2 * random.c -- A strong random number generator
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
46 * (now, with legal B.S. out of the way.....)
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
101 * Exported interfaces ---- output
102 * ===============================
104 * There are four exported interfaces; two for use within the kernel,
105 * and two or use from userspace.
107 * Exported interfaces ---- userspace output
108 * -----------------------------------------
110 * The userspace interfaces are two character devices /dev/random and
111 * /dev/urandom. /dev/random is suitable for use when very high
112 * quality randomness is desired (for example, for key generation or
113 * one-time pads), as it will only return a maximum of the number of
114 * bits of randomness (as estimated by the random number generator)
115 * contained in the entropy pool.
117 * The /dev/urandom device does not have this limit, and will return
118 * as many bytes as are requested. As more and more random bytes are
119 * requested without giving time for the entropy pool to recharge,
120 * this will result in random numbers that are merely cryptographically
121 * strong. For many applications, however, this is acceptable.
123 * Exported interfaces ---- kernel output
124 * --------------------------------------
126 * The primary kernel interface is
128 * void get_random_bytes(void *buf, int nbytes);
130 * This interface will return the requested number of random bytes,
131 * and place it in the requested buffer. This is equivalent to a
132 * read from /dev/urandom.
134 * For less critical applications, there are the functions:
136 * u32 get_random_u32()
137 * u64 get_random_u64()
138 * unsigned int get_random_int()
139 * unsigned long get_random_long()
141 * These are produced by a cryptographic RNG seeded from get_random_bytes,
142 * and so do not deplete the entropy pool as much. These are recommended
143 * for most in-kernel operations *if the result is going to be stored in
146 * Specifically, the get_random_int() family do not attempt to do
147 * "anti-backtracking". If you capture the state of the kernel (e.g.
148 * by snapshotting the VM), you can figure out previous get_random_int()
149 * return values. But if the value is stored in the kernel anyway,
150 * this is not a problem.
152 * It *is* safe to expose get_random_int() output to attackers (e.g. as
153 * network cookies); given outputs 1..n, it's not feasible to predict
154 * outputs 0 or n+1. The only concern is an attacker who breaks into
155 * the kernel later; the get_random_int() engine is not reseeded as
156 * often as the get_random_bytes() one.
158 * get_random_bytes() is needed for keys that need to stay secret after
159 * they are erased from the kernel. For example, any key that will
160 * be wrapped and stored encrypted. And session encryption keys: we'd
161 * like to know that after the session is closed and the keys erased,
162 * the plaintext is unrecoverable to someone who recorded the ciphertext.
164 * But for network ports/cookies, stack canaries, PRNG seeds, address
165 * space layout randomization, session *authentication* keys, or other
166 * applications where the sensitive data is stored in the kernel in
167 * plaintext for as long as it's sensitive, the get_random_int() family
170 * Consider ASLR. We want to keep the address space secret from an
171 * outside attacker while the process is running, but once the address
172 * space is torn down, it's of no use to an attacker any more. And it's
173 * stored in kernel data structures as long as it's alive, so worrying
174 * about an attacker's ability to extrapolate it from the get_random_int()
177 * Even some cryptographic keys are safe to generate with get_random_int().
178 * In particular, keys for SipHash are generally fine. Here, knowledge
179 * of the key authorizes you to do something to a kernel object (inject
180 * packets to a network connection, or flood a hash table), and the
181 * key is stored with the object being protected. Once it goes away,
182 * we no longer care if anyone knows the key.
187 * For even weaker applications, see the pseudorandom generator
188 * prandom_u32(), prandom_max(), and prandom_bytes(). If the random
189 * numbers aren't security-critical at all, these are *far* cheaper.
190 * Useful for self-tests, random error simulation, randomized backoffs,
191 * and any other application where you trust that nobody is trying to
192 * maliciously mess with you by guessing the "random" numbers.
194 * Exported interfaces ---- input
195 * ==============================
197 * The current exported interfaces for gathering environmental noise
198 * from the devices are:
200 * void add_device_randomness(const void *buf, unsigned int size);
201 * void add_input_randomness(unsigned int type, unsigned int code,
202 * unsigned int value);
203 * void add_interrupt_randomness(int irq, int irq_flags);
204 * void add_disk_randomness(struct gendisk *disk);
206 * add_device_randomness() is for adding data to the random pool that
207 * is likely to differ between two devices (or possibly even per boot).
208 * This would be things like MAC addresses or serial numbers, or the
209 * read-out of the RTC. This does *not* add any actual entropy to the
210 * pool, but it initializes the pool to different values for devices
211 * that might otherwise be identical and have very little entropy
212 * available to them (particularly common in the embedded world).
214 * add_input_randomness() uses the input layer interrupt timing, as well as
215 * the event type information from the hardware.
217 * add_interrupt_randomness() uses the interrupt timing as random
218 * inputs to the entropy pool. Using the cycle counters and the irq source
219 * as inputs, it feeds the randomness roughly once a second.
221 * add_disk_randomness() uses what amounts to the seek time of block
222 * layer request events, on a per-disk_devt basis, as input to the
223 * entropy pool. Note that high-speed solid state drives with very low
224 * seek times do not make for good sources of entropy, as their seek
225 * times are usually fairly consistent.
227 * All of these routines try to estimate how many bits of randomness a
228 * particular randomness source. They do this by keeping track of the
229 * first and second order deltas of the event timings.
231 * Ensuring unpredictability at system startup
232 * ============================================
234 * When any operating system starts up, it will go through a sequence
235 * of actions that are fairly predictable by an adversary, especially
236 * if the start-up does not involve interaction with a human operator.
237 * This reduces the actual number of bits of unpredictability in the
238 * entropy pool below the value in entropy_count. In order to
239 * counteract this effect, it helps to carry information in the
240 * entropy pool across shut-downs and start-ups. To do this, put the
241 * following lines an appropriate script which is run during the boot
244 * echo "Initializing random number generator..."
245 * random_seed=/var/run/random-seed
246 * # Carry a random seed from start-up to start-up
247 * # Load and then save the whole entropy pool
248 * if [ -f $random_seed ]; then
249 * cat $random_seed >/dev/urandom
253 * chmod 600 $random_seed
254 * dd if=/dev/urandom of=$random_seed count=1 bs=512
256 * and the following lines in an appropriate script which is run as
257 * the system is shutdown:
259 * # Carry a random seed from shut-down to start-up
260 * # Save the whole entropy pool
261 * echo "Saving random seed..."
262 * random_seed=/var/run/random-seed
264 * chmod 600 $random_seed
265 * dd if=/dev/urandom of=$random_seed count=1 bs=512
267 * For example, on most modern systems using the System V init
268 * scripts, such code fragments would be found in
269 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
270 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
272 * Effectively, these commands cause the contents of the entropy pool
273 * to be saved at shut-down time and reloaded into the entropy pool at
274 * start-up. (The 'dd' in the addition to the bootup script is to
275 * make sure that /etc/random-seed is different for every start-up,
276 * even if the system crashes without executing rc.0.) Even with
277 * complete knowledge of the start-up activities, predicting the state
278 * of the entropy pool requires knowledge of the previous history of
281 * Configuring the /dev/random driver under Linux
282 * ==============================================
284 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
285 * the /dev/mem major number (#1). So if your system does not have
286 * /dev/random and /dev/urandom created already, they can be created
287 * by using the commands:
289 * mknod /dev/random c 1 8
290 * mknod /dev/urandom c 1 9
295 * Ideas for constructing this random number generator were derived
296 * from Pretty Good Privacy's random number generator, and from private
297 * discussions with Phil Karn. Colin Plumb provided a faster random
298 * number generator, which speed up the mixing function of the entropy
299 * pool, taken from PGPfone. Dale Worley has also contributed many
300 * useful ideas and suggestions to improve this driver.
302 * Any flaws in the design are solely my responsibility, and should
303 * not be attributed to the Phil, Colin, or any of authors of PGP.
305 * Further background information on this topic may be obtained from
306 * RFC 1750, "Randomness Recommendations for Security", by Donald
307 * Eastlake, Steve Crocker, and Jeff Schiller.
310 #include <linux/utsname.h>
311 #include <linux/module.h>
312 #include <linux/kernel.h>
313 #include <linux/major.h>
314 #include <linux/string.h>
315 #include <linux/fcntl.h>
316 #include <linux/slab.h>
317 #include <linux/random.h>
318 #include <linux/poll.h>
319 #include <linux/init.h>
320 #include <linux/fs.h>
321 #include <linux/genhd.h>
322 #include <linux/interrupt.h>
323 #include <linux/mm.h>
324 #include <linux/nodemask.h>
325 #include <linux/spinlock.h>
326 #include <linux/kthread.h>
327 #include <linux/percpu.h>
328 #include <linux/cryptohash.h>
329 #include <linux/fips.h>
330 #include <linux/freezer.h>
331 #include <linux/ptrace.h>
332 #include <linux/workqueue.h>
333 #include <linux/irq.h>
334 #include <linux/ratelimit.h>
335 #include <linux/syscalls.h>
336 #include <linux/completion.h>
337 #include <linux/uuid.h>
338 #include <crypto/chacha.h>
340 #include <asm/processor.h>
341 #include <linux/uaccess.h>
343 #include <asm/irq_regs.h>
346 #define CREATE_TRACE_POINTS
347 #include <trace/events/random.h>
349 /* #define ADD_INTERRUPT_BENCH */
352 * Configuration information
354 #define INPUT_POOL_SHIFT 12
355 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
356 #define OUTPUT_POOL_SHIFT 10
357 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
358 #define SEC_XFER_SIZE 512
359 #define EXTRACT_SIZE 10
362 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
365 * To allow fractional bits to be tracked, the entropy_count field is
366 * denominated in units of 1/8th bits.
368 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
369 * credit_entropy_bits() needs to be 64 bits wide.
371 #define ENTROPY_SHIFT 3
372 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
375 * The minimum number of bits of entropy before we wake up a read on
376 * /dev/random. Should be enough to do a significant reseed.
378 static int random_read_wakeup_bits
= 64;
381 * If the entropy count falls under this number of bits, then we
382 * should wake up processes which are selecting or polling on write
383 * access to /dev/random.
385 static int random_write_wakeup_bits
= 28 * OUTPUT_POOL_WORDS
;
388 * Originally, we used a primitive polynomial of degree .poolwords
389 * over GF(2). The taps for various sizes are defined below. They
390 * were chosen to be evenly spaced except for the last tap, which is 1
391 * to get the twisting happening as fast as possible.
393 * For the purposes of better mixing, we use the CRC-32 polynomial as
394 * well to make a (modified) twisted Generalized Feedback Shift
395 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
396 * generators. ACM Transactions on Modeling and Computer Simulation
397 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
398 * GFSR generators II. ACM Transactions on Modeling and Computer
399 * Simulation 4:254-266)
401 * Thanks to Colin Plumb for suggesting this.
403 * The mixing operation is much less sensitive than the output hash,
404 * where we use SHA-1. All that we want of mixing operation is that
405 * it be a good non-cryptographic hash; i.e. it not produce collisions
406 * when fed "random" data of the sort we expect to see. As long as
407 * the pool state differs for different inputs, we have preserved the
408 * input entropy and done a good job. The fact that an intelligent
409 * attacker can construct inputs that will produce controlled
410 * alterations to the pool's state is not important because we don't
411 * consider such inputs to contribute any randomness. The only
412 * property we need with respect to them is that the attacker can't
413 * increase his/her knowledge of the pool's state. Since all
414 * additions are reversible (knowing the final state and the input,
415 * you can reconstruct the initial state), if an attacker has any
416 * uncertainty about the initial state, he/she can only shuffle that
417 * uncertainty about, but never cause any collisions (which would
418 * decrease the uncertainty).
420 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
421 * Videau in their paper, "The Linux Pseudorandom Number Generator
422 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
423 * paper, they point out that we are not using a true Twisted GFSR,
424 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
425 * is, with only three taps, instead of the six that we are using).
426 * As a result, the resulting polynomial is neither primitive nor
427 * irreducible, and hence does not have a maximal period over
428 * GF(2**32). They suggest a slight change to the generator
429 * polynomial which improves the resulting TGFSR polynomial to be
430 * irreducible, which we have made here.
432 static const struct poolinfo
{
433 int poolbitshift
, poolwords
, poolbytes
, poolfracbits
;
434 #define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
435 int tap1
, tap2
, tap3
, tap4
, tap5
;
436 } poolinfo_table
[] = {
437 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
438 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
439 { S(128), 104, 76, 51, 25, 1 },
440 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
441 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
442 { S(32), 26, 19, 14, 7, 1 },
444 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
445 { S(2048), 1638, 1231, 819, 411, 1 },
447 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
448 { S(1024), 817, 615, 412, 204, 1 },
450 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
451 { S(1024), 819, 616, 410, 207, 2 },
453 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
454 { S(512), 411, 308, 208, 104, 1 },
456 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
457 { S(512), 409, 307, 206, 102, 2 },
458 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
459 { S(512), 409, 309, 205, 103, 2 },
461 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
462 { S(256), 205, 155, 101, 52, 1 },
464 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
465 { S(128), 103, 78, 51, 27, 2 },
467 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
468 { S(64), 52, 39, 26, 14, 1 },
473 * Static global variables
475 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait
);
476 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait
);
477 static struct fasync_struct
*fasync
;
479 static DEFINE_SPINLOCK(random_ready_list_lock
);
480 static LIST_HEAD(random_ready_list
);
484 unsigned long init_time
;
488 static struct crng_state primary_crng
= {
489 .lock
= __SPIN_LOCK_UNLOCKED(primary_crng
.lock
),
493 * crng_init = 0 --> Uninitialized
495 * 2 --> Initialized from input_pool
497 * crng_init is protected by primary_crng->lock, and only increases
498 * its value (from 0->1->2).
500 static int crng_init
= 0;
501 #define crng_ready() (likely(crng_init > 1))
502 static int crng_init_cnt
= 0;
503 static unsigned long crng_global_init_time
= 0;
504 #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
505 static void _extract_crng(struct crng_state
*crng
, __u8 out
[CHACHA_BLOCK_SIZE
]);
506 static void _crng_backtrack_protect(struct crng_state
*crng
,
507 __u8 tmp
[CHACHA_BLOCK_SIZE
], int used
);
508 static void process_random_ready_list(void);
509 static void _get_random_bytes(void *buf
, int nbytes
);
511 static struct ratelimit_state unseeded_warning
=
512 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ
, 3);
513 static struct ratelimit_state urandom_warning
=
514 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ
, 3);
516 static int ratelimit_disable __read_mostly
;
518 module_param_named(ratelimit_disable
, ratelimit_disable
, int, 0644);
519 MODULE_PARM_DESC(ratelimit_disable
, "Disable random ratelimit suppression");
521 /**********************************************************************
523 * OS independent entropy store. Here are the functions which handle
524 * storing entropy in an entropy pool.
526 **********************************************************************/
528 struct entropy_store
;
529 struct entropy_store
{
530 /* read-only data: */
531 const struct poolinfo
*poolinfo
;
534 struct entropy_store
*pull
;
535 struct work_struct push_work
;
537 /* read-write data: */
538 unsigned long last_pulled
;
540 unsigned short add_ptr
;
541 unsigned short input_rotate
;
543 unsigned int initialized
:1;
544 unsigned int last_data_init
:1;
545 __u8 last_data
[EXTRACT_SIZE
];
548 static ssize_t
extract_entropy(struct entropy_store
*r
, void *buf
,
549 size_t nbytes
, int min
, int rsvd
);
550 static ssize_t
_extract_entropy(struct entropy_store
*r
, void *buf
,
551 size_t nbytes
, int fips
);
553 static void crng_reseed(struct crng_state
*crng
, struct entropy_store
*r
);
554 static void push_to_pool(struct work_struct
*work
);
555 static __u32 input_pool_data
[INPUT_POOL_WORDS
] __latent_entropy
;
556 static __u32 blocking_pool_data
[OUTPUT_POOL_WORDS
] __latent_entropy
;
558 static struct entropy_store input_pool
= {
559 .poolinfo
= &poolinfo_table
[0],
561 .lock
= __SPIN_LOCK_UNLOCKED(input_pool
.lock
),
562 .pool
= input_pool_data
565 static struct entropy_store blocking_pool
= {
566 .poolinfo
= &poolinfo_table
[1],
569 .lock
= __SPIN_LOCK_UNLOCKED(blocking_pool
.lock
),
570 .pool
= blocking_pool_data
,
571 .push_work
= __WORK_INITIALIZER(blocking_pool
.push_work
,
575 static __u32
const twist_table
[8] = {
576 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
577 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
580 * This function adds bytes into the entropy "pool". It does not
581 * update the entropy estimate. The caller should call
582 * credit_entropy_bits if this is appropriate.
584 * The pool is stirred with a primitive polynomial of the appropriate
585 * degree, and then twisted. We twist by three bits at a time because
586 * it's cheap to do so and helps slightly in the expected case where
587 * the entropy is concentrated in the low-order bits.
589 static void _mix_pool_bytes(struct entropy_store
*r
, const void *in
,
592 unsigned long i
, tap1
, tap2
, tap3
, tap4
, tap5
;
594 int wordmask
= r
->poolinfo
->poolwords
- 1;
595 const char *bytes
= in
;
598 tap1
= r
->poolinfo
->tap1
;
599 tap2
= r
->poolinfo
->tap2
;
600 tap3
= r
->poolinfo
->tap3
;
601 tap4
= r
->poolinfo
->tap4
;
602 tap5
= r
->poolinfo
->tap5
;
604 input_rotate
= r
->input_rotate
;
607 /* mix one byte at a time to simplify size handling and churn faster */
609 w
= rol32(*bytes
++, input_rotate
);
610 i
= (i
- 1) & wordmask
;
612 /* XOR in the various taps */
614 w
^= r
->pool
[(i
+ tap1
) & wordmask
];
615 w
^= r
->pool
[(i
+ tap2
) & wordmask
];
616 w
^= r
->pool
[(i
+ tap3
) & wordmask
];
617 w
^= r
->pool
[(i
+ tap4
) & wordmask
];
618 w
^= r
->pool
[(i
+ tap5
) & wordmask
];
620 /* Mix the result back in with a twist */
621 r
->pool
[i
] = (w
>> 3) ^ twist_table
[w
& 7];
624 * Normally, we add 7 bits of rotation to the pool.
625 * At the beginning of the pool, add an extra 7 bits
626 * rotation, so that successive passes spread the
627 * input bits across the pool evenly.
629 input_rotate
= (input_rotate
+ (i
? 7 : 14)) & 31;
632 r
->input_rotate
= input_rotate
;
636 static void __mix_pool_bytes(struct entropy_store
*r
, const void *in
,
639 trace_mix_pool_bytes_nolock(r
->name
, nbytes
, _RET_IP_
);
640 _mix_pool_bytes(r
, in
, nbytes
);
643 static void mix_pool_bytes(struct entropy_store
*r
, const void *in
,
648 trace_mix_pool_bytes(r
->name
, nbytes
, _RET_IP_
);
649 spin_lock_irqsave(&r
->lock
, flags
);
650 _mix_pool_bytes(r
, in
, nbytes
);
651 spin_unlock_irqrestore(&r
->lock
, flags
);
657 unsigned short reg_idx
;
662 * This is a fast mixing routine used by the interrupt randomness
663 * collector. It's hardcoded for an 128 bit pool and assumes that any
664 * locks that might be needed are taken by the caller.
666 static void fast_mix(struct fast_pool
*f
)
668 __u32 a
= f
->pool
[0], b
= f
->pool
[1];
669 __u32 c
= f
->pool
[2], d
= f
->pool
[3];
672 b
= rol32(b
, 6); d
= rol32(d
, 27);
676 b
= rol32(b
, 16); d
= rol32(d
, 14);
680 b
= rol32(b
, 6); d
= rol32(d
, 27);
684 b
= rol32(b
, 16); d
= rol32(d
, 14);
687 f
->pool
[0] = a
; f
->pool
[1] = b
;
688 f
->pool
[2] = c
; f
->pool
[3] = d
;
692 static void process_random_ready_list(void)
695 struct random_ready_callback
*rdy
, *tmp
;
697 spin_lock_irqsave(&random_ready_list_lock
, flags
);
698 list_for_each_entry_safe(rdy
, tmp
, &random_ready_list
, list
) {
699 struct module
*owner
= rdy
->owner
;
701 list_del_init(&rdy
->list
);
705 spin_unlock_irqrestore(&random_ready_list_lock
, flags
);
709 * Credit (or debit) the entropy store with n bits of entropy.
710 * Use credit_entropy_bits_safe() if the value comes from userspace
711 * or otherwise should be checked for extreme values.
713 static void credit_entropy_bits(struct entropy_store
*r
, int nbits
)
715 int entropy_count
, orig
, has_initialized
= 0;
716 const int pool_size
= r
->poolinfo
->poolfracbits
;
717 int nfrac
= nbits
<< ENTROPY_SHIFT
;
723 entropy_count
= orig
= READ_ONCE(r
->entropy_count
);
726 entropy_count
+= nfrac
;
729 * Credit: we have to account for the possibility of
730 * overwriting already present entropy. Even in the
731 * ideal case of pure Shannon entropy, new contributions
732 * approach the full value asymptotically:
734 * entropy <- entropy + (pool_size - entropy) *
735 * (1 - exp(-add_entropy/pool_size))
737 * For add_entropy <= pool_size/2 then
738 * (1 - exp(-add_entropy/pool_size)) >=
739 * (add_entropy/pool_size)*0.7869...
740 * so we can approximate the exponential with
741 * 3/4*add_entropy/pool_size and still be on the
742 * safe side by adding at most pool_size/2 at a time.
744 * The use of pool_size-2 in the while statement is to
745 * prevent rounding artifacts from making the loop
746 * arbitrarily long; this limits the loop to log2(pool_size)*2
747 * turns no matter how large nbits is.
750 const int s
= r
->poolinfo
->poolbitshift
+ ENTROPY_SHIFT
+ 2;
751 /* The +2 corresponds to the /4 in the denominator */
754 unsigned int anfrac
= min(pnfrac
, pool_size
/2);
756 ((pool_size
- entropy_count
)*anfrac
*3) >> s
;
758 entropy_count
+= add
;
760 } while (unlikely(entropy_count
< pool_size
-2 && pnfrac
));
763 if (unlikely(entropy_count
< 0)) {
764 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
765 r
->name
, entropy_count
);
768 } else if (entropy_count
> pool_size
)
769 entropy_count
= pool_size
;
770 if ((r
== &blocking_pool
) && !r
->initialized
&&
771 (entropy_count
>> ENTROPY_SHIFT
) > 128)
773 if (cmpxchg(&r
->entropy_count
, orig
, entropy_count
) != orig
)
776 if (has_initialized
) {
778 wake_up_interruptible(&random_read_wait
);
779 kill_fasync(&fasync
, SIGIO
, POLL_IN
);
782 trace_credit_entropy_bits(r
->name
, nbits
,
783 entropy_count
>> ENTROPY_SHIFT
, _RET_IP_
);
785 if (r
== &input_pool
) {
786 int entropy_bits
= entropy_count
>> ENTROPY_SHIFT
;
787 struct entropy_store
*other
= &blocking_pool
;
790 if (entropy_bits
< 128)
792 crng_reseed(&primary_crng
, r
);
793 entropy_bits
= r
->entropy_count
>> ENTROPY_SHIFT
;
796 /* initialize the blocking pool if necessary */
797 if (entropy_bits
>= random_read_wakeup_bits
&&
798 !other
->initialized
) {
799 schedule_work(&other
->push_work
);
803 /* should we wake readers? */
804 if (entropy_bits
>= random_read_wakeup_bits
&&
805 wq_has_sleeper(&random_read_wait
)) {
806 wake_up_interruptible(&random_read_wait
);
807 kill_fasync(&fasync
, SIGIO
, POLL_IN
);
809 /* If the input pool is getting full, and the blocking
810 * pool has room, send some entropy to the blocking
813 if (!work_pending(&other
->push_work
) &&
814 (ENTROPY_BITS(r
) > 6 * r
->poolinfo
->poolbytes
) &&
815 (ENTROPY_BITS(other
) <= 6 * other
->poolinfo
->poolbytes
))
816 schedule_work(&other
->push_work
);
820 static int credit_entropy_bits_safe(struct entropy_store
*r
, int nbits
)
822 const int nbits_max
= r
->poolinfo
->poolwords
* 32;
827 /* Cap the value to avoid overflows */
828 nbits
= min(nbits
, nbits_max
);
830 credit_entropy_bits(r
, nbits
);
834 /*********************************************************************
836 * CRNG using CHACHA20
838 *********************************************************************/
840 #define CRNG_RESEED_INTERVAL (300*HZ)
842 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait
);
846 * Hack to deal with crazy userspace progams when they are all trying
847 * to access /dev/urandom in parallel. The programs are almost
848 * certainly doing something terribly wrong, but we'll work around
849 * their brain damage.
851 static struct crng_state
**crng_node_pool __read_mostly
;
854 static void invalidate_batched_entropy(void);
855 static void numa_crng_init(void);
857 static bool trust_cpu __ro_after_init
= IS_ENABLED(CONFIG_RANDOM_TRUST_CPU
);
858 static int __init
parse_trust_cpu(char *arg
)
860 return kstrtobool(arg
, &trust_cpu
);
862 early_param("random.trust_cpu", parse_trust_cpu
);
864 static void crng_initialize(struct crng_state
*crng
)
870 memcpy(&crng
->state
[0], "expand 32-byte k", 16);
871 if (crng
== &primary_crng
)
872 _extract_entropy(&input_pool
, &crng
->state
[4],
873 sizeof(__u32
) * 12, 0);
875 _get_random_bytes(&crng
->state
[4], sizeof(__u32
) * 12);
876 for (i
= 4; i
< 16; i
++) {
877 if (!arch_get_random_seed_long(&rv
) &&
878 !arch_get_random_long(&rv
)) {
879 rv
= random_get_entropy();
882 crng
->state
[i
] ^= rv
;
884 if (trust_cpu
&& arch_init
&& crng
== &primary_crng
) {
885 invalidate_batched_entropy();
888 pr_notice("random: crng done (trusting CPU's manufacturer)\n");
890 crng
->init_time
= jiffies
- CRNG_RESEED_INTERVAL
- 1;
894 static void do_numa_crng_init(struct work_struct
*work
)
897 struct crng_state
*crng
;
898 struct crng_state
**pool
;
900 pool
= kcalloc(nr_node_ids
, sizeof(*pool
), GFP_KERNEL
|__GFP_NOFAIL
);
901 for_each_online_node(i
) {
902 crng
= kmalloc_node(sizeof(struct crng_state
),
903 GFP_KERNEL
| __GFP_NOFAIL
, i
);
904 spin_lock_init(&crng
->lock
);
905 crng_initialize(crng
);
909 if (cmpxchg(&crng_node_pool
, NULL
, pool
)) {
916 static DECLARE_WORK(numa_crng_init_work
, do_numa_crng_init
);
918 static void numa_crng_init(void)
920 schedule_work(&numa_crng_init_work
);
923 static void numa_crng_init(void) {}
927 * crng_fast_load() can be called by code in the interrupt service
928 * path. So we can't afford to dilly-dally.
930 static int crng_fast_load(const char *cp
, size_t len
)
935 if (!spin_trylock_irqsave(&primary_crng
.lock
, flags
))
937 if (crng_init
!= 0) {
938 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
941 p
= (unsigned char *) &primary_crng
.state
[4];
942 while (len
> 0 && crng_init_cnt
< CRNG_INIT_CNT_THRESH
) {
943 p
[crng_init_cnt
% CHACHA_KEY_SIZE
] ^= *cp
;
944 cp
++; crng_init_cnt
++; len
--;
946 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
947 if (crng_init_cnt
>= CRNG_INIT_CNT_THRESH
) {
948 invalidate_batched_entropy();
950 wake_up_interruptible(&crng_init_wait
);
951 pr_notice("random: fast init done\n");
957 * crng_slow_load() is called by add_device_randomness, which has two
958 * attributes. (1) We can't trust the buffer passed to it is
959 * guaranteed to be unpredictable (so it might not have any entropy at
960 * all), and (2) it doesn't have the performance constraints of
963 * So we do something more comprehensive which is guaranteed to touch
964 * all of the primary_crng's state, and which uses a LFSR with a
965 * period of 255 as part of the mixing algorithm. Finally, we do
966 * *not* advance crng_init_cnt since buffer we may get may be something
967 * like a fixed DMI table (for example), which might very well be
968 * unique to the machine, but is otherwise unvarying.
970 static int crng_slow_load(const char *cp
, size_t len
)
973 static unsigned char lfsr
= 1;
975 unsigned i
, max
= CHACHA_KEY_SIZE
;
976 const char * src_buf
= cp
;
977 char * dest_buf
= (char *) &primary_crng
.state
[4];
979 if (!spin_trylock_irqsave(&primary_crng
.lock
, flags
))
981 if (crng_init
!= 0) {
982 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
988 for (i
= 0; i
< max
; i
++) {
993 tmp
= dest_buf
[i
% CHACHA_KEY_SIZE
];
994 dest_buf
[i
% CHACHA_KEY_SIZE
] ^= src_buf
[i
% len
] ^ lfsr
;
995 lfsr
+= (tmp
<< 3) | (tmp
>> 5);
997 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
1001 static void crng_reseed(struct crng_state
*crng
, struct entropy_store
*r
)
1003 unsigned long flags
;
1006 __u8 block
[CHACHA_BLOCK_SIZE
];
1011 num
= extract_entropy(r
, &buf
, 32, 16, 0);
1015 _extract_crng(&primary_crng
, buf
.block
);
1016 _crng_backtrack_protect(&primary_crng
, buf
.block
,
1019 spin_lock_irqsave(&crng
->lock
, flags
);
1020 for (i
= 0; i
< 8; i
++) {
1022 if (!arch_get_random_seed_long(&rv
) &&
1023 !arch_get_random_long(&rv
))
1024 rv
= random_get_entropy();
1025 crng
->state
[i
+4] ^= buf
.key
[i
] ^ rv
;
1027 memzero_explicit(&buf
, sizeof(buf
));
1028 crng
->init_time
= jiffies
;
1029 spin_unlock_irqrestore(&crng
->lock
, flags
);
1030 if (crng
== &primary_crng
&& crng_init
< 2) {
1031 invalidate_batched_entropy();
1034 process_random_ready_list();
1035 wake_up_interruptible(&crng_init_wait
);
1036 pr_notice("random: crng init done\n");
1037 if (unseeded_warning
.missed
) {
1038 pr_notice("random: %d get_random_xx warning(s) missed "
1039 "due to ratelimiting\n",
1040 unseeded_warning
.missed
);
1041 unseeded_warning
.missed
= 0;
1043 if (urandom_warning
.missed
) {
1044 pr_notice("random: %d urandom warning(s) missed "
1045 "due to ratelimiting\n",
1046 urandom_warning
.missed
);
1047 urandom_warning
.missed
= 0;
1052 static void _extract_crng(struct crng_state
*crng
,
1053 __u8 out
[CHACHA_BLOCK_SIZE
])
1055 unsigned long v
, flags
;
1058 (time_after(crng_global_init_time
, crng
->init_time
) ||
1059 time_after(jiffies
, crng
->init_time
+ CRNG_RESEED_INTERVAL
)))
1060 crng_reseed(crng
, crng
== &primary_crng
? &input_pool
: NULL
);
1061 spin_lock_irqsave(&crng
->lock
, flags
);
1062 if (arch_get_random_long(&v
))
1063 crng
->state
[14] ^= v
;
1064 chacha20_block(&crng
->state
[0], out
);
1065 if (crng
->state
[12] == 0)
1067 spin_unlock_irqrestore(&crng
->lock
, flags
);
1070 static void extract_crng(__u8 out
[CHACHA_BLOCK_SIZE
])
1072 struct crng_state
*crng
= NULL
;
1076 crng
= crng_node_pool
[numa_node_id()];
1079 crng
= &primary_crng
;
1080 _extract_crng(crng
, out
);
1084 * Use the leftover bytes from the CRNG block output (if there is
1085 * enough) to mutate the CRNG key to provide backtracking protection.
1087 static void _crng_backtrack_protect(struct crng_state
*crng
,
1088 __u8 tmp
[CHACHA_BLOCK_SIZE
], int used
)
1090 unsigned long flags
;
1094 used
= round_up(used
, sizeof(__u32
));
1095 if (used
+ CHACHA_KEY_SIZE
> CHACHA_BLOCK_SIZE
) {
1099 spin_lock_irqsave(&crng
->lock
, flags
);
1100 s
= (__u32
*) &tmp
[used
];
1101 d
= &crng
->state
[4];
1102 for (i
=0; i
< 8; i
++)
1104 spin_unlock_irqrestore(&crng
->lock
, flags
);
1107 static void crng_backtrack_protect(__u8 tmp
[CHACHA_BLOCK_SIZE
], int used
)
1109 struct crng_state
*crng
= NULL
;
1113 crng
= crng_node_pool
[numa_node_id()];
1116 crng
= &primary_crng
;
1117 _crng_backtrack_protect(crng
, tmp
, used
);
1120 static ssize_t
extract_crng_user(void __user
*buf
, size_t nbytes
)
1122 ssize_t ret
= 0, i
= CHACHA_BLOCK_SIZE
;
1123 __u8 tmp
[CHACHA_BLOCK_SIZE
] __aligned(4);
1124 int large_request
= (nbytes
> 256);
1127 if (large_request
&& need_resched()) {
1128 if (signal_pending(current
)) {
1137 i
= min_t(int, nbytes
, CHACHA_BLOCK_SIZE
);
1138 if (copy_to_user(buf
, tmp
, i
)) {
1147 crng_backtrack_protect(tmp
, i
);
1149 /* Wipe data just written to memory */
1150 memzero_explicit(tmp
, sizeof(tmp
));
1156 /*********************************************************************
1158 * Entropy input management
1160 *********************************************************************/
1162 /* There is one of these per entropy source */
1163 struct timer_rand_state
{
1165 long last_delta
, last_delta2
;
1168 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1171 * Add device- or boot-specific data to the input pool to help
1174 * None of this adds any entropy; it is meant to avoid the problem of
1175 * the entropy pool having similar initial state across largely
1176 * identical devices.
1178 void add_device_randomness(const void *buf
, unsigned int size
)
1180 unsigned long time
= random_get_entropy() ^ jiffies
;
1181 unsigned long flags
;
1183 if (!crng_ready() && size
)
1184 crng_slow_load(buf
, size
);
1186 trace_add_device_randomness(size
, _RET_IP_
);
1187 spin_lock_irqsave(&input_pool
.lock
, flags
);
1188 _mix_pool_bytes(&input_pool
, buf
, size
);
1189 _mix_pool_bytes(&input_pool
, &time
, sizeof(time
));
1190 spin_unlock_irqrestore(&input_pool
.lock
, flags
);
1192 EXPORT_SYMBOL(add_device_randomness
);
1194 static struct timer_rand_state input_timer_state
= INIT_TIMER_RAND_STATE
;
1197 * This function adds entropy to the entropy "pool" by using timing
1198 * delays. It uses the timer_rand_state structure to make an estimate
1199 * of how many bits of entropy this call has added to the pool.
1201 * The number "num" is also added to the pool - it should somehow describe
1202 * the type of event which just happened. This is currently 0-255 for
1203 * keyboard scan codes, and 256 upwards for interrupts.
1206 static void add_timer_randomness(struct timer_rand_state
*state
, unsigned num
)
1208 struct entropy_store
*r
;
1214 long delta
, delta2
, delta3
;
1216 sample
.jiffies
= jiffies
;
1217 sample
.cycles
= random_get_entropy();
1220 mix_pool_bytes(r
, &sample
, sizeof(sample
));
1223 * Calculate number of bits of randomness we probably added.
1224 * We take into account the first, second and third-order deltas
1225 * in order to make our estimate.
1227 delta
= sample
.jiffies
- state
->last_time
;
1228 state
->last_time
= sample
.jiffies
;
1230 delta2
= delta
- state
->last_delta
;
1231 state
->last_delta
= delta
;
1233 delta3
= delta2
- state
->last_delta2
;
1234 state
->last_delta2
= delta2
;
1248 * delta is now minimum absolute delta.
1249 * Round down by 1 bit on general principles,
1250 * and limit entropy entimate to 12 bits.
1252 credit_entropy_bits(r
, min_t(int, fls(delta
>>1), 11));
1255 void add_input_randomness(unsigned int type
, unsigned int code
,
1258 static unsigned char last_value
;
1260 /* ignore autorepeat and the like */
1261 if (value
== last_value
)
1265 add_timer_randomness(&input_timer_state
,
1266 (type
<< 4) ^ code
^ (code
>> 4) ^ value
);
1267 trace_add_input_randomness(ENTROPY_BITS(&input_pool
));
1269 EXPORT_SYMBOL_GPL(add_input_randomness
);
1271 static DEFINE_PER_CPU(struct fast_pool
, irq_randomness
);
1273 #ifdef ADD_INTERRUPT_BENCH
1274 static unsigned long avg_cycles
, avg_deviation
;
1276 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1277 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1279 static void add_interrupt_bench(cycles_t start
)
1281 long delta
= random_get_entropy() - start
;
1283 /* Use a weighted moving average */
1284 delta
= delta
- ((avg_cycles
+ FIXED_1_2
) >> AVG_SHIFT
);
1285 avg_cycles
+= delta
;
1286 /* And average deviation */
1287 delta
= abs(delta
) - ((avg_deviation
+ FIXED_1_2
) >> AVG_SHIFT
);
1288 avg_deviation
+= delta
;
1291 #define add_interrupt_bench(x)
1294 static __u32
get_reg(struct fast_pool
*f
, struct pt_regs
*regs
)
1296 __u32
*ptr
= (__u32
*) regs
;
1301 idx
= READ_ONCE(f
->reg_idx
);
1302 if (idx
>= sizeof(struct pt_regs
) / sizeof(__u32
))
1305 WRITE_ONCE(f
->reg_idx
, idx
);
1309 void add_interrupt_randomness(int irq
, int irq_flags
)
1311 struct entropy_store
*r
;
1312 struct fast_pool
*fast_pool
= this_cpu_ptr(&irq_randomness
);
1313 struct pt_regs
*regs
= get_irq_regs();
1314 unsigned long now
= jiffies
;
1315 cycles_t cycles
= random_get_entropy();
1316 __u32 c_high
, j_high
;
1322 cycles
= get_reg(fast_pool
, regs
);
1323 c_high
= (sizeof(cycles
) > 4) ? cycles
>> 32 : 0;
1324 j_high
= (sizeof(now
) > 4) ? now
>> 32 : 0;
1325 fast_pool
->pool
[0] ^= cycles
^ j_high
^ irq
;
1326 fast_pool
->pool
[1] ^= now
^ c_high
;
1327 ip
= regs
? instruction_pointer(regs
) : _RET_IP_
;
1328 fast_pool
->pool
[2] ^= ip
;
1329 fast_pool
->pool
[3] ^= (sizeof(ip
) > 4) ? ip
>> 32 :
1330 get_reg(fast_pool
, regs
);
1332 fast_mix(fast_pool
);
1333 add_interrupt_bench(cycles
);
1335 if (unlikely(crng_init
== 0)) {
1336 if ((fast_pool
->count
>= 64) &&
1337 crng_fast_load((char *) fast_pool
->pool
,
1338 sizeof(fast_pool
->pool
))) {
1339 fast_pool
->count
= 0;
1340 fast_pool
->last
= now
;
1345 if ((fast_pool
->count
< 64) &&
1346 !time_after(now
, fast_pool
->last
+ HZ
))
1350 if (!spin_trylock(&r
->lock
))
1353 fast_pool
->last
= now
;
1354 __mix_pool_bytes(r
, &fast_pool
->pool
, sizeof(fast_pool
->pool
));
1357 * If we have architectural seed generator, produce a seed and
1358 * add it to the pool. For the sake of paranoia don't let the
1359 * architectural seed generator dominate the input from the
1362 if (arch_get_random_seed_long(&seed
)) {
1363 __mix_pool_bytes(r
, &seed
, sizeof(seed
));
1366 spin_unlock(&r
->lock
);
1368 fast_pool
->count
= 0;
1370 /* award one bit for the contents of the fast pool */
1371 credit_entropy_bits(r
, credit
+ 1);
1373 EXPORT_SYMBOL_GPL(add_interrupt_randomness
);
1376 void add_disk_randomness(struct gendisk
*disk
)
1378 if (!disk
|| !disk
->random
)
1380 /* first major is 1, so we get >= 0x200 here */
1381 add_timer_randomness(disk
->random
, 0x100 + disk_devt(disk
));
1382 trace_add_disk_randomness(disk_devt(disk
), ENTROPY_BITS(&input_pool
));
1384 EXPORT_SYMBOL_GPL(add_disk_randomness
);
1387 /*********************************************************************
1389 * Entropy extraction routines
1391 *********************************************************************/
1394 * This utility inline function is responsible for transferring entropy
1395 * from the primary pool to the secondary extraction pool. We make
1396 * sure we pull enough for a 'catastrophic reseed'.
1398 static void _xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
);
1399 static void xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
)
1402 r
->entropy_count
>= (nbytes
<< (ENTROPY_SHIFT
+ 3)) ||
1403 r
->entropy_count
> r
->poolinfo
->poolfracbits
)
1406 _xfer_secondary_pool(r
, nbytes
);
1409 static void _xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
)
1411 __u32 tmp
[OUTPUT_POOL_WORDS
];
1415 /* pull at least as much as a wakeup */
1416 bytes
= max_t(int, bytes
, random_read_wakeup_bits
/ 8);
1417 /* but never more than the buffer size */
1418 bytes
= min_t(int, bytes
, sizeof(tmp
));
1420 trace_xfer_secondary_pool(r
->name
, bytes
* 8, nbytes
* 8,
1421 ENTROPY_BITS(r
), ENTROPY_BITS(r
->pull
));
1422 bytes
= extract_entropy(r
->pull
, tmp
, bytes
,
1423 random_read_wakeup_bits
/ 8, 0);
1424 mix_pool_bytes(r
, tmp
, bytes
);
1425 credit_entropy_bits(r
, bytes
*8);
1429 * Used as a workqueue function so that when the input pool is getting
1430 * full, we can "spill over" some entropy to the output pools. That
1431 * way the output pools can store some of the excess entropy instead
1432 * of letting it go to waste.
1434 static void push_to_pool(struct work_struct
*work
)
1436 struct entropy_store
*r
= container_of(work
, struct entropy_store
,
1439 _xfer_secondary_pool(r
, random_read_wakeup_bits
/8);
1440 trace_push_to_pool(r
->name
, r
->entropy_count
>> ENTROPY_SHIFT
,
1441 r
->pull
->entropy_count
>> ENTROPY_SHIFT
);
1445 * This function decides how many bytes to actually take from the
1446 * given pool, and also debits the entropy count accordingly.
1448 static size_t account(struct entropy_store
*r
, size_t nbytes
, int min
,
1451 int entropy_count
, orig
, have_bytes
;
1452 size_t ibytes
, nfrac
;
1454 BUG_ON(r
->entropy_count
> r
->poolinfo
->poolfracbits
);
1456 /* Can we pull enough? */
1458 entropy_count
= orig
= READ_ONCE(r
->entropy_count
);
1460 /* never pull more than available */
1461 have_bytes
= entropy_count
>> (ENTROPY_SHIFT
+ 3);
1463 if ((have_bytes
-= reserved
) < 0)
1465 ibytes
= min_t(size_t, ibytes
, have_bytes
);
1469 if (unlikely(entropy_count
< 0)) {
1470 pr_warn("random: negative entropy count: pool %s count %d\n",
1471 r
->name
, entropy_count
);
1475 nfrac
= ibytes
<< (ENTROPY_SHIFT
+ 3);
1476 if ((size_t) entropy_count
> nfrac
)
1477 entropy_count
-= nfrac
;
1481 if (cmpxchg(&r
->entropy_count
, orig
, entropy_count
) != orig
)
1484 trace_debit_entropy(r
->name
, 8 * ibytes
);
1486 (r
->entropy_count
>> ENTROPY_SHIFT
) < random_write_wakeup_bits
) {
1487 wake_up_interruptible(&random_write_wait
);
1488 kill_fasync(&fasync
, SIGIO
, POLL_OUT
);
1495 * This function does the actual extraction for extract_entropy and
1496 * extract_entropy_user.
1498 * Note: we assume that .poolwords is a multiple of 16 words.
1500 static void extract_buf(struct entropy_store
*r
, __u8
*out
)
1505 unsigned long l
[LONGS(20)];
1507 __u32 workspace
[SHA_WORKSPACE_WORDS
];
1508 unsigned long flags
;
1511 * If we have an architectural hardware random number
1512 * generator, use it for SHA's initial vector
1515 for (i
= 0; i
< LONGS(20); i
++) {
1517 if (!arch_get_random_long(&v
))
1522 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1523 spin_lock_irqsave(&r
->lock
, flags
);
1524 for (i
= 0; i
< r
->poolinfo
->poolwords
; i
+= 16)
1525 sha_transform(hash
.w
, (__u8
*)(r
->pool
+ i
), workspace
);
1528 * We mix the hash back into the pool to prevent backtracking
1529 * attacks (where the attacker knows the state of the pool
1530 * plus the current outputs, and attempts to find previous
1531 * ouputs), unless the hash function can be inverted. By
1532 * mixing at least a SHA1 worth of hash data back, we make
1533 * brute-forcing the feedback as hard as brute-forcing the
1536 __mix_pool_bytes(r
, hash
.w
, sizeof(hash
.w
));
1537 spin_unlock_irqrestore(&r
->lock
, flags
);
1539 memzero_explicit(workspace
, sizeof(workspace
));
1542 * In case the hash function has some recognizable output
1543 * pattern, we fold it in half. Thus, we always feed back
1544 * twice as much data as we output.
1546 hash
.w
[0] ^= hash
.w
[3];
1547 hash
.w
[1] ^= hash
.w
[4];
1548 hash
.w
[2] ^= rol32(hash
.w
[2], 16);
1550 memcpy(out
, &hash
, EXTRACT_SIZE
);
1551 memzero_explicit(&hash
, sizeof(hash
));
1554 static ssize_t
_extract_entropy(struct entropy_store
*r
, void *buf
,
1555 size_t nbytes
, int fips
)
1558 __u8 tmp
[EXTRACT_SIZE
];
1559 unsigned long flags
;
1562 extract_buf(r
, tmp
);
1565 spin_lock_irqsave(&r
->lock
, flags
);
1566 if (!memcmp(tmp
, r
->last_data
, EXTRACT_SIZE
))
1567 panic("Hardware RNG duplicated output!\n");
1568 memcpy(r
->last_data
, tmp
, EXTRACT_SIZE
);
1569 spin_unlock_irqrestore(&r
->lock
, flags
);
1571 i
= min_t(int, nbytes
, EXTRACT_SIZE
);
1572 memcpy(buf
, tmp
, i
);
1578 /* Wipe data just returned from memory */
1579 memzero_explicit(tmp
, sizeof(tmp
));
1585 * This function extracts randomness from the "entropy pool", and
1586 * returns it in a buffer.
1588 * The min parameter specifies the minimum amount we can pull before
1589 * failing to avoid races that defeat catastrophic reseeding while the
1590 * reserved parameter indicates how much entropy we must leave in the
1591 * pool after each pull to avoid starving other readers.
1593 static ssize_t
extract_entropy(struct entropy_store
*r
, void *buf
,
1594 size_t nbytes
, int min
, int reserved
)
1596 __u8 tmp
[EXTRACT_SIZE
];
1597 unsigned long flags
;
1599 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1601 spin_lock_irqsave(&r
->lock
, flags
);
1602 if (!r
->last_data_init
) {
1603 r
->last_data_init
= 1;
1604 spin_unlock_irqrestore(&r
->lock
, flags
);
1605 trace_extract_entropy(r
->name
, EXTRACT_SIZE
,
1606 ENTROPY_BITS(r
), _RET_IP_
);
1607 xfer_secondary_pool(r
, EXTRACT_SIZE
);
1608 extract_buf(r
, tmp
);
1609 spin_lock_irqsave(&r
->lock
, flags
);
1610 memcpy(r
->last_data
, tmp
, EXTRACT_SIZE
);
1612 spin_unlock_irqrestore(&r
->lock
, flags
);
1615 trace_extract_entropy(r
->name
, nbytes
, ENTROPY_BITS(r
), _RET_IP_
);
1616 xfer_secondary_pool(r
, nbytes
);
1617 nbytes
= account(r
, nbytes
, min
, reserved
);
1619 return _extract_entropy(r
, buf
, nbytes
, fips_enabled
);
1623 * This function extracts randomness from the "entropy pool", and
1624 * returns it in a userspace buffer.
1626 static ssize_t
extract_entropy_user(struct entropy_store
*r
, void __user
*buf
,
1630 __u8 tmp
[EXTRACT_SIZE
];
1631 int large_request
= (nbytes
> 256);
1633 trace_extract_entropy_user(r
->name
, nbytes
, ENTROPY_BITS(r
), _RET_IP_
);
1634 if (!r
->initialized
&& r
->pull
) {
1635 xfer_secondary_pool(r
, ENTROPY_BITS(r
->pull
)/8);
1636 if (!r
->initialized
)
1639 xfer_secondary_pool(r
, nbytes
);
1640 nbytes
= account(r
, nbytes
, 0, 0);
1643 if (large_request
&& need_resched()) {
1644 if (signal_pending(current
)) {
1652 extract_buf(r
, tmp
);
1653 i
= min_t(int, nbytes
, EXTRACT_SIZE
);
1654 if (copy_to_user(buf
, tmp
, i
)) {
1664 /* Wipe data just returned from memory */
1665 memzero_explicit(tmp
, sizeof(tmp
));
1670 #define warn_unseeded_randomness(previous) \
1671 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1673 static void _warn_unseeded_randomness(const char *func_name
, void *caller
,
1676 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1677 const bool print_once
= false;
1679 static bool print_once __read_mostly
;
1684 (previous
&& (caller
== READ_ONCE(*previous
))))
1686 WRITE_ONCE(*previous
, caller
);
1687 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1690 if (__ratelimit(&unseeded_warning
))
1691 pr_notice("random: %s called from %pS with crng_init=%d\n",
1692 func_name
, caller
, crng_init
);
1696 * This function is the exported kernel interface. It returns some
1697 * number of good random numbers, suitable for key generation, seeding
1698 * TCP sequence numbers, etc. It does not rely on the hardware random
1699 * number generator. For random bytes direct from the hardware RNG
1700 * (when available), use get_random_bytes_arch(). In order to ensure
1701 * that the randomness provided by this function is okay, the function
1702 * wait_for_random_bytes() should be called and return 0 at least once
1703 * at any point prior.
1705 static void _get_random_bytes(void *buf
, int nbytes
)
1707 __u8 tmp
[CHACHA_BLOCK_SIZE
] __aligned(4);
1709 trace_get_random_bytes(nbytes
, _RET_IP_
);
1711 while (nbytes
>= CHACHA_BLOCK_SIZE
) {
1713 buf
+= CHACHA_BLOCK_SIZE
;
1714 nbytes
-= CHACHA_BLOCK_SIZE
;
1719 memcpy(buf
, tmp
, nbytes
);
1720 crng_backtrack_protect(tmp
, nbytes
);
1722 crng_backtrack_protect(tmp
, CHACHA_BLOCK_SIZE
);
1723 memzero_explicit(tmp
, sizeof(tmp
));
1726 void get_random_bytes(void *buf
, int nbytes
)
1728 static void *previous
;
1730 warn_unseeded_randomness(&previous
);
1731 _get_random_bytes(buf
, nbytes
);
1733 EXPORT_SYMBOL(get_random_bytes
);
1737 * Each time the timer fires, we expect that we got an unpredictable
1738 * jump in the cycle counter. Even if the timer is running on another
1739 * CPU, the timer activity will be touching the stack of the CPU that is
1740 * generating entropy..
1742 * Note that we don't re-arm the timer in the timer itself - we are
1743 * happy to be scheduled away, since that just makes the load more
1744 * complex, but we do not want the timer to keep ticking unless the
1745 * entropy loop is running.
1747 * So the re-arming always happens in the entropy loop itself.
1749 static void entropy_timer(struct timer_list
*t
)
1751 credit_entropy_bits(&input_pool
, 1);
1755 * If we have an actual cycle counter, see if we can
1756 * generate enough entropy with timing noise
1758 static void try_to_generate_entropy(void)
1762 struct timer_list timer
;
1765 stack
.now
= random_get_entropy();
1767 /* Slow counter - or none. Don't even bother */
1768 if (stack
.now
== random_get_entropy())
1771 timer_setup_on_stack(&stack
.timer
, entropy_timer
, 0);
1772 while (!crng_ready()) {
1773 if (!timer_pending(&stack
.timer
))
1774 mod_timer(&stack
.timer
, jiffies
+1);
1775 mix_pool_bytes(&input_pool
, &stack
.now
, sizeof(stack
.now
));
1777 stack
.now
= random_get_entropy();
1780 del_timer_sync(&stack
.timer
);
1781 destroy_timer_on_stack(&stack
.timer
);
1782 mix_pool_bytes(&input_pool
, &stack
.now
, sizeof(stack
.now
));
1786 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1787 * cryptographically secure random numbers. This applies to: the /dev/urandom
1788 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1789 * family of functions. Using any of these functions without first calling
1790 * this function forfeits the guarantee of security.
1792 * Returns: 0 if the urandom pool has been seeded.
1793 * -ERESTARTSYS if the function was interrupted by a signal.
1795 int wait_for_random_bytes(void)
1797 if (likely(crng_ready()))
1802 ret
= wait_event_interruptible_timeout(crng_init_wait
, crng_ready(), HZ
);
1804 return ret
> 0 ? 0 : ret
;
1806 try_to_generate_entropy();
1807 } while (!crng_ready());
1811 EXPORT_SYMBOL(wait_for_random_bytes
);
1814 * Returns whether or not the urandom pool has been seeded and thus guaranteed
1815 * to supply cryptographically secure random numbers. This applies to: the
1816 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1817 * ,u64,int,long} family of functions.
1819 * Returns: true if the urandom pool has been seeded.
1820 * false if the urandom pool has not been seeded.
1822 bool rng_is_initialized(void)
1824 return crng_ready();
1826 EXPORT_SYMBOL(rng_is_initialized
);
1829 * Add a callback function that will be invoked when the nonblocking
1830 * pool is initialised.
1832 * returns: 0 if callback is successfully added
1833 * -EALREADY if pool is already initialised (callback not called)
1834 * -ENOENT if module for callback is not alive
1836 int add_random_ready_callback(struct random_ready_callback
*rdy
)
1838 struct module
*owner
;
1839 unsigned long flags
;
1840 int err
= -EALREADY
;
1846 if (!try_module_get(owner
))
1849 spin_lock_irqsave(&random_ready_list_lock
, flags
);
1855 list_add(&rdy
->list
, &random_ready_list
);
1859 spin_unlock_irqrestore(&random_ready_list_lock
, flags
);
1865 EXPORT_SYMBOL(add_random_ready_callback
);
1868 * Delete a previously registered readiness callback function.
1870 void del_random_ready_callback(struct random_ready_callback
*rdy
)
1872 unsigned long flags
;
1873 struct module
*owner
= NULL
;
1875 spin_lock_irqsave(&random_ready_list_lock
, flags
);
1876 if (!list_empty(&rdy
->list
)) {
1877 list_del_init(&rdy
->list
);
1880 spin_unlock_irqrestore(&random_ready_list_lock
, flags
);
1884 EXPORT_SYMBOL(del_random_ready_callback
);
1887 * This function will use the architecture-specific hardware random
1888 * number generator if it is available. The arch-specific hw RNG will
1889 * almost certainly be faster than what we can do in software, but it
1890 * is impossible to verify that it is implemented securely (as
1891 * opposed, to, say, the AES encryption of a sequence number using a
1892 * key known by the NSA). So it's useful if we need the speed, but
1893 * only if we're willing to trust the hardware manufacturer not to
1894 * have put in a back door.
1896 * Return number of bytes filled in.
1898 int __must_check
get_random_bytes_arch(void *buf
, int nbytes
)
1903 trace_get_random_bytes_arch(left
, _RET_IP_
);
1906 int chunk
= min_t(int, left
, sizeof(unsigned long));
1908 if (!arch_get_random_long(&v
))
1911 memcpy(p
, &v
, chunk
);
1916 return nbytes
- left
;
1918 EXPORT_SYMBOL(get_random_bytes_arch
);
1921 * init_std_data - initialize pool with system data
1923 * @r: pool to initialize
1925 * This function clears the pool's entropy count and mixes some system
1926 * data into the pool to prepare it for use. The pool is not cleared
1927 * as that can only decrease the entropy in the pool.
1929 static void __init
init_std_data(struct entropy_store
*r
)
1932 ktime_t now
= ktime_get_real();
1935 r
->last_pulled
= jiffies
;
1936 mix_pool_bytes(r
, &now
, sizeof(now
));
1937 for (i
= r
->poolinfo
->poolbytes
; i
> 0; i
-= sizeof(rv
)) {
1938 if (!arch_get_random_seed_long(&rv
) &&
1939 !arch_get_random_long(&rv
))
1940 rv
= random_get_entropy();
1941 mix_pool_bytes(r
, &rv
, sizeof(rv
));
1943 mix_pool_bytes(r
, utsname(), sizeof(*(utsname())));
1947 * Note that setup_arch() may call add_device_randomness()
1948 * long before we get here. This allows seeding of the pools
1949 * with some platform dependent data very early in the boot
1950 * process. But it limits our options here. We must use
1951 * statically allocated structures that already have all
1952 * initializations complete at compile time. We should also
1953 * take care not to overwrite the precious per platform data
1956 int __init
rand_initialize(void)
1958 init_std_data(&input_pool
);
1959 init_std_data(&blocking_pool
);
1960 crng_initialize(&primary_crng
);
1961 crng_global_init_time
= jiffies
;
1962 if (ratelimit_disable
) {
1963 urandom_warning
.interval
= 0;
1964 unseeded_warning
.interval
= 0;
1970 void rand_initialize_disk(struct gendisk
*disk
)
1972 struct timer_rand_state
*state
;
1975 * If kzalloc returns null, we just won't use that entropy
1978 state
= kzalloc(sizeof(struct timer_rand_state
), GFP_KERNEL
);
1980 state
->last_time
= INITIAL_JIFFIES
;
1981 disk
->random
= state
;
1987 _random_read(int nonblock
, char __user
*buf
, size_t nbytes
)
1994 nbytes
= min_t(size_t, nbytes
, SEC_XFER_SIZE
);
1996 n
= extract_entropy_user(&blocking_pool
, buf
, nbytes
);
1999 trace_random_read(n
*8, (nbytes
-n
)*8,
2000 ENTROPY_BITS(&blocking_pool
),
2001 ENTROPY_BITS(&input_pool
));
2005 /* Pool is (near) empty. Maybe wait and retry. */
2009 wait_event_interruptible(random_read_wait
,
2010 blocking_pool
.initialized
&&
2011 (ENTROPY_BITS(&input_pool
) >= random_read_wakeup_bits
));
2012 if (signal_pending(current
))
2013 return -ERESTARTSYS
;
2018 random_read(struct file
*file
, char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
2020 return _random_read(file
->f_flags
& O_NONBLOCK
, buf
, nbytes
);
2024 urandom_read(struct file
*file
, char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
2026 unsigned long flags
;
2027 static int maxwarn
= 10;
2030 if (!crng_ready() && maxwarn
> 0) {
2032 if (__ratelimit(&urandom_warning
))
2033 printk(KERN_NOTICE
"random: %s: uninitialized "
2034 "urandom read (%zd bytes read)\n",
2035 current
->comm
, nbytes
);
2036 spin_lock_irqsave(&primary_crng
.lock
, flags
);
2038 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
2040 nbytes
= min_t(size_t, nbytes
, INT_MAX
>> (ENTROPY_SHIFT
+ 3));
2041 ret
= extract_crng_user(buf
, nbytes
);
2042 trace_urandom_read(8 * nbytes
, 0, ENTROPY_BITS(&input_pool
));
2047 random_poll(struct file
*file
, poll_table
* wait
)
2051 poll_wait(file
, &random_read_wait
, wait
);
2052 poll_wait(file
, &random_write_wait
, wait
);
2054 if (ENTROPY_BITS(&input_pool
) >= random_read_wakeup_bits
)
2055 mask
|= EPOLLIN
| EPOLLRDNORM
;
2056 if (ENTROPY_BITS(&input_pool
) < random_write_wakeup_bits
)
2057 mask
|= EPOLLOUT
| EPOLLWRNORM
;
2062 write_pool(struct entropy_store
*r
, const char __user
*buffer
, size_t count
)
2066 const char __user
*p
= buffer
;
2071 bytes
= min(count
, sizeof(buf
));
2072 if (copy_from_user(&buf
, p
, bytes
))
2075 for (b
= bytes
; b
> 0 ; b
-= sizeof(__u32
), i
++) {
2076 if (!arch_get_random_int(&t
))
2084 mix_pool_bytes(r
, buf
, bytes
);
2091 static ssize_t
random_write(struct file
*file
, const char __user
*buffer
,
2092 size_t count
, loff_t
*ppos
)
2096 ret
= write_pool(&input_pool
, buffer
, count
);
2100 return (ssize_t
)count
;
2103 static long random_ioctl(struct file
*f
, unsigned int cmd
, unsigned long arg
)
2105 int size
, ent_count
;
2106 int __user
*p
= (int __user
*)arg
;
2111 /* inherently racy, no point locking */
2112 ent_count
= ENTROPY_BITS(&input_pool
);
2113 if (put_user(ent_count
, p
))
2116 case RNDADDTOENTCNT
:
2117 if (!capable(CAP_SYS_ADMIN
))
2119 if (get_user(ent_count
, p
))
2121 return credit_entropy_bits_safe(&input_pool
, ent_count
);
2123 if (!capable(CAP_SYS_ADMIN
))
2125 if (get_user(ent_count
, p
++))
2129 if (get_user(size
, p
++))
2131 retval
= write_pool(&input_pool
, (const char __user
*)p
,
2135 return credit_entropy_bits_safe(&input_pool
, ent_count
);
2139 * Clear the entropy pool counters. We no longer clear
2140 * the entropy pool, as that's silly.
2142 if (!capable(CAP_SYS_ADMIN
))
2144 input_pool
.entropy_count
= 0;
2145 blocking_pool
.entropy_count
= 0;
2148 if (!capable(CAP_SYS_ADMIN
))
2152 crng_reseed(&primary_crng
, NULL
);
2153 crng_global_init_time
= jiffies
- 1;
2160 static int random_fasync(int fd
, struct file
*filp
, int on
)
2162 return fasync_helper(fd
, filp
, on
, &fasync
);
2165 const struct file_operations random_fops
= {
2166 .read
= random_read
,
2167 .write
= random_write
,
2168 .poll
= random_poll
,
2169 .unlocked_ioctl
= random_ioctl
,
2170 .fasync
= random_fasync
,
2171 .llseek
= noop_llseek
,
2174 const struct file_operations urandom_fops
= {
2175 .read
= urandom_read
,
2176 .write
= random_write
,
2177 .unlocked_ioctl
= random_ioctl
,
2178 .fasync
= random_fasync
,
2179 .llseek
= noop_llseek
,
2182 SYSCALL_DEFINE3(getrandom
, char __user
*, buf
, size_t, count
,
2183 unsigned int, flags
)
2187 if (flags
& ~(GRND_NONBLOCK
|GRND_RANDOM
))
2190 if (count
> INT_MAX
)
2193 if (flags
& GRND_RANDOM
)
2194 return _random_read(flags
& GRND_NONBLOCK
, buf
, count
);
2196 if (!crng_ready()) {
2197 if (flags
& GRND_NONBLOCK
)
2199 ret
= wait_for_random_bytes();
2203 return urandom_read(NULL
, buf
, count
, NULL
);
2206 /********************************************************************
2210 ********************************************************************/
2212 #ifdef CONFIG_SYSCTL
2214 #include <linux/sysctl.h>
2216 static int min_read_thresh
= 8, min_write_thresh
;
2217 static int max_read_thresh
= OUTPUT_POOL_WORDS
* 32;
2218 static int max_write_thresh
= INPUT_POOL_WORDS
* 32;
2219 static int random_min_urandom_seed
= 60;
2220 static char sysctl_bootid
[16];
2223 * This function is used to return both the bootid UUID, and random
2224 * UUID. The difference is in whether table->data is NULL; if it is,
2225 * then a new UUID is generated and returned to the user.
2227 * If the user accesses this via the proc interface, the UUID will be
2228 * returned as an ASCII string in the standard UUID format; if via the
2229 * sysctl system call, as 16 bytes of binary data.
2231 static int proc_do_uuid(struct ctl_table
*table
, int write
,
2232 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2234 struct ctl_table fake_table
;
2235 unsigned char buf
[64], tmp_uuid
[16], *uuid
;
2240 generate_random_uuid(uuid
);
2242 static DEFINE_SPINLOCK(bootid_spinlock
);
2244 spin_lock(&bootid_spinlock
);
2246 generate_random_uuid(uuid
);
2247 spin_unlock(&bootid_spinlock
);
2250 sprintf(buf
, "%pU", uuid
);
2252 fake_table
.data
= buf
;
2253 fake_table
.maxlen
= sizeof(buf
);
2255 return proc_dostring(&fake_table
, write
, buffer
, lenp
, ppos
);
2259 * Return entropy available scaled to integral bits
2261 static int proc_do_entropy(struct ctl_table
*table
, int write
,
2262 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2264 struct ctl_table fake_table
;
2267 entropy_count
= *(int *)table
->data
>> ENTROPY_SHIFT
;
2269 fake_table
.data
= &entropy_count
;
2270 fake_table
.maxlen
= sizeof(entropy_count
);
2272 return proc_dointvec(&fake_table
, write
, buffer
, lenp
, ppos
);
2275 static int sysctl_poolsize
= INPUT_POOL_WORDS
* 32;
2276 extern struct ctl_table random_table
[];
2277 struct ctl_table random_table
[] = {
2279 .procname
= "poolsize",
2280 .data
= &sysctl_poolsize
,
2281 .maxlen
= sizeof(int),
2283 .proc_handler
= proc_dointvec
,
2286 .procname
= "entropy_avail",
2287 .maxlen
= sizeof(int),
2289 .proc_handler
= proc_do_entropy
,
2290 .data
= &input_pool
.entropy_count
,
2293 .procname
= "read_wakeup_threshold",
2294 .data
= &random_read_wakeup_bits
,
2295 .maxlen
= sizeof(int),
2297 .proc_handler
= proc_dointvec_minmax
,
2298 .extra1
= &min_read_thresh
,
2299 .extra2
= &max_read_thresh
,
2302 .procname
= "write_wakeup_threshold",
2303 .data
= &random_write_wakeup_bits
,
2304 .maxlen
= sizeof(int),
2306 .proc_handler
= proc_dointvec_minmax
,
2307 .extra1
= &min_write_thresh
,
2308 .extra2
= &max_write_thresh
,
2311 .procname
= "urandom_min_reseed_secs",
2312 .data
= &random_min_urandom_seed
,
2313 .maxlen
= sizeof(int),
2315 .proc_handler
= proc_dointvec
,
2318 .procname
= "boot_id",
2319 .data
= &sysctl_bootid
,
2322 .proc_handler
= proc_do_uuid
,
2328 .proc_handler
= proc_do_uuid
,
2330 #ifdef ADD_INTERRUPT_BENCH
2332 .procname
= "add_interrupt_avg_cycles",
2333 .data
= &avg_cycles
,
2334 .maxlen
= sizeof(avg_cycles
),
2336 .proc_handler
= proc_doulongvec_minmax
,
2339 .procname
= "add_interrupt_avg_deviation",
2340 .data
= &avg_deviation
,
2341 .maxlen
= sizeof(avg_deviation
),
2343 .proc_handler
= proc_doulongvec_minmax
,
2348 #endif /* CONFIG_SYSCTL */
2350 struct batched_entropy
{
2352 u64 entropy_u64
[CHACHA_BLOCK_SIZE
/ sizeof(u64
)];
2353 u32 entropy_u32
[CHACHA_BLOCK_SIZE
/ sizeof(u32
)];
2355 unsigned int position
;
2356 spinlock_t batch_lock
;
2360 * Get a random word for internal kernel use only. The quality of the random
2361 * number is either as good as RDRAND or as good as /dev/urandom, with the
2362 * goal of being quite fast and not depleting entropy. In order to ensure
2363 * that the randomness provided by this function is okay, the function
2364 * wait_for_random_bytes() should be called and return 0 at least once
2365 * at any point prior.
2367 static DEFINE_PER_CPU(struct batched_entropy
, batched_entropy_u64
) = {
2368 .batch_lock
= __SPIN_LOCK_UNLOCKED(batched_entropy_u64
.lock
),
2371 u64
get_random_u64(void)
2374 unsigned long flags
;
2375 struct batched_entropy
*batch
;
2376 static void *previous
;
2378 #if BITS_PER_LONG == 64
2379 if (arch_get_random_long((unsigned long *)&ret
))
2382 if (arch_get_random_long((unsigned long *)&ret
) &&
2383 arch_get_random_long((unsigned long *)&ret
+ 1))
2387 warn_unseeded_randomness(&previous
);
2389 batch
= raw_cpu_ptr(&batched_entropy_u64
);
2390 spin_lock_irqsave(&batch
->batch_lock
, flags
);
2391 if (batch
->position
% ARRAY_SIZE(batch
->entropy_u64
) == 0) {
2392 extract_crng((u8
*)batch
->entropy_u64
);
2393 batch
->position
= 0;
2395 ret
= batch
->entropy_u64
[batch
->position
++];
2396 spin_unlock_irqrestore(&batch
->batch_lock
, flags
);
2399 EXPORT_SYMBOL(get_random_u64
);
2401 static DEFINE_PER_CPU(struct batched_entropy
, batched_entropy_u32
) = {
2402 .batch_lock
= __SPIN_LOCK_UNLOCKED(batched_entropy_u32
.lock
),
2404 u32
get_random_u32(void)
2407 unsigned long flags
;
2408 struct batched_entropy
*batch
;
2409 static void *previous
;
2411 if (arch_get_random_int(&ret
))
2414 warn_unseeded_randomness(&previous
);
2416 batch
= raw_cpu_ptr(&batched_entropy_u32
);
2417 spin_lock_irqsave(&batch
->batch_lock
, flags
);
2418 if (batch
->position
% ARRAY_SIZE(batch
->entropy_u32
) == 0) {
2419 extract_crng((u8
*)batch
->entropy_u32
);
2420 batch
->position
= 0;
2422 ret
= batch
->entropy_u32
[batch
->position
++];
2423 spin_unlock_irqrestore(&batch
->batch_lock
, flags
);
2426 EXPORT_SYMBOL(get_random_u32
);
2428 /* It's important to invalidate all potential batched entropy that might
2429 * be stored before the crng is initialized, which we can do lazily by
2430 * simply resetting the counter to zero so that it's re-extracted on the
2432 static void invalidate_batched_entropy(void)
2435 unsigned long flags
;
2437 for_each_possible_cpu (cpu
) {
2438 struct batched_entropy
*batched_entropy
;
2440 batched_entropy
= per_cpu_ptr(&batched_entropy_u32
, cpu
);
2441 spin_lock_irqsave(&batched_entropy
->batch_lock
, flags
);
2442 batched_entropy
->position
= 0;
2443 spin_unlock(&batched_entropy
->batch_lock
);
2445 batched_entropy
= per_cpu_ptr(&batched_entropy_u64
, cpu
);
2446 spin_lock(&batched_entropy
->batch_lock
);
2447 batched_entropy
->position
= 0;
2448 spin_unlock_irqrestore(&batched_entropy
->batch_lock
, flags
);
2453 * randomize_page - Generate a random, page aligned address
2454 * @start: The smallest acceptable address the caller will take.
2455 * @range: The size of the area, starting at @start, within which the
2456 * random address must fall.
2458 * If @start + @range would overflow, @range is capped.
2460 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2461 * @start was already page aligned. We now align it regardless.
2463 * Return: A page aligned address within [start, start + range). On error,
2464 * @start is returned.
2467 randomize_page(unsigned long start
, unsigned long range
)
2469 if (!PAGE_ALIGNED(start
)) {
2470 range
-= PAGE_ALIGN(start
) - start
;
2471 start
= PAGE_ALIGN(start
);
2474 if (start
> ULONG_MAX
- range
)
2475 range
= ULONG_MAX
- start
;
2477 range
>>= PAGE_SHIFT
;
2482 return start
+ (get_random_long() % range
<< PAGE_SHIFT
);
2485 /* Interface for in-kernel drivers of true hardware RNGs.
2486 * Those devices may produce endless random bits and will be throttled
2487 * when our pool is full.
2489 void add_hwgenerator_randomness(const char *buffer
, size_t count
,
2492 struct entropy_store
*poolp
= &input_pool
;
2494 if (unlikely(crng_init
== 0)) {
2495 crng_fast_load(buffer
, count
);
2499 /* Suspend writing if we're above the trickle threshold.
2500 * We'll be woken up again once below random_write_wakeup_thresh,
2501 * or when the calling thread is about to terminate.
2503 wait_event_freezable(random_write_wait
,
2504 kthread_should_stop() ||
2505 ENTROPY_BITS(&input_pool
) <= random_write_wakeup_bits
);
2506 mix_pool_bytes(poolp
, buffer
, count
);
2507 credit_entropy_bits(poolp
, entropy
);
2509 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness
);
2511 /* Handle random seed passed by bootloader.
2512 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
2513 * it would be regarded as device data.
2514 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
2516 void add_bootloader_randomness(const void *buf
, unsigned int size
)
2518 if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER
))
2519 add_hwgenerator_randomness(buf
, size
, size
* 8);
2521 add_device_randomness(buf
, size
);
2523 EXPORT_SYMBOL_GPL(add_bootloader_randomness
);