Linux 4.14.212
[linux/fpc-iii.git] / mm / zsmalloc.c
blobc6df483b3751702156d560ce38558b475d9d3d01
1 /*
2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/wait.h>
56 #include <linux/pagemap.h>
58 #define ZSPAGE_MAGIC 0x58
61 * This must be power of 2 and greater than of equal to sizeof(link_free).
62 * These two conditions ensure that any 'struct link_free' itself doesn't
63 * span more than 1 page which avoids complex case of mapping 2 pages simply
64 * to restore link_free pointer values.
66 #define ZS_ALIGN 8
69 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
70 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
72 #define ZS_MAX_ZSPAGE_ORDER 2
73 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
75 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
78 * Object location (<PFN>, <obj_idx>) is encoded as
79 * as single (unsigned long) handle value.
81 * Note that object index <obj_idx> starts from 0.
83 * This is made more complicated by various memory models and PAE.
86 #ifndef MAX_PHYSMEM_BITS
87 #ifdef CONFIG_HIGHMEM64G
88 #define MAX_PHYSMEM_BITS 36
89 #else /* !CONFIG_HIGHMEM64G */
91 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
92 * be PAGE_SHIFT
94 #define MAX_PHYSMEM_BITS BITS_PER_LONG
95 #endif
96 #endif
97 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
100 * Memory for allocating for handle keeps object position by
101 * encoding <page, obj_idx> and the encoded value has a room
102 * in least bit(ie, look at obj_to_location).
103 * We use the bit to synchronize between object access by
104 * user and migration.
106 #define HANDLE_PIN_BIT 0
109 * Head in allocated object should have OBJ_ALLOCATED_TAG
110 * to identify the object was allocated or not.
111 * It's okay to add the status bit in the least bit because
112 * header keeps handle which is 4byte-aligned address so we
113 * have room for two bit at least.
115 #define OBJ_ALLOCATED_TAG 1
116 #define OBJ_TAG_BITS 1
117 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
118 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
120 #define FULLNESS_BITS 2
121 #define CLASS_BITS 8
122 #define ISOLATED_BITS 3
123 #define MAGIC_VAL_BITS 8
125 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
126 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
127 #define ZS_MIN_ALLOC_SIZE \
128 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
129 /* each chunk includes extra space to keep handle */
130 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
133 * On systems with 4K page size, this gives 255 size classes! There is a
134 * trader-off here:
135 * - Large number of size classes is potentially wasteful as free page are
136 * spread across these classes
137 * - Small number of size classes causes large internal fragmentation
138 * - Probably its better to use specific size classes (empirically
139 * determined). NOTE: all those class sizes must be set as multiple of
140 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
142 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
143 * (reason above)
145 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
146 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
147 ZS_SIZE_CLASS_DELTA) + 1)
149 enum fullness_group {
150 ZS_EMPTY,
151 ZS_ALMOST_EMPTY,
152 ZS_ALMOST_FULL,
153 ZS_FULL,
154 NR_ZS_FULLNESS,
157 enum zs_stat_type {
158 CLASS_EMPTY,
159 CLASS_ALMOST_EMPTY,
160 CLASS_ALMOST_FULL,
161 CLASS_FULL,
162 OBJ_ALLOCATED,
163 OBJ_USED,
164 NR_ZS_STAT_TYPE,
167 struct zs_size_stat {
168 unsigned long objs[NR_ZS_STAT_TYPE];
171 #ifdef CONFIG_ZSMALLOC_STAT
172 static struct dentry *zs_stat_root;
173 #endif
175 #ifdef CONFIG_COMPACTION
176 static struct vfsmount *zsmalloc_mnt;
177 #endif
180 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
181 * n <= N / f, where
182 * n = number of allocated objects
183 * N = total number of objects zspage can store
184 * f = fullness_threshold_frac
186 * Similarly, we assign zspage to:
187 * ZS_ALMOST_FULL when n > N / f
188 * ZS_EMPTY when n == 0
189 * ZS_FULL when n == N
191 * (see: fix_fullness_group())
193 static const int fullness_threshold_frac = 4;
195 struct size_class {
196 spinlock_t lock;
197 struct list_head fullness_list[NR_ZS_FULLNESS];
199 * Size of objects stored in this class. Must be multiple
200 * of ZS_ALIGN.
202 int size;
203 int objs_per_zspage;
204 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
205 int pages_per_zspage;
207 unsigned int index;
208 struct zs_size_stat stats;
211 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
212 static void SetPageHugeObject(struct page *page)
214 SetPageOwnerPriv1(page);
217 static void ClearPageHugeObject(struct page *page)
219 ClearPageOwnerPriv1(page);
222 static int PageHugeObject(struct page *page)
224 return PageOwnerPriv1(page);
228 * Placed within free objects to form a singly linked list.
229 * For every zspage, zspage->freeobj gives head of this list.
231 * This must be power of 2 and less than or equal to ZS_ALIGN
233 struct link_free {
234 union {
236 * Free object index;
237 * It's valid for non-allocated object
239 unsigned long next;
241 * Handle of allocated object.
243 unsigned long handle;
247 struct zs_pool {
248 const char *name;
250 struct size_class *size_class[ZS_SIZE_CLASSES];
251 struct kmem_cache *handle_cachep;
252 struct kmem_cache *zspage_cachep;
254 atomic_long_t pages_allocated;
256 struct zs_pool_stats stats;
258 /* Compact classes */
259 struct shrinker shrinker;
261 * To signify that register_shrinker() was successful
262 * and unregister_shrinker() will not Oops.
264 bool shrinker_enabled;
265 #ifdef CONFIG_ZSMALLOC_STAT
266 struct dentry *stat_dentry;
267 #endif
268 #ifdef CONFIG_COMPACTION
269 struct inode *inode;
270 struct work_struct free_work;
271 /* A wait queue for when migration races with async_free_zspage() */
272 struct wait_queue_head migration_wait;
273 atomic_long_t isolated_pages;
274 bool destroying;
275 #endif
278 struct zspage {
279 struct {
280 unsigned int fullness:FULLNESS_BITS;
281 unsigned int class:CLASS_BITS + 1;
282 unsigned int isolated:ISOLATED_BITS;
283 unsigned int magic:MAGIC_VAL_BITS;
285 unsigned int inuse;
286 unsigned int freeobj;
287 struct page *first_page;
288 struct list_head list; /* fullness list */
289 #ifdef CONFIG_COMPACTION
290 rwlock_t lock;
291 #endif
294 struct mapping_area {
295 #ifdef CONFIG_PGTABLE_MAPPING
296 struct vm_struct *vm; /* vm area for mapping object that span pages */
297 #else
298 char *vm_buf; /* copy buffer for objects that span pages */
299 #endif
300 char *vm_addr; /* address of kmap_atomic()'ed pages */
301 enum zs_mapmode vm_mm; /* mapping mode */
304 #ifdef CONFIG_COMPACTION
305 static int zs_register_migration(struct zs_pool *pool);
306 static void zs_unregister_migration(struct zs_pool *pool);
307 static void migrate_lock_init(struct zspage *zspage);
308 static void migrate_read_lock(struct zspage *zspage);
309 static void migrate_read_unlock(struct zspage *zspage);
310 static void kick_deferred_free(struct zs_pool *pool);
311 static void init_deferred_free(struct zs_pool *pool);
312 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
313 #else
314 static int zsmalloc_mount(void) { return 0; }
315 static void zsmalloc_unmount(void) {}
316 static int zs_register_migration(struct zs_pool *pool) { return 0; }
317 static void zs_unregister_migration(struct zs_pool *pool) {}
318 static void migrate_lock_init(struct zspage *zspage) {}
319 static void migrate_read_lock(struct zspage *zspage) {}
320 static void migrate_read_unlock(struct zspage *zspage) {}
321 static void kick_deferred_free(struct zs_pool *pool) {}
322 static void init_deferred_free(struct zs_pool *pool) {}
323 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
324 #endif
326 static int create_cache(struct zs_pool *pool)
328 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
329 0, 0, NULL);
330 if (!pool->handle_cachep)
331 return 1;
333 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
334 0, 0, NULL);
335 if (!pool->zspage_cachep) {
336 kmem_cache_destroy(pool->handle_cachep);
337 pool->handle_cachep = NULL;
338 return 1;
341 return 0;
344 static void destroy_cache(struct zs_pool *pool)
346 kmem_cache_destroy(pool->handle_cachep);
347 kmem_cache_destroy(pool->zspage_cachep);
350 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
352 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
353 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
356 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
358 kmem_cache_free(pool->handle_cachep, (void *)handle);
361 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
363 return kmem_cache_alloc(pool->zspage_cachep,
364 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
367 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
369 kmem_cache_free(pool->zspage_cachep, zspage);
372 static void record_obj(unsigned long handle, unsigned long obj)
375 * lsb of @obj represents handle lock while other bits
376 * represent object value the handle is pointing so
377 * updating shouldn't do store tearing.
379 WRITE_ONCE(*(unsigned long *)handle, obj);
382 /* zpool driver */
384 #ifdef CONFIG_ZPOOL
386 static void *zs_zpool_create(const char *name, gfp_t gfp,
387 const struct zpool_ops *zpool_ops,
388 struct zpool *zpool)
391 * Ignore global gfp flags: zs_malloc() may be invoked from
392 * different contexts and its caller must provide a valid
393 * gfp mask.
395 return zs_create_pool(name);
398 static void zs_zpool_destroy(void *pool)
400 zs_destroy_pool(pool);
403 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
404 unsigned long *handle)
406 *handle = zs_malloc(pool, size, gfp);
407 return *handle ? 0 : -1;
409 static void zs_zpool_free(void *pool, unsigned long handle)
411 zs_free(pool, handle);
414 static int zs_zpool_shrink(void *pool, unsigned int pages,
415 unsigned int *reclaimed)
417 return -EINVAL;
420 static void *zs_zpool_map(void *pool, unsigned long handle,
421 enum zpool_mapmode mm)
423 enum zs_mapmode zs_mm;
425 switch (mm) {
426 case ZPOOL_MM_RO:
427 zs_mm = ZS_MM_RO;
428 break;
429 case ZPOOL_MM_WO:
430 zs_mm = ZS_MM_WO;
431 break;
432 case ZPOOL_MM_RW: /* fallthru */
433 default:
434 zs_mm = ZS_MM_RW;
435 break;
438 return zs_map_object(pool, handle, zs_mm);
440 static void zs_zpool_unmap(void *pool, unsigned long handle)
442 zs_unmap_object(pool, handle);
445 static u64 zs_zpool_total_size(void *pool)
447 return zs_get_total_pages(pool) << PAGE_SHIFT;
450 static struct zpool_driver zs_zpool_driver = {
451 .type = "zsmalloc",
452 .owner = THIS_MODULE,
453 .create = zs_zpool_create,
454 .destroy = zs_zpool_destroy,
455 .malloc = zs_zpool_malloc,
456 .free = zs_zpool_free,
457 .shrink = zs_zpool_shrink,
458 .map = zs_zpool_map,
459 .unmap = zs_zpool_unmap,
460 .total_size = zs_zpool_total_size,
463 MODULE_ALIAS("zpool-zsmalloc");
464 #endif /* CONFIG_ZPOOL */
466 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
467 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
469 static bool is_zspage_isolated(struct zspage *zspage)
471 return zspage->isolated;
474 static __maybe_unused int is_first_page(struct page *page)
476 return PagePrivate(page);
479 /* Protected by class->lock */
480 static inline int get_zspage_inuse(struct zspage *zspage)
482 return zspage->inuse;
485 static inline void set_zspage_inuse(struct zspage *zspage, int val)
487 zspage->inuse = val;
490 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
492 zspage->inuse += val;
495 static inline struct page *get_first_page(struct zspage *zspage)
497 struct page *first_page = zspage->first_page;
499 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
500 return first_page;
503 static inline int get_first_obj_offset(struct page *page)
505 return page->units;
508 static inline void set_first_obj_offset(struct page *page, int offset)
510 page->units = offset;
513 static inline unsigned int get_freeobj(struct zspage *zspage)
515 return zspage->freeobj;
518 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
520 zspage->freeobj = obj;
523 static void get_zspage_mapping(struct zspage *zspage,
524 unsigned int *class_idx,
525 enum fullness_group *fullness)
527 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
529 *fullness = zspage->fullness;
530 *class_idx = zspage->class;
533 static void set_zspage_mapping(struct zspage *zspage,
534 unsigned int class_idx,
535 enum fullness_group fullness)
537 zspage->class = class_idx;
538 zspage->fullness = fullness;
542 * zsmalloc divides the pool into various size classes where each
543 * class maintains a list of zspages where each zspage is divided
544 * into equal sized chunks. Each allocation falls into one of these
545 * classes depending on its size. This function returns index of the
546 * size class which has chunk size big enough to hold the give size.
548 static int get_size_class_index(int size)
550 int idx = 0;
552 if (likely(size > ZS_MIN_ALLOC_SIZE))
553 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
554 ZS_SIZE_CLASS_DELTA);
556 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
559 /* type can be of enum type zs_stat_type or fullness_group */
560 static inline void zs_stat_inc(struct size_class *class,
561 int type, unsigned long cnt)
563 class->stats.objs[type] += cnt;
566 /* type can be of enum type zs_stat_type or fullness_group */
567 static inline void zs_stat_dec(struct size_class *class,
568 int type, unsigned long cnt)
570 class->stats.objs[type] -= cnt;
573 /* type can be of enum type zs_stat_type or fullness_group */
574 static inline unsigned long zs_stat_get(struct size_class *class,
575 int type)
577 return class->stats.objs[type];
580 #ifdef CONFIG_ZSMALLOC_STAT
582 static void __init zs_stat_init(void)
584 if (!debugfs_initialized()) {
585 pr_warn("debugfs not available, stat dir not created\n");
586 return;
589 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
590 if (!zs_stat_root)
591 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
594 static void __exit zs_stat_exit(void)
596 debugfs_remove_recursive(zs_stat_root);
599 static unsigned long zs_can_compact(struct size_class *class);
601 static int zs_stats_size_show(struct seq_file *s, void *v)
603 int i;
604 struct zs_pool *pool = s->private;
605 struct size_class *class;
606 int objs_per_zspage;
607 unsigned long class_almost_full, class_almost_empty;
608 unsigned long obj_allocated, obj_used, pages_used, freeable;
609 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
610 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
611 unsigned long total_freeable = 0;
613 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
614 "class", "size", "almost_full", "almost_empty",
615 "obj_allocated", "obj_used", "pages_used",
616 "pages_per_zspage", "freeable");
618 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
619 class = pool->size_class[i];
621 if (class->index != i)
622 continue;
624 spin_lock(&class->lock);
625 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
626 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
627 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
628 obj_used = zs_stat_get(class, OBJ_USED);
629 freeable = zs_can_compact(class);
630 spin_unlock(&class->lock);
632 objs_per_zspage = class->objs_per_zspage;
633 pages_used = obj_allocated / objs_per_zspage *
634 class->pages_per_zspage;
636 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
637 " %10lu %10lu %16d %8lu\n",
638 i, class->size, class_almost_full, class_almost_empty,
639 obj_allocated, obj_used, pages_used,
640 class->pages_per_zspage, freeable);
642 total_class_almost_full += class_almost_full;
643 total_class_almost_empty += class_almost_empty;
644 total_objs += obj_allocated;
645 total_used_objs += obj_used;
646 total_pages += pages_used;
647 total_freeable += freeable;
650 seq_puts(s, "\n");
651 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
652 "Total", "", total_class_almost_full,
653 total_class_almost_empty, total_objs,
654 total_used_objs, total_pages, "", total_freeable);
656 return 0;
659 static int zs_stats_size_open(struct inode *inode, struct file *file)
661 return single_open(file, zs_stats_size_show, inode->i_private);
664 static const struct file_operations zs_stat_size_ops = {
665 .open = zs_stats_size_open,
666 .read = seq_read,
667 .llseek = seq_lseek,
668 .release = single_release,
671 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
673 struct dentry *entry;
675 if (!zs_stat_root) {
676 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
677 return;
680 entry = debugfs_create_dir(name, zs_stat_root);
681 if (!entry) {
682 pr_warn("debugfs dir <%s> creation failed\n", name);
683 return;
685 pool->stat_dentry = entry;
687 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
688 pool->stat_dentry, pool, &zs_stat_size_ops);
689 if (!entry) {
690 pr_warn("%s: debugfs file entry <%s> creation failed\n",
691 name, "classes");
692 debugfs_remove_recursive(pool->stat_dentry);
693 pool->stat_dentry = NULL;
697 static void zs_pool_stat_destroy(struct zs_pool *pool)
699 debugfs_remove_recursive(pool->stat_dentry);
702 #else /* CONFIG_ZSMALLOC_STAT */
703 static void __init zs_stat_init(void)
707 static void __exit zs_stat_exit(void)
711 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
715 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
718 #endif
722 * For each size class, zspages are divided into different groups
723 * depending on how "full" they are. This was done so that we could
724 * easily find empty or nearly empty zspages when we try to shrink
725 * the pool (not yet implemented). This function returns fullness
726 * status of the given page.
728 static enum fullness_group get_fullness_group(struct size_class *class,
729 struct zspage *zspage)
731 int inuse, objs_per_zspage;
732 enum fullness_group fg;
734 inuse = get_zspage_inuse(zspage);
735 objs_per_zspage = class->objs_per_zspage;
737 if (inuse == 0)
738 fg = ZS_EMPTY;
739 else if (inuse == objs_per_zspage)
740 fg = ZS_FULL;
741 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
742 fg = ZS_ALMOST_EMPTY;
743 else
744 fg = ZS_ALMOST_FULL;
746 return fg;
750 * Each size class maintains various freelists and zspages are assigned
751 * to one of these freelists based on the number of live objects they
752 * have. This functions inserts the given zspage into the freelist
753 * identified by <class, fullness_group>.
755 static void insert_zspage(struct size_class *class,
756 struct zspage *zspage,
757 enum fullness_group fullness)
759 struct zspage *head;
761 zs_stat_inc(class, fullness, 1);
762 head = list_first_entry_or_null(&class->fullness_list[fullness],
763 struct zspage, list);
765 * We want to see more ZS_FULL pages and less almost empty/full.
766 * Put pages with higher ->inuse first.
768 if (head) {
769 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
770 list_add(&zspage->list, &head->list);
771 return;
774 list_add(&zspage->list, &class->fullness_list[fullness]);
778 * This function removes the given zspage from the freelist identified
779 * by <class, fullness_group>.
781 static void remove_zspage(struct size_class *class,
782 struct zspage *zspage,
783 enum fullness_group fullness)
785 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
786 VM_BUG_ON(is_zspage_isolated(zspage));
788 list_del_init(&zspage->list);
789 zs_stat_dec(class, fullness, 1);
793 * Each size class maintains zspages in different fullness groups depending
794 * on the number of live objects they contain. When allocating or freeing
795 * objects, the fullness status of the page can change, say, from ALMOST_FULL
796 * to ALMOST_EMPTY when freeing an object. This function checks if such
797 * a status change has occurred for the given page and accordingly moves the
798 * page from the freelist of the old fullness group to that of the new
799 * fullness group.
801 static enum fullness_group fix_fullness_group(struct size_class *class,
802 struct zspage *zspage)
804 int class_idx;
805 enum fullness_group currfg, newfg;
807 get_zspage_mapping(zspage, &class_idx, &currfg);
808 newfg = get_fullness_group(class, zspage);
809 if (newfg == currfg)
810 goto out;
812 if (!is_zspage_isolated(zspage)) {
813 remove_zspage(class, zspage, currfg);
814 insert_zspage(class, zspage, newfg);
817 set_zspage_mapping(zspage, class_idx, newfg);
819 out:
820 return newfg;
824 * We have to decide on how many pages to link together
825 * to form a zspage for each size class. This is important
826 * to reduce wastage due to unusable space left at end of
827 * each zspage which is given as:
828 * wastage = Zp % class_size
829 * usage = Zp - wastage
830 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
832 * For example, for size class of 3/8 * PAGE_SIZE, we should
833 * link together 3 PAGE_SIZE sized pages to form a zspage
834 * since then we can perfectly fit in 8 such objects.
836 static int get_pages_per_zspage(int class_size)
838 int i, max_usedpc = 0;
839 /* zspage order which gives maximum used size per KB */
840 int max_usedpc_order = 1;
842 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
843 int zspage_size;
844 int waste, usedpc;
846 zspage_size = i * PAGE_SIZE;
847 waste = zspage_size % class_size;
848 usedpc = (zspage_size - waste) * 100 / zspage_size;
850 if (usedpc > max_usedpc) {
851 max_usedpc = usedpc;
852 max_usedpc_order = i;
856 return max_usedpc_order;
859 static struct zspage *get_zspage(struct page *page)
861 struct zspage *zspage = (struct zspage *)page->private;
863 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
864 return zspage;
867 static struct page *get_next_page(struct page *page)
869 if (unlikely(PageHugeObject(page)))
870 return NULL;
872 return page->freelist;
876 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
877 * @page: page object resides in zspage
878 * @obj_idx: object index
880 static void obj_to_location(unsigned long obj, struct page **page,
881 unsigned int *obj_idx)
883 obj >>= OBJ_TAG_BITS;
884 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
885 *obj_idx = (obj & OBJ_INDEX_MASK);
889 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
890 * @page: page object resides in zspage
891 * @obj_idx: object index
893 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
895 unsigned long obj;
897 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
898 obj |= obj_idx & OBJ_INDEX_MASK;
899 obj <<= OBJ_TAG_BITS;
901 return obj;
904 static unsigned long handle_to_obj(unsigned long handle)
906 return *(unsigned long *)handle;
909 static unsigned long obj_to_head(struct page *page, void *obj)
911 if (unlikely(PageHugeObject(page))) {
912 VM_BUG_ON_PAGE(!is_first_page(page), page);
913 return page->index;
914 } else
915 return *(unsigned long *)obj;
918 static inline int testpin_tag(unsigned long handle)
920 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
923 static inline int trypin_tag(unsigned long handle)
925 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
928 static void pin_tag(unsigned long handle)
930 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
933 static void unpin_tag(unsigned long handle)
935 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
938 static void reset_page(struct page *page)
940 __ClearPageMovable(page);
941 ClearPagePrivate(page);
942 set_page_private(page, 0);
943 page_mapcount_reset(page);
944 ClearPageHugeObject(page);
945 page->freelist = NULL;
949 * To prevent zspage destroy during migration, zspage freeing should
950 * hold locks of all pages in the zspage.
952 void lock_zspage(struct zspage *zspage)
954 struct page *page = get_first_page(zspage);
956 do {
957 lock_page(page);
958 } while ((page = get_next_page(page)) != NULL);
961 int trylock_zspage(struct zspage *zspage)
963 struct page *cursor, *fail;
965 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
966 get_next_page(cursor)) {
967 if (!trylock_page(cursor)) {
968 fail = cursor;
969 goto unlock;
973 return 1;
974 unlock:
975 for (cursor = get_first_page(zspage); cursor != fail; cursor =
976 get_next_page(cursor))
977 unlock_page(cursor);
979 return 0;
982 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
983 struct zspage *zspage)
985 struct page *page, *next;
986 enum fullness_group fg;
987 unsigned int class_idx;
989 get_zspage_mapping(zspage, &class_idx, &fg);
991 assert_spin_locked(&class->lock);
993 VM_BUG_ON(get_zspage_inuse(zspage));
994 VM_BUG_ON(fg != ZS_EMPTY);
996 next = page = get_first_page(zspage);
997 do {
998 VM_BUG_ON_PAGE(!PageLocked(page), page);
999 next = get_next_page(page);
1000 reset_page(page);
1001 unlock_page(page);
1002 dec_zone_page_state(page, NR_ZSPAGES);
1003 put_page(page);
1004 page = next;
1005 } while (page != NULL);
1007 cache_free_zspage(pool, zspage);
1009 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1010 atomic_long_sub(class->pages_per_zspage,
1011 &pool->pages_allocated);
1014 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1015 struct zspage *zspage)
1017 VM_BUG_ON(get_zspage_inuse(zspage));
1018 VM_BUG_ON(list_empty(&zspage->list));
1020 if (!trylock_zspage(zspage)) {
1021 kick_deferred_free(pool);
1022 return;
1025 remove_zspage(class, zspage, ZS_EMPTY);
1026 __free_zspage(pool, class, zspage);
1029 /* Initialize a newly allocated zspage */
1030 static void init_zspage(struct size_class *class, struct zspage *zspage)
1032 unsigned int freeobj = 1;
1033 unsigned long off = 0;
1034 struct page *page = get_first_page(zspage);
1036 while (page) {
1037 struct page *next_page;
1038 struct link_free *link;
1039 void *vaddr;
1041 set_first_obj_offset(page, off);
1043 vaddr = kmap_atomic(page);
1044 link = (struct link_free *)vaddr + off / sizeof(*link);
1046 while ((off += class->size) < PAGE_SIZE) {
1047 link->next = freeobj++ << OBJ_TAG_BITS;
1048 link += class->size / sizeof(*link);
1052 * We now come to the last (full or partial) object on this
1053 * page, which must point to the first object on the next
1054 * page (if present)
1056 next_page = get_next_page(page);
1057 if (next_page) {
1058 link->next = freeobj++ << OBJ_TAG_BITS;
1059 } else {
1061 * Reset OBJ_TAG_BITS bit to last link to tell
1062 * whether it's allocated object or not.
1064 link->next = -1 << OBJ_TAG_BITS;
1066 kunmap_atomic(vaddr);
1067 page = next_page;
1068 off %= PAGE_SIZE;
1071 set_freeobj(zspage, 0);
1074 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1075 struct page *pages[])
1077 int i;
1078 struct page *page;
1079 struct page *prev_page = NULL;
1080 int nr_pages = class->pages_per_zspage;
1083 * Allocate individual pages and link them together as:
1084 * 1. all pages are linked together using page->freelist
1085 * 2. each sub-page point to zspage using page->private
1087 * we set PG_private to identify the first page (i.e. no other sub-page
1088 * has this flag set).
1090 for (i = 0; i < nr_pages; i++) {
1091 page = pages[i];
1092 set_page_private(page, (unsigned long)zspage);
1093 page->freelist = NULL;
1094 if (i == 0) {
1095 zspage->first_page = page;
1096 SetPagePrivate(page);
1097 if (unlikely(class->objs_per_zspage == 1 &&
1098 class->pages_per_zspage == 1))
1099 SetPageHugeObject(page);
1100 } else {
1101 prev_page->freelist = page;
1103 prev_page = page;
1108 * Allocate a zspage for the given size class
1110 static struct zspage *alloc_zspage(struct zs_pool *pool,
1111 struct size_class *class,
1112 gfp_t gfp)
1114 int i;
1115 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1116 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1118 if (!zspage)
1119 return NULL;
1121 memset(zspage, 0, sizeof(struct zspage));
1122 zspage->magic = ZSPAGE_MAGIC;
1123 migrate_lock_init(zspage);
1125 for (i = 0; i < class->pages_per_zspage; i++) {
1126 struct page *page;
1128 page = alloc_page(gfp);
1129 if (!page) {
1130 while (--i >= 0) {
1131 dec_zone_page_state(pages[i], NR_ZSPAGES);
1132 __free_page(pages[i]);
1134 cache_free_zspage(pool, zspage);
1135 return NULL;
1138 inc_zone_page_state(page, NR_ZSPAGES);
1139 pages[i] = page;
1142 create_page_chain(class, zspage, pages);
1143 init_zspage(class, zspage);
1145 return zspage;
1148 static struct zspage *find_get_zspage(struct size_class *class)
1150 int i;
1151 struct zspage *zspage;
1153 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1154 zspage = list_first_entry_or_null(&class->fullness_list[i],
1155 struct zspage, list);
1156 if (zspage)
1157 break;
1160 return zspage;
1163 #ifdef CONFIG_PGTABLE_MAPPING
1164 static inline int __zs_cpu_up(struct mapping_area *area)
1167 * Make sure we don't leak memory if a cpu UP notification
1168 * and zs_init() race and both call zs_cpu_up() on the same cpu
1170 if (area->vm)
1171 return 0;
1172 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1173 if (!area->vm)
1174 return -ENOMEM;
1175 return 0;
1178 static inline void __zs_cpu_down(struct mapping_area *area)
1180 if (area->vm)
1181 free_vm_area(area->vm);
1182 area->vm = NULL;
1185 static inline void *__zs_map_object(struct mapping_area *area,
1186 struct page *pages[2], int off, int size)
1188 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1189 area->vm_addr = area->vm->addr;
1190 return area->vm_addr + off;
1193 static inline void __zs_unmap_object(struct mapping_area *area,
1194 struct page *pages[2], int off, int size)
1196 unsigned long addr = (unsigned long)area->vm_addr;
1198 unmap_kernel_range(addr, PAGE_SIZE * 2);
1201 #else /* CONFIG_PGTABLE_MAPPING */
1203 static inline int __zs_cpu_up(struct mapping_area *area)
1206 * Make sure we don't leak memory if a cpu UP notification
1207 * and zs_init() race and both call zs_cpu_up() on the same cpu
1209 if (area->vm_buf)
1210 return 0;
1211 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1212 if (!area->vm_buf)
1213 return -ENOMEM;
1214 return 0;
1217 static inline void __zs_cpu_down(struct mapping_area *area)
1219 kfree(area->vm_buf);
1220 area->vm_buf = NULL;
1223 static void *__zs_map_object(struct mapping_area *area,
1224 struct page *pages[2], int off, int size)
1226 int sizes[2];
1227 void *addr;
1228 char *buf = area->vm_buf;
1230 /* disable page faults to match kmap_atomic() return conditions */
1231 pagefault_disable();
1233 /* no read fastpath */
1234 if (area->vm_mm == ZS_MM_WO)
1235 goto out;
1237 sizes[0] = PAGE_SIZE - off;
1238 sizes[1] = size - sizes[0];
1240 /* copy object to per-cpu buffer */
1241 addr = kmap_atomic(pages[0]);
1242 memcpy(buf, addr + off, sizes[0]);
1243 kunmap_atomic(addr);
1244 addr = kmap_atomic(pages[1]);
1245 memcpy(buf + sizes[0], addr, sizes[1]);
1246 kunmap_atomic(addr);
1247 out:
1248 return area->vm_buf;
1251 static void __zs_unmap_object(struct mapping_area *area,
1252 struct page *pages[2], int off, int size)
1254 int sizes[2];
1255 void *addr;
1256 char *buf;
1258 /* no write fastpath */
1259 if (area->vm_mm == ZS_MM_RO)
1260 goto out;
1262 buf = area->vm_buf;
1263 buf = buf + ZS_HANDLE_SIZE;
1264 size -= ZS_HANDLE_SIZE;
1265 off += ZS_HANDLE_SIZE;
1267 sizes[0] = PAGE_SIZE - off;
1268 sizes[1] = size - sizes[0];
1270 /* copy per-cpu buffer to object */
1271 addr = kmap_atomic(pages[0]);
1272 memcpy(addr + off, buf, sizes[0]);
1273 kunmap_atomic(addr);
1274 addr = kmap_atomic(pages[1]);
1275 memcpy(addr, buf + sizes[0], sizes[1]);
1276 kunmap_atomic(addr);
1278 out:
1279 /* enable page faults to match kunmap_atomic() return conditions */
1280 pagefault_enable();
1283 #endif /* CONFIG_PGTABLE_MAPPING */
1285 static int zs_cpu_prepare(unsigned int cpu)
1287 struct mapping_area *area;
1289 area = &per_cpu(zs_map_area, cpu);
1290 return __zs_cpu_up(area);
1293 static int zs_cpu_dead(unsigned int cpu)
1295 struct mapping_area *area;
1297 area = &per_cpu(zs_map_area, cpu);
1298 __zs_cpu_down(area);
1299 return 0;
1302 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1303 int objs_per_zspage)
1305 if (prev->pages_per_zspage == pages_per_zspage &&
1306 prev->objs_per_zspage == objs_per_zspage)
1307 return true;
1309 return false;
1312 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1314 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1317 unsigned long zs_get_total_pages(struct zs_pool *pool)
1319 return atomic_long_read(&pool->pages_allocated);
1321 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1324 * zs_map_object - get address of allocated object from handle.
1325 * @pool: pool from which the object was allocated
1326 * @handle: handle returned from zs_malloc
1328 * Before using an object allocated from zs_malloc, it must be mapped using
1329 * this function. When done with the object, it must be unmapped using
1330 * zs_unmap_object.
1332 * Only one object can be mapped per cpu at a time. There is no protection
1333 * against nested mappings.
1335 * This function returns with preemption and page faults disabled.
1337 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1338 enum zs_mapmode mm)
1340 struct zspage *zspage;
1341 struct page *page;
1342 unsigned long obj, off;
1343 unsigned int obj_idx;
1345 unsigned int class_idx;
1346 enum fullness_group fg;
1347 struct size_class *class;
1348 struct mapping_area *area;
1349 struct page *pages[2];
1350 void *ret;
1353 * Because we use per-cpu mapping areas shared among the
1354 * pools/users, we can't allow mapping in interrupt context
1355 * because it can corrupt another users mappings.
1357 BUG_ON(in_interrupt());
1359 /* From now on, migration cannot move the object */
1360 pin_tag(handle);
1362 obj = handle_to_obj(handle);
1363 obj_to_location(obj, &page, &obj_idx);
1364 zspage = get_zspage(page);
1366 /* migration cannot move any subpage in this zspage */
1367 migrate_read_lock(zspage);
1369 get_zspage_mapping(zspage, &class_idx, &fg);
1370 class = pool->size_class[class_idx];
1371 off = (class->size * obj_idx) & ~PAGE_MASK;
1373 area = &get_cpu_var(zs_map_area);
1374 area->vm_mm = mm;
1375 if (off + class->size <= PAGE_SIZE) {
1376 /* this object is contained entirely within a page */
1377 area->vm_addr = kmap_atomic(page);
1378 ret = area->vm_addr + off;
1379 goto out;
1382 /* this object spans two pages */
1383 pages[0] = page;
1384 pages[1] = get_next_page(page);
1385 BUG_ON(!pages[1]);
1387 ret = __zs_map_object(area, pages, off, class->size);
1388 out:
1389 if (likely(!PageHugeObject(page)))
1390 ret += ZS_HANDLE_SIZE;
1392 return ret;
1394 EXPORT_SYMBOL_GPL(zs_map_object);
1396 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1398 struct zspage *zspage;
1399 struct page *page;
1400 unsigned long obj, off;
1401 unsigned int obj_idx;
1403 unsigned int class_idx;
1404 enum fullness_group fg;
1405 struct size_class *class;
1406 struct mapping_area *area;
1408 obj = handle_to_obj(handle);
1409 obj_to_location(obj, &page, &obj_idx);
1410 zspage = get_zspage(page);
1411 get_zspage_mapping(zspage, &class_idx, &fg);
1412 class = pool->size_class[class_idx];
1413 off = (class->size * obj_idx) & ~PAGE_MASK;
1415 area = this_cpu_ptr(&zs_map_area);
1416 if (off + class->size <= PAGE_SIZE)
1417 kunmap_atomic(area->vm_addr);
1418 else {
1419 struct page *pages[2];
1421 pages[0] = page;
1422 pages[1] = get_next_page(page);
1423 BUG_ON(!pages[1]);
1425 __zs_unmap_object(area, pages, off, class->size);
1427 put_cpu_var(zs_map_area);
1429 migrate_read_unlock(zspage);
1430 unpin_tag(handle);
1432 EXPORT_SYMBOL_GPL(zs_unmap_object);
1434 static unsigned long obj_malloc(struct size_class *class,
1435 struct zspage *zspage, unsigned long handle)
1437 int i, nr_page, offset;
1438 unsigned long obj;
1439 struct link_free *link;
1441 struct page *m_page;
1442 unsigned long m_offset;
1443 void *vaddr;
1445 handle |= OBJ_ALLOCATED_TAG;
1446 obj = get_freeobj(zspage);
1448 offset = obj * class->size;
1449 nr_page = offset >> PAGE_SHIFT;
1450 m_offset = offset & ~PAGE_MASK;
1451 m_page = get_first_page(zspage);
1453 for (i = 0; i < nr_page; i++)
1454 m_page = get_next_page(m_page);
1456 vaddr = kmap_atomic(m_page);
1457 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1458 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1459 if (likely(!PageHugeObject(m_page)))
1460 /* record handle in the header of allocated chunk */
1461 link->handle = handle;
1462 else
1463 /* record handle to page->index */
1464 zspage->first_page->index = handle;
1466 kunmap_atomic(vaddr);
1467 mod_zspage_inuse(zspage, 1);
1468 zs_stat_inc(class, OBJ_USED, 1);
1470 obj = location_to_obj(m_page, obj);
1472 return obj;
1477 * zs_malloc - Allocate block of given size from pool.
1478 * @pool: pool to allocate from
1479 * @size: size of block to allocate
1480 * @gfp: gfp flags when allocating object
1482 * On success, handle to the allocated object is returned,
1483 * otherwise 0.
1484 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1486 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1488 unsigned long handle, obj;
1489 struct size_class *class;
1490 enum fullness_group newfg;
1491 struct zspage *zspage;
1493 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1494 return 0;
1496 handle = cache_alloc_handle(pool, gfp);
1497 if (!handle)
1498 return 0;
1500 /* extra space in chunk to keep the handle */
1501 size += ZS_HANDLE_SIZE;
1502 class = pool->size_class[get_size_class_index(size)];
1504 spin_lock(&class->lock);
1505 zspage = find_get_zspage(class);
1506 if (likely(zspage)) {
1507 obj = obj_malloc(class, zspage, handle);
1508 /* Now move the zspage to another fullness group, if required */
1509 fix_fullness_group(class, zspage);
1510 record_obj(handle, obj);
1511 spin_unlock(&class->lock);
1513 return handle;
1516 spin_unlock(&class->lock);
1518 zspage = alloc_zspage(pool, class, gfp);
1519 if (!zspage) {
1520 cache_free_handle(pool, handle);
1521 return 0;
1524 spin_lock(&class->lock);
1525 obj = obj_malloc(class, zspage, handle);
1526 newfg = get_fullness_group(class, zspage);
1527 insert_zspage(class, zspage, newfg);
1528 set_zspage_mapping(zspage, class->index, newfg);
1529 record_obj(handle, obj);
1530 atomic_long_add(class->pages_per_zspage,
1531 &pool->pages_allocated);
1532 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1534 /* We completely set up zspage so mark them as movable */
1535 SetZsPageMovable(pool, zspage);
1536 spin_unlock(&class->lock);
1538 return handle;
1540 EXPORT_SYMBOL_GPL(zs_malloc);
1542 static void obj_free(struct size_class *class, unsigned long obj)
1544 struct link_free *link;
1545 struct zspage *zspage;
1546 struct page *f_page;
1547 unsigned long f_offset;
1548 unsigned int f_objidx;
1549 void *vaddr;
1551 obj &= ~OBJ_ALLOCATED_TAG;
1552 obj_to_location(obj, &f_page, &f_objidx);
1553 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1554 zspage = get_zspage(f_page);
1556 vaddr = kmap_atomic(f_page);
1558 /* Insert this object in containing zspage's freelist */
1559 link = (struct link_free *)(vaddr + f_offset);
1560 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1561 kunmap_atomic(vaddr);
1562 set_freeobj(zspage, f_objidx);
1563 mod_zspage_inuse(zspage, -1);
1564 zs_stat_dec(class, OBJ_USED, 1);
1567 void zs_free(struct zs_pool *pool, unsigned long handle)
1569 struct zspage *zspage;
1570 struct page *f_page;
1571 unsigned long obj;
1572 unsigned int f_objidx;
1573 int class_idx;
1574 struct size_class *class;
1575 enum fullness_group fullness;
1576 bool isolated;
1578 if (unlikely(!handle))
1579 return;
1581 pin_tag(handle);
1582 obj = handle_to_obj(handle);
1583 obj_to_location(obj, &f_page, &f_objidx);
1584 zspage = get_zspage(f_page);
1586 migrate_read_lock(zspage);
1588 get_zspage_mapping(zspage, &class_idx, &fullness);
1589 class = pool->size_class[class_idx];
1591 spin_lock(&class->lock);
1592 obj_free(class, obj);
1593 fullness = fix_fullness_group(class, zspage);
1594 if (fullness != ZS_EMPTY) {
1595 migrate_read_unlock(zspage);
1596 goto out;
1599 isolated = is_zspage_isolated(zspage);
1600 migrate_read_unlock(zspage);
1601 /* If zspage is isolated, zs_page_putback will free the zspage */
1602 if (likely(!isolated))
1603 free_zspage(pool, class, zspage);
1604 out:
1606 spin_unlock(&class->lock);
1607 unpin_tag(handle);
1608 cache_free_handle(pool, handle);
1610 EXPORT_SYMBOL_GPL(zs_free);
1612 static void zs_object_copy(struct size_class *class, unsigned long dst,
1613 unsigned long src)
1615 struct page *s_page, *d_page;
1616 unsigned int s_objidx, d_objidx;
1617 unsigned long s_off, d_off;
1618 void *s_addr, *d_addr;
1619 int s_size, d_size, size;
1620 int written = 0;
1622 s_size = d_size = class->size;
1624 obj_to_location(src, &s_page, &s_objidx);
1625 obj_to_location(dst, &d_page, &d_objidx);
1627 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1628 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1630 if (s_off + class->size > PAGE_SIZE)
1631 s_size = PAGE_SIZE - s_off;
1633 if (d_off + class->size > PAGE_SIZE)
1634 d_size = PAGE_SIZE - d_off;
1636 s_addr = kmap_atomic(s_page);
1637 d_addr = kmap_atomic(d_page);
1639 while (1) {
1640 size = min(s_size, d_size);
1641 memcpy(d_addr + d_off, s_addr + s_off, size);
1642 written += size;
1644 if (written == class->size)
1645 break;
1647 s_off += size;
1648 s_size -= size;
1649 d_off += size;
1650 d_size -= size;
1652 if (s_off >= PAGE_SIZE) {
1653 kunmap_atomic(d_addr);
1654 kunmap_atomic(s_addr);
1655 s_page = get_next_page(s_page);
1656 s_addr = kmap_atomic(s_page);
1657 d_addr = kmap_atomic(d_page);
1658 s_size = class->size - written;
1659 s_off = 0;
1662 if (d_off >= PAGE_SIZE) {
1663 kunmap_atomic(d_addr);
1664 d_page = get_next_page(d_page);
1665 d_addr = kmap_atomic(d_page);
1666 d_size = class->size - written;
1667 d_off = 0;
1671 kunmap_atomic(d_addr);
1672 kunmap_atomic(s_addr);
1676 * Find alloced object in zspage from index object and
1677 * return handle.
1679 static unsigned long find_alloced_obj(struct size_class *class,
1680 struct page *page, int *obj_idx)
1682 unsigned long head;
1683 int offset = 0;
1684 int index = *obj_idx;
1685 unsigned long handle = 0;
1686 void *addr = kmap_atomic(page);
1688 offset = get_first_obj_offset(page);
1689 offset += class->size * index;
1691 while (offset < PAGE_SIZE) {
1692 head = obj_to_head(page, addr + offset);
1693 if (head & OBJ_ALLOCATED_TAG) {
1694 handle = head & ~OBJ_ALLOCATED_TAG;
1695 if (trypin_tag(handle))
1696 break;
1697 handle = 0;
1700 offset += class->size;
1701 index++;
1704 kunmap_atomic(addr);
1706 *obj_idx = index;
1708 return handle;
1711 struct zs_compact_control {
1712 /* Source spage for migration which could be a subpage of zspage */
1713 struct page *s_page;
1714 /* Destination page for migration which should be a first page
1715 * of zspage. */
1716 struct page *d_page;
1717 /* Starting object index within @s_page which used for live object
1718 * in the subpage. */
1719 int obj_idx;
1722 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1723 struct zs_compact_control *cc)
1725 unsigned long used_obj, free_obj;
1726 unsigned long handle;
1727 struct page *s_page = cc->s_page;
1728 struct page *d_page = cc->d_page;
1729 int obj_idx = cc->obj_idx;
1730 int ret = 0;
1732 while (1) {
1733 handle = find_alloced_obj(class, s_page, &obj_idx);
1734 if (!handle) {
1735 s_page = get_next_page(s_page);
1736 if (!s_page)
1737 break;
1738 obj_idx = 0;
1739 continue;
1742 /* Stop if there is no more space */
1743 if (zspage_full(class, get_zspage(d_page))) {
1744 unpin_tag(handle);
1745 ret = -ENOMEM;
1746 break;
1749 used_obj = handle_to_obj(handle);
1750 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1751 zs_object_copy(class, free_obj, used_obj);
1752 obj_idx++;
1754 * record_obj updates handle's value to free_obj and it will
1755 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1756 * breaks synchronization using pin_tag(e,g, zs_free) so
1757 * let's keep the lock bit.
1759 free_obj |= BIT(HANDLE_PIN_BIT);
1760 record_obj(handle, free_obj);
1761 unpin_tag(handle);
1762 obj_free(class, used_obj);
1765 /* Remember last position in this iteration */
1766 cc->s_page = s_page;
1767 cc->obj_idx = obj_idx;
1769 return ret;
1772 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1774 int i;
1775 struct zspage *zspage;
1776 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1778 if (!source) {
1779 fg[0] = ZS_ALMOST_FULL;
1780 fg[1] = ZS_ALMOST_EMPTY;
1783 for (i = 0; i < 2; i++) {
1784 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1785 struct zspage, list);
1786 if (zspage) {
1787 VM_BUG_ON(is_zspage_isolated(zspage));
1788 remove_zspage(class, zspage, fg[i]);
1789 return zspage;
1793 return zspage;
1797 * putback_zspage - add @zspage into right class's fullness list
1798 * @class: destination class
1799 * @zspage: target page
1801 * Return @zspage's fullness_group
1803 static enum fullness_group putback_zspage(struct size_class *class,
1804 struct zspage *zspage)
1806 enum fullness_group fullness;
1808 VM_BUG_ON(is_zspage_isolated(zspage));
1810 fullness = get_fullness_group(class, zspage);
1811 insert_zspage(class, zspage, fullness);
1812 set_zspage_mapping(zspage, class->index, fullness);
1814 return fullness;
1817 #ifdef CONFIG_COMPACTION
1818 static struct dentry *zs_mount(struct file_system_type *fs_type,
1819 int flags, const char *dev_name, void *data)
1821 static const struct dentry_operations ops = {
1822 .d_dname = simple_dname,
1825 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1828 static struct file_system_type zsmalloc_fs = {
1829 .name = "zsmalloc",
1830 .mount = zs_mount,
1831 .kill_sb = kill_anon_super,
1834 static int zsmalloc_mount(void)
1836 int ret = 0;
1838 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1839 if (IS_ERR(zsmalloc_mnt))
1840 ret = PTR_ERR(zsmalloc_mnt);
1842 return ret;
1845 static void zsmalloc_unmount(void)
1847 kern_unmount(zsmalloc_mnt);
1850 static void migrate_lock_init(struct zspage *zspage)
1852 rwlock_init(&zspage->lock);
1855 static void migrate_read_lock(struct zspage *zspage)
1857 read_lock(&zspage->lock);
1860 static void migrate_read_unlock(struct zspage *zspage)
1862 read_unlock(&zspage->lock);
1865 static void migrate_write_lock(struct zspage *zspage)
1867 write_lock(&zspage->lock);
1870 static void migrate_write_unlock(struct zspage *zspage)
1872 write_unlock(&zspage->lock);
1875 /* Number of isolated subpage for *page migration* in this zspage */
1876 static void inc_zspage_isolation(struct zspage *zspage)
1878 zspage->isolated++;
1881 static void dec_zspage_isolation(struct zspage *zspage)
1883 zspage->isolated--;
1886 static void putback_zspage_deferred(struct zs_pool *pool,
1887 struct size_class *class,
1888 struct zspage *zspage)
1890 enum fullness_group fg;
1892 fg = putback_zspage(class, zspage);
1893 if (fg == ZS_EMPTY)
1894 schedule_work(&pool->free_work);
1898 static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1900 VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1901 atomic_long_dec(&pool->isolated_pages);
1903 * There's no possibility of racing, since wait_for_isolated_drain()
1904 * checks the isolated count under &class->lock after enqueuing
1905 * on migration_wait.
1907 if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1908 wake_up_all(&pool->migration_wait);
1911 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1912 struct page *newpage, struct page *oldpage)
1914 struct page *page;
1915 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1916 int idx = 0;
1918 page = get_first_page(zspage);
1919 do {
1920 if (page == oldpage)
1921 pages[idx] = newpage;
1922 else
1923 pages[idx] = page;
1924 idx++;
1925 } while ((page = get_next_page(page)) != NULL);
1927 create_page_chain(class, zspage, pages);
1928 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1929 if (unlikely(PageHugeObject(oldpage)))
1930 newpage->index = oldpage->index;
1931 __SetPageMovable(newpage, page_mapping(oldpage));
1934 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1936 struct zs_pool *pool;
1937 struct size_class *class;
1938 int class_idx;
1939 enum fullness_group fullness;
1940 struct zspage *zspage;
1941 struct address_space *mapping;
1944 * Page is locked so zspage couldn't be destroyed. For detail, look at
1945 * lock_zspage in free_zspage.
1947 VM_BUG_ON_PAGE(!PageMovable(page), page);
1948 VM_BUG_ON_PAGE(PageIsolated(page), page);
1950 zspage = get_zspage(page);
1953 * Without class lock, fullness could be stale while class_idx is okay
1954 * because class_idx is constant unless page is freed so we should get
1955 * fullness again under class lock.
1957 get_zspage_mapping(zspage, &class_idx, &fullness);
1958 mapping = page_mapping(page);
1959 pool = mapping->private_data;
1960 class = pool->size_class[class_idx];
1962 spin_lock(&class->lock);
1963 if (get_zspage_inuse(zspage) == 0) {
1964 spin_unlock(&class->lock);
1965 return false;
1968 /* zspage is isolated for object migration */
1969 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1970 spin_unlock(&class->lock);
1971 return false;
1975 * If this is first time isolation for the zspage, isolate zspage from
1976 * size_class to prevent further object allocation from the zspage.
1978 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1979 get_zspage_mapping(zspage, &class_idx, &fullness);
1980 atomic_long_inc(&pool->isolated_pages);
1981 remove_zspage(class, zspage, fullness);
1984 inc_zspage_isolation(zspage);
1985 spin_unlock(&class->lock);
1987 return true;
1990 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1991 struct page *page, enum migrate_mode mode)
1993 struct zs_pool *pool;
1994 struct size_class *class;
1995 int class_idx;
1996 enum fullness_group fullness;
1997 struct zspage *zspage;
1998 struct page *dummy;
1999 void *s_addr, *d_addr, *addr;
2000 int offset, pos;
2001 unsigned long handle, head;
2002 unsigned long old_obj, new_obj;
2003 unsigned int obj_idx;
2004 int ret = -EAGAIN;
2007 * We cannot support the _NO_COPY case here, because copy needs to
2008 * happen under the zs lock, which does not work with
2009 * MIGRATE_SYNC_NO_COPY workflow.
2011 if (mode == MIGRATE_SYNC_NO_COPY)
2012 return -EINVAL;
2014 VM_BUG_ON_PAGE(!PageMovable(page), page);
2015 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2017 zspage = get_zspage(page);
2019 /* Concurrent compactor cannot migrate any subpage in zspage */
2020 migrate_write_lock(zspage);
2021 get_zspage_mapping(zspage, &class_idx, &fullness);
2022 pool = mapping->private_data;
2023 class = pool->size_class[class_idx];
2024 offset = get_first_obj_offset(page);
2026 spin_lock(&class->lock);
2027 if (!get_zspage_inuse(zspage)) {
2029 * Set "offset" to end of the page so that every loops
2030 * skips unnecessary object scanning.
2032 offset = PAGE_SIZE;
2035 pos = offset;
2036 s_addr = kmap_atomic(page);
2037 while (pos < PAGE_SIZE) {
2038 head = obj_to_head(page, s_addr + pos);
2039 if (head & OBJ_ALLOCATED_TAG) {
2040 handle = head & ~OBJ_ALLOCATED_TAG;
2041 if (!trypin_tag(handle))
2042 goto unpin_objects;
2044 pos += class->size;
2048 * Here, any user cannot access all objects in the zspage so let's move.
2050 d_addr = kmap_atomic(newpage);
2051 memcpy(d_addr, s_addr, PAGE_SIZE);
2052 kunmap_atomic(d_addr);
2054 for (addr = s_addr + offset; addr < s_addr + pos;
2055 addr += class->size) {
2056 head = obj_to_head(page, addr);
2057 if (head & OBJ_ALLOCATED_TAG) {
2058 handle = head & ~OBJ_ALLOCATED_TAG;
2059 if (!testpin_tag(handle))
2060 BUG();
2062 old_obj = handle_to_obj(handle);
2063 obj_to_location(old_obj, &dummy, &obj_idx);
2064 new_obj = (unsigned long)location_to_obj(newpage,
2065 obj_idx);
2066 new_obj |= BIT(HANDLE_PIN_BIT);
2067 record_obj(handle, new_obj);
2071 replace_sub_page(class, zspage, newpage, page);
2072 get_page(newpage);
2074 dec_zspage_isolation(zspage);
2077 * Page migration is done so let's putback isolated zspage to
2078 * the list if @page is final isolated subpage in the zspage.
2080 if (!is_zspage_isolated(zspage)) {
2082 * We cannot race with zs_destroy_pool() here because we wait
2083 * for isolation to hit zero before we start destroying.
2084 * Also, we ensure that everyone can see pool->destroying before
2085 * we start waiting.
2087 putback_zspage_deferred(pool, class, zspage);
2088 zs_pool_dec_isolated(pool);
2091 if (page_zone(newpage) != page_zone(page)) {
2092 dec_zone_page_state(page, NR_ZSPAGES);
2093 inc_zone_page_state(newpage, NR_ZSPAGES);
2096 reset_page(page);
2097 put_page(page);
2098 page = newpage;
2100 ret = MIGRATEPAGE_SUCCESS;
2101 unpin_objects:
2102 for (addr = s_addr + offset; addr < s_addr + pos;
2103 addr += class->size) {
2104 head = obj_to_head(page, addr);
2105 if (head & OBJ_ALLOCATED_TAG) {
2106 handle = head & ~OBJ_ALLOCATED_TAG;
2107 if (!testpin_tag(handle))
2108 BUG();
2109 unpin_tag(handle);
2112 kunmap_atomic(s_addr);
2113 spin_unlock(&class->lock);
2114 migrate_write_unlock(zspage);
2116 return ret;
2119 void zs_page_putback(struct page *page)
2121 struct zs_pool *pool;
2122 struct size_class *class;
2123 int class_idx;
2124 enum fullness_group fg;
2125 struct address_space *mapping;
2126 struct zspage *zspage;
2128 VM_BUG_ON_PAGE(!PageMovable(page), page);
2129 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2131 zspage = get_zspage(page);
2132 get_zspage_mapping(zspage, &class_idx, &fg);
2133 mapping = page_mapping(page);
2134 pool = mapping->private_data;
2135 class = pool->size_class[class_idx];
2137 spin_lock(&class->lock);
2138 dec_zspage_isolation(zspage);
2139 if (!is_zspage_isolated(zspage)) {
2141 * Due to page_lock, we cannot free zspage immediately
2142 * so let's defer.
2144 putback_zspage_deferred(pool, class, zspage);
2145 zs_pool_dec_isolated(pool);
2147 spin_unlock(&class->lock);
2150 const struct address_space_operations zsmalloc_aops = {
2151 .isolate_page = zs_page_isolate,
2152 .migratepage = zs_page_migrate,
2153 .putback_page = zs_page_putback,
2156 static int zs_register_migration(struct zs_pool *pool)
2158 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2159 if (IS_ERR(pool->inode)) {
2160 pool->inode = NULL;
2161 return 1;
2164 pool->inode->i_mapping->private_data = pool;
2165 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2166 return 0;
2169 static bool pool_isolated_are_drained(struct zs_pool *pool)
2171 return atomic_long_read(&pool->isolated_pages) == 0;
2174 /* Function for resolving migration */
2175 static void wait_for_isolated_drain(struct zs_pool *pool)
2179 * We're in the process of destroying the pool, so there are no
2180 * active allocations. zs_page_isolate() fails for completely free
2181 * zspages, so we need only wait for the zs_pool's isolated
2182 * count to hit zero.
2184 wait_event(pool->migration_wait,
2185 pool_isolated_are_drained(pool));
2188 static void zs_unregister_migration(struct zs_pool *pool)
2190 pool->destroying = true;
2192 * We need a memory barrier here to ensure global visibility of
2193 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2194 * case we don't care, or it will be > 0 and pool->destroying will
2195 * ensure that we wake up once isolation hits 0.
2197 smp_mb();
2198 wait_for_isolated_drain(pool); /* This can block */
2199 flush_work(&pool->free_work);
2200 iput(pool->inode);
2204 * Caller should hold page_lock of all pages in the zspage
2205 * In here, we cannot use zspage meta data.
2207 static void async_free_zspage(struct work_struct *work)
2209 int i;
2210 struct size_class *class;
2211 unsigned int class_idx;
2212 enum fullness_group fullness;
2213 struct zspage *zspage, *tmp;
2214 LIST_HEAD(free_pages);
2215 struct zs_pool *pool = container_of(work, struct zs_pool,
2216 free_work);
2218 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2219 class = pool->size_class[i];
2220 if (class->index != i)
2221 continue;
2223 spin_lock(&class->lock);
2224 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2225 spin_unlock(&class->lock);
2229 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2230 list_del(&zspage->list);
2231 lock_zspage(zspage);
2233 get_zspage_mapping(zspage, &class_idx, &fullness);
2234 VM_BUG_ON(fullness != ZS_EMPTY);
2235 class = pool->size_class[class_idx];
2236 spin_lock(&class->lock);
2237 __free_zspage(pool, pool->size_class[class_idx], zspage);
2238 spin_unlock(&class->lock);
2242 static void kick_deferred_free(struct zs_pool *pool)
2244 schedule_work(&pool->free_work);
2247 static void init_deferred_free(struct zs_pool *pool)
2249 INIT_WORK(&pool->free_work, async_free_zspage);
2252 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2254 struct page *page = get_first_page(zspage);
2256 do {
2257 WARN_ON(!trylock_page(page));
2258 __SetPageMovable(page, pool->inode->i_mapping);
2259 unlock_page(page);
2260 } while ((page = get_next_page(page)) != NULL);
2262 #endif
2266 * Based on the number of unused allocated objects calculate
2267 * and return the number of pages that we can free.
2269 static unsigned long zs_can_compact(struct size_class *class)
2271 unsigned long obj_wasted;
2272 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2273 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2275 if (obj_allocated <= obj_used)
2276 return 0;
2278 obj_wasted = obj_allocated - obj_used;
2279 obj_wasted /= class->objs_per_zspage;
2281 return obj_wasted * class->pages_per_zspage;
2284 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2286 struct zs_compact_control cc;
2287 struct zspage *src_zspage;
2288 struct zspage *dst_zspage = NULL;
2290 spin_lock(&class->lock);
2291 while ((src_zspage = isolate_zspage(class, true))) {
2293 if (!zs_can_compact(class))
2294 break;
2296 cc.obj_idx = 0;
2297 cc.s_page = get_first_page(src_zspage);
2299 while ((dst_zspage = isolate_zspage(class, false))) {
2300 cc.d_page = get_first_page(dst_zspage);
2302 * If there is no more space in dst_page, resched
2303 * and see if anyone had allocated another zspage.
2305 if (!migrate_zspage(pool, class, &cc))
2306 break;
2308 putback_zspage(class, dst_zspage);
2311 /* Stop if we couldn't find slot */
2312 if (dst_zspage == NULL)
2313 break;
2315 putback_zspage(class, dst_zspage);
2316 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2317 free_zspage(pool, class, src_zspage);
2318 pool->stats.pages_compacted += class->pages_per_zspage;
2320 spin_unlock(&class->lock);
2321 cond_resched();
2322 spin_lock(&class->lock);
2325 if (src_zspage)
2326 putback_zspage(class, src_zspage);
2328 spin_unlock(&class->lock);
2331 unsigned long zs_compact(struct zs_pool *pool)
2333 int i;
2334 struct size_class *class;
2336 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2337 class = pool->size_class[i];
2338 if (!class)
2339 continue;
2340 if (class->index != i)
2341 continue;
2342 __zs_compact(pool, class);
2345 return pool->stats.pages_compacted;
2347 EXPORT_SYMBOL_GPL(zs_compact);
2349 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2351 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2353 EXPORT_SYMBOL_GPL(zs_pool_stats);
2355 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2356 struct shrink_control *sc)
2358 unsigned long pages_freed;
2359 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2360 shrinker);
2362 pages_freed = pool->stats.pages_compacted;
2364 * Compact classes and calculate compaction delta.
2365 * Can run concurrently with a manually triggered
2366 * (by user) compaction.
2368 pages_freed = zs_compact(pool) - pages_freed;
2370 return pages_freed ? pages_freed : SHRINK_STOP;
2373 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2374 struct shrink_control *sc)
2376 int i;
2377 struct size_class *class;
2378 unsigned long pages_to_free = 0;
2379 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2380 shrinker);
2382 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2383 class = pool->size_class[i];
2384 if (!class)
2385 continue;
2386 if (class->index != i)
2387 continue;
2389 pages_to_free += zs_can_compact(class);
2392 return pages_to_free;
2395 static void zs_unregister_shrinker(struct zs_pool *pool)
2397 if (pool->shrinker_enabled) {
2398 unregister_shrinker(&pool->shrinker);
2399 pool->shrinker_enabled = false;
2403 static int zs_register_shrinker(struct zs_pool *pool)
2405 pool->shrinker.scan_objects = zs_shrinker_scan;
2406 pool->shrinker.count_objects = zs_shrinker_count;
2407 pool->shrinker.batch = 0;
2408 pool->shrinker.seeks = DEFAULT_SEEKS;
2410 return register_shrinker(&pool->shrinker);
2414 * zs_create_pool - Creates an allocation pool to work from.
2415 * @name: pool name to be created
2417 * This function must be called before anything when using
2418 * the zsmalloc allocator.
2420 * On success, a pointer to the newly created pool is returned,
2421 * otherwise NULL.
2423 struct zs_pool *zs_create_pool(const char *name)
2425 int i;
2426 struct zs_pool *pool;
2427 struct size_class *prev_class = NULL;
2429 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2430 if (!pool)
2431 return NULL;
2433 init_deferred_free(pool);
2435 pool->name = kstrdup(name, GFP_KERNEL);
2436 if (!pool->name)
2437 goto err;
2439 #ifdef CONFIG_COMPACTION
2440 init_waitqueue_head(&pool->migration_wait);
2441 #endif
2443 if (create_cache(pool))
2444 goto err;
2447 * Iterate reversely, because, size of size_class that we want to use
2448 * for merging should be larger or equal to current size.
2450 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2451 int size;
2452 int pages_per_zspage;
2453 int objs_per_zspage;
2454 struct size_class *class;
2455 int fullness = 0;
2457 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2458 if (size > ZS_MAX_ALLOC_SIZE)
2459 size = ZS_MAX_ALLOC_SIZE;
2460 pages_per_zspage = get_pages_per_zspage(size);
2461 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2464 * size_class is used for normal zsmalloc operation such
2465 * as alloc/free for that size. Although it is natural that we
2466 * have one size_class for each size, there is a chance that we
2467 * can get more memory utilization if we use one size_class for
2468 * many different sizes whose size_class have same
2469 * characteristics. So, we makes size_class point to
2470 * previous size_class if possible.
2472 if (prev_class) {
2473 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2474 pool->size_class[i] = prev_class;
2475 continue;
2479 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2480 if (!class)
2481 goto err;
2483 class->size = size;
2484 class->index = i;
2485 class->pages_per_zspage = pages_per_zspage;
2486 class->objs_per_zspage = objs_per_zspage;
2487 spin_lock_init(&class->lock);
2488 pool->size_class[i] = class;
2489 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2490 fullness++)
2491 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2493 prev_class = class;
2496 /* debug only, don't abort if it fails */
2497 zs_pool_stat_create(pool, name);
2499 if (zs_register_migration(pool))
2500 goto err;
2503 * Not critical, we still can use the pool
2504 * and user can trigger compaction manually.
2506 if (zs_register_shrinker(pool) == 0)
2507 pool->shrinker_enabled = true;
2508 return pool;
2510 err:
2511 zs_destroy_pool(pool);
2512 return NULL;
2514 EXPORT_SYMBOL_GPL(zs_create_pool);
2516 void zs_destroy_pool(struct zs_pool *pool)
2518 int i;
2520 zs_unregister_shrinker(pool);
2521 zs_unregister_migration(pool);
2522 zs_pool_stat_destroy(pool);
2524 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2525 int fg;
2526 struct size_class *class = pool->size_class[i];
2528 if (!class)
2529 continue;
2531 if (class->index != i)
2532 continue;
2534 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2535 if (!list_empty(&class->fullness_list[fg])) {
2536 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2537 class->size, fg);
2540 kfree(class);
2543 destroy_cache(pool);
2544 kfree(pool->name);
2545 kfree(pool);
2547 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2549 static int __init zs_init(void)
2551 int ret;
2553 ret = zsmalloc_mount();
2554 if (ret)
2555 goto out;
2557 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2558 zs_cpu_prepare, zs_cpu_dead);
2559 if (ret)
2560 goto hp_setup_fail;
2562 #ifdef CONFIG_ZPOOL
2563 zpool_register_driver(&zs_zpool_driver);
2564 #endif
2566 zs_stat_init();
2568 return 0;
2570 hp_setup_fail:
2571 zsmalloc_unmount();
2572 out:
2573 return ret;
2576 static void __exit zs_exit(void)
2578 #ifdef CONFIG_ZPOOL
2579 zpool_unregister_driver(&zs_zpool_driver);
2580 #endif
2581 zsmalloc_unmount();
2582 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2584 zs_stat_exit();
2587 module_init(zs_init);
2588 module_exit(zs_exit);
2590 MODULE_LICENSE("Dual BSD/GPL");
2591 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");