2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
28 #include "compression.h"
30 static struct kmem_cache
*btrfs_ordered_extent_cache
;
32 static u64
entry_end(struct btrfs_ordered_extent
*entry
)
34 if (entry
->file_offset
+ entry
->len
< entry
->file_offset
)
36 return entry
->file_offset
+ entry
->len
;
39 /* returns NULL if the insertion worked, or it returns the node it did find
42 static struct rb_node
*tree_insert(struct rb_root
*root
, u64 file_offset
,
45 struct rb_node
**p
= &root
->rb_node
;
46 struct rb_node
*parent
= NULL
;
47 struct btrfs_ordered_extent
*entry
;
51 entry
= rb_entry(parent
, struct btrfs_ordered_extent
, rb_node
);
53 if (file_offset
< entry
->file_offset
)
55 else if (file_offset
>= entry_end(entry
))
61 rb_link_node(node
, parent
, p
);
62 rb_insert_color(node
, root
);
66 static void ordered_data_tree_panic(struct inode
*inode
, int errno
,
69 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
70 btrfs_panic(fs_info
, errno
,
71 "Inconsistency in ordered tree at offset %llu", offset
);
75 * look for a given offset in the tree, and if it can't be found return the
78 static struct rb_node
*__tree_search(struct rb_root
*root
, u64 file_offset
,
79 struct rb_node
**prev_ret
)
81 struct rb_node
*n
= root
->rb_node
;
82 struct rb_node
*prev
= NULL
;
84 struct btrfs_ordered_extent
*entry
;
85 struct btrfs_ordered_extent
*prev_entry
= NULL
;
88 entry
= rb_entry(n
, struct btrfs_ordered_extent
, rb_node
);
92 if (file_offset
< entry
->file_offset
)
94 else if (file_offset
>= entry_end(entry
))
102 while (prev
&& file_offset
>= entry_end(prev_entry
)) {
103 test
= rb_next(prev
);
106 prev_entry
= rb_entry(test
, struct btrfs_ordered_extent
,
108 if (file_offset
< entry_end(prev_entry
))
114 prev_entry
= rb_entry(prev
, struct btrfs_ordered_extent
,
116 while (prev
&& file_offset
< entry_end(prev_entry
)) {
117 test
= rb_prev(prev
);
120 prev_entry
= rb_entry(test
, struct btrfs_ordered_extent
,
129 * helper to check if a given offset is inside a given entry
131 static int offset_in_entry(struct btrfs_ordered_extent
*entry
, u64 file_offset
)
133 if (file_offset
< entry
->file_offset
||
134 entry
->file_offset
+ entry
->len
<= file_offset
)
139 static int range_overlaps(struct btrfs_ordered_extent
*entry
, u64 file_offset
,
142 if (file_offset
+ len
<= entry
->file_offset
||
143 entry
->file_offset
+ entry
->len
<= file_offset
)
149 * look find the first ordered struct that has this offset, otherwise
150 * the first one less than this offset
152 static inline struct rb_node
*tree_search(struct btrfs_ordered_inode_tree
*tree
,
155 struct rb_root
*root
= &tree
->tree
;
156 struct rb_node
*prev
= NULL
;
158 struct btrfs_ordered_extent
*entry
;
161 entry
= rb_entry(tree
->last
, struct btrfs_ordered_extent
,
163 if (offset_in_entry(entry
, file_offset
))
166 ret
= __tree_search(root
, file_offset
, &prev
);
174 /* allocate and add a new ordered_extent into the per-inode tree.
175 * file_offset is the logical offset in the file
177 * start is the disk block number of an extent already reserved in the
178 * extent allocation tree
180 * len is the length of the extent
182 * The tree is given a single reference on the ordered extent that was
185 static int __btrfs_add_ordered_extent(struct inode
*inode
, u64 file_offset
,
186 u64 start
, u64 len
, u64 disk_len
,
187 int type
, int dio
, int compress_type
)
189 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
190 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
191 struct btrfs_ordered_inode_tree
*tree
;
192 struct rb_node
*node
;
193 struct btrfs_ordered_extent
*entry
;
195 tree
= &BTRFS_I(inode
)->ordered_tree
;
196 entry
= kmem_cache_zalloc(btrfs_ordered_extent_cache
, GFP_NOFS
);
200 entry
->file_offset
= file_offset
;
201 entry
->start
= start
;
203 entry
->disk_len
= disk_len
;
204 entry
->bytes_left
= len
;
205 entry
->inode
= igrab(inode
);
206 entry
->compress_type
= compress_type
;
207 entry
->truncated_len
= (u64
)-1;
208 if (type
!= BTRFS_ORDERED_IO_DONE
&& type
!= BTRFS_ORDERED_COMPLETE
)
209 set_bit(type
, &entry
->flags
);
212 set_bit(BTRFS_ORDERED_DIRECT
, &entry
->flags
);
214 /* one ref for the tree */
215 refcount_set(&entry
->refs
, 1);
216 init_waitqueue_head(&entry
->wait
);
217 INIT_LIST_HEAD(&entry
->list
);
218 INIT_LIST_HEAD(&entry
->root_extent_list
);
219 INIT_LIST_HEAD(&entry
->work_list
);
220 init_completion(&entry
->completion
);
221 INIT_LIST_HEAD(&entry
->log_list
);
222 INIT_LIST_HEAD(&entry
->trans_list
);
224 trace_btrfs_ordered_extent_add(inode
, entry
);
226 spin_lock_irq(&tree
->lock
);
227 node
= tree_insert(&tree
->tree
, file_offset
,
230 ordered_data_tree_panic(inode
, -EEXIST
, file_offset
);
231 spin_unlock_irq(&tree
->lock
);
233 spin_lock(&root
->ordered_extent_lock
);
234 list_add_tail(&entry
->root_extent_list
,
235 &root
->ordered_extents
);
236 root
->nr_ordered_extents
++;
237 if (root
->nr_ordered_extents
== 1) {
238 spin_lock(&fs_info
->ordered_root_lock
);
239 BUG_ON(!list_empty(&root
->ordered_root
));
240 list_add_tail(&root
->ordered_root
, &fs_info
->ordered_roots
);
241 spin_unlock(&fs_info
->ordered_root_lock
);
243 spin_unlock(&root
->ordered_extent_lock
);
248 int btrfs_add_ordered_extent(struct inode
*inode
, u64 file_offset
,
249 u64 start
, u64 len
, u64 disk_len
, int type
)
251 return __btrfs_add_ordered_extent(inode
, file_offset
, start
, len
,
253 BTRFS_COMPRESS_NONE
);
256 int btrfs_add_ordered_extent_dio(struct inode
*inode
, u64 file_offset
,
257 u64 start
, u64 len
, u64 disk_len
, int type
)
259 return __btrfs_add_ordered_extent(inode
, file_offset
, start
, len
,
261 BTRFS_COMPRESS_NONE
);
264 int btrfs_add_ordered_extent_compress(struct inode
*inode
, u64 file_offset
,
265 u64 start
, u64 len
, u64 disk_len
,
266 int type
, int compress_type
)
268 return __btrfs_add_ordered_extent(inode
, file_offset
, start
, len
,
274 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
275 * when an ordered extent is finished. If the list covers more than one
276 * ordered extent, it is split across multiples.
278 void btrfs_add_ordered_sum(struct inode
*inode
,
279 struct btrfs_ordered_extent
*entry
,
280 struct btrfs_ordered_sum
*sum
)
282 struct btrfs_ordered_inode_tree
*tree
;
284 tree
= &BTRFS_I(inode
)->ordered_tree
;
285 spin_lock_irq(&tree
->lock
);
286 list_add_tail(&sum
->list
, &entry
->list
);
287 spin_unlock_irq(&tree
->lock
);
291 * this is used to account for finished IO across a given range
292 * of the file. The IO may span ordered extents. If
293 * a given ordered_extent is completely done, 1 is returned, otherwise
296 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
297 * to make sure this function only returns 1 once for a given ordered extent.
299 * file_offset is updated to one byte past the range that is recorded as
300 * complete. This allows you to walk forward in the file.
302 int btrfs_dec_test_first_ordered_pending(struct inode
*inode
,
303 struct btrfs_ordered_extent
**cached
,
304 u64
*file_offset
, u64 io_size
, int uptodate
)
306 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
307 struct btrfs_ordered_inode_tree
*tree
;
308 struct rb_node
*node
;
309 struct btrfs_ordered_extent
*entry
= NULL
;
316 tree
= &BTRFS_I(inode
)->ordered_tree
;
317 spin_lock_irqsave(&tree
->lock
, flags
);
318 node
= tree_search(tree
, *file_offset
);
324 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
325 if (!offset_in_entry(entry
, *file_offset
)) {
330 dec_start
= max(*file_offset
, entry
->file_offset
);
331 dec_end
= min(*file_offset
+ io_size
, entry
->file_offset
+
333 *file_offset
= dec_end
;
334 if (dec_start
> dec_end
) {
335 btrfs_crit(fs_info
, "bad ordering dec_start %llu end %llu",
338 to_dec
= dec_end
- dec_start
;
339 if (to_dec
> entry
->bytes_left
) {
341 "bad ordered accounting left %llu size %llu",
342 entry
->bytes_left
, to_dec
);
344 entry
->bytes_left
-= to_dec
;
346 set_bit(BTRFS_ORDERED_IOERR
, &entry
->flags
);
348 if (entry
->bytes_left
== 0) {
349 ret
= test_and_set_bit(BTRFS_ORDERED_IO_DONE
, &entry
->flags
);
351 * Implicit memory barrier after test_and_set_bit
353 if (waitqueue_active(&entry
->wait
))
354 wake_up(&entry
->wait
);
359 if (!ret
&& cached
&& entry
) {
361 refcount_inc(&entry
->refs
);
363 spin_unlock_irqrestore(&tree
->lock
, flags
);
368 * this is used to account for finished IO across a given range
369 * of the file. The IO should not span ordered extents. If
370 * a given ordered_extent is completely done, 1 is returned, otherwise
373 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
374 * to make sure this function only returns 1 once for a given ordered extent.
376 int btrfs_dec_test_ordered_pending(struct inode
*inode
,
377 struct btrfs_ordered_extent
**cached
,
378 u64 file_offset
, u64 io_size
, int uptodate
)
380 struct btrfs_ordered_inode_tree
*tree
;
381 struct rb_node
*node
;
382 struct btrfs_ordered_extent
*entry
= NULL
;
386 tree
= &BTRFS_I(inode
)->ordered_tree
;
387 spin_lock_irqsave(&tree
->lock
, flags
);
388 if (cached
&& *cached
) {
393 node
= tree_search(tree
, file_offset
);
399 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
401 if (!offset_in_entry(entry
, file_offset
)) {
406 if (io_size
> entry
->bytes_left
) {
407 btrfs_crit(BTRFS_I(inode
)->root
->fs_info
,
408 "bad ordered accounting left %llu size %llu",
409 entry
->bytes_left
, io_size
);
411 entry
->bytes_left
-= io_size
;
413 set_bit(BTRFS_ORDERED_IOERR
, &entry
->flags
);
415 if (entry
->bytes_left
== 0) {
416 ret
= test_and_set_bit(BTRFS_ORDERED_IO_DONE
, &entry
->flags
);
418 * Implicit memory barrier after test_and_set_bit
420 if (waitqueue_active(&entry
->wait
))
421 wake_up(&entry
->wait
);
426 if (!ret
&& cached
&& entry
) {
428 refcount_inc(&entry
->refs
);
430 spin_unlock_irqrestore(&tree
->lock
, flags
);
434 /* Needs to either be called under a log transaction or the log_mutex */
435 void btrfs_get_logged_extents(struct btrfs_inode
*inode
,
436 struct list_head
*logged_list
,
440 struct btrfs_ordered_inode_tree
*tree
;
441 struct btrfs_ordered_extent
*ordered
;
443 struct rb_node
*prev
;
445 tree
= &inode
->ordered_tree
;
446 spin_lock_irq(&tree
->lock
);
447 n
= __tree_search(&tree
->tree
, end
, &prev
);
450 for (; n
; n
= rb_prev(n
)) {
451 ordered
= rb_entry(n
, struct btrfs_ordered_extent
, rb_node
);
452 if (ordered
->file_offset
> end
)
454 if (entry_end(ordered
) <= start
)
456 if (test_and_set_bit(BTRFS_ORDERED_LOGGED
, &ordered
->flags
))
458 list_add(&ordered
->log_list
, logged_list
);
459 refcount_inc(&ordered
->refs
);
461 spin_unlock_irq(&tree
->lock
);
464 void btrfs_put_logged_extents(struct list_head
*logged_list
)
466 struct btrfs_ordered_extent
*ordered
;
468 while (!list_empty(logged_list
)) {
469 ordered
= list_first_entry(logged_list
,
470 struct btrfs_ordered_extent
,
472 list_del_init(&ordered
->log_list
);
473 btrfs_put_ordered_extent(ordered
);
477 void btrfs_submit_logged_extents(struct list_head
*logged_list
,
478 struct btrfs_root
*log
)
480 int index
= log
->log_transid
% 2;
482 spin_lock_irq(&log
->log_extents_lock
[index
]);
483 list_splice_tail(logged_list
, &log
->logged_list
[index
]);
484 spin_unlock_irq(&log
->log_extents_lock
[index
]);
487 void btrfs_wait_logged_extents(struct btrfs_trans_handle
*trans
,
488 struct btrfs_root
*log
, u64 transid
)
490 struct btrfs_ordered_extent
*ordered
;
491 int index
= transid
% 2;
493 spin_lock_irq(&log
->log_extents_lock
[index
]);
494 while (!list_empty(&log
->logged_list
[index
])) {
496 ordered
= list_first_entry(&log
->logged_list
[index
],
497 struct btrfs_ordered_extent
,
499 list_del_init(&ordered
->log_list
);
500 inode
= ordered
->inode
;
501 spin_unlock_irq(&log
->log_extents_lock
[index
]);
503 if (!test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) &&
504 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
)) {
505 u64 start
= ordered
->file_offset
;
506 u64 end
= ordered
->file_offset
+ ordered
->len
- 1;
509 filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
511 wait_event(ordered
->wait
, test_bit(BTRFS_ORDERED_IO_DONE
,
515 * In order to keep us from losing our ordered extent
516 * information when committing the transaction we have to make
517 * sure that any logged extents are completed when we go to
518 * commit the transaction. To do this we simply increase the
519 * current transactions pending_ordered counter and decrement it
520 * when the ordered extent completes.
522 if (!test_bit(BTRFS_ORDERED_COMPLETE
, &ordered
->flags
)) {
523 struct btrfs_ordered_inode_tree
*tree
;
525 tree
= &BTRFS_I(inode
)->ordered_tree
;
526 spin_lock_irq(&tree
->lock
);
527 if (!test_bit(BTRFS_ORDERED_COMPLETE
, &ordered
->flags
)) {
528 set_bit(BTRFS_ORDERED_PENDING
, &ordered
->flags
);
529 atomic_inc(&trans
->transaction
->pending_ordered
);
531 spin_unlock_irq(&tree
->lock
);
533 btrfs_put_ordered_extent(ordered
);
534 spin_lock_irq(&log
->log_extents_lock
[index
]);
536 spin_unlock_irq(&log
->log_extents_lock
[index
]);
539 void btrfs_free_logged_extents(struct btrfs_root
*log
, u64 transid
)
541 struct btrfs_ordered_extent
*ordered
;
542 int index
= transid
% 2;
544 spin_lock_irq(&log
->log_extents_lock
[index
]);
545 while (!list_empty(&log
->logged_list
[index
])) {
546 ordered
= list_first_entry(&log
->logged_list
[index
],
547 struct btrfs_ordered_extent
,
549 list_del_init(&ordered
->log_list
);
550 spin_unlock_irq(&log
->log_extents_lock
[index
]);
551 btrfs_put_ordered_extent(ordered
);
552 spin_lock_irq(&log
->log_extents_lock
[index
]);
554 spin_unlock_irq(&log
->log_extents_lock
[index
]);
558 * used to drop a reference on an ordered extent. This will free
559 * the extent if the last reference is dropped
561 void btrfs_put_ordered_extent(struct btrfs_ordered_extent
*entry
)
563 struct list_head
*cur
;
564 struct btrfs_ordered_sum
*sum
;
566 trace_btrfs_ordered_extent_put(entry
->inode
, entry
);
568 if (refcount_dec_and_test(&entry
->refs
)) {
569 ASSERT(list_empty(&entry
->log_list
));
570 ASSERT(list_empty(&entry
->trans_list
));
571 ASSERT(list_empty(&entry
->root_extent_list
));
572 ASSERT(RB_EMPTY_NODE(&entry
->rb_node
));
574 btrfs_add_delayed_iput(entry
->inode
);
575 while (!list_empty(&entry
->list
)) {
576 cur
= entry
->list
.next
;
577 sum
= list_entry(cur
, struct btrfs_ordered_sum
, list
);
578 list_del(&sum
->list
);
581 kmem_cache_free(btrfs_ordered_extent_cache
, entry
);
586 * remove an ordered extent from the tree. No references are dropped
587 * and waiters are woken up.
589 void btrfs_remove_ordered_extent(struct inode
*inode
,
590 struct btrfs_ordered_extent
*entry
)
592 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
593 struct btrfs_ordered_inode_tree
*tree
;
594 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
595 struct rb_node
*node
;
596 bool dec_pending_ordered
= false;
598 tree
= &BTRFS_I(inode
)->ordered_tree
;
599 spin_lock_irq(&tree
->lock
);
600 node
= &entry
->rb_node
;
601 rb_erase(node
, &tree
->tree
);
603 if (tree
->last
== node
)
605 set_bit(BTRFS_ORDERED_COMPLETE
, &entry
->flags
);
606 if (test_and_clear_bit(BTRFS_ORDERED_PENDING
, &entry
->flags
))
607 dec_pending_ordered
= true;
608 spin_unlock_irq(&tree
->lock
);
611 * The current running transaction is waiting on us, we need to let it
612 * know that we're complete and wake it up.
614 if (dec_pending_ordered
) {
615 struct btrfs_transaction
*trans
;
618 * The checks for trans are just a formality, it should be set,
619 * but if it isn't we don't want to deref/assert under the spin
620 * lock, so be nice and check if trans is set, but ASSERT() so
621 * if it isn't set a developer will notice.
623 spin_lock(&fs_info
->trans_lock
);
624 trans
= fs_info
->running_transaction
;
626 refcount_inc(&trans
->use_count
);
627 spin_unlock(&fs_info
->trans_lock
);
631 if (atomic_dec_and_test(&trans
->pending_ordered
))
632 wake_up(&trans
->pending_wait
);
633 btrfs_put_transaction(trans
);
637 spin_lock(&root
->ordered_extent_lock
);
638 list_del_init(&entry
->root_extent_list
);
639 root
->nr_ordered_extents
--;
641 trace_btrfs_ordered_extent_remove(inode
, entry
);
643 if (!root
->nr_ordered_extents
) {
644 spin_lock(&fs_info
->ordered_root_lock
);
645 BUG_ON(list_empty(&root
->ordered_root
));
646 list_del_init(&root
->ordered_root
);
647 spin_unlock(&fs_info
->ordered_root_lock
);
649 spin_unlock(&root
->ordered_extent_lock
);
650 wake_up(&entry
->wait
);
653 static void btrfs_run_ordered_extent_work(struct btrfs_work
*work
)
655 struct btrfs_ordered_extent
*ordered
;
657 ordered
= container_of(work
, struct btrfs_ordered_extent
, flush_work
);
658 btrfs_start_ordered_extent(ordered
->inode
, ordered
, 1);
659 complete(&ordered
->completion
);
663 * wait for all the ordered extents in a root. This is done when balancing
664 * space between drives.
666 u64
btrfs_wait_ordered_extents(struct btrfs_root
*root
, u64 nr
,
667 const u64 range_start
, const u64 range_len
)
669 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
673 struct btrfs_ordered_extent
*ordered
, *next
;
675 const u64 range_end
= range_start
+ range_len
;
677 mutex_lock(&root
->ordered_extent_mutex
);
678 spin_lock(&root
->ordered_extent_lock
);
679 list_splice_init(&root
->ordered_extents
, &splice
);
680 while (!list_empty(&splice
) && nr
) {
681 ordered
= list_first_entry(&splice
, struct btrfs_ordered_extent
,
684 if (range_end
<= ordered
->start
||
685 ordered
->start
+ ordered
->disk_len
<= range_start
) {
686 list_move_tail(&ordered
->root_extent_list
, &skipped
);
687 cond_resched_lock(&root
->ordered_extent_lock
);
691 list_move_tail(&ordered
->root_extent_list
,
692 &root
->ordered_extents
);
693 refcount_inc(&ordered
->refs
);
694 spin_unlock(&root
->ordered_extent_lock
);
696 btrfs_init_work(&ordered
->flush_work
,
697 btrfs_flush_delalloc_helper
,
698 btrfs_run_ordered_extent_work
, NULL
, NULL
);
699 list_add_tail(&ordered
->work_list
, &works
);
700 btrfs_queue_work(fs_info
->flush_workers
, &ordered
->flush_work
);
703 spin_lock(&root
->ordered_extent_lock
);
708 list_splice_tail(&skipped
, &root
->ordered_extents
);
709 list_splice_tail(&splice
, &root
->ordered_extents
);
710 spin_unlock(&root
->ordered_extent_lock
);
712 list_for_each_entry_safe(ordered
, next
, &works
, work_list
) {
713 list_del_init(&ordered
->work_list
);
714 wait_for_completion(&ordered
->completion
);
715 btrfs_put_ordered_extent(ordered
);
718 mutex_unlock(&root
->ordered_extent_mutex
);
723 u64
btrfs_wait_ordered_roots(struct btrfs_fs_info
*fs_info
, u64 nr
,
724 const u64 range_start
, const u64 range_len
)
726 struct btrfs_root
*root
;
727 struct list_head splice
;
731 INIT_LIST_HEAD(&splice
);
733 mutex_lock(&fs_info
->ordered_operations_mutex
);
734 spin_lock(&fs_info
->ordered_root_lock
);
735 list_splice_init(&fs_info
->ordered_roots
, &splice
);
736 while (!list_empty(&splice
) && nr
) {
737 root
= list_first_entry(&splice
, struct btrfs_root
,
739 root
= btrfs_grab_fs_root(root
);
741 list_move_tail(&root
->ordered_root
,
742 &fs_info
->ordered_roots
);
743 spin_unlock(&fs_info
->ordered_root_lock
);
745 done
= btrfs_wait_ordered_extents(root
, nr
,
746 range_start
, range_len
);
747 btrfs_put_fs_root(root
);
750 spin_lock(&fs_info
->ordered_root_lock
);
755 list_splice_tail(&splice
, &fs_info
->ordered_roots
);
756 spin_unlock(&fs_info
->ordered_root_lock
);
757 mutex_unlock(&fs_info
->ordered_operations_mutex
);
763 * Used to start IO or wait for a given ordered extent to finish.
765 * If wait is one, this effectively waits on page writeback for all the pages
766 * in the extent, and it waits on the io completion code to insert
767 * metadata into the btree corresponding to the extent
769 void btrfs_start_ordered_extent(struct inode
*inode
,
770 struct btrfs_ordered_extent
*entry
,
773 u64 start
= entry
->file_offset
;
774 u64 end
= start
+ entry
->len
- 1;
776 trace_btrfs_ordered_extent_start(inode
, entry
);
779 * pages in the range can be dirty, clean or writeback. We
780 * start IO on any dirty ones so the wait doesn't stall waiting
781 * for the flusher thread to find them
783 if (!test_bit(BTRFS_ORDERED_DIRECT
, &entry
->flags
))
784 filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
786 wait_event(entry
->wait
, test_bit(BTRFS_ORDERED_COMPLETE
,
792 * Used to wait on ordered extents across a large range of bytes.
794 int btrfs_wait_ordered_range(struct inode
*inode
, u64 start
, u64 len
)
800 struct btrfs_ordered_extent
*ordered
;
802 if (start
+ len
< start
) {
803 orig_end
= INT_LIMIT(loff_t
);
805 orig_end
= start
+ len
- 1;
806 if (orig_end
> INT_LIMIT(loff_t
))
807 orig_end
= INT_LIMIT(loff_t
);
810 /* start IO across the range first to instantiate any delalloc
813 ret
= btrfs_fdatawrite_range(inode
, start
, orig_end
);
818 * If we have a writeback error don't return immediately. Wait first
819 * for any ordered extents that haven't completed yet. This is to make
820 * sure no one can dirty the same page ranges and call writepages()
821 * before the ordered extents complete - to avoid failures (-EEXIST)
822 * when adding the new ordered extents to the ordered tree.
824 ret_wb
= filemap_fdatawait_range(inode
->i_mapping
, start
, orig_end
);
828 ordered
= btrfs_lookup_first_ordered_extent(inode
, end
);
831 if (ordered
->file_offset
> orig_end
) {
832 btrfs_put_ordered_extent(ordered
);
835 if (ordered
->file_offset
+ ordered
->len
<= start
) {
836 btrfs_put_ordered_extent(ordered
);
839 btrfs_start_ordered_extent(inode
, ordered
, 1);
840 end
= ordered
->file_offset
;
841 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
))
843 btrfs_put_ordered_extent(ordered
);
844 if (ret
|| end
== 0 || end
== start
)
848 return ret_wb
? ret_wb
: ret
;
852 * find an ordered extent corresponding to file_offset. return NULL if
853 * nothing is found, otherwise take a reference on the extent and return it
855 struct btrfs_ordered_extent
*btrfs_lookup_ordered_extent(struct inode
*inode
,
858 struct btrfs_ordered_inode_tree
*tree
;
859 struct rb_node
*node
;
860 struct btrfs_ordered_extent
*entry
= NULL
;
862 tree
= &BTRFS_I(inode
)->ordered_tree
;
863 spin_lock_irq(&tree
->lock
);
864 node
= tree_search(tree
, file_offset
);
868 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
869 if (!offset_in_entry(entry
, file_offset
))
872 refcount_inc(&entry
->refs
);
874 spin_unlock_irq(&tree
->lock
);
878 /* Since the DIO code tries to lock a wide area we need to look for any ordered
879 * extents that exist in the range, rather than just the start of the range.
881 struct btrfs_ordered_extent
*btrfs_lookup_ordered_range(
882 struct btrfs_inode
*inode
, u64 file_offset
, u64 len
)
884 struct btrfs_ordered_inode_tree
*tree
;
885 struct rb_node
*node
;
886 struct btrfs_ordered_extent
*entry
= NULL
;
888 tree
= &inode
->ordered_tree
;
889 spin_lock_irq(&tree
->lock
);
890 node
= tree_search(tree
, file_offset
);
892 node
= tree_search(tree
, file_offset
+ len
);
898 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
899 if (range_overlaps(entry
, file_offset
, len
))
902 if (entry
->file_offset
>= file_offset
+ len
) {
907 node
= rb_next(node
);
913 refcount_inc(&entry
->refs
);
914 spin_unlock_irq(&tree
->lock
);
918 bool btrfs_have_ordered_extents_in_range(struct inode
*inode
,
922 struct btrfs_ordered_extent
*oe
;
924 oe
= btrfs_lookup_ordered_range(BTRFS_I(inode
), file_offset
, len
);
926 btrfs_put_ordered_extent(oe
);
933 * lookup and return any extent before 'file_offset'. NULL is returned
936 struct btrfs_ordered_extent
*
937 btrfs_lookup_first_ordered_extent(struct inode
*inode
, u64 file_offset
)
939 struct btrfs_ordered_inode_tree
*tree
;
940 struct rb_node
*node
;
941 struct btrfs_ordered_extent
*entry
= NULL
;
943 tree
= &BTRFS_I(inode
)->ordered_tree
;
944 spin_lock_irq(&tree
->lock
);
945 node
= tree_search(tree
, file_offset
);
949 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
950 refcount_inc(&entry
->refs
);
952 spin_unlock_irq(&tree
->lock
);
957 * After an extent is done, call this to conditionally update the on disk
958 * i_size. i_size is updated to cover any fully written part of the file.
960 int btrfs_ordered_update_i_size(struct inode
*inode
, u64 offset
,
961 struct btrfs_ordered_extent
*ordered
)
963 struct btrfs_ordered_inode_tree
*tree
= &BTRFS_I(inode
)->ordered_tree
;
966 u64 i_size
= i_size_read(inode
);
967 struct rb_node
*node
;
968 struct rb_node
*prev
= NULL
;
969 struct btrfs_ordered_extent
*test
;
971 u64 orig_offset
= offset
;
973 spin_lock_irq(&tree
->lock
);
975 offset
= entry_end(ordered
);
976 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
))
978 ordered
->file_offset
+
979 ordered
->truncated_len
);
981 offset
= ALIGN(offset
, btrfs_inode_sectorsize(inode
));
983 disk_i_size
= BTRFS_I(inode
)->disk_i_size
;
987 * If ordered is not NULL, then this is called from endio and
988 * disk_i_size will be updated by either truncate itself or any
989 * in-flight IOs which are inside the disk_i_size.
991 * Because btrfs_setsize() may set i_size with disk_i_size if truncate
992 * fails somehow, we need to make sure we have a precise disk_i_size by
993 * updating it as usual.
996 if (!ordered
&& disk_i_size
> i_size
) {
997 BTRFS_I(inode
)->disk_i_size
= orig_offset
;
1003 * if the disk i_size is already at the inode->i_size, or
1004 * this ordered extent is inside the disk i_size, we're done
1006 if (disk_i_size
== i_size
)
1010 * We still need to update disk_i_size if outstanding_isize is greater
1013 if (offset
<= disk_i_size
&&
1014 (!ordered
|| ordered
->outstanding_isize
<= disk_i_size
))
1018 * walk backward from this ordered extent to disk_i_size.
1019 * if we find an ordered extent then we can't update disk i_size
1023 node
= rb_prev(&ordered
->rb_node
);
1025 prev
= tree_search(tree
, offset
);
1027 * we insert file extents without involving ordered struct,
1028 * so there should be no ordered struct cover this offset
1031 test
= rb_entry(prev
, struct btrfs_ordered_extent
,
1033 BUG_ON(offset_in_entry(test
, offset
));
1037 for (; node
; node
= rb_prev(node
)) {
1038 test
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
1040 /* We treat this entry as if it doesn't exist */
1041 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE
, &test
->flags
))
1044 if (entry_end(test
) <= disk_i_size
)
1046 if (test
->file_offset
>= i_size
)
1050 * We don't update disk_i_size now, so record this undealt
1051 * i_size. Or we will not know the real i_size.
1053 if (test
->outstanding_isize
< offset
)
1054 test
->outstanding_isize
= offset
;
1056 ordered
->outstanding_isize
> test
->outstanding_isize
)
1057 test
->outstanding_isize
= ordered
->outstanding_isize
;
1060 new_i_size
= min_t(u64
, offset
, i_size
);
1063 * Some ordered extents may completed before the current one, and
1064 * we hold the real i_size in ->outstanding_isize.
1066 if (ordered
&& ordered
->outstanding_isize
> new_i_size
)
1067 new_i_size
= min_t(u64
, ordered
->outstanding_isize
, i_size
);
1068 BTRFS_I(inode
)->disk_i_size
= new_i_size
;
1072 * We need to do this because we can't remove ordered extents until
1073 * after the i_disk_size has been updated and then the inode has been
1074 * updated to reflect the change, so we need to tell anybody who finds
1075 * this ordered extent that we've already done all the real work, we
1076 * just haven't completed all the other work.
1079 set_bit(BTRFS_ORDERED_UPDATED_ISIZE
, &ordered
->flags
);
1080 spin_unlock_irq(&tree
->lock
);
1085 * search the ordered extents for one corresponding to 'offset' and
1086 * try to find a checksum. This is used because we allow pages to
1087 * be reclaimed before their checksum is actually put into the btree
1089 int btrfs_find_ordered_sum(struct inode
*inode
, u64 offset
, u64 disk_bytenr
,
1092 struct btrfs_ordered_sum
*ordered_sum
;
1093 struct btrfs_ordered_extent
*ordered
;
1094 struct btrfs_ordered_inode_tree
*tree
= &BTRFS_I(inode
)->ordered_tree
;
1095 unsigned long num_sectors
;
1097 u32 sectorsize
= btrfs_inode_sectorsize(inode
);
1100 ordered
= btrfs_lookup_ordered_extent(inode
, offset
);
1104 spin_lock_irq(&tree
->lock
);
1105 list_for_each_entry_reverse(ordered_sum
, &ordered
->list
, list
) {
1106 if (disk_bytenr
>= ordered_sum
->bytenr
&&
1107 disk_bytenr
< ordered_sum
->bytenr
+ ordered_sum
->len
) {
1108 i
= (disk_bytenr
- ordered_sum
->bytenr
) >>
1109 inode
->i_sb
->s_blocksize_bits
;
1110 num_sectors
= ordered_sum
->len
>>
1111 inode
->i_sb
->s_blocksize_bits
;
1112 num_sectors
= min_t(int, len
- index
, num_sectors
- i
);
1113 memcpy(sum
+ index
, ordered_sum
->sums
+ i
,
1116 index
+= (int)num_sectors
;
1119 disk_bytenr
+= num_sectors
* sectorsize
;
1123 spin_unlock_irq(&tree
->lock
);
1124 btrfs_put_ordered_extent(ordered
);
1128 int __init
ordered_data_init(void)
1130 btrfs_ordered_extent_cache
= kmem_cache_create("btrfs_ordered_extent",
1131 sizeof(struct btrfs_ordered_extent
), 0,
1134 if (!btrfs_ordered_extent_cache
)
1140 void ordered_data_exit(void)
1142 kmem_cache_destroy(btrfs_ordered_extent_cache
);