1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * This program is free software; you can redistribute it and/or
4 * modify it under the terms of version 2 of the GNU General Public
5 * License as published by the Free Software Foundation.
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * General Public License for more details.
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/slab.h>
15 #include <linux/bpf.h>
16 #include <linux/filter.h>
17 #include <net/netlink.h>
18 #include <linux/file.h>
19 #include <linux/vmalloc.h>
21 /* bpf_check() is a static code analyzer that walks eBPF program
22 * instruction by instruction and updates register/stack state.
23 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
25 * The first pass is depth-first-search to check that the program is a DAG.
26 * It rejects the following programs:
27 * - larger than BPF_MAXINSNS insns
28 * - if loop is present (detected via back-edge)
29 * - unreachable insns exist (shouldn't be a forest. program = one function)
30 * - out of bounds or malformed jumps
31 * The second pass is all possible path descent from the 1st insn.
32 * Since it's analyzing all pathes through the program, the length of the
33 * analysis is limited to 32k insn, which may be hit even if total number of
34 * insn is less then 4K, but there are too many branches that change stack/regs.
35 * Number of 'branches to be analyzed' is limited to 1k
37 * On entry to each instruction, each register has a type, and the instruction
38 * changes the types of the registers depending on instruction semantics.
39 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
42 * All registers are 64-bit.
43 * R0 - return register
44 * R1-R5 argument passing registers
45 * R6-R9 callee saved registers
46 * R10 - frame pointer read-only
48 * At the start of BPF program the register R1 contains a pointer to bpf_context
49 * and has type PTR_TO_CTX.
51 * Verifier tracks arithmetic operations on pointers in case:
52 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
53 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
54 * 1st insn copies R10 (which has FRAME_PTR) type into R1
55 * and 2nd arithmetic instruction is pattern matched to recognize
56 * that it wants to construct a pointer to some element within stack.
57 * So after 2nd insn, the register R1 has type PTR_TO_STACK
58 * (and -20 constant is saved for further stack bounds checking).
59 * Meaning that this reg is a pointer to stack plus known immediate constant.
61 * Most of the time the registers have UNKNOWN_VALUE type, which
62 * means the register has some value, but it's not a valid pointer.
63 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
65 * When verifier sees load or store instructions the type of base register
66 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
67 * types recognized by check_mem_access() function.
69 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
70 * and the range of [ptr, ptr + map's value_size) is accessible.
72 * registers used to pass values to function calls are checked against
73 * function argument constraints.
75 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
76 * It means that the register type passed to this function must be
77 * PTR_TO_STACK and it will be used inside the function as
78 * 'pointer to map element key'
80 * For example the argument constraints for bpf_map_lookup_elem():
81 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
82 * .arg1_type = ARG_CONST_MAP_PTR,
83 * .arg2_type = ARG_PTR_TO_MAP_KEY,
85 * ret_type says that this function returns 'pointer to map elem value or null'
86 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
87 * 2nd argument should be a pointer to stack, which will be used inside
88 * the helper function as a pointer to map element key.
90 * On the kernel side the helper function looks like:
91 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
93 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
94 * void *key = (void *) (unsigned long) r2;
97 * here kernel can access 'key' and 'map' pointers safely, knowing that
98 * [key, key + map->key_size) bytes are valid and were initialized on
99 * the stack of eBPF program.
102 * Corresponding eBPF program may look like:
103 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
104 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
105 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
106 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
107 * here verifier looks at prototype of map_lookup_elem() and sees:
108 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
109 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
111 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
112 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
113 * and were initialized prior to this call.
114 * If it's ok, then verifier allows this BPF_CALL insn and looks at
115 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
116 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
117 * returns ether pointer to map value or NULL.
119 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
120 * insn, the register holding that pointer in the true branch changes state to
121 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
122 * branch. See check_cond_jmp_op().
124 * After the call R0 is set to return type of the function and registers R1-R5
125 * are set to NOT_INIT to indicate that they are no longer readable.
128 /* types of values stored in eBPF registers */
130 NOT_INIT
= 0, /* nothing was written into register */
131 UNKNOWN_VALUE
, /* reg doesn't contain a valid pointer */
132 PTR_TO_CTX
, /* reg points to bpf_context */
133 CONST_PTR_TO_MAP
, /* reg points to struct bpf_map */
134 PTR_TO_MAP_VALUE
, /* reg points to map element value */
135 PTR_TO_MAP_VALUE_OR_NULL
,/* points to map elem value or NULL */
136 FRAME_PTR
, /* reg == frame_pointer */
137 PTR_TO_STACK
, /* reg == frame_pointer + imm */
138 CONST_IMM
, /* constant integer value */
142 enum bpf_reg_type type
;
144 /* valid when type == CONST_IMM | PTR_TO_STACK */
147 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
148 * PTR_TO_MAP_VALUE_OR_NULL
150 struct bpf_map
*map_ptr
;
154 enum bpf_stack_slot_type
{
155 STACK_INVALID
, /* nothing was stored in this stack slot */
156 STACK_SPILL
, /* register spilled into stack */
157 STACK_MISC
/* BPF program wrote some data into this slot */
160 #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
162 /* state of the program:
163 * type of all registers and stack info
165 struct verifier_state
{
166 struct reg_state regs
[MAX_BPF_REG
];
167 u8 stack_slot_type
[MAX_BPF_STACK
];
168 struct reg_state spilled_regs
[MAX_BPF_STACK
/ BPF_REG_SIZE
];
171 /* linked list of verifier states used to prune search */
172 struct verifier_state_list
{
173 struct verifier_state state
;
174 struct verifier_state_list
*next
;
177 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
178 struct verifier_stack_elem
{
179 /* verifer state is 'st'
180 * before processing instruction 'insn_idx'
181 * and after processing instruction 'prev_insn_idx'
183 struct verifier_state st
;
186 struct verifier_stack_elem
*next
;
189 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
191 /* single container for all structs
192 * one verifier_env per bpf_check() call
194 struct verifier_env
{
195 struct bpf_prog
*prog
; /* eBPF program being verified */
196 struct verifier_stack_elem
*head
; /* stack of verifier states to be processed */
197 int stack_size
; /* number of states to be processed */
198 struct verifier_state cur_state
; /* current verifier state */
199 struct verifier_state_list
**explored_states
; /* search pruning optimization */
200 struct bpf_map
*used_maps
[MAX_USED_MAPS
]; /* array of map's used by eBPF program */
201 u32 used_map_cnt
; /* number of used maps */
202 bool allow_ptr_leaks
;
205 /* verbose verifier prints what it's seeing
206 * bpf_check() is called under lock, so no race to access these global vars
208 static u32 log_level
, log_size
, log_len
;
209 static char *log_buf
;
211 static DEFINE_MUTEX(bpf_verifier_lock
);
213 /* log_level controls verbosity level of eBPF verifier.
214 * verbose() is used to dump the verification trace to the log, so the user
215 * can figure out what's wrong with the program
217 static __printf(1, 2) void verbose(const char *fmt
, ...)
221 if (log_level
== 0 || log_len
>= log_size
- 1)
225 log_len
+= vscnprintf(log_buf
+ log_len
, log_size
- log_len
, fmt
, args
);
229 /* string representation of 'enum bpf_reg_type' */
230 static const char * const reg_type_str
[] = {
232 [UNKNOWN_VALUE
] = "inv",
233 [PTR_TO_CTX
] = "ctx",
234 [CONST_PTR_TO_MAP
] = "map_ptr",
235 [PTR_TO_MAP_VALUE
] = "map_value",
236 [PTR_TO_MAP_VALUE_OR_NULL
] = "map_value_or_null",
238 [PTR_TO_STACK
] = "fp",
242 static const struct {
246 {BPF_MAP_TYPE_PROG_ARRAY
, BPF_FUNC_tail_call
},
247 {BPF_MAP_TYPE_PERF_EVENT_ARRAY
, BPF_FUNC_perf_event_read
},
248 {BPF_MAP_TYPE_PERF_EVENT_ARRAY
, BPF_FUNC_perf_event_output
},
251 static void print_verifier_state(struct verifier_env
*env
)
256 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
257 t
= env
->cur_state
.regs
[i
].type
;
260 verbose(" R%d=%s", i
, reg_type_str
[t
]);
261 if (t
== CONST_IMM
|| t
== PTR_TO_STACK
)
262 verbose("%d", env
->cur_state
.regs
[i
].imm
);
263 else if (t
== CONST_PTR_TO_MAP
|| t
== PTR_TO_MAP_VALUE
||
264 t
== PTR_TO_MAP_VALUE_OR_NULL
)
265 verbose("(ks=%d,vs=%d)",
266 env
->cur_state
.regs
[i
].map_ptr
->key_size
,
267 env
->cur_state
.regs
[i
].map_ptr
->value_size
);
269 for (i
= 0; i
< MAX_BPF_STACK
; i
+= BPF_REG_SIZE
) {
270 if (env
->cur_state
.stack_slot_type
[i
] == STACK_SPILL
)
271 verbose(" fp%d=%s", -MAX_BPF_STACK
+ i
,
272 reg_type_str
[env
->cur_state
.spilled_regs
[i
/ BPF_REG_SIZE
].type
]);
277 static const char *const bpf_class_string
[] = {
285 [BPF_ALU64
] = "alu64",
288 static const char *const bpf_alu_string
[16] = {
289 [BPF_ADD
>> 4] = "+=",
290 [BPF_SUB
>> 4] = "-=",
291 [BPF_MUL
>> 4] = "*=",
292 [BPF_DIV
>> 4] = "/=",
293 [BPF_OR
>> 4] = "|=",
294 [BPF_AND
>> 4] = "&=",
295 [BPF_LSH
>> 4] = "<<=",
296 [BPF_RSH
>> 4] = ">>=",
297 [BPF_NEG
>> 4] = "neg",
298 [BPF_MOD
>> 4] = "%=",
299 [BPF_XOR
>> 4] = "^=",
300 [BPF_MOV
>> 4] = "=",
301 [BPF_ARSH
>> 4] = "s>>=",
302 [BPF_END
>> 4] = "endian",
305 static const char *const bpf_ldst_string
[] = {
306 [BPF_W
>> 3] = "u32",
307 [BPF_H
>> 3] = "u16",
309 [BPF_DW
>> 3] = "u64",
312 static const char *const bpf_jmp_string
[16] = {
313 [BPF_JA
>> 4] = "jmp",
314 [BPF_JEQ
>> 4] = "==",
315 [BPF_JGT
>> 4] = ">",
316 [BPF_JGE
>> 4] = ">=",
317 [BPF_JSET
>> 4] = "&",
318 [BPF_JNE
>> 4] = "!=",
319 [BPF_JSGT
>> 4] = "s>",
320 [BPF_JSGE
>> 4] = "s>=",
321 [BPF_CALL
>> 4] = "call",
322 [BPF_EXIT
>> 4] = "exit",
325 static void print_bpf_insn(struct bpf_insn
*insn
)
327 u8
class = BPF_CLASS(insn
->code
);
329 if (class == BPF_ALU
|| class == BPF_ALU64
) {
330 if (BPF_SRC(insn
->code
) == BPF_X
)
331 verbose("(%02x) %sr%d %s %sr%d\n",
332 insn
->code
, class == BPF_ALU
? "(u32) " : "",
334 bpf_alu_string
[BPF_OP(insn
->code
) >> 4],
335 class == BPF_ALU
? "(u32) " : "",
338 verbose("(%02x) %sr%d %s %s%d\n",
339 insn
->code
, class == BPF_ALU
? "(u32) " : "",
341 bpf_alu_string
[BPF_OP(insn
->code
) >> 4],
342 class == BPF_ALU
? "(u32) " : "",
344 } else if (class == BPF_STX
) {
345 if (BPF_MODE(insn
->code
) == BPF_MEM
)
346 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
348 bpf_ldst_string
[BPF_SIZE(insn
->code
) >> 3],
350 insn
->off
, insn
->src_reg
);
351 else if (BPF_MODE(insn
->code
) == BPF_XADD
)
352 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
354 bpf_ldst_string
[BPF_SIZE(insn
->code
) >> 3],
355 insn
->dst_reg
, insn
->off
,
358 verbose("BUG_%02x\n", insn
->code
);
359 } else if (class == BPF_ST
) {
360 if (BPF_MODE(insn
->code
) != BPF_MEM
) {
361 verbose("BUG_st_%02x\n", insn
->code
);
364 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
366 bpf_ldst_string
[BPF_SIZE(insn
->code
) >> 3],
368 insn
->off
, insn
->imm
);
369 } else if (class == BPF_LDX
) {
370 if (BPF_MODE(insn
->code
) != BPF_MEM
) {
371 verbose("BUG_ldx_%02x\n", insn
->code
);
374 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
375 insn
->code
, insn
->dst_reg
,
376 bpf_ldst_string
[BPF_SIZE(insn
->code
) >> 3],
377 insn
->src_reg
, insn
->off
);
378 } else if (class == BPF_LD
) {
379 if (BPF_MODE(insn
->code
) == BPF_ABS
) {
380 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
382 bpf_ldst_string
[BPF_SIZE(insn
->code
) >> 3],
384 } else if (BPF_MODE(insn
->code
) == BPF_IND
) {
385 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
387 bpf_ldst_string
[BPF_SIZE(insn
->code
) >> 3],
388 insn
->src_reg
, insn
->imm
);
389 } else if (BPF_MODE(insn
->code
) == BPF_IMM
) {
390 verbose("(%02x) r%d = 0x%x\n",
391 insn
->code
, insn
->dst_reg
, insn
->imm
);
393 verbose("BUG_ld_%02x\n", insn
->code
);
396 } else if (class == BPF_JMP
) {
397 u8 opcode
= BPF_OP(insn
->code
);
399 if (opcode
== BPF_CALL
) {
400 verbose("(%02x) call %d\n", insn
->code
, insn
->imm
);
401 } else if (insn
->code
== (BPF_JMP
| BPF_JA
)) {
402 verbose("(%02x) goto pc%+d\n",
403 insn
->code
, insn
->off
);
404 } else if (insn
->code
== (BPF_JMP
| BPF_EXIT
)) {
405 verbose("(%02x) exit\n", insn
->code
);
406 } else if (BPF_SRC(insn
->code
) == BPF_X
) {
407 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
408 insn
->code
, insn
->dst_reg
,
409 bpf_jmp_string
[BPF_OP(insn
->code
) >> 4],
410 insn
->src_reg
, insn
->off
);
412 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
413 insn
->code
, insn
->dst_reg
,
414 bpf_jmp_string
[BPF_OP(insn
->code
) >> 4],
415 insn
->imm
, insn
->off
);
418 verbose("(%02x) %s\n", insn
->code
, bpf_class_string
[class]);
422 static int pop_stack(struct verifier_env
*env
, int *prev_insn_idx
)
424 struct verifier_stack_elem
*elem
;
427 if (env
->head
== NULL
)
430 memcpy(&env
->cur_state
, &env
->head
->st
, sizeof(env
->cur_state
));
431 insn_idx
= env
->head
->insn_idx
;
433 *prev_insn_idx
= env
->head
->prev_insn_idx
;
434 elem
= env
->head
->next
;
441 static struct verifier_state
*push_stack(struct verifier_env
*env
, int insn_idx
,
444 struct verifier_stack_elem
*elem
;
446 elem
= kmalloc(sizeof(struct verifier_stack_elem
), GFP_KERNEL
);
450 memcpy(&elem
->st
, &env
->cur_state
, sizeof(env
->cur_state
));
451 elem
->insn_idx
= insn_idx
;
452 elem
->prev_insn_idx
= prev_insn_idx
;
453 elem
->next
= env
->head
;
456 if (env
->stack_size
> 1024) {
457 verbose("BPF program is too complex\n");
462 /* pop all elements and return */
463 while (pop_stack(env
, NULL
) >= 0);
467 #define CALLER_SAVED_REGS 6
468 static const int caller_saved
[CALLER_SAVED_REGS
] = {
469 BPF_REG_0
, BPF_REG_1
, BPF_REG_2
, BPF_REG_3
, BPF_REG_4
, BPF_REG_5
472 static void init_reg_state(struct reg_state
*regs
)
476 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
477 regs
[i
].type
= NOT_INIT
;
479 regs
[i
].map_ptr
= NULL
;
483 regs
[BPF_REG_FP
].type
= FRAME_PTR
;
485 /* 1st arg to a function */
486 regs
[BPF_REG_1
].type
= PTR_TO_CTX
;
489 static void mark_reg_unknown_value(struct reg_state
*regs
, u32 regno
)
491 BUG_ON(regno
>= MAX_BPF_REG
);
492 regs
[regno
].type
= UNKNOWN_VALUE
;
494 regs
[regno
].map_ptr
= NULL
;
498 SRC_OP
, /* register is used as source operand */
499 DST_OP
, /* register is used as destination operand */
500 DST_OP_NO_MARK
/* same as above, check only, don't mark */
503 static int check_reg_arg(struct reg_state
*regs
, u32 regno
,
506 if (regno
>= MAX_BPF_REG
) {
507 verbose("R%d is invalid\n", regno
);
512 /* check whether register used as source operand can be read */
513 if (regs
[regno
].type
== NOT_INIT
) {
514 verbose("R%d !read_ok\n", regno
);
518 /* check whether register used as dest operand can be written to */
519 if (regno
== BPF_REG_FP
) {
520 verbose("frame pointer is read only\n");
524 mark_reg_unknown_value(regs
, regno
);
529 static int bpf_size_to_bytes(int bpf_size
)
531 if (bpf_size
== BPF_W
)
533 else if (bpf_size
== BPF_H
)
535 else if (bpf_size
== BPF_B
)
537 else if (bpf_size
== BPF_DW
)
543 static bool is_spillable_regtype(enum bpf_reg_type type
)
546 case PTR_TO_MAP_VALUE
:
547 case PTR_TO_MAP_VALUE_OR_NULL
:
551 case CONST_PTR_TO_MAP
:
558 /* check_stack_read/write functions track spill/fill of registers,
559 * stack boundary and alignment are checked in check_mem_access()
561 static int check_stack_write(struct verifier_state
*state
, int off
, int size
,
565 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
566 * so it's aligned access and [off, off + size) are within stack limits
569 if (value_regno
>= 0 &&
570 is_spillable_regtype(state
->regs
[value_regno
].type
)) {
572 /* register containing pointer is being spilled into stack */
573 if (size
!= BPF_REG_SIZE
) {
574 verbose("invalid size of register spill\n");
578 /* save register state */
579 state
->spilled_regs
[(MAX_BPF_STACK
+ off
) / BPF_REG_SIZE
] =
580 state
->regs
[value_regno
];
582 for (i
= 0; i
< BPF_REG_SIZE
; i
++)
583 state
->stack_slot_type
[MAX_BPF_STACK
+ off
+ i
] = STACK_SPILL
;
585 /* regular write of data into stack */
586 state
->spilled_regs
[(MAX_BPF_STACK
+ off
) / BPF_REG_SIZE
] =
587 (struct reg_state
) {};
589 for (i
= 0; i
< size
; i
++)
590 state
->stack_slot_type
[MAX_BPF_STACK
+ off
+ i
] = STACK_MISC
;
595 static int check_stack_read(struct verifier_state
*state
, int off
, int size
,
601 slot_type
= &state
->stack_slot_type
[MAX_BPF_STACK
+ off
];
603 if (slot_type
[0] == STACK_SPILL
) {
604 if (size
!= BPF_REG_SIZE
) {
605 verbose("invalid size of register spill\n");
608 for (i
= 1; i
< BPF_REG_SIZE
; i
++) {
609 if (slot_type
[i
] != STACK_SPILL
) {
610 verbose("corrupted spill memory\n");
615 if (value_regno
>= 0)
616 /* restore register state from stack */
617 state
->regs
[value_regno
] =
618 state
->spilled_regs
[(MAX_BPF_STACK
+ off
) / BPF_REG_SIZE
];
621 for (i
= 0; i
< size
; i
++) {
622 if (slot_type
[i
] != STACK_MISC
) {
623 verbose("invalid read from stack off %d+%d size %d\n",
628 if (value_regno
>= 0)
629 /* have read misc data from the stack */
630 mark_reg_unknown_value(state
->regs
, value_regno
);
635 /* check read/write into map element returned by bpf_map_lookup_elem() */
636 static int check_map_access(struct verifier_env
*env
, u32 regno
, int off
,
639 struct bpf_map
*map
= env
->cur_state
.regs
[regno
].map_ptr
;
641 if (off
< 0 || off
+ size
> map
->value_size
) {
642 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
643 map
->value_size
, off
, size
);
649 /* check access to 'struct bpf_context' fields */
650 static int check_ctx_access(struct verifier_env
*env
, int off
, int size
,
651 enum bpf_access_type t
)
653 if (env
->prog
->aux
->ops
->is_valid_access
&&
654 env
->prog
->aux
->ops
->is_valid_access(off
, size
, t
))
657 verbose("invalid bpf_context access off=%d size=%d\n", off
, size
);
661 static bool is_pointer_value(struct verifier_env
*env
, int regno
)
663 if (env
->allow_ptr_leaks
)
666 switch (env
->cur_state
.regs
[regno
].type
) {
675 /* check whether memory at (regno + off) is accessible for t = (read | write)
676 * if t==write, value_regno is a register which value is stored into memory
677 * if t==read, value_regno is a register which will receive the value from memory
678 * if t==write && value_regno==-1, some unknown value is stored into memory
679 * if t==read && value_regno==-1, don't care what we read from memory
681 static int check_mem_access(struct verifier_env
*env
, u32 regno
, int off
,
682 int bpf_size
, enum bpf_access_type t
,
685 struct verifier_state
*state
= &env
->cur_state
;
688 if (state
->regs
[regno
].type
== PTR_TO_STACK
)
689 off
+= state
->regs
[regno
].imm
;
691 size
= bpf_size_to_bytes(bpf_size
);
695 if (off
% size
!= 0) {
696 verbose("misaligned access off %d size %d\n", off
, size
);
700 if (state
->regs
[regno
].type
== PTR_TO_MAP_VALUE
) {
701 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
702 is_pointer_value(env
, value_regno
)) {
703 verbose("R%d leaks addr into map\n", value_regno
);
706 err
= check_map_access(env
, regno
, off
, size
);
707 if (!err
&& t
== BPF_READ
&& value_regno
>= 0)
708 mark_reg_unknown_value(state
->regs
, value_regno
);
710 } else if (state
->regs
[regno
].type
== PTR_TO_CTX
) {
711 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
712 is_pointer_value(env
, value_regno
)) {
713 verbose("R%d leaks addr into ctx\n", value_regno
);
716 err
= check_ctx_access(env
, off
, size
, t
);
717 if (!err
&& t
== BPF_READ
&& value_regno
>= 0)
718 mark_reg_unknown_value(state
->regs
, value_regno
);
720 } else if (state
->regs
[regno
].type
== FRAME_PTR
||
721 state
->regs
[regno
].type
== PTR_TO_STACK
) {
722 if (off
>= 0 || off
< -MAX_BPF_STACK
) {
723 verbose("invalid stack off=%d size=%d\n", off
, size
);
726 if (t
== BPF_WRITE
) {
727 if (!env
->allow_ptr_leaks
&&
728 state
->stack_slot_type
[MAX_BPF_STACK
+ off
] == STACK_SPILL
&&
729 size
!= BPF_REG_SIZE
) {
730 verbose("attempt to corrupt spilled pointer on stack\n");
733 err
= check_stack_write(state
, off
, size
, value_regno
);
735 err
= check_stack_read(state
, off
, size
, value_regno
);
738 verbose("R%d invalid mem access '%s'\n",
739 regno
, reg_type_str
[state
->regs
[regno
].type
]);
745 static int check_xadd(struct verifier_env
*env
, struct bpf_insn
*insn
)
747 struct reg_state
*regs
= env
->cur_state
.regs
;
750 if ((BPF_SIZE(insn
->code
) != BPF_W
&& BPF_SIZE(insn
->code
) != BPF_DW
) ||
752 verbose("BPF_XADD uses reserved fields\n");
756 /* check src1 operand */
757 err
= check_reg_arg(regs
, insn
->src_reg
, SRC_OP
);
761 /* check src2 operand */
762 err
= check_reg_arg(regs
, insn
->dst_reg
, SRC_OP
);
766 /* check whether atomic_add can read the memory */
767 err
= check_mem_access(env
, insn
->dst_reg
, insn
->off
,
768 BPF_SIZE(insn
->code
), BPF_READ
, -1);
772 /* check whether atomic_add can write into the same memory */
773 return check_mem_access(env
, insn
->dst_reg
, insn
->off
,
774 BPF_SIZE(insn
->code
), BPF_WRITE
, -1);
777 /* when register 'regno' is passed into function that will read 'access_size'
778 * bytes from that pointer, make sure that it's within stack boundary
779 * and all elements of stack are initialized
781 static int check_stack_boundary(struct verifier_env
*env
,
782 int regno
, int access_size
)
784 struct verifier_state
*state
= &env
->cur_state
;
785 struct reg_state
*regs
= state
->regs
;
788 if (regs
[regno
].type
!= PTR_TO_STACK
)
791 off
= regs
[regno
].imm
;
792 if (off
>= 0 || off
< -MAX_BPF_STACK
|| off
+ access_size
> 0 ||
794 verbose("invalid stack type R%d off=%d access_size=%d\n",
795 regno
, off
, access_size
);
799 for (i
= 0; i
< access_size
; i
++) {
800 if (state
->stack_slot_type
[MAX_BPF_STACK
+ off
+ i
] != STACK_MISC
) {
801 verbose("invalid indirect read from stack off %d+%d size %d\n",
802 off
, i
, access_size
);
809 static int check_func_arg(struct verifier_env
*env
, u32 regno
,
810 enum bpf_arg_type arg_type
, struct bpf_map
**mapp
)
812 struct reg_state
*reg
= env
->cur_state
.regs
+ regno
;
813 enum bpf_reg_type expected_type
;
816 if (arg_type
== ARG_DONTCARE
)
819 if (reg
->type
== NOT_INIT
) {
820 verbose("R%d !read_ok\n", regno
);
824 if (arg_type
== ARG_ANYTHING
) {
825 if (is_pointer_value(env
, regno
)) {
826 verbose("R%d leaks addr into helper function\n", regno
);
832 if (arg_type
== ARG_PTR_TO_STACK
|| arg_type
== ARG_PTR_TO_MAP_KEY
||
833 arg_type
== ARG_PTR_TO_MAP_VALUE
) {
834 expected_type
= PTR_TO_STACK
;
835 } else if (arg_type
== ARG_CONST_STACK_SIZE
) {
836 expected_type
= CONST_IMM
;
837 } else if (arg_type
== ARG_CONST_MAP_PTR
) {
838 expected_type
= CONST_PTR_TO_MAP
;
839 } else if (arg_type
== ARG_PTR_TO_CTX
) {
840 expected_type
= PTR_TO_CTX
;
842 verbose("unsupported arg_type %d\n", arg_type
);
846 if (reg
->type
!= expected_type
) {
847 verbose("R%d type=%s expected=%s\n", regno
,
848 reg_type_str
[reg
->type
], reg_type_str
[expected_type
]);
852 if (arg_type
== ARG_CONST_MAP_PTR
) {
853 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
854 *mapp
= reg
->map_ptr
;
856 } else if (arg_type
== ARG_PTR_TO_MAP_KEY
) {
857 /* bpf_map_xxx(..., map_ptr, ..., key) call:
858 * check that [key, key + map->key_size) are within
859 * stack limits and initialized
862 /* in function declaration map_ptr must come before
863 * map_key, so that it's verified and known before
864 * we have to check map_key here. Otherwise it means
865 * that kernel subsystem misconfigured verifier
867 verbose("invalid map_ptr to access map->key\n");
870 err
= check_stack_boundary(env
, regno
, (*mapp
)->key_size
);
872 } else if (arg_type
== ARG_PTR_TO_MAP_VALUE
) {
873 /* bpf_map_xxx(..., map_ptr, ..., value) call:
874 * check [value, value + map->value_size) validity
877 /* kernel subsystem misconfigured verifier */
878 verbose("invalid map_ptr to access map->value\n");
881 err
= check_stack_boundary(env
, regno
, (*mapp
)->value_size
);
883 } else if (arg_type
== ARG_CONST_STACK_SIZE
) {
884 /* bpf_xxx(..., buf, len) call will access 'len' bytes
885 * from stack pointer 'buf'. Check it
886 * note: regno == len, regno - 1 == buf
889 /* kernel subsystem misconfigured verifier */
890 verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
893 err
= check_stack_boundary(env
, regno
- 1, reg
->imm
);
899 static int check_map_func_compatibility(struct bpf_map
*map
, int func_id
)
901 bool bool_map
, bool_func
;
907 for (i
= 0; i
< ARRAY_SIZE(func_limit
); i
++) {
908 bool_map
= (map
->map_type
== func_limit
[i
].map_type
);
909 bool_func
= (func_id
== func_limit
[i
].func_id
);
910 /* only when map & func pair match it can continue.
911 * don't allow any other map type to be passed into
914 if (bool_func
&& bool_map
!= bool_func
)
921 static int check_call(struct verifier_env
*env
, int func_id
)
923 struct verifier_state
*state
= &env
->cur_state
;
924 const struct bpf_func_proto
*fn
= NULL
;
925 struct reg_state
*regs
= state
->regs
;
926 struct bpf_map
*map
= NULL
;
927 struct reg_state
*reg
;
930 /* find function prototype */
931 if (func_id
< 0 || func_id
>= __BPF_FUNC_MAX_ID
) {
932 verbose("invalid func %d\n", func_id
);
936 if (env
->prog
->aux
->ops
->get_func_proto
)
937 fn
= env
->prog
->aux
->ops
->get_func_proto(func_id
);
940 verbose("unknown func %d\n", func_id
);
944 /* eBPF programs must be GPL compatible to use GPL-ed functions */
945 if (!env
->prog
->gpl_compatible
&& fn
->gpl_only
) {
946 verbose("cannot call GPL only function from proprietary program\n");
951 err
= check_func_arg(env
, BPF_REG_1
, fn
->arg1_type
, &map
);
954 err
= check_func_arg(env
, BPF_REG_2
, fn
->arg2_type
, &map
);
957 err
= check_func_arg(env
, BPF_REG_3
, fn
->arg3_type
, &map
);
960 err
= check_func_arg(env
, BPF_REG_4
, fn
->arg4_type
, &map
);
963 err
= check_func_arg(env
, BPF_REG_5
, fn
->arg5_type
, &map
);
967 /* reset caller saved regs */
968 for (i
= 0; i
< CALLER_SAVED_REGS
; i
++) {
969 reg
= regs
+ caller_saved
[i
];
970 reg
->type
= NOT_INIT
;
974 /* update return register */
975 if (fn
->ret_type
== RET_INTEGER
) {
976 regs
[BPF_REG_0
].type
= UNKNOWN_VALUE
;
977 } else if (fn
->ret_type
== RET_VOID
) {
978 regs
[BPF_REG_0
].type
= NOT_INIT
;
979 } else if (fn
->ret_type
== RET_PTR_TO_MAP_VALUE_OR_NULL
) {
980 regs
[BPF_REG_0
].type
= PTR_TO_MAP_VALUE_OR_NULL
;
981 /* remember map_ptr, so that check_map_access()
982 * can check 'value_size' boundary of memory access
983 * to map element returned from bpf_map_lookup_elem()
986 verbose("kernel subsystem misconfigured verifier\n");
989 regs
[BPF_REG_0
].map_ptr
= map
;
991 verbose("unknown return type %d of func %d\n",
992 fn
->ret_type
, func_id
);
996 err
= check_map_func_compatibility(map
, func_id
);
1003 /* check validity of 32-bit and 64-bit arithmetic operations */
1004 static int check_alu_op(struct verifier_env
*env
, struct bpf_insn
*insn
)
1006 struct reg_state
*regs
= env
->cur_state
.regs
;
1007 u8 opcode
= BPF_OP(insn
->code
);
1010 if (opcode
== BPF_END
|| opcode
== BPF_NEG
) {
1011 if (opcode
== BPF_NEG
) {
1012 if (BPF_SRC(insn
->code
) != 0 ||
1013 insn
->src_reg
!= BPF_REG_0
||
1014 insn
->off
!= 0 || insn
->imm
!= 0) {
1015 verbose("BPF_NEG uses reserved fields\n");
1019 if (insn
->src_reg
!= BPF_REG_0
|| insn
->off
!= 0 ||
1020 (insn
->imm
!= 16 && insn
->imm
!= 32 && insn
->imm
!= 64)) {
1021 verbose("BPF_END uses reserved fields\n");
1026 /* check src operand */
1027 err
= check_reg_arg(regs
, insn
->dst_reg
, SRC_OP
);
1031 if (is_pointer_value(env
, insn
->dst_reg
)) {
1032 verbose("R%d pointer arithmetic prohibited\n",
1037 /* check dest operand */
1038 err
= check_reg_arg(regs
, insn
->dst_reg
, DST_OP
);
1042 } else if (opcode
== BPF_MOV
) {
1044 if (BPF_SRC(insn
->code
) == BPF_X
) {
1045 if (insn
->imm
!= 0 || insn
->off
!= 0) {
1046 verbose("BPF_MOV uses reserved fields\n");
1050 /* check src operand */
1051 err
= check_reg_arg(regs
, insn
->src_reg
, SRC_OP
);
1055 if (insn
->src_reg
!= BPF_REG_0
|| insn
->off
!= 0) {
1056 verbose("BPF_MOV uses reserved fields\n");
1061 /* check dest operand */
1062 err
= check_reg_arg(regs
, insn
->dst_reg
, DST_OP
);
1066 if (BPF_SRC(insn
->code
) == BPF_X
) {
1067 if (BPF_CLASS(insn
->code
) == BPF_ALU64
) {
1069 * copy register state to dest reg
1071 regs
[insn
->dst_reg
] = regs
[insn
->src_reg
];
1073 if (is_pointer_value(env
, insn
->src_reg
)) {
1074 verbose("R%d partial copy of pointer\n",
1078 regs
[insn
->dst_reg
].type
= UNKNOWN_VALUE
;
1079 regs
[insn
->dst_reg
].map_ptr
= NULL
;
1083 * remember the value we stored into this reg
1085 regs
[insn
->dst_reg
].type
= CONST_IMM
;
1086 regs
[insn
->dst_reg
].imm
= insn
->imm
;
1089 } else if (opcode
> BPF_END
) {
1090 verbose("invalid BPF_ALU opcode %x\n", opcode
);
1093 } else { /* all other ALU ops: and, sub, xor, add, ... */
1095 bool stack_relative
= false;
1097 if (BPF_SRC(insn
->code
) == BPF_X
) {
1098 if (insn
->imm
!= 0 || insn
->off
!= 0) {
1099 verbose("BPF_ALU uses reserved fields\n");
1102 /* check src1 operand */
1103 err
= check_reg_arg(regs
, insn
->src_reg
, SRC_OP
);
1107 if (insn
->src_reg
!= BPF_REG_0
|| insn
->off
!= 0) {
1108 verbose("BPF_ALU uses reserved fields\n");
1113 /* check src2 operand */
1114 err
= check_reg_arg(regs
, insn
->dst_reg
, SRC_OP
);
1118 if ((opcode
== BPF_MOD
|| opcode
== BPF_DIV
) &&
1119 BPF_SRC(insn
->code
) == BPF_K
&& insn
->imm
== 0) {
1120 verbose("div by zero\n");
1124 if ((opcode
== BPF_LSH
|| opcode
== BPF_RSH
||
1125 opcode
== BPF_ARSH
) && BPF_SRC(insn
->code
) == BPF_K
) {
1126 int size
= BPF_CLASS(insn
->code
) == BPF_ALU64
? 64 : 32;
1128 if (insn
->imm
< 0 || insn
->imm
>= size
) {
1129 verbose("invalid shift %d\n", insn
->imm
);
1134 /* pattern match 'bpf_add Rx, imm' instruction */
1135 if (opcode
== BPF_ADD
&& BPF_CLASS(insn
->code
) == BPF_ALU64
&&
1136 regs
[insn
->dst_reg
].type
== FRAME_PTR
&&
1137 BPF_SRC(insn
->code
) == BPF_K
) {
1138 stack_relative
= true;
1139 } else if (is_pointer_value(env
, insn
->dst_reg
)) {
1140 verbose("R%d pointer arithmetic prohibited\n",
1143 } else if (BPF_SRC(insn
->code
) == BPF_X
&&
1144 is_pointer_value(env
, insn
->src_reg
)) {
1145 verbose("R%d pointer arithmetic prohibited\n",
1150 /* check dest operand */
1151 err
= check_reg_arg(regs
, insn
->dst_reg
, DST_OP
);
1155 if (stack_relative
) {
1156 regs
[insn
->dst_reg
].type
= PTR_TO_STACK
;
1157 regs
[insn
->dst_reg
].imm
= insn
->imm
;
1164 static int check_cond_jmp_op(struct verifier_env
*env
,
1165 struct bpf_insn
*insn
, int *insn_idx
)
1167 struct reg_state
*regs
= env
->cur_state
.regs
;
1168 struct verifier_state
*other_branch
;
1169 u8 opcode
= BPF_OP(insn
->code
);
1172 if (opcode
> BPF_EXIT
) {
1173 verbose("invalid BPF_JMP opcode %x\n", opcode
);
1177 if (BPF_SRC(insn
->code
) == BPF_X
) {
1178 if (insn
->imm
!= 0) {
1179 verbose("BPF_JMP uses reserved fields\n");
1183 /* check src1 operand */
1184 err
= check_reg_arg(regs
, insn
->src_reg
, SRC_OP
);
1188 if (is_pointer_value(env
, insn
->src_reg
)) {
1189 verbose("R%d pointer comparison prohibited\n",
1194 if (insn
->src_reg
!= BPF_REG_0
) {
1195 verbose("BPF_JMP uses reserved fields\n");
1200 /* check src2 operand */
1201 err
= check_reg_arg(regs
, insn
->dst_reg
, SRC_OP
);
1205 /* detect if R == 0 where R was initialized to zero earlier */
1206 if (BPF_SRC(insn
->code
) == BPF_K
&&
1207 (opcode
== BPF_JEQ
|| opcode
== BPF_JNE
) &&
1208 regs
[insn
->dst_reg
].type
== CONST_IMM
&&
1209 regs
[insn
->dst_reg
].imm
== insn
->imm
) {
1210 if (opcode
== BPF_JEQ
) {
1211 /* if (imm == imm) goto pc+off;
1212 * only follow the goto, ignore fall-through
1214 *insn_idx
+= insn
->off
;
1217 /* if (imm != imm) goto pc+off;
1218 * only follow fall-through branch, since
1219 * that's where the program will go
1225 other_branch
= push_stack(env
, *insn_idx
+ insn
->off
+ 1, *insn_idx
);
1229 /* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */
1230 if (BPF_SRC(insn
->code
) == BPF_K
&&
1231 insn
->imm
== 0 && (opcode
== BPF_JEQ
||
1232 opcode
== BPF_JNE
) &&
1233 regs
[insn
->dst_reg
].type
== PTR_TO_MAP_VALUE_OR_NULL
) {
1234 if (opcode
== BPF_JEQ
) {
1235 /* next fallthrough insn can access memory via
1238 regs
[insn
->dst_reg
].type
= PTR_TO_MAP_VALUE
;
1239 /* branch targer cannot access it, since reg == 0 */
1240 other_branch
->regs
[insn
->dst_reg
].type
= CONST_IMM
;
1241 other_branch
->regs
[insn
->dst_reg
].imm
= 0;
1243 other_branch
->regs
[insn
->dst_reg
].type
= PTR_TO_MAP_VALUE
;
1244 regs
[insn
->dst_reg
].type
= CONST_IMM
;
1245 regs
[insn
->dst_reg
].imm
= 0;
1247 } else if (is_pointer_value(env
, insn
->dst_reg
)) {
1248 verbose("R%d pointer comparison prohibited\n", insn
->dst_reg
);
1250 } else if (BPF_SRC(insn
->code
) == BPF_K
&&
1251 (opcode
== BPF_JEQ
|| opcode
== BPF_JNE
)) {
1253 if (opcode
== BPF_JEQ
) {
1254 /* detect if (R == imm) goto
1255 * and in the target state recognize that R = imm
1257 other_branch
->regs
[insn
->dst_reg
].type
= CONST_IMM
;
1258 other_branch
->regs
[insn
->dst_reg
].imm
= insn
->imm
;
1260 /* detect if (R != imm) goto
1261 * and in the fall-through state recognize that R = imm
1263 regs
[insn
->dst_reg
].type
= CONST_IMM
;
1264 regs
[insn
->dst_reg
].imm
= insn
->imm
;
1268 print_verifier_state(env
);
1272 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
1273 static struct bpf_map
*ld_imm64_to_map_ptr(struct bpf_insn
*insn
)
1275 u64 imm64
= ((u64
) (u32
) insn
[0].imm
) | ((u64
) (u32
) insn
[1].imm
) << 32;
1277 return (struct bpf_map
*) (unsigned long) imm64
;
1280 /* verify BPF_LD_IMM64 instruction */
1281 static int check_ld_imm(struct verifier_env
*env
, struct bpf_insn
*insn
)
1283 struct reg_state
*regs
= env
->cur_state
.regs
;
1286 if (BPF_SIZE(insn
->code
) != BPF_DW
) {
1287 verbose("invalid BPF_LD_IMM insn\n");
1290 if (insn
->off
!= 0) {
1291 verbose("BPF_LD_IMM64 uses reserved fields\n");
1295 err
= check_reg_arg(regs
, insn
->dst_reg
, DST_OP
);
1299 if (insn
->src_reg
== 0)
1300 /* generic move 64-bit immediate into a register */
1303 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
1304 BUG_ON(insn
->src_reg
!= BPF_PSEUDO_MAP_FD
);
1306 regs
[insn
->dst_reg
].type
= CONST_PTR_TO_MAP
;
1307 regs
[insn
->dst_reg
].map_ptr
= ld_imm64_to_map_ptr(insn
);
1311 static bool may_access_skb(enum bpf_prog_type type
)
1314 case BPF_PROG_TYPE_SOCKET_FILTER
:
1315 case BPF_PROG_TYPE_SCHED_CLS
:
1316 case BPF_PROG_TYPE_SCHED_ACT
:
1323 /* verify safety of LD_ABS|LD_IND instructions:
1324 * - they can only appear in the programs where ctx == skb
1325 * - since they are wrappers of function calls, they scratch R1-R5 registers,
1326 * preserve R6-R9, and store return value into R0
1329 * ctx == skb == R6 == CTX
1332 * SRC == any register
1333 * IMM == 32-bit immediate
1336 * R0 - 8/16/32-bit skb data converted to cpu endianness
1338 static int check_ld_abs(struct verifier_env
*env
, struct bpf_insn
*insn
)
1340 struct reg_state
*regs
= env
->cur_state
.regs
;
1341 u8 mode
= BPF_MODE(insn
->code
);
1342 struct reg_state
*reg
;
1345 if (!may_access_skb(env
->prog
->type
)) {
1346 verbose("BPF_LD_ABS|IND instructions not allowed for this program type\n");
1350 if (insn
->dst_reg
!= BPF_REG_0
|| insn
->off
!= 0 ||
1351 (mode
== BPF_ABS
&& insn
->src_reg
!= BPF_REG_0
)) {
1352 verbose("BPF_LD_ABS uses reserved fields\n");
1356 /* check whether implicit source operand (register R6) is readable */
1357 err
= check_reg_arg(regs
, BPF_REG_6
, SRC_OP
);
1361 if (regs
[BPF_REG_6
].type
!= PTR_TO_CTX
) {
1362 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
1366 if (mode
== BPF_IND
) {
1367 /* check explicit source operand */
1368 err
= check_reg_arg(regs
, insn
->src_reg
, SRC_OP
);
1373 /* reset caller saved regs to unreadable */
1374 for (i
= 0; i
< CALLER_SAVED_REGS
; i
++) {
1375 reg
= regs
+ caller_saved
[i
];
1376 reg
->type
= NOT_INIT
;
1380 /* mark destination R0 register as readable, since it contains
1381 * the value fetched from the packet
1383 regs
[BPF_REG_0
].type
= UNKNOWN_VALUE
;
1387 /* non-recursive DFS pseudo code
1388 * 1 procedure DFS-iterative(G,v):
1389 * 2 label v as discovered
1390 * 3 let S be a stack
1392 * 5 while S is not empty
1394 * 7 if t is what we're looking for:
1396 * 9 for all edges e in G.adjacentEdges(t) do
1397 * 10 if edge e is already labelled
1398 * 11 continue with the next edge
1399 * 12 w <- G.adjacentVertex(t,e)
1400 * 13 if vertex w is not discovered and not explored
1401 * 14 label e as tree-edge
1402 * 15 label w as discovered
1405 * 18 else if vertex w is discovered
1406 * 19 label e as back-edge
1408 * 21 // vertex w is explored
1409 * 22 label e as forward- or cross-edge
1410 * 23 label t as explored
1415 * 0x11 - discovered and fall-through edge labelled
1416 * 0x12 - discovered and fall-through and branch edges labelled
1427 #define STATE_LIST_MARK ((struct verifier_state_list *) -1L)
1429 static int *insn_stack
; /* stack of insns to process */
1430 static int cur_stack
; /* current stack index */
1431 static int *insn_state
;
1433 /* t, w, e - match pseudo-code above:
1434 * t - index of current instruction
1435 * w - next instruction
1438 static int push_insn(int t
, int w
, int e
, struct verifier_env
*env
)
1440 if (e
== FALLTHROUGH
&& insn_state
[t
] >= (DISCOVERED
| FALLTHROUGH
))
1443 if (e
== BRANCH
&& insn_state
[t
] >= (DISCOVERED
| BRANCH
))
1446 if (w
< 0 || w
>= env
->prog
->len
) {
1447 verbose("jump out of range from insn %d to %d\n", t
, w
);
1452 /* mark branch target for state pruning */
1453 env
->explored_states
[w
] = STATE_LIST_MARK
;
1455 if (insn_state
[w
] == 0) {
1457 insn_state
[t
] = DISCOVERED
| e
;
1458 insn_state
[w
] = DISCOVERED
;
1459 if (cur_stack
>= env
->prog
->len
)
1461 insn_stack
[cur_stack
++] = w
;
1463 } else if ((insn_state
[w
] & 0xF0) == DISCOVERED
) {
1464 verbose("back-edge from insn %d to %d\n", t
, w
);
1466 } else if (insn_state
[w
] == EXPLORED
) {
1467 /* forward- or cross-edge */
1468 insn_state
[t
] = DISCOVERED
| e
;
1470 verbose("insn state internal bug\n");
1476 /* non-recursive depth-first-search to detect loops in BPF program
1477 * loop == back-edge in directed graph
1479 static int check_cfg(struct verifier_env
*env
)
1481 struct bpf_insn
*insns
= env
->prog
->insnsi
;
1482 int insn_cnt
= env
->prog
->len
;
1486 insn_state
= kcalloc(insn_cnt
, sizeof(int), GFP_KERNEL
);
1490 insn_stack
= kcalloc(insn_cnt
, sizeof(int), GFP_KERNEL
);
1496 insn_state
[0] = DISCOVERED
; /* mark 1st insn as discovered */
1497 insn_stack
[0] = 0; /* 0 is the first instruction */
1503 t
= insn_stack
[cur_stack
- 1];
1505 if (BPF_CLASS(insns
[t
].code
) == BPF_JMP
) {
1506 u8 opcode
= BPF_OP(insns
[t
].code
);
1508 if (opcode
== BPF_EXIT
) {
1510 } else if (opcode
== BPF_CALL
) {
1511 ret
= push_insn(t
, t
+ 1, FALLTHROUGH
, env
);
1516 } else if (opcode
== BPF_JA
) {
1517 if (BPF_SRC(insns
[t
].code
) != BPF_K
) {
1521 /* unconditional jump with single edge */
1522 ret
= push_insn(t
, t
+ insns
[t
].off
+ 1,
1528 /* tell verifier to check for equivalent states
1529 * after every call and jump
1531 if (t
+ 1 < insn_cnt
)
1532 env
->explored_states
[t
+ 1] = STATE_LIST_MARK
;
1534 /* conditional jump with two edges */
1535 ret
= push_insn(t
, t
+ 1, FALLTHROUGH
, env
);
1541 ret
= push_insn(t
, t
+ insns
[t
].off
+ 1, BRANCH
, env
);
1548 /* all other non-branch instructions with single
1551 ret
= push_insn(t
, t
+ 1, FALLTHROUGH
, env
);
1559 insn_state
[t
] = EXPLORED
;
1560 if (cur_stack
-- <= 0) {
1561 verbose("pop stack internal bug\n");
1568 for (i
= 0; i
< insn_cnt
; i
++) {
1569 if (insn_state
[i
] != EXPLORED
) {
1570 verbose("unreachable insn %d\n", i
);
1575 ret
= 0; /* cfg looks good */
1583 /* compare two verifier states
1585 * all states stored in state_list are known to be valid, since
1586 * verifier reached 'bpf_exit' instruction through them
1588 * this function is called when verifier exploring different branches of
1589 * execution popped from the state stack. If it sees an old state that has
1590 * more strict register state and more strict stack state then this execution
1591 * branch doesn't need to be explored further, since verifier already
1592 * concluded that more strict state leads to valid finish.
1594 * Therefore two states are equivalent if register state is more conservative
1595 * and explored stack state is more conservative than the current one.
1598 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
1599 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
1601 * In other words if current stack state (one being explored) has more
1602 * valid slots than old one that already passed validation, it means
1603 * the verifier can stop exploring and conclude that current state is valid too
1605 * Similarly with registers. If explored state has register type as invalid
1606 * whereas register type in current state is meaningful, it means that
1607 * the current state will reach 'bpf_exit' instruction safely
1609 static bool states_equal(struct verifier_state
*old
, struct verifier_state
*cur
)
1613 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
1614 if (memcmp(&old
->regs
[i
], &cur
->regs
[i
],
1615 sizeof(old
->regs
[0])) != 0) {
1616 if (old
->regs
[i
].type
== NOT_INIT
||
1617 (old
->regs
[i
].type
== UNKNOWN_VALUE
&&
1618 cur
->regs
[i
].type
!= NOT_INIT
))
1624 for (i
= 0; i
< MAX_BPF_STACK
; i
++) {
1625 if (old
->stack_slot_type
[i
] == STACK_INVALID
)
1627 if (old
->stack_slot_type
[i
] != cur
->stack_slot_type
[i
])
1628 /* Ex: old explored (safe) state has STACK_SPILL in
1629 * this stack slot, but current has has STACK_MISC ->
1630 * this verifier states are not equivalent,
1631 * return false to continue verification of this path
1634 if (i
% BPF_REG_SIZE
)
1636 if (memcmp(&old
->spilled_regs
[i
/ BPF_REG_SIZE
],
1637 &cur
->spilled_regs
[i
/ BPF_REG_SIZE
],
1638 sizeof(old
->spilled_regs
[0])))
1639 /* when explored and current stack slot types are
1640 * the same, check that stored pointers types
1641 * are the same as well.
1642 * Ex: explored safe path could have stored
1643 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -8}
1644 * but current path has stored:
1645 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -16}
1646 * such verifier states are not equivalent.
1647 * return false to continue verification of this path
1656 static int is_state_visited(struct verifier_env
*env
, int insn_idx
)
1658 struct verifier_state_list
*new_sl
;
1659 struct verifier_state_list
*sl
;
1661 sl
= env
->explored_states
[insn_idx
];
1663 /* this 'insn_idx' instruction wasn't marked, so we will not
1664 * be doing state search here
1668 while (sl
!= STATE_LIST_MARK
) {
1669 if (states_equal(&sl
->state
, &env
->cur_state
))
1670 /* reached equivalent register/stack state,
1677 /* there were no equivalent states, remember current one.
1678 * technically the current state is not proven to be safe yet,
1679 * but it will either reach bpf_exit (which means it's safe) or
1680 * it will be rejected. Since there are no loops, we won't be
1681 * seeing this 'insn_idx' instruction again on the way to bpf_exit
1683 new_sl
= kmalloc(sizeof(struct verifier_state_list
), GFP_USER
);
1687 /* add new state to the head of linked list */
1688 memcpy(&new_sl
->state
, &env
->cur_state
, sizeof(env
->cur_state
));
1689 new_sl
->next
= env
->explored_states
[insn_idx
];
1690 env
->explored_states
[insn_idx
] = new_sl
;
1694 static int do_check(struct verifier_env
*env
)
1696 struct verifier_state
*state
= &env
->cur_state
;
1697 struct bpf_insn
*insns
= env
->prog
->insnsi
;
1698 struct reg_state
*regs
= state
->regs
;
1699 int insn_cnt
= env
->prog
->len
;
1700 int insn_idx
, prev_insn_idx
= 0;
1701 int insn_processed
= 0;
1702 bool do_print_state
= false;
1704 init_reg_state(regs
);
1707 struct bpf_insn
*insn
;
1711 if (insn_idx
>= insn_cnt
) {
1712 verbose("invalid insn idx %d insn_cnt %d\n",
1713 insn_idx
, insn_cnt
);
1717 insn
= &insns
[insn_idx
];
1718 class = BPF_CLASS(insn
->code
);
1720 if (++insn_processed
> 32768) {
1721 verbose("BPF program is too large. Proccessed %d insn\n",
1726 err
= is_state_visited(env
, insn_idx
);
1730 /* found equivalent state, can prune the search */
1733 verbose("\nfrom %d to %d: safe\n",
1734 prev_insn_idx
, insn_idx
);
1736 verbose("%d: safe\n", insn_idx
);
1738 goto process_bpf_exit
;
1741 if (log_level
&& do_print_state
) {
1742 verbose("\nfrom %d to %d:", prev_insn_idx
, insn_idx
);
1743 print_verifier_state(env
);
1744 do_print_state
= false;
1748 verbose("%d: ", insn_idx
);
1749 print_bpf_insn(insn
);
1752 if (class == BPF_ALU
|| class == BPF_ALU64
) {
1753 err
= check_alu_op(env
, insn
);
1757 } else if (class == BPF_LDX
) {
1758 enum bpf_reg_type src_reg_type
;
1760 /* check for reserved fields is already done */
1762 /* check src operand */
1763 err
= check_reg_arg(regs
, insn
->src_reg
, SRC_OP
);
1767 err
= check_reg_arg(regs
, insn
->dst_reg
, DST_OP_NO_MARK
);
1771 src_reg_type
= regs
[insn
->src_reg
].type
;
1773 /* check that memory (src_reg + off) is readable,
1774 * the state of dst_reg will be updated by this func
1776 err
= check_mem_access(env
, insn
->src_reg
, insn
->off
,
1777 BPF_SIZE(insn
->code
), BPF_READ
,
1782 if (BPF_SIZE(insn
->code
) != BPF_W
) {
1787 if (insn
->imm
== 0) {
1789 * dst_reg = *(u32 *)(src_reg + off)
1790 * use reserved 'imm' field to mark this insn
1792 insn
->imm
= src_reg_type
;
1794 } else if (src_reg_type
!= insn
->imm
&&
1795 (src_reg_type
== PTR_TO_CTX
||
1796 insn
->imm
== PTR_TO_CTX
)) {
1797 /* ABuser program is trying to use the same insn
1798 * dst_reg = *(u32*) (src_reg + off)
1799 * with different pointer types:
1800 * src_reg == ctx in one branch and
1801 * src_reg == stack|map in some other branch.
1804 verbose("same insn cannot be used with different pointers\n");
1808 } else if (class == BPF_STX
) {
1809 enum bpf_reg_type dst_reg_type
;
1811 if (BPF_MODE(insn
->code
) == BPF_XADD
) {
1812 err
= check_xadd(env
, insn
);
1819 /* check src1 operand */
1820 err
= check_reg_arg(regs
, insn
->src_reg
, SRC_OP
);
1823 /* check src2 operand */
1824 err
= check_reg_arg(regs
, insn
->dst_reg
, SRC_OP
);
1828 dst_reg_type
= regs
[insn
->dst_reg
].type
;
1830 /* check that memory (dst_reg + off) is writeable */
1831 err
= check_mem_access(env
, insn
->dst_reg
, insn
->off
,
1832 BPF_SIZE(insn
->code
), BPF_WRITE
,
1837 if (insn
->imm
== 0) {
1838 insn
->imm
= dst_reg_type
;
1839 } else if (dst_reg_type
!= insn
->imm
&&
1840 (dst_reg_type
== PTR_TO_CTX
||
1841 insn
->imm
== PTR_TO_CTX
)) {
1842 verbose("same insn cannot be used with different pointers\n");
1846 } else if (class == BPF_ST
) {
1847 if (BPF_MODE(insn
->code
) != BPF_MEM
||
1848 insn
->src_reg
!= BPF_REG_0
) {
1849 verbose("BPF_ST uses reserved fields\n");
1852 /* check src operand */
1853 err
= check_reg_arg(regs
, insn
->dst_reg
, SRC_OP
);
1857 /* check that memory (dst_reg + off) is writeable */
1858 err
= check_mem_access(env
, insn
->dst_reg
, insn
->off
,
1859 BPF_SIZE(insn
->code
), BPF_WRITE
,
1864 } else if (class == BPF_JMP
) {
1865 u8 opcode
= BPF_OP(insn
->code
);
1867 if (opcode
== BPF_CALL
) {
1868 if (BPF_SRC(insn
->code
) != BPF_K
||
1870 insn
->src_reg
!= BPF_REG_0
||
1871 insn
->dst_reg
!= BPF_REG_0
) {
1872 verbose("BPF_CALL uses reserved fields\n");
1876 err
= check_call(env
, insn
->imm
);
1880 } else if (opcode
== BPF_JA
) {
1881 if (BPF_SRC(insn
->code
) != BPF_K
||
1883 insn
->src_reg
!= BPF_REG_0
||
1884 insn
->dst_reg
!= BPF_REG_0
) {
1885 verbose("BPF_JA uses reserved fields\n");
1889 insn_idx
+= insn
->off
+ 1;
1892 } else if (opcode
== BPF_EXIT
) {
1893 if (BPF_SRC(insn
->code
) != BPF_K
||
1895 insn
->src_reg
!= BPF_REG_0
||
1896 insn
->dst_reg
!= BPF_REG_0
) {
1897 verbose("BPF_EXIT uses reserved fields\n");
1901 /* eBPF calling convetion is such that R0 is used
1902 * to return the value from eBPF program.
1903 * Make sure that it's readable at this time
1904 * of bpf_exit, which means that program wrote
1905 * something into it earlier
1907 err
= check_reg_arg(regs
, BPF_REG_0
, SRC_OP
);
1911 if (is_pointer_value(env
, BPF_REG_0
)) {
1912 verbose("R0 leaks addr as return value\n");
1917 insn_idx
= pop_stack(env
, &prev_insn_idx
);
1921 do_print_state
= true;
1925 err
= check_cond_jmp_op(env
, insn
, &insn_idx
);
1929 } else if (class == BPF_LD
) {
1930 u8 mode
= BPF_MODE(insn
->code
);
1932 if (mode
== BPF_ABS
|| mode
== BPF_IND
) {
1933 err
= check_ld_abs(env
, insn
);
1937 } else if (mode
== BPF_IMM
) {
1938 err
= check_ld_imm(env
, insn
);
1944 verbose("invalid BPF_LD mode\n");
1948 verbose("unknown insn class %d\n", class);
1958 /* look for pseudo eBPF instructions that access map FDs and
1959 * replace them with actual map pointers
1961 static int replace_map_fd_with_map_ptr(struct verifier_env
*env
)
1963 struct bpf_insn
*insn
= env
->prog
->insnsi
;
1964 int insn_cnt
= env
->prog
->len
;
1967 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
1968 if (BPF_CLASS(insn
->code
) == BPF_LDX
&&
1969 (BPF_MODE(insn
->code
) != BPF_MEM
|| insn
->imm
!= 0)) {
1970 verbose("BPF_LDX uses reserved fields\n");
1974 if (BPF_CLASS(insn
->code
) == BPF_STX
&&
1975 ((BPF_MODE(insn
->code
) != BPF_MEM
&&
1976 BPF_MODE(insn
->code
) != BPF_XADD
) || insn
->imm
!= 0)) {
1977 verbose("BPF_STX uses reserved fields\n");
1981 if (insn
[0].code
== (BPF_LD
| BPF_IMM
| BPF_DW
)) {
1982 struct bpf_map
*map
;
1985 if (i
== insn_cnt
- 1 || insn
[1].code
!= 0 ||
1986 insn
[1].dst_reg
!= 0 || insn
[1].src_reg
!= 0 ||
1988 verbose("invalid bpf_ld_imm64 insn\n");
1992 if (insn
->src_reg
== 0)
1993 /* valid generic load 64-bit imm */
1996 if (insn
->src_reg
!= BPF_PSEUDO_MAP_FD
) {
1997 verbose("unrecognized bpf_ld_imm64 insn\n");
2001 f
= fdget(insn
->imm
);
2002 map
= __bpf_map_get(f
);
2004 verbose("fd %d is not pointing to valid bpf_map\n",
2007 return PTR_ERR(map
);
2010 /* store map pointer inside BPF_LD_IMM64 instruction */
2011 insn
[0].imm
= (u32
) (unsigned long) map
;
2012 insn
[1].imm
= ((u64
) (unsigned long) map
) >> 32;
2014 /* check whether we recorded this map already */
2015 for (j
= 0; j
< env
->used_map_cnt
; j
++)
2016 if (env
->used_maps
[j
] == map
) {
2021 if (env
->used_map_cnt
>= MAX_USED_MAPS
) {
2026 /* remember this map */
2027 env
->used_maps
[env
->used_map_cnt
++] = map
;
2029 /* hold the map. If the program is rejected by verifier,
2030 * the map will be released by release_maps() or it
2031 * will be used by the valid program until it's unloaded
2032 * and all maps are released in free_bpf_prog_info()
2034 bpf_map_inc(map
, false);
2042 /* now all pseudo BPF_LD_IMM64 instructions load valid
2043 * 'struct bpf_map *' into a register instead of user map_fd.
2044 * These pointers will be used later by verifier to validate map access.
2049 /* drop refcnt of maps used by the rejected program */
2050 static void release_maps(struct verifier_env
*env
)
2054 for (i
= 0; i
< env
->used_map_cnt
; i
++)
2055 bpf_map_put(env
->used_maps
[i
]);
2058 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
2059 static void convert_pseudo_ld_imm64(struct verifier_env
*env
)
2061 struct bpf_insn
*insn
= env
->prog
->insnsi
;
2062 int insn_cnt
= env
->prog
->len
;
2065 for (i
= 0; i
< insn_cnt
; i
++, insn
++)
2066 if (insn
->code
== (BPF_LD
| BPF_IMM
| BPF_DW
))
2070 static void adjust_branches(struct bpf_prog
*prog
, int pos
, int delta
)
2072 struct bpf_insn
*insn
= prog
->insnsi
;
2073 int insn_cnt
= prog
->len
;
2076 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
2077 if (BPF_CLASS(insn
->code
) != BPF_JMP
||
2078 BPF_OP(insn
->code
) == BPF_CALL
||
2079 BPF_OP(insn
->code
) == BPF_EXIT
)
2082 /* adjust offset of jmps if necessary */
2083 if (i
< pos
&& i
+ insn
->off
+ 1 > pos
)
2085 else if (i
> pos
+ delta
&& i
+ insn
->off
+ 1 <= pos
+ delta
)
2090 /* convert load instructions that access fields of 'struct __sk_buff'
2091 * into sequence of instructions that access fields of 'struct sk_buff'
2093 static int convert_ctx_accesses(struct verifier_env
*env
)
2095 struct bpf_insn
*insn
= env
->prog
->insnsi
;
2096 int insn_cnt
= env
->prog
->len
;
2097 struct bpf_insn insn_buf
[16];
2098 struct bpf_prog
*new_prog
;
2101 enum bpf_access_type type
;
2103 if (!env
->prog
->aux
->ops
->convert_ctx_access
)
2106 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
2107 if (insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_W
))
2109 else if (insn
->code
== (BPF_STX
| BPF_MEM
| BPF_W
))
2114 if (insn
->imm
!= PTR_TO_CTX
) {
2115 /* clear internal mark */
2120 cnt
= env
->prog
->aux
->ops
->
2121 convert_ctx_access(type
, insn
->dst_reg
, insn
->src_reg
,
2122 insn
->off
, insn_buf
, env
->prog
);
2123 if (cnt
== 0 || cnt
>= ARRAY_SIZE(insn_buf
)) {
2124 verbose("bpf verifier is misconfigured\n");
2129 memcpy(insn
, insn_buf
, sizeof(*insn
));
2133 /* several new insns need to be inserted. Make room for them */
2134 insn_cnt
+= cnt
- 1;
2135 new_prog
= bpf_prog_realloc(env
->prog
,
2136 bpf_prog_size(insn_cnt
),
2141 new_prog
->len
= insn_cnt
;
2143 memmove(new_prog
->insnsi
+ i
+ cnt
, new_prog
->insns
+ i
+ 1,
2144 sizeof(*insn
) * (insn_cnt
- i
- cnt
));
2146 /* copy substitute insns in place of load instruction */
2147 memcpy(new_prog
->insnsi
+ i
, insn_buf
, sizeof(*insn
) * cnt
);
2149 /* adjust branches in the whole program */
2150 adjust_branches(new_prog
, i
, cnt
- 1);
2152 /* keep walking new program and skip insns we just inserted */
2153 env
->prog
= new_prog
;
2154 insn
= new_prog
->insnsi
+ i
+ cnt
- 1;
2161 static void free_states(struct verifier_env
*env
)
2163 struct verifier_state_list
*sl
, *sln
;
2166 if (!env
->explored_states
)
2169 for (i
= 0; i
< env
->prog
->len
; i
++) {
2170 sl
= env
->explored_states
[i
];
2173 while (sl
!= STATE_LIST_MARK
) {
2180 kfree(env
->explored_states
);
2183 int bpf_check(struct bpf_prog
**prog
, union bpf_attr
*attr
)
2185 char __user
*log_ubuf
= NULL
;
2186 struct verifier_env
*env
;
2189 if ((*prog
)->len
<= 0 || (*prog
)->len
> BPF_MAXINSNS
)
2192 /* 'struct verifier_env' can be global, but since it's not small,
2193 * allocate/free it every time bpf_check() is called
2195 env
= kzalloc(sizeof(struct verifier_env
), GFP_KERNEL
);
2201 /* grab the mutex to protect few globals used by verifier */
2202 mutex_lock(&bpf_verifier_lock
);
2204 if (attr
->log_level
|| attr
->log_buf
|| attr
->log_size
) {
2205 /* user requested verbose verifier output
2206 * and supplied buffer to store the verification trace
2208 log_level
= attr
->log_level
;
2209 log_ubuf
= (char __user
*) (unsigned long) attr
->log_buf
;
2210 log_size
= attr
->log_size
;
2214 /* log_* values have to be sane */
2215 if (log_size
< 128 || log_size
> UINT_MAX
>> 8 ||
2216 log_level
== 0 || log_ubuf
== NULL
)
2220 log_buf
= vmalloc(log_size
);
2227 ret
= replace_map_fd_with_map_ptr(env
);
2229 goto skip_full_check
;
2231 env
->explored_states
= kcalloc(env
->prog
->len
,
2232 sizeof(struct verifier_state_list
*),
2235 if (!env
->explored_states
)
2236 goto skip_full_check
;
2238 ret
= check_cfg(env
);
2240 goto skip_full_check
;
2242 env
->allow_ptr_leaks
= capable(CAP_SYS_ADMIN
);
2244 ret
= do_check(env
);
2247 while (pop_stack(env
, NULL
) >= 0);
2251 /* program is valid, convert *(u32*)(ctx + off) accesses */
2252 ret
= convert_ctx_accesses(env
);
2254 if (log_level
&& log_len
>= log_size
- 1) {
2255 BUG_ON(log_len
>= log_size
);
2256 /* verifier log exceeded user supplied buffer */
2258 /* fall through to return what was recorded */
2261 /* copy verifier log back to user space including trailing zero */
2262 if (log_level
&& copy_to_user(log_ubuf
, log_buf
, log_len
+ 1) != 0) {
2267 if (ret
== 0 && env
->used_map_cnt
) {
2268 /* if program passed verifier, update used_maps in bpf_prog_info */
2269 env
->prog
->aux
->used_maps
= kmalloc_array(env
->used_map_cnt
,
2270 sizeof(env
->used_maps
[0]),
2273 if (!env
->prog
->aux
->used_maps
) {
2278 memcpy(env
->prog
->aux
->used_maps
, env
->used_maps
,
2279 sizeof(env
->used_maps
[0]) * env
->used_map_cnt
);
2280 env
->prog
->aux
->used_map_cnt
= env
->used_map_cnt
;
2282 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
2283 * bpf_ld_imm64 instructions
2285 convert_pseudo_ld_imm64(env
);
2292 if (!env
->prog
->aux
->used_maps
)
2293 /* if we didn't copy map pointers into bpf_prog_info, release
2294 * them now. Otherwise free_bpf_prog_info() will release them.
2299 mutex_unlock(&bpf_verifier_lock
);