Merge tag 'iommu-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux/fpc-iii.git] / net / wireless / scan.c
blob1b7fec3b53cdd8509b321c4d79b3e44fbd18b9bf
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cfg80211 scan result handling
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2020 Intel Corporation
9 */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
28 /**
29 * DOC: BSS tree/list structure
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35 * for other BSSes.
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
56 * it.
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
79 /**
80 * struct cfg80211_colocated_ap - colocated AP information
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
100 struct cfg80211_colocated_ap {
101 struct list_head list;
102 u8 bssid[ETH_ALEN];
103 u8 ssid[IEEE80211_MAX_SSID_LEN];
104 size_t ssid_len;
105 u32 short_ssid;
106 u32 center_freq;
107 u8 unsolicited_probe:1,
108 oct_recommended:1,
109 same_ssid:1,
110 multi_bss:1,
111 transmitted_bssid:1,
112 colocated_ess:1,
113 short_ssid_valid:1;
116 static void bss_free(struct cfg80211_internal_bss *bss)
118 struct cfg80211_bss_ies *ies;
120 if (WARN_ON(atomic_read(&bss->hold)))
121 return;
123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 if (ies && !bss->pub.hidden_beacon_bss)
125 kfree_rcu(ies, rcu_head);
126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 if (ies)
128 kfree_rcu(ies, rcu_head);
131 * This happens when the module is removed, it doesn't
132 * really matter any more save for completeness
134 if (!list_empty(&bss->hidden_list))
135 list_del(&bss->hidden_list);
137 kfree(bss);
140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 struct cfg80211_internal_bss *bss)
143 lockdep_assert_held(&rdev->bss_lock);
145 bss->refcount++;
146 if (bss->pub.hidden_beacon_bss) {
147 bss = container_of(bss->pub.hidden_beacon_bss,
148 struct cfg80211_internal_bss,
149 pub);
150 bss->refcount++;
152 if (bss->pub.transmitted_bss) {
153 bss = container_of(bss->pub.transmitted_bss,
154 struct cfg80211_internal_bss,
155 pub);
156 bss->refcount++;
160 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
161 struct cfg80211_internal_bss *bss)
163 lockdep_assert_held(&rdev->bss_lock);
165 if (bss->pub.hidden_beacon_bss) {
166 struct cfg80211_internal_bss *hbss;
167 hbss = container_of(bss->pub.hidden_beacon_bss,
168 struct cfg80211_internal_bss,
169 pub);
170 hbss->refcount--;
171 if (hbss->refcount == 0)
172 bss_free(hbss);
175 if (bss->pub.transmitted_bss) {
176 struct cfg80211_internal_bss *tbss;
178 tbss = container_of(bss->pub.transmitted_bss,
179 struct cfg80211_internal_bss,
180 pub);
181 tbss->refcount--;
182 if (tbss->refcount == 0)
183 bss_free(tbss);
186 bss->refcount--;
187 if (bss->refcount == 0)
188 bss_free(bss);
191 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
192 struct cfg80211_internal_bss *bss)
194 lockdep_assert_held(&rdev->bss_lock);
196 if (!list_empty(&bss->hidden_list)) {
198 * don't remove the beacon entry if it has
199 * probe responses associated with it
201 if (!bss->pub.hidden_beacon_bss)
202 return false;
204 * if it's a probe response entry break its
205 * link to the other entries in the group
207 list_del_init(&bss->hidden_list);
210 list_del_init(&bss->list);
211 list_del_init(&bss->pub.nontrans_list);
212 rb_erase(&bss->rbn, &rdev->bss_tree);
213 rdev->bss_entries--;
214 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
215 "rdev bss entries[%d]/list[empty:%d] corruption\n",
216 rdev->bss_entries, list_empty(&rdev->bss_list));
217 bss_ref_put(rdev, bss);
218 return true;
221 bool cfg80211_is_element_inherited(const struct element *elem,
222 const struct element *non_inherit_elem)
224 u8 id_len, ext_id_len, i, loop_len, id;
225 const u8 *list;
227 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
228 return false;
230 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
231 return true;
234 * non inheritance element format is:
235 * ext ID (56) | IDs list len | list | extension IDs list len | list
236 * Both lists are optional. Both lengths are mandatory.
237 * This means valid length is:
238 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
240 id_len = non_inherit_elem->data[1];
241 if (non_inherit_elem->datalen < 3 + id_len)
242 return true;
244 ext_id_len = non_inherit_elem->data[2 + id_len];
245 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
246 return true;
248 if (elem->id == WLAN_EID_EXTENSION) {
249 if (!ext_id_len)
250 return true;
251 loop_len = ext_id_len;
252 list = &non_inherit_elem->data[3 + id_len];
253 id = elem->data[0];
254 } else {
255 if (!id_len)
256 return true;
257 loop_len = id_len;
258 list = &non_inherit_elem->data[2];
259 id = elem->id;
262 for (i = 0; i < loop_len; i++) {
263 if (list[i] == id)
264 return false;
267 return true;
269 EXPORT_SYMBOL(cfg80211_is_element_inherited);
271 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
272 const u8 *subelement, size_t subie_len,
273 u8 *new_ie, gfp_t gfp)
275 u8 *pos, *tmp;
276 const u8 *tmp_old, *tmp_new;
277 const struct element *non_inherit_elem;
278 u8 *sub_copy;
280 /* copy subelement as we need to change its content to
281 * mark an ie after it is processed.
283 sub_copy = kmemdup(subelement, subie_len, gfp);
284 if (!sub_copy)
285 return 0;
287 pos = &new_ie[0];
289 /* set new ssid */
290 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
291 if (tmp_new) {
292 memcpy(pos, tmp_new, tmp_new[1] + 2);
293 pos += (tmp_new[1] + 2);
296 /* get non inheritance list if exists */
297 non_inherit_elem =
298 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
299 sub_copy, subie_len);
301 /* go through IEs in ie (skip SSID) and subelement,
302 * merge them into new_ie
304 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
305 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
307 while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
308 if (tmp_old[0] == 0) {
309 tmp_old++;
310 continue;
313 if (tmp_old[0] == WLAN_EID_EXTENSION)
314 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
315 subie_len);
316 else
317 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
318 subie_len);
320 if (!tmp) {
321 const struct element *old_elem = (void *)tmp_old;
323 /* ie in old ie but not in subelement */
324 if (cfg80211_is_element_inherited(old_elem,
325 non_inherit_elem)) {
326 memcpy(pos, tmp_old, tmp_old[1] + 2);
327 pos += tmp_old[1] + 2;
329 } else {
330 /* ie in transmitting ie also in subelement,
331 * copy from subelement and flag the ie in subelement
332 * as copied (by setting eid field to WLAN_EID_SSID,
333 * which is skipped anyway).
334 * For vendor ie, compare OUI + type + subType to
335 * determine if they are the same ie.
337 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
338 if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
339 /* same vendor ie, copy from
340 * subelement
342 memcpy(pos, tmp, tmp[1] + 2);
343 pos += tmp[1] + 2;
344 tmp[0] = WLAN_EID_SSID;
345 } else {
346 memcpy(pos, tmp_old, tmp_old[1] + 2);
347 pos += tmp_old[1] + 2;
349 } else {
350 /* copy ie from subelement into new ie */
351 memcpy(pos, tmp, tmp[1] + 2);
352 pos += tmp[1] + 2;
353 tmp[0] = WLAN_EID_SSID;
357 if (tmp_old + tmp_old[1] + 2 - ie == ielen)
358 break;
360 tmp_old += tmp_old[1] + 2;
363 /* go through subelement again to check if there is any ie not
364 * copied to new ie, skip ssid, capability, bssid-index ie
366 tmp_new = sub_copy;
367 while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
368 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
369 tmp_new[0] == WLAN_EID_SSID)) {
370 memcpy(pos, tmp_new, tmp_new[1] + 2);
371 pos += tmp_new[1] + 2;
373 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
374 break;
375 tmp_new += tmp_new[1] + 2;
378 kfree(sub_copy);
379 return pos - new_ie;
382 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
383 const u8 *ssid, size_t ssid_len)
385 const struct cfg80211_bss_ies *ies;
386 const u8 *ssidie;
388 if (bssid && !ether_addr_equal(a->bssid, bssid))
389 return false;
391 if (!ssid)
392 return true;
394 ies = rcu_access_pointer(a->ies);
395 if (!ies)
396 return false;
397 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
398 if (!ssidie)
399 return false;
400 if (ssidie[1] != ssid_len)
401 return false;
402 return memcmp(ssidie + 2, ssid, ssid_len) == 0;
405 static int
406 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
407 struct cfg80211_bss *nontrans_bss)
409 const u8 *ssid;
410 size_t ssid_len;
411 struct cfg80211_bss *bss = NULL;
413 rcu_read_lock();
414 ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
415 if (!ssid) {
416 rcu_read_unlock();
417 return -EINVAL;
419 ssid_len = ssid[1];
420 ssid = ssid + 2;
421 rcu_read_unlock();
423 /* check if nontrans_bss is in the list */
424 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
425 if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len))
426 return 0;
429 /* add to the list */
430 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
431 return 0;
434 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
435 unsigned long expire_time)
437 struct cfg80211_internal_bss *bss, *tmp;
438 bool expired = false;
440 lockdep_assert_held(&rdev->bss_lock);
442 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
443 if (atomic_read(&bss->hold))
444 continue;
445 if (!time_after(expire_time, bss->ts))
446 continue;
448 if (__cfg80211_unlink_bss(rdev, bss))
449 expired = true;
452 if (expired)
453 rdev->bss_generation++;
456 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
458 struct cfg80211_internal_bss *bss, *oldest = NULL;
459 bool ret;
461 lockdep_assert_held(&rdev->bss_lock);
463 list_for_each_entry(bss, &rdev->bss_list, list) {
464 if (atomic_read(&bss->hold))
465 continue;
467 if (!list_empty(&bss->hidden_list) &&
468 !bss->pub.hidden_beacon_bss)
469 continue;
471 if (oldest && time_before(oldest->ts, bss->ts))
472 continue;
473 oldest = bss;
476 if (WARN_ON(!oldest))
477 return false;
480 * The callers make sure to increase rdev->bss_generation if anything
481 * gets removed (and a new entry added), so there's no need to also do
482 * it here.
485 ret = __cfg80211_unlink_bss(rdev, oldest);
486 WARN_ON(!ret);
487 return ret;
490 static u8 cfg80211_parse_bss_param(u8 data,
491 struct cfg80211_colocated_ap *coloc_ap)
493 coloc_ap->oct_recommended =
494 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
495 coloc_ap->same_ssid =
496 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
497 coloc_ap->multi_bss =
498 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
499 coloc_ap->transmitted_bssid =
500 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
501 coloc_ap->unsolicited_probe =
502 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
503 coloc_ap->colocated_ess =
504 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
506 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
509 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
510 const struct element **elem, u32 *s_ssid)
513 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
514 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
515 return -EINVAL;
517 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
518 return 0;
521 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
523 struct cfg80211_colocated_ap *ap, *tmp_ap;
525 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
526 list_del(&ap->list);
527 kfree(ap);
531 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
532 const u8 *pos, u8 length,
533 const struct element *ssid_elem,
534 int s_ssid_tmp)
536 /* skip the TBTT offset */
537 pos++;
539 memcpy(entry->bssid, pos, ETH_ALEN);
540 pos += ETH_ALEN;
542 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
543 memcpy(&entry->short_ssid, pos,
544 sizeof(entry->short_ssid));
545 entry->short_ssid_valid = true;
546 pos += 4;
549 /* skip non colocated APs */
550 if (!cfg80211_parse_bss_param(*pos, entry))
551 return -EINVAL;
552 pos++;
554 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
556 * no information about the short ssid. Consider the entry valid
557 * for now. It would later be dropped in case there are explicit
558 * SSIDs that need to be matched
560 if (!entry->same_ssid)
561 return 0;
564 if (entry->same_ssid) {
565 entry->short_ssid = s_ssid_tmp;
566 entry->short_ssid_valid = true;
569 * This is safe because we validate datalen in
570 * cfg80211_parse_colocated_ap(), before calling this
571 * function.
573 memcpy(&entry->ssid, &ssid_elem->data,
574 ssid_elem->datalen);
575 entry->ssid_len = ssid_elem->datalen;
577 return 0;
580 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
581 struct list_head *list)
583 struct ieee80211_neighbor_ap_info *ap_info;
584 const struct element *elem, *ssid_elem;
585 const u8 *pos, *end;
586 u32 s_ssid_tmp;
587 int n_coloc = 0, ret;
588 LIST_HEAD(ap_list);
590 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
591 ies->len);
592 if (!elem || elem->datalen > IEEE80211_MAX_SSID_LEN)
593 return 0;
595 pos = elem->data;
596 end = pos + elem->datalen;
598 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
599 if (ret)
600 return ret;
602 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
603 while (pos + sizeof(*ap_info) <= end) {
604 enum nl80211_band band;
605 int freq;
606 u8 length, i, count;
608 ap_info = (void *)pos;
609 count = u8_get_bits(ap_info->tbtt_info_hdr,
610 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
611 length = ap_info->tbtt_info_len;
613 pos += sizeof(*ap_info);
615 if (!ieee80211_operating_class_to_band(ap_info->op_class,
616 &band))
617 break;
619 freq = ieee80211_channel_to_frequency(ap_info->channel, band);
621 if (end - pos < count * ap_info->tbtt_info_len)
622 break;
625 * TBTT info must include bss param + BSSID +
626 * (short SSID or same_ssid bit to be set).
627 * ignore other options, and move to the
628 * next AP info
630 if (band != NL80211_BAND_6GHZ ||
631 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
632 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
633 pos += count * ap_info->tbtt_info_len;
634 continue;
637 for (i = 0; i < count; i++) {
638 struct cfg80211_colocated_ap *entry;
640 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
641 GFP_ATOMIC);
643 if (!entry)
644 break;
646 entry->center_freq = freq;
648 if (!cfg80211_parse_ap_info(entry, pos, length,
649 ssid_elem, s_ssid_tmp)) {
650 n_coloc++;
651 list_add_tail(&entry->list, &ap_list);
652 } else {
653 kfree(entry);
656 pos += ap_info->tbtt_info_len;
660 if (pos != end) {
661 cfg80211_free_coloc_ap_list(&ap_list);
662 return 0;
665 list_splice_tail(&ap_list, list);
666 return n_coloc;
669 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
670 struct ieee80211_channel *chan,
671 bool add_to_6ghz)
673 int i;
674 u32 n_channels = request->n_channels;
675 struct cfg80211_scan_6ghz_params *params =
676 &request->scan_6ghz_params[request->n_6ghz_params];
678 for (i = 0; i < n_channels; i++) {
679 if (request->channels[i] == chan) {
680 if (add_to_6ghz)
681 params->channel_idx = i;
682 return;
686 request->channels[n_channels] = chan;
687 if (add_to_6ghz)
688 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
689 n_channels;
691 request->n_channels++;
694 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
695 struct cfg80211_scan_request *request)
697 int i;
698 u32 s_ssid;
700 for (i = 0; i < request->n_ssids; i++) {
701 /* wildcard ssid in the scan request */
702 if (!request->ssids[i].ssid_len)
703 return true;
705 if (ap->ssid_len &&
706 ap->ssid_len == request->ssids[i].ssid_len) {
707 if (!memcmp(request->ssids[i].ssid, ap->ssid,
708 ap->ssid_len))
709 return true;
710 } else if (ap->short_ssid_valid) {
711 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
712 request->ssids[i].ssid_len);
714 if (ap->short_ssid == s_ssid)
715 return true;
719 return false;
722 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
724 u8 i;
725 struct cfg80211_colocated_ap *ap;
726 int n_channels, count = 0, err;
727 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
728 LIST_HEAD(coloc_ap_list);
729 bool need_scan_psc = true;
730 const struct ieee80211_sband_iftype_data *iftd;
732 rdev_req->scan_6ghz = true;
734 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
735 return -EOPNOTSUPP;
737 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
738 rdev_req->wdev->iftype);
739 if (!iftd || !iftd->he_cap.has_he)
740 return -EOPNOTSUPP;
742 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
744 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
745 struct cfg80211_internal_bss *intbss;
747 spin_lock_bh(&rdev->bss_lock);
748 list_for_each_entry(intbss, &rdev->bss_list, list) {
749 struct cfg80211_bss *res = &intbss->pub;
750 const struct cfg80211_bss_ies *ies;
752 ies = rcu_access_pointer(res->ies);
753 count += cfg80211_parse_colocated_ap(ies,
754 &coloc_ap_list);
756 spin_unlock_bh(&rdev->bss_lock);
759 request = kzalloc(struct_size(request, channels, n_channels) +
760 sizeof(*request->scan_6ghz_params) * count,
761 GFP_KERNEL);
762 if (!request) {
763 cfg80211_free_coloc_ap_list(&coloc_ap_list);
764 return -ENOMEM;
767 *request = *rdev_req;
768 request->n_channels = 0;
769 request->scan_6ghz_params =
770 (void *)&request->channels[n_channels];
773 * PSC channels should not be scanned in case of direct scan with 1 SSID
774 * and at least one of the reported co-located APs with same SSID
775 * indicating that all APs in the same ESS are co-located
777 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
778 list_for_each_entry(ap, &coloc_ap_list, list) {
779 if (ap->colocated_ess &&
780 cfg80211_find_ssid_match(ap, request)) {
781 need_scan_psc = false;
782 break;
788 * add to the scan request the channels that need to be scanned
789 * regardless of the collocated APs (PSC channels or all channels
790 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
792 for (i = 0; i < rdev_req->n_channels; i++) {
793 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
794 ((need_scan_psc &&
795 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
796 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
797 cfg80211_scan_req_add_chan(request,
798 rdev_req->channels[i],
799 false);
803 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
804 goto skip;
806 list_for_each_entry(ap, &coloc_ap_list, list) {
807 bool found = false;
808 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
809 &request->scan_6ghz_params[request->n_6ghz_params];
810 struct ieee80211_channel *chan =
811 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
813 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
814 continue;
816 for (i = 0; i < rdev_req->n_channels; i++) {
817 if (rdev_req->channels[i] == chan)
818 found = true;
821 if (!found)
822 continue;
824 if (request->n_ssids > 0 &&
825 !cfg80211_find_ssid_match(ap, request))
826 continue;
828 cfg80211_scan_req_add_chan(request, chan, true);
829 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
830 scan_6ghz_params->short_ssid = ap->short_ssid;
831 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
832 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
835 * If a PSC channel is added to the scan and 'need_scan_psc' is
836 * set to false, then all the APs that the scan logic is
837 * interested with on the channel are collocated and thus there
838 * is no need to perform the initial PSC channel listen.
840 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
841 scan_6ghz_params->psc_no_listen = true;
843 request->n_6ghz_params++;
846 skip:
847 cfg80211_free_coloc_ap_list(&coloc_ap_list);
849 if (request->n_channels) {
850 struct cfg80211_scan_request *old = rdev->int_scan_req;
852 rdev->int_scan_req = request;
855 * If this scan follows a previous scan, save the scan start
856 * info from the first part of the scan
858 if (old)
859 rdev->int_scan_req->info = old->info;
861 err = rdev_scan(rdev, request);
862 if (err) {
863 rdev->int_scan_req = old;
864 kfree(request);
865 } else {
866 kfree(old);
869 return err;
872 kfree(request);
873 return -EINVAL;
876 int cfg80211_scan(struct cfg80211_registered_device *rdev)
878 struct cfg80211_scan_request *request;
879 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
880 u32 n_channels = 0, idx, i;
882 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
883 return rdev_scan(rdev, rdev_req);
885 for (i = 0; i < rdev_req->n_channels; i++) {
886 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
887 n_channels++;
890 if (!n_channels)
891 return cfg80211_scan_6ghz(rdev);
893 request = kzalloc(struct_size(request, channels, n_channels),
894 GFP_KERNEL);
895 if (!request)
896 return -ENOMEM;
898 *request = *rdev_req;
899 request->n_channels = n_channels;
901 for (i = idx = 0; i < rdev_req->n_channels; i++) {
902 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
903 request->channels[idx++] = rdev_req->channels[i];
906 rdev_req->scan_6ghz = false;
907 rdev->int_scan_req = request;
908 return rdev_scan(rdev, request);
911 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
912 bool send_message)
914 struct cfg80211_scan_request *request, *rdev_req;
915 struct wireless_dev *wdev;
916 struct sk_buff *msg;
917 #ifdef CONFIG_CFG80211_WEXT
918 union iwreq_data wrqu;
919 #endif
921 ASSERT_RTNL();
923 if (rdev->scan_msg) {
924 nl80211_send_scan_msg(rdev, rdev->scan_msg);
925 rdev->scan_msg = NULL;
926 return;
929 rdev_req = rdev->scan_req;
930 if (!rdev_req)
931 return;
933 wdev = rdev_req->wdev;
934 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
936 if (wdev_running(wdev) &&
937 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
938 !rdev_req->scan_6ghz && !request->info.aborted &&
939 !cfg80211_scan_6ghz(rdev))
940 return;
943 * This must be before sending the other events!
944 * Otherwise, wpa_supplicant gets completely confused with
945 * wext events.
947 if (wdev->netdev)
948 cfg80211_sme_scan_done(wdev->netdev);
950 if (!request->info.aborted &&
951 request->flags & NL80211_SCAN_FLAG_FLUSH) {
952 /* flush entries from previous scans */
953 spin_lock_bh(&rdev->bss_lock);
954 __cfg80211_bss_expire(rdev, request->scan_start);
955 spin_unlock_bh(&rdev->bss_lock);
958 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
960 #ifdef CONFIG_CFG80211_WEXT
961 if (wdev->netdev && !request->info.aborted) {
962 memset(&wrqu, 0, sizeof(wrqu));
964 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
966 #endif
968 if (wdev->netdev)
969 dev_put(wdev->netdev);
971 kfree(rdev->int_scan_req);
972 rdev->int_scan_req = NULL;
974 kfree(rdev->scan_req);
975 rdev->scan_req = NULL;
977 if (!send_message)
978 rdev->scan_msg = msg;
979 else
980 nl80211_send_scan_msg(rdev, msg);
983 void __cfg80211_scan_done(struct work_struct *wk)
985 struct cfg80211_registered_device *rdev;
987 rdev = container_of(wk, struct cfg80211_registered_device,
988 scan_done_wk);
990 rtnl_lock();
991 ___cfg80211_scan_done(rdev, true);
992 rtnl_unlock();
995 void cfg80211_scan_done(struct cfg80211_scan_request *request,
996 struct cfg80211_scan_info *info)
998 struct cfg80211_scan_info old_info = request->info;
1000 trace_cfg80211_scan_done(request, info);
1001 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1002 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1004 request->info = *info;
1007 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1008 * be of the first part. In such a case old_info.scan_start_tsf should
1009 * be non zero.
1011 if (request->scan_6ghz && old_info.scan_start_tsf) {
1012 request->info.scan_start_tsf = old_info.scan_start_tsf;
1013 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1014 sizeof(request->info.tsf_bssid));
1017 request->notified = true;
1018 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1020 EXPORT_SYMBOL(cfg80211_scan_done);
1022 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1023 struct cfg80211_sched_scan_request *req)
1025 ASSERT_RTNL();
1027 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1030 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1031 struct cfg80211_sched_scan_request *req)
1033 ASSERT_RTNL();
1035 list_del_rcu(&req->list);
1036 kfree_rcu(req, rcu_head);
1039 static struct cfg80211_sched_scan_request *
1040 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1042 struct cfg80211_sched_scan_request *pos;
1044 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1045 lockdep_rtnl_is_held()) {
1046 if (pos->reqid == reqid)
1047 return pos;
1049 return NULL;
1053 * Determines if a scheduled scan request can be handled. When a legacy
1054 * scheduled scan is running no other scheduled scan is allowed regardless
1055 * whether the request is for legacy or multi-support scan. When a multi-support
1056 * scheduled scan is running a request for legacy scan is not allowed. In this
1057 * case a request for multi-support scan can be handled if resources are
1058 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1060 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1061 bool want_multi)
1063 struct cfg80211_sched_scan_request *pos;
1064 int i = 0;
1066 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1067 /* request id zero means legacy in progress */
1068 if (!i && !pos->reqid)
1069 return -EINPROGRESS;
1070 i++;
1073 if (i) {
1074 /* no legacy allowed when multi request(s) are active */
1075 if (!want_multi)
1076 return -EINPROGRESS;
1078 /* resource limit reached */
1079 if (i == rdev->wiphy.max_sched_scan_reqs)
1080 return -ENOSPC;
1082 return 0;
1085 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1087 struct cfg80211_registered_device *rdev;
1088 struct cfg80211_sched_scan_request *req, *tmp;
1090 rdev = container_of(work, struct cfg80211_registered_device,
1091 sched_scan_res_wk);
1093 rtnl_lock();
1094 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1095 if (req->report_results) {
1096 req->report_results = false;
1097 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1098 /* flush entries from previous scans */
1099 spin_lock_bh(&rdev->bss_lock);
1100 __cfg80211_bss_expire(rdev, req->scan_start);
1101 spin_unlock_bh(&rdev->bss_lock);
1102 req->scan_start = jiffies;
1104 nl80211_send_sched_scan(req,
1105 NL80211_CMD_SCHED_SCAN_RESULTS);
1108 rtnl_unlock();
1111 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1113 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1114 struct cfg80211_sched_scan_request *request;
1116 trace_cfg80211_sched_scan_results(wiphy, reqid);
1117 /* ignore if we're not scanning */
1119 rcu_read_lock();
1120 request = cfg80211_find_sched_scan_req(rdev, reqid);
1121 if (request) {
1122 request->report_results = true;
1123 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1125 rcu_read_unlock();
1127 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1129 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid)
1131 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1133 ASSERT_RTNL();
1135 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1137 __cfg80211_stop_sched_scan(rdev, reqid, true);
1139 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
1141 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1143 rtnl_lock();
1144 cfg80211_sched_scan_stopped_rtnl(wiphy, reqid);
1145 rtnl_unlock();
1147 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1149 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1150 struct cfg80211_sched_scan_request *req,
1151 bool driver_initiated)
1153 ASSERT_RTNL();
1155 if (!driver_initiated) {
1156 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1157 if (err)
1158 return err;
1161 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1163 cfg80211_del_sched_scan_req(rdev, req);
1165 return 0;
1168 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1169 u64 reqid, bool driver_initiated)
1171 struct cfg80211_sched_scan_request *sched_scan_req;
1173 ASSERT_RTNL();
1175 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1176 if (!sched_scan_req)
1177 return -ENOENT;
1179 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1180 driver_initiated);
1183 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1184 unsigned long age_secs)
1186 struct cfg80211_internal_bss *bss;
1187 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1189 spin_lock_bh(&rdev->bss_lock);
1190 list_for_each_entry(bss, &rdev->bss_list, list)
1191 bss->ts -= age_jiffies;
1192 spin_unlock_bh(&rdev->bss_lock);
1195 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1197 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1200 void cfg80211_bss_flush(struct wiphy *wiphy)
1202 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1204 spin_lock_bh(&rdev->bss_lock);
1205 __cfg80211_bss_expire(rdev, jiffies);
1206 spin_unlock_bh(&rdev->bss_lock);
1208 EXPORT_SYMBOL(cfg80211_bss_flush);
1210 const struct element *
1211 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1212 const u8 *match, unsigned int match_len,
1213 unsigned int match_offset)
1215 const struct element *elem;
1217 for_each_element_id(elem, eid, ies, len) {
1218 if (elem->datalen >= match_offset + match_len &&
1219 !memcmp(elem->data + match_offset, match, match_len))
1220 return elem;
1223 return NULL;
1225 EXPORT_SYMBOL(cfg80211_find_elem_match);
1227 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1228 const u8 *ies,
1229 unsigned int len)
1231 const struct element *elem;
1232 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1233 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1235 if (WARN_ON(oui_type > 0xff))
1236 return NULL;
1238 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1239 match, match_len, 0);
1241 if (!elem || elem->datalen < 4)
1242 return NULL;
1244 return elem;
1246 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1249 * enum bss_compare_mode - BSS compare mode
1250 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1251 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1252 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1254 enum bss_compare_mode {
1255 BSS_CMP_REGULAR,
1256 BSS_CMP_HIDE_ZLEN,
1257 BSS_CMP_HIDE_NUL,
1260 static int cmp_bss(struct cfg80211_bss *a,
1261 struct cfg80211_bss *b,
1262 enum bss_compare_mode mode)
1264 const struct cfg80211_bss_ies *a_ies, *b_ies;
1265 const u8 *ie1 = NULL;
1266 const u8 *ie2 = NULL;
1267 int i, r;
1269 if (a->channel != b->channel)
1270 return b->channel->center_freq - a->channel->center_freq;
1272 a_ies = rcu_access_pointer(a->ies);
1273 if (!a_ies)
1274 return -1;
1275 b_ies = rcu_access_pointer(b->ies);
1276 if (!b_ies)
1277 return 1;
1279 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1280 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1281 a_ies->data, a_ies->len);
1282 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1283 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1284 b_ies->data, b_ies->len);
1285 if (ie1 && ie2) {
1286 int mesh_id_cmp;
1288 if (ie1[1] == ie2[1])
1289 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1290 else
1291 mesh_id_cmp = ie2[1] - ie1[1];
1293 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1294 a_ies->data, a_ies->len);
1295 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1296 b_ies->data, b_ies->len);
1297 if (ie1 && ie2) {
1298 if (mesh_id_cmp)
1299 return mesh_id_cmp;
1300 if (ie1[1] != ie2[1])
1301 return ie2[1] - ie1[1];
1302 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1306 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1307 if (r)
1308 return r;
1310 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1311 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1313 if (!ie1 && !ie2)
1314 return 0;
1317 * Note that with "hide_ssid", the function returns a match if
1318 * the already-present BSS ("b") is a hidden SSID beacon for
1319 * the new BSS ("a").
1322 /* sort missing IE before (left of) present IE */
1323 if (!ie1)
1324 return -1;
1325 if (!ie2)
1326 return 1;
1328 switch (mode) {
1329 case BSS_CMP_HIDE_ZLEN:
1331 * In ZLEN mode we assume the BSS entry we're
1332 * looking for has a zero-length SSID. So if
1333 * the one we're looking at right now has that,
1334 * return 0. Otherwise, return the difference
1335 * in length, but since we're looking for the
1336 * 0-length it's really equivalent to returning
1337 * the length of the one we're looking at.
1339 * No content comparison is needed as we assume
1340 * the content length is zero.
1342 return ie2[1];
1343 case BSS_CMP_REGULAR:
1344 default:
1345 /* sort by length first, then by contents */
1346 if (ie1[1] != ie2[1])
1347 return ie2[1] - ie1[1];
1348 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1349 case BSS_CMP_HIDE_NUL:
1350 if (ie1[1] != ie2[1])
1351 return ie2[1] - ie1[1];
1352 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1353 for (i = 0; i < ie2[1]; i++)
1354 if (ie2[i + 2])
1355 return -1;
1356 return 0;
1360 static bool cfg80211_bss_type_match(u16 capability,
1361 enum nl80211_band band,
1362 enum ieee80211_bss_type bss_type)
1364 bool ret = true;
1365 u16 mask, val;
1367 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1368 return ret;
1370 if (band == NL80211_BAND_60GHZ) {
1371 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1372 switch (bss_type) {
1373 case IEEE80211_BSS_TYPE_ESS:
1374 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1375 break;
1376 case IEEE80211_BSS_TYPE_PBSS:
1377 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1378 break;
1379 case IEEE80211_BSS_TYPE_IBSS:
1380 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1381 break;
1382 default:
1383 return false;
1385 } else {
1386 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1387 switch (bss_type) {
1388 case IEEE80211_BSS_TYPE_ESS:
1389 val = WLAN_CAPABILITY_ESS;
1390 break;
1391 case IEEE80211_BSS_TYPE_IBSS:
1392 val = WLAN_CAPABILITY_IBSS;
1393 break;
1394 case IEEE80211_BSS_TYPE_MBSS:
1395 val = 0;
1396 break;
1397 default:
1398 return false;
1402 ret = ((capability & mask) == val);
1403 return ret;
1406 /* Returned bss is reference counted and must be cleaned up appropriately. */
1407 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1408 struct ieee80211_channel *channel,
1409 const u8 *bssid,
1410 const u8 *ssid, size_t ssid_len,
1411 enum ieee80211_bss_type bss_type,
1412 enum ieee80211_privacy privacy)
1414 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1415 struct cfg80211_internal_bss *bss, *res = NULL;
1416 unsigned long now = jiffies;
1417 int bss_privacy;
1419 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1420 privacy);
1422 spin_lock_bh(&rdev->bss_lock);
1424 list_for_each_entry(bss, &rdev->bss_list, list) {
1425 if (!cfg80211_bss_type_match(bss->pub.capability,
1426 bss->pub.channel->band, bss_type))
1427 continue;
1429 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1430 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1431 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1432 continue;
1433 if (channel && bss->pub.channel != channel)
1434 continue;
1435 if (!is_valid_ether_addr(bss->pub.bssid))
1436 continue;
1437 /* Don't get expired BSS structs */
1438 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1439 !atomic_read(&bss->hold))
1440 continue;
1441 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1442 res = bss;
1443 bss_ref_get(rdev, res);
1444 break;
1448 spin_unlock_bh(&rdev->bss_lock);
1449 if (!res)
1450 return NULL;
1451 trace_cfg80211_return_bss(&res->pub);
1452 return &res->pub;
1454 EXPORT_SYMBOL(cfg80211_get_bss);
1456 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1457 struct cfg80211_internal_bss *bss)
1459 struct rb_node **p = &rdev->bss_tree.rb_node;
1460 struct rb_node *parent = NULL;
1461 struct cfg80211_internal_bss *tbss;
1462 int cmp;
1464 while (*p) {
1465 parent = *p;
1466 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1468 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1470 if (WARN_ON(!cmp)) {
1471 /* will sort of leak this BSS */
1472 return;
1475 if (cmp < 0)
1476 p = &(*p)->rb_left;
1477 else
1478 p = &(*p)->rb_right;
1481 rb_link_node(&bss->rbn, parent, p);
1482 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1485 static struct cfg80211_internal_bss *
1486 rb_find_bss(struct cfg80211_registered_device *rdev,
1487 struct cfg80211_internal_bss *res,
1488 enum bss_compare_mode mode)
1490 struct rb_node *n = rdev->bss_tree.rb_node;
1491 struct cfg80211_internal_bss *bss;
1492 int r;
1494 while (n) {
1495 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1496 r = cmp_bss(&res->pub, &bss->pub, mode);
1498 if (r == 0)
1499 return bss;
1500 else if (r < 0)
1501 n = n->rb_left;
1502 else
1503 n = n->rb_right;
1506 return NULL;
1509 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1510 struct cfg80211_internal_bss *new)
1512 const struct cfg80211_bss_ies *ies;
1513 struct cfg80211_internal_bss *bss;
1514 const u8 *ie;
1515 int i, ssidlen;
1516 u8 fold = 0;
1517 u32 n_entries = 0;
1519 ies = rcu_access_pointer(new->pub.beacon_ies);
1520 if (WARN_ON(!ies))
1521 return false;
1523 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1524 if (!ie) {
1525 /* nothing to do */
1526 return true;
1529 ssidlen = ie[1];
1530 for (i = 0; i < ssidlen; i++)
1531 fold |= ie[2 + i];
1533 if (fold) {
1534 /* not a hidden SSID */
1535 return true;
1538 /* This is the bad part ... */
1540 list_for_each_entry(bss, &rdev->bss_list, list) {
1542 * we're iterating all the entries anyway, so take the
1543 * opportunity to validate the list length accounting
1545 n_entries++;
1547 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1548 continue;
1549 if (bss->pub.channel != new->pub.channel)
1550 continue;
1551 if (bss->pub.scan_width != new->pub.scan_width)
1552 continue;
1553 if (rcu_access_pointer(bss->pub.beacon_ies))
1554 continue;
1555 ies = rcu_access_pointer(bss->pub.ies);
1556 if (!ies)
1557 continue;
1558 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1559 if (!ie)
1560 continue;
1561 if (ssidlen && ie[1] != ssidlen)
1562 continue;
1563 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1564 continue;
1565 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1566 list_del(&bss->hidden_list);
1567 /* combine them */
1568 list_add(&bss->hidden_list, &new->hidden_list);
1569 bss->pub.hidden_beacon_bss = &new->pub;
1570 new->refcount += bss->refcount;
1571 rcu_assign_pointer(bss->pub.beacon_ies,
1572 new->pub.beacon_ies);
1575 WARN_ONCE(n_entries != rdev->bss_entries,
1576 "rdev bss entries[%d]/list[len:%d] corruption\n",
1577 rdev->bss_entries, n_entries);
1579 return true;
1582 struct cfg80211_non_tx_bss {
1583 struct cfg80211_bss *tx_bss;
1584 u8 max_bssid_indicator;
1585 u8 bssid_index;
1588 static bool
1589 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1590 struct cfg80211_internal_bss *known,
1591 struct cfg80211_internal_bss *new,
1592 bool signal_valid)
1594 lockdep_assert_held(&rdev->bss_lock);
1596 /* Update IEs */
1597 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1598 const struct cfg80211_bss_ies *old;
1600 old = rcu_access_pointer(known->pub.proberesp_ies);
1602 rcu_assign_pointer(known->pub.proberesp_ies,
1603 new->pub.proberesp_ies);
1604 /* Override possible earlier Beacon frame IEs */
1605 rcu_assign_pointer(known->pub.ies,
1606 new->pub.proberesp_ies);
1607 if (old)
1608 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1609 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1610 const struct cfg80211_bss_ies *old;
1611 struct cfg80211_internal_bss *bss;
1613 if (known->pub.hidden_beacon_bss &&
1614 !list_empty(&known->hidden_list)) {
1615 const struct cfg80211_bss_ies *f;
1617 /* The known BSS struct is one of the probe
1618 * response members of a group, but we're
1619 * receiving a beacon (beacon_ies in the new
1620 * bss is used). This can only mean that the
1621 * AP changed its beacon from not having an
1622 * SSID to showing it, which is confusing so
1623 * drop this information.
1626 f = rcu_access_pointer(new->pub.beacon_ies);
1627 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1628 return false;
1631 old = rcu_access_pointer(known->pub.beacon_ies);
1633 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1635 /* Override IEs if they were from a beacon before */
1636 if (old == rcu_access_pointer(known->pub.ies))
1637 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1639 /* Assign beacon IEs to all sub entries */
1640 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1641 const struct cfg80211_bss_ies *ies;
1643 ies = rcu_access_pointer(bss->pub.beacon_ies);
1644 WARN_ON(ies != old);
1646 rcu_assign_pointer(bss->pub.beacon_ies,
1647 new->pub.beacon_ies);
1650 if (old)
1651 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1654 known->pub.beacon_interval = new->pub.beacon_interval;
1656 /* don't update the signal if beacon was heard on
1657 * adjacent channel.
1659 if (signal_valid)
1660 known->pub.signal = new->pub.signal;
1661 known->pub.capability = new->pub.capability;
1662 known->ts = new->ts;
1663 known->ts_boottime = new->ts_boottime;
1664 known->parent_tsf = new->parent_tsf;
1665 known->pub.chains = new->pub.chains;
1666 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1667 IEEE80211_MAX_CHAINS);
1668 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1669 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1670 known->pub.bssid_index = new->pub.bssid_index;
1672 return true;
1675 /* Returned bss is reference counted and must be cleaned up appropriately. */
1676 struct cfg80211_internal_bss *
1677 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1678 struct cfg80211_internal_bss *tmp,
1679 bool signal_valid, unsigned long ts)
1681 struct cfg80211_internal_bss *found = NULL;
1683 if (WARN_ON(!tmp->pub.channel))
1684 return NULL;
1686 tmp->ts = ts;
1688 spin_lock_bh(&rdev->bss_lock);
1690 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1691 spin_unlock_bh(&rdev->bss_lock);
1692 return NULL;
1695 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1697 if (found) {
1698 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1699 goto drop;
1700 } else {
1701 struct cfg80211_internal_bss *new;
1702 struct cfg80211_internal_bss *hidden;
1703 struct cfg80211_bss_ies *ies;
1706 * create a copy -- the "res" variable that is passed in
1707 * is allocated on the stack since it's not needed in the
1708 * more common case of an update
1710 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1711 GFP_ATOMIC);
1712 if (!new) {
1713 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1714 if (ies)
1715 kfree_rcu(ies, rcu_head);
1716 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1717 if (ies)
1718 kfree_rcu(ies, rcu_head);
1719 goto drop;
1721 memcpy(new, tmp, sizeof(*new));
1722 new->refcount = 1;
1723 INIT_LIST_HEAD(&new->hidden_list);
1724 INIT_LIST_HEAD(&new->pub.nontrans_list);
1726 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1727 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1728 if (!hidden)
1729 hidden = rb_find_bss(rdev, tmp,
1730 BSS_CMP_HIDE_NUL);
1731 if (hidden) {
1732 new->pub.hidden_beacon_bss = &hidden->pub;
1733 list_add(&new->hidden_list,
1734 &hidden->hidden_list);
1735 hidden->refcount++;
1736 rcu_assign_pointer(new->pub.beacon_ies,
1737 hidden->pub.beacon_ies);
1739 } else {
1741 * Ok so we found a beacon, and don't have an entry. If
1742 * it's a beacon with hidden SSID, we might be in for an
1743 * expensive search for any probe responses that should
1744 * be grouped with this beacon for updates ...
1746 if (!cfg80211_combine_bsses(rdev, new)) {
1747 kfree(new);
1748 goto drop;
1752 if (rdev->bss_entries >= bss_entries_limit &&
1753 !cfg80211_bss_expire_oldest(rdev)) {
1754 kfree(new);
1755 goto drop;
1758 /* This must be before the call to bss_ref_get */
1759 if (tmp->pub.transmitted_bss) {
1760 struct cfg80211_internal_bss *pbss =
1761 container_of(tmp->pub.transmitted_bss,
1762 struct cfg80211_internal_bss,
1763 pub);
1765 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1766 bss_ref_get(rdev, pbss);
1769 list_add_tail(&new->list, &rdev->bss_list);
1770 rdev->bss_entries++;
1771 rb_insert_bss(rdev, new);
1772 found = new;
1775 rdev->bss_generation++;
1776 bss_ref_get(rdev, found);
1777 spin_unlock_bh(&rdev->bss_lock);
1779 return found;
1780 drop:
1781 spin_unlock_bh(&rdev->bss_lock);
1782 return NULL;
1786 * Update RX channel information based on the available frame payload
1787 * information. This is mainly for the 2.4 GHz band where frames can be received
1788 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1789 * element to indicate the current (transmitting) channel, but this might also
1790 * be needed on other bands if RX frequency does not match with the actual
1791 * operating channel of a BSS.
1793 static struct ieee80211_channel *
1794 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1795 struct ieee80211_channel *channel,
1796 enum nl80211_bss_scan_width scan_width)
1798 const u8 *tmp;
1799 u32 freq;
1800 int channel_number = -1;
1801 struct ieee80211_channel *alt_channel;
1803 if (channel->band == NL80211_BAND_S1GHZ) {
1804 tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1805 if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1806 struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1808 channel_number = s1gop->primary_ch;
1810 } else {
1811 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1812 if (tmp && tmp[1] == 1) {
1813 channel_number = tmp[2];
1814 } else {
1815 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1816 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1817 struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1819 channel_number = htop->primary_chan;
1824 if (channel_number < 0) {
1825 /* No channel information in frame payload */
1826 return channel;
1829 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1830 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1831 if (!alt_channel) {
1832 if (channel->band == NL80211_BAND_2GHZ) {
1834 * Better not allow unexpected channels when that could
1835 * be going beyond the 1-11 range (e.g., discovering
1836 * BSS on channel 12 when radio is configured for
1837 * channel 11.
1839 return NULL;
1842 /* No match for the payload channel number - ignore it */
1843 return channel;
1846 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1847 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1849 * Ignore channel number in 5 and 10 MHz channels where there
1850 * may not be an n:1 or 1:n mapping between frequencies and
1851 * channel numbers.
1853 return channel;
1857 * Use the channel determined through the payload channel number
1858 * instead of the RX channel reported by the driver.
1860 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1861 return NULL;
1862 return alt_channel;
1865 /* Returned bss is reference counted and must be cleaned up appropriately. */
1866 static struct cfg80211_bss *
1867 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1868 struct cfg80211_inform_bss *data,
1869 enum cfg80211_bss_frame_type ftype,
1870 const u8 *bssid, u64 tsf, u16 capability,
1871 u16 beacon_interval, const u8 *ie, size_t ielen,
1872 struct cfg80211_non_tx_bss *non_tx_data,
1873 gfp_t gfp)
1875 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1876 struct cfg80211_bss_ies *ies;
1877 struct ieee80211_channel *channel;
1878 struct cfg80211_internal_bss tmp = {}, *res;
1879 int bss_type;
1880 bool signal_valid;
1881 unsigned long ts;
1883 if (WARN_ON(!wiphy))
1884 return NULL;
1886 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1887 (data->signal < 0 || data->signal > 100)))
1888 return NULL;
1890 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1891 data->scan_width);
1892 if (!channel)
1893 return NULL;
1895 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1896 tmp.pub.channel = channel;
1897 tmp.pub.scan_width = data->scan_width;
1898 tmp.pub.signal = data->signal;
1899 tmp.pub.beacon_interval = beacon_interval;
1900 tmp.pub.capability = capability;
1901 tmp.ts_boottime = data->boottime_ns;
1902 tmp.parent_tsf = data->parent_tsf;
1903 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1905 if (non_tx_data) {
1906 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1907 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1908 tmp.pub.bssid_index = non_tx_data->bssid_index;
1909 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1910 } else {
1911 ts = jiffies;
1915 * If we do not know here whether the IEs are from a Beacon or Probe
1916 * Response frame, we need to pick one of the options and only use it
1917 * with the driver that does not provide the full Beacon/Probe Response
1918 * frame. Use Beacon frame pointer to avoid indicating that this should
1919 * override the IEs pointer should we have received an earlier
1920 * indication of Probe Response data.
1922 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1923 if (!ies)
1924 return NULL;
1925 ies->len = ielen;
1926 ies->tsf = tsf;
1927 ies->from_beacon = false;
1928 memcpy(ies->data, ie, ielen);
1930 switch (ftype) {
1931 case CFG80211_BSS_FTYPE_BEACON:
1932 ies->from_beacon = true;
1933 fallthrough;
1934 case CFG80211_BSS_FTYPE_UNKNOWN:
1935 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1936 break;
1937 case CFG80211_BSS_FTYPE_PRESP:
1938 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1939 break;
1941 rcu_assign_pointer(tmp.pub.ies, ies);
1943 signal_valid = data->chan == channel;
1944 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1945 if (!res)
1946 return NULL;
1948 if (channel->band == NL80211_BAND_60GHZ) {
1949 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1950 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1951 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1952 regulatory_hint_found_beacon(wiphy, channel, gfp);
1953 } else {
1954 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1955 regulatory_hint_found_beacon(wiphy, channel, gfp);
1958 if (non_tx_data) {
1959 /* this is a nontransmitting bss, we need to add it to
1960 * transmitting bss' list if it is not there
1962 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1963 &res->pub)) {
1964 if (__cfg80211_unlink_bss(rdev, res))
1965 rdev->bss_generation++;
1969 trace_cfg80211_return_bss(&res->pub);
1970 /* cfg80211_bss_update gives us a referenced result */
1971 return &res->pub;
1974 static const struct element
1975 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1976 const struct element *mbssid_elem,
1977 const struct element *sub_elem)
1979 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1980 const struct element *next_mbssid;
1981 const struct element *next_sub;
1983 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
1984 mbssid_end,
1985 ielen - (mbssid_end - ie));
1988 * If it is not the last subelement in current MBSSID IE or there isn't
1989 * a next MBSSID IE - profile is complete.
1991 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
1992 !next_mbssid)
1993 return NULL;
1995 /* For any length error, just return NULL */
1997 if (next_mbssid->datalen < 4)
1998 return NULL;
2000 next_sub = (void *)&next_mbssid->data[1];
2002 if (next_mbssid->data + next_mbssid->datalen <
2003 next_sub->data + next_sub->datalen)
2004 return NULL;
2006 if (next_sub->id != 0 || next_sub->datalen < 2)
2007 return NULL;
2010 * Check if the first element in the next sub element is a start
2011 * of a new profile
2013 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2014 NULL : next_mbssid;
2017 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2018 const struct element *mbssid_elem,
2019 const struct element *sub_elem,
2020 u8 *merged_ie, size_t max_copy_len)
2022 size_t copied_len = sub_elem->datalen;
2023 const struct element *next_mbssid;
2025 if (sub_elem->datalen > max_copy_len)
2026 return 0;
2028 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2030 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2031 mbssid_elem,
2032 sub_elem))) {
2033 const struct element *next_sub = (void *)&next_mbssid->data[1];
2035 if (copied_len + next_sub->datalen > max_copy_len)
2036 break;
2037 memcpy(merged_ie + copied_len, next_sub->data,
2038 next_sub->datalen);
2039 copied_len += next_sub->datalen;
2042 return copied_len;
2044 EXPORT_SYMBOL(cfg80211_merge_profile);
2046 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2047 struct cfg80211_inform_bss *data,
2048 enum cfg80211_bss_frame_type ftype,
2049 const u8 *bssid, u64 tsf,
2050 u16 beacon_interval, const u8 *ie,
2051 size_t ielen,
2052 struct cfg80211_non_tx_bss *non_tx_data,
2053 gfp_t gfp)
2055 const u8 *mbssid_index_ie;
2056 const struct element *elem, *sub;
2057 size_t new_ie_len;
2058 u8 new_bssid[ETH_ALEN];
2059 u8 *new_ie, *profile;
2060 u64 seen_indices = 0;
2061 u16 capability;
2062 struct cfg80211_bss *bss;
2064 if (!non_tx_data)
2065 return;
2066 if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2067 return;
2068 if (!wiphy->support_mbssid)
2069 return;
2070 if (wiphy->support_only_he_mbssid &&
2071 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2072 return;
2074 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2075 if (!new_ie)
2076 return;
2078 profile = kmalloc(ielen, gfp);
2079 if (!profile)
2080 goto out;
2082 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2083 if (elem->datalen < 4)
2084 continue;
2085 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2086 u8 profile_len;
2088 if (sub->id != 0 || sub->datalen < 4) {
2089 /* not a valid BSS profile */
2090 continue;
2093 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2094 sub->data[1] != 2) {
2095 /* The first element within the Nontransmitted
2096 * BSSID Profile is not the Nontransmitted
2097 * BSSID Capability element.
2099 continue;
2102 memset(profile, 0, ielen);
2103 profile_len = cfg80211_merge_profile(ie, ielen,
2104 elem,
2105 sub,
2106 profile,
2107 ielen);
2109 /* found a Nontransmitted BSSID Profile */
2110 mbssid_index_ie = cfg80211_find_ie
2111 (WLAN_EID_MULTI_BSSID_IDX,
2112 profile, profile_len);
2113 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2114 mbssid_index_ie[2] == 0 ||
2115 mbssid_index_ie[2] > 46) {
2116 /* No valid Multiple BSSID-Index element */
2117 continue;
2120 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2121 /* We don't support legacy split of a profile */
2122 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2123 mbssid_index_ie[2]);
2125 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2127 non_tx_data->bssid_index = mbssid_index_ie[2];
2128 non_tx_data->max_bssid_indicator = elem->data[0];
2130 cfg80211_gen_new_bssid(bssid,
2131 non_tx_data->max_bssid_indicator,
2132 non_tx_data->bssid_index,
2133 new_bssid);
2134 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2135 new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2136 profile,
2137 profile_len, new_ie,
2138 gfp);
2139 if (!new_ie_len)
2140 continue;
2142 capability = get_unaligned_le16(profile + 2);
2143 bss = cfg80211_inform_single_bss_data(wiphy, data,
2144 ftype,
2145 new_bssid, tsf,
2146 capability,
2147 beacon_interval,
2148 new_ie,
2149 new_ie_len,
2150 non_tx_data,
2151 gfp);
2152 if (!bss)
2153 break;
2154 cfg80211_put_bss(wiphy, bss);
2158 out:
2159 kfree(new_ie);
2160 kfree(profile);
2163 struct cfg80211_bss *
2164 cfg80211_inform_bss_data(struct wiphy *wiphy,
2165 struct cfg80211_inform_bss *data,
2166 enum cfg80211_bss_frame_type ftype,
2167 const u8 *bssid, u64 tsf, u16 capability,
2168 u16 beacon_interval, const u8 *ie, size_t ielen,
2169 gfp_t gfp)
2171 struct cfg80211_bss *res;
2172 struct cfg80211_non_tx_bss non_tx_data;
2174 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2175 capability, beacon_interval, ie,
2176 ielen, NULL, gfp);
2177 if (!res)
2178 return NULL;
2179 non_tx_data.tx_bss = res;
2180 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2181 beacon_interval, ie, ielen, &non_tx_data,
2182 gfp);
2183 return res;
2185 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2187 static void
2188 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2189 struct cfg80211_inform_bss *data,
2190 struct ieee80211_mgmt *mgmt, size_t len,
2191 struct cfg80211_non_tx_bss *non_tx_data,
2192 gfp_t gfp)
2194 enum cfg80211_bss_frame_type ftype;
2195 const u8 *ie = mgmt->u.probe_resp.variable;
2196 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2197 u.probe_resp.variable);
2199 ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2200 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2202 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2203 le64_to_cpu(mgmt->u.probe_resp.timestamp),
2204 le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2205 ie, ielen, non_tx_data, gfp);
2208 static void
2209 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2210 struct cfg80211_bss *nontrans_bss,
2211 struct ieee80211_mgmt *mgmt, size_t len)
2213 u8 *ie, *new_ie, *pos;
2214 const u8 *nontrans_ssid, *trans_ssid, *mbssid;
2215 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2216 u.probe_resp.variable);
2217 size_t new_ie_len;
2218 struct cfg80211_bss_ies *new_ies;
2219 const struct cfg80211_bss_ies *old;
2220 u8 cpy_len;
2222 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2224 ie = mgmt->u.probe_resp.variable;
2226 new_ie_len = ielen;
2227 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2228 if (!trans_ssid)
2229 return;
2230 new_ie_len -= trans_ssid[1];
2231 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2233 * It's not valid to have the MBSSID element before SSID
2234 * ignore if that happens - the code below assumes it is
2235 * after (while copying things inbetween).
2237 if (!mbssid || mbssid < trans_ssid)
2238 return;
2239 new_ie_len -= mbssid[1];
2241 nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
2242 if (!nontrans_ssid)
2243 return;
2245 new_ie_len += nontrans_ssid[1];
2247 /* generate new ie for nontrans BSS
2248 * 1. replace SSID with nontrans BSS' SSID
2249 * 2. skip MBSSID IE
2251 new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2252 if (!new_ie)
2253 return;
2255 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2256 if (!new_ies)
2257 goto out_free;
2259 pos = new_ie;
2261 /* copy the nontransmitted SSID */
2262 cpy_len = nontrans_ssid[1] + 2;
2263 memcpy(pos, nontrans_ssid, cpy_len);
2264 pos += cpy_len;
2265 /* copy the IEs between SSID and MBSSID */
2266 cpy_len = trans_ssid[1] + 2;
2267 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2268 pos += (mbssid - (trans_ssid + cpy_len));
2269 /* copy the IEs after MBSSID */
2270 cpy_len = mbssid[1] + 2;
2271 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2273 /* update ie */
2274 new_ies->len = new_ie_len;
2275 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2276 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2277 memcpy(new_ies->data, new_ie, new_ie_len);
2278 if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2279 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2280 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2281 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2282 if (old)
2283 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2284 } else {
2285 old = rcu_access_pointer(nontrans_bss->beacon_ies);
2286 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2287 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2288 if (old)
2289 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2292 out_free:
2293 kfree(new_ie);
2296 /* cfg80211_inform_bss_width_frame helper */
2297 static struct cfg80211_bss *
2298 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2299 struct cfg80211_inform_bss *data,
2300 struct ieee80211_mgmt *mgmt, size_t len,
2301 gfp_t gfp)
2303 struct cfg80211_internal_bss tmp = {}, *res;
2304 struct cfg80211_bss_ies *ies;
2305 struct ieee80211_channel *channel;
2306 bool signal_valid;
2307 struct ieee80211_ext *ext = NULL;
2308 u8 *bssid, *variable;
2309 u16 capability, beacon_int;
2310 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2311 u.probe_resp.variable);
2312 int bss_type;
2314 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2315 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2317 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2319 if (WARN_ON(!mgmt))
2320 return NULL;
2322 if (WARN_ON(!wiphy))
2323 return NULL;
2325 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2326 (data->signal < 0 || data->signal > 100)))
2327 return NULL;
2329 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2330 ext = (void *) mgmt;
2331 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2332 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2333 min_hdr_len = offsetof(struct ieee80211_ext,
2334 u.s1g_short_beacon.variable);
2337 if (WARN_ON(len < min_hdr_len))
2338 return NULL;
2340 ielen = len - min_hdr_len;
2341 variable = mgmt->u.probe_resp.variable;
2342 if (ext) {
2343 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2344 variable = ext->u.s1g_short_beacon.variable;
2345 else
2346 variable = ext->u.s1g_beacon.variable;
2349 channel = cfg80211_get_bss_channel(wiphy, variable,
2350 ielen, data->chan, data->scan_width);
2351 if (!channel)
2352 return NULL;
2354 if (ext) {
2355 struct ieee80211_s1g_bcn_compat_ie *compat;
2356 u8 *ie;
2358 ie = (void *)cfg80211_find_ie(WLAN_EID_S1G_BCN_COMPAT,
2359 variable, ielen);
2360 if (!ie)
2361 return NULL;
2362 compat = (void *)(ie + 2);
2363 bssid = ext->u.s1g_beacon.sa;
2364 capability = le16_to_cpu(compat->compat_info);
2365 beacon_int = le16_to_cpu(compat->beacon_int);
2366 } else {
2367 bssid = mgmt->bssid;
2368 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2369 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2372 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2373 if (!ies)
2374 return NULL;
2375 ies->len = ielen;
2376 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2377 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2378 ieee80211_is_s1g_beacon(mgmt->frame_control);
2379 memcpy(ies->data, variable, ielen);
2381 if (ieee80211_is_probe_resp(mgmt->frame_control))
2382 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2383 else
2384 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2385 rcu_assign_pointer(tmp.pub.ies, ies);
2387 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2388 tmp.pub.beacon_interval = beacon_int;
2389 tmp.pub.capability = capability;
2390 tmp.pub.channel = channel;
2391 tmp.pub.scan_width = data->scan_width;
2392 tmp.pub.signal = data->signal;
2393 tmp.ts_boottime = data->boottime_ns;
2394 tmp.parent_tsf = data->parent_tsf;
2395 tmp.pub.chains = data->chains;
2396 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2397 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2399 signal_valid = data->chan == channel;
2400 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2401 jiffies);
2402 if (!res)
2403 return NULL;
2405 if (channel->band == NL80211_BAND_60GHZ) {
2406 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2407 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2408 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2409 regulatory_hint_found_beacon(wiphy, channel, gfp);
2410 } else {
2411 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2412 regulatory_hint_found_beacon(wiphy, channel, gfp);
2415 trace_cfg80211_return_bss(&res->pub);
2416 /* cfg80211_bss_update gives us a referenced result */
2417 return &res->pub;
2420 struct cfg80211_bss *
2421 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2422 struct cfg80211_inform_bss *data,
2423 struct ieee80211_mgmt *mgmt, size_t len,
2424 gfp_t gfp)
2426 struct cfg80211_bss *res, *tmp_bss;
2427 const u8 *ie = mgmt->u.probe_resp.variable;
2428 const struct cfg80211_bss_ies *ies1, *ies2;
2429 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2430 u.probe_resp.variable);
2431 struct cfg80211_non_tx_bss non_tx_data;
2433 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2434 len, gfp);
2435 if (!res || !wiphy->support_mbssid ||
2436 !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2437 return res;
2438 if (wiphy->support_only_he_mbssid &&
2439 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2440 return res;
2442 non_tx_data.tx_bss = res;
2443 /* process each non-transmitting bss */
2444 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2445 &non_tx_data, gfp);
2447 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2449 /* check if the res has other nontransmitting bss which is not
2450 * in MBSSID IE
2452 ies1 = rcu_access_pointer(res->ies);
2454 /* go through nontrans_list, if the timestamp of the BSS is
2455 * earlier than the timestamp of the transmitting BSS then
2456 * update it
2458 list_for_each_entry(tmp_bss, &res->nontrans_list,
2459 nontrans_list) {
2460 ies2 = rcu_access_pointer(tmp_bss->ies);
2461 if (ies2->tsf < ies1->tsf)
2462 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2463 mgmt, len);
2465 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2467 return res;
2469 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2471 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2473 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2474 struct cfg80211_internal_bss *bss;
2476 if (!pub)
2477 return;
2479 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2481 spin_lock_bh(&rdev->bss_lock);
2482 bss_ref_get(rdev, bss);
2483 spin_unlock_bh(&rdev->bss_lock);
2485 EXPORT_SYMBOL(cfg80211_ref_bss);
2487 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2489 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2490 struct cfg80211_internal_bss *bss;
2492 if (!pub)
2493 return;
2495 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2497 spin_lock_bh(&rdev->bss_lock);
2498 bss_ref_put(rdev, bss);
2499 spin_unlock_bh(&rdev->bss_lock);
2501 EXPORT_SYMBOL(cfg80211_put_bss);
2503 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2505 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2506 struct cfg80211_internal_bss *bss, *tmp1;
2507 struct cfg80211_bss *nontrans_bss, *tmp;
2509 if (WARN_ON(!pub))
2510 return;
2512 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2514 spin_lock_bh(&rdev->bss_lock);
2515 if (list_empty(&bss->list))
2516 goto out;
2518 list_for_each_entry_safe(nontrans_bss, tmp,
2519 &pub->nontrans_list,
2520 nontrans_list) {
2521 tmp1 = container_of(nontrans_bss,
2522 struct cfg80211_internal_bss, pub);
2523 if (__cfg80211_unlink_bss(rdev, tmp1))
2524 rdev->bss_generation++;
2527 if (__cfg80211_unlink_bss(rdev, bss))
2528 rdev->bss_generation++;
2529 out:
2530 spin_unlock_bh(&rdev->bss_lock);
2532 EXPORT_SYMBOL(cfg80211_unlink_bss);
2534 void cfg80211_bss_iter(struct wiphy *wiphy,
2535 struct cfg80211_chan_def *chandef,
2536 void (*iter)(struct wiphy *wiphy,
2537 struct cfg80211_bss *bss,
2538 void *data),
2539 void *iter_data)
2541 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2542 struct cfg80211_internal_bss *bss;
2544 spin_lock_bh(&rdev->bss_lock);
2546 list_for_each_entry(bss, &rdev->bss_list, list) {
2547 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2548 iter(wiphy, &bss->pub, iter_data);
2551 spin_unlock_bh(&rdev->bss_lock);
2553 EXPORT_SYMBOL(cfg80211_bss_iter);
2555 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2556 struct ieee80211_channel *chan)
2558 struct wiphy *wiphy = wdev->wiphy;
2559 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2560 struct cfg80211_internal_bss *cbss = wdev->current_bss;
2561 struct cfg80211_internal_bss *new = NULL;
2562 struct cfg80211_internal_bss *bss;
2563 struct cfg80211_bss *nontrans_bss;
2564 struct cfg80211_bss *tmp;
2566 spin_lock_bh(&rdev->bss_lock);
2569 * Some APs use CSA also for bandwidth changes, i.e., without actually
2570 * changing the control channel, so no need to update in such a case.
2572 if (cbss->pub.channel == chan)
2573 goto done;
2575 /* use transmitting bss */
2576 if (cbss->pub.transmitted_bss)
2577 cbss = container_of(cbss->pub.transmitted_bss,
2578 struct cfg80211_internal_bss,
2579 pub);
2581 cbss->pub.channel = chan;
2583 list_for_each_entry(bss, &rdev->bss_list, list) {
2584 if (!cfg80211_bss_type_match(bss->pub.capability,
2585 bss->pub.channel->band,
2586 wdev->conn_bss_type))
2587 continue;
2589 if (bss == cbss)
2590 continue;
2592 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2593 new = bss;
2594 break;
2598 if (new) {
2599 /* to save time, update IEs for transmitting bss only */
2600 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2601 new->pub.proberesp_ies = NULL;
2602 new->pub.beacon_ies = NULL;
2605 list_for_each_entry_safe(nontrans_bss, tmp,
2606 &new->pub.nontrans_list,
2607 nontrans_list) {
2608 bss = container_of(nontrans_bss,
2609 struct cfg80211_internal_bss, pub);
2610 if (__cfg80211_unlink_bss(rdev, bss))
2611 rdev->bss_generation++;
2614 WARN_ON(atomic_read(&new->hold));
2615 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2616 rdev->bss_generation++;
2619 rb_erase(&cbss->rbn, &rdev->bss_tree);
2620 rb_insert_bss(rdev, cbss);
2621 rdev->bss_generation++;
2623 list_for_each_entry_safe(nontrans_bss, tmp,
2624 &cbss->pub.nontrans_list,
2625 nontrans_list) {
2626 bss = container_of(nontrans_bss,
2627 struct cfg80211_internal_bss, pub);
2628 bss->pub.channel = chan;
2629 rb_erase(&bss->rbn, &rdev->bss_tree);
2630 rb_insert_bss(rdev, bss);
2631 rdev->bss_generation++;
2634 done:
2635 spin_unlock_bh(&rdev->bss_lock);
2638 #ifdef CONFIG_CFG80211_WEXT
2639 static struct cfg80211_registered_device *
2640 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2642 struct cfg80211_registered_device *rdev;
2643 struct net_device *dev;
2645 ASSERT_RTNL();
2647 dev = dev_get_by_index(net, ifindex);
2648 if (!dev)
2649 return ERR_PTR(-ENODEV);
2650 if (dev->ieee80211_ptr)
2651 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2652 else
2653 rdev = ERR_PTR(-ENODEV);
2654 dev_put(dev);
2655 return rdev;
2658 int cfg80211_wext_siwscan(struct net_device *dev,
2659 struct iw_request_info *info,
2660 union iwreq_data *wrqu, char *extra)
2662 struct cfg80211_registered_device *rdev;
2663 struct wiphy *wiphy;
2664 struct iw_scan_req *wreq = NULL;
2665 struct cfg80211_scan_request *creq = NULL;
2666 int i, err, n_channels = 0;
2667 enum nl80211_band band;
2669 if (!netif_running(dev))
2670 return -ENETDOWN;
2672 if (wrqu->data.length == sizeof(struct iw_scan_req))
2673 wreq = (struct iw_scan_req *)extra;
2675 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2677 if (IS_ERR(rdev))
2678 return PTR_ERR(rdev);
2680 if (rdev->scan_req || rdev->scan_msg) {
2681 err = -EBUSY;
2682 goto out;
2685 wiphy = &rdev->wiphy;
2687 /* Determine number of channels, needed to allocate creq */
2688 if (wreq && wreq->num_channels)
2689 n_channels = wreq->num_channels;
2690 else
2691 n_channels = ieee80211_get_num_supported_channels(wiphy);
2693 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2694 n_channels * sizeof(void *),
2695 GFP_ATOMIC);
2696 if (!creq) {
2697 err = -ENOMEM;
2698 goto out;
2701 creq->wiphy = wiphy;
2702 creq->wdev = dev->ieee80211_ptr;
2703 /* SSIDs come after channels */
2704 creq->ssids = (void *)&creq->channels[n_channels];
2705 creq->n_channels = n_channels;
2706 creq->n_ssids = 1;
2707 creq->scan_start = jiffies;
2709 /* translate "Scan on frequencies" request */
2710 i = 0;
2711 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2712 int j;
2714 if (!wiphy->bands[band])
2715 continue;
2717 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2718 /* ignore disabled channels */
2719 if (wiphy->bands[band]->channels[j].flags &
2720 IEEE80211_CHAN_DISABLED)
2721 continue;
2723 /* If we have a wireless request structure and the
2724 * wireless request specifies frequencies, then search
2725 * for the matching hardware channel.
2727 if (wreq && wreq->num_channels) {
2728 int k;
2729 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2730 for (k = 0; k < wreq->num_channels; k++) {
2731 struct iw_freq *freq =
2732 &wreq->channel_list[k];
2733 int wext_freq =
2734 cfg80211_wext_freq(freq);
2736 if (wext_freq == wiphy_freq)
2737 goto wext_freq_found;
2739 goto wext_freq_not_found;
2742 wext_freq_found:
2743 creq->channels[i] = &wiphy->bands[band]->channels[j];
2744 i++;
2745 wext_freq_not_found: ;
2748 /* No channels found? */
2749 if (!i) {
2750 err = -EINVAL;
2751 goto out;
2754 /* Set real number of channels specified in creq->channels[] */
2755 creq->n_channels = i;
2757 /* translate "Scan for SSID" request */
2758 if (wreq) {
2759 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2760 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2761 err = -EINVAL;
2762 goto out;
2764 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2765 creq->ssids[0].ssid_len = wreq->essid_len;
2767 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2768 creq->n_ssids = 0;
2771 for (i = 0; i < NUM_NL80211_BANDS; i++)
2772 if (wiphy->bands[i])
2773 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2775 eth_broadcast_addr(creq->bssid);
2777 rdev->scan_req = creq;
2778 err = rdev_scan(rdev, creq);
2779 if (err) {
2780 rdev->scan_req = NULL;
2781 /* creq will be freed below */
2782 } else {
2783 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2784 /* creq now owned by driver */
2785 creq = NULL;
2786 dev_hold(dev);
2788 out:
2789 kfree(creq);
2790 return err;
2792 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2794 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2795 const struct cfg80211_bss_ies *ies,
2796 char *current_ev, char *end_buf)
2798 const u8 *pos, *end, *next;
2799 struct iw_event iwe;
2801 if (!ies)
2802 return current_ev;
2805 * If needed, fragment the IEs buffer (at IE boundaries) into short
2806 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2808 pos = ies->data;
2809 end = pos + ies->len;
2811 while (end - pos > IW_GENERIC_IE_MAX) {
2812 next = pos + 2 + pos[1];
2813 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2814 next = next + 2 + next[1];
2816 memset(&iwe, 0, sizeof(iwe));
2817 iwe.cmd = IWEVGENIE;
2818 iwe.u.data.length = next - pos;
2819 current_ev = iwe_stream_add_point_check(info, current_ev,
2820 end_buf, &iwe,
2821 (void *)pos);
2822 if (IS_ERR(current_ev))
2823 return current_ev;
2824 pos = next;
2827 if (end > pos) {
2828 memset(&iwe, 0, sizeof(iwe));
2829 iwe.cmd = IWEVGENIE;
2830 iwe.u.data.length = end - pos;
2831 current_ev = iwe_stream_add_point_check(info, current_ev,
2832 end_buf, &iwe,
2833 (void *)pos);
2834 if (IS_ERR(current_ev))
2835 return current_ev;
2838 return current_ev;
2841 static char *
2842 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2843 struct cfg80211_internal_bss *bss, char *current_ev,
2844 char *end_buf)
2846 const struct cfg80211_bss_ies *ies;
2847 struct iw_event iwe;
2848 const u8 *ie;
2849 u8 buf[50];
2850 u8 *cfg, *p, *tmp;
2851 int rem, i, sig;
2852 bool ismesh = false;
2854 memset(&iwe, 0, sizeof(iwe));
2855 iwe.cmd = SIOCGIWAP;
2856 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2857 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2858 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2859 IW_EV_ADDR_LEN);
2860 if (IS_ERR(current_ev))
2861 return current_ev;
2863 memset(&iwe, 0, sizeof(iwe));
2864 iwe.cmd = SIOCGIWFREQ;
2865 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2866 iwe.u.freq.e = 0;
2867 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2868 IW_EV_FREQ_LEN);
2869 if (IS_ERR(current_ev))
2870 return current_ev;
2872 memset(&iwe, 0, sizeof(iwe));
2873 iwe.cmd = SIOCGIWFREQ;
2874 iwe.u.freq.m = bss->pub.channel->center_freq;
2875 iwe.u.freq.e = 6;
2876 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2877 IW_EV_FREQ_LEN);
2878 if (IS_ERR(current_ev))
2879 return current_ev;
2881 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2882 memset(&iwe, 0, sizeof(iwe));
2883 iwe.cmd = IWEVQUAL;
2884 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2885 IW_QUAL_NOISE_INVALID |
2886 IW_QUAL_QUAL_UPDATED;
2887 switch (wiphy->signal_type) {
2888 case CFG80211_SIGNAL_TYPE_MBM:
2889 sig = bss->pub.signal / 100;
2890 iwe.u.qual.level = sig;
2891 iwe.u.qual.updated |= IW_QUAL_DBM;
2892 if (sig < -110) /* rather bad */
2893 sig = -110;
2894 else if (sig > -40) /* perfect */
2895 sig = -40;
2896 /* will give a range of 0 .. 70 */
2897 iwe.u.qual.qual = sig + 110;
2898 break;
2899 case CFG80211_SIGNAL_TYPE_UNSPEC:
2900 iwe.u.qual.level = bss->pub.signal;
2901 /* will give range 0 .. 100 */
2902 iwe.u.qual.qual = bss->pub.signal;
2903 break;
2904 default:
2905 /* not reached */
2906 break;
2908 current_ev = iwe_stream_add_event_check(info, current_ev,
2909 end_buf, &iwe,
2910 IW_EV_QUAL_LEN);
2911 if (IS_ERR(current_ev))
2912 return current_ev;
2915 memset(&iwe, 0, sizeof(iwe));
2916 iwe.cmd = SIOCGIWENCODE;
2917 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2918 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2919 else
2920 iwe.u.data.flags = IW_ENCODE_DISABLED;
2921 iwe.u.data.length = 0;
2922 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2923 &iwe, "");
2924 if (IS_ERR(current_ev))
2925 return current_ev;
2927 rcu_read_lock();
2928 ies = rcu_dereference(bss->pub.ies);
2929 rem = ies->len;
2930 ie = ies->data;
2932 while (rem >= 2) {
2933 /* invalid data */
2934 if (ie[1] > rem - 2)
2935 break;
2937 switch (ie[0]) {
2938 case WLAN_EID_SSID:
2939 memset(&iwe, 0, sizeof(iwe));
2940 iwe.cmd = SIOCGIWESSID;
2941 iwe.u.data.length = ie[1];
2942 iwe.u.data.flags = 1;
2943 current_ev = iwe_stream_add_point_check(info,
2944 current_ev,
2945 end_buf, &iwe,
2946 (u8 *)ie + 2);
2947 if (IS_ERR(current_ev))
2948 goto unlock;
2949 break;
2950 case WLAN_EID_MESH_ID:
2951 memset(&iwe, 0, sizeof(iwe));
2952 iwe.cmd = SIOCGIWESSID;
2953 iwe.u.data.length = ie[1];
2954 iwe.u.data.flags = 1;
2955 current_ev = iwe_stream_add_point_check(info,
2956 current_ev,
2957 end_buf, &iwe,
2958 (u8 *)ie + 2);
2959 if (IS_ERR(current_ev))
2960 goto unlock;
2961 break;
2962 case WLAN_EID_MESH_CONFIG:
2963 ismesh = true;
2964 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2965 break;
2966 cfg = (u8 *)ie + 2;
2967 memset(&iwe, 0, sizeof(iwe));
2968 iwe.cmd = IWEVCUSTOM;
2969 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2970 "0x%02X", cfg[0]);
2971 iwe.u.data.length = strlen(buf);
2972 current_ev = iwe_stream_add_point_check(info,
2973 current_ev,
2974 end_buf,
2975 &iwe, buf);
2976 if (IS_ERR(current_ev))
2977 goto unlock;
2978 sprintf(buf, "Path Selection Metric ID: 0x%02X",
2979 cfg[1]);
2980 iwe.u.data.length = strlen(buf);
2981 current_ev = iwe_stream_add_point_check(info,
2982 current_ev,
2983 end_buf,
2984 &iwe, buf);
2985 if (IS_ERR(current_ev))
2986 goto unlock;
2987 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
2988 cfg[2]);
2989 iwe.u.data.length = strlen(buf);
2990 current_ev = iwe_stream_add_point_check(info,
2991 current_ev,
2992 end_buf,
2993 &iwe, buf);
2994 if (IS_ERR(current_ev))
2995 goto unlock;
2996 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
2997 iwe.u.data.length = strlen(buf);
2998 current_ev = iwe_stream_add_point_check(info,
2999 current_ev,
3000 end_buf,
3001 &iwe, buf);
3002 if (IS_ERR(current_ev))
3003 goto unlock;
3004 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3005 iwe.u.data.length = strlen(buf);
3006 current_ev = iwe_stream_add_point_check(info,
3007 current_ev,
3008 end_buf,
3009 &iwe, buf);
3010 if (IS_ERR(current_ev))
3011 goto unlock;
3012 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3013 iwe.u.data.length = strlen(buf);
3014 current_ev = iwe_stream_add_point_check(info,
3015 current_ev,
3016 end_buf,
3017 &iwe, buf);
3018 if (IS_ERR(current_ev))
3019 goto unlock;
3020 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3021 iwe.u.data.length = strlen(buf);
3022 current_ev = iwe_stream_add_point_check(info,
3023 current_ev,
3024 end_buf,
3025 &iwe, buf);
3026 if (IS_ERR(current_ev))
3027 goto unlock;
3028 break;
3029 case WLAN_EID_SUPP_RATES:
3030 case WLAN_EID_EXT_SUPP_RATES:
3031 /* display all supported rates in readable format */
3032 p = current_ev + iwe_stream_lcp_len(info);
3034 memset(&iwe, 0, sizeof(iwe));
3035 iwe.cmd = SIOCGIWRATE;
3036 /* Those two flags are ignored... */
3037 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3039 for (i = 0; i < ie[1]; i++) {
3040 iwe.u.bitrate.value =
3041 ((ie[i + 2] & 0x7f) * 500000);
3042 tmp = p;
3043 p = iwe_stream_add_value(info, current_ev, p,
3044 end_buf, &iwe,
3045 IW_EV_PARAM_LEN);
3046 if (p == tmp) {
3047 current_ev = ERR_PTR(-E2BIG);
3048 goto unlock;
3051 current_ev = p;
3052 break;
3054 rem -= ie[1] + 2;
3055 ie += ie[1] + 2;
3058 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3059 ismesh) {
3060 memset(&iwe, 0, sizeof(iwe));
3061 iwe.cmd = SIOCGIWMODE;
3062 if (ismesh)
3063 iwe.u.mode = IW_MODE_MESH;
3064 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3065 iwe.u.mode = IW_MODE_MASTER;
3066 else
3067 iwe.u.mode = IW_MODE_ADHOC;
3068 current_ev = iwe_stream_add_event_check(info, current_ev,
3069 end_buf, &iwe,
3070 IW_EV_UINT_LEN);
3071 if (IS_ERR(current_ev))
3072 goto unlock;
3075 memset(&iwe, 0, sizeof(iwe));
3076 iwe.cmd = IWEVCUSTOM;
3077 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3078 iwe.u.data.length = strlen(buf);
3079 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3080 &iwe, buf);
3081 if (IS_ERR(current_ev))
3082 goto unlock;
3083 memset(&iwe, 0, sizeof(iwe));
3084 iwe.cmd = IWEVCUSTOM;
3085 sprintf(buf, " Last beacon: %ums ago",
3086 elapsed_jiffies_msecs(bss->ts));
3087 iwe.u.data.length = strlen(buf);
3088 current_ev = iwe_stream_add_point_check(info, current_ev,
3089 end_buf, &iwe, buf);
3090 if (IS_ERR(current_ev))
3091 goto unlock;
3093 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3095 unlock:
3096 rcu_read_unlock();
3097 return current_ev;
3101 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3102 struct iw_request_info *info,
3103 char *buf, size_t len)
3105 char *current_ev = buf;
3106 char *end_buf = buf + len;
3107 struct cfg80211_internal_bss *bss;
3108 int err = 0;
3110 spin_lock_bh(&rdev->bss_lock);
3111 cfg80211_bss_expire(rdev);
3113 list_for_each_entry(bss, &rdev->bss_list, list) {
3114 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3115 err = -E2BIG;
3116 break;
3118 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3119 current_ev, end_buf);
3120 if (IS_ERR(current_ev)) {
3121 err = PTR_ERR(current_ev);
3122 break;
3125 spin_unlock_bh(&rdev->bss_lock);
3127 if (err)
3128 return err;
3129 return current_ev - buf;
3133 int cfg80211_wext_giwscan(struct net_device *dev,
3134 struct iw_request_info *info,
3135 struct iw_point *data, char *extra)
3137 struct cfg80211_registered_device *rdev;
3138 int res;
3140 if (!netif_running(dev))
3141 return -ENETDOWN;
3143 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3145 if (IS_ERR(rdev))
3146 return PTR_ERR(rdev);
3148 if (rdev->scan_req || rdev->scan_msg)
3149 return -EAGAIN;
3151 res = ieee80211_scan_results(rdev, info, extra, data->length);
3152 data->length = 0;
3153 if (res >= 0) {
3154 data->length = res;
3155 res = 0;
3158 return res;
3160 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3161 #endif