intersected_rd
);
3757 static int reg_set_rd_driver(const struct ieee80211_regdomain
*rd
,
3758 struct regulatory_request
*driver_request
)
3760 const struct ieee80211_regdomain
*regd
;
3761 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
3762 const struct ieee80211_regdomain
*tmp
;
3763 struct wiphy
*request_wiphy
;
3765 if (is_world_regdom(rd
->alpha2
))
3768 if (!regdom_changes(rd
->alpha2
))
3771 if (!is_valid_rd(rd
)) {
3772 pr_err("Invalid regulatory domain detected: %c%c\n",
3773 rd
->alpha2
[0], rd
->alpha2
[1]);
3774 print_regdomain_info(rd
);
3778 request_wiphy
= wiphy_idx_to_wiphy(driver_request
->wiphy_idx
);
3782 if (!driver_request
->intersect
) {
3783 if (request_wiphy
->regd
)
3786 regd
= reg_copy_regd(rd
);
3788 return PTR_ERR(regd
);
3790 rcu_assign_pointer(request_wiphy
->regd
, regd
);
3791 reset_regdomains(false, rd
);
3795 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
3796 if (!intersected_rd
)
3800 * We can trash what CRDA provided now.
3801 * However if a driver requested this specific regulatory
3802 * domain we keep it for its private use
3804 tmp
= get_wiphy_regdom(request_wiphy
);
3805 rcu_assign_pointer(request_wiphy
->regd
, rd
);
3806 rcu_free_regdom(tmp
);
3810 reset_regdomains(false, intersected_rd
);
3815 static int reg_set_rd_country_ie(const struct ieee80211_regdomain
*rd
,
3816 struct regulatory_request
*country_ie_request
)
3818 struct wiphy
*request_wiphy
;
3820 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
3821 !is_unknown_alpha2(rd
->alpha2
))
3825 * Lets only bother proceeding on the same alpha2 if the current
3826 * rd is non static (it means CRDA was present and was used last)
3827 * and the pending request came in from a country IE
3830 if (!is_valid_rd(rd
)) {
3831 pr_err("Invalid regulatory domain detected: %c%c\n",
3832 rd
->alpha2
[0], rd
->alpha2
[1]);
3833 print_regdomain_info(rd
);
3837 request_wiphy
= wiphy_idx_to_wiphy(country_ie_request
->wiphy_idx
);
3841 if (country_ie_request
->intersect
)
3844 reset_regdomains(false, rd
);
3849 * Use this call to set the current regulatory domain. Conflicts with
3850 * multiple drivers can be ironed out later. Caller must've already
3851 * kmalloc'd the rd structure.
3853 int set_regdom(const struct ieee80211_regdomain
*rd
,
3854 enum ieee80211_regd_source regd_src
)
3856 struct regulatory_request
*lr
;
3857 bool user_reset
= false;
3860 if (IS_ERR_OR_NULL(rd
))
3863 if (!reg_is_valid_request(rd
->alpha2
)) {
3868 if (regd_src
== REGD_SOURCE_CRDA
)
3869 reset_crda_timeouts();
3871 lr
= get_last_request();
3873 /* Note that this doesn't update the wiphys, this is done below */
3874 switch (lr
->initiator
) {
3875 case NL80211_REGDOM_SET_BY_CORE
:
3876 r
= reg_set_rd_core(rd
);
3878 case NL80211_REGDOM_SET_BY_USER
:
3879 cfg80211_save_user_regdom(rd
);
3880 r
= reg_set_rd_user(rd
, lr
);
3883 case NL80211_REGDOM_SET_BY_DRIVER
:
3884 r
= reg_set_rd_driver(rd
, lr
);
3886 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
3887 r
= reg_set_rd_country_ie(rd
, lr
);
3890 WARN(1, "invalid initiator %d\n", lr
->initiator
);
3898 reg_set_request_processed();
3901 /* Back to world regulatory in case of errors */
3902 restore_regulatory_settings(user_reset
, false);
3909 /* This would make this whole thing pointless */
3910 if (WARN_ON(!lr
->intersect
&& rd
!= get_cfg80211_regdom()))
3913 /* update all wiphys now with the new established regulatory domain */
3914 update_all_wiphy_regulatory(lr
->initiator
);
3916 print_regdomain(get_cfg80211_regdom());
3918 nl80211_send_reg_change_event(lr
);
3920 reg_set_request_processed();
3925 static int __regulatory_set_wiphy_regd(struct wiphy
*wiphy
,
3926 struct ieee80211_regdomain
*rd
)
3928 const struct ieee80211_regdomain
*regd
;
3929 const struct ieee80211_regdomain
*prev_regd
;
3930 struct cfg80211_registered_device
*rdev
;
3932 if (WARN_ON(!wiphy
|| !rd
))
3935 if (WARN(!(wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
),
3936 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3939 if (WARN(!is_valid_rd(rd
), "Invalid regulatory domain detected\n")) {
3940 print_regdomain_info(rd
);
3944 regd
= reg_copy_regd(rd
);
3946 return PTR_ERR(regd
);
3948 rdev
= wiphy_to_rdev(wiphy
);
3950 spin_lock(®_requests_lock
);
3951 prev_regd
= rdev
->requested_regd
;
3952 rdev
->requested_regd
= regd
;
3953 spin_unlock(®_requests_lock
);
3959 int regulatory_set_wiphy_regd(struct wiphy
*wiphy
,
3960 struct ieee80211_regdomain
*rd
)
3962 int ret
= __regulatory_set_wiphy_regd(wiphy
, rd
);
3967 schedule_work(®_work
);
3970 EXPORT_SYMBOL(regulatory_set_wiphy_regd
);
3972 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy
*wiphy
,
3973 struct ieee80211_regdomain
*rd
)
3979 ret
= __regulatory_set_wiphy_regd(wiphy
, rd
);
3983 /* process the request immediately */
3984 reg_process_self_managed_hints();
3987 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl
);
3989 void wiphy_regulatory_register(struct wiphy
*wiphy
)
3991 struct regulatory_request
*lr
= get_last_request();
3993 /* self-managed devices ignore beacon hints and country IE */
3994 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
) {
3995 wiphy
->regulatory_flags
|= REGULATORY_DISABLE_BEACON_HINTS
|
3996 REGULATORY_COUNTRY_IE_IGNORE
;
3999 * The last request may have been received before this
4000 * registration call. Call the driver notifier if
4001 * initiator is USER.
4003 if (lr
->initiator
== NL80211_REGDOM_SET_BY_USER
)
4004 reg_call_notifier(wiphy
, lr
);
4007 if (!reg_dev_ignore_cell_hint(wiphy
))
4008 reg_num_devs_support_basehint
++;
4010 wiphy_update_regulatory(wiphy
, lr
->initiator
);
4011 wiphy_all_share_dfs_chan_state(wiphy
);
4014 void wiphy_regulatory_deregister(struct wiphy
*wiphy
)
4016 struct wiphy
*request_wiphy
= NULL
;
4017 struct regulatory_request
*lr
;
4019 lr
= get_last_request();
4021 if (!reg_dev_ignore_cell_hint(wiphy
))
4022 reg_num_devs_support_basehint
--;
4024 rcu_free_regdom(get_wiphy_regdom(wiphy
));
4025 RCU_INIT_POINTER(wiphy
->regd
, NULL
);
4028 request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
4030 if (!request_wiphy
|| request_wiphy
!= wiphy
)
4033 lr
->wiphy_idx
= WIPHY_IDX_INVALID
;
4034 lr
->country_ie_env
= ENVIRON_ANY
;
4038 * See FCC notices for UNII band definitions
4039 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4040 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4042 int cfg80211_get_unii(int freq
)
4045 if (freq
>= 5150 && freq
<= 5250)
4049 if (freq
> 5250 && freq
<= 5350)
4053 if (freq
> 5350 && freq
<= 5470)
4057 if (freq
> 5470 && freq
<= 5725)
4061 if (freq
> 5725 && freq
<= 5825)
4065 if (freq
> 5925 && freq
<= 6425)
4069 if (freq
> 6425 && freq
<= 6525)
4073 if (freq
> 6525 && freq
<= 6875)
4077 if (freq
> 6875 && freq
<= 7125)
4083 bool regulatory_indoor_allowed(void)
4085 return reg_is_indoor
;
4088 bool regulatory_pre_cac_allowed(struct wiphy
*wiphy
)
4090 const struct ieee80211_regdomain
*regd
= NULL
;
4091 const struct ieee80211_regdomain
*wiphy_regd
= NULL
;
4092 bool pre_cac_allowed
= false;
4096 regd
= rcu_dereference(cfg80211_regdomain
);
4097 wiphy_regd
= rcu_dereference(wiphy
->regd
);
4099 if (regd
->dfs_region
== NL80211_DFS_ETSI
)
4100 pre_cac_allowed
= true;
4104 return pre_cac_allowed
;
4107 if (regd
->dfs_region
== wiphy_regd
->dfs_region
&&
4108 wiphy_regd
->dfs_region
== NL80211_DFS_ETSI
)
4109 pre_cac_allowed
= true;
4113 return pre_cac_allowed
;
4115 EXPORT_SYMBOL(regulatory_pre_cac_allowed
);
4117 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device
*rdev
)
4119 struct wireless_dev
*wdev
;
4120 /* If we finished CAC or received radar, we should end any
4121 * CAC running on the same channels.
4122 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4123 * either all channels are available - those the CAC_FINISHED
4124 * event has effected another wdev state, or there is a channel
4125 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4126 * event has effected another wdev state.
4127 * In both cases we should end the CAC on the wdev.
4129 list_for_each_entry(wdev
, &rdev
->wiphy
.wdev_list
, list
) {
4130 if (wdev
->cac_started
&&
4131 !cfg80211_chandef_dfs_usable(&rdev
->wiphy
, &wdev
->chandef
))
4132 rdev_end_cac(rdev
, wdev
->netdev
);
4136 void regulatory_propagate_dfs_state(struct wiphy
*wiphy
,
4137 struct cfg80211_chan_def
*chandef
,
4138 enum nl80211_dfs_state dfs_state
,
4139 enum nl80211_radar_event event
)
4141 struct cfg80211_registered_device
*rdev
;
4145 if (WARN_ON(!cfg80211_chandef_valid(chandef
)))
4148 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
4149 if (wiphy
== &rdev
->wiphy
)
4152 if (!reg_dfs_domain_same(wiphy
, &rdev
->wiphy
))
4155 if (!ieee80211_get_channel(&rdev
->wiphy
,
4156 chandef
->chan
->center_freq
))
4159 cfg80211_set_dfs_state(&rdev
->wiphy
, chandef
, dfs_state
);
4161 if (event
== NL80211_RADAR_DETECTED
||
4162 event
== NL80211_RADAR_CAC_FINISHED
) {
4163 cfg80211_sched_dfs_chan_update(rdev
);
4164 cfg80211_check_and_end_cac(rdev
);
4167 nl80211_radar_notify(rdev
, chandef
, event
, NULL
, GFP_KERNEL
);
4171 static int __init
regulatory_init_db(void)
4176 * It's possible that - due to other bugs/issues - cfg80211
4177 * never called regulatory_init() below, or that it failed;
4178 * in that case, don't try to do any further work here as
4179 * it's doomed to lead to crashes.
4181 if (IS_ERR_OR_NULL(reg_pdev
))
4184 err
= load_builtin_regdb_keys();
4188 /* We always try to get an update for the static regdomain */
4189 err
= regulatory_hint_core(cfg80211_world_regdom
->alpha2
);
4191 if (err
== -ENOMEM
) {
4192 platform_device_unregister(reg_pdev
);
4196 * N.B. kobject_uevent_env() can fail mainly for when we're out
4197 * memory which is handled and propagated appropriately above
4198 * but it can also fail during a netlink_broadcast() or during
4199 * early boot for call_usermodehelper(). For now treat these
4200 * errors as non-fatal.
4202 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4206 * Finally, if the user set the module parameter treat it
4209 if (!is_world_regdom(ieee80211_regdom
))
4210 regulatory_hint_user(ieee80211_regdom
,
4211 NL80211_USER_REG_HINT_USER
);
4216 late_initcall(regulatory_init_db
);
4219 int __init
regulatory_init(void)
4221 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
4222 if (IS_ERR(reg_pdev
))
4223 return PTR_ERR(reg_pdev
);
4225 spin_lock_init(®_requests_lock
);
4226 spin_lock_init(®_pending_beacons_lock
);
4227 spin_lock_init(®_indoor_lock
);
4229 rcu_assign_pointer(cfg80211_regdomain
, cfg80211_world_regdom
);
4231 user_alpha2
[0] = '9';
4232 user_alpha2
[1] = '7';
4235 return regulatory_init_db();
4241 void regulatory_exit(void)
4243 struct regulatory_request
*reg_request
, *tmp
;
4244 struct reg_beacon
*reg_beacon
, *btmp
;
4246 cancel_work_sync(®_work
);
4247 cancel_crda_timeout_sync();
4248 cancel_delayed_work_sync(®_check_chans
);
4250 /* Lock to suppress warnings */
4252 reset_regdomains(true, NULL
);
4255 dev_set_uevent_suppress(®_pdev
->dev
, true);
4257 platform_device_unregister(reg_pdev
);
4259 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
4260 list_del(®_beacon
->list
);
4264 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
4265 list_del(®_beacon
->list
);
4269 list_for_each_entry_safe(reg_request
, tmp
, ®_requests_list
, list
) {
4270 list_del(®_request
->list
);
4274 if (!IS_ERR_OR_NULL(regdb
))
4276 if (!IS_ERR_OR_NULL(cfg80211_user_regdom
))
4277 kfree(cfg80211_user_regdom
);
4279 free_regdb_keyring();