net/netfilter/nf_conntrack_core: Fix net_conntrack_lock()
[linux/fpc-iii.git] / fs / btrfs / compression.c
blobd2ef9ac2a63038e279239012fdec7de0cf9573e3
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include <linux/sched/mm.h>
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
46 static int btrfs_decompress_bio(struct compressed_bio *cb);
48 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
49 unsigned long disk_size)
51 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
53 return sizeof(struct compressed_bio) +
54 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
57 static int check_compressed_csum(struct btrfs_inode *inode,
58 struct compressed_bio *cb,
59 u64 disk_start)
61 int ret;
62 struct page *page;
63 unsigned long i;
64 char *kaddr;
65 u32 csum;
66 u32 *cb_sum = &cb->sums;
68 if (inode->flags & BTRFS_INODE_NODATASUM)
69 return 0;
71 for (i = 0; i < cb->nr_pages; i++) {
72 page = cb->compressed_pages[i];
73 csum = ~(u32)0;
75 kaddr = kmap_atomic(page);
76 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
77 btrfs_csum_final(csum, (u8 *)&csum);
78 kunmap_atomic(kaddr);
80 if (csum != *cb_sum) {
81 btrfs_print_data_csum_error(inode, disk_start, csum,
82 *cb_sum, cb->mirror_num);
83 ret = -EIO;
84 goto fail;
86 cb_sum++;
89 ret = 0;
90 fail:
91 return ret;
94 /* when we finish reading compressed pages from the disk, we
95 * decompress them and then run the bio end_io routines on the
96 * decompressed pages (in the inode address space).
98 * This allows the checksumming and other IO error handling routines
99 * to work normally
101 * The compressed pages are freed here, and it must be run
102 * in process context
104 static void end_compressed_bio_read(struct bio *bio)
106 struct compressed_bio *cb = bio->bi_private;
107 struct inode *inode;
108 struct page *page;
109 unsigned long index;
110 int ret;
112 if (bio->bi_status)
113 cb->errors = 1;
115 /* if there are more bios still pending for this compressed
116 * extent, just exit
118 if (!refcount_dec_and_test(&cb->pending_bios))
119 goto out;
121 inode = cb->inode;
122 ret = check_compressed_csum(BTRFS_I(inode), cb,
123 (u64)bio->bi_iter.bi_sector << 9);
124 if (ret)
125 goto csum_failed;
127 /* ok, we're the last bio for this extent, lets start
128 * the decompression.
130 ret = btrfs_decompress_bio(cb);
132 csum_failed:
133 if (ret)
134 cb->errors = 1;
136 /* release the compressed pages */
137 index = 0;
138 for (index = 0; index < cb->nr_pages; index++) {
139 page = cb->compressed_pages[index];
140 page->mapping = NULL;
141 put_page(page);
144 /* do io completion on the original bio */
145 if (cb->errors) {
146 bio_io_error(cb->orig_bio);
147 } else {
148 int i;
149 struct bio_vec *bvec;
152 * we have verified the checksum already, set page
153 * checked so the end_io handlers know about it
155 ASSERT(!bio_flagged(bio, BIO_CLONED));
156 bio_for_each_segment_all(bvec, cb->orig_bio, i)
157 SetPageChecked(bvec->bv_page);
159 bio_endio(cb->orig_bio);
162 /* finally free the cb struct */
163 kfree(cb->compressed_pages);
164 kfree(cb);
165 out:
166 bio_put(bio);
170 * Clear the writeback bits on all of the file
171 * pages for a compressed write
173 static noinline void end_compressed_writeback(struct inode *inode,
174 const struct compressed_bio *cb)
176 unsigned long index = cb->start >> PAGE_SHIFT;
177 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
178 struct page *pages[16];
179 unsigned long nr_pages = end_index - index + 1;
180 int i;
181 int ret;
183 if (cb->errors)
184 mapping_set_error(inode->i_mapping, -EIO);
186 while (nr_pages > 0) {
187 ret = find_get_pages_contig(inode->i_mapping, index,
188 min_t(unsigned long,
189 nr_pages, ARRAY_SIZE(pages)), pages);
190 if (ret == 0) {
191 nr_pages -= 1;
192 index += 1;
193 continue;
195 for (i = 0; i < ret; i++) {
196 if (cb->errors)
197 SetPageError(pages[i]);
198 end_page_writeback(pages[i]);
199 put_page(pages[i]);
201 nr_pages -= ret;
202 index += ret;
204 /* the inode may be gone now */
208 * do the cleanup once all the compressed pages hit the disk.
209 * This will clear writeback on the file pages and free the compressed
210 * pages.
212 * This also calls the writeback end hooks for the file pages so that
213 * metadata and checksums can be updated in the file.
215 static void end_compressed_bio_write(struct bio *bio)
217 struct extent_io_tree *tree;
218 struct compressed_bio *cb = bio->bi_private;
219 struct inode *inode;
220 struct page *page;
221 unsigned long index;
223 if (bio->bi_status)
224 cb->errors = 1;
226 /* if there are more bios still pending for this compressed
227 * extent, just exit
229 if (!refcount_dec_and_test(&cb->pending_bios))
230 goto out;
232 /* ok, we're the last bio for this extent, step one is to
233 * call back into the FS and do all the end_io operations
235 inode = cb->inode;
236 tree = &BTRFS_I(inode)->io_tree;
237 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
238 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
239 cb->start,
240 cb->start + cb->len - 1,
241 NULL,
242 bio->bi_status ? 0 : 1);
243 cb->compressed_pages[0]->mapping = NULL;
245 end_compressed_writeback(inode, cb);
246 /* note, our inode could be gone now */
249 * release the compressed pages, these came from alloc_page and
250 * are not attached to the inode at all
252 index = 0;
253 for (index = 0; index < cb->nr_pages; index++) {
254 page = cb->compressed_pages[index];
255 page->mapping = NULL;
256 put_page(page);
259 /* finally free the cb struct */
260 kfree(cb->compressed_pages);
261 kfree(cb);
262 out:
263 bio_put(bio);
267 * worker function to build and submit bios for previously compressed pages.
268 * The corresponding pages in the inode should be marked for writeback
269 * and the compressed pages should have a reference on them for dropping
270 * when the IO is complete.
272 * This also checksums the file bytes and gets things ready for
273 * the end io hooks.
275 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
276 unsigned long len, u64 disk_start,
277 unsigned long compressed_len,
278 struct page **compressed_pages,
279 unsigned long nr_pages)
281 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
282 struct bio *bio = NULL;
283 struct compressed_bio *cb;
284 unsigned long bytes_left;
285 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
286 int pg_index = 0;
287 struct page *page;
288 u64 first_byte = disk_start;
289 struct block_device *bdev;
290 blk_status_t ret;
291 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
293 WARN_ON(start & ((u64)PAGE_SIZE - 1));
294 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
295 if (!cb)
296 return BLK_STS_RESOURCE;
297 refcount_set(&cb->pending_bios, 0);
298 cb->errors = 0;
299 cb->inode = inode;
300 cb->start = start;
301 cb->len = len;
302 cb->mirror_num = 0;
303 cb->compressed_pages = compressed_pages;
304 cb->compressed_len = compressed_len;
305 cb->orig_bio = NULL;
306 cb->nr_pages = nr_pages;
308 bdev = fs_info->fs_devices->latest_bdev;
310 bio = btrfs_bio_alloc(bdev, first_byte);
311 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
312 bio->bi_private = cb;
313 bio->bi_end_io = end_compressed_bio_write;
314 refcount_set(&cb->pending_bios, 1);
316 /* create and submit bios for the compressed pages */
317 bytes_left = compressed_len;
318 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
319 int submit = 0;
321 page = compressed_pages[pg_index];
322 page->mapping = inode->i_mapping;
323 if (bio->bi_iter.bi_size)
324 submit = io_tree->ops->merge_bio_hook(page, 0,
325 PAGE_SIZE,
326 bio, 0);
328 page->mapping = NULL;
329 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
330 PAGE_SIZE) {
331 bio_get(bio);
334 * inc the count before we submit the bio so
335 * we know the end IO handler won't happen before
336 * we inc the count. Otherwise, the cb might get
337 * freed before we're done setting it up
339 refcount_inc(&cb->pending_bios);
340 ret = btrfs_bio_wq_end_io(fs_info, bio,
341 BTRFS_WQ_ENDIO_DATA);
342 BUG_ON(ret); /* -ENOMEM */
344 if (!skip_sum) {
345 ret = btrfs_csum_one_bio(inode, bio, start, 1);
346 BUG_ON(ret); /* -ENOMEM */
349 ret = btrfs_map_bio(fs_info, bio, 0, 1);
350 if (ret) {
351 bio->bi_status = ret;
352 bio_endio(bio);
355 bio_put(bio);
357 bio = btrfs_bio_alloc(bdev, first_byte);
358 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
359 bio->bi_private = cb;
360 bio->bi_end_io = end_compressed_bio_write;
361 bio_add_page(bio, page, PAGE_SIZE, 0);
363 if (bytes_left < PAGE_SIZE) {
364 btrfs_info(fs_info,
365 "bytes left %lu compress len %lu nr %lu",
366 bytes_left, cb->compressed_len, cb->nr_pages);
368 bytes_left -= PAGE_SIZE;
369 first_byte += PAGE_SIZE;
370 cond_resched();
372 bio_get(bio);
374 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
375 BUG_ON(ret); /* -ENOMEM */
377 if (!skip_sum) {
378 ret = btrfs_csum_one_bio(inode, bio, start, 1);
379 BUG_ON(ret); /* -ENOMEM */
382 ret = btrfs_map_bio(fs_info, bio, 0, 1);
383 if (ret) {
384 bio->bi_status = ret;
385 bio_endio(bio);
388 bio_put(bio);
389 return 0;
392 static u64 bio_end_offset(struct bio *bio)
394 struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1];
396 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
399 static noinline int add_ra_bio_pages(struct inode *inode,
400 u64 compressed_end,
401 struct compressed_bio *cb)
403 unsigned long end_index;
404 unsigned long pg_index;
405 u64 last_offset;
406 u64 isize = i_size_read(inode);
407 int ret;
408 struct page *page;
409 unsigned long nr_pages = 0;
410 struct extent_map *em;
411 struct address_space *mapping = inode->i_mapping;
412 struct extent_map_tree *em_tree;
413 struct extent_io_tree *tree;
414 u64 end;
415 int misses = 0;
417 last_offset = bio_end_offset(cb->orig_bio);
418 em_tree = &BTRFS_I(inode)->extent_tree;
419 tree = &BTRFS_I(inode)->io_tree;
421 if (isize == 0)
422 return 0;
424 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
426 while (last_offset < compressed_end) {
427 pg_index = last_offset >> PAGE_SHIFT;
429 if (pg_index > end_index)
430 break;
432 rcu_read_lock();
433 page = radix_tree_lookup(&mapping->page_tree, pg_index);
434 rcu_read_unlock();
435 if (page && !radix_tree_exceptional_entry(page)) {
436 misses++;
437 if (misses > 4)
438 break;
439 goto next;
442 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
443 ~__GFP_FS));
444 if (!page)
445 break;
447 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
448 put_page(page);
449 goto next;
452 end = last_offset + PAGE_SIZE - 1;
454 * at this point, we have a locked page in the page cache
455 * for these bytes in the file. But, we have to make
456 * sure they map to this compressed extent on disk.
458 set_page_extent_mapped(page);
459 lock_extent(tree, last_offset, end);
460 read_lock(&em_tree->lock);
461 em = lookup_extent_mapping(em_tree, last_offset,
462 PAGE_SIZE);
463 read_unlock(&em_tree->lock);
465 if (!em || last_offset < em->start ||
466 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
467 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
468 free_extent_map(em);
469 unlock_extent(tree, last_offset, end);
470 unlock_page(page);
471 put_page(page);
472 break;
474 free_extent_map(em);
476 if (page->index == end_index) {
477 char *userpage;
478 size_t zero_offset = isize & (PAGE_SIZE - 1);
480 if (zero_offset) {
481 int zeros;
482 zeros = PAGE_SIZE - zero_offset;
483 userpage = kmap_atomic(page);
484 memset(userpage + zero_offset, 0, zeros);
485 flush_dcache_page(page);
486 kunmap_atomic(userpage);
490 ret = bio_add_page(cb->orig_bio, page,
491 PAGE_SIZE, 0);
493 if (ret == PAGE_SIZE) {
494 nr_pages++;
495 put_page(page);
496 } else {
497 unlock_extent(tree, last_offset, end);
498 unlock_page(page);
499 put_page(page);
500 break;
502 next:
503 last_offset += PAGE_SIZE;
505 return 0;
509 * for a compressed read, the bio we get passed has all the inode pages
510 * in it. We don't actually do IO on those pages but allocate new ones
511 * to hold the compressed pages on disk.
513 * bio->bi_iter.bi_sector points to the compressed extent on disk
514 * bio->bi_io_vec points to all of the inode pages
516 * After the compressed pages are read, we copy the bytes into the
517 * bio we were passed and then call the bio end_io calls
519 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
520 int mirror_num, unsigned long bio_flags)
522 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
523 struct extent_io_tree *tree;
524 struct extent_map_tree *em_tree;
525 struct compressed_bio *cb;
526 unsigned long compressed_len;
527 unsigned long nr_pages;
528 unsigned long pg_index;
529 struct page *page;
530 struct block_device *bdev;
531 struct bio *comp_bio;
532 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
533 u64 em_len;
534 u64 em_start;
535 struct extent_map *em;
536 blk_status_t ret = BLK_STS_RESOURCE;
537 int faili = 0;
538 u32 *sums;
540 tree = &BTRFS_I(inode)->io_tree;
541 em_tree = &BTRFS_I(inode)->extent_tree;
543 /* we need the actual starting offset of this extent in the file */
544 read_lock(&em_tree->lock);
545 em = lookup_extent_mapping(em_tree,
546 page_offset(bio->bi_io_vec->bv_page),
547 PAGE_SIZE);
548 read_unlock(&em_tree->lock);
549 if (!em)
550 return BLK_STS_IOERR;
552 compressed_len = em->block_len;
553 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
554 if (!cb)
555 goto out;
557 refcount_set(&cb->pending_bios, 0);
558 cb->errors = 0;
559 cb->inode = inode;
560 cb->mirror_num = mirror_num;
561 sums = &cb->sums;
563 cb->start = em->orig_start;
564 em_len = em->len;
565 em_start = em->start;
567 free_extent_map(em);
568 em = NULL;
570 cb->len = bio->bi_iter.bi_size;
571 cb->compressed_len = compressed_len;
572 cb->compress_type = extent_compress_type(bio_flags);
573 cb->orig_bio = bio;
575 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
576 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
577 GFP_NOFS);
578 if (!cb->compressed_pages)
579 goto fail1;
581 bdev = fs_info->fs_devices->latest_bdev;
583 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
584 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
585 __GFP_HIGHMEM);
586 if (!cb->compressed_pages[pg_index]) {
587 faili = pg_index - 1;
588 ret = BLK_STS_RESOURCE;
589 goto fail2;
592 faili = nr_pages - 1;
593 cb->nr_pages = nr_pages;
595 add_ra_bio_pages(inode, em_start + em_len, cb);
597 /* include any pages we added in add_ra-bio_pages */
598 cb->len = bio->bi_iter.bi_size;
600 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
601 bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
602 comp_bio->bi_private = cb;
603 comp_bio->bi_end_io = end_compressed_bio_read;
604 refcount_set(&cb->pending_bios, 1);
606 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
607 int submit = 0;
609 page = cb->compressed_pages[pg_index];
610 page->mapping = inode->i_mapping;
611 page->index = em_start >> PAGE_SHIFT;
613 if (comp_bio->bi_iter.bi_size)
614 submit = tree->ops->merge_bio_hook(page, 0,
615 PAGE_SIZE,
616 comp_bio, 0);
618 page->mapping = NULL;
619 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
620 PAGE_SIZE) {
621 bio_get(comp_bio);
623 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
624 BTRFS_WQ_ENDIO_DATA);
625 BUG_ON(ret); /* -ENOMEM */
628 * inc the count before we submit the bio so
629 * we know the end IO handler won't happen before
630 * we inc the count. Otherwise, the cb might get
631 * freed before we're done setting it up
633 refcount_inc(&cb->pending_bios);
635 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
636 ret = btrfs_lookup_bio_sums(inode, comp_bio,
637 sums);
638 BUG_ON(ret); /* -ENOMEM */
640 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
641 fs_info->sectorsize);
643 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
644 if (ret) {
645 comp_bio->bi_status = ret;
646 bio_endio(comp_bio);
649 bio_put(comp_bio);
651 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
652 bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
653 comp_bio->bi_private = cb;
654 comp_bio->bi_end_io = end_compressed_bio_read;
656 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
658 cur_disk_byte += PAGE_SIZE;
660 bio_get(comp_bio);
662 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
663 BUG_ON(ret); /* -ENOMEM */
665 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
666 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
667 BUG_ON(ret); /* -ENOMEM */
670 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
671 if (ret) {
672 comp_bio->bi_status = ret;
673 bio_endio(comp_bio);
676 bio_put(comp_bio);
677 return 0;
679 fail2:
680 while (faili >= 0) {
681 __free_page(cb->compressed_pages[faili]);
682 faili--;
685 kfree(cb->compressed_pages);
686 fail1:
687 kfree(cb);
688 out:
689 free_extent_map(em);
690 return ret;
693 static struct {
694 struct list_head idle_ws;
695 spinlock_t ws_lock;
696 /* Number of free workspaces */
697 int free_ws;
698 /* Total number of allocated workspaces */
699 atomic_t total_ws;
700 /* Waiters for a free workspace */
701 wait_queue_head_t ws_wait;
702 } btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
704 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
705 &btrfs_zlib_compress,
706 &btrfs_lzo_compress,
709 void __init btrfs_init_compress(void)
711 int i;
713 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
714 struct list_head *workspace;
716 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
717 spin_lock_init(&btrfs_comp_ws[i].ws_lock);
718 atomic_set(&btrfs_comp_ws[i].total_ws, 0);
719 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
722 * Preallocate one workspace for each compression type so
723 * we can guarantee forward progress in the worst case
725 workspace = btrfs_compress_op[i]->alloc_workspace();
726 if (IS_ERR(workspace)) {
727 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
728 } else {
729 atomic_set(&btrfs_comp_ws[i].total_ws, 1);
730 btrfs_comp_ws[i].free_ws = 1;
731 list_add(workspace, &btrfs_comp_ws[i].idle_ws);
737 * This finds an available workspace or allocates a new one.
738 * If it's not possible to allocate a new one, waits until there's one.
739 * Preallocation makes a forward progress guarantees and we do not return
740 * errors.
742 static struct list_head *find_workspace(int type)
744 struct list_head *workspace;
745 int cpus = num_online_cpus();
746 int idx = type - 1;
747 unsigned nofs_flag;
749 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws;
750 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock;
751 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws;
752 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait;
753 int *free_ws = &btrfs_comp_ws[idx].free_ws;
754 again:
755 spin_lock(ws_lock);
756 if (!list_empty(idle_ws)) {
757 workspace = idle_ws->next;
758 list_del(workspace);
759 (*free_ws)--;
760 spin_unlock(ws_lock);
761 return workspace;
764 if (atomic_read(total_ws) > cpus) {
765 DEFINE_WAIT(wait);
767 spin_unlock(ws_lock);
768 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
769 if (atomic_read(total_ws) > cpus && !*free_ws)
770 schedule();
771 finish_wait(ws_wait, &wait);
772 goto again;
774 atomic_inc(total_ws);
775 spin_unlock(ws_lock);
778 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
779 * to turn it off here because we might get called from the restricted
780 * context of btrfs_compress_bio/btrfs_compress_pages
782 nofs_flag = memalloc_nofs_save();
783 workspace = btrfs_compress_op[idx]->alloc_workspace();
784 memalloc_nofs_restore(nofs_flag);
786 if (IS_ERR(workspace)) {
787 atomic_dec(total_ws);
788 wake_up(ws_wait);
791 * Do not return the error but go back to waiting. There's a
792 * workspace preallocated for each type and the compression
793 * time is bounded so we get to a workspace eventually. This
794 * makes our caller's life easier.
796 * To prevent silent and low-probability deadlocks (when the
797 * initial preallocation fails), check if there are any
798 * workspaces at all.
800 if (atomic_read(total_ws) == 0) {
801 static DEFINE_RATELIMIT_STATE(_rs,
802 /* once per minute */ 60 * HZ,
803 /* no burst */ 1);
805 if (__ratelimit(&_rs)) {
806 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
809 goto again;
811 return workspace;
815 * put a workspace struct back on the list or free it if we have enough
816 * idle ones sitting around
818 static void free_workspace(int type, struct list_head *workspace)
820 int idx = type - 1;
821 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws;
822 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock;
823 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws;
824 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait;
825 int *free_ws = &btrfs_comp_ws[idx].free_ws;
827 spin_lock(ws_lock);
828 if (*free_ws < num_online_cpus()) {
829 list_add(workspace, idle_ws);
830 (*free_ws)++;
831 spin_unlock(ws_lock);
832 goto wake;
834 spin_unlock(ws_lock);
836 btrfs_compress_op[idx]->free_workspace(workspace);
837 atomic_dec(total_ws);
838 wake:
840 * Make sure counter is updated before we wake up waiters.
842 smp_mb();
843 if (waitqueue_active(ws_wait))
844 wake_up(ws_wait);
848 * cleanup function for module exit
850 static void free_workspaces(void)
852 struct list_head *workspace;
853 int i;
855 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
856 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
857 workspace = btrfs_comp_ws[i].idle_ws.next;
858 list_del(workspace);
859 btrfs_compress_op[i]->free_workspace(workspace);
860 atomic_dec(&btrfs_comp_ws[i].total_ws);
866 * Given an address space and start and length, compress the bytes into @pages
867 * that are allocated on demand.
869 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
870 * and returns number of actually allocated pages
872 * @total_in is used to return the number of bytes actually read. It
873 * may be smaller than the input length if we had to exit early because we
874 * ran out of room in the pages array or because we cross the
875 * max_out threshold.
877 * @total_out is an in/out parameter, must be set to the input length and will
878 * be also used to return the total number of compressed bytes
880 * @max_out tells us the max number of bytes that we're allowed to
881 * stuff into pages
883 int btrfs_compress_pages(int type, struct address_space *mapping,
884 u64 start, struct page **pages,
885 unsigned long *out_pages,
886 unsigned long *total_in,
887 unsigned long *total_out)
889 struct list_head *workspace;
890 int ret;
892 workspace = find_workspace(type);
894 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
895 start, pages,
896 out_pages,
897 total_in, total_out);
898 free_workspace(type, workspace);
899 return ret;
903 * pages_in is an array of pages with compressed data.
905 * disk_start is the starting logical offset of this array in the file
907 * orig_bio contains the pages from the file that we want to decompress into
909 * srclen is the number of bytes in pages_in
911 * The basic idea is that we have a bio that was created by readpages.
912 * The pages in the bio are for the uncompressed data, and they may not
913 * be contiguous. They all correspond to the range of bytes covered by
914 * the compressed extent.
916 static int btrfs_decompress_bio(struct compressed_bio *cb)
918 struct list_head *workspace;
919 int ret;
920 int type = cb->compress_type;
922 workspace = find_workspace(type);
923 ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
924 free_workspace(type, workspace);
926 return ret;
930 * a less complex decompression routine. Our compressed data fits in a
931 * single page, and we want to read a single page out of it.
932 * start_byte tells us the offset into the compressed data we're interested in
934 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
935 unsigned long start_byte, size_t srclen, size_t destlen)
937 struct list_head *workspace;
938 int ret;
940 workspace = find_workspace(type);
942 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
943 dest_page, start_byte,
944 srclen, destlen);
946 free_workspace(type, workspace);
947 return ret;
950 void btrfs_exit_compress(void)
952 free_workspaces();
956 * Copy uncompressed data from working buffer to pages.
958 * buf_start is the byte offset we're of the start of our workspace buffer.
960 * total_out is the last byte of the buffer
962 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
963 unsigned long total_out, u64 disk_start,
964 struct bio *bio)
966 unsigned long buf_offset;
967 unsigned long current_buf_start;
968 unsigned long start_byte;
969 unsigned long prev_start_byte;
970 unsigned long working_bytes = total_out - buf_start;
971 unsigned long bytes;
972 char *kaddr;
973 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
976 * start byte is the first byte of the page we're currently
977 * copying into relative to the start of the compressed data.
979 start_byte = page_offset(bvec.bv_page) - disk_start;
981 /* we haven't yet hit data corresponding to this page */
982 if (total_out <= start_byte)
983 return 1;
986 * the start of the data we care about is offset into
987 * the middle of our working buffer
989 if (total_out > start_byte && buf_start < start_byte) {
990 buf_offset = start_byte - buf_start;
991 working_bytes -= buf_offset;
992 } else {
993 buf_offset = 0;
995 current_buf_start = buf_start;
997 /* copy bytes from the working buffer into the pages */
998 while (working_bytes > 0) {
999 bytes = min_t(unsigned long, bvec.bv_len,
1000 PAGE_SIZE - buf_offset);
1001 bytes = min(bytes, working_bytes);
1003 kaddr = kmap_atomic(bvec.bv_page);
1004 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1005 kunmap_atomic(kaddr);
1006 flush_dcache_page(bvec.bv_page);
1008 buf_offset += bytes;
1009 working_bytes -= bytes;
1010 current_buf_start += bytes;
1012 /* check if we need to pick another page */
1013 bio_advance(bio, bytes);
1014 if (!bio->bi_iter.bi_size)
1015 return 0;
1016 bvec = bio_iter_iovec(bio, bio->bi_iter);
1017 prev_start_byte = start_byte;
1018 start_byte = page_offset(bvec.bv_page) - disk_start;
1021 * We need to make sure we're only adjusting
1022 * our offset into compression working buffer when
1023 * we're switching pages. Otherwise we can incorrectly
1024 * keep copying when we were actually done.
1026 if (start_byte != prev_start_byte) {
1028 * make sure our new page is covered by this
1029 * working buffer
1031 if (total_out <= start_byte)
1032 return 1;
1035 * the next page in the biovec might not be adjacent
1036 * to the last page, but it might still be found
1037 * inside this working buffer. bump our offset pointer
1039 if (total_out > start_byte &&
1040 current_buf_start < start_byte) {
1041 buf_offset = start_byte - buf_start;
1042 working_bytes = total_out - start_byte;
1043 current_buf_start = buf_start + buf_offset;
1048 return 1;