2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
56 #include <asm/irq_regs.h>
58 typedef int (*remote_function_f
)(void *);
60 struct remote_function_call
{
61 struct task_struct
*p
;
62 remote_function_f func
;
67 static void remote_function(void *data
)
69 struct remote_function_call
*tfc
= data
;
70 struct task_struct
*p
= tfc
->p
;
74 if (task_cpu(p
) != smp_processor_id())
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
82 tfc
->ret
= -ESRCH
; /* No such (running) process */
87 tfc
->ret
= tfc
->func(tfc
->info
);
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
104 task_function_call(struct task_struct
*p
, remote_function_f func
, void *info
)
106 struct remote_function_call data
= {
115 ret
= smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
118 } while (ret
== -EAGAIN
);
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
128 * Calls the function @func on the remote cpu.
130 * returns: @func return value or -ENXIO when the cpu is offline
132 static int cpu_function_call(int cpu
, remote_function_f func
, void *info
)
134 struct remote_function_call data
= {
138 .ret
= -ENXIO
, /* No such CPU */
141 smp_call_function_single(cpu
, remote_function
, &data
, 1);
146 static inline struct perf_cpu_context
*
147 __get_cpu_context(struct perf_event_context
*ctx
)
149 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
152 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
153 struct perf_event_context
*ctx
)
155 raw_spin_lock(&cpuctx
->ctx
.lock
);
157 raw_spin_lock(&ctx
->lock
);
160 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
161 struct perf_event_context
*ctx
)
164 raw_spin_unlock(&ctx
->lock
);
165 raw_spin_unlock(&cpuctx
->ctx
.lock
);
168 #define TASK_TOMBSTONE ((void *)-1L)
170 static bool is_kernel_event(struct perf_event
*event
)
172 return READ_ONCE(event
->owner
) == TASK_TOMBSTONE
;
176 * On task ctx scheduling...
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
182 * This however results in two special cases:
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
194 typedef void (*event_f
)(struct perf_event
*, struct perf_cpu_context
*,
195 struct perf_event_context
*, void *);
197 struct event_function_struct
{
198 struct perf_event
*event
;
203 static int event_function(void *info
)
205 struct event_function_struct
*efs
= info
;
206 struct perf_event
*event
= efs
->event
;
207 struct perf_event_context
*ctx
= event
->ctx
;
208 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
209 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
212 WARN_ON_ONCE(!irqs_disabled());
214 perf_ctx_lock(cpuctx
, task_ctx
);
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
220 if (ctx
->task
!= current
) {
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
232 WARN_ON_ONCE(!ctx
->is_active
);
234 * And since we have ctx->is_active, cpuctx->task_ctx must
237 WARN_ON_ONCE(task_ctx
!= ctx
);
239 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
242 efs
->func(event
, cpuctx
, ctx
, efs
->data
);
244 perf_ctx_unlock(cpuctx
, task_ctx
);
249 static void event_function_call(struct perf_event
*event
, event_f func
, void *data
)
251 struct perf_event_context
*ctx
= event
->ctx
;
252 struct task_struct
*task
= READ_ONCE(ctx
->task
); /* verified in event_function */
253 struct event_function_struct efs
= {
259 if (!event
->parent
) {
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
265 lockdep_assert_held(&ctx
->mutex
);
269 cpu_function_call(event
->cpu
, event_function
, &efs
);
273 if (task
== TASK_TOMBSTONE
)
277 if (!task_function_call(task
, event_function
, &efs
))
280 raw_spin_lock_irq(&ctx
->lock
);
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
286 if (task
== TASK_TOMBSTONE
) {
287 raw_spin_unlock_irq(&ctx
->lock
);
290 if (ctx
->is_active
) {
291 raw_spin_unlock_irq(&ctx
->lock
);
294 func(event
, NULL
, ctx
, data
);
295 raw_spin_unlock_irq(&ctx
->lock
);
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
302 static void event_function_local(struct perf_event
*event
, event_f func
, void *data
)
304 struct perf_event_context
*ctx
= event
->ctx
;
305 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
306 struct task_struct
*task
= READ_ONCE(ctx
->task
);
307 struct perf_event_context
*task_ctx
= NULL
;
309 WARN_ON_ONCE(!irqs_disabled());
312 if (task
== TASK_TOMBSTONE
)
318 perf_ctx_lock(cpuctx
, task_ctx
);
321 if (task
== TASK_TOMBSTONE
)
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
330 if (ctx
->is_active
) {
331 if (WARN_ON_ONCE(task
!= current
))
334 if (WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
))
338 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
341 func(event
, cpuctx
, ctx
, data
);
343 perf_ctx_unlock(cpuctx
, task_ctx
);
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
352 * branch priv levels that need permission checks
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
359 EVENT_FLEXIBLE
= 0x1,
362 /* see ctx_resched() for details */
364 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
372 static void perf_sched_delayed(struct work_struct
*work
);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events
);
374 static DECLARE_DELAYED_WORK(perf_sched_work
, perf_sched_delayed
);
375 static DEFINE_MUTEX(perf_sched_mutex
);
376 static atomic_t perf_sched_count
;
378 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages
);
380 static DEFINE_PER_CPU(struct pmu_event_list
, pmu_sb_events
);
382 static atomic_t nr_mmap_events __read_mostly
;
383 static atomic_t nr_comm_events __read_mostly
;
384 static atomic_t nr_namespaces_events __read_mostly
;
385 static atomic_t nr_task_events __read_mostly
;
386 static atomic_t nr_freq_events __read_mostly
;
387 static atomic_t nr_switch_events __read_mostly
;
389 static LIST_HEAD(pmus
);
390 static DEFINE_MUTEX(pmus_lock
);
391 static struct srcu_struct pmus_srcu
;
392 static cpumask_var_t perf_online_mask
;
395 * perf event paranoia level:
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
398 * 1 - disallow cpu events for unpriv
399 * 2 - disallow kernel profiling for unpriv
401 int sysctl_perf_event_paranoid __read_mostly
= 2;
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
407 * max perf event sample rate
409 #define DEFAULT_MAX_SAMPLE_RATE 100000
410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
413 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
415 static int max_samples_per_tick __read_mostly
= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
416 static int perf_sample_period_ns __read_mostly
= DEFAULT_SAMPLE_PERIOD_NS
;
418 static int perf_sample_allowed_ns __read_mostly
=
419 DEFAULT_SAMPLE_PERIOD_NS
* DEFAULT_CPU_TIME_MAX_PERCENT
/ 100;
421 static void update_perf_cpu_limits(void)
423 u64 tmp
= perf_sample_period_ns
;
425 tmp
*= sysctl_perf_cpu_time_max_percent
;
426 tmp
= div_u64(tmp
, 100);
430 WRITE_ONCE(perf_sample_allowed_ns
, tmp
);
433 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
);
435 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
436 void __user
*buffer
, size_t *lenp
,
439 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
445 * If throttling is disabled don't allow the write:
447 if (sysctl_perf_cpu_time_max_percent
== 100 ||
448 sysctl_perf_cpu_time_max_percent
== 0)
451 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
452 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
453 update_perf_cpu_limits();
458 int sysctl_perf_cpu_time_max_percent __read_mostly
= DEFAULT_CPU_TIME_MAX_PERCENT
;
460 int perf_cpu_time_max_percent_handler(struct ctl_table
*table
, int write
,
461 void __user
*buffer
, size_t *lenp
,
464 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
469 if (sysctl_perf_cpu_time_max_percent
== 100 ||
470 sysctl_perf_cpu_time_max_percent
== 0) {
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns
, 0);
475 update_perf_cpu_limits();
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64
, running_sample_length
);
490 static u64 __report_avg
;
491 static u64 __report_allowed
;
493 static void perf_duration_warn(struct irq_work
*w
)
495 printk_ratelimited(KERN_INFO
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg
, __report_allowed
,
499 sysctl_perf_event_sample_rate
);
502 static DEFINE_IRQ_WORK(perf_duration_work
, perf_duration_warn
);
504 void perf_sample_event_took(u64 sample_len_ns
)
506 u64 max_len
= READ_ONCE(perf_sample_allowed_ns
);
514 /* Decay the counter by 1 average sample. */
515 running_len
= __this_cpu_read(running_sample_length
);
516 running_len
-= running_len
/NR_ACCUMULATED_SAMPLES
;
517 running_len
+= sample_len_ns
;
518 __this_cpu_write(running_sample_length
, running_len
);
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 * from having to maintain a count.
525 avg_len
= running_len
/NR_ACCUMULATED_SAMPLES
;
526 if (avg_len
<= max_len
)
529 __report_avg
= avg_len
;
530 __report_allowed
= max_len
;
533 * Compute a throttle threshold 25% below the current duration.
535 avg_len
+= avg_len
/ 4;
536 max
= (TICK_NSEC
/ 100) * sysctl_perf_cpu_time_max_percent
;
542 WRITE_ONCE(perf_sample_allowed_ns
, avg_len
);
543 WRITE_ONCE(max_samples_per_tick
, max
);
545 sysctl_perf_event_sample_rate
= max
* HZ
;
546 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
548 if (!irq_work_queue(&perf_duration_work
)) {
549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 "kernel.perf_event_max_sample_rate to %d\n",
551 __report_avg
, __report_allowed
,
552 sysctl_perf_event_sample_rate
);
556 static atomic64_t perf_event_id
;
558 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
559 enum event_type_t event_type
);
561 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
562 enum event_type_t event_type
,
563 struct task_struct
*task
);
565 static void update_context_time(struct perf_event_context
*ctx
);
566 static u64
perf_event_time(struct perf_event
*event
);
568 void __weak
perf_event_print_debug(void) { }
570 extern __weak
const char *perf_pmu_name(void)
575 static inline u64
perf_clock(void)
577 return local_clock();
580 static inline u64
perf_event_clock(struct perf_event
*event
)
582 return event
->clock();
585 #ifdef CONFIG_CGROUP_PERF
588 perf_cgroup_match(struct perf_event
*event
)
590 struct perf_event_context
*ctx
= event
->ctx
;
591 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
593 /* @event doesn't care about cgroup */
597 /* wants specific cgroup scope but @cpuctx isn't associated with any */
602 * Cgroup scoping is recursive. An event enabled for a cgroup is
603 * also enabled for all its descendant cgroups. If @cpuctx's
604 * cgroup is a descendant of @event's (the test covers identity
605 * case), it's a match.
607 return cgroup_is_descendant(cpuctx
->cgrp
->css
.cgroup
,
608 event
->cgrp
->css
.cgroup
);
611 static inline void perf_detach_cgroup(struct perf_event
*event
)
613 css_put(&event
->cgrp
->css
);
617 static inline int is_cgroup_event(struct perf_event
*event
)
619 return event
->cgrp
!= NULL
;
622 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
624 struct perf_cgroup_info
*t
;
626 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
630 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
632 struct perf_cgroup_info
*info
;
637 info
= this_cpu_ptr(cgrp
->info
);
639 info
->time
+= now
- info
->timestamp
;
640 info
->timestamp
= now
;
643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
645 struct perf_cgroup
*cgrp_out
= cpuctx
->cgrp
;
647 __update_cgrp_time(cgrp_out
);
650 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
652 struct perf_cgroup
*cgrp
;
655 * ensure we access cgroup data only when needed and
656 * when we know the cgroup is pinned (css_get)
658 if (!is_cgroup_event(event
))
661 cgrp
= perf_cgroup_from_task(current
, event
->ctx
);
663 * Do not update time when cgroup is not active
665 if (cgrp
== event
->cgrp
)
666 __update_cgrp_time(event
->cgrp
);
670 perf_cgroup_set_timestamp(struct task_struct
*task
,
671 struct perf_event_context
*ctx
)
673 struct perf_cgroup
*cgrp
;
674 struct perf_cgroup_info
*info
;
677 * ctx->lock held by caller
678 * ensure we do not access cgroup data
679 * unless we have the cgroup pinned (css_get)
681 if (!task
|| !ctx
->nr_cgroups
)
684 cgrp
= perf_cgroup_from_task(task
, ctx
);
685 info
= this_cpu_ptr(cgrp
->info
);
686 info
->timestamp
= ctx
->timestamp
;
689 static DEFINE_PER_CPU(struct list_head
, cgrp_cpuctx_list
);
691 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
692 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
695 * reschedule events based on the cgroup constraint of task.
697 * mode SWOUT : schedule out everything
698 * mode SWIN : schedule in based on cgroup for next
700 static void perf_cgroup_switch(struct task_struct
*task
, int mode
)
702 struct perf_cpu_context
*cpuctx
;
703 struct list_head
*list
;
707 * Disable interrupts and preemption to avoid this CPU's
708 * cgrp_cpuctx_entry to change under us.
710 local_irq_save(flags
);
712 list
= this_cpu_ptr(&cgrp_cpuctx_list
);
713 list_for_each_entry(cpuctx
, list
, cgrp_cpuctx_entry
) {
714 WARN_ON_ONCE(cpuctx
->ctx
.nr_cgroups
== 0);
716 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
717 perf_pmu_disable(cpuctx
->ctx
.pmu
);
719 if (mode
& PERF_CGROUP_SWOUT
) {
720 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
722 * must not be done before ctxswout due
723 * to event_filter_match() in event_sched_out()
728 if (mode
& PERF_CGROUP_SWIN
) {
729 WARN_ON_ONCE(cpuctx
->cgrp
);
731 * set cgrp before ctxsw in to allow
732 * event_filter_match() to not have to pass
734 * we pass the cpuctx->ctx to perf_cgroup_from_task()
735 * because cgorup events are only per-cpu
737 cpuctx
->cgrp
= perf_cgroup_from_task(task
,
739 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
741 perf_pmu_enable(cpuctx
->ctx
.pmu
);
742 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
745 local_irq_restore(flags
);
748 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
749 struct task_struct
*next
)
751 struct perf_cgroup
*cgrp1
;
752 struct perf_cgroup
*cgrp2
= NULL
;
756 * we come here when we know perf_cgroup_events > 0
757 * we do not need to pass the ctx here because we know
758 * we are holding the rcu lock
760 cgrp1
= perf_cgroup_from_task(task
, NULL
);
761 cgrp2
= perf_cgroup_from_task(next
, NULL
);
764 * only schedule out current cgroup events if we know
765 * that we are switching to a different cgroup. Otherwise,
766 * do no touch the cgroup events.
769 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
774 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
775 struct task_struct
*task
)
777 struct perf_cgroup
*cgrp1
;
778 struct perf_cgroup
*cgrp2
= NULL
;
782 * we come here when we know perf_cgroup_events > 0
783 * we do not need to pass the ctx here because we know
784 * we are holding the rcu lock
786 cgrp1
= perf_cgroup_from_task(task
, NULL
);
787 cgrp2
= perf_cgroup_from_task(prev
, NULL
);
790 * only need to schedule in cgroup events if we are changing
791 * cgroup during ctxsw. Cgroup events were not scheduled
792 * out of ctxsw out if that was not the case.
795 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
800 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
801 struct perf_event_attr
*attr
,
802 struct perf_event
*group_leader
)
804 struct perf_cgroup
*cgrp
;
805 struct cgroup_subsys_state
*css
;
806 struct fd f
= fdget(fd
);
812 css
= css_tryget_online_from_dir(f
.file
->f_path
.dentry
,
813 &perf_event_cgrp_subsys
);
819 cgrp
= container_of(css
, struct perf_cgroup
, css
);
823 * all events in a group must monitor
824 * the same cgroup because a task belongs
825 * to only one perf cgroup at a time
827 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
828 perf_detach_cgroup(event
);
837 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
839 struct perf_cgroup_info
*t
;
840 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
841 event
->shadow_ctx_time
= now
- t
->timestamp
;
845 perf_cgroup_defer_enabled(struct perf_event
*event
)
848 * when the current task's perf cgroup does not match
849 * the event's, we need to remember to call the
850 * perf_mark_enable() function the first time a task with
851 * a matching perf cgroup is scheduled in.
853 if (is_cgroup_event(event
) && !perf_cgroup_match(event
))
854 event
->cgrp_defer_enabled
= 1;
858 perf_cgroup_mark_enabled(struct perf_event
*event
,
859 struct perf_event_context
*ctx
)
861 struct perf_event
*sub
;
862 u64 tstamp
= perf_event_time(event
);
864 if (!event
->cgrp_defer_enabled
)
867 event
->cgrp_defer_enabled
= 0;
869 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
870 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
871 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
872 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
873 sub
->cgrp_defer_enabled
= 0;
879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880 * cleared when last cgroup event is removed.
883 list_update_cgroup_event(struct perf_event
*event
,
884 struct perf_event_context
*ctx
, bool add
)
886 struct perf_cpu_context
*cpuctx
;
887 struct list_head
*cpuctx_entry
;
889 if (!is_cgroup_event(event
))
892 if (add
&& ctx
->nr_cgroups
++)
894 else if (!add
&& --ctx
->nr_cgroups
)
897 * Because cgroup events are always per-cpu events,
898 * this will always be called from the right CPU.
900 cpuctx
= __get_cpu_context(ctx
);
901 cpuctx_entry
= &cpuctx
->cgrp_cpuctx_entry
;
902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
904 list_add(cpuctx_entry
, this_cpu_ptr(&cgrp_cpuctx_list
));
905 if (perf_cgroup_from_task(current
, ctx
) == event
->cgrp
)
906 cpuctx
->cgrp
= event
->cgrp
;
908 list_del(cpuctx_entry
);
913 #else /* !CONFIG_CGROUP_PERF */
916 perf_cgroup_match(struct perf_event
*event
)
921 static inline void perf_detach_cgroup(struct perf_event
*event
)
924 static inline int is_cgroup_event(struct perf_event
*event
)
929 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
937 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
938 struct task_struct
*next
)
942 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
943 struct task_struct
*task
)
947 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
948 struct perf_event_attr
*attr
,
949 struct perf_event
*group_leader
)
955 perf_cgroup_set_timestamp(struct task_struct
*task
,
956 struct perf_event_context
*ctx
)
961 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
966 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
970 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
976 perf_cgroup_defer_enabled(struct perf_event
*event
)
981 perf_cgroup_mark_enabled(struct perf_event
*event
,
982 struct perf_event_context
*ctx
)
987 list_update_cgroup_event(struct perf_event
*event
,
988 struct perf_event_context
*ctx
, bool add
)
995 * set default to be dependent on timer tick just
998 #define PERF_CPU_HRTIMER (1000 / HZ)
1000 * function must be called with interrupts disabled
1002 static enum hrtimer_restart
perf_mux_hrtimer_handler(struct hrtimer
*hr
)
1004 struct perf_cpu_context
*cpuctx
;
1007 WARN_ON(!irqs_disabled());
1009 cpuctx
= container_of(hr
, struct perf_cpu_context
, hrtimer
);
1010 rotations
= perf_rotate_context(cpuctx
);
1012 raw_spin_lock(&cpuctx
->hrtimer_lock
);
1014 hrtimer_forward_now(hr
, cpuctx
->hrtimer_interval
);
1016 cpuctx
->hrtimer_active
= 0;
1017 raw_spin_unlock(&cpuctx
->hrtimer_lock
);
1019 return rotations
? HRTIMER_RESTART
: HRTIMER_NORESTART
;
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context
*cpuctx
, int cpu
)
1024 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1025 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1028 /* no multiplexing needed for SW PMU */
1029 if (pmu
->task_ctx_nr
== perf_sw_context
)
1033 * check default is sane, if not set then force to
1034 * default interval (1/tick)
1036 interval
= pmu
->hrtimer_interval_ms
;
1038 interval
= pmu
->hrtimer_interval_ms
= PERF_CPU_HRTIMER
;
1040 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* interval
);
1042 raw_spin_lock_init(&cpuctx
->hrtimer_lock
);
1043 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
1044 timer
->function
= perf_mux_hrtimer_handler
;
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context
*cpuctx
)
1049 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1050 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1051 unsigned long flags
;
1053 /* not for SW PMU */
1054 if (pmu
->task_ctx_nr
== perf_sw_context
)
1057 raw_spin_lock_irqsave(&cpuctx
->hrtimer_lock
, flags
);
1058 if (!cpuctx
->hrtimer_active
) {
1059 cpuctx
->hrtimer_active
= 1;
1060 hrtimer_forward_now(timer
, cpuctx
->hrtimer_interval
);
1061 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED
);
1063 raw_spin_unlock_irqrestore(&cpuctx
->hrtimer_lock
, flags
);
1068 void perf_pmu_disable(struct pmu
*pmu
)
1070 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1072 pmu
->pmu_disable(pmu
);
1075 void perf_pmu_enable(struct pmu
*pmu
)
1077 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1079 pmu
->pmu_enable(pmu
);
1082 static DEFINE_PER_CPU(struct list_head
, active_ctx_list
);
1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086 * perf_event_task_tick() are fully serialized because they're strictly cpu
1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088 * disabled, while perf_event_task_tick is called from IRQ context.
1090 static void perf_event_ctx_activate(struct perf_event_context
*ctx
)
1092 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
1094 WARN_ON(!irqs_disabled());
1096 WARN_ON(!list_empty(&ctx
->active_ctx_list
));
1098 list_add(&ctx
->active_ctx_list
, head
);
1101 static void perf_event_ctx_deactivate(struct perf_event_context
*ctx
)
1103 WARN_ON(!irqs_disabled());
1105 WARN_ON(list_empty(&ctx
->active_ctx_list
));
1107 list_del_init(&ctx
->active_ctx_list
);
1110 static void get_ctx(struct perf_event_context
*ctx
)
1112 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
1115 static void free_ctx(struct rcu_head
*head
)
1117 struct perf_event_context
*ctx
;
1119 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
1120 kfree(ctx
->task_ctx_data
);
1124 static void put_ctx(struct perf_event_context
*ctx
)
1126 if (atomic_dec_and_test(&ctx
->refcount
)) {
1127 if (ctx
->parent_ctx
)
1128 put_ctx(ctx
->parent_ctx
);
1129 if (ctx
->task
&& ctx
->task
!= TASK_TOMBSTONE
)
1130 put_task_struct(ctx
->task
);
1131 call_rcu(&ctx
->rcu_head
, free_ctx
);
1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137 * perf_pmu_migrate_context() we need some magic.
1139 * Those places that change perf_event::ctx will hold both
1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1142 * Lock ordering is by mutex address. There are two other sites where
1143 * perf_event_context::mutex nests and those are:
1145 * - perf_event_exit_task_context() [ child , 0 ]
1146 * perf_event_exit_event()
1147 * put_event() [ parent, 1 ]
1149 * - perf_event_init_context() [ parent, 0 ]
1150 * inherit_task_group()
1153 * perf_event_alloc()
1155 * perf_try_init_event() [ child , 1 ]
1157 * While it appears there is an obvious deadlock here -- the parent and child
1158 * nesting levels are inverted between the two. This is in fact safe because
1159 * life-time rules separate them. That is an exiting task cannot fork, and a
1160 * spawning task cannot (yet) exit.
1162 * But remember that that these are parent<->child context relations, and
1163 * migration does not affect children, therefore these two orderings should not
1166 * The change in perf_event::ctx does not affect children (as claimed above)
1167 * because the sys_perf_event_open() case will install a new event and break
1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169 * concerned with cpuctx and that doesn't have children.
1171 * The places that change perf_event::ctx will issue:
1173 * perf_remove_from_context();
1174 * synchronize_rcu();
1175 * perf_install_in_context();
1177 * to affect the change. The remove_from_context() + synchronize_rcu() should
1178 * quiesce the event, after which we can install it in the new location. This
1179 * means that only external vectors (perf_fops, prctl) can perturb the event
1180 * while in transit. Therefore all such accessors should also acquire
1181 * perf_event_context::mutex to serialize against this.
1183 * However; because event->ctx can change while we're waiting to acquire
1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1189 * task_struct::perf_event_mutex
1190 * perf_event_context::mutex
1191 * perf_event::child_mutex;
1192 * perf_event_context::lock
1193 * perf_event::mmap_mutex
1196 static struct perf_event_context
*
1197 perf_event_ctx_lock_nested(struct perf_event
*event
, int nesting
)
1199 struct perf_event_context
*ctx
;
1203 ctx
= ACCESS_ONCE(event
->ctx
);
1204 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
1210 mutex_lock_nested(&ctx
->mutex
, nesting
);
1211 if (event
->ctx
!= ctx
) {
1212 mutex_unlock(&ctx
->mutex
);
1220 static inline struct perf_event_context
*
1221 perf_event_ctx_lock(struct perf_event
*event
)
1223 return perf_event_ctx_lock_nested(event
, 0);
1226 static void perf_event_ctx_unlock(struct perf_event
*event
,
1227 struct perf_event_context
*ctx
)
1229 mutex_unlock(&ctx
->mutex
);
1234 * This must be done under the ctx->lock, such as to serialize against
1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236 * calling scheduler related locks and ctx->lock nests inside those.
1238 static __must_check
struct perf_event_context
*
1239 unclone_ctx(struct perf_event_context
*ctx
)
1241 struct perf_event_context
*parent_ctx
= ctx
->parent_ctx
;
1243 lockdep_assert_held(&ctx
->lock
);
1246 ctx
->parent_ctx
= NULL
;
1252 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
1255 * only top level events have the pid namespace they were created in
1258 event
= event
->parent
;
1260 return task_tgid_nr_ns(p
, event
->ns
);
1263 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
1266 * only top level events have the pid namespace they were created in
1269 event
= event
->parent
;
1271 return task_pid_nr_ns(p
, event
->ns
);
1275 * If we inherit events we want to return the parent event id
1278 static u64
primary_event_id(struct perf_event
*event
)
1283 id
= event
->parent
->id
;
1289 * Get the perf_event_context for a task and lock it.
1291 * This has to cope with with the fact that until it is locked,
1292 * the context could get moved to another task.
1294 static struct perf_event_context
*
1295 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
1297 struct perf_event_context
*ctx
;
1301 * One of the few rules of preemptible RCU is that one cannot do
1302 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303 * part of the read side critical section was irqs-enabled -- see
1304 * rcu_read_unlock_special().
1306 * Since ctx->lock nests under rq->lock we must ensure the entire read
1307 * side critical section has interrupts disabled.
1309 local_irq_save(*flags
);
1311 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
1314 * If this context is a clone of another, it might
1315 * get swapped for another underneath us by
1316 * perf_event_task_sched_out, though the
1317 * rcu_read_lock() protects us from any context
1318 * getting freed. Lock the context and check if it
1319 * got swapped before we could get the lock, and retry
1320 * if so. If we locked the right context, then it
1321 * can't get swapped on us any more.
1323 raw_spin_lock(&ctx
->lock
);
1324 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
1325 raw_spin_unlock(&ctx
->lock
);
1327 local_irq_restore(*flags
);
1331 if (ctx
->task
== TASK_TOMBSTONE
||
1332 !atomic_inc_not_zero(&ctx
->refcount
)) {
1333 raw_spin_unlock(&ctx
->lock
);
1336 WARN_ON_ONCE(ctx
->task
!= task
);
1341 local_irq_restore(*flags
);
1346 * Get the context for a task and increment its pin_count so it
1347 * can't get swapped to another task. This also increments its
1348 * reference count so that the context can't get freed.
1350 static struct perf_event_context
*
1351 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
1353 struct perf_event_context
*ctx
;
1354 unsigned long flags
;
1356 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
1359 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1364 static void perf_unpin_context(struct perf_event_context
*ctx
)
1366 unsigned long flags
;
1368 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1370 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1374 * Update the record of the current time in a context.
1376 static void update_context_time(struct perf_event_context
*ctx
)
1378 u64 now
= perf_clock();
1380 ctx
->time
+= now
- ctx
->timestamp
;
1381 ctx
->timestamp
= now
;
1384 static u64
perf_event_time(struct perf_event
*event
)
1386 struct perf_event_context
*ctx
= event
->ctx
;
1388 if (is_cgroup_event(event
))
1389 return perf_cgroup_event_time(event
);
1391 return ctx
? ctx
->time
: 0;
1395 * Update the total_time_enabled and total_time_running fields for a event.
1397 static void update_event_times(struct perf_event
*event
)
1399 struct perf_event_context
*ctx
= event
->ctx
;
1402 lockdep_assert_held(&ctx
->lock
);
1404 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
1405 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
1409 * in cgroup mode, time_enabled represents
1410 * the time the event was enabled AND active
1411 * tasks were in the monitored cgroup. This is
1412 * independent of the activity of the context as
1413 * there may be a mix of cgroup and non-cgroup events.
1415 * That is why we treat cgroup events differently
1418 if (is_cgroup_event(event
))
1419 run_end
= perf_cgroup_event_time(event
);
1420 else if (ctx
->is_active
)
1421 run_end
= ctx
->time
;
1423 run_end
= event
->tstamp_stopped
;
1425 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
1427 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
1428 run_end
= event
->tstamp_stopped
;
1430 run_end
= perf_event_time(event
);
1432 event
->total_time_running
= run_end
- event
->tstamp_running
;
1437 * Update total_time_enabled and total_time_running for all events in a group.
1439 static void update_group_times(struct perf_event
*leader
)
1441 struct perf_event
*event
;
1443 update_event_times(leader
);
1444 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
1445 update_event_times(event
);
1448 static enum event_type_t
get_event_type(struct perf_event
*event
)
1450 struct perf_event_context
*ctx
= event
->ctx
;
1451 enum event_type_t event_type
;
1453 lockdep_assert_held(&ctx
->lock
);
1456 * It's 'group type', really, because if our group leader is
1457 * pinned, so are we.
1459 if (event
->group_leader
!= event
)
1460 event
= event
->group_leader
;
1462 event_type
= event
->attr
.pinned
? EVENT_PINNED
: EVENT_FLEXIBLE
;
1464 event_type
|= EVENT_CPU
;
1469 static struct list_head
*
1470 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
1472 if (event
->attr
.pinned
)
1473 return &ctx
->pinned_groups
;
1475 return &ctx
->flexible_groups
;
1479 * Add a event from the lists for its context.
1480 * Must be called with ctx->mutex and ctx->lock held.
1483 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1485 lockdep_assert_held(&ctx
->lock
);
1487 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1488 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
1491 * If we're a stand alone event or group leader, we go to the context
1492 * list, group events are kept attached to the group so that
1493 * perf_group_detach can, at all times, locate all siblings.
1495 if (event
->group_leader
== event
) {
1496 struct list_head
*list
;
1498 event
->group_caps
= event
->event_caps
;
1500 list
= ctx_group_list(event
, ctx
);
1501 list_add_tail(&event
->group_entry
, list
);
1504 list_update_cgroup_event(event
, ctx
, true);
1506 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
1508 if (event
->attr
.inherit_stat
)
1515 * Initialize event state based on the perf_event_attr::disabled.
1517 static inline void perf_event__state_init(struct perf_event
*event
)
1519 event
->state
= event
->attr
.disabled
? PERF_EVENT_STATE_OFF
:
1520 PERF_EVENT_STATE_INACTIVE
;
1523 static void __perf_event_read_size(struct perf_event
*event
, int nr_siblings
)
1525 int entry
= sizeof(u64
); /* value */
1529 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1530 size
+= sizeof(u64
);
1532 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1533 size
+= sizeof(u64
);
1535 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1536 entry
+= sizeof(u64
);
1538 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1540 size
+= sizeof(u64
);
1544 event
->read_size
= size
;
1547 static void __perf_event_header_size(struct perf_event
*event
, u64 sample_type
)
1549 struct perf_sample_data
*data
;
1552 if (sample_type
& PERF_SAMPLE_IP
)
1553 size
+= sizeof(data
->ip
);
1555 if (sample_type
& PERF_SAMPLE_ADDR
)
1556 size
+= sizeof(data
->addr
);
1558 if (sample_type
& PERF_SAMPLE_PERIOD
)
1559 size
+= sizeof(data
->period
);
1561 if (sample_type
& PERF_SAMPLE_WEIGHT
)
1562 size
+= sizeof(data
->weight
);
1564 if (sample_type
& PERF_SAMPLE_READ
)
1565 size
+= event
->read_size
;
1567 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
1568 size
+= sizeof(data
->data_src
.val
);
1570 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
1571 size
+= sizeof(data
->txn
);
1573 event
->header_size
= size
;
1577 * Called at perf_event creation and when events are attached/detached from a
1580 static void perf_event__header_size(struct perf_event
*event
)
1582 __perf_event_read_size(event
,
1583 event
->group_leader
->nr_siblings
);
1584 __perf_event_header_size(event
, event
->attr
.sample_type
);
1587 static void perf_event__id_header_size(struct perf_event
*event
)
1589 struct perf_sample_data
*data
;
1590 u64 sample_type
= event
->attr
.sample_type
;
1593 if (sample_type
& PERF_SAMPLE_TID
)
1594 size
+= sizeof(data
->tid_entry
);
1596 if (sample_type
& PERF_SAMPLE_TIME
)
1597 size
+= sizeof(data
->time
);
1599 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
1600 size
+= sizeof(data
->id
);
1602 if (sample_type
& PERF_SAMPLE_ID
)
1603 size
+= sizeof(data
->id
);
1605 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
1606 size
+= sizeof(data
->stream_id
);
1608 if (sample_type
& PERF_SAMPLE_CPU
)
1609 size
+= sizeof(data
->cpu_entry
);
1611 event
->id_header_size
= size
;
1614 static bool perf_event_validate_size(struct perf_event
*event
)
1617 * The values computed here will be over-written when we actually
1620 __perf_event_read_size(event
, event
->group_leader
->nr_siblings
+ 1);
1621 __perf_event_header_size(event
, event
->attr
.sample_type
& ~PERF_SAMPLE_READ
);
1622 perf_event__id_header_size(event
);
1625 * Sum the lot; should not exceed the 64k limit we have on records.
1626 * Conservative limit to allow for callchains and other variable fields.
1628 if (event
->read_size
+ event
->header_size
+
1629 event
->id_header_size
+ sizeof(struct perf_event_header
) >= 16*1024)
1635 static void perf_group_attach(struct perf_event
*event
)
1637 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
1639 lockdep_assert_held(&event
->ctx
->lock
);
1642 * We can have double attach due to group movement in perf_event_open.
1644 if (event
->attach_state
& PERF_ATTACH_GROUP
)
1647 event
->attach_state
|= PERF_ATTACH_GROUP
;
1649 if (group_leader
== event
)
1652 WARN_ON_ONCE(group_leader
->ctx
!= event
->ctx
);
1654 group_leader
->group_caps
&= event
->event_caps
;
1656 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
1657 group_leader
->nr_siblings
++;
1659 perf_event__header_size(group_leader
);
1661 list_for_each_entry(pos
, &group_leader
->sibling_list
, group_entry
)
1662 perf_event__header_size(pos
);
1666 * Remove a event from the lists for its context.
1667 * Must be called with ctx->mutex and ctx->lock held.
1670 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1672 WARN_ON_ONCE(event
->ctx
!= ctx
);
1673 lockdep_assert_held(&ctx
->lock
);
1676 * We can have double detach due to exit/hot-unplug + close.
1678 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
1681 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
1683 list_update_cgroup_event(event
, ctx
, false);
1686 if (event
->attr
.inherit_stat
)
1689 list_del_rcu(&event
->event_entry
);
1691 if (event
->group_leader
== event
)
1692 list_del_init(&event
->group_entry
);
1694 update_group_times(event
);
1697 * If event was in error state, then keep it
1698 * that way, otherwise bogus counts will be
1699 * returned on read(). The only way to get out
1700 * of error state is by explicit re-enabling
1703 if (event
->state
> PERF_EVENT_STATE_OFF
)
1704 event
->state
= PERF_EVENT_STATE_OFF
;
1709 static void perf_group_detach(struct perf_event
*event
)
1711 struct perf_event
*sibling
, *tmp
;
1712 struct list_head
*list
= NULL
;
1714 lockdep_assert_held(&event
->ctx
->lock
);
1717 * We can have double detach due to exit/hot-unplug + close.
1719 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
1722 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
1725 * If this is a sibling, remove it from its group.
1727 if (event
->group_leader
!= event
) {
1728 list_del_init(&event
->group_entry
);
1729 event
->group_leader
->nr_siblings
--;
1733 if (!list_empty(&event
->group_entry
))
1734 list
= &event
->group_entry
;
1737 * If this was a group event with sibling events then
1738 * upgrade the siblings to singleton events by adding them
1739 * to whatever list we are on.
1741 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
1743 list_move_tail(&sibling
->group_entry
, list
);
1744 sibling
->group_leader
= sibling
;
1746 /* Inherit group flags from the previous leader */
1747 sibling
->group_caps
= event
->group_caps
;
1749 WARN_ON_ONCE(sibling
->ctx
!= event
->ctx
);
1753 perf_event__header_size(event
->group_leader
);
1755 list_for_each_entry(tmp
, &event
->group_leader
->sibling_list
, group_entry
)
1756 perf_event__header_size(tmp
);
1759 static bool is_orphaned_event(struct perf_event
*event
)
1761 return event
->state
== PERF_EVENT_STATE_DEAD
;
1764 static inline int __pmu_filter_match(struct perf_event
*event
)
1766 struct pmu
*pmu
= event
->pmu
;
1767 return pmu
->filter_match
? pmu
->filter_match(event
) : 1;
1771 * Check whether we should attempt to schedule an event group based on
1772 * PMU-specific filtering. An event group can consist of HW and SW events,
1773 * potentially with a SW leader, so we must check all the filters, to
1774 * determine whether a group is schedulable:
1776 static inline int pmu_filter_match(struct perf_event
*event
)
1778 struct perf_event
*child
;
1780 if (!__pmu_filter_match(event
))
1783 list_for_each_entry(child
, &event
->sibling_list
, group_entry
) {
1784 if (!__pmu_filter_match(child
))
1792 event_filter_match(struct perf_event
*event
)
1794 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id()) &&
1795 perf_cgroup_match(event
) && pmu_filter_match(event
);
1799 event_sched_out(struct perf_event
*event
,
1800 struct perf_cpu_context
*cpuctx
,
1801 struct perf_event_context
*ctx
)
1803 u64 tstamp
= perf_event_time(event
);
1806 WARN_ON_ONCE(event
->ctx
!= ctx
);
1807 lockdep_assert_held(&ctx
->lock
);
1810 * An event which could not be activated because of
1811 * filter mismatch still needs to have its timings
1812 * maintained, otherwise bogus information is return
1813 * via read() for time_enabled, time_running:
1815 if (event
->state
== PERF_EVENT_STATE_INACTIVE
&&
1816 !event_filter_match(event
)) {
1817 delta
= tstamp
- event
->tstamp_stopped
;
1818 event
->tstamp_running
+= delta
;
1819 event
->tstamp_stopped
= tstamp
;
1822 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1825 perf_pmu_disable(event
->pmu
);
1827 event
->tstamp_stopped
= tstamp
;
1828 event
->pmu
->del(event
, 0);
1830 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1831 if (event
->pending_disable
) {
1832 event
->pending_disable
= 0;
1833 event
->state
= PERF_EVENT_STATE_OFF
;
1836 if (!is_software_event(event
))
1837 cpuctx
->active_oncpu
--;
1838 if (!--ctx
->nr_active
)
1839 perf_event_ctx_deactivate(ctx
);
1840 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1842 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
1843 cpuctx
->exclusive
= 0;
1845 perf_pmu_enable(event
->pmu
);
1849 group_sched_out(struct perf_event
*group_event
,
1850 struct perf_cpu_context
*cpuctx
,
1851 struct perf_event_context
*ctx
)
1853 struct perf_event
*event
;
1854 int state
= group_event
->state
;
1856 perf_pmu_disable(ctx
->pmu
);
1858 event_sched_out(group_event
, cpuctx
, ctx
);
1861 * Schedule out siblings (if any):
1863 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
1864 event_sched_out(event
, cpuctx
, ctx
);
1866 perf_pmu_enable(ctx
->pmu
);
1868 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
1869 cpuctx
->exclusive
= 0;
1872 #define DETACH_GROUP 0x01UL
1875 * Cross CPU call to remove a performance event
1877 * We disable the event on the hardware level first. After that we
1878 * remove it from the context list.
1881 __perf_remove_from_context(struct perf_event
*event
,
1882 struct perf_cpu_context
*cpuctx
,
1883 struct perf_event_context
*ctx
,
1886 unsigned long flags
= (unsigned long)info
;
1888 event_sched_out(event
, cpuctx
, ctx
);
1889 if (flags
& DETACH_GROUP
)
1890 perf_group_detach(event
);
1891 list_del_event(event
, ctx
);
1893 if (!ctx
->nr_events
&& ctx
->is_active
) {
1896 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
1897 cpuctx
->task_ctx
= NULL
;
1903 * Remove the event from a task's (or a CPU's) list of events.
1905 * If event->ctx is a cloned context, callers must make sure that
1906 * every task struct that event->ctx->task could possibly point to
1907 * remains valid. This is OK when called from perf_release since
1908 * that only calls us on the top-level context, which can't be a clone.
1909 * When called from perf_event_exit_task, it's OK because the
1910 * context has been detached from its task.
1912 static void perf_remove_from_context(struct perf_event
*event
, unsigned long flags
)
1914 struct perf_event_context
*ctx
= event
->ctx
;
1916 lockdep_assert_held(&ctx
->mutex
);
1918 event_function_call(event
, __perf_remove_from_context
, (void *)flags
);
1921 * The above event_function_call() can NO-OP when it hits
1922 * TASK_TOMBSTONE. In that case we must already have been detached
1923 * from the context (by perf_event_exit_event()) but the grouping
1924 * might still be in-tact.
1926 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1927 if ((flags
& DETACH_GROUP
) &&
1928 (event
->attach_state
& PERF_ATTACH_GROUP
)) {
1930 * Since in that case we cannot possibly be scheduled, simply
1933 raw_spin_lock_irq(&ctx
->lock
);
1934 perf_group_detach(event
);
1935 raw_spin_unlock_irq(&ctx
->lock
);
1940 * Cross CPU call to disable a performance event
1942 static void __perf_event_disable(struct perf_event
*event
,
1943 struct perf_cpu_context
*cpuctx
,
1944 struct perf_event_context
*ctx
,
1947 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
1950 update_context_time(ctx
);
1951 update_cgrp_time_from_event(event
);
1952 update_group_times(event
);
1953 if (event
== event
->group_leader
)
1954 group_sched_out(event
, cpuctx
, ctx
);
1956 event_sched_out(event
, cpuctx
, ctx
);
1957 event
->state
= PERF_EVENT_STATE_OFF
;
1963 * If event->ctx is a cloned context, callers must make sure that
1964 * every task struct that event->ctx->task could possibly point to
1965 * remains valid. This condition is satisifed when called through
1966 * perf_event_for_each_child or perf_event_for_each because they
1967 * hold the top-level event's child_mutex, so any descendant that
1968 * goes to exit will block in perf_event_exit_event().
1970 * When called from perf_pending_event it's OK because event->ctx
1971 * is the current context on this CPU and preemption is disabled,
1972 * hence we can't get into perf_event_task_sched_out for this context.
1974 static void _perf_event_disable(struct perf_event
*event
)
1976 struct perf_event_context
*ctx
= event
->ctx
;
1978 raw_spin_lock_irq(&ctx
->lock
);
1979 if (event
->state
<= PERF_EVENT_STATE_OFF
) {
1980 raw_spin_unlock_irq(&ctx
->lock
);
1983 raw_spin_unlock_irq(&ctx
->lock
);
1985 event_function_call(event
, __perf_event_disable
, NULL
);
1988 void perf_event_disable_local(struct perf_event
*event
)
1990 event_function_local(event
, __perf_event_disable
, NULL
);
1994 * Strictly speaking kernel users cannot create groups and therefore this
1995 * interface does not need the perf_event_ctx_lock() magic.
1997 void perf_event_disable(struct perf_event
*event
)
1999 struct perf_event_context
*ctx
;
2001 ctx
= perf_event_ctx_lock(event
);
2002 _perf_event_disable(event
);
2003 perf_event_ctx_unlock(event
, ctx
);
2005 EXPORT_SYMBOL_GPL(perf_event_disable
);
2007 void perf_event_disable_inatomic(struct perf_event
*event
)
2009 event
->pending_disable
= 1;
2010 irq_work_queue(&event
->pending
);
2013 static void perf_set_shadow_time(struct perf_event
*event
,
2014 struct perf_event_context
*ctx
,
2018 * use the correct time source for the time snapshot
2020 * We could get by without this by leveraging the
2021 * fact that to get to this function, the caller
2022 * has most likely already called update_context_time()
2023 * and update_cgrp_time_xx() and thus both timestamp
2024 * are identical (or very close). Given that tstamp is,
2025 * already adjusted for cgroup, we could say that:
2026 * tstamp - ctx->timestamp
2028 * tstamp - cgrp->timestamp.
2030 * Then, in perf_output_read(), the calculation would
2031 * work with no changes because:
2032 * - event is guaranteed scheduled in
2033 * - no scheduled out in between
2034 * - thus the timestamp would be the same
2036 * But this is a bit hairy.
2038 * So instead, we have an explicit cgroup call to remain
2039 * within the time time source all along. We believe it
2040 * is cleaner and simpler to understand.
2042 if (is_cgroup_event(event
))
2043 perf_cgroup_set_shadow_time(event
, tstamp
);
2045 event
->shadow_ctx_time
= tstamp
- ctx
->timestamp
;
2048 #define MAX_INTERRUPTS (~0ULL)
2050 static void perf_log_throttle(struct perf_event
*event
, int enable
);
2051 static void perf_log_itrace_start(struct perf_event
*event
);
2054 event_sched_in(struct perf_event
*event
,
2055 struct perf_cpu_context
*cpuctx
,
2056 struct perf_event_context
*ctx
)
2058 u64 tstamp
= perf_event_time(event
);
2061 lockdep_assert_held(&ctx
->lock
);
2063 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2066 WRITE_ONCE(event
->oncpu
, smp_processor_id());
2068 * Order event::oncpu write to happen before the ACTIVE state
2072 WRITE_ONCE(event
->state
, PERF_EVENT_STATE_ACTIVE
);
2075 * Unthrottle events, since we scheduled we might have missed several
2076 * ticks already, also for a heavily scheduling task there is little
2077 * guarantee it'll get a tick in a timely manner.
2079 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
2080 perf_log_throttle(event
, 1);
2081 event
->hw
.interrupts
= 0;
2085 * The new state must be visible before we turn it on in the hardware:
2089 perf_pmu_disable(event
->pmu
);
2091 perf_set_shadow_time(event
, ctx
, tstamp
);
2093 perf_log_itrace_start(event
);
2095 if (event
->pmu
->add(event
, PERF_EF_START
)) {
2096 event
->state
= PERF_EVENT_STATE_INACTIVE
;
2102 event
->tstamp_running
+= tstamp
- event
->tstamp_stopped
;
2104 if (!is_software_event(event
))
2105 cpuctx
->active_oncpu
++;
2106 if (!ctx
->nr_active
++)
2107 perf_event_ctx_activate(ctx
);
2108 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
2111 if (event
->attr
.exclusive
)
2112 cpuctx
->exclusive
= 1;
2115 perf_pmu_enable(event
->pmu
);
2121 group_sched_in(struct perf_event
*group_event
,
2122 struct perf_cpu_context
*cpuctx
,
2123 struct perf_event_context
*ctx
)
2125 struct perf_event
*event
, *partial_group
= NULL
;
2126 struct pmu
*pmu
= ctx
->pmu
;
2127 u64 now
= ctx
->time
;
2128 bool simulate
= false;
2130 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
2133 pmu
->start_txn(pmu
, PERF_PMU_TXN_ADD
);
2135 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
2136 pmu
->cancel_txn(pmu
);
2137 perf_mux_hrtimer_restart(cpuctx
);
2142 * Schedule in siblings as one group (if any):
2144 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
2145 if (event_sched_in(event
, cpuctx
, ctx
)) {
2146 partial_group
= event
;
2151 if (!pmu
->commit_txn(pmu
))
2156 * Groups can be scheduled in as one unit only, so undo any
2157 * partial group before returning:
2158 * The events up to the failed event are scheduled out normally,
2159 * tstamp_stopped will be updated.
2161 * The failed events and the remaining siblings need to have
2162 * their timings updated as if they had gone thru event_sched_in()
2163 * and event_sched_out(). This is required to get consistent timings
2164 * across the group. This also takes care of the case where the group
2165 * could never be scheduled by ensuring tstamp_stopped is set to mark
2166 * the time the event was actually stopped, such that time delta
2167 * calculation in update_event_times() is correct.
2169 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
2170 if (event
== partial_group
)
2174 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
2175 event
->tstamp_stopped
= now
;
2177 event_sched_out(event
, cpuctx
, ctx
);
2180 event_sched_out(group_event
, cpuctx
, ctx
);
2182 pmu
->cancel_txn(pmu
);
2184 perf_mux_hrtimer_restart(cpuctx
);
2190 * Work out whether we can put this event group on the CPU now.
2192 static int group_can_go_on(struct perf_event
*event
,
2193 struct perf_cpu_context
*cpuctx
,
2197 * Groups consisting entirely of software events can always go on.
2199 if (event
->group_caps
& PERF_EV_CAP_SOFTWARE
)
2202 * If an exclusive group is already on, no other hardware
2205 if (cpuctx
->exclusive
)
2208 * If this group is exclusive and there are already
2209 * events on the CPU, it can't go on.
2211 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
2214 * Otherwise, try to add it if all previous groups were able
2220 static void add_event_to_ctx(struct perf_event
*event
,
2221 struct perf_event_context
*ctx
)
2223 u64 tstamp
= perf_event_time(event
);
2225 list_add_event(event
, ctx
);
2226 perf_group_attach(event
);
2227 event
->tstamp_enabled
= tstamp
;
2228 event
->tstamp_running
= tstamp
;
2229 event
->tstamp_stopped
= tstamp
;
2232 static void ctx_sched_out(struct perf_event_context
*ctx
,
2233 struct perf_cpu_context
*cpuctx
,
2234 enum event_type_t event_type
);
2236 ctx_sched_in(struct perf_event_context
*ctx
,
2237 struct perf_cpu_context
*cpuctx
,
2238 enum event_type_t event_type
,
2239 struct task_struct
*task
);
2241 static void task_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2242 struct perf_event_context
*ctx
,
2243 enum event_type_t event_type
)
2245 if (!cpuctx
->task_ctx
)
2248 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2251 ctx_sched_out(ctx
, cpuctx
, event_type
);
2254 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
2255 struct perf_event_context
*ctx
,
2256 struct task_struct
*task
)
2258 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
2260 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
2261 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
2263 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
2267 * We want to maintain the following priority of scheduling:
2268 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2269 * - task pinned (EVENT_PINNED)
2270 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2271 * - task flexible (EVENT_FLEXIBLE).
2273 * In order to avoid unscheduling and scheduling back in everything every
2274 * time an event is added, only do it for the groups of equal priority and
2277 * This can be called after a batch operation on task events, in which case
2278 * event_type is a bit mask of the types of events involved. For CPU events,
2279 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2281 static void ctx_resched(struct perf_cpu_context
*cpuctx
,
2282 struct perf_event_context
*task_ctx
,
2283 enum event_type_t event_type
)
2285 enum event_type_t ctx_event_type
= event_type
& EVENT_ALL
;
2286 bool cpu_event
= !!(event_type
& EVENT_CPU
);
2289 * If pinned groups are involved, flexible groups also need to be
2292 if (event_type
& EVENT_PINNED
)
2293 event_type
|= EVENT_FLEXIBLE
;
2295 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2297 task_ctx_sched_out(cpuctx
, task_ctx
, event_type
);
2300 * Decide which cpu ctx groups to schedule out based on the types
2301 * of events that caused rescheduling:
2302 * - EVENT_CPU: schedule out corresponding groups;
2303 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2304 * - otherwise, do nothing more.
2307 cpu_ctx_sched_out(cpuctx
, ctx_event_type
);
2308 else if (ctx_event_type
& EVENT_PINNED
)
2309 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2311 perf_event_sched_in(cpuctx
, task_ctx
, current
);
2312 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2316 * Cross CPU call to install and enable a performance event
2318 * Very similar to remote_function() + event_function() but cannot assume that
2319 * things like ctx->is_active and cpuctx->task_ctx are set.
2321 static int __perf_install_in_context(void *info
)
2323 struct perf_event
*event
= info
;
2324 struct perf_event_context
*ctx
= event
->ctx
;
2325 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2326 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
2327 bool reprogram
= true;
2330 raw_spin_lock(&cpuctx
->ctx
.lock
);
2332 raw_spin_lock(&ctx
->lock
);
2335 reprogram
= (ctx
->task
== current
);
2338 * If the task is running, it must be running on this CPU,
2339 * otherwise we cannot reprogram things.
2341 * If its not running, we don't care, ctx->lock will
2342 * serialize against it becoming runnable.
2344 if (task_curr(ctx
->task
) && !reprogram
) {
2349 WARN_ON_ONCE(reprogram
&& cpuctx
->task_ctx
&& cpuctx
->task_ctx
!= ctx
);
2350 } else if (task_ctx
) {
2351 raw_spin_lock(&task_ctx
->lock
);
2355 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2356 add_event_to_ctx(event
, ctx
);
2357 ctx_resched(cpuctx
, task_ctx
, get_event_type(event
));
2359 add_event_to_ctx(event
, ctx
);
2363 perf_ctx_unlock(cpuctx
, task_ctx
);
2369 * Attach a performance event to a context.
2371 * Very similar to event_function_call, see comment there.
2374 perf_install_in_context(struct perf_event_context
*ctx
,
2375 struct perf_event
*event
,
2378 struct task_struct
*task
= READ_ONCE(ctx
->task
);
2380 lockdep_assert_held(&ctx
->mutex
);
2382 if (event
->cpu
!= -1)
2386 * Ensures that if we can observe event->ctx, both the event and ctx
2387 * will be 'complete'. See perf_iterate_sb_cpu().
2389 smp_store_release(&event
->ctx
, ctx
);
2392 cpu_function_call(cpu
, __perf_install_in_context
, event
);
2397 * Should not happen, we validate the ctx is still alive before calling.
2399 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
))
2403 * Installing events is tricky because we cannot rely on ctx->is_active
2404 * to be set in case this is the nr_events 0 -> 1 transition.
2406 * Instead we use task_curr(), which tells us if the task is running.
2407 * However, since we use task_curr() outside of rq::lock, we can race
2408 * against the actual state. This means the result can be wrong.
2410 * If we get a false positive, we retry, this is harmless.
2412 * If we get a false negative, things are complicated. If we are after
2413 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2414 * value must be correct. If we're before, it doesn't matter since
2415 * perf_event_context_sched_in() will program the counter.
2417 * However, this hinges on the remote context switch having observed
2418 * our task->perf_event_ctxp[] store, such that it will in fact take
2419 * ctx::lock in perf_event_context_sched_in().
2421 * We do this by task_function_call(), if the IPI fails to hit the task
2422 * we know any future context switch of task must see the
2423 * perf_event_ctpx[] store.
2427 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2428 * task_cpu() load, such that if the IPI then does not find the task
2429 * running, a future context switch of that task must observe the
2434 if (!task_function_call(task
, __perf_install_in_context
, event
))
2437 raw_spin_lock_irq(&ctx
->lock
);
2439 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
)) {
2441 * Cannot happen because we already checked above (which also
2442 * cannot happen), and we hold ctx->mutex, which serializes us
2443 * against perf_event_exit_task_context().
2445 raw_spin_unlock_irq(&ctx
->lock
);
2449 * If the task is not running, ctx->lock will avoid it becoming so,
2450 * thus we can safely install the event.
2452 if (task_curr(task
)) {
2453 raw_spin_unlock_irq(&ctx
->lock
);
2456 add_event_to_ctx(event
, ctx
);
2457 raw_spin_unlock_irq(&ctx
->lock
);
2461 * Put a event into inactive state and update time fields.
2462 * Enabling the leader of a group effectively enables all
2463 * the group members that aren't explicitly disabled, so we
2464 * have to update their ->tstamp_enabled also.
2465 * Note: this works for group members as well as group leaders
2466 * since the non-leader members' sibling_lists will be empty.
2468 static void __perf_event_mark_enabled(struct perf_event
*event
)
2470 struct perf_event
*sub
;
2471 u64 tstamp
= perf_event_time(event
);
2473 event
->state
= PERF_EVENT_STATE_INACTIVE
;
2474 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
2475 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
2476 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
2477 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
2482 * Cross CPU call to enable a performance event
2484 static void __perf_event_enable(struct perf_event
*event
,
2485 struct perf_cpu_context
*cpuctx
,
2486 struct perf_event_context
*ctx
,
2489 struct perf_event
*leader
= event
->group_leader
;
2490 struct perf_event_context
*task_ctx
;
2492 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2493 event
->state
<= PERF_EVENT_STATE_ERROR
)
2497 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2499 __perf_event_mark_enabled(event
);
2501 if (!ctx
->is_active
)
2504 if (!event_filter_match(event
)) {
2505 if (is_cgroup_event(event
))
2506 perf_cgroup_defer_enabled(event
);
2507 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2512 * If the event is in a group and isn't the group leader,
2513 * then don't put it on unless the group is on.
2515 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
) {
2516 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2520 task_ctx
= cpuctx
->task_ctx
;
2522 WARN_ON_ONCE(task_ctx
!= ctx
);
2524 ctx_resched(cpuctx
, task_ctx
, get_event_type(event
));
2530 * If event->ctx is a cloned context, callers must make sure that
2531 * every task struct that event->ctx->task could possibly point to
2532 * remains valid. This condition is satisfied when called through
2533 * perf_event_for_each_child or perf_event_for_each as described
2534 * for perf_event_disable.
2536 static void _perf_event_enable(struct perf_event
*event
)
2538 struct perf_event_context
*ctx
= event
->ctx
;
2540 raw_spin_lock_irq(&ctx
->lock
);
2541 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2542 event
->state
< PERF_EVENT_STATE_ERROR
) {
2543 raw_spin_unlock_irq(&ctx
->lock
);
2548 * If the event is in error state, clear that first.
2550 * That way, if we see the event in error state below, we know that it
2551 * has gone back into error state, as distinct from the task having
2552 * been scheduled away before the cross-call arrived.
2554 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2555 event
->state
= PERF_EVENT_STATE_OFF
;
2556 raw_spin_unlock_irq(&ctx
->lock
);
2558 event_function_call(event
, __perf_event_enable
, NULL
);
2562 * See perf_event_disable();
2564 void perf_event_enable(struct perf_event
*event
)
2566 struct perf_event_context
*ctx
;
2568 ctx
= perf_event_ctx_lock(event
);
2569 _perf_event_enable(event
);
2570 perf_event_ctx_unlock(event
, ctx
);
2572 EXPORT_SYMBOL_GPL(perf_event_enable
);
2574 struct stop_event_data
{
2575 struct perf_event
*event
;
2576 unsigned int restart
;
2579 static int __perf_event_stop(void *info
)
2581 struct stop_event_data
*sd
= info
;
2582 struct perf_event
*event
= sd
->event
;
2584 /* if it's already INACTIVE, do nothing */
2585 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
2588 /* matches smp_wmb() in event_sched_in() */
2592 * There is a window with interrupts enabled before we get here,
2593 * so we need to check again lest we try to stop another CPU's event.
2595 if (READ_ONCE(event
->oncpu
) != smp_processor_id())
2598 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2601 * May race with the actual stop (through perf_pmu_output_stop()),
2602 * but it is only used for events with AUX ring buffer, and such
2603 * events will refuse to restart because of rb::aux_mmap_count==0,
2604 * see comments in perf_aux_output_begin().
2606 * Since this is happening on a event-local CPU, no trace is lost
2610 event
->pmu
->start(event
, 0);
2615 static int perf_event_stop(struct perf_event
*event
, int restart
)
2617 struct stop_event_data sd
= {
2624 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
2627 /* matches smp_wmb() in event_sched_in() */
2631 * We only want to restart ACTIVE events, so if the event goes
2632 * inactive here (event->oncpu==-1), there's nothing more to do;
2633 * fall through with ret==-ENXIO.
2635 ret
= cpu_function_call(READ_ONCE(event
->oncpu
),
2636 __perf_event_stop
, &sd
);
2637 } while (ret
== -EAGAIN
);
2643 * In order to contain the amount of racy and tricky in the address filter
2644 * configuration management, it is a two part process:
2646 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2647 * we update the addresses of corresponding vmas in
2648 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2649 * (p2) when an event is scheduled in (pmu::add), it calls
2650 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2651 * if the generation has changed since the previous call.
2653 * If (p1) happens while the event is active, we restart it to force (p2).
2655 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2656 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2658 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2659 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2661 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2664 void perf_event_addr_filters_sync(struct perf_event
*event
)
2666 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
2668 if (!has_addr_filter(event
))
2671 raw_spin_lock(&ifh
->lock
);
2672 if (event
->addr_filters_gen
!= event
->hw
.addr_filters_gen
) {
2673 event
->pmu
->addr_filters_sync(event
);
2674 event
->hw
.addr_filters_gen
= event
->addr_filters_gen
;
2676 raw_spin_unlock(&ifh
->lock
);
2678 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync
);
2680 static int _perf_event_refresh(struct perf_event
*event
, int refresh
)
2683 * not supported on inherited events
2685 if (event
->attr
.inherit
|| !is_sampling_event(event
))
2688 atomic_add(refresh
, &event
->event_limit
);
2689 _perf_event_enable(event
);
2695 * See perf_event_disable()
2697 int perf_event_refresh(struct perf_event
*event
, int refresh
)
2699 struct perf_event_context
*ctx
;
2702 ctx
= perf_event_ctx_lock(event
);
2703 ret
= _perf_event_refresh(event
, refresh
);
2704 perf_event_ctx_unlock(event
, ctx
);
2708 EXPORT_SYMBOL_GPL(perf_event_refresh
);
2710 static void ctx_sched_out(struct perf_event_context
*ctx
,
2711 struct perf_cpu_context
*cpuctx
,
2712 enum event_type_t event_type
)
2714 int is_active
= ctx
->is_active
;
2715 struct perf_event
*event
;
2717 lockdep_assert_held(&ctx
->lock
);
2719 if (likely(!ctx
->nr_events
)) {
2721 * See __perf_remove_from_context().
2723 WARN_ON_ONCE(ctx
->is_active
);
2725 WARN_ON_ONCE(cpuctx
->task_ctx
);
2729 ctx
->is_active
&= ~event_type
;
2730 if (!(ctx
->is_active
& EVENT_ALL
))
2734 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
2735 if (!ctx
->is_active
)
2736 cpuctx
->task_ctx
= NULL
;
2740 * Always update time if it was set; not only when it changes.
2741 * Otherwise we can 'forget' to update time for any but the last
2742 * context we sched out. For example:
2744 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2745 * ctx_sched_out(.event_type = EVENT_PINNED)
2747 * would only update time for the pinned events.
2749 if (is_active
& EVENT_TIME
) {
2750 /* update (and stop) ctx time */
2751 update_context_time(ctx
);
2752 update_cgrp_time_from_cpuctx(cpuctx
);
2755 is_active
^= ctx
->is_active
; /* changed bits */
2757 if (!ctx
->nr_active
|| !(is_active
& EVENT_ALL
))
2760 perf_pmu_disable(ctx
->pmu
);
2761 if (is_active
& EVENT_PINNED
) {
2762 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
2763 group_sched_out(event
, cpuctx
, ctx
);
2766 if (is_active
& EVENT_FLEXIBLE
) {
2767 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
2768 group_sched_out(event
, cpuctx
, ctx
);
2770 perf_pmu_enable(ctx
->pmu
);
2774 * Test whether two contexts are equivalent, i.e. whether they have both been
2775 * cloned from the same version of the same context.
2777 * Equivalence is measured using a generation number in the context that is
2778 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2779 * and list_del_event().
2781 static int context_equiv(struct perf_event_context
*ctx1
,
2782 struct perf_event_context
*ctx2
)
2784 lockdep_assert_held(&ctx1
->lock
);
2785 lockdep_assert_held(&ctx2
->lock
);
2787 /* Pinning disables the swap optimization */
2788 if (ctx1
->pin_count
|| ctx2
->pin_count
)
2791 /* If ctx1 is the parent of ctx2 */
2792 if (ctx1
== ctx2
->parent_ctx
&& ctx1
->generation
== ctx2
->parent_gen
)
2795 /* If ctx2 is the parent of ctx1 */
2796 if (ctx1
->parent_ctx
== ctx2
&& ctx1
->parent_gen
== ctx2
->generation
)
2800 * If ctx1 and ctx2 have the same parent; we flatten the parent
2801 * hierarchy, see perf_event_init_context().
2803 if (ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
&&
2804 ctx1
->parent_gen
== ctx2
->parent_gen
)
2811 static void __perf_event_sync_stat(struct perf_event
*event
,
2812 struct perf_event
*next_event
)
2816 if (!event
->attr
.inherit_stat
)
2820 * Update the event value, we cannot use perf_event_read()
2821 * because we're in the middle of a context switch and have IRQs
2822 * disabled, which upsets smp_call_function_single(), however
2823 * we know the event must be on the current CPU, therefore we
2824 * don't need to use it.
2826 switch (event
->state
) {
2827 case PERF_EVENT_STATE_ACTIVE
:
2828 event
->pmu
->read(event
);
2831 case PERF_EVENT_STATE_INACTIVE
:
2832 update_event_times(event
);
2840 * In order to keep per-task stats reliable we need to flip the event
2841 * values when we flip the contexts.
2843 value
= local64_read(&next_event
->count
);
2844 value
= local64_xchg(&event
->count
, value
);
2845 local64_set(&next_event
->count
, value
);
2847 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
2848 swap(event
->total_time_running
, next_event
->total_time_running
);
2851 * Since we swizzled the values, update the user visible data too.
2853 perf_event_update_userpage(event
);
2854 perf_event_update_userpage(next_event
);
2857 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
2858 struct perf_event_context
*next_ctx
)
2860 struct perf_event
*event
, *next_event
;
2865 update_context_time(ctx
);
2867 event
= list_first_entry(&ctx
->event_list
,
2868 struct perf_event
, event_entry
);
2870 next_event
= list_first_entry(&next_ctx
->event_list
,
2871 struct perf_event
, event_entry
);
2873 while (&event
->event_entry
!= &ctx
->event_list
&&
2874 &next_event
->event_entry
!= &next_ctx
->event_list
) {
2876 __perf_event_sync_stat(event
, next_event
);
2878 event
= list_next_entry(event
, event_entry
);
2879 next_event
= list_next_entry(next_event
, event_entry
);
2883 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
2884 struct task_struct
*next
)
2886 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
2887 struct perf_event_context
*next_ctx
;
2888 struct perf_event_context
*parent
, *next_parent
;
2889 struct perf_cpu_context
*cpuctx
;
2895 cpuctx
= __get_cpu_context(ctx
);
2896 if (!cpuctx
->task_ctx
)
2900 next_ctx
= next
->perf_event_ctxp
[ctxn
];
2904 parent
= rcu_dereference(ctx
->parent_ctx
);
2905 next_parent
= rcu_dereference(next_ctx
->parent_ctx
);
2907 /* If neither context have a parent context; they cannot be clones. */
2908 if (!parent
&& !next_parent
)
2911 if (next_parent
== ctx
|| next_ctx
== parent
|| next_parent
== parent
) {
2913 * Looks like the two contexts are clones, so we might be
2914 * able to optimize the context switch. We lock both
2915 * contexts and check that they are clones under the
2916 * lock (including re-checking that neither has been
2917 * uncloned in the meantime). It doesn't matter which
2918 * order we take the locks because no other cpu could
2919 * be trying to lock both of these tasks.
2921 raw_spin_lock(&ctx
->lock
);
2922 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
2923 if (context_equiv(ctx
, next_ctx
)) {
2924 WRITE_ONCE(ctx
->task
, next
);
2925 WRITE_ONCE(next_ctx
->task
, task
);
2927 swap(ctx
->task_ctx_data
, next_ctx
->task_ctx_data
);
2930 * RCU_INIT_POINTER here is safe because we've not
2931 * modified the ctx and the above modification of
2932 * ctx->task and ctx->task_ctx_data are immaterial
2933 * since those values are always verified under
2934 * ctx->lock which we're now holding.
2936 RCU_INIT_POINTER(task
->perf_event_ctxp
[ctxn
], next_ctx
);
2937 RCU_INIT_POINTER(next
->perf_event_ctxp
[ctxn
], ctx
);
2941 perf_event_sync_stat(ctx
, next_ctx
);
2943 raw_spin_unlock(&next_ctx
->lock
);
2944 raw_spin_unlock(&ctx
->lock
);
2950 raw_spin_lock(&ctx
->lock
);
2951 task_ctx_sched_out(cpuctx
, ctx
, EVENT_ALL
);
2952 raw_spin_unlock(&ctx
->lock
);
2956 static DEFINE_PER_CPU(struct list_head
, sched_cb_list
);
2958 void perf_sched_cb_dec(struct pmu
*pmu
)
2960 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2962 this_cpu_dec(perf_sched_cb_usages
);
2964 if (!--cpuctx
->sched_cb_usage
)
2965 list_del(&cpuctx
->sched_cb_entry
);
2969 void perf_sched_cb_inc(struct pmu
*pmu
)
2971 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2973 if (!cpuctx
->sched_cb_usage
++)
2974 list_add(&cpuctx
->sched_cb_entry
, this_cpu_ptr(&sched_cb_list
));
2976 this_cpu_inc(perf_sched_cb_usages
);
2980 * This function provides the context switch callback to the lower code
2981 * layer. It is invoked ONLY when the context switch callback is enabled.
2983 * This callback is relevant even to per-cpu events; for example multi event
2984 * PEBS requires this to provide PID/TID information. This requires we flush
2985 * all queued PEBS records before we context switch to a new task.
2987 static void perf_pmu_sched_task(struct task_struct
*prev
,
2988 struct task_struct
*next
,
2991 struct perf_cpu_context
*cpuctx
;
2997 list_for_each_entry(cpuctx
, this_cpu_ptr(&sched_cb_list
), sched_cb_entry
) {
2998 pmu
= cpuctx
->ctx
.pmu
; /* software PMUs will not have sched_task */
3000 if (WARN_ON_ONCE(!pmu
->sched_task
))
3003 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
3004 perf_pmu_disable(pmu
);
3006 pmu
->sched_task(cpuctx
->task_ctx
, sched_in
);
3008 perf_pmu_enable(pmu
);
3009 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3013 static void perf_event_switch(struct task_struct
*task
,
3014 struct task_struct
*next_prev
, bool sched_in
);
3016 #define for_each_task_context_nr(ctxn) \
3017 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3020 * Called from scheduler to remove the events of the current task,
3021 * with interrupts disabled.
3023 * We stop each event and update the event value in event->count.
3025 * This does not protect us against NMI, but disable()
3026 * sets the disabled bit in the control field of event _before_
3027 * accessing the event control register. If a NMI hits, then it will
3028 * not restart the event.
3030 void __perf_event_task_sched_out(struct task_struct
*task
,
3031 struct task_struct
*next
)
3035 if (__this_cpu_read(perf_sched_cb_usages
))
3036 perf_pmu_sched_task(task
, next
, false);
3038 if (atomic_read(&nr_switch_events
))
3039 perf_event_switch(task
, next
, false);
3041 for_each_task_context_nr(ctxn
)
3042 perf_event_context_sched_out(task
, ctxn
, next
);
3045 * if cgroup events exist on this CPU, then we need
3046 * to check if we have to switch out PMU state.
3047 * cgroup event are system-wide mode only
3049 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
3050 perf_cgroup_sched_out(task
, next
);
3054 * Called with IRQs disabled
3056 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
3057 enum event_type_t event_type
)
3059 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
3063 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
3064 struct perf_cpu_context
*cpuctx
)
3066 struct perf_event
*event
;
3068 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
3069 if (event
->state
<= PERF_EVENT_STATE_OFF
)
3071 if (!event_filter_match(event
))
3074 /* may need to reset tstamp_enabled */
3075 if (is_cgroup_event(event
))
3076 perf_cgroup_mark_enabled(event
, ctx
);
3078 if (group_can_go_on(event
, cpuctx
, 1))
3079 group_sched_in(event
, cpuctx
, ctx
);
3082 * If this pinned group hasn't been scheduled,
3083 * put it in error state.
3085 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
3086 update_group_times(event
);
3087 event
->state
= PERF_EVENT_STATE_ERROR
;
3093 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
3094 struct perf_cpu_context
*cpuctx
)
3096 struct perf_event
*event
;
3099 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
3100 /* Ignore events in OFF or ERROR state */
3101 if (event
->state
<= PERF_EVENT_STATE_OFF
)
3104 * Listen to the 'cpu' scheduling filter constraint
3107 if (!event_filter_match(event
))
3110 /* may need to reset tstamp_enabled */
3111 if (is_cgroup_event(event
))
3112 perf_cgroup_mark_enabled(event
, ctx
);
3114 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
3115 if (group_sched_in(event
, cpuctx
, ctx
))
3122 ctx_sched_in(struct perf_event_context
*ctx
,
3123 struct perf_cpu_context
*cpuctx
,
3124 enum event_type_t event_type
,
3125 struct task_struct
*task
)
3127 int is_active
= ctx
->is_active
;
3130 lockdep_assert_held(&ctx
->lock
);
3132 if (likely(!ctx
->nr_events
))
3135 ctx
->is_active
|= (event_type
| EVENT_TIME
);
3138 cpuctx
->task_ctx
= ctx
;
3140 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
3143 is_active
^= ctx
->is_active
; /* changed bits */
3145 if (is_active
& EVENT_TIME
) {
3146 /* start ctx time */
3148 ctx
->timestamp
= now
;
3149 perf_cgroup_set_timestamp(task
, ctx
);
3153 * First go through the list and put on any pinned groups
3154 * in order to give them the best chance of going on.
3156 if (is_active
& EVENT_PINNED
)
3157 ctx_pinned_sched_in(ctx
, cpuctx
);
3159 /* Then walk through the lower prio flexible groups */
3160 if (is_active
& EVENT_FLEXIBLE
)
3161 ctx_flexible_sched_in(ctx
, cpuctx
);
3164 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
3165 enum event_type_t event_type
,
3166 struct task_struct
*task
)
3168 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
3170 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
3173 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
3174 struct task_struct
*task
)
3176 struct perf_cpu_context
*cpuctx
;
3178 cpuctx
= __get_cpu_context(ctx
);
3179 if (cpuctx
->task_ctx
== ctx
)
3182 perf_ctx_lock(cpuctx
, ctx
);
3183 perf_pmu_disable(ctx
->pmu
);
3185 * We want to keep the following priority order:
3186 * cpu pinned (that don't need to move), task pinned,
3187 * cpu flexible, task flexible.
3189 * However, if task's ctx is not carrying any pinned
3190 * events, no need to flip the cpuctx's events around.
3192 if (!list_empty(&ctx
->pinned_groups
))
3193 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3194 perf_event_sched_in(cpuctx
, ctx
, task
);
3195 perf_pmu_enable(ctx
->pmu
);
3196 perf_ctx_unlock(cpuctx
, ctx
);
3200 * Called from scheduler to add the events of the current task
3201 * with interrupts disabled.
3203 * We restore the event value and then enable it.
3205 * This does not protect us against NMI, but enable()
3206 * sets the enabled bit in the control field of event _before_
3207 * accessing the event control register. If a NMI hits, then it will
3208 * keep the event running.
3210 void __perf_event_task_sched_in(struct task_struct
*prev
,
3211 struct task_struct
*task
)
3213 struct perf_event_context
*ctx
;
3217 * If cgroup events exist on this CPU, then we need to check if we have
3218 * to switch in PMU state; cgroup event are system-wide mode only.
3220 * Since cgroup events are CPU events, we must schedule these in before
3221 * we schedule in the task events.
3223 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
3224 perf_cgroup_sched_in(prev
, task
);
3226 for_each_task_context_nr(ctxn
) {
3227 ctx
= task
->perf_event_ctxp
[ctxn
];
3231 perf_event_context_sched_in(ctx
, task
);
3234 if (atomic_read(&nr_switch_events
))
3235 perf_event_switch(task
, prev
, true);
3237 if (__this_cpu_read(perf_sched_cb_usages
))
3238 perf_pmu_sched_task(prev
, task
, true);
3241 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
3243 u64 frequency
= event
->attr
.sample_freq
;
3244 u64 sec
= NSEC_PER_SEC
;
3245 u64 divisor
, dividend
;
3247 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
3249 count_fls
= fls64(count
);
3250 nsec_fls
= fls64(nsec
);
3251 frequency_fls
= fls64(frequency
);
3255 * We got @count in @nsec, with a target of sample_freq HZ
3256 * the target period becomes:
3259 * period = -------------------
3260 * @nsec * sample_freq
3265 * Reduce accuracy by one bit such that @a and @b converge
3266 * to a similar magnitude.
3268 #define REDUCE_FLS(a, b) \
3270 if (a##_fls > b##_fls) { \
3280 * Reduce accuracy until either term fits in a u64, then proceed with
3281 * the other, so that finally we can do a u64/u64 division.
3283 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
3284 REDUCE_FLS(nsec
, frequency
);
3285 REDUCE_FLS(sec
, count
);
3288 if (count_fls
+ sec_fls
> 64) {
3289 divisor
= nsec
* frequency
;
3291 while (count_fls
+ sec_fls
> 64) {
3292 REDUCE_FLS(count
, sec
);
3296 dividend
= count
* sec
;
3298 dividend
= count
* sec
;
3300 while (nsec_fls
+ frequency_fls
> 64) {
3301 REDUCE_FLS(nsec
, frequency
);
3305 divisor
= nsec
* frequency
;
3311 return div64_u64(dividend
, divisor
);
3314 static DEFINE_PER_CPU(int, perf_throttled_count
);
3315 static DEFINE_PER_CPU(u64
, perf_throttled_seq
);
3317 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
, bool disable
)
3319 struct hw_perf_event
*hwc
= &event
->hw
;
3320 s64 period
, sample_period
;
3323 period
= perf_calculate_period(event
, nsec
, count
);
3325 delta
= (s64
)(period
- hwc
->sample_period
);
3326 delta
= (delta
+ 7) / 8; /* low pass filter */
3328 sample_period
= hwc
->sample_period
+ delta
;
3333 hwc
->sample_period
= sample_period
;
3335 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
3337 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3339 local64_set(&hwc
->period_left
, 0);
3342 event
->pmu
->start(event
, PERF_EF_RELOAD
);
3347 * combine freq adjustment with unthrottling to avoid two passes over the
3348 * events. At the same time, make sure, having freq events does not change
3349 * the rate of unthrottling as that would introduce bias.
3351 static void perf_adjust_freq_unthr_context(struct perf_event_context
*ctx
,
3354 struct perf_event
*event
;
3355 struct hw_perf_event
*hwc
;
3356 u64 now
, period
= TICK_NSEC
;
3360 * only need to iterate over all events iff:
3361 * - context have events in frequency mode (needs freq adjust)
3362 * - there are events to unthrottle on this cpu
3364 if (!(ctx
->nr_freq
|| needs_unthr
))
3367 raw_spin_lock(&ctx
->lock
);
3368 perf_pmu_disable(ctx
->pmu
);
3370 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3371 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3374 if (!event_filter_match(event
))
3377 perf_pmu_disable(event
->pmu
);
3381 if (hwc
->interrupts
== MAX_INTERRUPTS
) {
3382 hwc
->interrupts
= 0;
3383 perf_log_throttle(event
, 1);
3384 event
->pmu
->start(event
, 0);
3387 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
3391 * stop the event and update event->count
3393 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3395 now
= local64_read(&event
->count
);
3396 delta
= now
- hwc
->freq_count_stamp
;
3397 hwc
->freq_count_stamp
= now
;
3401 * reload only if value has changed
3402 * we have stopped the event so tell that
3403 * to perf_adjust_period() to avoid stopping it
3407 perf_adjust_period(event
, period
, delta
, false);
3409 event
->pmu
->start(event
, delta
> 0 ? PERF_EF_RELOAD
: 0);
3411 perf_pmu_enable(event
->pmu
);
3414 perf_pmu_enable(ctx
->pmu
);
3415 raw_spin_unlock(&ctx
->lock
);
3419 * Round-robin a context's events:
3421 static void rotate_ctx(struct perf_event_context
*ctx
)
3424 * Rotate the first entry last of non-pinned groups. Rotation might be
3425 * disabled by the inheritance code.
3427 if (!ctx
->rotate_disable
)
3428 list_rotate_left(&ctx
->flexible_groups
);
3431 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
)
3433 struct perf_event_context
*ctx
= NULL
;
3436 if (cpuctx
->ctx
.nr_events
) {
3437 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
3441 ctx
= cpuctx
->task_ctx
;
3442 if (ctx
&& ctx
->nr_events
) {
3443 if (ctx
->nr_events
!= ctx
->nr_active
)
3450 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
3451 perf_pmu_disable(cpuctx
->ctx
.pmu
);
3453 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3455 ctx_sched_out(ctx
, cpuctx
, EVENT_FLEXIBLE
);
3457 rotate_ctx(&cpuctx
->ctx
);
3461 perf_event_sched_in(cpuctx
, ctx
, current
);
3463 perf_pmu_enable(cpuctx
->ctx
.pmu
);
3464 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3470 void perf_event_task_tick(void)
3472 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
3473 struct perf_event_context
*ctx
, *tmp
;
3476 WARN_ON(!irqs_disabled());
3478 __this_cpu_inc(perf_throttled_seq
);
3479 throttled
= __this_cpu_xchg(perf_throttled_count
, 0);
3480 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
3482 list_for_each_entry_safe(ctx
, tmp
, head
, active_ctx_list
)
3483 perf_adjust_freq_unthr_context(ctx
, throttled
);
3486 static int event_enable_on_exec(struct perf_event
*event
,
3487 struct perf_event_context
*ctx
)
3489 if (!event
->attr
.enable_on_exec
)
3492 event
->attr
.enable_on_exec
= 0;
3493 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
3496 __perf_event_mark_enabled(event
);
3502 * Enable all of a task's events that have been marked enable-on-exec.
3503 * This expects task == current.
3505 static void perf_event_enable_on_exec(int ctxn
)
3507 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3508 enum event_type_t event_type
= 0;
3509 struct perf_cpu_context
*cpuctx
;
3510 struct perf_event
*event
;
3511 unsigned long flags
;
3514 local_irq_save(flags
);
3515 ctx
= current
->perf_event_ctxp
[ctxn
];
3516 if (!ctx
|| !ctx
->nr_events
)
3519 cpuctx
= __get_cpu_context(ctx
);
3520 perf_ctx_lock(cpuctx
, ctx
);
3521 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
3522 list_for_each_entry(event
, &ctx
->event_list
, event_entry
) {
3523 enabled
|= event_enable_on_exec(event
, ctx
);
3524 event_type
|= get_event_type(event
);
3528 * Unclone and reschedule this context if we enabled any event.
3531 clone_ctx
= unclone_ctx(ctx
);
3532 ctx_resched(cpuctx
, ctx
, event_type
);
3534 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
3536 perf_ctx_unlock(cpuctx
, ctx
);
3539 local_irq_restore(flags
);
3545 struct perf_read_data
{
3546 struct perf_event
*event
;
3551 static int __perf_event_read_cpu(struct perf_event
*event
, int event_cpu
)
3553 u16 local_pkg
, event_pkg
;
3555 if (event
->group_caps
& PERF_EV_CAP_READ_ACTIVE_PKG
) {
3556 int local_cpu
= smp_processor_id();
3558 event_pkg
= topology_physical_package_id(event_cpu
);
3559 local_pkg
= topology_physical_package_id(local_cpu
);
3561 if (event_pkg
== local_pkg
)
3569 * Cross CPU call to read the hardware event
3571 static void __perf_event_read(void *info
)
3573 struct perf_read_data
*data
= info
;
3574 struct perf_event
*sub
, *event
= data
->event
;
3575 struct perf_event_context
*ctx
= event
->ctx
;
3576 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
3577 struct pmu
*pmu
= event
->pmu
;
3580 * If this is a task context, we need to check whether it is
3581 * the current task context of this cpu. If not it has been
3582 * scheduled out before the smp call arrived. In that case
3583 * event->count would have been updated to a recent sample
3584 * when the event was scheduled out.
3586 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
3589 raw_spin_lock(&ctx
->lock
);
3590 if (ctx
->is_active
) {
3591 update_context_time(ctx
);
3592 update_cgrp_time_from_event(event
);
3595 update_event_times(event
);
3596 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3605 pmu
->start_txn(pmu
, PERF_PMU_TXN_READ
);
3609 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
3610 update_event_times(sub
);
3611 if (sub
->state
== PERF_EVENT_STATE_ACTIVE
) {
3613 * Use sibling's PMU rather than @event's since
3614 * sibling could be on different (eg: software) PMU.
3616 sub
->pmu
->read(sub
);
3620 data
->ret
= pmu
->commit_txn(pmu
);
3623 raw_spin_unlock(&ctx
->lock
);
3626 static inline u64
perf_event_count(struct perf_event
*event
)
3628 if (event
->pmu
->count
)
3629 return event
->pmu
->count(event
);
3631 return __perf_event_count(event
);
3635 * NMI-safe method to read a local event, that is an event that
3637 * - either for the current task, or for this CPU
3638 * - does not have inherit set, for inherited task events
3639 * will not be local and we cannot read them atomically
3640 * - must not have a pmu::count method
3642 int perf_event_read_local(struct perf_event
*event
, u64
*value
)
3644 unsigned long flags
;
3648 * Disabling interrupts avoids all counter scheduling (context
3649 * switches, timer based rotation and IPIs).
3651 local_irq_save(flags
);
3654 * It must not be an event with inherit set, we cannot read
3655 * all child counters from atomic context.
3657 if (event
->attr
.inherit
) {
3663 * It must not have a pmu::count method, those are not
3666 if (event
->pmu
->count
) {
3671 /* If this is a per-task event, it must be for current */
3672 if ((event
->attach_state
& PERF_ATTACH_TASK
) &&
3673 event
->hw
.target
!= current
) {
3678 /* If this is a per-CPU event, it must be for this CPU */
3679 if (!(event
->attach_state
& PERF_ATTACH_TASK
) &&
3680 event
->cpu
!= smp_processor_id()) {
3686 * If the event is currently on this CPU, its either a per-task event,
3687 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3690 if (event
->oncpu
== smp_processor_id())
3691 event
->pmu
->read(event
);
3693 *value
= local64_read(&event
->count
);
3695 local_irq_restore(flags
);
3700 static int perf_event_read(struct perf_event
*event
, bool group
)
3702 int event_cpu
, ret
= 0;
3705 * If event is enabled and currently active on a CPU, update the
3706 * value in the event structure:
3708 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
3709 struct perf_read_data data
= {
3715 event_cpu
= READ_ONCE(event
->oncpu
);
3716 if ((unsigned)event_cpu
>= nr_cpu_ids
)
3720 event_cpu
= __perf_event_read_cpu(event
, event_cpu
);
3723 * Purposely ignore the smp_call_function_single() return
3726 * If event_cpu isn't a valid CPU it means the event got
3727 * scheduled out and that will have updated the event count.
3729 * Therefore, either way, we'll have an up-to-date event count
3732 (void)smp_call_function_single(event_cpu
, __perf_event_read
, &data
, 1);
3735 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
3736 struct perf_event_context
*ctx
= event
->ctx
;
3737 unsigned long flags
;
3739 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
3741 * may read while context is not active
3742 * (e.g., thread is blocked), in that case
3743 * we cannot update context time
3745 if (ctx
->is_active
) {
3746 update_context_time(ctx
);
3747 update_cgrp_time_from_event(event
);
3750 update_group_times(event
);
3752 update_event_times(event
);
3753 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3760 * Initialize the perf_event context in a task_struct:
3762 static void __perf_event_init_context(struct perf_event_context
*ctx
)
3764 raw_spin_lock_init(&ctx
->lock
);
3765 mutex_init(&ctx
->mutex
);
3766 INIT_LIST_HEAD(&ctx
->active_ctx_list
);
3767 INIT_LIST_HEAD(&ctx
->pinned_groups
);
3768 INIT_LIST_HEAD(&ctx
->flexible_groups
);
3769 INIT_LIST_HEAD(&ctx
->event_list
);
3770 atomic_set(&ctx
->refcount
, 1);
3773 static struct perf_event_context
*
3774 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
3776 struct perf_event_context
*ctx
;
3778 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
3782 __perf_event_init_context(ctx
);
3785 get_task_struct(task
);
3792 static struct task_struct
*
3793 find_lively_task_by_vpid(pid_t vpid
)
3795 struct task_struct
*task
;
3801 task
= find_task_by_vpid(vpid
);
3803 get_task_struct(task
);
3807 return ERR_PTR(-ESRCH
);
3813 * Returns a matching context with refcount and pincount.
3815 static struct perf_event_context
*
3816 find_get_context(struct pmu
*pmu
, struct task_struct
*task
,
3817 struct perf_event
*event
)
3819 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3820 struct perf_cpu_context
*cpuctx
;
3821 void *task_ctx_data
= NULL
;
3822 unsigned long flags
;
3824 int cpu
= event
->cpu
;
3827 /* Must be root to operate on a CPU event: */
3828 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
3829 return ERR_PTR(-EACCES
);
3831 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
3840 ctxn
= pmu
->task_ctx_nr
;
3844 if (event
->attach_state
& PERF_ATTACH_TASK_DATA
) {
3845 task_ctx_data
= kzalloc(pmu
->task_ctx_size
, GFP_KERNEL
);
3846 if (!task_ctx_data
) {
3853 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
3855 clone_ctx
= unclone_ctx(ctx
);
3858 if (task_ctx_data
&& !ctx
->task_ctx_data
) {
3859 ctx
->task_ctx_data
= task_ctx_data
;
3860 task_ctx_data
= NULL
;
3862 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3867 ctx
= alloc_perf_context(pmu
, task
);
3872 if (task_ctx_data
) {
3873 ctx
->task_ctx_data
= task_ctx_data
;
3874 task_ctx_data
= NULL
;
3878 mutex_lock(&task
->perf_event_mutex
);
3880 * If it has already passed perf_event_exit_task().
3881 * we must see PF_EXITING, it takes this mutex too.
3883 if (task
->flags
& PF_EXITING
)
3885 else if (task
->perf_event_ctxp
[ctxn
])
3890 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
3892 mutex_unlock(&task
->perf_event_mutex
);
3894 if (unlikely(err
)) {
3903 kfree(task_ctx_data
);
3907 kfree(task_ctx_data
);
3908 return ERR_PTR(err
);
3911 static void perf_event_free_filter(struct perf_event
*event
);
3912 static void perf_event_free_bpf_prog(struct perf_event
*event
);
3914 static void free_event_rcu(struct rcu_head
*head
)
3916 struct perf_event
*event
;
3918 event
= container_of(head
, struct perf_event
, rcu_head
);
3920 put_pid_ns(event
->ns
);
3921 perf_event_free_filter(event
);
3925 static void ring_buffer_attach(struct perf_event
*event
,
3926 struct ring_buffer
*rb
);
3928 static void detach_sb_event(struct perf_event
*event
)
3930 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
3932 raw_spin_lock(&pel
->lock
);
3933 list_del_rcu(&event
->sb_list
);
3934 raw_spin_unlock(&pel
->lock
);
3937 static bool is_sb_event(struct perf_event
*event
)
3939 struct perf_event_attr
*attr
= &event
->attr
;
3944 if (event
->attach_state
& PERF_ATTACH_TASK
)
3947 if (attr
->mmap
|| attr
->mmap_data
|| attr
->mmap2
||
3948 attr
->comm
|| attr
->comm_exec
||
3950 attr
->context_switch
)
3955 static void unaccount_pmu_sb_event(struct perf_event
*event
)
3957 if (is_sb_event(event
))
3958 detach_sb_event(event
);
3961 static void unaccount_event_cpu(struct perf_event
*event
, int cpu
)
3966 if (is_cgroup_event(event
))
3967 atomic_dec(&per_cpu(perf_cgroup_events
, cpu
));
3970 #ifdef CONFIG_NO_HZ_FULL
3971 static DEFINE_SPINLOCK(nr_freq_lock
);
3974 static void unaccount_freq_event_nohz(void)
3976 #ifdef CONFIG_NO_HZ_FULL
3977 spin_lock(&nr_freq_lock
);
3978 if (atomic_dec_and_test(&nr_freq_events
))
3979 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS
);
3980 spin_unlock(&nr_freq_lock
);
3984 static void unaccount_freq_event(void)
3986 if (tick_nohz_full_enabled())
3987 unaccount_freq_event_nohz();
3989 atomic_dec(&nr_freq_events
);
3992 static void unaccount_event(struct perf_event
*event
)
3999 if (event
->attach_state
& PERF_ATTACH_TASK
)
4001 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
4002 atomic_dec(&nr_mmap_events
);
4003 if (event
->attr
.comm
)
4004 atomic_dec(&nr_comm_events
);
4005 if (event
->attr
.namespaces
)
4006 atomic_dec(&nr_namespaces_events
);
4007 if (event
->attr
.task
)
4008 atomic_dec(&nr_task_events
);
4009 if (event
->attr
.freq
)
4010 unaccount_freq_event();
4011 if (event
->attr
.context_switch
) {
4013 atomic_dec(&nr_switch_events
);
4015 if (is_cgroup_event(event
))
4017 if (has_branch_stack(event
))
4021 if (!atomic_add_unless(&perf_sched_count
, -1, 1))
4022 schedule_delayed_work(&perf_sched_work
, HZ
);
4025 unaccount_event_cpu(event
, event
->cpu
);
4027 unaccount_pmu_sb_event(event
);
4030 static void perf_sched_delayed(struct work_struct
*work
)
4032 mutex_lock(&perf_sched_mutex
);
4033 if (atomic_dec_and_test(&perf_sched_count
))
4034 static_branch_disable(&perf_sched_events
);
4035 mutex_unlock(&perf_sched_mutex
);
4039 * The following implement mutual exclusion of events on "exclusive" pmus
4040 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4041 * at a time, so we disallow creating events that might conflict, namely:
4043 * 1) cpu-wide events in the presence of per-task events,
4044 * 2) per-task events in the presence of cpu-wide events,
4045 * 3) two matching events on the same context.
4047 * The former two cases are handled in the allocation path (perf_event_alloc(),
4048 * _free_event()), the latter -- before the first perf_install_in_context().
4050 static int exclusive_event_init(struct perf_event
*event
)
4052 struct pmu
*pmu
= event
->pmu
;
4054 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
4058 * Prevent co-existence of per-task and cpu-wide events on the
4059 * same exclusive pmu.
4061 * Negative pmu::exclusive_cnt means there are cpu-wide
4062 * events on this "exclusive" pmu, positive means there are
4065 * Since this is called in perf_event_alloc() path, event::ctx
4066 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4067 * to mean "per-task event", because unlike other attach states it
4068 * never gets cleared.
4070 if (event
->attach_state
& PERF_ATTACH_TASK
) {
4071 if (!atomic_inc_unless_negative(&pmu
->exclusive_cnt
))
4074 if (!atomic_dec_unless_positive(&pmu
->exclusive_cnt
))
4081 static void exclusive_event_destroy(struct perf_event
*event
)
4083 struct pmu
*pmu
= event
->pmu
;
4085 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
4088 /* see comment in exclusive_event_init() */
4089 if (event
->attach_state
& PERF_ATTACH_TASK
)
4090 atomic_dec(&pmu
->exclusive_cnt
);
4092 atomic_inc(&pmu
->exclusive_cnt
);
4095 static bool exclusive_event_match(struct perf_event
*e1
, struct perf_event
*e2
)
4097 if ((e1
->pmu
== e2
->pmu
) &&
4098 (e1
->cpu
== e2
->cpu
||
4105 /* Called under the same ctx::mutex as perf_install_in_context() */
4106 static bool exclusive_event_installable(struct perf_event
*event
,
4107 struct perf_event_context
*ctx
)
4109 struct perf_event
*iter_event
;
4110 struct pmu
*pmu
= event
->pmu
;
4112 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
4115 list_for_each_entry(iter_event
, &ctx
->event_list
, event_entry
) {
4116 if (exclusive_event_match(iter_event
, event
))
4123 static void perf_addr_filters_splice(struct perf_event
*event
,
4124 struct list_head
*head
);
4126 static void _free_event(struct perf_event
*event
)
4128 irq_work_sync(&event
->pending
);
4130 unaccount_event(event
);
4134 * Can happen when we close an event with re-directed output.
4136 * Since we have a 0 refcount, perf_mmap_close() will skip
4137 * over us; possibly making our ring_buffer_put() the last.
4139 mutex_lock(&event
->mmap_mutex
);
4140 ring_buffer_attach(event
, NULL
);
4141 mutex_unlock(&event
->mmap_mutex
);
4144 if (is_cgroup_event(event
))
4145 perf_detach_cgroup(event
);
4147 if (!event
->parent
) {
4148 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
4149 put_callchain_buffers();
4152 perf_event_free_bpf_prog(event
);
4153 perf_addr_filters_splice(event
, NULL
);
4154 kfree(event
->addr_filters_offs
);
4157 event
->destroy(event
);
4160 put_ctx(event
->ctx
);
4162 exclusive_event_destroy(event
);
4163 module_put(event
->pmu
->module
);
4165 call_rcu(&event
->rcu_head
, free_event_rcu
);
4169 * Used to free events which have a known refcount of 1, such as in error paths
4170 * where the event isn't exposed yet and inherited events.
4172 static void free_event(struct perf_event
*event
)
4174 if (WARN(atomic_long_cmpxchg(&event
->refcount
, 1, 0) != 1,
4175 "unexpected event refcount: %ld; ptr=%p\n",
4176 atomic_long_read(&event
->refcount
), event
)) {
4177 /* leak to avoid use-after-free */
4185 * Remove user event from the owner task.
4187 static void perf_remove_from_owner(struct perf_event
*event
)
4189 struct task_struct
*owner
;
4193 * Matches the smp_store_release() in perf_event_exit_task(). If we
4194 * observe !owner it means the list deletion is complete and we can
4195 * indeed free this event, otherwise we need to serialize on
4196 * owner->perf_event_mutex.
4198 owner
= lockless_dereference(event
->owner
);
4201 * Since delayed_put_task_struct() also drops the last
4202 * task reference we can safely take a new reference
4203 * while holding the rcu_read_lock().
4205 get_task_struct(owner
);
4211 * If we're here through perf_event_exit_task() we're already
4212 * holding ctx->mutex which would be an inversion wrt. the
4213 * normal lock order.
4215 * However we can safely take this lock because its the child
4218 mutex_lock_nested(&owner
->perf_event_mutex
, SINGLE_DEPTH_NESTING
);
4221 * We have to re-check the event->owner field, if it is cleared
4222 * we raced with perf_event_exit_task(), acquiring the mutex
4223 * ensured they're done, and we can proceed with freeing the
4227 list_del_init(&event
->owner_entry
);
4228 smp_store_release(&event
->owner
, NULL
);
4230 mutex_unlock(&owner
->perf_event_mutex
);
4231 put_task_struct(owner
);
4235 static void put_event(struct perf_event
*event
)
4237 if (!atomic_long_dec_and_test(&event
->refcount
))
4244 * Kill an event dead; while event:refcount will preserve the event
4245 * object, it will not preserve its functionality. Once the last 'user'
4246 * gives up the object, we'll destroy the thing.
4248 int perf_event_release_kernel(struct perf_event
*event
)
4250 struct perf_event_context
*ctx
= event
->ctx
;
4251 struct perf_event
*child
, *tmp
;
4254 * If we got here through err_file: fput(event_file); we will not have
4255 * attached to a context yet.
4258 WARN_ON_ONCE(event
->attach_state
&
4259 (PERF_ATTACH_CONTEXT
|PERF_ATTACH_GROUP
));
4263 if (!is_kernel_event(event
))
4264 perf_remove_from_owner(event
);
4266 ctx
= perf_event_ctx_lock(event
);
4267 WARN_ON_ONCE(ctx
->parent_ctx
);
4268 perf_remove_from_context(event
, DETACH_GROUP
);
4270 raw_spin_lock_irq(&ctx
->lock
);
4272 * Mark this event as STATE_DEAD, there is no external reference to it
4275 * Anybody acquiring event->child_mutex after the below loop _must_
4276 * also see this, most importantly inherit_event() which will avoid
4277 * placing more children on the list.
4279 * Thus this guarantees that we will in fact observe and kill _ALL_
4282 event
->state
= PERF_EVENT_STATE_DEAD
;
4283 raw_spin_unlock_irq(&ctx
->lock
);
4285 perf_event_ctx_unlock(event
, ctx
);
4288 mutex_lock(&event
->child_mutex
);
4289 list_for_each_entry(child
, &event
->child_list
, child_list
) {
4292 * Cannot change, child events are not migrated, see the
4293 * comment with perf_event_ctx_lock_nested().
4295 ctx
= lockless_dereference(child
->ctx
);
4297 * Since child_mutex nests inside ctx::mutex, we must jump
4298 * through hoops. We start by grabbing a reference on the ctx.
4300 * Since the event cannot get freed while we hold the
4301 * child_mutex, the context must also exist and have a !0
4307 * Now that we have a ctx ref, we can drop child_mutex, and
4308 * acquire ctx::mutex without fear of it going away. Then we
4309 * can re-acquire child_mutex.
4311 mutex_unlock(&event
->child_mutex
);
4312 mutex_lock(&ctx
->mutex
);
4313 mutex_lock(&event
->child_mutex
);
4316 * Now that we hold ctx::mutex and child_mutex, revalidate our
4317 * state, if child is still the first entry, it didn't get freed
4318 * and we can continue doing so.
4320 tmp
= list_first_entry_or_null(&event
->child_list
,
4321 struct perf_event
, child_list
);
4323 perf_remove_from_context(child
, DETACH_GROUP
);
4324 list_del(&child
->child_list
);
4327 * This matches the refcount bump in inherit_event();
4328 * this can't be the last reference.
4333 mutex_unlock(&event
->child_mutex
);
4334 mutex_unlock(&ctx
->mutex
);
4338 mutex_unlock(&event
->child_mutex
);
4341 put_event(event
); /* Must be the 'last' reference */
4344 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
4347 * Called when the last reference to the file is gone.
4349 static int perf_release(struct inode
*inode
, struct file
*file
)
4351 perf_event_release_kernel(file
->private_data
);
4355 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
4357 struct perf_event
*child
;
4363 mutex_lock(&event
->child_mutex
);
4365 (void)perf_event_read(event
, false);
4366 total
+= perf_event_count(event
);
4368 *enabled
+= event
->total_time_enabled
+
4369 atomic64_read(&event
->child_total_time_enabled
);
4370 *running
+= event
->total_time_running
+
4371 atomic64_read(&event
->child_total_time_running
);
4373 list_for_each_entry(child
, &event
->child_list
, child_list
) {
4374 (void)perf_event_read(child
, false);
4375 total
+= perf_event_count(child
);
4376 *enabled
+= child
->total_time_enabled
;
4377 *running
+= child
->total_time_running
;
4379 mutex_unlock(&event
->child_mutex
);
4383 EXPORT_SYMBOL_GPL(perf_event_read_value
);
4385 static int __perf_read_group_add(struct perf_event
*leader
,
4386 u64 read_format
, u64
*values
)
4388 struct perf_event_context
*ctx
= leader
->ctx
;
4389 struct perf_event
*sub
;
4390 unsigned long flags
;
4391 int n
= 1; /* skip @nr */
4394 ret
= perf_event_read(leader
, true);
4399 * Since we co-schedule groups, {enabled,running} times of siblings
4400 * will be identical to those of the leader, so we only publish one
4403 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
4404 values
[n
++] += leader
->total_time_enabled
+
4405 atomic64_read(&leader
->child_total_time_enabled
);
4408 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
4409 values
[n
++] += leader
->total_time_running
+
4410 atomic64_read(&leader
->child_total_time_running
);
4414 * Write {count,id} tuples for every sibling.
4416 values
[n
++] += perf_event_count(leader
);
4417 if (read_format
& PERF_FORMAT_ID
)
4418 values
[n
++] = primary_event_id(leader
);
4420 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
4422 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
4423 values
[n
++] += perf_event_count(sub
);
4424 if (read_format
& PERF_FORMAT_ID
)
4425 values
[n
++] = primary_event_id(sub
);
4428 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4432 static int perf_read_group(struct perf_event
*event
,
4433 u64 read_format
, char __user
*buf
)
4435 struct perf_event
*leader
= event
->group_leader
, *child
;
4436 struct perf_event_context
*ctx
= leader
->ctx
;
4440 lockdep_assert_held(&ctx
->mutex
);
4442 values
= kzalloc(event
->read_size
, GFP_KERNEL
);
4446 values
[0] = 1 + leader
->nr_siblings
;
4449 * By locking the child_mutex of the leader we effectively
4450 * lock the child list of all siblings.. XXX explain how.
4452 mutex_lock(&leader
->child_mutex
);
4454 ret
= __perf_read_group_add(leader
, read_format
, values
);
4458 list_for_each_entry(child
, &leader
->child_list
, child_list
) {
4459 ret
= __perf_read_group_add(child
, read_format
, values
);
4464 mutex_unlock(&leader
->child_mutex
);
4466 ret
= event
->read_size
;
4467 if (copy_to_user(buf
, values
, event
->read_size
))
4472 mutex_unlock(&leader
->child_mutex
);
4478 static int perf_read_one(struct perf_event
*event
,
4479 u64 read_format
, char __user
*buf
)
4481 u64 enabled
, running
;
4485 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
4486 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
4487 values
[n
++] = enabled
;
4488 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
4489 values
[n
++] = running
;
4490 if (read_format
& PERF_FORMAT_ID
)
4491 values
[n
++] = primary_event_id(event
);
4493 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
4496 return n
* sizeof(u64
);
4499 static bool is_event_hup(struct perf_event
*event
)
4503 if (event
->state
> PERF_EVENT_STATE_EXIT
)
4506 mutex_lock(&event
->child_mutex
);
4507 no_children
= list_empty(&event
->child_list
);
4508 mutex_unlock(&event
->child_mutex
);
4513 * Read the performance event - simple non blocking version for now
4516 __perf_read(struct perf_event
*event
, char __user
*buf
, size_t count
)
4518 u64 read_format
= event
->attr
.read_format
;
4522 * Return end-of-file for a read on a event that is in
4523 * error state (i.e. because it was pinned but it couldn't be
4524 * scheduled on to the CPU at some point).
4526 if (event
->state
== PERF_EVENT_STATE_ERROR
)
4529 if (count
< event
->read_size
)
4532 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4533 if (read_format
& PERF_FORMAT_GROUP
)
4534 ret
= perf_read_group(event
, read_format
, buf
);
4536 ret
= perf_read_one(event
, read_format
, buf
);
4542 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
4544 struct perf_event
*event
= file
->private_data
;
4545 struct perf_event_context
*ctx
;
4548 ctx
= perf_event_ctx_lock(event
);
4549 ret
= __perf_read(event
, buf
, count
);
4550 perf_event_ctx_unlock(event
, ctx
);
4555 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
4557 struct perf_event
*event
= file
->private_data
;
4558 struct ring_buffer
*rb
;
4559 unsigned int events
= POLLHUP
;
4561 poll_wait(file
, &event
->waitq
, wait
);
4563 if (is_event_hup(event
))
4567 * Pin the event->rb by taking event->mmap_mutex; otherwise
4568 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4570 mutex_lock(&event
->mmap_mutex
);
4573 events
= atomic_xchg(&rb
->poll
, 0);
4574 mutex_unlock(&event
->mmap_mutex
);
4578 static void _perf_event_reset(struct perf_event
*event
)
4580 (void)perf_event_read(event
, false);
4581 local64_set(&event
->count
, 0);
4582 perf_event_update_userpage(event
);
4586 * Holding the top-level event's child_mutex means that any
4587 * descendant process that has inherited this event will block
4588 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4589 * task existence requirements of perf_event_enable/disable.
4591 static void perf_event_for_each_child(struct perf_event
*event
,
4592 void (*func
)(struct perf_event
*))
4594 struct perf_event
*child
;
4596 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4598 mutex_lock(&event
->child_mutex
);
4600 list_for_each_entry(child
, &event
->child_list
, child_list
)
4602 mutex_unlock(&event
->child_mutex
);
4605 static void perf_event_for_each(struct perf_event
*event
,
4606 void (*func
)(struct perf_event
*))
4608 struct perf_event_context
*ctx
= event
->ctx
;
4609 struct perf_event
*sibling
;
4611 lockdep_assert_held(&ctx
->mutex
);
4613 event
= event
->group_leader
;
4615 perf_event_for_each_child(event
, func
);
4616 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
4617 perf_event_for_each_child(sibling
, func
);
4620 static void __perf_event_period(struct perf_event
*event
,
4621 struct perf_cpu_context
*cpuctx
,
4622 struct perf_event_context
*ctx
,
4625 u64 value
= *((u64
*)info
);
4628 if (event
->attr
.freq
) {
4629 event
->attr
.sample_freq
= value
;
4631 event
->attr
.sample_period
= value
;
4632 event
->hw
.sample_period
= value
;
4635 active
= (event
->state
== PERF_EVENT_STATE_ACTIVE
);
4637 perf_pmu_disable(ctx
->pmu
);
4639 * We could be throttled; unthrottle now to avoid the tick
4640 * trying to unthrottle while we already re-started the event.
4642 if (event
->hw
.interrupts
== MAX_INTERRUPTS
) {
4643 event
->hw
.interrupts
= 0;
4644 perf_log_throttle(event
, 1);
4646 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
4649 local64_set(&event
->hw
.period_left
, 0);
4652 event
->pmu
->start(event
, PERF_EF_RELOAD
);
4653 perf_pmu_enable(ctx
->pmu
);
4657 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
4661 if (!is_sampling_event(event
))
4664 if (copy_from_user(&value
, arg
, sizeof(value
)))
4670 if (event
->attr
.freq
&& value
> sysctl_perf_event_sample_rate
)
4673 event_function_call(event
, __perf_event_period
, &value
);
4678 static const struct file_operations perf_fops
;
4680 static inline int perf_fget_light(int fd
, struct fd
*p
)
4682 struct fd f
= fdget(fd
);
4686 if (f
.file
->f_op
!= &perf_fops
) {
4694 static int perf_event_set_output(struct perf_event
*event
,
4695 struct perf_event
*output_event
);
4696 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
4697 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
);
4699 static long _perf_ioctl(struct perf_event
*event
, unsigned int cmd
, unsigned long arg
)
4701 void (*func
)(struct perf_event
*);
4705 case PERF_EVENT_IOC_ENABLE
:
4706 func
= _perf_event_enable
;
4708 case PERF_EVENT_IOC_DISABLE
:
4709 func
= _perf_event_disable
;
4711 case PERF_EVENT_IOC_RESET
:
4712 func
= _perf_event_reset
;
4715 case PERF_EVENT_IOC_REFRESH
:
4716 return _perf_event_refresh(event
, arg
);
4718 case PERF_EVENT_IOC_PERIOD
:
4719 return perf_event_period(event
, (u64 __user
*)arg
);
4721 case PERF_EVENT_IOC_ID
:
4723 u64 id
= primary_event_id(event
);
4725 if (copy_to_user((void __user
*)arg
, &id
, sizeof(id
)))
4730 case PERF_EVENT_IOC_SET_OUTPUT
:
4734 struct perf_event
*output_event
;
4736 ret
= perf_fget_light(arg
, &output
);
4739 output_event
= output
.file
->private_data
;
4740 ret
= perf_event_set_output(event
, output_event
);
4743 ret
= perf_event_set_output(event
, NULL
);
4748 case PERF_EVENT_IOC_SET_FILTER
:
4749 return perf_event_set_filter(event
, (void __user
*)arg
);
4751 case PERF_EVENT_IOC_SET_BPF
:
4752 return perf_event_set_bpf_prog(event
, arg
);
4754 case PERF_EVENT_IOC_PAUSE_OUTPUT
: {
4755 struct ring_buffer
*rb
;
4758 rb
= rcu_dereference(event
->rb
);
4759 if (!rb
|| !rb
->nr_pages
) {
4763 rb_toggle_paused(rb
, !!arg
);
4771 if (flags
& PERF_IOC_FLAG_GROUP
)
4772 perf_event_for_each(event
, func
);
4774 perf_event_for_each_child(event
, func
);
4779 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
4781 struct perf_event
*event
= file
->private_data
;
4782 struct perf_event_context
*ctx
;
4785 ctx
= perf_event_ctx_lock(event
);
4786 ret
= _perf_ioctl(event
, cmd
, arg
);
4787 perf_event_ctx_unlock(event
, ctx
);
4792 #ifdef CONFIG_COMPAT
4793 static long perf_compat_ioctl(struct file
*file
, unsigned int cmd
,
4796 switch (_IOC_NR(cmd
)) {
4797 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER
):
4798 case _IOC_NR(PERF_EVENT_IOC_ID
):
4799 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4800 if (_IOC_SIZE(cmd
) == sizeof(compat_uptr_t
)) {
4801 cmd
&= ~IOCSIZE_MASK
;
4802 cmd
|= sizeof(void *) << IOCSIZE_SHIFT
;
4806 return perf_ioctl(file
, cmd
, arg
);
4809 # define perf_compat_ioctl NULL
4812 int perf_event_task_enable(void)
4814 struct perf_event_context
*ctx
;
4815 struct perf_event
*event
;
4817 mutex_lock(¤t
->perf_event_mutex
);
4818 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4819 ctx
= perf_event_ctx_lock(event
);
4820 perf_event_for_each_child(event
, _perf_event_enable
);
4821 perf_event_ctx_unlock(event
, ctx
);
4823 mutex_unlock(¤t
->perf_event_mutex
);
4828 int perf_event_task_disable(void)
4830 struct perf_event_context
*ctx
;
4831 struct perf_event
*event
;
4833 mutex_lock(¤t
->perf_event_mutex
);
4834 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4835 ctx
= perf_event_ctx_lock(event
);
4836 perf_event_for_each_child(event
, _perf_event_disable
);
4837 perf_event_ctx_unlock(event
, ctx
);
4839 mutex_unlock(¤t
->perf_event_mutex
);
4844 static int perf_event_index(struct perf_event
*event
)
4846 if (event
->hw
.state
& PERF_HES_STOPPED
)
4849 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
4852 return event
->pmu
->event_idx(event
);
4855 static void calc_timer_values(struct perf_event
*event
,
4862 *now
= perf_clock();
4863 ctx_time
= event
->shadow_ctx_time
+ *now
;
4864 *enabled
= ctx_time
- event
->tstamp_enabled
;
4865 *running
= ctx_time
- event
->tstamp_running
;
4868 static void perf_event_init_userpage(struct perf_event
*event
)
4870 struct perf_event_mmap_page
*userpg
;
4871 struct ring_buffer
*rb
;
4874 rb
= rcu_dereference(event
->rb
);
4878 userpg
= rb
->user_page
;
4880 /* Allow new userspace to detect that bit 0 is deprecated */
4881 userpg
->cap_bit0_is_deprecated
= 1;
4882 userpg
->size
= offsetof(struct perf_event_mmap_page
, __reserved
);
4883 userpg
->data_offset
= PAGE_SIZE
;
4884 userpg
->data_size
= perf_data_size(rb
);
4890 void __weak
arch_perf_update_userpage(
4891 struct perf_event
*event
, struct perf_event_mmap_page
*userpg
, u64 now
)
4896 * Callers need to ensure there can be no nesting of this function, otherwise
4897 * the seqlock logic goes bad. We can not serialize this because the arch
4898 * code calls this from NMI context.
4900 void perf_event_update_userpage(struct perf_event
*event
)
4902 struct perf_event_mmap_page
*userpg
;
4903 struct ring_buffer
*rb
;
4904 u64 enabled
, running
, now
;
4907 rb
= rcu_dereference(event
->rb
);
4912 * compute total_time_enabled, total_time_running
4913 * based on snapshot values taken when the event
4914 * was last scheduled in.
4916 * we cannot simply called update_context_time()
4917 * because of locking issue as we can be called in
4920 calc_timer_values(event
, &now
, &enabled
, &running
);
4922 userpg
= rb
->user_page
;
4924 * Disable preemption so as to not let the corresponding user-space
4925 * spin too long if we get preempted.
4930 userpg
->index
= perf_event_index(event
);
4931 userpg
->offset
= perf_event_count(event
);
4933 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
4935 userpg
->time_enabled
= enabled
+
4936 atomic64_read(&event
->child_total_time_enabled
);
4938 userpg
->time_running
= running
+
4939 atomic64_read(&event
->child_total_time_running
);
4941 arch_perf_update_userpage(event
, userpg
, now
);
4950 static int perf_mmap_fault(struct vm_fault
*vmf
)
4952 struct perf_event
*event
= vmf
->vma
->vm_file
->private_data
;
4953 struct ring_buffer
*rb
;
4954 int ret
= VM_FAULT_SIGBUS
;
4956 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
4957 if (vmf
->pgoff
== 0)
4963 rb
= rcu_dereference(event
->rb
);
4967 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
4970 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
4974 get_page(vmf
->page
);
4975 vmf
->page
->mapping
= vmf
->vma
->vm_file
->f_mapping
;
4976 vmf
->page
->index
= vmf
->pgoff
;
4985 static void ring_buffer_attach(struct perf_event
*event
,
4986 struct ring_buffer
*rb
)
4988 struct ring_buffer
*old_rb
= NULL
;
4989 unsigned long flags
;
4993 * Should be impossible, we set this when removing
4994 * event->rb_entry and wait/clear when adding event->rb_entry.
4996 WARN_ON_ONCE(event
->rcu_pending
);
4999 spin_lock_irqsave(&old_rb
->event_lock
, flags
);
5000 list_del_rcu(&event
->rb_entry
);
5001 spin_unlock_irqrestore(&old_rb
->event_lock
, flags
);
5003 event
->rcu_batches
= get_state_synchronize_rcu();
5004 event
->rcu_pending
= 1;
5008 if (event
->rcu_pending
) {
5009 cond_synchronize_rcu(event
->rcu_batches
);
5010 event
->rcu_pending
= 0;
5013 spin_lock_irqsave(&rb
->event_lock
, flags
);
5014 list_add_rcu(&event
->rb_entry
, &rb
->event_list
);
5015 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
5019 * Avoid racing with perf_mmap_close(AUX): stop the event
5020 * before swizzling the event::rb pointer; if it's getting
5021 * unmapped, its aux_mmap_count will be 0 and it won't
5022 * restart. See the comment in __perf_pmu_output_stop().
5024 * Data will inevitably be lost when set_output is done in
5025 * mid-air, but then again, whoever does it like this is
5026 * not in for the data anyway.
5029 perf_event_stop(event
, 0);
5031 rcu_assign_pointer(event
->rb
, rb
);
5034 ring_buffer_put(old_rb
);
5036 * Since we detached before setting the new rb, so that we
5037 * could attach the new rb, we could have missed a wakeup.
5040 wake_up_all(&event
->waitq
);
5044 static void ring_buffer_wakeup(struct perf_event
*event
)
5046 struct ring_buffer
*rb
;
5049 rb
= rcu_dereference(event
->rb
);
5051 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
)
5052 wake_up_all(&event
->waitq
);
5057 struct ring_buffer
*ring_buffer_get(struct perf_event
*event
)
5059 struct ring_buffer
*rb
;
5062 rb
= rcu_dereference(event
->rb
);
5064 if (!atomic_inc_not_zero(&rb
->refcount
))
5072 void ring_buffer_put(struct ring_buffer
*rb
)
5074 if (!atomic_dec_and_test(&rb
->refcount
))
5077 WARN_ON_ONCE(!list_empty(&rb
->event_list
));
5079 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
5082 static void perf_mmap_open(struct vm_area_struct
*vma
)
5084 struct perf_event
*event
= vma
->vm_file
->private_data
;
5086 atomic_inc(&event
->mmap_count
);
5087 atomic_inc(&event
->rb
->mmap_count
);
5090 atomic_inc(&event
->rb
->aux_mmap_count
);
5092 if (event
->pmu
->event_mapped
)
5093 event
->pmu
->event_mapped(event
);
5096 static void perf_pmu_output_stop(struct perf_event
*event
);
5099 * A buffer can be mmap()ed multiple times; either directly through the same
5100 * event, or through other events by use of perf_event_set_output().
5102 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5103 * the buffer here, where we still have a VM context. This means we need
5104 * to detach all events redirecting to us.
5106 static void perf_mmap_close(struct vm_area_struct
*vma
)
5108 struct perf_event
*event
= vma
->vm_file
->private_data
;
5110 struct ring_buffer
*rb
= ring_buffer_get(event
);
5111 struct user_struct
*mmap_user
= rb
->mmap_user
;
5112 int mmap_locked
= rb
->mmap_locked
;
5113 unsigned long size
= perf_data_size(rb
);
5115 if (event
->pmu
->event_unmapped
)
5116 event
->pmu
->event_unmapped(event
);
5119 * rb->aux_mmap_count will always drop before rb->mmap_count and
5120 * event->mmap_count, so it is ok to use event->mmap_mutex to
5121 * serialize with perf_mmap here.
5123 if (rb_has_aux(rb
) && vma
->vm_pgoff
== rb
->aux_pgoff
&&
5124 atomic_dec_and_mutex_lock(&rb
->aux_mmap_count
, &event
->mmap_mutex
)) {
5126 * Stop all AUX events that are writing to this buffer,
5127 * so that we can free its AUX pages and corresponding PMU
5128 * data. Note that after rb::aux_mmap_count dropped to zero,
5129 * they won't start any more (see perf_aux_output_begin()).
5131 perf_pmu_output_stop(event
);
5133 /* now it's safe to free the pages */
5134 atomic_long_sub(rb
->aux_nr_pages
, &mmap_user
->locked_vm
);
5135 vma
->vm_mm
->pinned_vm
-= rb
->aux_mmap_locked
;
5137 /* this has to be the last one */
5139 WARN_ON_ONCE(atomic_read(&rb
->aux_refcount
));
5141 mutex_unlock(&event
->mmap_mutex
);
5144 atomic_dec(&rb
->mmap_count
);
5146 if (!atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
))
5149 ring_buffer_attach(event
, NULL
);
5150 mutex_unlock(&event
->mmap_mutex
);
5152 /* If there's still other mmap()s of this buffer, we're done. */
5153 if (atomic_read(&rb
->mmap_count
))
5157 * No other mmap()s, detach from all other events that might redirect
5158 * into the now unreachable buffer. Somewhat complicated by the
5159 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5163 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
) {
5164 if (!atomic_long_inc_not_zero(&event
->refcount
)) {
5166 * This event is en-route to free_event() which will
5167 * detach it and remove it from the list.
5173 mutex_lock(&event
->mmap_mutex
);
5175 * Check we didn't race with perf_event_set_output() which can
5176 * swizzle the rb from under us while we were waiting to
5177 * acquire mmap_mutex.
5179 * If we find a different rb; ignore this event, a next
5180 * iteration will no longer find it on the list. We have to
5181 * still restart the iteration to make sure we're not now
5182 * iterating the wrong list.
5184 if (event
->rb
== rb
)
5185 ring_buffer_attach(event
, NULL
);
5187 mutex_unlock(&event
->mmap_mutex
);
5191 * Restart the iteration; either we're on the wrong list or
5192 * destroyed its integrity by doing a deletion.
5199 * It could be there's still a few 0-ref events on the list; they'll
5200 * get cleaned up by free_event() -- they'll also still have their
5201 * ref on the rb and will free it whenever they are done with it.
5203 * Aside from that, this buffer is 'fully' detached and unmapped,
5204 * undo the VM accounting.
5207 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &mmap_user
->locked_vm
);
5208 vma
->vm_mm
->pinned_vm
-= mmap_locked
;
5209 free_uid(mmap_user
);
5212 ring_buffer_put(rb
); /* could be last */
5215 static const struct vm_operations_struct perf_mmap_vmops
= {
5216 .open
= perf_mmap_open
,
5217 .close
= perf_mmap_close
, /* non mergable */
5218 .fault
= perf_mmap_fault
,
5219 .page_mkwrite
= perf_mmap_fault
,
5222 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
5224 struct perf_event
*event
= file
->private_data
;
5225 unsigned long user_locked
, user_lock_limit
;
5226 struct user_struct
*user
= current_user();
5227 unsigned long locked
, lock_limit
;
5228 struct ring_buffer
*rb
= NULL
;
5229 unsigned long vma_size
;
5230 unsigned long nr_pages
;
5231 long user_extra
= 0, extra
= 0;
5232 int ret
= 0, flags
= 0;
5235 * Don't allow mmap() of inherited per-task counters. This would
5236 * create a performance issue due to all children writing to the
5239 if (event
->cpu
== -1 && event
->attr
.inherit
)
5242 if (!(vma
->vm_flags
& VM_SHARED
))
5245 vma_size
= vma
->vm_end
- vma
->vm_start
;
5247 if (vma
->vm_pgoff
== 0) {
5248 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
5251 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5252 * mapped, all subsequent mappings should have the same size
5253 * and offset. Must be above the normal perf buffer.
5255 u64 aux_offset
, aux_size
;
5260 nr_pages
= vma_size
/ PAGE_SIZE
;
5262 mutex_lock(&event
->mmap_mutex
);
5269 aux_offset
= ACCESS_ONCE(rb
->user_page
->aux_offset
);
5270 aux_size
= ACCESS_ONCE(rb
->user_page
->aux_size
);
5272 if (aux_offset
< perf_data_size(rb
) + PAGE_SIZE
)
5275 if (aux_offset
!= vma
->vm_pgoff
<< PAGE_SHIFT
)
5278 /* already mapped with a different offset */
5279 if (rb_has_aux(rb
) && rb
->aux_pgoff
!= vma
->vm_pgoff
)
5282 if (aux_size
!= vma_size
|| aux_size
!= nr_pages
* PAGE_SIZE
)
5285 /* already mapped with a different size */
5286 if (rb_has_aux(rb
) && rb
->aux_nr_pages
!= nr_pages
)
5289 if (!is_power_of_2(nr_pages
))
5292 if (!atomic_inc_not_zero(&rb
->mmap_count
))
5295 if (rb_has_aux(rb
)) {
5296 atomic_inc(&rb
->aux_mmap_count
);
5301 atomic_set(&rb
->aux_mmap_count
, 1);
5302 user_extra
= nr_pages
;
5308 * If we have rb pages ensure they're a power-of-two number, so we
5309 * can do bitmasks instead of modulo.
5311 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
5314 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
5317 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
5319 mutex_lock(&event
->mmap_mutex
);
5321 if (event
->rb
->nr_pages
!= nr_pages
) {
5326 if (!atomic_inc_not_zero(&event
->rb
->mmap_count
)) {
5328 * Raced against perf_mmap_close() through
5329 * perf_event_set_output(). Try again, hope for better
5332 mutex_unlock(&event
->mmap_mutex
);
5339 user_extra
= nr_pages
+ 1;
5342 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
5345 * Increase the limit linearly with more CPUs:
5347 user_lock_limit
*= num_online_cpus();
5349 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
5351 if (user_locked
> user_lock_limit
)
5352 extra
= user_locked
- user_lock_limit
;
5354 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
5355 lock_limit
>>= PAGE_SHIFT
;
5356 locked
= vma
->vm_mm
->pinned_vm
+ extra
;
5358 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
5359 !capable(CAP_IPC_LOCK
)) {
5364 WARN_ON(!rb
&& event
->rb
);
5366 if (vma
->vm_flags
& VM_WRITE
)
5367 flags
|= RING_BUFFER_WRITABLE
;
5370 rb
= rb_alloc(nr_pages
,
5371 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
5379 atomic_set(&rb
->mmap_count
, 1);
5380 rb
->mmap_user
= get_current_user();
5381 rb
->mmap_locked
= extra
;
5383 ring_buffer_attach(event
, rb
);
5385 perf_event_init_userpage(event
);
5386 perf_event_update_userpage(event
);
5388 ret
= rb_alloc_aux(rb
, event
, vma
->vm_pgoff
, nr_pages
,
5389 event
->attr
.aux_watermark
, flags
);
5391 rb
->aux_mmap_locked
= extra
;
5396 atomic_long_add(user_extra
, &user
->locked_vm
);
5397 vma
->vm_mm
->pinned_vm
+= extra
;
5399 atomic_inc(&event
->mmap_count
);
5401 atomic_dec(&rb
->mmap_count
);
5404 mutex_unlock(&event
->mmap_mutex
);
5407 * Since pinned accounting is per vm we cannot allow fork() to copy our
5410 vma
->vm_flags
|= VM_DONTCOPY
| VM_DONTEXPAND
| VM_DONTDUMP
;
5411 vma
->vm_ops
= &perf_mmap_vmops
;
5413 if (event
->pmu
->event_mapped
)
5414 event
->pmu
->event_mapped(event
);
5419 static int perf_fasync(int fd
, struct file
*filp
, int on
)
5421 struct inode
*inode
= file_inode(filp
);
5422 struct perf_event
*event
= filp
->private_data
;
5426 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
5427 inode_unlock(inode
);
5435 static const struct file_operations perf_fops
= {
5436 .llseek
= no_llseek
,
5437 .release
= perf_release
,
5440 .unlocked_ioctl
= perf_ioctl
,
5441 .compat_ioctl
= perf_compat_ioctl
,
5443 .fasync
= perf_fasync
,
5449 * If there's data, ensure we set the poll() state and publish everything
5450 * to user-space before waking everybody up.
5453 static inline struct fasync_struct
**perf_event_fasync(struct perf_event
*event
)
5455 /* only the parent has fasync state */
5457 event
= event
->parent
;
5458 return &event
->fasync
;
5461 void perf_event_wakeup(struct perf_event
*event
)
5463 ring_buffer_wakeup(event
);
5465 if (event
->pending_kill
) {
5466 kill_fasync(perf_event_fasync(event
), SIGIO
, event
->pending_kill
);
5467 event
->pending_kill
= 0;
5471 static void perf_pending_event(struct irq_work
*entry
)
5473 struct perf_event
*event
= container_of(entry
,
5474 struct perf_event
, pending
);
5477 rctx
= perf_swevent_get_recursion_context();
5479 * If we 'fail' here, that's OK, it means recursion is already disabled
5480 * and we won't recurse 'further'.
5483 if (event
->pending_disable
) {
5484 event
->pending_disable
= 0;
5485 perf_event_disable_local(event
);
5488 if (event
->pending_wakeup
) {
5489 event
->pending_wakeup
= 0;
5490 perf_event_wakeup(event
);
5494 perf_swevent_put_recursion_context(rctx
);
5498 * We assume there is only KVM supporting the callbacks.
5499 * Later on, we might change it to a list if there is
5500 * another virtualization implementation supporting the callbacks.
5502 struct perf_guest_info_callbacks
*perf_guest_cbs
;
5504 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
5506 perf_guest_cbs
= cbs
;
5509 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
5511 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
5513 perf_guest_cbs
= NULL
;
5516 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
5519 perf_output_sample_regs(struct perf_output_handle
*handle
,
5520 struct pt_regs
*regs
, u64 mask
)
5523 DECLARE_BITMAP(_mask
, 64);
5525 bitmap_from_u64(_mask
, mask
);
5526 for_each_set_bit(bit
, _mask
, sizeof(mask
) * BITS_PER_BYTE
) {
5529 val
= perf_reg_value(regs
, bit
);
5530 perf_output_put(handle
, val
);
5534 static void perf_sample_regs_user(struct perf_regs
*regs_user
,
5535 struct pt_regs
*regs
,
5536 struct pt_regs
*regs_user_copy
)
5538 if (user_mode(regs
)) {
5539 regs_user
->abi
= perf_reg_abi(current
);
5540 regs_user
->regs
= regs
;
5541 } else if (current
->mm
) {
5542 perf_get_regs_user(regs_user
, regs
, regs_user_copy
);
5544 regs_user
->abi
= PERF_SAMPLE_REGS_ABI_NONE
;
5545 regs_user
->regs
= NULL
;
5549 static void perf_sample_regs_intr(struct perf_regs
*regs_intr
,
5550 struct pt_regs
*regs
)
5552 regs_intr
->regs
= regs
;
5553 regs_intr
->abi
= perf_reg_abi(current
);
5558 * Get remaining task size from user stack pointer.
5560 * It'd be better to take stack vma map and limit this more
5561 * precisly, but there's no way to get it safely under interrupt,
5562 * so using TASK_SIZE as limit.
5564 static u64
perf_ustack_task_size(struct pt_regs
*regs
)
5566 unsigned long addr
= perf_user_stack_pointer(regs
);
5568 if (!addr
|| addr
>= TASK_SIZE
)
5571 return TASK_SIZE
- addr
;
5575 perf_sample_ustack_size(u16 stack_size
, u16 header_size
,
5576 struct pt_regs
*regs
)
5580 /* No regs, no stack pointer, no dump. */
5585 * Check if we fit in with the requested stack size into the:
5587 * If we don't, we limit the size to the TASK_SIZE.
5589 * - remaining sample size
5590 * If we don't, we customize the stack size to
5591 * fit in to the remaining sample size.
5594 task_size
= min((u64
) USHRT_MAX
, perf_ustack_task_size(regs
));
5595 stack_size
= min(stack_size
, (u16
) task_size
);
5597 /* Current header size plus static size and dynamic size. */
5598 header_size
+= 2 * sizeof(u64
);
5600 /* Do we fit in with the current stack dump size? */
5601 if ((u16
) (header_size
+ stack_size
) < header_size
) {
5603 * If we overflow the maximum size for the sample,
5604 * we customize the stack dump size to fit in.
5606 stack_size
= USHRT_MAX
- header_size
- sizeof(u64
);
5607 stack_size
= round_up(stack_size
, sizeof(u64
));
5614 perf_output_sample_ustack(struct perf_output_handle
*handle
, u64 dump_size
,
5615 struct pt_regs
*regs
)
5617 /* Case of a kernel thread, nothing to dump */
5620 perf_output_put(handle
, size
);
5629 * - the size requested by user or the best one we can fit
5630 * in to the sample max size
5632 * - user stack dump data
5634 * - the actual dumped size
5638 perf_output_put(handle
, dump_size
);
5641 sp
= perf_user_stack_pointer(regs
);
5642 rem
= __output_copy_user(handle
, (void *) sp
, dump_size
);
5643 dyn_size
= dump_size
- rem
;
5645 perf_output_skip(handle
, rem
);
5648 perf_output_put(handle
, dyn_size
);
5652 static void __perf_event_header__init_id(struct perf_event_header
*header
,
5653 struct perf_sample_data
*data
,
5654 struct perf_event
*event
)
5656 u64 sample_type
= event
->attr
.sample_type
;
5658 data
->type
= sample_type
;
5659 header
->size
+= event
->id_header_size
;
5661 if (sample_type
& PERF_SAMPLE_TID
) {
5662 /* namespace issues */
5663 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
5664 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
5667 if (sample_type
& PERF_SAMPLE_TIME
)
5668 data
->time
= perf_event_clock(event
);
5670 if (sample_type
& (PERF_SAMPLE_ID
| PERF_SAMPLE_IDENTIFIER
))
5671 data
->id
= primary_event_id(event
);
5673 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5674 data
->stream_id
= event
->id
;
5676 if (sample_type
& PERF_SAMPLE_CPU
) {
5677 data
->cpu_entry
.cpu
= raw_smp_processor_id();
5678 data
->cpu_entry
.reserved
= 0;
5682 void perf_event_header__init_id(struct perf_event_header
*header
,
5683 struct perf_sample_data
*data
,
5684 struct perf_event
*event
)
5686 if (event
->attr
.sample_id_all
)
5687 __perf_event_header__init_id(header
, data
, event
);
5690 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
5691 struct perf_sample_data
*data
)
5693 u64 sample_type
= data
->type
;
5695 if (sample_type
& PERF_SAMPLE_TID
)
5696 perf_output_put(handle
, data
->tid_entry
);
5698 if (sample_type
& PERF_SAMPLE_TIME
)
5699 perf_output_put(handle
, data
->time
);
5701 if (sample_type
& PERF_SAMPLE_ID
)
5702 perf_output_put(handle
, data
->id
);
5704 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5705 perf_output_put(handle
, data
->stream_id
);
5707 if (sample_type
& PERF_SAMPLE_CPU
)
5708 perf_output_put(handle
, data
->cpu_entry
);
5710 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
5711 perf_output_put(handle
, data
->id
);
5714 void perf_event__output_id_sample(struct perf_event
*event
,
5715 struct perf_output_handle
*handle
,
5716 struct perf_sample_data
*sample
)
5718 if (event
->attr
.sample_id_all
)
5719 __perf_event__output_id_sample(handle
, sample
);
5722 static void perf_output_read_one(struct perf_output_handle
*handle
,
5723 struct perf_event
*event
,
5724 u64 enabled
, u64 running
)
5726 u64 read_format
= event
->attr
.read_format
;
5730 values
[n
++] = perf_event_count(event
);
5731 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
5732 values
[n
++] = enabled
+
5733 atomic64_read(&event
->child_total_time_enabled
);
5735 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
5736 values
[n
++] = running
+
5737 atomic64_read(&event
->child_total_time_running
);
5739 if (read_format
& PERF_FORMAT_ID
)
5740 values
[n
++] = primary_event_id(event
);
5742 __output_copy(handle
, values
, n
* sizeof(u64
));
5745 static void perf_output_read_group(struct perf_output_handle
*handle
,
5746 struct perf_event
*event
,
5747 u64 enabled
, u64 running
)
5749 struct perf_event
*leader
= event
->group_leader
, *sub
;
5750 u64 read_format
= event
->attr
.read_format
;
5754 values
[n
++] = 1 + leader
->nr_siblings
;
5756 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
5757 values
[n
++] = enabled
;
5759 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
5760 values
[n
++] = running
;
5762 if (leader
!= event
)
5763 leader
->pmu
->read(leader
);
5765 values
[n
++] = perf_event_count(leader
);
5766 if (read_format
& PERF_FORMAT_ID
)
5767 values
[n
++] = primary_event_id(leader
);
5769 __output_copy(handle
, values
, n
* sizeof(u64
));
5771 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
5774 if ((sub
!= event
) &&
5775 (sub
->state
== PERF_EVENT_STATE_ACTIVE
))
5776 sub
->pmu
->read(sub
);
5778 values
[n
++] = perf_event_count(sub
);
5779 if (read_format
& PERF_FORMAT_ID
)
5780 values
[n
++] = primary_event_id(sub
);
5782 __output_copy(handle
, values
, n
* sizeof(u64
));
5786 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5787 PERF_FORMAT_TOTAL_TIME_RUNNING)
5790 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5792 * The problem is that its both hard and excessively expensive to iterate the
5793 * child list, not to mention that its impossible to IPI the children running
5794 * on another CPU, from interrupt/NMI context.
5796 static void perf_output_read(struct perf_output_handle
*handle
,
5797 struct perf_event
*event
)
5799 u64 enabled
= 0, running
= 0, now
;
5800 u64 read_format
= event
->attr
.read_format
;
5803 * compute total_time_enabled, total_time_running
5804 * based on snapshot values taken when the event
5805 * was last scheduled in.
5807 * we cannot simply called update_context_time()
5808 * because of locking issue as we are called in
5811 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
5812 calc_timer_values(event
, &now
, &enabled
, &running
);
5814 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
5815 perf_output_read_group(handle
, event
, enabled
, running
);
5817 perf_output_read_one(handle
, event
, enabled
, running
);
5820 void perf_output_sample(struct perf_output_handle
*handle
,
5821 struct perf_event_header
*header
,
5822 struct perf_sample_data
*data
,
5823 struct perf_event
*event
)
5825 u64 sample_type
= data
->type
;
5827 perf_output_put(handle
, *header
);
5829 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
5830 perf_output_put(handle
, data
->id
);
5832 if (sample_type
& PERF_SAMPLE_IP
)
5833 perf_output_put(handle
, data
->ip
);
5835 if (sample_type
& PERF_SAMPLE_TID
)
5836 perf_output_put(handle
, data
->tid_entry
);
5838 if (sample_type
& PERF_SAMPLE_TIME
)
5839 perf_output_put(handle
, data
->time
);
5841 if (sample_type
& PERF_SAMPLE_ADDR
)
5842 perf_output_put(handle
, data
->addr
);
5844 if (sample_type
& PERF_SAMPLE_ID
)
5845 perf_output_put(handle
, data
->id
);
5847 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5848 perf_output_put(handle
, data
->stream_id
);
5850 if (sample_type
& PERF_SAMPLE_CPU
)
5851 perf_output_put(handle
, data
->cpu_entry
);
5853 if (sample_type
& PERF_SAMPLE_PERIOD
)
5854 perf_output_put(handle
, data
->period
);
5856 if (sample_type
& PERF_SAMPLE_READ
)
5857 perf_output_read(handle
, event
);
5859 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5860 if (data
->callchain
) {
5863 if (data
->callchain
)
5864 size
+= data
->callchain
->nr
;
5866 size
*= sizeof(u64
);
5868 __output_copy(handle
, data
->callchain
, size
);
5871 perf_output_put(handle
, nr
);
5875 if (sample_type
& PERF_SAMPLE_RAW
) {
5876 struct perf_raw_record
*raw
= data
->raw
;
5879 struct perf_raw_frag
*frag
= &raw
->frag
;
5881 perf_output_put(handle
, raw
->size
);
5884 __output_custom(handle
, frag
->copy
,
5885 frag
->data
, frag
->size
);
5887 __output_copy(handle
, frag
->data
,
5890 if (perf_raw_frag_last(frag
))
5895 __output_skip(handle
, NULL
, frag
->pad
);
5901 .size
= sizeof(u32
),
5904 perf_output_put(handle
, raw
);
5908 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
5909 if (data
->br_stack
) {
5912 size
= data
->br_stack
->nr
5913 * sizeof(struct perf_branch_entry
);
5915 perf_output_put(handle
, data
->br_stack
->nr
);
5916 perf_output_copy(handle
, data
->br_stack
->entries
, size
);
5919 * we always store at least the value of nr
5922 perf_output_put(handle
, nr
);
5926 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
5927 u64 abi
= data
->regs_user
.abi
;
5930 * If there are no regs to dump, notice it through
5931 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5933 perf_output_put(handle
, abi
);
5936 u64 mask
= event
->attr
.sample_regs_user
;
5937 perf_output_sample_regs(handle
,
5938 data
->regs_user
.regs
,
5943 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
5944 perf_output_sample_ustack(handle
,
5945 data
->stack_user_size
,
5946 data
->regs_user
.regs
);
5949 if (sample_type
& PERF_SAMPLE_WEIGHT
)
5950 perf_output_put(handle
, data
->weight
);
5952 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
5953 perf_output_put(handle
, data
->data_src
.val
);
5955 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
5956 perf_output_put(handle
, data
->txn
);
5958 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
5959 u64 abi
= data
->regs_intr
.abi
;
5961 * If there are no regs to dump, notice it through
5962 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5964 perf_output_put(handle
, abi
);
5967 u64 mask
= event
->attr
.sample_regs_intr
;
5969 perf_output_sample_regs(handle
,
5970 data
->regs_intr
.regs
,
5975 if (!event
->attr
.watermark
) {
5976 int wakeup_events
= event
->attr
.wakeup_events
;
5978 if (wakeup_events
) {
5979 struct ring_buffer
*rb
= handle
->rb
;
5980 int events
= local_inc_return(&rb
->events
);
5982 if (events
>= wakeup_events
) {
5983 local_sub(wakeup_events
, &rb
->events
);
5984 local_inc(&rb
->wakeup
);
5990 void perf_prepare_sample(struct perf_event_header
*header
,
5991 struct perf_sample_data
*data
,
5992 struct perf_event
*event
,
5993 struct pt_regs
*regs
)
5995 u64 sample_type
= event
->attr
.sample_type
;
5997 header
->type
= PERF_RECORD_SAMPLE
;
5998 header
->size
= sizeof(*header
) + event
->header_size
;
6001 header
->misc
|= perf_misc_flags(regs
);
6003 __perf_event_header__init_id(header
, data
, event
);
6005 if (sample_type
& PERF_SAMPLE_IP
)
6006 data
->ip
= perf_instruction_pointer(regs
);
6008 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
6011 data
->callchain
= perf_callchain(event
, regs
);
6013 if (data
->callchain
)
6014 size
+= data
->callchain
->nr
;
6016 header
->size
+= size
* sizeof(u64
);
6019 if (sample_type
& PERF_SAMPLE_RAW
) {
6020 struct perf_raw_record
*raw
= data
->raw
;
6024 struct perf_raw_frag
*frag
= &raw
->frag
;
6029 if (perf_raw_frag_last(frag
))
6034 size
= round_up(sum
+ sizeof(u32
), sizeof(u64
));
6035 raw
->size
= size
- sizeof(u32
);
6036 frag
->pad
= raw
->size
- sum
;
6041 header
->size
+= size
;
6044 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
6045 int size
= sizeof(u64
); /* nr */
6046 if (data
->br_stack
) {
6047 size
+= data
->br_stack
->nr
6048 * sizeof(struct perf_branch_entry
);
6050 header
->size
+= size
;
6053 if (sample_type
& (PERF_SAMPLE_REGS_USER
| PERF_SAMPLE_STACK_USER
))
6054 perf_sample_regs_user(&data
->regs_user
, regs
,
6055 &data
->regs_user_copy
);
6057 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
6058 /* regs dump ABI info */
6059 int size
= sizeof(u64
);
6061 if (data
->regs_user
.regs
) {
6062 u64 mask
= event
->attr
.sample_regs_user
;
6063 size
+= hweight64(mask
) * sizeof(u64
);
6066 header
->size
+= size
;
6069 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
6071 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6072 * processed as the last one or have additional check added
6073 * in case new sample type is added, because we could eat
6074 * up the rest of the sample size.
6076 u16 stack_size
= event
->attr
.sample_stack_user
;
6077 u16 size
= sizeof(u64
);
6079 stack_size
= perf_sample_ustack_size(stack_size
, header
->size
,
6080 data
->regs_user
.regs
);
6083 * If there is something to dump, add space for the dump
6084 * itself and for the field that tells the dynamic size,
6085 * which is how many have been actually dumped.
6088 size
+= sizeof(u64
) + stack_size
;
6090 data
->stack_user_size
= stack_size
;
6091 header
->size
+= size
;
6094 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
6095 /* regs dump ABI info */
6096 int size
= sizeof(u64
);
6098 perf_sample_regs_intr(&data
->regs_intr
, regs
);
6100 if (data
->regs_intr
.regs
) {
6101 u64 mask
= event
->attr
.sample_regs_intr
;
6103 size
+= hweight64(mask
) * sizeof(u64
);
6106 header
->size
+= size
;
6110 static void __always_inline
6111 __perf_event_output(struct perf_event
*event
,
6112 struct perf_sample_data
*data
,
6113 struct pt_regs
*regs
,
6114 int (*output_begin
)(struct perf_output_handle
*,
6115 struct perf_event
*,
6118 struct perf_output_handle handle
;
6119 struct perf_event_header header
;
6121 /* protect the callchain buffers */
6124 perf_prepare_sample(&header
, data
, event
, regs
);
6126 if (output_begin(&handle
, event
, header
.size
))
6129 perf_output_sample(&handle
, &header
, data
, event
);
6131 perf_output_end(&handle
);
6138 perf_event_output_forward(struct perf_event
*event
,
6139 struct perf_sample_data
*data
,
6140 struct pt_regs
*regs
)
6142 __perf_event_output(event
, data
, regs
, perf_output_begin_forward
);
6146 perf_event_output_backward(struct perf_event
*event
,
6147 struct perf_sample_data
*data
,
6148 struct pt_regs
*regs
)
6150 __perf_event_output(event
, data
, regs
, perf_output_begin_backward
);
6154 perf_event_output(struct perf_event
*event
,
6155 struct perf_sample_data
*data
,
6156 struct pt_regs
*regs
)
6158 __perf_event_output(event
, data
, regs
, perf_output_begin
);
6165 struct perf_read_event
{
6166 struct perf_event_header header
;
6173 perf_event_read_event(struct perf_event
*event
,
6174 struct task_struct
*task
)
6176 struct perf_output_handle handle
;
6177 struct perf_sample_data sample
;
6178 struct perf_read_event read_event
= {
6180 .type
= PERF_RECORD_READ
,
6182 .size
= sizeof(read_event
) + event
->read_size
,
6184 .pid
= perf_event_pid(event
, task
),
6185 .tid
= perf_event_tid(event
, task
),
6189 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
6190 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
);
6194 perf_output_put(&handle
, read_event
);
6195 perf_output_read(&handle
, event
);
6196 perf_event__output_id_sample(event
, &handle
, &sample
);
6198 perf_output_end(&handle
);
6201 typedef void (perf_iterate_f
)(struct perf_event
*event
, void *data
);
6204 perf_iterate_ctx(struct perf_event_context
*ctx
,
6205 perf_iterate_f output
,
6206 void *data
, bool all
)
6208 struct perf_event
*event
;
6210 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
6212 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
6214 if (!event_filter_match(event
))
6218 output(event
, data
);
6222 static void perf_iterate_sb_cpu(perf_iterate_f output
, void *data
)
6224 struct pmu_event_list
*pel
= this_cpu_ptr(&pmu_sb_events
);
6225 struct perf_event
*event
;
6227 list_for_each_entry_rcu(event
, &pel
->list
, sb_list
) {
6229 * Skip events that are not fully formed yet; ensure that
6230 * if we observe event->ctx, both event and ctx will be
6231 * complete enough. See perf_install_in_context().
6233 if (!smp_load_acquire(&event
->ctx
))
6236 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
6238 if (!event_filter_match(event
))
6240 output(event
, data
);
6245 * Iterate all events that need to receive side-band events.
6247 * For new callers; ensure that account_pmu_sb_event() includes
6248 * your event, otherwise it might not get delivered.
6251 perf_iterate_sb(perf_iterate_f output
, void *data
,
6252 struct perf_event_context
*task_ctx
)
6254 struct perf_event_context
*ctx
;
6261 * If we have task_ctx != NULL we only notify the task context itself.
6262 * The task_ctx is set only for EXIT events before releasing task
6266 perf_iterate_ctx(task_ctx
, output
, data
, false);
6270 perf_iterate_sb_cpu(output
, data
);
6272 for_each_task_context_nr(ctxn
) {
6273 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
6275 perf_iterate_ctx(ctx
, output
, data
, false);
6283 * Clear all file-based filters at exec, they'll have to be
6284 * re-instated when/if these objects are mmapped again.
6286 static void perf_event_addr_filters_exec(struct perf_event
*event
, void *data
)
6288 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
6289 struct perf_addr_filter
*filter
;
6290 unsigned int restart
= 0, count
= 0;
6291 unsigned long flags
;
6293 if (!has_addr_filter(event
))
6296 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
6297 list_for_each_entry(filter
, &ifh
->list
, entry
) {
6298 if (filter
->inode
) {
6299 event
->addr_filters_offs
[count
] = 0;
6307 event
->addr_filters_gen
++;
6308 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
6311 perf_event_stop(event
, 1);
6314 void perf_event_exec(void)
6316 struct perf_event_context
*ctx
;
6320 for_each_task_context_nr(ctxn
) {
6321 ctx
= current
->perf_event_ctxp
[ctxn
];
6325 perf_event_enable_on_exec(ctxn
);
6327 perf_iterate_ctx(ctx
, perf_event_addr_filters_exec
, NULL
,
6333 struct remote_output
{
6334 struct ring_buffer
*rb
;
6338 static void __perf_event_output_stop(struct perf_event
*event
, void *data
)
6340 struct perf_event
*parent
= event
->parent
;
6341 struct remote_output
*ro
= data
;
6342 struct ring_buffer
*rb
= ro
->rb
;
6343 struct stop_event_data sd
= {
6347 if (!has_aux(event
))
6354 * In case of inheritance, it will be the parent that links to the
6355 * ring-buffer, but it will be the child that's actually using it.
6357 * We are using event::rb to determine if the event should be stopped,
6358 * however this may race with ring_buffer_attach() (through set_output),
6359 * which will make us skip the event that actually needs to be stopped.
6360 * So ring_buffer_attach() has to stop an aux event before re-assigning
6363 if (rcu_dereference(parent
->rb
) == rb
)
6364 ro
->err
= __perf_event_stop(&sd
);
6367 static int __perf_pmu_output_stop(void *info
)
6369 struct perf_event
*event
= info
;
6370 struct pmu
*pmu
= event
->pmu
;
6371 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
6372 struct remote_output ro
= {
6377 perf_iterate_ctx(&cpuctx
->ctx
, __perf_event_output_stop
, &ro
, false);
6378 if (cpuctx
->task_ctx
)
6379 perf_iterate_ctx(cpuctx
->task_ctx
, __perf_event_output_stop
,
6386 static void perf_pmu_output_stop(struct perf_event
*event
)
6388 struct perf_event
*iter
;
6393 list_for_each_entry_rcu(iter
, &event
->rb
->event_list
, rb_entry
) {
6395 * For per-CPU events, we need to make sure that neither they
6396 * nor their children are running; for cpu==-1 events it's
6397 * sufficient to stop the event itself if it's active, since
6398 * it can't have children.
6402 cpu
= READ_ONCE(iter
->oncpu
);
6407 err
= cpu_function_call(cpu
, __perf_pmu_output_stop
, event
);
6408 if (err
== -EAGAIN
) {
6417 * task tracking -- fork/exit
6419 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6422 struct perf_task_event
{
6423 struct task_struct
*task
;
6424 struct perf_event_context
*task_ctx
;
6427 struct perf_event_header header
;
6437 static int perf_event_task_match(struct perf_event
*event
)
6439 return event
->attr
.comm
|| event
->attr
.mmap
||
6440 event
->attr
.mmap2
|| event
->attr
.mmap_data
||
6444 static void perf_event_task_output(struct perf_event
*event
,
6447 struct perf_task_event
*task_event
= data
;
6448 struct perf_output_handle handle
;
6449 struct perf_sample_data sample
;
6450 struct task_struct
*task
= task_event
->task
;
6451 int ret
, size
= task_event
->event_id
.header
.size
;
6453 if (!perf_event_task_match(event
))
6456 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
6458 ret
= perf_output_begin(&handle
, event
,
6459 task_event
->event_id
.header
.size
);
6463 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
6464 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
6466 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
6467 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
6469 task_event
->event_id
.time
= perf_event_clock(event
);
6471 perf_output_put(&handle
, task_event
->event_id
);
6473 perf_event__output_id_sample(event
, &handle
, &sample
);
6475 perf_output_end(&handle
);
6477 task_event
->event_id
.header
.size
= size
;
6480 static void perf_event_task(struct task_struct
*task
,
6481 struct perf_event_context
*task_ctx
,
6484 struct perf_task_event task_event
;
6486 if (!atomic_read(&nr_comm_events
) &&
6487 !atomic_read(&nr_mmap_events
) &&
6488 !atomic_read(&nr_task_events
))
6491 task_event
= (struct perf_task_event
){
6493 .task_ctx
= task_ctx
,
6496 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
6498 .size
= sizeof(task_event
.event_id
),
6508 perf_iterate_sb(perf_event_task_output
,
6513 void perf_event_fork(struct task_struct
*task
)
6515 perf_event_task(task
, NULL
, 1);
6516 perf_event_namespaces(task
);
6523 struct perf_comm_event
{
6524 struct task_struct
*task
;
6529 struct perf_event_header header
;
6536 static int perf_event_comm_match(struct perf_event
*event
)
6538 return event
->attr
.comm
;
6541 static void perf_event_comm_output(struct perf_event
*event
,
6544 struct perf_comm_event
*comm_event
= data
;
6545 struct perf_output_handle handle
;
6546 struct perf_sample_data sample
;
6547 int size
= comm_event
->event_id
.header
.size
;
6550 if (!perf_event_comm_match(event
))
6553 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
6554 ret
= perf_output_begin(&handle
, event
,
6555 comm_event
->event_id
.header
.size
);
6560 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
6561 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
6563 perf_output_put(&handle
, comm_event
->event_id
);
6564 __output_copy(&handle
, comm_event
->comm
,
6565 comm_event
->comm_size
);
6567 perf_event__output_id_sample(event
, &handle
, &sample
);
6569 perf_output_end(&handle
);
6571 comm_event
->event_id
.header
.size
= size
;
6574 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
6576 char comm
[TASK_COMM_LEN
];
6579 memset(comm
, 0, sizeof(comm
));
6580 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
6581 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
6583 comm_event
->comm
= comm
;
6584 comm_event
->comm_size
= size
;
6586 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
6588 perf_iterate_sb(perf_event_comm_output
,
6593 void perf_event_comm(struct task_struct
*task
, bool exec
)
6595 struct perf_comm_event comm_event
;
6597 if (!atomic_read(&nr_comm_events
))
6600 comm_event
= (struct perf_comm_event
){
6606 .type
= PERF_RECORD_COMM
,
6607 .misc
= exec
? PERF_RECORD_MISC_COMM_EXEC
: 0,
6615 perf_event_comm_event(&comm_event
);
6619 * namespaces tracking
6622 struct perf_namespaces_event
{
6623 struct task_struct
*task
;
6626 struct perf_event_header header
;
6631 struct perf_ns_link_info link_info
[NR_NAMESPACES
];
6635 static int perf_event_namespaces_match(struct perf_event
*event
)
6637 return event
->attr
.namespaces
;
6640 static void perf_event_namespaces_output(struct perf_event
*event
,
6643 struct perf_namespaces_event
*namespaces_event
= data
;
6644 struct perf_output_handle handle
;
6645 struct perf_sample_data sample
;
6648 if (!perf_event_namespaces_match(event
))
6651 perf_event_header__init_id(&namespaces_event
->event_id
.header
,
6653 ret
= perf_output_begin(&handle
, event
,
6654 namespaces_event
->event_id
.header
.size
);
6658 namespaces_event
->event_id
.pid
= perf_event_pid(event
,
6659 namespaces_event
->task
);
6660 namespaces_event
->event_id
.tid
= perf_event_tid(event
,
6661 namespaces_event
->task
);
6663 perf_output_put(&handle
, namespaces_event
->event_id
);
6665 perf_event__output_id_sample(event
, &handle
, &sample
);
6667 perf_output_end(&handle
);
6670 static void perf_fill_ns_link_info(struct perf_ns_link_info
*ns_link_info
,
6671 struct task_struct
*task
,
6672 const struct proc_ns_operations
*ns_ops
)
6674 struct path ns_path
;
6675 struct inode
*ns_inode
;
6678 error
= ns_get_path(&ns_path
, task
, ns_ops
);
6680 ns_inode
= ns_path
.dentry
->d_inode
;
6681 ns_link_info
->dev
= new_encode_dev(ns_inode
->i_sb
->s_dev
);
6682 ns_link_info
->ino
= ns_inode
->i_ino
;
6686 void perf_event_namespaces(struct task_struct
*task
)
6688 struct perf_namespaces_event namespaces_event
;
6689 struct perf_ns_link_info
*ns_link_info
;
6691 if (!atomic_read(&nr_namespaces_events
))
6694 namespaces_event
= (struct perf_namespaces_event
){
6698 .type
= PERF_RECORD_NAMESPACES
,
6700 .size
= sizeof(namespaces_event
.event_id
),
6704 .nr_namespaces
= NR_NAMESPACES
,
6705 /* .link_info[NR_NAMESPACES] */
6709 ns_link_info
= namespaces_event
.event_id
.link_info
;
6711 perf_fill_ns_link_info(&ns_link_info
[MNT_NS_INDEX
],
6712 task
, &mntns_operations
);
6714 #ifdef CONFIG_USER_NS
6715 perf_fill_ns_link_info(&ns_link_info
[USER_NS_INDEX
],
6716 task
, &userns_operations
);
6718 #ifdef CONFIG_NET_NS
6719 perf_fill_ns_link_info(&ns_link_info
[NET_NS_INDEX
],
6720 task
, &netns_operations
);
6722 #ifdef CONFIG_UTS_NS
6723 perf_fill_ns_link_info(&ns_link_info
[UTS_NS_INDEX
],
6724 task
, &utsns_operations
);
6726 #ifdef CONFIG_IPC_NS
6727 perf_fill_ns_link_info(&ns_link_info
[IPC_NS_INDEX
],
6728 task
, &ipcns_operations
);
6730 #ifdef CONFIG_PID_NS
6731 perf_fill_ns_link_info(&ns_link_info
[PID_NS_INDEX
],
6732 task
, &pidns_operations
);
6734 #ifdef CONFIG_CGROUPS
6735 perf_fill_ns_link_info(&ns_link_info
[CGROUP_NS_INDEX
],
6736 task
, &cgroupns_operations
);
6739 perf_iterate_sb(perf_event_namespaces_output
,
6748 struct perf_mmap_event
{
6749 struct vm_area_struct
*vma
;
6751 const char *file_name
;
6759 struct perf_event_header header
;
6769 static int perf_event_mmap_match(struct perf_event
*event
,
6772 struct perf_mmap_event
*mmap_event
= data
;
6773 struct vm_area_struct
*vma
= mmap_event
->vma
;
6774 int executable
= vma
->vm_flags
& VM_EXEC
;
6776 return (!executable
&& event
->attr
.mmap_data
) ||
6777 (executable
&& (event
->attr
.mmap
|| event
->attr
.mmap2
));
6780 static void perf_event_mmap_output(struct perf_event
*event
,
6783 struct perf_mmap_event
*mmap_event
= data
;
6784 struct perf_output_handle handle
;
6785 struct perf_sample_data sample
;
6786 int size
= mmap_event
->event_id
.header
.size
;
6789 if (!perf_event_mmap_match(event
, data
))
6792 if (event
->attr
.mmap2
) {
6793 mmap_event
->event_id
.header
.type
= PERF_RECORD_MMAP2
;
6794 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->maj
);
6795 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->min
);
6796 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino
);
6797 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino_generation
);
6798 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->prot
);
6799 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->flags
);
6802 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
6803 ret
= perf_output_begin(&handle
, event
,
6804 mmap_event
->event_id
.header
.size
);
6808 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
6809 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
6811 perf_output_put(&handle
, mmap_event
->event_id
);
6813 if (event
->attr
.mmap2
) {
6814 perf_output_put(&handle
, mmap_event
->maj
);
6815 perf_output_put(&handle
, mmap_event
->min
);
6816 perf_output_put(&handle
, mmap_event
->ino
);
6817 perf_output_put(&handle
, mmap_event
->ino_generation
);
6818 perf_output_put(&handle
, mmap_event
->prot
);
6819 perf_output_put(&handle
, mmap_event
->flags
);
6822 __output_copy(&handle
, mmap_event
->file_name
,
6823 mmap_event
->file_size
);
6825 perf_event__output_id_sample(event
, &handle
, &sample
);
6827 perf_output_end(&handle
);
6829 mmap_event
->event_id
.header
.size
= size
;
6832 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
6834 struct vm_area_struct
*vma
= mmap_event
->vma
;
6835 struct file
*file
= vma
->vm_file
;
6836 int maj
= 0, min
= 0;
6837 u64 ino
= 0, gen
= 0;
6838 u32 prot
= 0, flags
= 0;
6844 if (vma
->vm_flags
& VM_READ
)
6846 if (vma
->vm_flags
& VM_WRITE
)
6848 if (vma
->vm_flags
& VM_EXEC
)
6851 if (vma
->vm_flags
& VM_MAYSHARE
)
6854 flags
= MAP_PRIVATE
;
6856 if (vma
->vm_flags
& VM_DENYWRITE
)
6857 flags
|= MAP_DENYWRITE
;
6858 if (vma
->vm_flags
& VM_MAYEXEC
)
6859 flags
|= MAP_EXECUTABLE
;
6860 if (vma
->vm_flags
& VM_LOCKED
)
6861 flags
|= MAP_LOCKED
;
6862 if (vma
->vm_flags
& VM_HUGETLB
)
6863 flags
|= MAP_HUGETLB
;
6866 struct inode
*inode
;
6869 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
6875 * d_path() works from the end of the rb backwards, so we
6876 * need to add enough zero bytes after the string to handle
6877 * the 64bit alignment we do later.
6879 name
= file_path(file
, buf
, PATH_MAX
- sizeof(u64
));
6884 inode
= file_inode(vma
->vm_file
);
6885 dev
= inode
->i_sb
->s_dev
;
6887 gen
= inode
->i_generation
;
6893 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
6894 name
= (char *) vma
->vm_ops
->name(vma
);
6899 name
= (char *)arch_vma_name(vma
);
6903 if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
6904 vma
->vm_end
>= vma
->vm_mm
->brk
) {
6908 if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
6909 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
6919 strlcpy(tmp
, name
, sizeof(tmp
));
6923 * Since our buffer works in 8 byte units we need to align our string
6924 * size to a multiple of 8. However, we must guarantee the tail end is
6925 * zero'd out to avoid leaking random bits to userspace.
6927 size
= strlen(name
)+1;
6928 while (!IS_ALIGNED(size
, sizeof(u64
)))
6929 name
[size
++] = '\0';
6931 mmap_event
->file_name
= name
;
6932 mmap_event
->file_size
= size
;
6933 mmap_event
->maj
= maj
;
6934 mmap_event
->min
= min
;
6935 mmap_event
->ino
= ino
;
6936 mmap_event
->ino_generation
= gen
;
6937 mmap_event
->prot
= prot
;
6938 mmap_event
->flags
= flags
;
6940 if (!(vma
->vm_flags
& VM_EXEC
))
6941 mmap_event
->event_id
.header
.misc
|= PERF_RECORD_MISC_MMAP_DATA
;
6943 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
6945 perf_iterate_sb(perf_event_mmap_output
,
6953 * Check whether inode and address range match filter criteria.
6955 static bool perf_addr_filter_match(struct perf_addr_filter
*filter
,
6956 struct file
*file
, unsigned long offset
,
6959 if (filter
->inode
!= file_inode(file
))
6962 if (filter
->offset
> offset
+ size
)
6965 if (filter
->offset
+ filter
->size
< offset
)
6971 static void __perf_addr_filters_adjust(struct perf_event
*event
, void *data
)
6973 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
6974 struct vm_area_struct
*vma
= data
;
6975 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
, flags
;
6976 struct file
*file
= vma
->vm_file
;
6977 struct perf_addr_filter
*filter
;
6978 unsigned int restart
= 0, count
= 0;
6980 if (!has_addr_filter(event
))
6986 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
6987 list_for_each_entry(filter
, &ifh
->list
, entry
) {
6988 if (perf_addr_filter_match(filter
, file
, off
,
6989 vma
->vm_end
- vma
->vm_start
)) {
6990 event
->addr_filters_offs
[count
] = vma
->vm_start
;
6998 event
->addr_filters_gen
++;
6999 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
7002 perf_event_stop(event
, 1);
7006 * Adjust all task's events' filters to the new vma
7008 static void perf_addr_filters_adjust(struct vm_area_struct
*vma
)
7010 struct perf_event_context
*ctx
;
7014 * Data tracing isn't supported yet and as such there is no need
7015 * to keep track of anything that isn't related to executable code:
7017 if (!(vma
->vm_flags
& VM_EXEC
))
7021 for_each_task_context_nr(ctxn
) {
7022 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
7026 perf_iterate_ctx(ctx
, __perf_addr_filters_adjust
, vma
, true);
7031 void perf_event_mmap(struct vm_area_struct
*vma
)
7033 struct perf_mmap_event mmap_event
;
7035 if (!atomic_read(&nr_mmap_events
))
7038 mmap_event
= (struct perf_mmap_event
){
7044 .type
= PERF_RECORD_MMAP
,
7045 .misc
= PERF_RECORD_MISC_USER
,
7050 .start
= vma
->vm_start
,
7051 .len
= vma
->vm_end
- vma
->vm_start
,
7052 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
7054 /* .maj (attr_mmap2 only) */
7055 /* .min (attr_mmap2 only) */
7056 /* .ino (attr_mmap2 only) */
7057 /* .ino_generation (attr_mmap2 only) */
7058 /* .prot (attr_mmap2 only) */
7059 /* .flags (attr_mmap2 only) */
7062 perf_addr_filters_adjust(vma
);
7063 perf_event_mmap_event(&mmap_event
);
7066 void perf_event_aux_event(struct perf_event
*event
, unsigned long head
,
7067 unsigned long size
, u64 flags
)
7069 struct perf_output_handle handle
;
7070 struct perf_sample_data sample
;
7071 struct perf_aux_event
{
7072 struct perf_event_header header
;
7078 .type
= PERF_RECORD_AUX
,
7080 .size
= sizeof(rec
),
7088 perf_event_header__init_id(&rec
.header
, &sample
, event
);
7089 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
7094 perf_output_put(&handle
, rec
);
7095 perf_event__output_id_sample(event
, &handle
, &sample
);
7097 perf_output_end(&handle
);
7101 * Lost/dropped samples logging
7103 void perf_log_lost_samples(struct perf_event
*event
, u64 lost
)
7105 struct perf_output_handle handle
;
7106 struct perf_sample_data sample
;
7110 struct perf_event_header header
;
7112 } lost_samples_event
= {
7114 .type
= PERF_RECORD_LOST_SAMPLES
,
7116 .size
= sizeof(lost_samples_event
),
7121 perf_event_header__init_id(&lost_samples_event
.header
, &sample
, event
);
7123 ret
= perf_output_begin(&handle
, event
,
7124 lost_samples_event
.header
.size
);
7128 perf_output_put(&handle
, lost_samples_event
);
7129 perf_event__output_id_sample(event
, &handle
, &sample
);
7130 perf_output_end(&handle
);
7134 * context_switch tracking
7137 struct perf_switch_event
{
7138 struct task_struct
*task
;
7139 struct task_struct
*next_prev
;
7142 struct perf_event_header header
;
7148 static int perf_event_switch_match(struct perf_event
*event
)
7150 return event
->attr
.context_switch
;
7153 static void perf_event_switch_output(struct perf_event
*event
, void *data
)
7155 struct perf_switch_event
*se
= data
;
7156 struct perf_output_handle handle
;
7157 struct perf_sample_data sample
;
7160 if (!perf_event_switch_match(event
))
7163 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7164 if (event
->ctx
->task
) {
7165 se
->event_id
.header
.type
= PERF_RECORD_SWITCH
;
7166 se
->event_id
.header
.size
= sizeof(se
->event_id
.header
);
7168 se
->event_id
.header
.type
= PERF_RECORD_SWITCH_CPU_WIDE
;
7169 se
->event_id
.header
.size
= sizeof(se
->event_id
);
7170 se
->event_id
.next_prev_pid
=
7171 perf_event_pid(event
, se
->next_prev
);
7172 se
->event_id
.next_prev_tid
=
7173 perf_event_tid(event
, se
->next_prev
);
7176 perf_event_header__init_id(&se
->event_id
.header
, &sample
, event
);
7178 ret
= perf_output_begin(&handle
, event
, se
->event_id
.header
.size
);
7182 if (event
->ctx
->task
)
7183 perf_output_put(&handle
, se
->event_id
.header
);
7185 perf_output_put(&handle
, se
->event_id
);
7187 perf_event__output_id_sample(event
, &handle
, &sample
);
7189 perf_output_end(&handle
);
7192 static void perf_event_switch(struct task_struct
*task
,
7193 struct task_struct
*next_prev
, bool sched_in
)
7195 struct perf_switch_event switch_event
;
7197 /* N.B. caller checks nr_switch_events != 0 */
7199 switch_event
= (struct perf_switch_event
){
7201 .next_prev
= next_prev
,
7205 .misc
= sched_in
? 0 : PERF_RECORD_MISC_SWITCH_OUT
,
7208 /* .next_prev_pid */
7209 /* .next_prev_tid */
7213 perf_iterate_sb(perf_event_switch_output
,
7219 * IRQ throttle logging
7222 static void perf_log_throttle(struct perf_event
*event
, int enable
)
7224 struct perf_output_handle handle
;
7225 struct perf_sample_data sample
;
7229 struct perf_event_header header
;
7233 } throttle_event
= {
7235 .type
= PERF_RECORD_THROTTLE
,
7237 .size
= sizeof(throttle_event
),
7239 .time
= perf_event_clock(event
),
7240 .id
= primary_event_id(event
),
7241 .stream_id
= event
->id
,
7245 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
7247 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
7249 ret
= perf_output_begin(&handle
, event
,
7250 throttle_event
.header
.size
);
7254 perf_output_put(&handle
, throttle_event
);
7255 perf_event__output_id_sample(event
, &handle
, &sample
);
7256 perf_output_end(&handle
);
7259 static void perf_log_itrace_start(struct perf_event
*event
)
7261 struct perf_output_handle handle
;
7262 struct perf_sample_data sample
;
7263 struct perf_aux_event
{
7264 struct perf_event_header header
;
7271 event
= event
->parent
;
7273 if (!(event
->pmu
->capabilities
& PERF_PMU_CAP_ITRACE
) ||
7274 event
->hw
.itrace_started
)
7277 rec
.header
.type
= PERF_RECORD_ITRACE_START
;
7278 rec
.header
.misc
= 0;
7279 rec
.header
.size
= sizeof(rec
);
7280 rec
.pid
= perf_event_pid(event
, current
);
7281 rec
.tid
= perf_event_tid(event
, current
);
7283 perf_event_header__init_id(&rec
.header
, &sample
, event
);
7284 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
7289 perf_output_put(&handle
, rec
);
7290 perf_event__output_id_sample(event
, &handle
, &sample
);
7292 perf_output_end(&handle
);
7296 __perf_event_account_interrupt(struct perf_event
*event
, int throttle
)
7298 struct hw_perf_event
*hwc
= &event
->hw
;
7302 seq
= __this_cpu_read(perf_throttled_seq
);
7303 if (seq
!= hwc
->interrupts_seq
) {
7304 hwc
->interrupts_seq
= seq
;
7305 hwc
->interrupts
= 1;
7308 if (unlikely(throttle
7309 && hwc
->interrupts
>= max_samples_per_tick
)) {
7310 __this_cpu_inc(perf_throttled_count
);
7311 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
7312 hwc
->interrupts
= MAX_INTERRUPTS
;
7313 perf_log_throttle(event
, 0);
7318 if (event
->attr
.freq
) {
7319 u64 now
= perf_clock();
7320 s64 delta
= now
- hwc
->freq_time_stamp
;
7322 hwc
->freq_time_stamp
= now
;
7324 if (delta
> 0 && delta
< 2*TICK_NSEC
)
7325 perf_adjust_period(event
, delta
, hwc
->last_period
, true);
7331 int perf_event_account_interrupt(struct perf_event
*event
)
7333 return __perf_event_account_interrupt(event
, 1);
7337 * Generic event overflow handling, sampling.
7340 static int __perf_event_overflow(struct perf_event
*event
,
7341 int throttle
, struct perf_sample_data
*data
,
7342 struct pt_regs
*regs
)
7344 int events
= atomic_read(&event
->event_limit
);
7348 * Non-sampling counters might still use the PMI to fold short
7349 * hardware counters, ignore those.
7351 if (unlikely(!is_sampling_event(event
)))
7354 ret
= __perf_event_account_interrupt(event
, throttle
);
7357 * XXX event_limit might not quite work as expected on inherited
7361 event
->pending_kill
= POLL_IN
;
7362 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
7364 event
->pending_kill
= POLL_HUP
;
7366 perf_event_disable_inatomic(event
);
7369 READ_ONCE(event
->overflow_handler
)(event
, data
, regs
);
7371 if (*perf_event_fasync(event
) && event
->pending_kill
) {
7372 event
->pending_wakeup
= 1;
7373 irq_work_queue(&event
->pending
);
7379 int perf_event_overflow(struct perf_event
*event
,
7380 struct perf_sample_data
*data
,
7381 struct pt_regs
*regs
)
7383 return __perf_event_overflow(event
, 1, data
, regs
);
7387 * Generic software event infrastructure
7390 struct swevent_htable
{
7391 struct swevent_hlist
*swevent_hlist
;
7392 struct mutex hlist_mutex
;
7395 /* Recursion avoidance in each contexts */
7396 int recursion
[PERF_NR_CONTEXTS
];
7399 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
7402 * We directly increment event->count and keep a second value in
7403 * event->hw.period_left to count intervals. This period event
7404 * is kept in the range [-sample_period, 0] so that we can use the
7408 u64
perf_swevent_set_period(struct perf_event
*event
)
7410 struct hw_perf_event
*hwc
= &event
->hw
;
7411 u64 period
= hwc
->last_period
;
7415 hwc
->last_period
= hwc
->sample_period
;
7418 old
= val
= local64_read(&hwc
->period_left
);
7422 nr
= div64_u64(period
+ val
, period
);
7423 offset
= nr
* period
;
7425 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
7431 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
7432 struct perf_sample_data
*data
,
7433 struct pt_regs
*regs
)
7435 struct hw_perf_event
*hwc
= &event
->hw
;
7439 overflow
= perf_swevent_set_period(event
);
7441 if (hwc
->interrupts
== MAX_INTERRUPTS
)
7444 for (; overflow
; overflow
--) {
7445 if (__perf_event_overflow(event
, throttle
,
7448 * We inhibit the overflow from happening when
7449 * hwc->interrupts == MAX_INTERRUPTS.
7457 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
7458 struct perf_sample_data
*data
,
7459 struct pt_regs
*regs
)
7461 struct hw_perf_event
*hwc
= &event
->hw
;
7463 local64_add(nr
, &event
->count
);
7468 if (!is_sampling_event(event
))
7471 if ((event
->attr
.sample_type
& PERF_SAMPLE_PERIOD
) && !event
->attr
.freq
) {
7473 return perf_swevent_overflow(event
, 1, data
, regs
);
7475 data
->period
= event
->hw
.last_period
;
7477 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
7478 return perf_swevent_overflow(event
, 1, data
, regs
);
7480 if (local64_add_negative(nr
, &hwc
->period_left
))
7483 perf_swevent_overflow(event
, 0, data
, regs
);
7486 static int perf_exclude_event(struct perf_event
*event
,
7487 struct pt_regs
*regs
)
7489 if (event
->hw
.state
& PERF_HES_STOPPED
)
7493 if (event
->attr
.exclude_user
&& user_mode(regs
))
7496 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
7503 static int perf_swevent_match(struct perf_event
*event
,
7504 enum perf_type_id type
,
7506 struct perf_sample_data
*data
,
7507 struct pt_regs
*regs
)
7509 if (event
->attr
.type
!= type
)
7512 if (event
->attr
.config
!= event_id
)
7515 if (perf_exclude_event(event
, regs
))
7521 static inline u64
swevent_hash(u64 type
, u32 event_id
)
7523 u64 val
= event_id
| (type
<< 32);
7525 return hash_64(val
, SWEVENT_HLIST_BITS
);
7528 static inline struct hlist_head
*
7529 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
7531 u64 hash
= swevent_hash(type
, event_id
);
7533 return &hlist
->heads
[hash
];
7536 /* For the read side: events when they trigger */
7537 static inline struct hlist_head
*
7538 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
7540 struct swevent_hlist
*hlist
;
7542 hlist
= rcu_dereference(swhash
->swevent_hlist
);
7546 return __find_swevent_head(hlist
, type
, event_id
);
7549 /* For the event head insertion and removal in the hlist */
7550 static inline struct hlist_head
*
7551 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
7553 struct swevent_hlist
*hlist
;
7554 u32 event_id
= event
->attr
.config
;
7555 u64 type
= event
->attr
.type
;
7558 * Event scheduling is always serialized against hlist allocation
7559 * and release. Which makes the protected version suitable here.
7560 * The context lock guarantees that.
7562 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
7563 lockdep_is_held(&event
->ctx
->lock
));
7567 return __find_swevent_head(hlist
, type
, event_id
);
7570 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
7572 struct perf_sample_data
*data
,
7573 struct pt_regs
*regs
)
7575 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7576 struct perf_event
*event
;
7577 struct hlist_head
*head
;
7580 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
7584 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
7585 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
7586 perf_swevent_event(event
, nr
, data
, regs
);
7592 DEFINE_PER_CPU(struct pt_regs
, __perf_regs
[4]);
7594 int perf_swevent_get_recursion_context(void)
7596 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7598 return get_recursion_context(swhash
->recursion
);
7600 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
7602 void perf_swevent_put_recursion_context(int rctx
)
7604 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7606 put_recursion_context(swhash
->recursion
, rctx
);
7609 void ___perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
7611 struct perf_sample_data data
;
7613 if (WARN_ON_ONCE(!regs
))
7616 perf_sample_data_init(&data
, addr
, 0);
7617 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
7620 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
7624 preempt_disable_notrace();
7625 rctx
= perf_swevent_get_recursion_context();
7626 if (unlikely(rctx
< 0))
7629 ___perf_sw_event(event_id
, nr
, regs
, addr
);
7631 perf_swevent_put_recursion_context(rctx
);
7633 preempt_enable_notrace();
7636 static void perf_swevent_read(struct perf_event
*event
)
7640 static int perf_swevent_add(struct perf_event
*event
, int flags
)
7642 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7643 struct hw_perf_event
*hwc
= &event
->hw
;
7644 struct hlist_head
*head
;
7646 if (is_sampling_event(event
)) {
7647 hwc
->last_period
= hwc
->sample_period
;
7648 perf_swevent_set_period(event
);
7651 hwc
->state
= !(flags
& PERF_EF_START
);
7653 head
= find_swevent_head(swhash
, event
);
7654 if (WARN_ON_ONCE(!head
))
7657 hlist_add_head_rcu(&event
->hlist_entry
, head
);
7658 perf_event_update_userpage(event
);
7663 static void perf_swevent_del(struct perf_event
*event
, int flags
)
7665 hlist_del_rcu(&event
->hlist_entry
);
7668 static void perf_swevent_start(struct perf_event
*event
, int flags
)
7670 event
->hw
.state
= 0;
7673 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
7675 event
->hw
.state
= PERF_HES_STOPPED
;
7678 /* Deref the hlist from the update side */
7679 static inline struct swevent_hlist
*
7680 swevent_hlist_deref(struct swevent_htable
*swhash
)
7682 return rcu_dereference_protected(swhash
->swevent_hlist
,
7683 lockdep_is_held(&swhash
->hlist_mutex
));
7686 static void swevent_hlist_release(struct swevent_htable
*swhash
)
7688 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
7693 RCU_INIT_POINTER(swhash
->swevent_hlist
, NULL
);
7694 kfree_rcu(hlist
, rcu_head
);
7697 static void swevent_hlist_put_cpu(int cpu
)
7699 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
7701 mutex_lock(&swhash
->hlist_mutex
);
7703 if (!--swhash
->hlist_refcount
)
7704 swevent_hlist_release(swhash
);
7706 mutex_unlock(&swhash
->hlist_mutex
);
7709 static void swevent_hlist_put(void)
7713 for_each_possible_cpu(cpu
)
7714 swevent_hlist_put_cpu(cpu
);
7717 static int swevent_hlist_get_cpu(int cpu
)
7719 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
7722 mutex_lock(&swhash
->hlist_mutex
);
7723 if (!swevent_hlist_deref(swhash
) &&
7724 cpumask_test_cpu(cpu
, perf_online_mask
)) {
7725 struct swevent_hlist
*hlist
;
7727 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
7732 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
7734 swhash
->hlist_refcount
++;
7736 mutex_unlock(&swhash
->hlist_mutex
);
7741 static int swevent_hlist_get(void)
7743 int err
, cpu
, failed_cpu
;
7745 mutex_lock(&pmus_lock
);
7746 for_each_possible_cpu(cpu
) {
7747 err
= swevent_hlist_get_cpu(cpu
);
7753 mutex_unlock(&pmus_lock
);
7756 for_each_possible_cpu(cpu
) {
7757 if (cpu
== failed_cpu
)
7759 swevent_hlist_put_cpu(cpu
);
7761 mutex_unlock(&pmus_lock
);
7765 struct static_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
7767 static void sw_perf_event_destroy(struct perf_event
*event
)
7769 u64 event_id
= event
->attr
.config
;
7771 WARN_ON(event
->parent
);
7773 static_key_slow_dec(&perf_swevent_enabled
[event_id
]);
7774 swevent_hlist_put();
7777 static int perf_swevent_init(struct perf_event
*event
)
7779 u64 event_id
= event
->attr
.config
;
7781 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
7785 * no branch sampling for software events
7787 if (has_branch_stack(event
))
7791 case PERF_COUNT_SW_CPU_CLOCK
:
7792 case PERF_COUNT_SW_TASK_CLOCK
:
7799 if (event_id
>= PERF_COUNT_SW_MAX
)
7802 if (!event
->parent
) {
7805 err
= swevent_hlist_get();
7809 static_key_slow_inc(&perf_swevent_enabled
[event_id
]);
7810 event
->destroy
= sw_perf_event_destroy
;
7816 static struct pmu perf_swevent
= {
7817 .task_ctx_nr
= perf_sw_context
,
7819 .capabilities
= PERF_PMU_CAP_NO_NMI
,
7821 .event_init
= perf_swevent_init
,
7822 .add
= perf_swevent_add
,
7823 .del
= perf_swevent_del
,
7824 .start
= perf_swevent_start
,
7825 .stop
= perf_swevent_stop
,
7826 .read
= perf_swevent_read
,
7829 #ifdef CONFIG_EVENT_TRACING
7831 static int perf_tp_filter_match(struct perf_event
*event
,
7832 struct perf_sample_data
*data
)
7834 void *record
= data
->raw
->frag
.data
;
7836 /* only top level events have filters set */
7838 event
= event
->parent
;
7840 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
7845 static int perf_tp_event_match(struct perf_event
*event
,
7846 struct perf_sample_data
*data
,
7847 struct pt_regs
*regs
)
7849 if (event
->hw
.state
& PERF_HES_STOPPED
)
7852 * All tracepoints are from kernel-space.
7854 if (event
->attr
.exclude_kernel
)
7857 if (!perf_tp_filter_match(event
, data
))
7863 void perf_trace_run_bpf_submit(void *raw_data
, int size
, int rctx
,
7864 struct trace_event_call
*call
, u64 count
,
7865 struct pt_regs
*regs
, struct hlist_head
*head
,
7866 struct task_struct
*task
)
7868 struct bpf_prog
*prog
= call
->prog
;
7871 *(struct pt_regs
**)raw_data
= regs
;
7872 if (!trace_call_bpf(prog
, raw_data
) || hlist_empty(head
)) {
7873 perf_swevent_put_recursion_context(rctx
);
7877 perf_tp_event(call
->event
.type
, count
, raw_data
, size
, regs
, head
,
7880 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit
);
7882 void perf_tp_event(u16 event_type
, u64 count
, void *record
, int entry_size
,
7883 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
,
7884 struct task_struct
*task
)
7886 struct perf_sample_data data
;
7887 struct perf_event
*event
;
7889 struct perf_raw_record raw
= {
7896 perf_sample_data_init(&data
, 0, 0);
7899 perf_trace_buf_update(record
, event_type
);
7901 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
7902 if (perf_tp_event_match(event
, &data
, regs
))
7903 perf_swevent_event(event
, count
, &data
, regs
);
7907 * If we got specified a target task, also iterate its context and
7908 * deliver this event there too.
7910 if (task
&& task
!= current
) {
7911 struct perf_event_context
*ctx
;
7912 struct trace_entry
*entry
= record
;
7915 ctx
= rcu_dereference(task
->perf_event_ctxp
[perf_sw_context
]);
7919 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
7920 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7922 if (event
->attr
.config
!= entry
->type
)
7924 if (perf_tp_event_match(event
, &data
, regs
))
7925 perf_swevent_event(event
, count
, &data
, regs
);
7931 perf_swevent_put_recursion_context(rctx
);
7933 EXPORT_SYMBOL_GPL(perf_tp_event
);
7935 static void tp_perf_event_destroy(struct perf_event
*event
)
7937 perf_trace_destroy(event
);
7940 static int perf_tp_event_init(struct perf_event
*event
)
7944 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7948 * no branch sampling for tracepoint events
7950 if (has_branch_stack(event
))
7953 err
= perf_trace_init(event
);
7957 event
->destroy
= tp_perf_event_destroy
;
7962 static struct pmu perf_tracepoint
= {
7963 .task_ctx_nr
= perf_sw_context
,
7965 .event_init
= perf_tp_event_init
,
7966 .add
= perf_trace_add
,
7967 .del
= perf_trace_del
,
7968 .start
= perf_swevent_start
,
7969 .stop
= perf_swevent_stop
,
7970 .read
= perf_swevent_read
,
7973 static inline void perf_tp_register(void)
7975 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
7978 static void perf_event_free_filter(struct perf_event
*event
)
7980 ftrace_profile_free_filter(event
);
7983 #ifdef CONFIG_BPF_SYSCALL
7984 static void bpf_overflow_handler(struct perf_event
*event
,
7985 struct perf_sample_data
*data
,
7986 struct pt_regs
*regs
)
7988 struct bpf_perf_event_data_kern ctx
= {
7995 if (unlikely(__this_cpu_inc_return(bpf_prog_active
) != 1))
7998 ret
= BPF_PROG_RUN(event
->prog
, &ctx
);
8001 __this_cpu_dec(bpf_prog_active
);
8006 event
->orig_overflow_handler(event
, data
, regs
);
8009 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
8011 struct bpf_prog
*prog
;
8013 if (event
->overflow_handler_context
)
8014 /* hw breakpoint or kernel counter */
8020 prog
= bpf_prog_get_type(prog_fd
, BPF_PROG_TYPE_PERF_EVENT
);
8022 return PTR_ERR(prog
);
8025 event
->orig_overflow_handler
= READ_ONCE(event
->overflow_handler
);
8026 WRITE_ONCE(event
->overflow_handler
, bpf_overflow_handler
);
8030 static void perf_event_free_bpf_handler(struct perf_event
*event
)
8032 struct bpf_prog
*prog
= event
->prog
;
8037 WRITE_ONCE(event
->overflow_handler
, event
->orig_overflow_handler
);
8042 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
8046 static void perf_event_free_bpf_handler(struct perf_event
*event
)
8051 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
8053 bool is_kprobe
, is_tracepoint
;
8054 struct bpf_prog
*prog
;
8056 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
8057 return perf_event_set_bpf_handler(event
, prog_fd
);
8059 if (event
->tp_event
->prog
)
8062 is_kprobe
= event
->tp_event
->flags
& TRACE_EVENT_FL_UKPROBE
;
8063 is_tracepoint
= event
->tp_event
->flags
& TRACE_EVENT_FL_TRACEPOINT
;
8064 if (!is_kprobe
&& !is_tracepoint
)
8065 /* bpf programs can only be attached to u/kprobe or tracepoint */
8068 prog
= bpf_prog_get(prog_fd
);
8070 return PTR_ERR(prog
);
8072 if ((is_kprobe
&& prog
->type
!= BPF_PROG_TYPE_KPROBE
) ||
8073 (is_tracepoint
&& prog
->type
!= BPF_PROG_TYPE_TRACEPOINT
)) {
8074 /* valid fd, but invalid bpf program type */
8079 if (is_tracepoint
) {
8080 int off
= trace_event_get_offsets(event
->tp_event
);
8082 if (prog
->aux
->max_ctx_offset
> off
) {
8087 event
->tp_event
->prog
= prog
;
8092 static void perf_event_free_bpf_prog(struct perf_event
*event
)
8094 struct bpf_prog
*prog
;
8096 perf_event_free_bpf_handler(event
);
8098 if (!event
->tp_event
)
8101 prog
= event
->tp_event
->prog
;
8103 event
->tp_event
->prog
= NULL
;
8110 static inline void perf_tp_register(void)
8114 static void perf_event_free_filter(struct perf_event
*event
)
8118 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
8123 static void perf_event_free_bpf_prog(struct perf_event
*event
)
8126 #endif /* CONFIG_EVENT_TRACING */
8128 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8129 void perf_bp_event(struct perf_event
*bp
, void *data
)
8131 struct perf_sample_data sample
;
8132 struct pt_regs
*regs
= data
;
8134 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
, 0);
8136 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
8137 perf_swevent_event(bp
, 1, &sample
, regs
);
8142 * Allocate a new address filter
8144 static struct perf_addr_filter
*
8145 perf_addr_filter_new(struct perf_event
*event
, struct list_head
*filters
)
8147 int node
= cpu_to_node(event
->cpu
== -1 ? 0 : event
->cpu
);
8148 struct perf_addr_filter
*filter
;
8150 filter
= kzalloc_node(sizeof(*filter
), GFP_KERNEL
, node
);
8154 INIT_LIST_HEAD(&filter
->entry
);
8155 list_add_tail(&filter
->entry
, filters
);
8160 static void free_filters_list(struct list_head
*filters
)
8162 struct perf_addr_filter
*filter
, *iter
;
8164 list_for_each_entry_safe(filter
, iter
, filters
, entry
) {
8166 iput(filter
->inode
);
8167 list_del(&filter
->entry
);
8173 * Free existing address filters and optionally install new ones
8175 static void perf_addr_filters_splice(struct perf_event
*event
,
8176 struct list_head
*head
)
8178 unsigned long flags
;
8181 if (!has_addr_filter(event
))
8184 /* don't bother with children, they don't have their own filters */
8188 raw_spin_lock_irqsave(&event
->addr_filters
.lock
, flags
);
8190 list_splice_init(&event
->addr_filters
.list
, &list
);
8192 list_splice(head
, &event
->addr_filters
.list
);
8194 raw_spin_unlock_irqrestore(&event
->addr_filters
.lock
, flags
);
8196 free_filters_list(&list
);
8200 * Scan through mm's vmas and see if one of them matches the
8201 * @filter; if so, adjust filter's address range.
8202 * Called with mm::mmap_sem down for reading.
8204 static unsigned long perf_addr_filter_apply(struct perf_addr_filter
*filter
,
8205 struct mm_struct
*mm
)
8207 struct vm_area_struct
*vma
;
8209 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
8210 struct file
*file
= vma
->vm_file
;
8211 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
;
8212 unsigned long vma_size
= vma
->vm_end
- vma
->vm_start
;
8217 if (!perf_addr_filter_match(filter
, file
, off
, vma_size
))
8220 return vma
->vm_start
;
8227 * Update event's address range filters based on the
8228 * task's existing mappings, if any.
8230 static void perf_event_addr_filters_apply(struct perf_event
*event
)
8232 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
8233 struct task_struct
*task
= READ_ONCE(event
->ctx
->task
);
8234 struct perf_addr_filter
*filter
;
8235 struct mm_struct
*mm
= NULL
;
8236 unsigned int count
= 0;
8237 unsigned long flags
;
8240 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8241 * will stop on the parent's child_mutex that our caller is also holding
8243 if (task
== TASK_TOMBSTONE
)
8246 if (!ifh
->nr_file_filters
)
8249 mm
= get_task_mm(event
->ctx
->task
);
8253 down_read(&mm
->mmap_sem
);
8255 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
8256 list_for_each_entry(filter
, &ifh
->list
, entry
) {
8257 event
->addr_filters_offs
[count
] = 0;
8260 * Adjust base offset if the filter is associated to a binary
8261 * that needs to be mapped:
8264 event
->addr_filters_offs
[count
] =
8265 perf_addr_filter_apply(filter
, mm
);
8270 event
->addr_filters_gen
++;
8271 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
8273 up_read(&mm
->mmap_sem
);
8278 perf_event_stop(event
, 1);
8282 * Address range filtering: limiting the data to certain
8283 * instruction address ranges. Filters are ioctl()ed to us from
8284 * userspace as ascii strings.
8286 * Filter string format:
8289 * where ACTION is one of the
8290 * * "filter": limit the trace to this region
8291 * * "start": start tracing from this address
8292 * * "stop": stop tracing at this address/region;
8294 * * for kernel addresses: <start address>[/<size>]
8295 * * for object files: <start address>[/<size>]@</path/to/object/file>
8297 * if <size> is not specified, the range is treated as a single address.
8311 IF_STATE_ACTION
= 0,
8316 static const match_table_t if_tokens
= {
8317 { IF_ACT_FILTER
, "filter" },
8318 { IF_ACT_START
, "start" },
8319 { IF_ACT_STOP
, "stop" },
8320 { IF_SRC_FILE
, "%u/%u@%s" },
8321 { IF_SRC_KERNEL
, "%u/%u" },
8322 { IF_SRC_FILEADDR
, "%u@%s" },
8323 { IF_SRC_KERNELADDR
, "%u" },
8324 { IF_ACT_NONE
, NULL
},
8328 * Address filter string parser
8331 perf_event_parse_addr_filter(struct perf_event
*event
, char *fstr
,
8332 struct list_head
*filters
)
8334 struct perf_addr_filter
*filter
= NULL
;
8335 char *start
, *orig
, *filename
= NULL
;
8337 substring_t args
[MAX_OPT_ARGS
];
8338 int state
= IF_STATE_ACTION
, token
;
8339 unsigned int kernel
= 0;
8342 orig
= fstr
= kstrdup(fstr
, GFP_KERNEL
);
8346 while ((start
= strsep(&fstr
, " ,\n")) != NULL
) {
8352 /* filter definition begins */
8353 if (state
== IF_STATE_ACTION
) {
8354 filter
= perf_addr_filter_new(event
, filters
);
8359 token
= match_token(start
, if_tokens
, args
);
8366 if (state
!= IF_STATE_ACTION
)
8369 state
= IF_STATE_SOURCE
;
8372 case IF_SRC_KERNELADDR
:
8376 case IF_SRC_FILEADDR
:
8378 if (state
!= IF_STATE_SOURCE
)
8381 if (token
== IF_SRC_FILE
|| token
== IF_SRC_KERNEL
)
8385 ret
= kstrtoul(args
[0].from
, 0, &filter
->offset
);
8389 if (filter
->range
) {
8391 ret
= kstrtoul(args
[1].from
, 0, &filter
->size
);
8396 if (token
== IF_SRC_FILE
|| token
== IF_SRC_FILEADDR
) {
8397 int fpos
= filter
->range
? 2 : 1;
8399 filename
= match_strdup(&args
[fpos
]);
8406 state
= IF_STATE_END
;
8414 * Filter definition is fully parsed, validate and install it.
8415 * Make sure that it doesn't contradict itself or the event's
8418 if (state
== IF_STATE_END
) {
8420 if (kernel
&& event
->attr
.exclude_kernel
)
8428 * For now, we only support file-based filters
8429 * in per-task events; doing so for CPU-wide
8430 * events requires additional context switching
8431 * trickery, since same object code will be
8432 * mapped at different virtual addresses in
8433 * different processes.
8436 if (!event
->ctx
->task
)
8437 goto fail_free_name
;
8439 /* look up the path and grab its inode */
8440 ret
= kern_path(filename
, LOOKUP_FOLLOW
, &path
);
8442 goto fail_free_name
;
8444 filter
->inode
= igrab(d_inode(path
.dentry
));
8450 if (!filter
->inode
||
8451 !S_ISREG(filter
->inode
->i_mode
))
8452 /* free_filters_list() will iput() */
8455 event
->addr_filters
.nr_file_filters
++;
8458 /* ready to consume more filters */
8459 state
= IF_STATE_ACTION
;
8464 if (state
!= IF_STATE_ACTION
)
8474 free_filters_list(filters
);
8481 perf_event_set_addr_filter(struct perf_event
*event
, char *filter_str
)
8487 * Since this is called in perf_ioctl() path, we're already holding
8490 lockdep_assert_held(&event
->ctx
->mutex
);
8492 if (WARN_ON_ONCE(event
->parent
))
8495 ret
= perf_event_parse_addr_filter(event
, filter_str
, &filters
);
8497 goto fail_clear_files
;
8499 ret
= event
->pmu
->addr_filters_validate(&filters
);
8501 goto fail_free_filters
;
8503 /* remove existing filters, if any */
8504 perf_addr_filters_splice(event
, &filters
);
8506 /* install new filters */
8507 perf_event_for_each_child(event
, perf_event_addr_filters_apply
);
8512 free_filters_list(&filters
);
8515 event
->addr_filters
.nr_file_filters
= 0;
8520 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
8525 if ((event
->attr
.type
!= PERF_TYPE_TRACEPOINT
||
8526 !IS_ENABLED(CONFIG_EVENT_TRACING
)) &&
8527 !has_addr_filter(event
))
8530 filter_str
= strndup_user(arg
, PAGE_SIZE
);
8531 if (IS_ERR(filter_str
))
8532 return PTR_ERR(filter_str
);
8534 if (IS_ENABLED(CONFIG_EVENT_TRACING
) &&
8535 event
->attr
.type
== PERF_TYPE_TRACEPOINT
)
8536 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
,
8538 else if (has_addr_filter(event
))
8539 ret
= perf_event_set_addr_filter(event
, filter_str
);
8546 * hrtimer based swevent callback
8549 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
8551 enum hrtimer_restart ret
= HRTIMER_RESTART
;
8552 struct perf_sample_data data
;
8553 struct pt_regs
*regs
;
8554 struct perf_event
*event
;
8557 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
8559 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
8560 return HRTIMER_NORESTART
;
8562 event
->pmu
->read(event
);
8564 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
8565 regs
= get_irq_regs();
8567 if (regs
&& !perf_exclude_event(event
, regs
)) {
8568 if (!(event
->attr
.exclude_idle
&& is_idle_task(current
)))
8569 if (__perf_event_overflow(event
, 1, &data
, regs
))
8570 ret
= HRTIMER_NORESTART
;
8573 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
8574 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
8579 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
8581 struct hw_perf_event
*hwc
= &event
->hw
;
8584 if (!is_sampling_event(event
))
8587 period
= local64_read(&hwc
->period_left
);
8592 local64_set(&hwc
->period_left
, 0);
8594 period
= max_t(u64
, 10000, hwc
->sample_period
);
8596 hrtimer_start(&hwc
->hrtimer
, ns_to_ktime(period
),
8597 HRTIMER_MODE_REL_PINNED
);
8600 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
8602 struct hw_perf_event
*hwc
= &event
->hw
;
8604 if (is_sampling_event(event
)) {
8605 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
8606 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
8608 hrtimer_cancel(&hwc
->hrtimer
);
8612 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
8614 struct hw_perf_event
*hwc
= &event
->hw
;
8616 if (!is_sampling_event(event
))
8619 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
8620 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
8623 * Since hrtimers have a fixed rate, we can do a static freq->period
8624 * mapping and avoid the whole period adjust feedback stuff.
8626 if (event
->attr
.freq
) {
8627 long freq
= event
->attr
.sample_freq
;
8629 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
8630 hwc
->sample_period
= event
->attr
.sample_period
;
8631 local64_set(&hwc
->period_left
, hwc
->sample_period
);
8632 hwc
->last_period
= hwc
->sample_period
;
8633 event
->attr
.freq
= 0;
8638 * Software event: cpu wall time clock
8641 static void cpu_clock_event_update(struct perf_event
*event
)
8646 now
= local_clock();
8647 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
8648 local64_add(now
- prev
, &event
->count
);
8651 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
8653 local64_set(&event
->hw
.prev_count
, local_clock());
8654 perf_swevent_start_hrtimer(event
);
8657 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
8659 perf_swevent_cancel_hrtimer(event
);
8660 cpu_clock_event_update(event
);
8663 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
8665 if (flags
& PERF_EF_START
)
8666 cpu_clock_event_start(event
, flags
);
8667 perf_event_update_userpage(event
);
8672 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
8674 cpu_clock_event_stop(event
, flags
);
8677 static void cpu_clock_event_read(struct perf_event
*event
)
8679 cpu_clock_event_update(event
);
8682 static int cpu_clock_event_init(struct perf_event
*event
)
8684 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
8687 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
8691 * no branch sampling for software events
8693 if (has_branch_stack(event
))
8696 perf_swevent_init_hrtimer(event
);
8701 static struct pmu perf_cpu_clock
= {
8702 .task_ctx_nr
= perf_sw_context
,
8704 .capabilities
= PERF_PMU_CAP_NO_NMI
,
8706 .event_init
= cpu_clock_event_init
,
8707 .add
= cpu_clock_event_add
,
8708 .del
= cpu_clock_event_del
,
8709 .start
= cpu_clock_event_start
,
8710 .stop
= cpu_clock_event_stop
,
8711 .read
= cpu_clock_event_read
,
8715 * Software event: task time clock
8718 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
8723 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
8725 local64_add(delta
, &event
->count
);
8728 static void task_clock_event_start(struct perf_event
*event
, int flags
)
8730 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
8731 perf_swevent_start_hrtimer(event
);
8734 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
8736 perf_swevent_cancel_hrtimer(event
);
8737 task_clock_event_update(event
, event
->ctx
->time
);
8740 static int task_clock_event_add(struct perf_event
*event
, int flags
)
8742 if (flags
& PERF_EF_START
)
8743 task_clock_event_start(event
, flags
);
8744 perf_event_update_userpage(event
);
8749 static void task_clock_event_del(struct perf_event
*event
, int flags
)
8751 task_clock_event_stop(event
, PERF_EF_UPDATE
);
8754 static void task_clock_event_read(struct perf_event
*event
)
8756 u64 now
= perf_clock();
8757 u64 delta
= now
- event
->ctx
->timestamp
;
8758 u64 time
= event
->ctx
->time
+ delta
;
8760 task_clock_event_update(event
, time
);
8763 static int task_clock_event_init(struct perf_event
*event
)
8765 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
8768 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
8772 * no branch sampling for software events
8774 if (has_branch_stack(event
))
8777 perf_swevent_init_hrtimer(event
);
8782 static struct pmu perf_task_clock
= {
8783 .task_ctx_nr
= perf_sw_context
,
8785 .capabilities
= PERF_PMU_CAP_NO_NMI
,
8787 .event_init
= task_clock_event_init
,
8788 .add
= task_clock_event_add
,
8789 .del
= task_clock_event_del
,
8790 .start
= task_clock_event_start
,
8791 .stop
= task_clock_event_stop
,
8792 .read
= task_clock_event_read
,
8795 static void perf_pmu_nop_void(struct pmu
*pmu
)
8799 static void perf_pmu_nop_txn(struct pmu
*pmu
, unsigned int flags
)
8803 static int perf_pmu_nop_int(struct pmu
*pmu
)
8808 static DEFINE_PER_CPU(unsigned int, nop_txn_flags
);
8810 static void perf_pmu_start_txn(struct pmu
*pmu
, unsigned int flags
)
8812 __this_cpu_write(nop_txn_flags
, flags
);
8814 if (flags
& ~PERF_PMU_TXN_ADD
)
8817 perf_pmu_disable(pmu
);
8820 static int perf_pmu_commit_txn(struct pmu
*pmu
)
8822 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
8824 __this_cpu_write(nop_txn_flags
, 0);
8826 if (flags
& ~PERF_PMU_TXN_ADD
)
8829 perf_pmu_enable(pmu
);
8833 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
8835 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
8837 __this_cpu_write(nop_txn_flags
, 0);
8839 if (flags
& ~PERF_PMU_TXN_ADD
)
8842 perf_pmu_enable(pmu
);
8845 static int perf_event_idx_default(struct perf_event
*event
)
8851 * Ensures all contexts with the same task_ctx_nr have the same
8852 * pmu_cpu_context too.
8854 static struct perf_cpu_context __percpu
*find_pmu_context(int ctxn
)
8861 list_for_each_entry(pmu
, &pmus
, entry
) {
8862 if (pmu
->task_ctx_nr
== ctxn
)
8863 return pmu
->pmu_cpu_context
;
8869 static void free_pmu_context(struct pmu
*pmu
)
8871 mutex_lock(&pmus_lock
);
8872 free_percpu(pmu
->pmu_cpu_context
);
8873 mutex_unlock(&pmus_lock
);
8877 * Let userspace know that this PMU supports address range filtering:
8879 static ssize_t
nr_addr_filters_show(struct device
*dev
,
8880 struct device_attribute
*attr
,
8883 struct pmu
*pmu
= dev_get_drvdata(dev
);
8885 return snprintf(page
, PAGE_SIZE
- 1, "%d\n", pmu
->nr_addr_filters
);
8887 DEVICE_ATTR_RO(nr_addr_filters
);
8889 static struct idr pmu_idr
;
8892 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
8894 struct pmu
*pmu
= dev_get_drvdata(dev
);
8896 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
8898 static DEVICE_ATTR_RO(type
);
8901 perf_event_mux_interval_ms_show(struct device
*dev
,
8902 struct device_attribute
*attr
,
8905 struct pmu
*pmu
= dev_get_drvdata(dev
);
8907 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->hrtimer_interval_ms
);
8910 static DEFINE_MUTEX(mux_interval_mutex
);
8913 perf_event_mux_interval_ms_store(struct device
*dev
,
8914 struct device_attribute
*attr
,
8915 const char *buf
, size_t count
)
8917 struct pmu
*pmu
= dev_get_drvdata(dev
);
8918 int timer
, cpu
, ret
;
8920 ret
= kstrtoint(buf
, 0, &timer
);
8927 /* same value, noting to do */
8928 if (timer
== pmu
->hrtimer_interval_ms
)
8931 mutex_lock(&mux_interval_mutex
);
8932 pmu
->hrtimer_interval_ms
= timer
;
8934 /* update all cpuctx for this PMU */
8936 for_each_online_cpu(cpu
) {
8937 struct perf_cpu_context
*cpuctx
;
8938 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
8939 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
8941 cpu_function_call(cpu
,
8942 (remote_function_f
)perf_mux_hrtimer_restart
, cpuctx
);
8945 mutex_unlock(&mux_interval_mutex
);
8949 static DEVICE_ATTR_RW(perf_event_mux_interval_ms
);
8951 static struct attribute
*pmu_dev_attrs
[] = {
8952 &dev_attr_type
.attr
,
8953 &dev_attr_perf_event_mux_interval_ms
.attr
,
8956 ATTRIBUTE_GROUPS(pmu_dev
);
8958 static int pmu_bus_running
;
8959 static struct bus_type pmu_bus
= {
8960 .name
= "event_source",
8961 .dev_groups
= pmu_dev_groups
,
8964 static void pmu_dev_release(struct device
*dev
)
8969 static int pmu_dev_alloc(struct pmu
*pmu
)
8973 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
8977 pmu
->dev
->groups
= pmu
->attr_groups
;
8978 device_initialize(pmu
->dev
);
8979 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
8983 dev_set_drvdata(pmu
->dev
, pmu
);
8984 pmu
->dev
->bus
= &pmu_bus
;
8985 pmu
->dev
->release
= pmu_dev_release
;
8986 ret
= device_add(pmu
->dev
);
8990 /* For PMUs with address filters, throw in an extra attribute: */
8991 if (pmu
->nr_addr_filters
)
8992 ret
= device_create_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
9001 device_del(pmu
->dev
);
9004 put_device(pmu
->dev
);
9008 static struct lock_class_key cpuctx_mutex
;
9009 static struct lock_class_key cpuctx_lock
;
9011 int perf_pmu_register(struct pmu
*pmu
, const char *name
, int type
)
9015 mutex_lock(&pmus_lock
);
9017 pmu
->pmu_disable_count
= alloc_percpu(int);
9018 if (!pmu
->pmu_disable_count
)
9027 type
= idr_alloc(&pmu_idr
, pmu
, PERF_TYPE_MAX
, 0, GFP_KERNEL
);
9035 if (pmu_bus_running
) {
9036 ret
= pmu_dev_alloc(pmu
);
9042 if (pmu
->task_ctx_nr
== perf_hw_context
) {
9043 static int hw_context_taken
= 0;
9046 * Other than systems with heterogeneous CPUs, it never makes
9047 * sense for two PMUs to share perf_hw_context. PMUs which are
9048 * uncore must use perf_invalid_context.
9050 if (WARN_ON_ONCE(hw_context_taken
&&
9051 !(pmu
->capabilities
& PERF_PMU_CAP_HETEROGENEOUS_CPUS
)))
9052 pmu
->task_ctx_nr
= perf_invalid_context
;
9054 hw_context_taken
= 1;
9057 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
9058 if (pmu
->pmu_cpu_context
)
9059 goto got_cpu_context
;
9062 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
9063 if (!pmu
->pmu_cpu_context
)
9066 for_each_possible_cpu(cpu
) {
9067 struct perf_cpu_context
*cpuctx
;
9069 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
9070 __perf_event_init_context(&cpuctx
->ctx
);
9071 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
9072 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
9073 cpuctx
->ctx
.pmu
= pmu
;
9074 cpuctx
->online
= cpumask_test_cpu(cpu
, perf_online_mask
);
9076 __perf_mux_hrtimer_init(cpuctx
, cpu
);
9080 if (!pmu
->start_txn
) {
9081 if (pmu
->pmu_enable
) {
9083 * If we have pmu_enable/pmu_disable calls, install
9084 * transaction stubs that use that to try and batch
9085 * hardware accesses.
9087 pmu
->start_txn
= perf_pmu_start_txn
;
9088 pmu
->commit_txn
= perf_pmu_commit_txn
;
9089 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
9091 pmu
->start_txn
= perf_pmu_nop_txn
;
9092 pmu
->commit_txn
= perf_pmu_nop_int
;
9093 pmu
->cancel_txn
= perf_pmu_nop_void
;
9097 if (!pmu
->pmu_enable
) {
9098 pmu
->pmu_enable
= perf_pmu_nop_void
;
9099 pmu
->pmu_disable
= perf_pmu_nop_void
;
9102 if (!pmu
->event_idx
)
9103 pmu
->event_idx
= perf_event_idx_default
;
9105 list_add_rcu(&pmu
->entry
, &pmus
);
9106 atomic_set(&pmu
->exclusive_cnt
, 0);
9109 mutex_unlock(&pmus_lock
);
9114 device_del(pmu
->dev
);
9115 put_device(pmu
->dev
);
9118 if (pmu
->type
>= PERF_TYPE_MAX
)
9119 idr_remove(&pmu_idr
, pmu
->type
);
9122 free_percpu(pmu
->pmu_disable_count
);
9125 EXPORT_SYMBOL_GPL(perf_pmu_register
);
9127 void perf_pmu_unregister(struct pmu
*pmu
)
9131 mutex_lock(&pmus_lock
);
9132 remove_device
= pmu_bus_running
;
9133 list_del_rcu(&pmu
->entry
);
9134 mutex_unlock(&pmus_lock
);
9137 * We dereference the pmu list under both SRCU and regular RCU, so
9138 * synchronize against both of those.
9140 synchronize_srcu(&pmus_srcu
);
9143 free_percpu(pmu
->pmu_disable_count
);
9144 if (pmu
->type
>= PERF_TYPE_MAX
)
9145 idr_remove(&pmu_idr
, pmu
->type
);
9146 if (remove_device
) {
9147 if (pmu
->nr_addr_filters
)
9148 device_remove_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
9149 device_del(pmu
->dev
);
9150 put_device(pmu
->dev
);
9152 free_pmu_context(pmu
);
9154 EXPORT_SYMBOL_GPL(perf_pmu_unregister
);
9156 static int perf_try_init_event(struct pmu
*pmu
, struct perf_event
*event
)
9158 struct perf_event_context
*ctx
= NULL
;
9161 if (!try_module_get(pmu
->module
))
9164 if (event
->group_leader
!= event
) {
9166 * This ctx->mutex can nest when we're called through
9167 * inheritance. See the perf_event_ctx_lock_nested() comment.
9169 ctx
= perf_event_ctx_lock_nested(event
->group_leader
,
9170 SINGLE_DEPTH_NESTING
);
9175 ret
= pmu
->event_init(event
);
9178 perf_event_ctx_unlock(event
->group_leader
, ctx
);
9181 module_put(pmu
->module
);
9186 static struct pmu
*perf_init_event(struct perf_event
*event
)
9192 idx
= srcu_read_lock(&pmus_srcu
);
9194 /* Try parent's PMU first: */
9195 if (event
->parent
&& event
->parent
->pmu
) {
9196 pmu
= event
->parent
->pmu
;
9197 ret
= perf_try_init_event(pmu
, event
);
9203 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
9206 ret
= perf_try_init_event(pmu
, event
);
9212 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
9213 ret
= perf_try_init_event(pmu
, event
);
9217 if (ret
!= -ENOENT
) {
9222 pmu
= ERR_PTR(-ENOENT
);
9224 srcu_read_unlock(&pmus_srcu
, idx
);
9229 static void attach_sb_event(struct perf_event
*event
)
9231 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
9233 raw_spin_lock(&pel
->lock
);
9234 list_add_rcu(&event
->sb_list
, &pel
->list
);
9235 raw_spin_unlock(&pel
->lock
);
9239 * We keep a list of all !task (and therefore per-cpu) events
9240 * that need to receive side-band records.
9242 * This avoids having to scan all the various PMU per-cpu contexts
9245 static void account_pmu_sb_event(struct perf_event
*event
)
9247 if (is_sb_event(event
))
9248 attach_sb_event(event
);
9251 static void account_event_cpu(struct perf_event
*event
, int cpu
)
9256 if (is_cgroup_event(event
))
9257 atomic_inc(&per_cpu(perf_cgroup_events
, cpu
));
9260 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9261 static void account_freq_event_nohz(void)
9263 #ifdef CONFIG_NO_HZ_FULL
9264 /* Lock so we don't race with concurrent unaccount */
9265 spin_lock(&nr_freq_lock
);
9266 if (atomic_inc_return(&nr_freq_events
) == 1)
9267 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS
);
9268 spin_unlock(&nr_freq_lock
);
9272 static void account_freq_event(void)
9274 if (tick_nohz_full_enabled())
9275 account_freq_event_nohz();
9277 atomic_inc(&nr_freq_events
);
9281 static void account_event(struct perf_event
*event
)
9288 if (event
->attach_state
& PERF_ATTACH_TASK
)
9290 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
9291 atomic_inc(&nr_mmap_events
);
9292 if (event
->attr
.comm
)
9293 atomic_inc(&nr_comm_events
);
9294 if (event
->attr
.namespaces
)
9295 atomic_inc(&nr_namespaces_events
);
9296 if (event
->attr
.task
)
9297 atomic_inc(&nr_task_events
);
9298 if (event
->attr
.freq
)
9299 account_freq_event();
9300 if (event
->attr
.context_switch
) {
9301 atomic_inc(&nr_switch_events
);
9304 if (has_branch_stack(event
))
9306 if (is_cgroup_event(event
))
9310 if (atomic_inc_not_zero(&perf_sched_count
))
9313 mutex_lock(&perf_sched_mutex
);
9314 if (!atomic_read(&perf_sched_count
)) {
9315 static_branch_enable(&perf_sched_events
);
9317 * Guarantee that all CPUs observe they key change and
9318 * call the perf scheduling hooks before proceeding to
9319 * install events that need them.
9321 synchronize_sched();
9324 * Now that we have waited for the sync_sched(), allow further
9325 * increments to by-pass the mutex.
9327 atomic_inc(&perf_sched_count
);
9328 mutex_unlock(&perf_sched_mutex
);
9332 account_event_cpu(event
, event
->cpu
);
9334 account_pmu_sb_event(event
);
9338 * Allocate and initialize a event structure
9340 static struct perf_event
*
9341 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
9342 struct task_struct
*task
,
9343 struct perf_event
*group_leader
,
9344 struct perf_event
*parent_event
,
9345 perf_overflow_handler_t overflow_handler
,
9346 void *context
, int cgroup_fd
)
9349 struct perf_event
*event
;
9350 struct hw_perf_event
*hwc
;
9353 if ((unsigned)cpu
>= nr_cpu_ids
) {
9354 if (!task
|| cpu
!= -1)
9355 return ERR_PTR(-EINVAL
);
9358 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
9360 return ERR_PTR(-ENOMEM
);
9363 * Single events are their own group leaders, with an
9364 * empty sibling list:
9367 group_leader
= event
;
9369 mutex_init(&event
->child_mutex
);
9370 INIT_LIST_HEAD(&event
->child_list
);
9372 INIT_LIST_HEAD(&event
->group_entry
);
9373 INIT_LIST_HEAD(&event
->event_entry
);
9374 INIT_LIST_HEAD(&event
->sibling_list
);
9375 INIT_LIST_HEAD(&event
->rb_entry
);
9376 INIT_LIST_HEAD(&event
->active_entry
);
9377 INIT_LIST_HEAD(&event
->addr_filters
.list
);
9378 INIT_HLIST_NODE(&event
->hlist_entry
);
9381 init_waitqueue_head(&event
->waitq
);
9382 init_irq_work(&event
->pending
, perf_pending_event
);
9384 mutex_init(&event
->mmap_mutex
);
9385 raw_spin_lock_init(&event
->addr_filters
.lock
);
9387 atomic_long_set(&event
->refcount
, 1);
9389 event
->attr
= *attr
;
9390 event
->group_leader
= group_leader
;
9394 event
->parent
= parent_event
;
9396 event
->ns
= get_pid_ns(task_active_pid_ns(current
));
9397 event
->id
= atomic64_inc_return(&perf_event_id
);
9399 event
->state
= PERF_EVENT_STATE_INACTIVE
;
9402 event
->attach_state
= PERF_ATTACH_TASK
;
9404 * XXX pmu::event_init needs to know what task to account to
9405 * and we cannot use the ctx information because we need the
9406 * pmu before we get a ctx.
9408 event
->hw
.target
= task
;
9411 event
->clock
= &local_clock
;
9413 event
->clock
= parent_event
->clock
;
9415 if (!overflow_handler
&& parent_event
) {
9416 overflow_handler
= parent_event
->overflow_handler
;
9417 context
= parent_event
->overflow_handler_context
;
9418 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9419 if (overflow_handler
== bpf_overflow_handler
) {
9420 struct bpf_prog
*prog
= bpf_prog_inc(parent_event
->prog
);
9423 err
= PTR_ERR(prog
);
9427 event
->orig_overflow_handler
=
9428 parent_event
->orig_overflow_handler
;
9433 if (overflow_handler
) {
9434 event
->overflow_handler
= overflow_handler
;
9435 event
->overflow_handler_context
= context
;
9436 } else if (is_write_backward(event
)){
9437 event
->overflow_handler
= perf_event_output_backward
;
9438 event
->overflow_handler_context
= NULL
;
9440 event
->overflow_handler
= perf_event_output_forward
;
9441 event
->overflow_handler_context
= NULL
;
9444 perf_event__state_init(event
);
9449 hwc
->sample_period
= attr
->sample_period
;
9450 if (attr
->freq
&& attr
->sample_freq
)
9451 hwc
->sample_period
= 1;
9452 hwc
->last_period
= hwc
->sample_period
;
9454 local64_set(&hwc
->period_left
, hwc
->sample_period
);
9457 * We currently do not support PERF_SAMPLE_READ on inherited events.
9458 * See perf_output_read().
9460 if (attr
->inherit
&& (attr
->sample_type
& PERF_SAMPLE_READ
))
9463 if (!has_branch_stack(event
))
9464 event
->attr
.branch_sample_type
= 0;
9466 if (cgroup_fd
!= -1) {
9467 err
= perf_cgroup_connect(cgroup_fd
, event
, attr
, group_leader
);
9472 pmu
= perf_init_event(event
);
9478 err
= exclusive_event_init(event
);
9482 if (has_addr_filter(event
)) {
9483 event
->addr_filters_offs
= kcalloc(pmu
->nr_addr_filters
,
9484 sizeof(unsigned long),
9486 if (!event
->addr_filters_offs
) {
9491 /* force hw sync on the address filters */
9492 event
->addr_filters_gen
= 1;
9495 if (!event
->parent
) {
9496 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
9497 err
= get_callchain_buffers(attr
->sample_max_stack
);
9499 goto err_addr_filters
;
9503 /* symmetric to unaccount_event() in _free_event() */
9504 account_event(event
);
9509 kfree(event
->addr_filters_offs
);
9512 exclusive_event_destroy(event
);
9516 event
->destroy(event
);
9517 module_put(pmu
->module
);
9519 if (is_cgroup_event(event
))
9520 perf_detach_cgroup(event
);
9522 put_pid_ns(event
->ns
);
9525 return ERR_PTR(err
);
9528 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
9529 struct perf_event_attr
*attr
)
9534 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
9538 * zero the full structure, so that a short copy will be nice.
9540 memset(attr
, 0, sizeof(*attr
));
9542 ret
= get_user(size
, &uattr
->size
);
9546 if (size
> PAGE_SIZE
) /* silly large */
9549 if (!size
) /* abi compat */
9550 size
= PERF_ATTR_SIZE_VER0
;
9552 if (size
< PERF_ATTR_SIZE_VER0
)
9556 * If we're handed a bigger struct than we know of,
9557 * ensure all the unknown bits are 0 - i.e. new
9558 * user-space does not rely on any kernel feature
9559 * extensions we dont know about yet.
9561 if (size
> sizeof(*attr
)) {
9562 unsigned char __user
*addr
;
9563 unsigned char __user
*end
;
9566 addr
= (void __user
*)uattr
+ sizeof(*attr
);
9567 end
= (void __user
*)uattr
+ size
;
9569 for (; addr
< end
; addr
++) {
9570 ret
= get_user(val
, addr
);
9576 size
= sizeof(*attr
);
9579 ret
= copy_from_user(attr
, uattr
, size
);
9583 if (attr
->__reserved_1
)
9586 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
9589 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
9592 if (attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
9593 u64 mask
= attr
->branch_sample_type
;
9595 /* only using defined bits */
9596 if (mask
& ~(PERF_SAMPLE_BRANCH_MAX
-1))
9599 /* at least one branch bit must be set */
9600 if (!(mask
& ~PERF_SAMPLE_BRANCH_PLM_ALL
))
9603 /* propagate priv level, when not set for branch */
9604 if (!(mask
& PERF_SAMPLE_BRANCH_PLM_ALL
)) {
9606 /* exclude_kernel checked on syscall entry */
9607 if (!attr
->exclude_kernel
)
9608 mask
|= PERF_SAMPLE_BRANCH_KERNEL
;
9610 if (!attr
->exclude_user
)
9611 mask
|= PERF_SAMPLE_BRANCH_USER
;
9613 if (!attr
->exclude_hv
)
9614 mask
|= PERF_SAMPLE_BRANCH_HV
;
9616 * adjust user setting (for HW filter setup)
9618 attr
->branch_sample_type
= mask
;
9620 /* privileged levels capture (kernel, hv): check permissions */
9621 if ((mask
& PERF_SAMPLE_BRANCH_PERM_PLM
)
9622 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
9626 if (attr
->sample_type
& PERF_SAMPLE_REGS_USER
) {
9627 ret
= perf_reg_validate(attr
->sample_regs_user
);
9632 if (attr
->sample_type
& PERF_SAMPLE_STACK_USER
) {
9633 if (!arch_perf_have_user_stack_dump())
9637 * We have __u32 type for the size, but so far
9638 * we can only use __u16 as maximum due to the
9639 * __u16 sample size limit.
9641 if (attr
->sample_stack_user
>= USHRT_MAX
)
9643 else if (!IS_ALIGNED(attr
->sample_stack_user
, sizeof(u64
)))
9647 if (attr
->sample_type
& PERF_SAMPLE_REGS_INTR
)
9648 ret
= perf_reg_validate(attr
->sample_regs_intr
);
9653 put_user(sizeof(*attr
), &uattr
->size
);
9659 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
9661 struct ring_buffer
*rb
= NULL
;
9667 /* don't allow circular references */
9668 if (event
== output_event
)
9672 * Don't allow cross-cpu buffers
9674 if (output_event
->cpu
!= event
->cpu
)
9678 * If its not a per-cpu rb, it must be the same task.
9680 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
9684 * Mixing clocks in the same buffer is trouble you don't need.
9686 if (output_event
->clock
!= event
->clock
)
9690 * Either writing ring buffer from beginning or from end.
9691 * Mixing is not allowed.
9693 if (is_write_backward(output_event
) != is_write_backward(event
))
9697 * If both events generate aux data, they must be on the same PMU
9699 if (has_aux(event
) && has_aux(output_event
) &&
9700 event
->pmu
!= output_event
->pmu
)
9704 mutex_lock(&event
->mmap_mutex
);
9705 /* Can't redirect output if we've got an active mmap() */
9706 if (atomic_read(&event
->mmap_count
))
9710 /* get the rb we want to redirect to */
9711 rb
= ring_buffer_get(output_event
);
9716 ring_buffer_attach(event
, rb
);
9720 mutex_unlock(&event
->mmap_mutex
);
9726 static void mutex_lock_double(struct mutex
*a
, struct mutex
*b
)
9732 mutex_lock_nested(b
, SINGLE_DEPTH_NESTING
);
9735 static int perf_event_set_clock(struct perf_event
*event
, clockid_t clk_id
)
9737 bool nmi_safe
= false;
9740 case CLOCK_MONOTONIC
:
9741 event
->clock
= &ktime_get_mono_fast_ns
;
9745 case CLOCK_MONOTONIC_RAW
:
9746 event
->clock
= &ktime_get_raw_fast_ns
;
9750 case CLOCK_REALTIME
:
9751 event
->clock
= &ktime_get_real_ns
;
9754 case CLOCK_BOOTTIME
:
9755 event
->clock
= &ktime_get_boot_ns
;
9759 event
->clock
= &ktime_get_tai_ns
;
9766 if (!nmi_safe
&& !(event
->pmu
->capabilities
& PERF_PMU_CAP_NO_NMI
))
9773 * Variation on perf_event_ctx_lock_nested(), except we take two context
9776 static struct perf_event_context
*
9777 __perf_event_ctx_lock_double(struct perf_event
*group_leader
,
9778 struct perf_event_context
*ctx
)
9780 struct perf_event_context
*gctx
;
9784 gctx
= READ_ONCE(group_leader
->ctx
);
9785 if (!atomic_inc_not_zero(&gctx
->refcount
)) {
9791 mutex_lock_double(&gctx
->mutex
, &ctx
->mutex
);
9793 if (group_leader
->ctx
!= gctx
) {
9794 mutex_unlock(&ctx
->mutex
);
9795 mutex_unlock(&gctx
->mutex
);
9804 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9806 * @attr_uptr: event_id type attributes for monitoring/sampling
9809 * @group_fd: group leader event fd
9811 SYSCALL_DEFINE5(perf_event_open
,
9812 struct perf_event_attr __user
*, attr_uptr
,
9813 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
9815 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
9816 struct perf_event
*event
, *sibling
;
9817 struct perf_event_attr attr
;
9818 struct perf_event_context
*ctx
, *uninitialized_var(gctx
);
9819 struct file
*event_file
= NULL
;
9820 struct fd group
= {NULL
, 0};
9821 struct task_struct
*task
= NULL
;
9826 int f_flags
= O_RDWR
;
9829 /* for future expandability... */
9830 if (flags
& ~PERF_FLAG_ALL
)
9833 err
= perf_copy_attr(attr_uptr
, &attr
);
9837 if (!attr
.exclude_kernel
) {
9838 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
9842 if (attr
.namespaces
) {
9843 if (!capable(CAP_SYS_ADMIN
))
9848 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
9851 if (attr
.sample_period
& (1ULL << 63))
9855 if (!attr
.sample_max_stack
)
9856 attr
.sample_max_stack
= sysctl_perf_event_max_stack
;
9859 * In cgroup mode, the pid argument is used to pass the fd
9860 * opened to the cgroup directory in cgroupfs. The cpu argument
9861 * designates the cpu on which to monitor threads from that
9864 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
9867 if (flags
& PERF_FLAG_FD_CLOEXEC
)
9868 f_flags
|= O_CLOEXEC
;
9870 event_fd
= get_unused_fd_flags(f_flags
);
9874 if (group_fd
!= -1) {
9875 err
= perf_fget_light(group_fd
, &group
);
9878 group_leader
= group
.file
->private_data
;
9879 if (flags
& PERF_FLAG_FD_OUTPUT
)
9880 output_event
= group_leader
;
9881 if (flags
& PERF_FLAG_FD_NO_GROUP
)
9882 group_leader
= NULL
;
9885 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
9886 task
= find_lively_task_by_vpid(pid
);
9888 err
= PTR_ERR(task
);
9893 if (task
&& group_leader
&&
9894 group_leader
->attr
.inherit
!= attr
.inherit
) {
9900 err
= mutex_lock_interruptible(&task
->signal
->cred_guard_mutex
);
9905 * Reuse ptrace permission checks for now.
9907 * We must hold cred_guard_mutex across this and any potential
9908 * perf_install_in_context() call for this new event to
9909 * serialize against exec() altering our credentials (and the
9910 * perf_event_exit_task() that could imply).
9913 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
))
9917 if (flags
& PERF_FLAG_PID_CGROUP
)
9920 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
9921 NULL
, NULL
, cgroup_fd
);
9922 if (IS_ERR(event
)) {
9923 err
= PTR_ERR(event
);
9927 if (is_sampling_event(event
)) {
9928 if (event
->pmu
->capabilities
& PERF_PMU_CAP_NO_INTERRUPT
) {
9935 * Special case software events and allow them to be part of
9936 * any hardware group.
9940 if (attr
.use_clockid
) {
9941 err
= perf_event_set_clock(event
, attr
.clockid
);
9946 if (pmu
->task_ctx_nr
== perf_sw_context
)
9947 event
->event_caps
|= PERF_EV_CAP_SOFTWARE
;
9950 (is_software_event(event
) != is_software_event(group_leader
))) {
9951 if (is_software_event(event
)) {
9953 * If event and group_leader are not both a software
9954 * event, and event is, then group leader is not.
9956 * Allow the addition of software events to !software
9957 * groups, this is safe because software events never
9960 pmu
= group_leader
->pmu
;
9961 } else if (is_software_event(group_leader
) &&
9962 (group_leader
->group_caps
& PERF_EV_CAP_SOFTWARE
)) {
9964 * In case the group is a pure software group, and we
9965 * try to add a hardware event, move the whole group to
9966 * the hardware context.
9973 * Get the target context (task or percpu):
9975 ctx
= find_get_context(pmu
, task
, event
);
9981 if ((pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
) && group_leader
) {
9987 * Look up the group leader (we will attach this event to it):
9993 * Do not allow a recursive hierarchy (this new sibling
9994 * becoming part of another group-sibling):
9996 if (group_leader
->group_leader
!= group_leader
)
9999 /* All events in a group should have the same clock */
10000 if (group_leader
->clock
!= event
->clock
)
10004 * Do not allow to attach to a group in a different
10005 * task or CPU context:
10009 * Make sure we're both on the same task, or both
10012 if (group_leader
->ctx
->task
!= ctx
->task
)
10016 * Make sure we're both events for the same CPU;
10017 * grouping events for different CPUs is broken; since
10018 * you can never concurrently schedule them anyhow.
10020 if (group_leader
->cpu
!= event
->cpu
)
10023 if (group_leader
->ctx
!= ctx
)
10028 * Only a group leader can be exclusive or pinned
10030 if (attr
.exclusive
|| attr
.pinned
)
10034 if (output_event
) {
10035 err
= perf_event_set_output(event
, output_event
);
10040 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
,
10042 if (IS_ERR(event_file
)) {
10043 err
= PTR_ERR(event_file
);
10049 gctx
= __perf_event_ctx_lock_double(group_leader
, ctx
);
10051 if (gctx
->task
== TASK_TOMBSTONE
) {
10057 * Check if we raced against another sys_perf_event_open() call
10058 * moving the software group underneath us.
10060 if (!(group_leader
->group_caps
& PERF_EV_CAP_SOFTWARE
)) {
10062 * If someone moved the group out from under us, check
10063 * if this new event wound up on the same ctx, if so
10064 * its the regular !move_group case, otherwise fail.
10070 perf_event_ctx_unlock(group_leader
, gctx
);
10075 mutex_lock(&ctx
->mutex
);
10078 if (ctx
->task
== TASK_TOMBSTONE
) {
10083 if (!perf_event_validate_size(event
)) {
10090 * Check if the @cpu we're creating an event for is online.
10092 * We use the perf_cpu_context::ctx::mutex to serialize against
10093 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10095 struct perf_cpu_context
*cpuctx
=
10096 container_of(ctx
, struct perf_cpu_context
, ctx
);
10098 if (!cpuctx
->online
) {
10106 * Must be under the same ctx::mutex as perf_install_in_context(),
10107 * because we need to serialize with concurrent event creation.
10109 if (!exclusive_event_installable(event
, ctx
)) {
10110 /* exclusive and group stuff are assumed mutually exclusive */
10111 WARN_ON_ONCE(move_group
);
10117 WARN_ON_ONCE(ctx
->parent_ctx
);
10120 * This is the point on no return; we cannot fail hereafter. This is
10121 * where we start modifying current state.
10126 * See perf_event_ctx_lock() for comments on the details
10127 * of swizzling perf_event::ctx.
10129 perf_remove_from_context(group_leader
, 0);
10132 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
10134 perf_remove_from_context(sibling
, 0);
10139 * Wait for everybody to stop referencing the events through
10140 * the old lists, before installing it on new lists.
10145 * Install the group siblings before the group leader.
10147 * Because a group leader will try and install the entire group
10148 * (through the sibling list, which is still in-tact), we can
10149 * end up with siblings installed in the wrong context.
10151 * By installing siblings first we NO-OP because they're not
10152 * reachable through the group lists.
10154 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
10156 perf_event__state_init(sibling
);
10157 perf_install_in_context(ctx
, sibling
, sibling
->cpu
);
10162 * Removing from the context ends up with disabled
10163 * event. What we want here is event in the initial
10164 * startup state, ready to be add into new context.
10166 perf_event__state_init(group_leader
);
10167 perf_install_in_context(ctx
, group_leader
, group_leader
->cpu
);
10172 * Precalculate sample_data sizes; do while holding ctx::mutex such
10173 * that we're serialized against further additions and before
10174 * perf_install_in_context() which is the point the event is active and
10175 * can use these values.
10177 perf_event__header_size(event
);
10178 perf_event__id_header_size(event
);
10180 event
->owner
= current
;
10182 perf_install_in_context(ctx
, event
, event
->cpu
);
10183 perf_unpin_context(ctx
);
10186 perf_event_ctx_unlock(group_leader
, gctx
);
10187 mutex_unlock(&ctx
->mutex
);
10190 mutex_unlock(&task
->signal
->cred_guard_mutex
);
10191 put_task_struct(task
);
10194 mutex_lock(¤t
->perf_event_mutex
);
10195 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
10196 mutex_unlock(¤t
->perf_event_mutex
);
10199 * Drop the reference on the group_event after placing the
10200 * new event on the sibling_list. This ensures destruction
10201 * of the group leader will find the pointer to itself in
10202 * perf_group_detach().
10205 fd_install(event_fd
, event_file
);
10210 perf_event_ctx_unlock(group_leader
, gctx
);
10211 mutex_unlock(&ctx
->mutex
);
10215 perf_unpin_context(ctx
);
10219 * If event_file is set, the fput() above will have called ->release()
10220 * and that will take care of freeing the event.
10226 mutex_unlock(&task
->signal
->cred_guard_mutex
);
10229 put_task_struct(task
);
10233 put_unused_fd(event_fd
);
10238 * perf_event_create_kernel_counter
10240 * @attr: attributes of the counter to create
10241 * @cpu: cpu in which the counter is bound
10242 * @task: task to profile (NULL for percpu)
10244 struct perf_event
*
10245 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
10246 struct task_struct
*task
,
10247 perf_overflow_handler_t overflow_handler
,
10250 struct perf_event_context
*ctx
;
10251 struct perf_event
*event
;
10255 * Get the target context (task or percpu):
10258 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
10259 overflow_handler
, context
, -1);
10260 if (IS_ERR(event
)) {
10261 err
= PTR_ERR(event
);
10265 /* Mark owner so we could distinguish it from user events. */
10266 event
->owner
= TASK_TOMBSTONE
;
10268 ctx
= find_get_context(event
->pmu
, task
, event
);
10270 err
= PTR_ERR(ctx
);
10274 WARN_ON_ONCE(ctx
->parent_ctx
);
10275 mutex_lock(&ctx
->mutex
);
10276 if (ctx
->task
== TASK_TOMBSTONE
) {
10283 * Check if the @cpu we're creating an event for is online.
10285 * We use the perf_cpu_context::ctx::mutex to serialize against
10286 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10288 struct perf_cpu_context
*cpuctx
=
10289 container_of(ctx
, struct perf_cpu_context
, ctx
);
10290 if (!cpuctx
->online
) {
10296 if (!exclusive_event_installable(event
, ctx
)) {
10301 perf_install_in_context(ctx
, event
, cpu
);
10302 perf_unpin_context(ctx
);
10303 mutex_unlock(&ctx
->mutex
);
10308 mutex_unlock(&ctx
->mutex
);
10309 perf_unpin_context(ctx
);
10314 return ERR_PTR(err
);
10316 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
10318 void perf_pmu_migrate_context(struct pmu
*pmu
, int src_cpu
, int dst_cpu
)
10320 struct perf_event_context
*src_ctx
;
10321 struct perf_event_context
*dst_ctx
;
10322 struct perf_event
*event
, *tmp
;
10325 src_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, src_cpu
)->ctx
;
10326 dst_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, dst_cpu
)->ctx
;
10329 * See perf_event_ctx_lock() for comments on the details
10330 * of swizzling perf_event::ctx.
10332 mutex_lock_double(&src_ctx
->mutex
, &dst_ctx
->mutex
);
10333 list_for_each_entry_safe(event
, tmp
, &src_ctx
->event_list
,
10335 perf_remove_from_context(event
, 0);
10336 unaccount_event_cpu(event
, src_cpu
);
10338 list_add(&event
->migrate_entry
, &events
);
10342 * Wait for the events to quiesce before re-instating them.
10347 * Re-instate events in 2 passes.
10349 * Skip over group leaders and only install siblings on this first
10350 * pass, siblings will not get enabled without a leader, however a
10351 * leader will enable its siblings, even if those are still on the old
10354 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
10355 if (event
->group_leader
== event
)
10358 list_del(&event
->migrate_entry
);
10359 if (event
->state
>= PERF_EVENT_STATE_OFF
)
10360 event
->state
= PERF_EVENT_STATE_INACTIVE
;
10361 account_event_cpu(event
, dst_cpu
);
10362 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
10367 * Once all the siblings are setup properly, install the group leaders
10370 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
10371 list_del(&event
->migrate_entry
);
10372 if (event
->state
>= PERF_EVENT_STATE_OFF
)
10373 event
->state
= PERF_EVENT_STATE_INACTIVE
;
10374 account_event_cpu(event
, dst_cpu
);
10375 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
10378 mutex_unlock(&dst_ctx
->mutex
);
10379 mutex_unlock(&src_ctx
->mutex
);
10381 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context
);
10383 static void sync_child_event(struct perf_event
*child_event
,
10384 struct task_struct
*child
)
10386 struct perf_event
*parent_event
= child_event
->parent
;
10389 if (child_event
->attr
.inherit_stat
)
10390 perf_event_read_event(child_event
, child
);
10392 child_val
= perf_event_count(child_event
);
10395 * Add back the child's count to the parent's count:
10397 atomic64_add(child_val
, &parent_event
->child_count
);
10398 atomic64_add(child_event
->total_time_enabled
,
10399 &parent_event
->child_total_time_enabled
);
10400 atomic64_add(child_event
->total_time_running
,
10401 &parent_event
->child_total_time_running
);
10405 perf_event_exit_event(struct perf_event
*child_event
,
10406 struct perf_event_context
*child_ctx
,
10407 struct task_struct
*child
)
10409 struct perf_event
*parent_event
= child_event
->parent
;
10412 * Do not destroy the 'original' grouping; because of the context
10413 * switch optimization the original events could've ended up in a
10414 * random child task.
10416 * If we were to destroy the original group, all group related
10417 * operations would cease to function properly after this random
10420 * Do destroy all inherited groups, we don't care about those
10421 * and being thorough is better.
10423 raw_spin_lock_irq(&child_ctx
->lock
);
10424 WARN_ON_ONCE(child_ctx
->is_active
);
10427 perf_group_detach(child_event
);
10428 list_del_event(child_event
, child_ctx
);
10429 child_event
->state
= PERF_EVENT_STATE_EXIT
; /* is_event_hup() */
10430 raw_spin_unlock_irq(&child_ctx
->lock
);
10433 * Parent events are governed by their filedesc, retain them.
10435 if (!parent_event
) {
10436 perf_event_wakeup(child_event
);
10440 * Child events can be cleaned up.
10443 sync_child_event(child_event
, child
);
10446 * Remove this event from the parent's list
10448 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
10449 mutex_lock(&parent_event
->child_mutex
);
10450 list_del_init(&child_event
->child_list
);
10451 mutex_unlock(&parent_event
->child_mutex
);
10454 * Kick perf_poll() for is_event_hup().
10456 perf_event_wakeup(parent_event
);
10457 free_event(child_event
);
10458 put_event(parent_event
);
10461 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
10463 struct perf_event_context
*child_ctx
, *clone_ctx
= NULL
;
10464 struct perf_event
*child_event
, *next
;
10466 WARN_ON_ONCE(child
!= current
);
10468 child_ctx
= perf_pin_task_context(child
, ctxn
);
10473 * In order to reduce the amount of tricky in ctx tear-down, we hold
10474 * ctx::mutex over the entire thing. This serializes against almost
10475 * everything that wants to access the ctx.
10477 * The exception is sys_perf_event_open() /
10478 * perf_event_create_kernel_count() which does find_get_context()
10479 * without ctx::mutex (it cannot because of the move_group double mutex
10480 * lock thing). See the comments in perf_install_in_context().
10482 mutex_lock(&child_ctx
->mutex
);
10485 * In a single ctx::lock section, de-schedule the events and detach the
10486 * context from the task such that we cannot ever get it scheduled back
10489 raw_spin_lock_irq(&child_ctx
->lock
);
10490 task_ctx_sched_out(__get_cpu_context(child_ctx
), child_ctx
, EVENT_ALL
);
10493 * Now that the context is inactive, destroy the task <-> ctx relation
10494 * and mark the context dead.
10496 RCU_INIT_POINTER(child
->perf_event_ctxp
[ctxn
], NULL
);
10497 put_ctx(child_ctx
); /* cannot be last */
10498 WRITE_ONCE(child_ctx
->task
, TASK_TOMBSTONE
);
10499 put_task_struct(current
); /* cannot be last */
10501 clone_ctx
= unclone_ctx(child_ctx
);
10502 raw_spin_unlock_irq(&child_ctx
->lock
);
10505 put_ctx(clone_ctx
);
10508 * Report the task dead after unscheduling the events so that we
10509 * won't get any samples after PERF_RECORD_EXIT. We can however still
10510 * get a few PERF_RECORD_READ events.
10512 perf_event_task(child
, child_ctx
, 0);
10514 list_for_each_entry_safe(child_event
, next
, &child_ctx
->event_list
, event_entry
)
10515 perf_event_exit_event(child_event
, child_ctx
, child
);
10517 mutex_unlock(&child_ctx
->mutex
);
10519 put_ctx(child_ctx
);
10523 * When a child task exits, feed back event values to parent events.
10525 * Can be called with cred_guard_mutex held when called from
10526 * install_exec_creds().
10528 void perf_event_exit_task(struct task_struct
*child
)
10530 struct perf_event
*event
, *tmp
;
10533 mutex_lock(&child
->perf_event_mutex
);
10534 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
10536 list_del_init(&event
->owner_entry
);
10539 * Ensure the list deletion is visible before we clear
10540 * the owner, closes a race against perf_release() where
10541 * we need to serialize on the owner->perf_event_mutex.
10543 smp_store_release(&event
->owner
, NULL
);
10545 mutex_unlock(&child
->perf_event_mutex
);
10547 for_each_task_context_nr(ctxn
)
10548 perf_event_exit_task_context(child
, ctxn
);
10551 * The perf_event_exit_task_context calls perf_event_task
10552 * with child's task_ctx, which generates EXIT events for
10553 * child contexts and sets child->perf_event_ctxp[] to NULL.
10554 * At this point we need to send EXIT events to cpu contexts.
10556 perf_event_task(child
, NULL
, 0);
10559 static void perf_free_event(struct perf_event
*event
,
10560 struct perf_event_context
*ctx
)
10562 struct perf_event
*parent
= event
->parent
;
10564 if (WARN_ON_ONCE(!parent
))
10567 mutex_lock(&parent
->child_mutex
);
10568 list_del_init(&event
->child_list
);
10569 mutex_unlock(&parent
->child_mutex
);
10573 raw_spin_lock_irq(&ctx
->lock
);
10574 perf_group_detach(event
);
10575 list_del_event(event
, ctx
);
10576 raw_spin_unlock_irq(&ctx
->lock
);
10581 * Free an unexposed, unused context as created by inheritance by
10582 * perf_event_init_task below, used by fork() in case of fail.
10584 * Not all locks are strictly required, but take them anyway to be nice and
10585 * help out with the lockdep assertions.
10587 void perf_event_free_task(struct task_struct
*task
)
10589 struct perf_event_context
*ctx
;
10590 struct perf_event
*event
, *tmp
;
10593 for_each_task_context_nr(ctxn
) {
10594 ctx
= task
->perf_event_ctxp
[ctxn
];
10598 mutex_lock(&ctx
->mutex
);
10599 raw_spin_lock_irq(&ctx
->lock
);
10601 * Destroy the task <-> ctx relation and mark the context dead.
10603 * This is important because even though the task hasn't been
10604 * exposed yet the context has been (through child_list).
10606 RCU_INIT_POINTER(task
->perf_event_ctxp
[ctxn
], NULL
);
10607 WRITE_ONCE(ctx
->task
, TASK_TOMBSTONE
);
10608 put_task_struct(task
); /* cannot be last */
10609 raw_spin_unlock_irq(&ctx
->lock
);
10611 list_for_each_entry_safe(event
, tmp
, &ctx
->event_list
, event_entry
)
10612 perf_free_event(event
, ctx
);
10614 mutex_unlock(&ctx
->mutex
);
10619 void perf_event_delayed_put(struct task_struct
*task
)
10623 for_each_task_context_nr(ctxn
)
10624 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
10627 struct file
*perf_event_get(unsigned int fd
)
10631 file
= fget_raw(fd
);
10633 return ERR_PTR(-EBADF
);
10635 if (file
->f_op
!= &perf_fops
) {
10637 return ERR_PTR(-EBADF
);
10643 const struct perf_event_attr
*perf_event_attrs(struct perf_event
*event
)
10646 return ERR_PTR(-EINVAL
);
10648 return &event
->attr
;
10652 * Inherit a event from parent task to child task.
10655 * - valid pointer on success
10656 * - NULL for orphaned events
10657 * - IS_ERR() on error
10659 static struct perf_event
*
10660 inherit_event(struct perf_event
*parent_event
,
10661 struct task_struct
*parent
,
10662 struct perf_event_context
*parent_ctx
,
10663 struct task_struct
*child
,
10664 struct perf_event
*group_leader
,
10665 struct perf_event_context
*child_ctx
)
10667 enum perf_event_active_state parent_state
= parent_event
->state
;
10668 struct perf_event
*child_event
;
10669 unsigned long flags
;
10672 * Instead of creating recursive hierarchies of events,
10673 * we link inherited events back to the original parent,
10674 * which has a filp for sure, which we use as the reference
10677 if (parent_event
->parent
)
10678 parent_event
= parent_event
->parent
;
10680 child_event
= perf_event_alloc(&parent_event
->attr
,
10683 group_leader
, parent_event
,
10685 if (IS_ERR(child_event
))
10686 return child_event
;
10689 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10690 * must be under the same lock in order to serialize against
10691 * perf_event_release_kernel(), such that either we must observe
10692 * is_orphaned_event() or they will observe us on the child_list.
10694 mutex_lock(&parent_event
->child_mutex
);
10695 if (is_orphaned_event(parent_event
) ||
10696 !atomic_long_inc_not_zero(&parent_event
->refcount
)) {
10697 mutex_unlock(&parent_event
->child_mutex
);
10698 free_event(child_event
);
10702 get_ctx(child_ctx
);
10705 * Make the child state follow the state of the parent event,
10706 * not its attr.disabled bit. We hold the parent's mutex,
10707 * so we won't race with perf_event_{en, dis}able_family.
10709 if (parent_state
>= PERF_EVENT_STATE_INACTIVE
)
10710 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
10712 child_event
->state
= PERF_EVENT_STATE_OFF
;
10714 if (parent_event
->attr
.freq
) {
10715 u64 sample_period
= parent_event
->hw
.sample_period
;
10716 struct hw_perf_event
*hwc
= &child_event
->hw
;
10718 hwc
->sample_period
= sample_period
;
10719 hwc
->last_period
= sample_period
;
10721 local64_set(&hwc
->period_left
, sample_period
);
10724 child_event
->ctx
= child_ctx
;
10725 child_event
->overflow_handler
= parent_event
->overflow_handler
;
10726 child_event
->overflow_handler_context
10727 = parent_event
->overflow_handler_context
;
10730 * Precalculate sample_data sizes
10732 perf_event__header_size(child_event
);
10733 perf_event__id_header_size(child_event
);
10736 * Link it up in the child's context:
10738 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
10739 add_event_to_ctx(child_event
, child_ctx
);
10740 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
10743 * Link this into the parent event's child list
10745 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
10746 mutex_unlock(&parent_event
->child_mutex
);
10748 return child_event
;
10752 * Inherits an event group.
10754 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10755 * This matches with perf_event_release_kernel() removing all child events.
10761 static int inherit_group(struct perf_event
*parent_event
,
10762 struct task_struct
*parent
,
10763 struct perf_event_context
*parent_ctx
,
10764 struct task_struct
*child
,
10765 struct perf_event_context
*child_ctx
)
10767 struct perf_event
*leader
;
10768 struct perf_event
*sub
;
10769 struct perf_event
*child_ctr
;
10771 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
10772 child
, NULL
, child_ctx
);
10773 if (IS_ERR(leader
))
10774 return PTR_ERR(leader
);
10776 * @leader can be NULL here because of is_orphaned_event(). In this
10777 * case inherit_event() will create individual events, similar to what
10778 * perf_group_detach() would do anyway.
10780 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
10781 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
10782 child
, leader
, child_ctx
);
10783 if (IS_ERR(child_ctr
))
10784 return PTR_ERR(child_ctr
);
10790 * Creates the child task context and tries to inherit the event-group.
10792 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10793 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10794 * consistent with perf_event_release_kernel() removing all child events.
10801 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
10802 struct perf_event_context
*parent_ctx
,
10803 struct task_struct
*child
, int ctxn
,
10804 int *inherited_all
)
10807 struct perf_event_context
*child_ctx
;
10809 if (!event
->attr
.inherit
) {
10810 *inherited_all
= 0;
10814 child_ctx
= child
->perf_event_ctxp
[ctxn
];
10817 * This is executed from the parent task context, so
10818 * inherit events that have been marked for cloning.
10819 * First allocate and initialize a context for the
10822 child_ctx
= alloc_perf_context(parent_ctx
->pmu
, child
);
10826 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
10829 ret
= inherit_group(event
, parent
, parent_ctx
,
10833 *inherited_all
= 0;
10839 * Initialize the perf_event context in task_struct
10841 static int perf_event_init_context(struct task_struct
*child
, int ctxn
)
10843 struct perf_event_context
*child_ctx
, *parent_ctx
;
10844 struct perf_event_context
*cloned_ctx
;
10845 struct perf_event
*event
;
10846 struct task_struct
*parent
= current
;
10847 int inherited_all
= 1;
10848 unsigned long flags
;
10851 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
10855 * If the parent's context is a clone, pin it so it won't get
10856 * swapped under us.
10858 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
10863 * No need to check if parent_ctx != NULL here; since we saw
10864 * it non-NULL earlier, the only reason for it to become NULL
10865 * is if we exit, and since we're currently in the middle of
10866 * a fork we can't be exiting at the same time.
10870 * Lock the parent list. No need to lock the child - not PID
10871 * hashed yet and not running, so nobody can access it.
10873 mutex_lock(&parent_ctx
->mutex
);
10876 * We dont have to disable NMIs - we are only looking at
10877 * the list, not manipulating it:
10879 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
10880 ret
= inherit_task_group(event
, parent
, parent_ctx
,
10881 child
, ctxn
, &inherited_all
);
10887 * We can't hold ctx->lock when iterating the ->flexible_group list due
10888 * to allocations, but we need to prevent rotation because
10889 * rotate_ctx() will change the list from interrupt context.
10891 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
10892 parent_ctx
->rotate_disable
= 1;
10893 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
10895 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
10896 ret
= inherit_task_group(event
, parent
, parent_ctx
,
10897 child
, ctxn
, &inherited_all
);
10902 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
10903 parent_ctx
->rotate_disable
= 0;
10905 child_ctx
= child
->perf_event_ctxp
[ctxn
];
10907 if (child_ctx
&& inherited_all
) {
10909 * Mark the child context as a clone of the parent
10910 * context, or of whatever the parent is a clone of.
10912 * Note that if the parent is a clone, the holding of
10913 * parent_ctx->lock avoids it from being uncloned.
10915 cloned_ctx
= parent_ctx
->parent_ctx
;
10917 child_ctx
->parent_ctx
= cloned_ctx
;
10918 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
10920 child_ctx
->parent_ctx
= parent_ctx
;
10921 child_ctx
->parent_gen
= parent_ctx
->generation
;
10923 get_ctx(child_ctx
->parent_ctx
);
10926 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
10928 mutex_unlock(&parent_ctx
->mutex
);
10930 perf_unpin_context(parent_ctx
);
10931 put_ctx(parent_ctx
);
10937 * Initialize the perf_event context in task_struct
10939 int perf_event_init_task(struct task_struct
*child
)
10943 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
10944 mutex_init(&child
->perf_event_mutex
);
10945 INIT_LIST_HEAD(&child
->perf_event_list
);
10947 for_each_task_context_nr(ctxn
) {
10948 ret
= perf_event_init_context(child
, ctxn
);
10950 perf_event_free_task(child
);
10958 static void __init
perf_event_init_all_cpus(void)
10960 struct swevent_htable
*swhash
;
10963 zalloc_cpumask_var(&perf_online_mask
, GFP_KERNEL
);
10965 for_each_possible_cpu(cpu
) {
10966 swhash
= &per_cpu(swevent_htable
, cpu
);
10967 mutex_init(&swhash
->hlist_mutex
);
10968 INIT_LIST_HEAD(&per_cpu(active_ctx_list
, cpu
));
10970 INIT_LIST_HEAD(&per_cpu(pmu_sb_events
.list
, cpu
));
10971 raw_spin_lock_init(&per_cpu(pmu_sb_events
.lock
, cpu
));
10973 #ifdef CONFIG_CGROUP_PERF
10974 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list
, cpu
));
10976 INIT_LIST_HEAD(&per_cpu(sched_cb_list
, cpu
));
10980 void perf_swevent_init_cpu(unsigned int cpu
)
10982 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
10984 mutex_lock(&swhash
->hlist_mutex
);
10985 if (swhash
->hlist_refcount
> 0 && !swevent_hlist_deref(swhash
)) {
10986 struct swevent_hlist
*hlist
;
10988 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
10990 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
10992 mutex_unlock(&swhash
->hlist_mutex
);
10995 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10996 static void __perf_event_exit_context(void *__info
)
10998 struct perf_event_context
*ctx
= __info
;
10999 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
11000 struct perf_event
*event
;
11002 raw_spin_lock(&ctx
->lock
);
11003 list_for_each_entry(event
, &ctx
->event_list
, event_entry
)
11004 __perf_remove_from_context(event
, cpuctx
, ctx
, (void *)DETACH_GROUP
);
11005 raw_spin_unlock(&ctx
->lock
);
11008 static void perf_event_exit_cpu_context(int cpu
)
11010 struct perf_cpu_context
*cpuctx
;
11011 struct perf_event_context
*ctx
;
11014 mutex_lock(&pmus_lock
);
11015 list_for_each_entry(pmu
, &pmus
, entry
) {
11016 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
11017 ctx
= &cpuctx
->ctx
;
11019 mutex_lock(&ctx
->mutex
);
11020 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
11021 cpuctx
->online
= 0;
11022 mutex_unlock(&ctx
->mutex
);
11024 cpumask_clear_cpu(cpu
, perf_online_mask
);
11025 mutex_unlock(&pmus_lock
);
11029 static void perf_event_exit_cpu_context(int cpu
) { }
11033 int perf_event_init_cpu(unsigned int cpu
)
11035 struct perf_cpu_context
*cpuctx
;
11036 struct perf_event_context
*ctx
;
11039 perf_swevent_init_cpu(cpu
);
11041 mutex_lock(&pmus_lock
);
11042 cpumask_set_cpu(cpu
, perf_online_mask
);
11043 list_for_each_entry(pmu
, &pmus
, entry
) {
11044 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
11045 ctx
= &cpuctx
->ctx
;
11047 mutex_lock(&ctx
->mutex
);
11048 cpuctx
->online
= 1;
11049 mutex_unlock(&ctx
->mutex
);
11051 mutex_unlock(&pmus_lock
);
11056 int perf_event_exit_cpu(unsigned int cpu
)
11058 perf_event_exit_cpu_context(cpu
);
11063 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
11067 for_each_online_cpu(cpu
)
11068 perf_event_exit_cpu(cpu
);
11074 * Run the perf reboot notifier at the very last possible moment so that
11075 * the generic watchdog code runs as long as possible.
11077 static struct notifier_block perf_reboot_notifier
= {
11078 .notifier_call
= perf_reboot
,
11079 .priority
= INT_MIN
,
11082 void __init
perf_event_init(void)
11086 idr_init(&pmu_idr
);
11088 perf_event_init_all_cpus();
11089 init_srcu_struct(&pmus_srcu
);
11090 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
11091 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
11092 perf_pmu_register(&perf_task_clock
, NULL
, -1);
11093 perf_tp_register();
11094 perf_event_init_cpu(smp_processor_id());
11095 register_reboot_notifier(&perf_reboot_notifier
);
11097 ret
= init_hw_breakpoint();
11098 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
11101 * Build time assertion that we keep the data_head at the intended
11102 * location. IOW, validation we got the __reserved[] size right.
11104 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page
, data_head
))
11108 ssize_t
perf_event_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
11111 struct perf_pmu_events_attr
*pmu_attr
=
11112 container_of(attr
, struct perf_pmu_events_attr
, attr
);
11114 if (pmu_attr
->event_str
)
11115 return sprintf(page
, "%s\n", pmu_attr
->event_str
);
11119 EXPORT_SYMBOL_GPL(perf_event_sysfs_show
);
11121 static int __init
perf_event_sysfs_init(void)
11126 mutex_lock(&pmus_lock
);
11128 ret
= bus_register(&pmu_bus
);
11132 list_for_each_entry(pmu
, &pmus
, entry
) {
11133 if (!pmu
->name
|| pmu
->type
< 0)
11136 ret
= pmu_dev_alloc(pmu
);
11137 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
11139 pmu_bus_running
= 1;
11143 mutex_unlock(&pmus_lock
);
11147 device_initcall(perf_event_sysfs_init
);
11149 #ifdef CONFIG_CGROUP_PERF
11150 static struct cgroup_subsys_state
*
11151 perf_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
11153 struct perf_cgroup
*jc
;
11155 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
11157 return ERR_PTR(-ENOMEM
);
11159 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
11162 return ERR_PTR(-ENOMEM
);
11168 static void perf_cgroup_css_free(struct cgroup_subsys_state
*css
)
11170 struct perf_cgroup
*jc
= container_of(css
, struct perf_cgroup
, css
);
11172 free_percpu(jc
->info
);
11176 static int __perf_cgroup_move(void *info
)
11178 struct task_struct
*task
= info
;
11180 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
11185 static void perf_cgroup_attach(struct cgroup_taskset
*tset
)
11187 struct task_struct
*task
;
11188 struct cgroup_subsys_state
*css
;
11190 cgroup_taskset_for_each(task
, css
, tset
)
11191 task_function_call(task
, __perf_cgroup_move
, task
);
11194 struct cgroup_subsys perf_event_cgrp_subsys
= {
11195 .css_alloc
= perf_cgroup_css_alloc
,
11196 .css_free
= perf_cgroup_css_free
,
11197 .attach
= perf_cgroup_attach
,
11199 * Implicitly enable on dfl hierarchy so that perf events can
11200 * always be filtered by cgroup2 path as long as perf_event
11201 * controller is not mounted on a legacy hierarchy.
11203 .implicit_on_dfl
= true,
11205 #endif /* CONFIG_CGROUP_PERF */