2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/wait.h>
56 #include <linux/pagemap.h>
58 #define ZSPAGE_MAGIC 0x58
61 * This must be power of 2 and greater than of equal to sizeof(link_free).
62 * These two conditions ensure that any 'struct link_free' itself doesn't
63 * span more than 1 page which avoids complex case of mapping 2 pages simply
64 * to restore link_free pointer values.
69 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
70 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
72 #define ZS_MAX_ZSPAGE_ORDER 2
73 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
75 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
78 * Object location (<PFN>, <obj_idx>) is encoded as
79 * as single (unsigned long) handle value.
81 * Note that object index <obj_idx> starts from 0.
83 * This is made more complicated by various memory models and PAE.
86 #ifndef MAX_PHYSMEM_BITS
87 #ifdef CONFIG_HIGHMEM64G
88 #define MAX_PHYSMEM_BITS 36
89 #else /* !CONFIG_HIGHMEM64G */
91 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
94 #define MAX_PHYSMEM_BITS BITS_PER_LONG
97 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
100 * Memory for allocating for handle keeps object position by
101 * encoding <page, obj_idx> and the encoded value has a room
102 * in least bit(ie, look at obj_to_location).
103 * We use the bit to synchronize between object access by
104 * user and migration.
106 #define HANDLE_PIN_BIT 0
109 * Head in allocated object should have OBJ_ALLOCATED_TAG
110 * to identify the object was allocated or not.
111 * It's okay to add the status bit in the least bit because
112 * header keeps handle which is 4byte-aligned address so we
113 * have room for two bit at least.
115 #define OBJ_ALLOCATED_TAG 1
116 #define OBJ_TAG_BITS 1
117 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
118 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
120 #define FULLNESS_BITS 2
122 #define ISOLATED_BITS 3
123 #define MAGIC_VAL_BITS 8
125 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
126 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
127 #define ZS_MIN_ALLOC_SIZE \
128 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
129 /* each chunk includes extra space to keep handle */
130 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
133 * On systems with 4K page size, this gives 255 size classes! There is a
135 * - Large number of size classes is potentially wasteful as free page are
136 * spread across these classes
137 * - Small number of size classes causes large internal fragmentation
138 * - Probably its better to use specific size classes (empirically
139 * determined). NOTE: all those class sizes must be set as multiple of
140 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
142 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
146 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
147 ZS_SIZE_CLASS_DELTA) + 1)
149 enum fullness_group
{
167 struct zs_size_stat
{
168 unsigned long objs
[NR_ZS_STAT_TYPE
];
171 #ifdef CONFIG_ZSMALLOC_STAT
172 static struct dentry
*zs_stat_root
;
175 #ifdef CONFIG_COMPACTION
176 static struct vfsmount
*zsmalloc_mnt
;
180 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
182 * n = number of allocated objects
183 * N = total number of objects zspage can store
184 * f = fullness_threshold_frac
186 * Similarly, we assign zspage to:
187 * ZS_ALMOST_FULL when n > N / f
188 * ZS_EMPTY when n == 0
189 * ZS_FULL when n == N
191 * (see: fix_fullness_group())
193 static const int fullness_threshold_frac
= 4;
197 struct list_head fullness_list
[NR_ZS_FULLNESS
];
199 * Size of objects stored in this class. Must be multiple
204 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
205 int pages_per_zspage
;
208 struct zs_size_stat stats
;
211 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
212 static void SetPageHugeObject(struct page
*page
)
214 SetPageOwnerPriv1(page
);
217 static void ClearPageHugeObject(struct page
*page
)
219 ClearPageOwnerPriv1(page
);
222 static int PageHugeObject(struct page
*page
)
224 return PageOwnerPriv1(page
);
228 * Placed within free objects to form a singly linked list.
229 * For every zspage, zspage->freeobj gives head of this list.
231 * This must be power of 2 and less than or equal to ZS_ALIGN
237 * It's valid for non-allocated object
241 * Handle of allocated object.
243 unsigned long handle
;
250 struct size_class
*size_class
[ZS_SIZE_CLASSES
];
251 struct kmem_cache
*handle_cachep
;
252 struct kmem_cache
*zspage_cachep
;
254 atomic_long_t pages_allocated
;
256 struct zs_pool_stats stats
;
258 /* Compact classes */
259 struct shrinker shrinker
;
261 * To signify that register_shrinker() was successful
262 * and unregister_shrinker() will not Oops.
264 bool shrinker_enabled
;
265 #ifdef CONFIG_ZSMALLOC_STAT
266 struct dentry
*stat_dentry
;
268 #ifdef CONFIG_COMPACTION
270 struct work_struct free_work
;
271 /* A wait queue for when migration races with async_free_zspage() */
272 struct wait_queue_head migration_wait
;
273 atomic_long_t isolated_pages
;
280 unsigned int fullness
:FULLNESS_BITS
;
281 unsigned int class:CLASS_BITS
+ 1;
282 unsigned int isolated
:ISOLATED_BITS
;
283 unsigned int magic
:MAGIC_VAL_BITS
;
286 unsigned int freeobj
;
287 struct page
*first_page
;
288 struct list_head list
; /* fullness list */
289 #ifdef CONFIG_COMPACTION
294 struct mapping_area
{
295 #ifdef CONFIG_PGTABLE_MAPPING
296 struct vm_struct
*vm
; /* vm area for mapping object that span pages */
298 char *vm_buf
; /* copy buffer for objects that span pages */
300 char *vm_addr
; /* address of kmap_atomic()'ed pages */
301 enum zs_mapmode vm_mm
; /* mapping mode */
304 #ifdef CONFIG_COMPACTION
305 static int zs_register_migration(struct zs_pool
*pool
);
306 static void zs_unregister_migration(struct zs_pool
*pool
);
307 static void migrate_lock_init(struct zspage
*zspage
);
308 static void migrate_read_lock(struct zspage
*zspage
);
309 static void migrate_read_unlock(struct zspage
*zspage
);
310 static void kick_deferred_free(struct zs_pool
*pool
);
311 static void init_deferred_free(struct zs_pool
*pool
);
312 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
);
314 static int zsmalloc_mount(void) { return 0; }
315 static void zsmalloc_unmount(void) {}
316 static int zs_register_migration(struct zs_pool
*pool
) { return 0; }
317 static void zs_unregister_migration(struct zs_pool
*pool
) {}
318 static void migrate_lock_init(struct zspage
*zspage
) {}
319 static void migrate_read_lock(struct zspage
*zspage
) {}
320 static void migrate_read_unlock(struct zspage
*zspage
) {}
321 static void kick_deferred_free(struct zs_pool
*pool
) {}
322 static void init_deferred_free(struct zs_pool
*pool
) {}
323 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
) {}
326 static int create_cache(struct zs_pool
*pool
)
328 pool
->handle_cachep
= kmem_cache_create("zs_handle", ZS_HANDLE_SIZE
,
330 if (!pool
->handle_cachep
)
333 pool
->zspage_cachep
= kmem_cache_create("zspage", sizeof(struct zspage
),
335 if (!pool
->zspage_cachep
) {
336 kmem_cache_destroy(pool
->handle_cachep
);
337 pool
->handle_cachep
= NULL
;
344 static void destroy_cache(struct zs_pool
*pool
)
346 kmem_cache_destroy(pool
->handle_cachep
);
347 kmem_cache_destroy(pool
->zspage_cachep
);
350 static unsigned long cache_alloc_handle(struct zs_pool
*pool
, gfp_t gfp
)
352 return (unsigned long)kmem_cache_alloc(pool
->handle_cachep
,
353 gfp
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
356 static void cache_free_handle(struct zs_pool
*pool
, unsigned long handle
)
358 kmem_cache_free(pool
->handle_cachep
, (void *)handle
);
361 static struct zspage
*cache_alloc_zspage(struct zs_pool
*pool
, gfp_t flags
)
363 return kmem_cache_alloc(pool
->zspage_cachep
,
364 flags
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
367 static void cache_free_zspage(struct zs_pool
*pool
, struct zspage
*zspage
)
369 kmem_cache_free(pool
->zspage_cachep
, zspage
);
372 static void record_obj(unsigned long handle
, unsigned long obj
)
375 * lsb of @obj represents handle lock while other bits
376 * represent object value the handle is pointing so
377 * updating shouldn't do store tearing.
379 WRITE_ONCE(*(unsigned long *)handle
, obj
);
386 static void *zs_zpool_create(const char *name
, gfp_t gfp
,
387 const struct zpool_ops
*zpool_ops
,
391 * Ignore global gfp flags: zs_malloc() may be invoked from
392 * different contexts and its caller must provide a valid
395 return zs_create_pool(name
);
398 static void zs_zpool_destroy(void *pool
)
400 zs_destroy_pool(pool
);
403 static int zs_zpool_malloc(void *pool
, size_t size
, gfp_t gfp
,
404 unsigned long *handle
)
406 *handle
= zs_malloc(pool
, size
, gfp
);
407 return *handle
? 0 : -1;
409 static void zs_zpool_free(void *pool
, unsigned long handle
)
411 zs_free(pool
, handle
);
414 static int zs_zpool_shrink(void *pool
, unsigned int pages
,
415 unsigned int *reclaimed
)
420 static void *zs_zpool_map(void *pool
, unsigned long handle
,
421 enum zpool_mapmode mm
)
423 enum zs_mapmode zs_mm
;
432 case ZPOOL_MM_RW
: /* fallthru */
438 return zs_map_object(pool
, handle
, zs_mm
);
440 static void zs_zpool_unmap(void *pool
, unsigned long handle
)
442 zs_unmap_object(pool
, handle
);
445 static u64
zs_zpool_total_size(void *pool
)
447 return zs_get_total_pages(pool
) << PAGE_SHIFT
;
450 static struct zpool_driver zs_zpool_driver
= {
452 .owner
= THIS_MODULE
,
453 .create
= zs_zpool_create
,
454 .destroy
= zs_zpool_destroy
,
455 .malloc
= zs_zpool_malloc
,
456 .free
= zs_zpool_free
,
457 .shrink
= zs_zpool_shrink
,
459 .unmap
= zs_zpool_unmap
,
460 .total_size
= zs_zpool_total_size
,
463 MODULE_ALIAS("zpool-zsmalloc");
464 #endif /* CONFIG_ZPOOL */
466 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
467 static DEFINE_PER_CPU(struct mapping_area
, zs_map_area
);
469 static bool is_zspage_isolated(struct zspage
*zspage
)
471 return zspage
->isolated
;
474 static __maybe_unused
int is_first_page(struct page
*page
)
476 return PagePrivate(page
);
479 /* Protected by class->lock */
480 static inline int get_zspage_inuse(struct zspage
*zspage
)
482 return zspage
->inuse
;
485 static inline void set_zspage_inuse(struct zspage
*zspage
, int val
)
490 static inline void mod_zspage_inuse(struct zspage
*zspage
, int val
)
492 zspage
->inuse
+= val
;
495 static inline struct page
*get_first_page(struct zspage
*zspage
)
497 struct page
*first_page
= zspage
->first_page
;
499 VM_BUG_ON_PAGE(!is_first_page(first_page
), first_page
);
503 static inline int get_first_obj_offset(struct page
*page
)
508 static inline void set_first_obj_offset(struct page
*page
, int offset
)
510 page
->units
= offset
;
513 static inline unsigned int get_freeobj(struct zspage
*zspage
)
515 return zspage
->freeobj
;
518 static inline void set_freeobj(struct zspage
*zspage
, unsigned int obj
)
520 zspage
->freeobj
= obj
;
523 static void get_zspage_mapping(struct zspage
*zspage
,
524 unsigned int *class_idx
,
525 enum fullness_group
*fullness
)
527 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
529 *fullness
= zspage
->fullness
;
530 *class_idx
= zspage
->class;
533 static void set_zspage_mapping(struct zspage
*zspage
,
534 unsigned int class_idx
,
535 enum fullness_group fullness
)
537 zspage
->class = class_idx
;
538 zspage
->fullness
= fullness
;
542 * zsmalloc divides the pool into various size classes where each
543 * class maintains a list of zspages where each zspage is divided
544 * into equal sized chunks. Each allocation falls into one of these
545 * classes depending on its size. This function returns index of the
546 * size class which has chunk size big enough to hold the give size.
548 static int get_size_class_index(int size
)
552 if (likely(size
> ZS_MIN_ALLOC_SIZE
))
553 idx
= DIV_ROUND_UP(size
- ZS_MIN_ALLOC_SIZE
,
554 ZS_SIZE_CLASS_DELTA
);
556 return min_t(int, ZS_SIZE_CLASSES
- 1, idx
);
559 /* type can be of enum type zs_stat_type or fullness_group */
560 static inline void zs_stat_inc(struct size_class
*class,
561 int type
, unsigned long cnt
)
563 class->stats
.objs
[type
] += cnt
;
566 /* type can be of enum type zs_stat_type or fullness_group */
567 static inline void zs_stat_dec(struct size_class
*class,
568 int type
, unsigned long cnt
)
570 class->stats
.objs
[type
] -= cnt
;
573 /* type can be of enum type zs_stat_type or fullness_group */
574 static inline unsigned long zs_stat_get(struct size_class
*class,
577 return class->stats
.objs
[type
];
580 #ifdef CONFIG_ZSMALLOC_STAT
582 static void __init
zs_stat_init(void)
584 if (!debugfs_initialized()) {
585 pr_warn("debugfs not available, stat dir not created\n");
589 zs_stat_root
= debugfs_create_dir("zsmalloc", NULL
);
591 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
594 static void __exit
zs_stat_exit(void)
596 debugfs_remove_recursive(zs_stat_root
);
599 static unsigned long zs_can_compact(struct size_class
*class);
601 static int zs_stats_size_show(struct seq_file
*s
, void *v
)
604 struct zs_pool
*pool
= s
->private;
605 struct size_class
*class;
607 unsigned long class_almost_full
, class_almost_empty
;
608 unsigned long obj_allocated
, obj_used
, pages_used
, freeable
;
609 unsigned long total_class_almost_full
= 0, total_class_almost_empty
= 0;
610 unsigned long total_objs
= 0, total_used_objs
= 0, total_pages
= 0;
611 unsigned long total_freeable
= 0;
613 seq_printf(s
, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
614 "class", "size", "almost_full", "almost_empty",
615 "obj_allocated", "obj_used", "pages_used",
616 "pages_per_zspage", "freeable");
618 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
619 class = pool
->size_class
[i
];
621 if (class->index
!= i
)
624 spin_lock(&class->lock
);
625 class_almost_full
= zs_stat_get(class, CLASS_ALMOST_FULL
);
626 class_almost_empty
= zs_stat_get(class, CLASS_ALMOST_EMPTY
);
627 obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
628 obj_used
= zs_stat_get(class, OBJ_USED
);
629 freeable
= zs_can_compact(class);
630 spin_unlock(&class->lock
);
632 objs_per_zspage
= class->objs_per_zspage
;
633 pages_used
= obj_allocated
/ objs_per_zspage
*
634 class->pages_per_zspage
;
636 seq_printf(s
, " %5u %5u %11lu %12lu %13lu"
637 " %10lu %10lu %16d %8lu\n",
638 i
, class->size
, class_almost_full
, class_almost_empty
,
639 obj_allocated
, obj_used
, pages_used
,
640 class->pages_per_zspage
, freeable
);
642 total_class_almost_full
+= class_almost_full
;
643 total_class_almost_empty
+= class_almost_empty
;
644 total_objs
+= obj_allocated
;
645 total_used_objs
+= obj_used
;
646 total_pages
+= pages_used
;
647 total_freeable
+= freeable
;
651 seq_printf(s
, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
652 "Total", "", total_class_almost_full
,
653 total_class_almost_empty
, total_objs
,
654 total_used_objs
, total_pages
, "", total_freeable
);
659 static int zs_stats_size_open(struct inode
*inode
, struct file
*file
)
661 return single_open(file
, zs_stats_size_show
, inode
->i_private
);
664 static const struct file_operations zs_stat_size_ops
= {
665 .open
= zs_stats_size_open
,
668 .release
= single_release
,
671 static void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
673 struct dentry
*entry
;
676 pr_warn("no root stat dir, not creating <%s> stat dir\n", name
);
680 entry
= debugfs_create_dir(name
, zs_stat_root
);
682 pr_warn("debugfs dir <%s> creation failed\n", name
);
685 pool
->stat_dentry
= entry
;
687 entry
= debugfs_create_file("classes", S_IFREG
| S_IRUGO
,
688 pool
->stat_dentry
, pool
, &zs_stat_size_ops
);
690 pr_warn("%s: debugfs file entry <%s> creation failed\n",
692 debugfs_remove_recursive(pool
->stat_dentry
);
693 pool
->stat_dentry
= NULL
;
697 static void zs_pool_stat_destroy(struct zs_pool
*pool
)
699 debugfs_remove_recursive(pool
->stat_dentry
);
702 #else /* CONFIG_ZSMALLOC_STAT */
703 static void __init
zs_stat_init(void)
707 static void __exit
zs_stat_exit(void)
711 static inline void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
715 static inline void zs_pool_stat_destroy(struct zs_pool
*pool
)
722 * For each size class, zspages are divided into different groups
723 * depending on how "full" they are. This was done so that we could
724 * easily find empty or nearly empty zspages when we try to shrink
725 * the pool (not yet implemented). This function returns fullness
726 * status of the given page.
728 static enum fullness_group
get_fullness_group(struct size_class
*class,
729 struct zspage
*zspage
)
731 int inuse
, objs_per_zspage
;
732 enum fullness_group fg
;
734 inuse
= get_zspage_inuse(zspage
);
735 objs_per_zspage
= class->objs_per_zspage
;
739 else if (inuse
== objs_per_zspage
)
741 else if (inuse
<= 3 * objs_per_zspage
/ fullness_threshold_frac
)
742 fg
= ZS_ALMOST_EMPTY
;
750 * Each size class maintains various freelists and zspages are assigned
751 * to one of these freelists based on the number of live objects they
752 * have. This functions inserts the given zspage into the freelist
753 * identified by <class, fullness_group>.
755 static void insert_zspage(struct size_class
*class,
756 struct zspage
*zspage
,
757 enum fullness_group fullness
)
761 zs_stat_inc(class, fullness
, 1);
762 head
= list_first_entry_or_null(&class->fullness_list
[fullness
],
763 struct zspage
, list
);
765 * We want to see more ZS_FULL pages and less almost empty/full.
766 * Put pages with higher ->inuse first.
769 if (get_zspage_inuse(zspage
) < get_zspage_inuse(head
)) {
770 list_add(&zspage
->list
, &head
->list
);
774 list_add(&zspage
->list
, &class->fullness_list
[fullness
]);
778 * This function removes the given zspage from the freelist identified
779 * by <class, fullness_group>.
781 static void remove_zspage(struct size_class
*class,
782 struct zspage
*zspage
,
783 enum fullness_group fullness
)
785 VM_BUG_ON(list_empty(&class->fullness_list
[fullness
]));
786 VM_BUG_ON(is_zspage_isolated(zspage
));
788 list_del_init(&zspage
->list
);
789 zs_stat_dec(class, fullness
, 1);
793 * Each size class maintains zspages in different fullness groups depending
794 * on the number of live objects they contain. When allocating or freeing
795 * objects, the fullness status of the page can change, say, from ALMOST_FULL
796 * to ALMOST_EMPTY when freeing an object. This function checks if such
797 * a status change has occurred for the given page and accordingly moves the
798 * page from the freelist of the old fullness group to that of the new
801 static enum fullness_group
fix_fullness_group(struct size_class
*class,
802 struct zspage
*zspage
)
805 enum fullness_group currfg
, newfg
;
807 get_zspage_mapping(zspage
, &class_idx
, &currfg
);
808 newfg
= get_fullness_group(class, zspage
);
812 if (!is_zspage_isolated(zspage
)) {
813 remove_zspage(class, zspage
, currfg
);
814 insert_zspage(class, zspage
, newfg
);
817 set_zspage_mapping(zspage
, class_idx
, newfg
);
824 * We have to decide on how many pages to link together
825 * to form a zspage for each size class. This is important
826 * to reduce wastage due to unusable space left at end of
827 * each zspage which is given as:
828 * wastage = Zp % class_size
829 * usage = Zp - wastage
830 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
832 * For example, for size class of 3/8 * PAGE_SIZE, we should
833 * link together 3 PAGE_SIZE sized pages to form a zspage
834 * since then we can perfectly fit in 8 such objects.
836 static int get_pages_per_zspage(int class_size
)
838 int i
, max_usedpc
= 0;
839 /* zspage order which gives maximum used size per KB */
840 int max_usedpc_order
= 1;
842 for (i
= 1; i
<= ZS_MAX_PAGES_PER_ZSPAGE
; i
++) {
846 zspage_size
= i
* PAGE_SIZE
;
847 waste
= zspage_size
% class_size
;
848 usedpc
= (zspage_size
- waste
) * 100 / zspage_size
;
850 if (usedpc
> max_usedpc
) {
852 max_usedpc_order
= i
;
856 return max_usedpc_order
;
859 static struct zspage
*get_zspage(struct page
*page
)
861 struct zspage
*zspage
= (struct zspage
*)page
->private;
863 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
867 static struct page
*get_next_page(struct page
*page
)
869 if (unlikely(PageHugeObject(page
)))
872 return page
->freelist
;
876 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
877 * @page: page object resides in zspage
878 * @obj_idx: object index
880 static void obj_to_location(unsigned long obj
, struct page
**page
,
881 unsigned int *obj_idx
)
883 obj
>>= OBJ_TAG_BITS
;
884 *page
= pfn_to_page(obj
>> OBJ_INDEX_BITS
);
885 *obj_idx
= (obj
& OBJ_INDEX_MASK
);
889 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
890 * @page: page object resides in zspage
891 * @obj_idx: object index
893 static unsigned long location_to_obj(struct page
*page
, unsigned int obj_idx
)
897 obj
= page_to_pfn(page
) << OBJ_INDEX_BITS
;
898 obj
|= obj_idx
& OBJ_INDEX_MASK
;
899 obj
<<= OBJ_TAG_BITS
;
904 static unsigned long handle_to_obj(unsigned long handle
)
906 return *(unsigned long *)handle
;
909 static unsigned long obj_to_head(struct page
*page
, void *obj
)
911 if (unlikely(PageHugeObject(page
))) {
912 VM_BUG_ON_PAGE(!is_first_page(page
), page
);
915 return *(unsigned long *)obj
;
918 static inline int testpin_tag(unsigned long handle
)
920 return bit_spin_is_locked(HANDLE_PIN_BIT
, (unsigned long *)handle
);
923 static inline int trypin_tag(unsigned long handle
)
925 return bit_spin_trylock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
928 static void pin_tag(unsigned long handle
)
930 bit_spin_lock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
933 static void unpin_tag(unsigned long handle
)
935 bit_spin_unlock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
938 static void reset_page(struct page
*page
)
940 __ClearPageMovable(page
);
941 ClearPagePrivate(page
);
942 set_page_private(page
, 0);
943 page_mapcount_reset(page
);
944 ClearPageHugeObject(page
);
945 page
->freelist
= NULL
;
949 * To prevent zspage destroy during migration, zspage freeing should
950 * hold locks of all pages in the zspage.
952 void lock_zspage(struct zspage
*zspage
)
954 struct page
*page
= get_first_page(zspage
);
958 } while ((page
= get_next_page(page
)) != NULL
);
961 int trylock_zspage(struct zspage
*zspage
)
963 struct page
*cursor
, *fail
;
965 for (cursor
= get_first_page(zspage
); cursor
!= NULL
; cursor
=
966 get_next_page(cursor
)) {
967 if (!trylock_page(cursor
)) {
975 for (cursor
= get_first_page(zspage
); cursor
!= fail
; cursor
=
976 get_next_page(cursor
))
982 static void __free_zspage(struct zs_pool
*pool
, struct size_class
*class,
983 struct zspage
*zspage
)
985 struct page
*page
, *next
;
986 enum fullness_group fg
;
987 unsigned int class_idx
;
989 get_zspage_mapping(zspage
, &class_idx
, &fg
);
991 assert_spin_locked(&class->lock
);
993 VM_BUG_ON(get_zspage_inuse(zspage
));
994 VM_BUG_ON(fg
!= ZS_EMPTY
);
996 next
= page
= get_first_page(zspage
);
998 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
999 next
= get_next_page(page
);
1002 dec_zone_page_state(page
, NR_ZSPAGES
);
1005 } while (page
!= NULL
);
1007 cache_free_zspage(pool
, zspage
);
1009 zs_stat_dec(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
1010 atomic_long_sub(class->pages_per_zspage
,
1011 &pool
->pages_allocated
);
1014 static void free_zspage(struct zs_pool
*pool
, struct size_class
*class,
1015 struct zspage
*zspage
)
1017 VM_BUG_ON(get_zspage_inuse(zspage
));
1018 VM_BUG_ON(list_empty(&zspage
->list
));
1020 if (!trylock_zspage(zspage
)) {
1021 kick_deferred_free(pool
);
1025 remove_zspage(class, zspage
, ZS_EMPTY
);
1026 __free_zspage(pool
, class, zspage
);
1029 /* Initialize a newly allocated zspage */
1030 static void init_zspage(struct size_class
*class, struct zspage
*zspage
)
1032 unsigned int freeobj
= 1;
1033 unsigned long off
= 0;
1034 struct page
*page
= get_first_page(zspage
);
1037 struct page
*next_page
;
1038 struct link_free
*link
;
1041 set_first_obj_offset(page
, off
);
1043 vaddr
= kmap_atomic(page
);
1044 link
= (struct link_free
*)vaddr
+ off
/ sizeof(*link
);
1046 while ((off
+= class->size
) < PAGE_SIZE
) {
1047 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1048 link
+= class->size
/ sizeof(*link
);
1052 * We now come to the last (full or partial) object on this
1053 * page, which must point to the first object on the next
1056 next_page
= get_next_page(page
);
1058 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1061 * Reset OBJ_TAG_BITS bit to last link to tell
1062 * whether it's allocated object or not.
1064 link
->next
= -1 << OBJ_TAG_BITS
;
1066 kunmap_atomic(vaddr
);
1071 set_freeobj(zspage
, 0);
1074 static void create_page_chain(struct size_class
*class, struct zspage
*zspage
,
1075 struct page
*pages
[])
1079 struct page
*prev_page
= NULL
;
1080 int nr_pages
= class->pages_per_zspage
;
1083 * Allocate individual pages and link them together as:
1084 * 1. all pages are linked together using page->freelist
1085 * 2. each sub-page point to zspage using page->private
1087 * we set PG_private to identify the first page (i.e. no other sub-page
1088 * has this flag set).
1090 for (i
= 0; i
< nr_pages
; i
++) {
1092 set_page_private(page
, (unsigned long)zspage
);
1093 page
->freelist
= NULL
;
1095 zspage
->first_page
= page
;
1096 SetPagePrivate(page
);
1097 if (unlikely(class->objs_per_zspage
== 1 &&
1098 class->pages_per_zspage
== 1))
1099 SetPageHugeObject(page
);
1101 prev_page
->freelist
= page
;
1108 * Allocate a zspage for the given size class
1110 static struct zspage
*alloc_zspage(struct zs_pool
*pool
,
1111 struct size_class
*class,
1115 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
];
1116 struct zspage
*zspage
= cache_alloc_zspage(pool
, gfp
);
1121 memset(zspage
, 0, sizeof(struct zspage
));
1122 zspage
->magic
= ZSPAGE_MAGIC
;
1123 migrate_lock_init(zspage
);
1125 for (i
= 0; i
< class->pages_per_zspage
; i
++) {
1128 page
= alloc_page(gfp
);
1131 dec_zone_page_state(pages
[i
], NR_ZSPAGES
);
1132 __free_page(pages
[i
]);
1134 cache_free_zspage(pool
, zspage
);
1138 inc_zone_page_state(page
, NR_ZSPAGES
);
1142 create_page_chain(class, zspage
, pages
);
1143 init_zspage(class, zspage
);
1148 static struct zspage
*find_get_zspage(struct size_class
*class)
1151 struct zspage
*zspage
;
1153 for (i
= ZS_ALMOST_FULL
; i
>= ZS_EMPTY
; i
--) {
1154 zspage
= list_first_entry_or_null(&class->fullness_list
[i
],
1155 struct zspage
, list
);
1163 #ifdef CONFIG_PGTABLE_MAPPING
1164 static inline int __zs_cpu_up(struct mapping_area
*area
)
1167 * Make sure we don't leak memory if a cpu UP notification
1168 * and zs_init() race and both call zs_cpu_up() on the same cpu
1172 area
->vm
= alloc_vm_area(PAGE_SIZE
* 2, NULL
);
1178 static inline void __zs_cpu_down(struct mapping_area
*area
)
1181 free_vm_area(area
->vm
);
1185 static inline void *__zs_map_object(struct mapping_area
*area
,
1186 struct page
*pages
[2], int off
, int size
)
1188 BUG_ON(map_vm_area(area
->vm
, PAGE_KERNEL
, pages
));
1189 area
->vm_addr
= area
->vm
->addr
;
1190 return area
->vm_addr
+ off
;
1193 static inline void __zs_unmap_object(struct mapping_area
*area
,
1194 struct page
*pages
[2], int off
, int size
)
1196 unsigned long addr
= (unsigned long)area
->vm_addr
;
1198 unmap_kernel_range(addr
, PAGE_SIZE
* 2);
1201 #else /* CONFIG_PGTABLE_MAPPING */
1203 static inline int __zs_cpu_up(struct mapping_area
*area
)
1206 * Make sure we don't leak memory if a cpu UP notification
1207 * and zs_init() race and both call zs_cpu_up() on the same cpu
1211 area
->vm_buf
= kmalloc(ZS_MAX_ALLOC_SIZE
, GFP_KERNEL
);
1217 static inline void __zs_cpu_down(struct mapping_area
*area
)
1219 kfree(area
->vm_buf
);
1220 area
->vm_buf
= NULL
;
1223 static void *__zs_map_object(struct mapping_area
*area
,
1224 struct page
*pages
[2], int off
, int size
)
1228 char *buf
= area
->vm_buf
;
1230 /* disable page faults to match kmap_atomic() return conditions */
1231 pagefault_disable();
1233 /* no read fastpath */
1234 if (area
->vm_mm
== ZS_MM_WO
)
1237 sizes
[0] = PAGE_SIZE
- off
;
1238 sizes
[1] = size
- sizes
[0];
1240 /* copy object to per-cpu buffer */
1241 addr
= kmap_atomic(pages
[0]);
1242 memcpy(buf
, addr
+ off
, sizes
[0]);
1243 kunmap_atomic(addr
);
1244 addr
= kmap_atomic(pages
[1]);
1245 memcpy(buf
+ sizes
[0], addr
, sizes
[1]);
1246 kunmap_atomic(addr
);
1248 return area
->vm_buf
;
1251 static void __zs_unmap_object(struct mapping_area
*area
,
1252 struct page
*pages
[2], int off
, int size
)
1258 /* no write fastpath */
1259 if (area
->vm_mm
== ZS_MM_RO
)
1263 buf
= buf
+ ZS_HANDLE_SIZE
;
1264 size
-= ZS_HANDLE_SIZE
;
1265 off
+= ZS_HANDLE_SIZE
;
1267 sizes
[0] = PAGE_SIZE
- off
;
1268 sizes
[1] = size
- sizes
[0];
1270 /* copy per-cpu buffer to object */
1271 addr
= kmap_atomic(pages
[0]);
1272 memcpy(addr
+ off
, buf
, sizes
[0]);
1273 kunmap_atomic(addr
);
1274 addr
= kmap_atomic(pages
[1]);
1275 memcpy(addr
, buf
+ sizes
[0], sizes
[1]);
1276 kunmap_atomic(addr
);
1279 /* enable page faults to match kunmap_atomic() return conditions */
1283 #endif /* CONFIG_PGTABLE_MAPPING */
1285 static int zs_cpu_prepare(unsigned int cpu
)
1287 struct mapping_area
*area
;
1289 area
= &per_cpu(zs_map_area
, cpu
);
1290 return __zs_cpu_up(area
);
1293 static int zs_cpu_dead(unsigned int cpu
)
1295 struct mapping_area
*area
;
1297 area
= &per_cpu(zs_map_area
, cpu
);
1298 __zs_cpu_down(area
);
1302 static bool can_merge(struct size_class
*prev
, int pages_per_zspage
,
1303 int objs_per_zspage
)
1305 if (prev
->pages_per_zspage
== pages_per_zspage
&&
1306 prev
->objs_per_zspage
== objs_per_zspage
)
1312 static bool zspage_full(struct size_class
*class, struct zspage
*zspage
)
1314 return get_zspage_inuse(zspage
) == class->objs_per_zspage
;
1317 unsigned long zs_get_total_pages(struct zs_pool
*pool
)
1319 return atomic_long_read(&pool
->pages_allocated
);
1321 EXPORT_SYMBOL_GPL(zs_get_total_pages
);
1324 * zs_map_object - get address of allocated object from handle.
1325 * @pool: pool from which the object was allocated
1326 * @handle: handle returned from zs_malloc
1328 * Before using an object allocated from zs_malloc, it must be mapped using
1329 * this function. When done with the object, it must be unmapped using
1332 * Only one object can be mapped per cpu at a time. There is no protection
1333 * against nested mappings.
1335 * This function returns with preemption and page faults disabled.
1337 void *zs_map_object(struct zs_pool
*pool
, unsigned long handle
,
1340 struct zspage
*zspage
;
1342 unsigned long obj
, off
;
1343 unsigned int obj_idx
;
1345 unsigned int class_idx
;
1346 enum fullness_group fg
;
1347 struct size_class
*class;
1348 struct mapping_area
*area
;
1349 struct page
*pages
[2];
1353 * Because we use per-cpu mapping areas shared among the
1354 * pools/users, we can't allow mapping in interrupt context
1355 * because it can corrupt another users mappings.
1357 BUG_ON(in_interrupt());
1359 /* From now on, migration cannot move the object */
1362 obj
= handle_to_obj(handle
);
1363 obj_to_location(obj
, &page
, &obj_idx
);
1364 zspage
= get_zspage(page
);
1366 /* migration cannot move any subpage in this zspage */
1367 migrate_read_lock(zspage
);
1369 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1370 class = pool
->size_class
[class_idx
];
1371 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1373 area
= &get_cpu_var(zs_map_area
);
1375 if (off
+ class->size
<= PAGE_SIZE
) {
1376 /* this object is contained entirely within a page */
1377 area
->vm_addr
= kmap_atomic(page
);
1378 ret
= area
->vm_addr
+ off
;
1382 /* this object spans two pages */
1384 pages
[1] = get_next_page(page
);
1387 ret
= __zs_map_object(area
, pages
, off
, class->size
);
1389 if (likely(!PageHugeObject(page
)))
1390 ret
+= ZS_HANDLE_SIZE
;
1394 EXPORT_SYMBOL_GPL(zs_map_object
);
1396 void zs_unmap_object(struct zs_pool
*pool
, unsigned long handle
)
1398 struct zspage
*zspage
;
1400 unsigned long obj
, off
;
1401 unsigned int obj_idx
;
1403 unsigned int class_idx
;
1404 enum fullness_group fg
;
1405 struct size_class
*class;
1406 struct mapping_area
*area
;
1408 obj
= handle_to_obj(handle
);
1409 obj_to_location(obj
, &page
, &obj_idx
);
1410 zspage
= get_zspage(page
);
1411 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1412 class = pool
->size_class
[class_idx
];
1413 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1415 area
= this_cpu_ptr(&zs_map_area
);
1416 if (off
+ class->size
<= PAGE_SIZE
)
1417 kunmap_atomic(area
->vm_addr
);
1419 struct page
*pages
[2];
1422 pages
[1] = get_next_page(page
);
1425 __zs_unmap_object(area
, pages
, off
, class->size
);
1427 put_cpu_var(zs_map_area
);
1429 migrate_read_unlock(zspage
);
1432 EXPORT_SYMBOL_GPL(zs_unmap_object
);
1434 static unsigned long obj_malloc(struct size_class
*class,
1435 struct zspage
*zspage
, unsigned long handle
)
1437 int i
, nr_page
, offset
;
1439 struct link_free
*link
;
1441 struct page
*m_page
;
1442 unsigned long m_offset
;
1445 handle
|= OBJ_ALLOCATED_TAG
;
1446 obj
= get_freeobj(zspage
);
1448 offset
= obj
* class->size
;
1449 nr_page
= offset
>> PAGE_SHIFT
;
1450 m_offset
= offset
& ~PAGE_MASK
;
1451 m_page
= get_first_page(zspage
);
1453 for (i
= 0; i
< nr_page
; i
++)
1454 m_page
= get_next_page(m_page
);
1456 vaddr
= kmap_atomic(m_page
);
1457 link
= (struct link_free
*)vaddr
+ m_offset
/ sizeof(*link
);
1458 set_freeobj(zspage
, link
->next
>> OBJ_TAG_BITS
);
1459 if (likely(!PageHugeObject(m_page
)))
1460 /* record handle in the header of allocated chunk */
1461 link
->handle
= handle
;
1463 /* record handle to page->index */
1464 zspage
->first_page
->index
= handle
;
1466 kunmap_atomic(vaddr
);
1467 mod_zspage_inuse(zspage
, 1);
1468 zs_stat_inc(class, OBJ_USED
, 1);
1470 obj
= location_to_obj(m_page
, obj
);
1477 * zs_malloc - Allocate block of given size from pool.
1478 * @pool: pool to allocate from
1479 * @size: size of block to allocate
1480 * @gfp: gfp flags when allocating object
1482 * On success, handle to the allocated object is returned,
1484 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1486 unsigned long zs_malloc(struct zs_pool
*pool
, size_t size
, gfp_t gfp
)
1488 unsigned long handle
, obj
;
1489 struct size_class
*class;
1490 enum fullness_group newfg
;
1491 struct zspage
*zspage
;
1493 if (unlikely(!size
|| size
> ZS_MAX_ALLOC_SIZE
))
1496 handle
= cache_alloc_handle(pool
, gfp
);
1500 /* extra space in chunk to keep the handle */
1501 size
+= ZS_HANDLE_SIZE
;
1502 class = pool
->size_class
[get_size_class_index(size
)];
1504 spin_lock(&class->lock
);
1505 zspage
= find_get_zspage(class);
1506 if (likely(zspage
)) {
1507 obj
= obj_malloc(class, zspage
, handle
);
1508 /* Now move the zspage to another fullness group, if required */
1509 fix_fullness_group(class, zspage
);
1510 record_obj(handle
, obj
);
1511 spin_unlock(&class->lock
);
1516 spin_unlock(&class->lock
);
1518 zspage
= alloc_zspage(pool
, class, gfp
);
1520 cache_free_handle(pool
, handle
);
1524 spin_lock(&class->lock
);
1525 obj
= obj_malloc(class, zspage
, handle
);
1526 newfg
= get_fullness_group(class, zspage
);
1527 insert_zspage(class, zspage
, newfg
);
1528 set_zspage_mapping(zspage
, class->index
, newfg
);
1529 record_obj(handle
, obj
);
1530 atomic_long_add(class->pages_per_zspage
,
1531 &pool
->pages_allocated
);
1532 zs_stat_inc(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
1534 /* We completely set up zspage so mark them as movable */
1535 SetZsPageMovable(pool
, zspage
);
1536 spin_unlock(&class->lock
);
1540 EXPORT_SYMBOL_GPL(zs_malloc
);
1542 static void obj_free(struct size_class
*class, unsigned long obj
)
1544 struct link_free
*link
;
1545 struct zspage
*zspage
;
1546 struct page
*f_page
;
1547 unsigned long f_offset
;
1548 unsigned int f_objidx
;
1551 obj
&= ~OBJ_ALLOCATED_TAG
;
1552 obj_to_location(obj
, &f_page
, &f_objidx
);
1553 f_offset
= (class->size
* f_objidx
) & ~PAGE_MASK
;
1554 zspage
= get_zspage(f_page
);
1556 vaddr
= kmap_atomic(f_page
);
1558 /* Insert this object in containing zspage's freelist */
1559 link
= (struct link_free
*)(vaddr
+ f_offset
);
1560 link
->next
= get_freeobj(zspage
) << OBJ_TAG_BITS
;
1561 kunmap_atomic(vaddr
);
1562 set_freeobj(zspage
, f_objidx
);
1563 mod_zspage_inuse(zspage
, -1);
1564 zs_stat_dec(class, OBJ_USED
, 1);
1567 void zs_free(struct zs_pool
*pool
, unsigned long handle
)
1569 struct zspage
*zspage
;
1570 struct page
*f_page
;
1572 unsigned int f_objidx
;
1574 struct size_class
*class;
1575 enum fullness_group fullness
;
1578 if (unlikely(!handle
))
1582 obj
= handle_to_obj(handle
);
1583 obj_to_location(obj
, &f_page
, &f_objidx
);
1584 zspage
= get_zspage(f_page
);
1586 migrate_read_lock(zspage
);
1588 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1589 class = pool
->size_class
[class_idx
];
1591 spin_lock(&class->lock
);
1592 obj_free(class, obj
);
1593 fullness
= fix_fullness_group(class, zspage
);
1594 if (fullness
!= ZS_EMPTY
) {
1595 migrate_read_unlock(zspage
);
1599 isolated
= is_zspage_isolated(zspage
);
1600 migrate_read_unlock(zspage
);
1601 /* If zspage is isolated, zs_page_putback will free the zspage */
1602 if (likely(!isolated
))
1603 free_zspage(pool
, class, zspage
);
1606 spin_unlock(&class->lock
);
1608 cache_free_handle(pool
, handle
);
1610 EXPORT_SYMBOL_GPL(zs_free
);
1612 static void zs_object_copy(struct size_class
*class, unsigned long dst
,
1615 struct page
*s_page
, *d_page
;
1616 unsigned int s_objidx
, d_objidx
;
1617 unsigned long s_off
, d_off
;
1618 void *s_addr
, *d_addr
;
1619 int s_size
, d_size
, size
;
1622 s_size
= d_size
= class->size
;
1624 obj_to_location(src
, &s_page
, &s_objidx
);
1625 obj_to_location(dst
, &d_page
, &d_objidx
);
1627 s_off
= (class->size
* s_objidx
) & ~PAGE_MASK
;
1628 d_off
= (class->size
* d_objidx
) & ~PAGE_MASK
;
1630 if (s_off
+ class->size
> PAGE_SIZE
)
1631 s_size
= PAGE_SIZE
- s_off
;
1633 if (d_off
+ class->size
> PAGE_SIZE
)
1634 d_size
= PAGE_SIZE
- d_off
;
1636 s_addr
= kmap_atomic(s_page
);
1637 d_addr
= kmap_atomic(d_page
);
1640 size
= min(s_size
, d_size
);
1641 memcpy(d_addr
+ d_off
, s_addr
+ s_off
, size
);
1644 if (written
== class->size
)
1652 if (s_off
>= PAGE_SIZE
) {
1653 kunmap_atomic(d_addr
);
1654 kunmap_atomic(s_addr
);
1655 s_page
= get_next_page(s_page
);
1656 s_addr
= kmap_atomic(s_page
);
1657 d_addr
= kmap_atomic(d_page
);
1658 s_size
= class->size
- written
;
1662 if (d_off
>= PAGE_SIZE
) {
1663 kunmap_atomic(d_addr
);
1664 d_page
= get_next_page(d_page
);
1665 d_addr
= kmap_atomic(d_page
);
1666 d_size
= class->size
- written
;
1671 kunmap_atomic(d_addr
);
1672 kunmap_atomic(s_addr
);
1676 * Find alloced object in zspage from index object and
1679 static unsigned long find_alloced_obj(struct size_class
*class,
1680 struct page
*page
, int *obj_idx
)
1684 int index
= *obj_idx
;
1685 unsigned long handle
= 0;
1686 void *addr
= kmap_atomic(page
);
1688 offset
= get_first_obj_offset(page
);
1689 offset
+= class->size
* index
;
1691 while (offset
< PAGE_SIZE
) {
1692 head
= obj_to_head(page
, addr
+ offset
);
1693 if (head
& OBJ_ALLOCATED_TAG
) {
1694 handle
= head
& ~OBJ_ALLOCATED_TAG
;
1695 if (trypin_tag(handle
))
1700 offset
+= class->size
;
1704 kunmap_atomic(addr
);
1711 struct zs_compact_control
{
1712 /* Source spage for migration which could be a subpage of zspage */
1713 struct page
*s_page
;
1714 /* Destination page for migration which should be a first page
1716 struct page
*d_page
;
1717 /* Starting object index within @s_page which used for live object
1718 * in the subpage. */
1722 static int migrate_zspage(struct zs_pool
*pool
, struct size_class
*class,
1723 struct zs_compact_control
*cc
)
1725 unsigned long used_obj
, free_obj
;
1726 unsigned long handle
;
1727 struct page
*s_page
= cc
->s_page
;
1728 struct page
*d_page
= cc
->d_page
;
1729 int obj_idx
= cc
->obj_idx
;
1733 handle
= find_alloced_obj(class, s_page
, &obj_idx
);
1735 s_page
= get_next_page(s_page
);
1742 /* Stop if there is no more space */
1743 if (zspage_full(class, get_zspage(d_page
))) {
1749 used_obj
= handle_to_obj(handle
);
1750 free_obj
= obj_malloc(class, get_zspage(d_page
), handle
);
1751 zs_object_copy(class, free_obj
, used_obj
);
1754 * record_obj updates handle's value to free_obj and it will
1755 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1756 * breaks synchronization using pin_tag(e,g, zs_free) so
1757 * let's keep the lock bit.
1759 free_obj
|= BIT(HANDLE_PIN_BIT
);
1760 record_obj(handle
, free_obj
);
1762 obj_free(class, used_obj
);
1765 /* Remember last position in this iteration */
1766 cc
->s_page
= s_page
;
1767 cc
->obj_idx
= obj_idx
;
1772 static struct zspage
*isolate_zspage(struct size_class
*class, bool source
)
1775 struct zspage
*zspage
;
1776 enum fullness_group fg
[2] = {ZS_ALMOST_EMPTY
, ZS_ALMOST_FULL
};
1779 fg
[0] = ZS_ALMOST_FULL
;
1780 fg
[1] = ZS_ALMOST_EMPTY
;
1783 for (i
= 0; i
< 2; i
++) {
1784 zspage
= list_first_entry_or_null(&class->fullness_list
[fg
[i
]],
1785 struct zspage
, list
);
1787 VM_BUG_ON(is_zspage_isolated(zspage
));
1788 remove_zspage(class, zspage
, fg
[i
]);
1797 * putback_zspage - add @zspage into right class's fullness list
1798 * @class: destination class
1799 * @zspage: target page
1801 * Return @zspage's fullness_group
1803 static enum fullness_group
putback_zspage(struct size_class
*class,
1804 struct zspage
*zspage
)
1806 enum fullness_group fullness
;
1808 VM_BUG_ON(is_zspage_isolated(zspage
));
1810 fullness
= get_fullness_group(class, zspage
);
1811 insert_zspage(class, zspage
, fullness
);
1812 set_zspage_mapping(zspage
, class->index
, fullness
);
1817 #ifdef CONFIG_COMPACTION
1818 static struct dentry
*zs_mount(struct file_system_type
*fs_type
,
1819 int flags
, const char *dev_name
, void *data
)
1821 static const struct dentry_operations ops
= {
1822 .d_dname
= simple_dname
,
1825 return mount_pseudo(fs_type
, "zsmalloc:", NULL
, &ops
, ZSMALLOC_MAGIC
);
1828 static struct file_system_type zsmalloc_fs
= {
1831 .kill_sb
= kill_anon_super
,
1834 static int zsmalloc_mount(void)
1838 zsmalloc_mnt
= kern_mount(&zsmalloc_fs
);
1839 if (IS_ERR(zsmalloc_mnt
))
1840 ret
= PTR_ERR(zsmalloc_mnt
);
1845 static void zsmalloc_unmount(void)
1847 kern_unmount(zsmalloc_mnt
);
1850 static void migrate_lock_init(struct zspage
*zspage
)
1852 rwlock_init(&zspage
->lock
);
1855 static void migrate_read_lock(struct zspage
*zspage
)
1857 read_lock(&zspage
->lock
);
1860 static void migrate_read_unlock(struct zspage
*zspage
)
1862 read_unlock(&zspage
->lock
);
1865 static void migrate_write_lock(struct zspage
*zspage
)
1867 write_lock(&zspage
->lock
);
1870 static void migrate_write_unlock(struct zspage
*zspage
)
1872 write_unlock(&zspage
->lock
);
1875 /* Number of isolated subpage for *page migration* in this zspage */
1876 static void inc_zspage_isolation(struct zspage
*zspage
)
1881 static void dec_zspage_isolation(struct zspage
*zspage
)
1886 static void putback_zspage_deferred(struct zs_pool
*pool
,
1887 struct size_class
*class,
1888 struct zspage
*zspage
)
1890 enum fullness_group fg
;
1892 fg
= putback_zspage(class, zspage
);
1894 schedule_work(&pool
->free_work
);
1898 static inline void zs_pool_dec_isolated(struct zs_pool
*pool
)
1900 VM_BUG_ON(atomic_long_read(&pool
->isolated_pages
) <= 0);
1901 atomic_long_dec(&pool
->isolated_pages
);
1903 * There's no possibility of racing, since wait_for_isolated_drain()
1904 * checks the isolated count under &class->lock after enqueuing
1905 * on migration_wait.
1907 if (atomic_long_read(&pool
->isolated_pages
) == 0 && pool
->destroying
)
1908 wake_up_all(&pool
->migration_wait
);
1911 static void replace_sub_page(struct size_class
*class, struct zspage
*zspage
,
1912 struct page
*newpage
, struct page
*oldpage
)
1915 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
] = {NULL
, };
1918 page
= get_first_page(zspage
);
1920 if (page
== oldpage
)
1921 pages
[idx
] = newpage
;
1925 } while ((page
= get_next_page(page
)) != NULL
);
1927 create_page_chain(class, zspage
, pages
);
1928 set_first_obj_offset(newpage
, get_first_obj_offset(oldpage
));
1929 if (unlikely(PageHugeObject(oldpage
)))
1930 newpage
->index
= oldpage
->index
;
1931 __SetPageMovable(newpage
, page_mapping(oldpage
));
1934 bool zs_page_isolate(struct page
*page
, isolate_mode_t mode
)
1936 struct zs_pool
*pool
;
1937 struct size_class
*class;
1939 enum fullness_group fullness
;
1940 struct zspage
*zspage
;
1941 struct address_space
*mapping
;
1944 * Page is locked so zspage couldn't be destroyed. For detail, look at
1945 * lock_zspage in free_zspage.
1947 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1948 VM_BUG_ON_PAGE(PageIsolated(page
), page
);
1950 zspage
= get_zspage(page
);
1953 * Without class lock, fullness could be stale while class_idx is okay
1954 * because class_idx is constant unless page is freed so we should get
1955 * fullness again under class lock.
1957 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1958 mapping
= page_mapping(page
);
1959 pool
= mapping
->private_data
;
1960 class = pool
->size_class
[class_idx
];
1962 spin_lock(&class->lock
);
1963 if (get_zspage_inuse(zspage
) == 0) {
1964 spin_unlock(&class->lock
);
1968 /* zspage is isolated for object migration */
1969 if (list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1970 spin_unlock(&class->lock
);
1975 * If this is first time isolation for the zspage, isolate zspage from
1976 * size_class to prevent further object allocation from the zspage.
1978 if (!list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1979 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1980 atomic_long_inc(&pool
->isolated_pages
);
1981 remove_zspage(class, zspage
, fullness
);
1984 inc_zspage_isolation(zspage
);
1985 spin_unlock(&class->lock
);
1990 int zs_page_migrate(struct address_space
*mapping
, struct page
*newpage
,
1991 struct page
*page
, enum migrate_mode mode
)
1993 struct zs_pool
*pool
;
1994 struct size_class
*class;
1996 enum fullness_group fullness
;
1997 struct zspage
*zspage
;
1999 void *s_addr
, *d_addr
, *addr
;
2001 unsigned long handle
, head
;
2002 unsigned long old_obj
, new_obj
;
2003 unsigned int obj_idx
;
2007 * We cannot support the _NO_COPY case here, because copy needs to
2008 * happen under the zs lock, which does not work with
2009 * MIGRATE_SYNC_NO_COPY workflow.
2011 if (mode
== MIGRATE_SYNC_NO_COPY
)
2014 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
2015 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
2017 zspage
= get_zspage(page
);
2019 /* Concurrent compactor cannot migrate any subpage in zspage */
2020 migrate_write_lock(zspage
);
2021 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
2022 pool
= mapping
->private_data
;
2023 class = pool
->size_class
[class_idx
];
2024 offset
= get_first_obj_offset(page
);
2026 spin_lock(&class->lock
);
2027 if (!get_zspage_inuse(zspage
)) {
2029 * Set "offset" to end of the page so that every loops
2030 * skips unnecessary object scanning.
2036 s_addr
= kmap_atomic(page
);
2037 while (pos
< PAGE_SIZE
) {
2038 head
= obj_to_head(page
, s_addr
+ pos
);
2039 if (head
& OBJ_ALLOCATED_TAG
) {
2040 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2041 if (!trypin_tag(handle
))
2048 * Here, any user cannot access all objects in the zspage so let's move.
2050 d_addr
= kmap_atomic(newpage
);
2051 memcpy(d_addr
, s_addr
, PAGE_SIZE
);
2052 kunmap_atomic(d_addr
);
2054 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2055 addr
+= class->size
) {
2056 head
= obj_to_head(page
, addr
);
2057 if (head
& OBJ_ALLOCATED_TAG
) {
2058 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2059 if (!testpin_tag(handle
))
2062 old_obj
= handle_to_obj(handle
);
2063 obj_to_location(old_obj
, &dummy
, &obj_idx
);
2064 new_obj
= (unsigned long)location_to_obj(newpage
,
2066 new_obj
|= BIT(HANDLE_PIN_BIT
);
2067 record_obj(handle
, new_obj
);
2071 replace_sub_page(class, zspage
, newpage
, page
);
2074 dec_zspage_isolation(zspage
);
2077 * Page migration is done so let's putback isolated zspage to
2078 * the list if @page is final isolated subpage in the zspage.
2080 if (!is_zspage_isolated(zspage
)) {
2082 * We cannot race with zs_destroy_pool() here because we wait
2083 * for isolation to hit zero before we start destroying.
2084 * Also, we ensure that everyone can see pool->destroying before
2087 putback_zspage_deferred(pool
, class, zspage
);
2088 zs_pool_dec_isolated(pool
);
2091 if (page_zone(newpage
) != page_zone(page
)) {
2092 dec_zone_page_state(page
, NR_ZSPAGES
);
2093 inc_zone_page_state(newpage
, NR_ZSPAGES
);
2100 ret
= MIGRATEPAGE_SUCCESS
;
2102 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2103 addr
+= class->size
) {
2104 head
= obj_to_head(page
, addr
);
2105 if (head
& OBJ_ALLOCATED_TAG
) {
2106 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2107 if (!testpin_tag(handle
))
2112 kunmap_atomic(s_addr
);
2113 spin_unlock(&class->lock
);
2114 migrate_write_unlock(zspage
);
2119 void zs_page_putback(struct page
*page
)
2121 struct zs_pool
*pool
;
2122 struct size_class
*class;
2124 enum fullness_group fg
;
2125 struct address_space
*mapping
;
2126 struct zspage
*zspage
;
2128 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
2129 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
2131 zspage
= get_zspage(page
);
2132 get_zspage_mapping(zspage
, &class_idx
, &fg
);
2133 mapping
= page_mapping(page
);
2134 pool
= mapping
->private_data
;
2135 class = pool
->size_class
[class_idx
];
2137 spin_lock(&class->lock
);
2138 dec_zspage_isolation(zspage
);
2139 if (!is_zspage_isolated(zspage
)) {
2141 * Due to page_lock, we cannot free zspage immediately
2144 putback_zspage_deferred(pool
, class, zspage
);
2145 zs_pool_dec_isolated(pool
);
2147 spin_unlock(&class->lock
);
2150 const struct address_space_operations zsmalloc_aops
= {
2151 .isolate_page
= zs_page_isolate
,
2152 .migratepage
= zs_page_migrate
,
2153 .putback_page
= zs_page_putback
,
2156 static int zs_register_migration(struct zs_pool
*pool
)
2158 pool
->inode
= alloc_anon_inode(zsmalloc_mnt
->mnt_sb
);
2159 if (IS_ERR(pool
->inode
)) {
2164 pool
->inode
->i_mapping
->private_data
= pool
;
2165 pool
->inode
->i_mapping
->a_ops
= &zsmalloc_aops
;
2169 static bool pool_isolated_are_drained(struct zs_pool
*pool
)
2171 return atomic_long_read(&pool
->isolated_pages
) == 0;
2174 /* Function for resolving migration */
2175 static void wait_for_isolated_drain(struct zs_pool
*pool
)
2179 * We're in the process of destroying the pool, so there are no
2180 * active allocations. zs_page_isolate() fails for completely free
2181 * zspages, so we need only wait for the zs_pool's isolated
2182 * count to hit zero.
2184 wait_event(pool
->migration_wait
,
2185 pool_isolated_are_drained(pool
));
2188 static void zs_unregister_migration(struct zs_pool
*pool
)
2190 pool
->destroying
= true;
2192 * We need a memory barrier here to ensure global visibility of
2193 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2194 * case we don't care, or it will be > 0 and pool->destroying will
2195 * ensure that we wake up once isolation hits 0.
2198 wait_for_isolated_drain(pool
); /* This can block */
2199 flush_work(&pool
->free_work
);
2204 * Caller should hold page_lock of all pages in the zspage
2205 * In here, we cannot use zspage meta data.
2207 static void async_free_zspage(struct work_struct
*work
)
2210 struct size_class
*class;
2211 unsigned int class_idx
;
2212 enum fullness_group fullness
;
2213 struct zspage
*zspage
, *tmp
;
2214 LIST_HEAD(free_pages
);
2215 struct zs_pool
*pool
= container_of(work
, struct zs_pool
,
2218 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
2219 class = pool
->size_class
[i
];
2220 if (class->index
!= i
)
2223 spin_lock(&class->lock
);
2224 list_splice_init(&class->fullness_list
[ZS_EMPTY
], &free_pages
);
2225 spin_unlock(&class->lock
);
2229 list_for_each_entry_safe(zspage
, tmp
, &free_pages
, list
) {
2230 list_del(&zspage
->list
);
2231 lock_zspage(zspage
);
2233 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
2234 VM_BUG_ON(fullness
!= ZS_EMPTY
);
2235 class = pool
->size_class
[class_idx
];
2236 spin_lock(&class->lock
);
2237 __free_zspage(pool
, pool
->size_class
[class_idx
], zspage
);
2238 spin_unlock(&class->lock
);
2242 static void kick_deferred_free(struct zs_pool
*pool
)
2244 schedule_work(&pool
->free_work
);
2247 static void init_deferred_free(struct zs_pool
*pool
)
2249 INIT_WORK(&pool
->free_work
, async_free_zspage
);
2252 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
)
2254 struct page
*page
= get_first_page(zspage
);
2257 WARN_ON(!trylock_page(page
));
2258 __SetPageMovable(page
, pool
->inode
->i_mapping
);
2260 } while ((page
= get_next_page(page
)) != NULL
);
2266 * Based on the number of unused allocated objects calculate
2267 * and return the number of pages that we can free.
2269 static unsigned long zs_can_compact(struct size_class
*class)
2271 unsigned long obj_wasted
;
2272 unsigned long obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
2273 unsigned long obj_used
= zs_stat_get(class, OBJ_USED
);
2275 if (obj_allocated
<= obj_used
)
2278 obj_wasted
= obj_allocated
- obj_used
;
2279 obj_wasted
/= class->objs_per_zspage
;
2281 return obj_wasted
* class->pages_per_zspage
;
2284 static void __zs_compact(struct zs_pool
*pool
, struct size_class
*class)
2286 struct zs_compact_control cc
;
2287 struct zspage
*src_zspage
;
2288 struct zspage
*dst_zspage
= NULL
;
2290 spin_lock(&class->lock
);
2291 while ((src_zspage
= isolate_zspage(class, true))) {
2293 if (!zs_can_compact(class))
2297 cc
.s_page
= get_first_page(src_zspage
);
2299 while ((dst_zspage
= isolate_zspage(class, false))) {
2300 cc
.d_page
= get_first_page(dst_zspage
);
2302 * If there is no more space in dst_page, resched
2303 * and see if anyone had allocated another zspage.
2305 if (!migrate_zspage(pool
, class, &cc
))
2308 putback_zspage(class, dst_zspage
);
2311 /* Stop if we couldn't find slot */
2312 if (dst_zspage
== NULL
)
2315 putback_zspage(class, dst_zspage
);
2316 if (putback_zspage(class, src_zspage
) == ZS_EMPTY
) {
2317 free_zspage(pool
, class, src_zspage
);
2318 pool
->stats
.pages_compacted
+= class->pages_per_zspage
;
2320 spin_unlock(&class->lock
);
2322 spin_lock(&class->lock
);
2326 putback_zspage(class, src_zspage
);
2328 spin_unlock(&class->lock
);
2331 unsigned long zs_compact(struct zs_pool
*pool
)
2334 struct size_class
*class;
2336 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2337 class = pool
->size_class
[i
];
2340 if (class->index
!= i
)
2342 __zs_compact(pool
, class);
2345 return pool
->stats
.pages_compacted
;
2347 EXPORT_SYMBOL_GPL(zs_compact
);
2349 void zs_pool_stats(struct zs_pool
*pool
, struct zs_pool_stats
*stats
)
2351 memcpy(stats
, &pool
->stats
, sizeof(struct zs_pool_stats
));
2353 EXPORT_SYMBOL_GPL(zs_pool_stats
);
2355 static unsigned long zs_shrinker_scan(struct shrinker
*shrinker
,
2356 struct shrink_control
*sc
)
2358 unsigned long pages_freed
;
2359 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2362 pages_freed
= pool
->stats
.pages_compacted
;
2364 * Compact classes and calculate compaction delta.
2365 * Can run concurrently with a manually triggered
2366 * (by user) compaction.
2368 pages_freed
= zs_compact(pool
) - pages_freed
;
2370 return pages_freed
? pages_freed
: SHRINK_STOP
;
2373 static unsigned long zs_shrinker_count(struct shrinker
*shrinker
,
2374 struct shrink_control
*sc
)
2377 struct size_class
*class;
2378 unsigned long pages_to_free
= 0;
2379 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2382 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2383 class = pool
->size_class
[i
];
2386 if (class->index
!= i
)
2389 pages_to_free
+= zs_can_compact(class);
2392 return pages_to_free
;
2395 static void zs_unregister_shrinker(struct zs_pool
*pool
)
2397 if (pool
->shrinker_enabled
) {
2398 unregister_shrinker(&pool
->shrinker
);
2399 pool
->shrinker_enabled
= false;
2403 static int zs_register_shrinker(struct zs_pool
*pool
)
2405 pool
->shrinker
.scan_objects
= zs_shrinker_scan
;
2406 pool
->shrinker
.count_objects
= zs_shrinker_count
;
2407 pool
->shrinker
.batch
= 0;
2408 pool
->shrinker
.seeks
= DEFAULT_SEEKS
;
2410 return register_shrinker(&pool
->shrinker
);
2414 * zs_create_pool - Creates an allocation pool to work from.
2415 * @name: pool name to be created
2417 * This function must be called before anything when using
2418 * the zsmalloc allocator.
2420 * On success, a pointer to the newly created pool is returned,
2423 struct zs_pool
*zs_create_pool(const char *name
)
2426 struct zs_pool
*pool
;
2427 struct size_class
*prev_class
= NULL
;
2429 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
2433 init_deferred_free(pool
);
2435 pool
->name
= kstrdup(name
, GFP_KERNEL
);
2439 #ifdef CONFIG_COMPACTION
2440 init_waitqueue_head(&pool
->migration_wait
);
2443 if (create_cache(pool
))
2447 * Iterate reversely, because, size of size_class that we want to use
2448 * for merging should be larger or equal to current size.
2450 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2452 int pages_per_zspage
;
2453 int objs_per_zspage
;
2454 struct size_class
*class;
2457 size
= ZS_MIN_ALLOC_SIZE
+ i
* ZS_SIZE_CLASS_DELTA
;
2458 if (size
> ZS_MAX_ALLOC_SIZE
)
2459 size
= ZS_MAX_ALLOC_SIZE
;
2460 pages_per_zspage
= get_pages_per_zspage(size
);
2461 objs_per_zspage
= pages_per_zspage
* PAGE_SIZE
/ size
;
2464 * size_class is used for normal zsmalloc operation such
2465 * as alloc/free for that size. Although it is natural that we
2466 * have one size_class for each size, there is a chance that we
2467 * can get more memory utilization if we use one size_class for
2468 * many different sizes whose size_class have same
2469 * characteristics. So, we makes size_class point to
2470 * previous size_class if possible.
2473 if (can_merge(prev_class
, pages_per_zspage
, objs_per_zspage
)) {
2474 pool
->size_class
[i
] = prev_class
;
2479 class = kzalloc(sizeof(struct size_class
), GFP_KERNEL
);
2485 class->pages_per_zspage
= pages_per_zspage
;
2486 class->objs_per_zspage
= objs_per_zspage
;
2487 spin_lock_init(&class->lock
);
2488 pool
->size_class
[i
] = class;
2489 for (fullness
= ZS_EMPTY
; fullness
< NR_ZS_FULLNESS
;
2491 INIT_LIST_HEAD(&class->fullness_list
[fullness
]);
2496 /* debug only, don't abort if it fails */
2497 zs_pool_stat_create(pool
, name
);
2499 if (zs_register_migration(pool
))
2503 * Not critical, we still can use the pool
2504 * and user can trigger compaction manually.
2506 if (zs_register_shrinker(pool
) == 0)
2507 pool
->shrinker_enabled
= true;
2511 zs_destroy_pool(pool
);
2514 EXPORT_SYMBOL_GPL(zs_create_pool
);
2516 void zs_destroy_pool(struct zs_pool
*pool
)
2520 zs_unregister_shrinker(pool
);
2521 zs_unregister_migration(pool
);
2522 zs_pool_stat_destroy(pool
);
2524 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
2526 struct size_class
*class = pool
->size_class
[i
];
2531 if (class->index
!= i
)
2534 for (fg
= ZS_EMPTY
; fg
< NR_ZS_FULLNESS
; fg
++) {
2535 if (!list_empty(&class->fullness_list
[fg
])) {
2536 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2543 destroy_cache(pool
);
2547 EXPORT_SYMBOL_GPL(zs_destroy_pool
);
2549 static int __init
zs_init(void)
2553 ret
= zsmalloc_mount();
2557 ret
= cpuhp_setup_state(CPUHP_MM_ZS_PREPARE
, "mm/zsmalloc:prepare",
2558 zs_cpu_prepare
, zs_cpu_dead
);
2563 zpool_register_driver(&zs_zpool_driver
);
2576 static void __exit
zs_exit(void)
2579 zpool_unregister_driver(&zs_zpool_driver
);
2582 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE
);
2587 module_init(zs_init
);
2588 module_exit(zs_exit
);
2590 MODULE_LICENSE("Dual BSD/GPL");
2591 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");