sctp: translate host order to network order when setting a hmacid
[linux/fpc-iii.git] / drivers / tty / tty_io.c
blob2967b6eb4c702ec9941927adf315da946237312c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
99 #include <linux/uaccess.h>
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
108 #undef TTY_DEBUG_HANGUP
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
124 EXPORT_SYMBOL(tty_std_termios);
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
160 * alloc_tty_struct - allocate a tty object
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
165 * Locking: none
168 struct tty_struct *alloc_tty_struct(void)
170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
174 * free_tty_struct - free a disused tty
175 * @tty: tty struct to free
177 * Free the write buffers, tty queue and tty memory itself.
179 * Locking: none. Must be called after tty is definitely unused
182 void free_tty_struct(struct tty_struct *tty)
184 if (!tty)
185 return;
186 if (tty->dev)
187 put_device(tty->dev);
188 kfree(tty->write_buf);
189 tty->magic = 0xDEADDEAD;
190 kfree(tty);
193 static inline struct tty_struct *file_tty(struct file *file)
195 return ((struct tty_file_private *)file->private_data)->tty;
198 int tty_alloc_file(struct file *file)
200 struct tty_file_private *priv;
202 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203 if (!priv)
204 return -ENOMEM;
206 file->private_data = priv;
208 return 0;
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
214 struct tty_file_private *priv = file->private_data;
216 priv->tty = tty;
217 priv->file = file;
219 spin_lock(&tty_files_lock);
220 list_add(&priv->list, &tty->tty_files);
221 spin_unlock(&tty_files_lock);
225 * tty_free_file - free file->private_data
227 * This shall be used only for fail path handling when tty_add_file was not
228 * called yet.
230 void tty_free_file(struct file *file)
232 struct tty_file_private *priv = file->private_data;
234 file->private_data = NULL;
235 kfree(priv);
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
241 struct tty_file_private *priv = file->private_data;
243 spin_lock(&tty_files_lock);
244 list_del(&priv->list);
245 spin_unlock(&tty_files_lock);
246 tty_free_file(file);
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
253 * tty_name - return tty naming
254 * @tty: tty structure
255 * @buf: buffer for output
257 * Convert a tty structure into a name. The name reflects the kernel
258 * naming policy and if udev is in use may not reflect user space
260 * Locking: none
263 char *tty_name(struct tty_struct *tty, char *buf)
265 if (!tty) /* Hmm. NULL pointer. That's fun. */
266 strcpy(buf, "NULL tty");
267 else
268 strcpy(buf, tty->name);
269 return buf;
272 EXPORT_SYMBOL(tty_name);
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275 const char *routine)
277 #ifdef TTY_PARANOIA_CHECK
278 if (!tty) {
279 printk(KERN_WARNING
280 "null TTY for (%d:%d) in %s\n",
281 imajor(inode), iminor(inode), routine);
282 return 1;
284 if (tty->magic != TTY_MAGIC) {
285 printk(KERN_WARNING
286 "bad magic number for tty struct (%d:%d) in %s\n",
287 imajor(inode), iminor(inode), routine);
288 return 1;
290 #endif
291 return 0;
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
296 #ifdef CHECK_TTY_COUNT
297 struct list_head *p;
298 int count = 0;
300 spin_lock(&tty_files_lock);
301 list_for_each(p, &tty->tty_files) {
302 count++;
304 spin_unlock(&tty_files_lock);
305 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306 tty->driver->subtype == PTY_TYPE_SLAVE &&
307 tty->link && tty->link->count)
308 count++;
309 if (tty->count != count) {
310 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311 "!= #fd's(%d) in %s\n",
312 tty->name, tty->count, count, routine);
313 return count;
315 #endif
316 return 0;
320 * get_tty_driver - find device of a tty
321 * @dev_t: device identifier
322 * @index: returns the index of the tty
324 * This routine returns a tty driver structure, given a device number
325 * and also passes back the index number.
327 * Locking: caller must hold tty_mutex
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
332 struct tty_driver *p;
334 list_for_each_entry(p, &tty_drivers, tty_drivers) {
335 dev_t base = MKDEV(p->major, p->minor_start);
336 if (device < base || device >= base + p->num)
337 continue;
338 *index = device - base;
339 return tty_driver_kref_get(p);
341 return NULL;
344 #ifdef CONFIG_CONSOLE_POLL
347 * tty_find_polling_driver - find device of a polled tty
348 * @name: name string to match
349 * @line: pointer to resulting tty line nr
351 * This routine returns a tty driver structure, given a name
352 * and the condition that the tty driver is capable of polled
353 * operation.
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
357 struct tty_driver *p, *res = NULL;
358 int tty_line = 0;
359 int len;
360 char *str, *stp;
362 for (str = name; *str; str++)
363 if ((*str >= '0' && *str <= '9') || *str == ',')
364 break;
365 if (!*str)
366 return NULL;
368 len = str - name;
369 tty_line = simple_strtoul(str, &str, 10);
371 mutex_lock(&tty_mutex);
372 /* Search through the tty devices to look for a match */
373 list_for_each_entry(p, &tty_drivers, tty_drivers) {
374 if (strncmp(name, p->name, len) != 0)
375 continue;
376 stp = str;
377 if (*stp == ',')
378 stp++;
379 if (*stp == '\0')
380 stp = NULL;
382 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384 res = tty_driver_kref_get(p);
385 *line = tty_line;
386 break;
389 mutex_unlock(&tty_mutex);
391 return res;
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
397 * tty_check_change - check for POSIX terminal changes
398 * @tty: tty to check
400 * If we try to write to, or set the state of, a terminal and we're
401 * not in the foreground, send a SIGTTOU. If the signal is blocked or
402 * ignored, go ahead and perform the operation. (POSIX 7.2)
404 * Locking: ctrl_lock
407 int tty_check_change(struct tty_struct *tty)
409 unsigned long flags;
410 int ret = 0;
412 if (current->signal->tty != tty)
413 return 0;
415 spin_lock_irqsave(&tty->ctrl_lock, flags);
417 if (!tty->pgrp) {
418 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419 goto out_unlock;
421 if (task_pgrp(current) == tty->pgrp)
422 goto out_unlock;
423 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424 if (is_ignored(SIGTTOU))
425 goto out;
426 if (is_current_pgrp_orphaned()) {
427 ret = -EIO;
428 goto out;
430 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431 set_thread_flag(TIF_SIGPENDING);
432 ret = -ERESTARTSYS;
433 out:
434 return ret;
435 out_unlock:
436 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437 return ret;
440 EXPORT_SYMBOL(tty_check_change);
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443 size_t count, loff_t *ppos)
445 return 0;
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449 size_t count, loff_t *ppos)
451 return -EIO;
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
457 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461 unsigned long arg)
463 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
466 static long hung_up_tty_compat_ioctl(struct file *file,
467 unsigned int cmd, unsigned long arg)
469 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
472 static const struct file_operations tty_fops = {
473 .llseek = no_llseek,
474 .read = tty_read,
475 .write = tty_write,
476 .poll = tty_poll,
477 .unlocked_ioctl = tty_ioctl,
478 .compat_ioctl = tty_compat_ioctl,
479 .open = tty_open,
480 .release = tty_release,
481 .fasync = tty_fasync,
484 static const struct file_operations console_fops = {
485 .llseek = no_llseek,
486 .read = tty_read,
487 .write = redirected_tty_write,
488 .poll = tty_poll,
489 .unlocked_ioctl = tty_ioctl,
490 .compat_ioctl = tty_compat_ioctl,
491 .open = tty_open,
492 .release = tty_release,
493 .fasync = tty_fasync,
496 static const struct file_operations hung_up_tty_fops = {
497 .llseek = no_llseek,
498 .read = hung_up_tty_read,
499 .write = hung_up_tty_write,
500 .poll = hung_up_tty_poll,
501 .unlocked_ioctl = hung_up_tty_ioctl,
502 .compat_ioctl = hung_up_tty_compat_ioctl,
503 .release = tty_release,
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
510 * tty_wakeup - request more data
511 * @tty: terminal
513 * Internal and external helper for wakeups of tty. This function
514 * informs the line discipline if present that the driver is ready
515 * to receive more output data.
518 void tty_wakeup(struct tty_struct *tty)
520 struct tty_ldisc *ld;
522 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523 ld = tty_ldisc_ref(tty);
524 if (ld) {
525 if (ld->ops->write_wakeup)
526 ld->ops->write_wakeup(tty);
527 tty_ldisc_deref(ld);
530 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
533 EXPORT_SYMBOL_GPL(tty_wakeup);
536 * tty_signal_session_leader - sends SIGHUP to session leader
537 * @tty controlling tty
538 * @exit_session if non-zero, signal all foreground group processes
540 * Send SIGHUP and SIGCONT to the session leader and its process group.
541 * Optionally, signal all processes in the foreground process group.
543 * Returns the number of processes in the session with this tty
544 * as their controlling terminal. This value is used to drop
545 * tty references for those processes.
547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
549 struct task_struct *p;
550 int refs = 0;
551 struct pid *tty_pgrp = NULL;
553 read_lock(&tasklist_lock);
554 if (tty->session) {
555 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556 spin_lock_irq(&p->sighand->siglock);
557 if (p->signal->tty == tty) {
558 p->signal->tty = NULL;
559 /* We defer the dereferences outside fo
560 the tasklist lock */
561 refs++;
563 if (!p->signal->leader) {
564 spin_unlock_irq(&p->sighand->siglock);
565 continue;
567 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569 put_pid(p->signal->tty_old_pgrp); /* A noop */
570 spin_lock(&tty->ctrl_lock);
571 tty_pgrp = get_pid(tty->pgrp);
572 if (tty->pgrp)
573 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574 spin_unlock(&tty->ctrl_lock);
575 spin_unlock_irq(&p->sighand->siglock);
576 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
578 read_unlock(&tasklist_lock);
580 if (tty_pgrp) {
581 if (exit_session)
582 kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583 put_pid(tty_pgrp);
586 return refs;
590 * __tty_hangup - actual handler for hangup events
591 * @work: tty device
593 * This can be called by a "kworker" kernel thread. That is process
594 * synchronous but doesn't hold any locks, so we need to make sure we
595 * have the appropriate locks for what we're doing.
597 * The hangup event clears any pending redirections onto the hung up
598 * device. It ensures future writes will error and it does the needed
599 * line discipline hangup and signal delivery. The tty object itself
600 * remains intact.
602 * Locking:
603 * BTM
604 * redirect lock for undoing redirection
605 * file list lock for manipulating list of ttys
606 * tty_ldisc_lock from called functions
607 * termios_mutex resetting termios data
608 * tasklist_lock to walk task list for hangup event
609 * ->siglock to protect ->signal/->sighand
611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
613 struct file *cons_filp = NULL;
614 struct file *filp, *f = NULL;
615 struct tty_file_private *priv;
616 int closecount = 0, n;
617 int refs;
619 if (!tty)
620 return;
623 spin_lock(&redirect_lock);
624 if (redirect && file_tty(redirect) == tty) {
625 f = redirect;
626 redirect = NULL;
628 spin_unlock(&redirect_lock);
630 tty_lock(tty);
632 /* some functions below drop BTM, so we need this bit */
633 set_bit(TTY_HUPPING, &tty->flags);
635 /* inuse_filps is protected by the single tty lock,
636 this really needs to change if we want to flush the
637 workqueue with the lock held */
638 check_tty_count(tty, "tty_hangup");
640 spin_lock(&tty_files_lock);
641 /* This breaks for file handles being sent over AF_UNIX sockets ? */
642 list_for_each_entry(priv, &tty->tty_files, list) {
643 filp = priv->file;
644 if (filp->f_op->write == redirected_tty_write)
645 cons_filp = filp;
646 if (filp->f_op->write != tty_write)
647 continue;
648 closecount++;
649 __tty_fasync(-1, filp, 0); /* can't block */
650 filp->f_op = &hung_up_tty_fops;
652 spin_unlock(&tty_files_lock);
654 refs = tty_signal_session_leader(tty, exit_session);
655 /* Account for the p->signal references we killed */
656 while (refs--)
657 tty_kref_put(tty);
660 * it drops BTM and thus races with reopen
661 * we protect the race by TTY_HUPPING
663 tty_ldisc_hangup(tty);
665 spin_lock_irq(&tty->ctrl_lock);
666 clear_bit(TTY_THROTTLED, &tty->flags);
667 clear_bit(TTY_PUSH, &tty->flags);
668 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
669 put_pid(tty->session);
670 put_pid(tty->pgrp);
671 tty->session = NULL;
672 tty->pgrp = NULL;
673 tty->ctrl_status = 0;
674 spin_unlock_irq(&tty->ctrl_lock);
677 * If one of the devices matches a console pointer, we
678 * cannot just call hangup() because that will cause
679 * tty->count and state->count to go out of sync.
680 * So we just call close() the right number of times.
682 if (cons_filp) {
683 if (tty->ops->close)
684 for (n = 0; n < closecount; n++)
685 tty->ops->close(tty, cons_filp);
686 } else if (tty->ops->hangup)
687 (tty->ops->hangup)(tty);
689 * We don't want to have driver/ldisc interactions beyond
690 * the ones we did here. The driver layer expects no
691 * calls after ->hangup() from the ldisc side. However we
692 * can't yet guarantee all that.
694 set_bit(TTY_HUPPED, &tty->flags);
695 clear_bit(TTY_HUPPING, &tty->flags);
697 tty_unlock(tty);
699 if (f)
700 fput(f);
703 static void do_tty_hangup(struct work_struct *work)
705 struct tty_struct *tty =
706 container_of(work, struct tty_struct, hangup_work);
708 __tty_hangup(tty, 0);
712 * tty_hangup - trigger a hangup event
713 * @tty: tty to hangup
715 * A carrier loss (virtual or otherwise) has occurred on this like
716 * schedule a hangup sequence to run after this event.
719 void tty_hangup(struct tty_struct *tty)
721 #ifdef TTY_DEBUG_HANGUP
722 char buf[64];
723 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
724 #endif
725 schedule_work(&tty->hangup_work);
728 EXPORT_SYMBOL(tty_hangup);
731 * tty_vhangup - process vhangup
732 * @tty: tty to hangup
734 * The user has asked via system call for the terminal to be hung up.
735 * We do this synchronously so that when the syscall returns the process
736 * is complete. That guarantee is necessary for security reasons.
739 void tty_vhangup(struct tty_struct *tty)
741 #ifdef TTY_DEBUG_HANGUP
742 char buf[64];
744 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
745 #endif
746 __tty_hangup(tty, 0);
749 EXPORT_SYMBOL(tty_vhangup);
753 * tty_vhangup_self - process vhangup for own ctty
755 * Perform a vhangup on the current controlling tty
758 void tty_vhangup_self(void)
760 struct tty_struct *tty;
762 tty = get_current_tty();
763 if (tty) {
764 tty_vhangup(tty);
765 tty_kref_put(tty);
770 * tty_vhangup_session - hangup session leader exit
771 * @tty: tty to hangup
773 * The session leader is exiting and hanging up its controlling terminal.
774 * Every process in the foreground process group is signalled SIGHUP.
776 * We do this synchronously so that when the syscall returns the process
777 * is complete. That guarantee is necessary for security reasons.
780 static void tty_vhangup_session(struct tty_struct *tty)
782 #ifdef TTY_DEBUG_HANGUP
783 char buf[64];
785 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
786 #endif
787 __tty_hangup(tty, 1);
791 * tty_hung_up_p - was tty hung up
792 * @filp: file pointer of tty
794 * Return true if the tty has been subject to a vhangup or a carrier
795 * loss
798 int tty_hung_up_p(struct file *filp)
800 return (filp->f_op == &hung_up_tty_fops);
803 EXPORT_SYMBOL(tty_hung_up_p);
805 static void session_clear_tty(struct pid *session)
807 struct task_struct *p;
808 do_each_pid_task(session, PIDTYPE_SID, p) {
809 proc_clear_tty(p);
810 } while_each_pid_task(session, PIDTYPE_SID, p);
814 * disassociate_ctty - disconnect controlling tty
815 * @on_exit: true if exiting so need to "hang up" the session
817 * This function is typically called only by the session leader, when
818 * it wants to disassociate itself from its controlling tty.
820 * It performs the following functions:
821 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
822 * (2) Clears the tty from being controlling the session
823 * (3) Clears the controlling tty for all processes in the
824 * session group.
826 * The argument on_exit is set to 1 if called when a process is
827 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
829 * Locking:
830 * BTM is taken for hysterical raisins, and held when
831 * called from no_tty().
832 * tty_mutex is taken to protect tty
833 * ->siglock is taken to protect ->signal/->sighand
834 * tasklist_lock is taken to walk process list for sessions
835 * ->siglock is taken to protect ->signal/->sighand
838 void disassociate_ctty(int on_exit)
840 struct tty_struct *tty;
842 if (!current->signal->leader)
843 return;
845 tty = get_current_tty();
846 if (tty) {
847 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
848 tty_vhangup_session(tty);
849 } else {
850 struct pid *tty_pgrp = tty_get_pgrp(tty);
851 if (tty_pgrp) {
852 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
853 if (!on_exit)
854 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
855 put_pid(tty_pgrp);
858 tty_kref_put(tty);
860 } else if (on_exit) {
861 struct pid *old_pgrp;
862 spin_lock_irq(&current->sighand->siglock);
863 old_pgrp = current->signal->tty_old_pgrp;
864 current->signal->tty_old_pgrp = NULL;
865 spin_unlock_irq(&current->sighand->siglock);
866 if (old_pgrp) {
867 kill_pgrp(old_pgrp, SIGHUP, on_exit);
868 kill_pgrp(old_pgrp, SIGCONT, on_exit);
869 put_pid(old_pgrp);
871 return;
874 spin_lock_irq(&current->sighand->siglock);
875 put_pid(current->signal->tty_old_pgrp);
876 current->signal->tty_old_pgrp = NULL;
877 spin_unlock_irq(&current->sighand->siglock);
879 tty = get_current_tty();
880 if (tty) {
881 unsigned long flags;
882 spin_lock_irqsave(&tty->ctrl_lock, flags);
883 put_pid(tty->session);
884 put_pid(tty->pgrp);
885 tty->session = NULL;
886 tty->pgrp = NULL;
887 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
888 tty_kref_put(tty);
889 } else {
890 #ifdef TTY_DEBUG_HANGUP
891 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
892 " = NULL", tty);
893 #endif
896 /* Now clear signal->tty under the lock */
897 read_lock(&tasklist_lock);
898 session_clear_tty(task_session(current));
899 read_unlock(&tasklist_lock);
904 * no_tty - Ensure the current process does not have a controlling tty
906 void no_tty(void)
908 /* FIXME: Review locking here. The tty_lock never covered any race
909 between a new association and proc_clear_tty but possible we need
910 to protect against this anyway */
911 struct task_struct *tsk = current;
912 disassociate_ctty(0);
913 proc_clear_tty(tsk);
918 * stop_tty - propagate flow control
919 * @tty: tty to stop
921 * Perform flow control to the driver. For PTY/TTY pairs we
922 * must also propagate the TIOCKPKT status. May be called
923 * on an already stopped device and will not re-call the driver
924 * method.
926 * This functionality is used by both the line disciplines for
927 * halting incoming flow and by the driver. It may therefore be
928 * called from any context, may be under the tty atomic_write_lock
929 * but not always.
931 * Locking:
932 * Uses the tty control lock internally
935 void stop_tty(struct tty_struct *tty)
937 unsigned long flags;
938 spin_lock_irqsave(&tty->ctrl_lock, flags);
939 if (tty->stopped) {
940 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
941 return;
943 tty->stopped = 1;
944 if (tty->link && tty->link->packet) {
945 tty->ctrl_status &= ~TIOCPKT_START;
946 tty->ctrl_status |= TIOCPKT_STOP;
947 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
949 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
950 if (tty->ops->stop)
951 (tty->ops->stop)(tty);
954 EXPORT_SYMBOL(stop_tty);
957 * start_tty - propagate flow control
958 * @tty: tty to start
960 * Start a tty that has been stopped if at all possible. Perform
961 * any necessary wakeups and propagate the TIOCPKT status. If this
962 * is the tty was previous stopped and is being started then the
963 * driver start method is invoked and the line discipline woken.
965 * Locking:
966 * ctrl_lock
969 void start_tty(struct tty_struct *tty)
971 unsigned long flags;
972 spin_lock_irqsave(&tty->ctrl_lock, flags);
973 if (!tty->stopped || tty->flow_stopped) {
974 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
975 return;
977 tty->stopped = 0;
978 if (tty->link && tty->link->packet) {
979 tty->ctrl_status &= ~TIOCPKT_STOP;
980 tty->ctrl_status |= TIOCPKT_START;
981 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
983 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
984 if (tty->ops->start)
985 (tty->ops->start)(tty);
986 /* If we have a running line discipline it may need kicking */
987 tty_wakeup(tty);
990 EXPORT_SYMBOL(start_tty);
992 /* We limit tty time update visibility to every 8 seconds or so. */
993 static void tty_update_time(struct timespec *time)
995 unsigned long sec = get_seconds();
996 if (abs(sec - time->tv_sec) & ~7)
997 time->tv_sec = sec;
1001 * tty_read - read method for tty device files
1002 * @file: pointer to tty file
1003 * @buf: user buffer
1004 * @count: size of user buffer
1005 * @ppos: unused
1007 * Perform the read system call function on this terminal device. Checks
1008 * for hung up devices before calling the line discipline method.
1010 * Locking:
1011 * Locks the line discipline internally while needed. Multiple
1012 * read calls may be outstanding in parallel.
1015 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1016 loff_t *ppos)
1018 int i;
1019 struct inode *inode = file_inode(file);
1020 struct tty_struct *tty = file_tty(file);
1021 struct tty_ldisc *ld;
1023 if (tty_paranoia_check(tty, inode, "tty_read"))
1024 return -EIO;
1025 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1026 return -EIO;
1028 /* We want to wait for the line discipline to sort out in this
1029 situation */
1030 ld = tty_ldisc_ref_wait(tty);
1031 if (ld->ops->read)
1032 i = (ld->ops->read)(tty, file, buf, count);
1033 else
1034 i = -EIO;
1035 tty_ldisc_deref(ld);
1037 if (i > 0)
1038 tty_update_time(&inode->i_atime);
1040 return i;
1043 void tty_write_unlock(struct tty_struct *tty)
1044 __releases(&tty->atomic_write_lock)
1046 mutex_unlock(&tty->atomic_write_lock);
1047 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1050 int tty_write_lock(struct tty_struct *tty, int ndelay)
1051 __acquires(&tty->atomic_write_lock)
1053 if (!mutex_trylock(&tty->atomic_write_lock)) {
1054 if (ndelay)
1055 return -EAGAIN;
1056 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1057 return -ERESTARTSYS;
1059 return 0;
1063 * Split writes up in sane blocksizes to avoid
1064 * denial-of-service type attacks
1066 static inline ssize_t do_tty_write(
1067 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1068 struct tty_struct *tty,
1069 struct file *file,
1070 const char __user *buf,
1071 size_t count)
1073 ssize_t ret, written = 0;
1074 unsigned int chunk;
1076 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1077 if (ret < 0)
1078 return ret;
1081 * We chunk up writes into a temporary buffer. This
1082 * simplifies low-level drivers immensely, since they
1083 * don't have locking issues and user mode accesses.
1085 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1086 * big chunk-size..
1088 * The default chunk-size is 2kB, because the NTTY
1089 * layer has problems with bigger chunks. It will
1090 * claim to be able to handle more characters than
1091 * it actually does.
1093 * FIXME: This can probably go away now except that 64K chunks
1094 * are too likely to fail unless switched to vmalloc...
1096 chunk = 2048;
1097 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1098 chunk = 65536;
1099 if (count < chunk)
1100 chunk = count;
1102 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1103 if (tty->write_cnt < chunk) {
1104 unsigned char *buf_chunk;
1106 if (chunk < 1024)
1107 chunk = 1024;
1109 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1110 if (!buf_chunk) {
1111 ret = -ENOMEM;
1112 goto out;
1114 kfree(tty->write_buf);
1115 tty->write_cnt = chunk;
1116 tty->write_buf = buf_chunk;
1119 /* Do the write .. */
1120 for (;;) {
1121 size_t size = count;
1122 if (size > chunk)
1123 size = chunk;
1124 ret = -EFAULT;
1125 if (copy_from_user(tty->write_buf, buf, size))
1126 break;
1127 ret = write(tty, file, tty->write_buf, size);
1128 if (ret <= 0)
1129 break;
1130 written += ret;
1131 buf += ret;
1132 count -= ret;
1133 if (!count)
1134 break;
1135 ret = -ERESTARTSYS;
1136 if (signal_pending(current))
1137 break;
1138 cond_resched();
1140 if (written) {
1141 tty_update_time(&file_inode(file)->i_mtime);
1142 ret = written;
1144 out:
1145 tty_write_unlock(tty);
1146 return ret;
1150 * tty_write_message - write a message to a certain tty, not just the console.
1151 * @tty: the destination tty_struct
1152 * @msg: the message to write
1154 * This is used for messages that need to be redirected to a specific tty.
1155 * We don't put it into the syslog queue right now maybe in the future if
1156 * really needed.
1158 * We must still hold the BTM and test the CLOSING flag for the moment.
1161 void tty_write_message(struct tty_struct *tty, char *msg)
1163 if (tty) {
1164 mutex_lock(&tty->atomic_write_lock);
1165 tty_lock(tty);
1166 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1167 tty_unlock(tty);
1168 tty->ops->write(tty, msg, strlen(msg));
1169 } else
1170 tty_unlock(tty);
1171 tty_write_unlock(tty);
1173 return;
1178 * tty_write - write method for tty device file
1179 * @file: tty file pointer
1180 * @buf: user data to write
1181 * @count: bytes to write
1182 * @ppos: unused
1184 * Write data to a tty device via the line discipline.
1186 * Locking:
1187 * Locks the line discipline as required
1188 * Writes to the tty driver are serialized by the atomic_write_lock
1189 * and are then processed in chunks to the device. The line discipline
1190 * write method will not be invoked in parallel for each device.
1193 static ssize_t tty_write(struct file *file, const char __user *buf,
1194 size_t count, loff_t *ppos)
1196 struct tty_struct *tty = file_tty(file);
1197 struct tty_ldisc *ld;
1198 ssize_t ret;
1200 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1201 return -EIO;
1202 if (!tty || !tty->ops->write ||
1203 (test_bit(TTY_IO_ERROR, &tty->flags)))
1204 return -EIO;
1205 /* Short term debug to catch buggy drivers */
1206 if (tty->ops->write_room == NULL)
1207 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1208 tty->driver->name);
1209 ld = tty_ldisc_ref_wait(tty);
1210 if (!ld->ops->write)
1211 ret = -EIO;
1212 else
1213 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1214 tty_ldisc_deref(ld);
1215 return ret;
1218 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1219 size_t count, loff_t *ppos)
1221 struct file *p = NULL;
1223 spin_lock(&redirect_lock);
1224 if (redirect)
1225 p = get_file(redirect);
1226 spin_unlock(&redirect_lock);
1228 if (p) {
1229 ssize_t res;
1230 res = vfs_write(p, buf, count, &p->f_pos);
1231 fput(p);
1232 return res;
1234 return tty_write(file, buf, count, ppos);
1237 static char ptychar[] = "pqrstuvwxyzabcde";
1240 * pty_line_name - generate name for a pty
1241 * @driver: the tty driver in use
1242 * @index: the minor number
1243 * @p: output buffer of at least 6 bytes
1245 * Generate a name from a driver reference and write it to the output
1246 * buffer.
1248 * Locking: None
1250 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1252 int i = index + driver->name_base;
1253 /* ->name is initialized to "ttyp", but "tty" is expected */
1254 sprintf(p, "%s%c%x",
1255 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1256 ptychar[i >> 4 & 0xf], i & 0xf);
1260 * tty_line_name - generate name for a tty
1261 * @driver: the tty driver in use
1262 * @index: the minor number
1263 * @p: output buffer of at least 7 bytes
1265 * Generate a name from a driver reference and write it to the output
1266 * buffer.
1268 * Locking: None
1270 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1272 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1273 return sprintf(p, "%s", driver->name);
1274 else
1275 return sprintf(p, "%s%d", driver->name,
1276 index + driver->name_base);
1280 * tty_driver_lookup_tty() - find an existing tty, if any
1281 * @driver: the driver for the tty
1282 * @idx: the minor number
1284 * Return the tty, if found or ERR_PTR() otherwise.
1286 * Locking: tty_mutex must be held. If tty is found, the mutex must
1287 * be held until the 'fast-open' is also done. Will change once we
1288 * have refcounting in the driver and per driver locking
1290 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1291 struct inode *inode, int idx)
1293 if (driver->ops->lookup)
1294 return driver->ops->lookup(driver, inode, idx);
1296 return driver->ttys[idx];
1300 * tty_init_termios - helper for termios setup
1301 * @tty: the tty to set up
1303 * Initialise the termios structures for this tty. Thus runs under
1304 * the tty_mutex currently so we can be relaxed about ordering.
1307 int tty_init_termios(struct tty_struct *tty)
1309 struct ktermios *tp;
1310 int idx = tty->index;
1312 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1313 tty->termios = tty->driver->init_termios;
1314 else {
1315 /* Check for lazy saved data */
1316 tp = tty->driver->termios[idx];
1317 if (tp != NULL)
1318 tty->termios = *tp;
1319 else
1320 tty->termios = tty->driver->init_termios;
1322 /* Compatibility until drivers always set this */
1323 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1324 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1325 return 0;
1327 EXPORT_SYMBOL_GPL(tty_init_termios);
1329 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1331 int ret = tty_init_termios(tty);
1332 if (ret)
1333 return ret;
1335 tty_driver_kref_get(driver);
1336 tty->count++;
1337 driver->ttys[tty->index] = tty;
1338 return 0;
1340 EXPORT_SYMBOL_GPL(tty_standard_install);
1343 * tty_driver_install_tty() - install a tty entry in the driver
1344 * @driver: the driver for the tty
1345 * @tty: the tty
1347 * Install a tty object into the driver tables. The tty->index field
1348 * will be set by the time this is called. This method is responsible
1349 * for ensuring any need additional structures are allocated and
1350 * configured.
1352 * Locking: tty_mutex for now
1354 static int tty_driver_install_tty(struct tty_driver *driver,
1355 struct tty_struct *tty)
1357 return driver->ops->install ? driver->ops->install(driver, tty) :
1358 tty_standard_install(driver, tty);
1362 * tty_driver_remove_tty() - remove a tty from the driver tables
1363 * @driver: the driver for the tty
1364 * @idx: the minor number
1366 * Remvoe a tty object from the driver tables. The tty->index field
1367 * will be set by the time this is called.
1369 * Locking: tty_mutex for now
1371 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1373 if (driver->ops->remove)
1374 driver->ops->remove(driver, tty);
1375 else
1376 driver->ttys[tty->index] = NULL;
1380 * tty_reopen() - fast re-open of an open tty
1381 * @tty - the tty to open
1383 * Return 0 on success, -errno on error.
1385 * Locking: tty_mutex must be held from the time the tty was found
1386 * till this open completes.
1388 static int tty_reopen(struct tty_struct *tty)
1390 struct tty_driver *driver = tty->driver;
1392 if (test_bit(TTY_CLOSING, &tty->flags) ||
1393 test_bit(TTY_HUPPING, &tty->flags) ||
1394 test_bit(TTY_LDISC_CHANGING, &tty->flags))
1395 return -EIO;
1397 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1398 driver->subtype == PTY_TYPE_MASTER) {
1400 * special case for PTY masters: only one open permitted,
1401 * and the slave side open count is incremented as well.
1403 if (tty->count)
1404 return -EIO;
1406 tty->link->count++;
1408 tty->count++;
1410 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1412 return 0;
1416 * tty_init_dev - initialise a tty device
1417 * @driver: tty driver we are opening a device on
1418 * @idx: device index
1419 * @ret_tty: returned tty structure
1421 * Prepare a tty device. This may not be a "new" clean device but
1422 * could also be an active device. The pty drivers require special
1423 * handling because of this.
1425 * Locking:
1426 * The function is called under the tty_mutex, which
1427 * protects us from the tty struct or driver itself going away.
1429 * On exit the tty device has the line discipline attached and
1430 * a reference count of 1. If a pair was created for pty/tty use
1431 * and the other was a pty master then it too has a reference count of 1.
1433 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1434 * failed open. The new code protects the open with a mutex, so it's
1435 * really quite straightforward. The mutex locking can probably be
1436 * relaxed for the (most common) case of reopening a tty.
1439 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1441 struct tty_struct *tty;
1442 int retval;
1445 * First time open is complex, especially for PTY devices.
1446 * This code guarantees that either everything succeeds and the
1447 * TTY is ready for operation, or else the table slots are vacated
1448 * and the allocated memory released. (Except that the termios
1449 * and locked termios may be retained.)
1452 if (!try_module_get(driver->owner))
1453 return ERR_PTR(-ENODEV);
1455 tty = alloc_tty_struct();
1456 if (!tty) {
1457 retval = -ENOMEM;
1458 goto err_module_put;
1460 initialize_tty_struct(tty, driver, idx);
1462 tty_lock(tty);
1463 retval = tty_driver_install_tty(driver, tty);
1464 if (retval < 0)
1465 goto err_deinit_tty;
1467 if (!tty->port)
1468 tty->port = driver->ports[idx];
1470 WARN_RATELIMIT(!tty->port,
1471 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1472 __func__, tty->driver->name);
1474 tty->port->itty = tty;
1477 * Structures all installed ... call the ldisc open routines.
1478 * If we fail here just call release_tty to clean up. No need
1479 * to decrement the use counts, as release_tty doesn't care.
1481 retval = tty_ldisc_setup(tty, tty->link);
1482 if (retval)
1483 goto err_release_tty;
1484 /* Return the tty locked so that it cannot vanish under the caller */
1485 return tty;
1487 err_deinit_tty:
1488 tty_unlock(tty);
1489 deinitialize_tty_struct(tty);
1490 free_tty_struct(tty);
1491 err_module_put:
1492 module_put(driver->owner);
1493 return ERR_PTR(retval);
1495 /* call the tty release_tty routine to clean out this slot */
1496 err_release_tty:
1497 tty_unlock(tty);
1498 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1499 "clearing slot %d\n", idx);
1500 release_tty(tty, idx);
1501 return ERR_PTR(retval);
1504 void tty_free_termios(struct tty_struct *tty)
1506 struct ktermios *tp;
1507 int idx = tty->index;
1509 /* If the port is going to reset then it has no termios to save */
1510 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1511 return;
1513 /* Stash the termios data */
1514 tp = tty->driver->termios[idx];
1515 if (tp == NULL) {
1516 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1517 if (tp == NULL) {
1518 pr_warn("tty: no memory to save termios state.\n");
1519 return;
1521 tty->driver->termios[idx] = tp;
1523 *tp = tty->termios;
1525 EXPORT_SYMBOL(tty_free_termios);
1528 * tty_flush_works - flush all works of a tty
1529 * @tty: tty device to flush works for
1531 * Sync flush all works belonging to @tty.
1533 static void tty_flush_works(struct tty_struct *tty)
1535 flush_work(&tty->SAK_work);
1536 flush_work(&tty->hangup_work);
1540 * release_one_tty - release tty structure memory
1541 * @kref: kref of tty we are obliterating
1543 * Releases memory associated with a tty structure, and clears out the
1544 * driver table slots. This function is called when a device is no longer
1545 * in use. It also gets called when setup of a device fails.
1547 * Locking:
1548 * takes the file list lock internally when working on the list
1549 * of ttys that the driver keeps.
1551 * This method gets called from a work queue so that the driver private
1552 * cleanup ops can sleep (needed for USB at least)
1554 static void release_one_tty(struct work_struct *work)
1556 struct tty_struct *tty =
1557 container_of(work, struct tty_struct, hangup_work);
1558 struct tty_driver *driver = tty->driver;
1560 if (tty->ops->cleanup)
1561 tty->ops->cleanup(tty);
1563 tty->magic = 0;
1564 tty_driver_kref_put(driver);
1565 module_put(driver->owner);
1567 spin_lock(&tty_files_lock);
1568 list_del_init(&tty->tty_files);
1569 spin_unlock(&tty_files_lock);
1571 put_pid(tty->pgrp);
1572 put_pid(tty->session);
1573 free_tty_struct(tty);
1576 static void queue_release_one_tty(struct kref *kref)
1578 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1580 /* The hangup queue is now free so we can reuse it rather than
1581 waste a chunk of memory for each port */
1582 INIT_WORK(&tty->hangup_work, release_one_tty);
1583 schedule_work(&tty->hangup_work);
1587 * tty_kref_put - release a tty kref
1588 * @tty: tty device
1590 * Release a reference to a tty device and if need be let the kref
1591 * layer destruct the object for us
1594 void tty_kref_put(struct tty_struct *tty)
1596 if (tty)
1597 kref_put(&tty->kref, queue_release_one_tty);
1599 EXPORT_SYMBOL(tty_kref_put);
1602 * release_tty - release tty structure memory
1604 * Release both @tty and a possible linked partner (think pty pair),
1605 * and decrement the refcount of the backing module.
1607 * Locking:
1608 * tty_mutex
1609 * takes the file list lock internally when working on the list
1610 * of ttys that the driver keeps.
1613 static void release_tty(struct tty_struct *tty, int idx)
1615 /* This should always be true but check for the moment */
1616 WARN_ON(tty->index != idx);
1617 WARN_ON(!mutex_is_locked(&tty_mutex));
1618 if (tty->ops->shutdown)
1619 tty->ops->shutdown(tty);
1620 tty_free_termios(tty);
1621 tty_driver_remove_tty(tty->driver, tty);
1622 tty->port->itty = NULL;
1623 if (tty->link)
1624 tty->link->port->itty = NULL;
1625 cancel_work_sync(&tty->port->buf.work);
1627 if (tty->link)
1628 tty_kref_put(tty->link);
1629 tty_kref_put(tty);
1633 * tty_release_checks - check a tty before real release
1634 * @tty: tty to check
1635 * @o_tty: link of @tty (if any)
1636 * @idx: index of the tty
1638 * Performs some paranoid checking before true release of the @tty.
1639 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1641 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1642 int idx)
1644 #ifdef TTY_PARANOIA_CHECK
1645 if (idx < 0 || idx >= tty->driver->num) {
1646 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1647 __func__, tty->name);
1648 return -1;
1651 /* not much to check for devpts */
1652 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1653 return 0;
1655 if (tty != tty->driver->ttys[idx]) {
1656 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1657 __func__, idx, tty->name);
1658 return -1;
1660 if (tty->driver->other) {
1661 if (o_tty != tty->driver->other->ttys[idx]) {
1662 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1663 __func__, idx, tty->name);
1664 return -1;
1666 if (o_tty->link != tty) {
1667 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1668 return -1;
1671 #endif
1672 return 0;
1676 * tty_release - vfs callback for close
1677 * @inode: inode of tty
1678 * @filp: file pointer for handle to tty
1680 * Called the last time each file handle is closed that references
1681 * this tty. There may however be several such references.
1683 * Locking:
1684 * Takes bkl. See tty_release_dev
1686 * Even releasing the tty structures is a tricky business.. We have
1687 * to be very careful that the structures are all released at the
1688 * same time, as interrupts might otherwise get the wrong pointers.
1690 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1691 * lead to double frees or releasing memory still in use.
1694 int tty_release(struct inode *inode, struct file *filp)
1696 struct tty_struct *tty = file_tty(filp);
1697 struct tty_struct *o_tty;
1698 int pty_master, tty_closing, o_tty_closing, do_sleep;
1699 int idx;
1700 char buf[64];
1701 long timeout = 0;
1703 if (tty_paranoia_check(tty, inode, __func__))
1704 return 0;
1706 tty_lock(tty);
1707 check_tty_count(tty, __func__);
1709 __tty_fasync(-1, filp, 0);
1711 idx = tty->index;
1712 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1713 tty->driver->subtype == PTY_TYPE_MASTER);
1714 /* Review: parallel close */
1715 o_tty = tty->link;
1717 if (tty_release_checks(tty, o_tty, idx)) {
1718 tty_unlock(tty);
1719 return 0;
1722 #ifdef TTY_DEBUG_HANGUP
1723 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1724 tty_name(tty, buf), tty->count);
1725 #endif
1727 if (tty->ops->close)
1728 tty->ops->close(tty, filp);
1730 tty_unlock(tty);
1732 * Sanity check: if tty->count is going to zero, there shouldn't be
1733 * any waiters on tty->read_wait or tty->write_wait. We test the
1734 * wait queues and kick everyone out _before_ actually starting to
1735 * close. This ensures that we won't block while releasing the tty
1736 * structure.
1738 * The test for the o_tty closing is necessary, since the master and
1739 * slave sides may close in any order. If the slave side closes out
1740 * first, its count will be one, since the master side holds an open.
1741 * Thus this test wouldn't be triggered at the time the slave closes,
1742 * so we do it now.
1744 * Note that it's possible for the tty to be opened again while we're
1745 * flushing out waiters. By recalculating the closing flags before
1746 * each iteration we avoid any problems.
1748 while (1) {
1749 /* Guard against races with tty->count changes elsewhere and
1750 opens on /dev/tty */
1752 mutex_lock(&tty_mutex);
1753 tty_lock_pair(tty, o_tty);
1754 tty_closing = tty->count <= 1;
1755 o_tty_closing = o_tty &&
1756 (o_tty->count <= (pty_master ? 1 : 0));
1757 do_sleep = 0;
1759 if (tty_closing) {
1760 if (waitqueue_active(&tty->read_wait)) {
1761 wake_up_poll(&tty->read_wait, POLLIN);
1762 do_sleep++;
1764 if (waitqueue_active(&tty->write_wait)) {
1765 wake_up_poll(&tty->write_wait, POLLOUT);
1766 do_sleep++;
1769 if (o_tty_closing) {
1770 if (waitqueue_active(&o_tty->read_wait)) {
1771 wake_up_poll(&o_tty->read_wait, POLLIN);
1772 do_sleep++;
1774 if (waitqueue_active(&o_tty->write_wait)) {
1775 wake_up_poll(&o_tty->write_wait, POLLOUT);
1776 do_sleep++;
1779 if (!do_sleep)
1780 break;
1782 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1783 __func__, tty_name(tty, buf));
1784 tty_unlock_pair(tty, o_tty);
1785 mutex_unlock(&tty_mutex);
1786 schedule_timeout_killable(timeout);
1787 if (timeout < 120 * HZ)
1788 timeout = 2 * timeout + 1;
1789 else
1790 timeout = MAX_SCHEDULE_TIMEOUT;
1794 * The closing flags are now consistent with the open counts on
1795 * both sides, and we've completed the last operation that could
1796 * block, so it's safe to proceed with closing.
1798 * We must *not* drop the tty_mutex until we ensure that a further
1799 * entry into tty_open can not pick up this tty.
1801 if (pty_master) {
1802 if (--o_tty->count < 0) {
1803 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1804 __func__, o_tty->count, tty_name(o_tty, buf));
1805 o_tty->count = 0;
1808 if (--tty->count < 0) {
1809 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1810 __func__, tty->count, tty_name(tty, buf));
1811 tty->count = 0;
1815 * We've decremented tty->count, so we need to remove this file
1816 * descriptor off the tty->tty_files list; this serves two
1817 * purposes:
1818 * - check_tty_count sees the correct number of file descriptors
1819 * associated with this tty.
1820 * - do_tty_hangup no longer sees this file descriptor as
1821 * something that needs to be handled for hangups.
1823 tty_del_file(filp);
1826 * Perform some housekeeping before deciding whether to return.
1828 * Set the TTY_CLOSING flag if this was the last open. In the
1829 * case of a pty we may have to wait around for the other side
1830 * to close, and TTY_CLOSING makes sure we can't be reopened.
1832 if (tty_closing)
1833 set_bit(TTY_CLOSING, &tty->flags);
1834 if (o_tty_closing)
1835 set_bit(TTY_CLOSING, &o_tty->flags);
1838 * If _either_ side is closing, make sure there aren't any
1839 * processes that still think tty or o_tty is their controlling
1840 * tty.
1842 if (tty_closing || o_tty_closing) {
1843 read_lock(&tasklist_lock);
1844 session_clear_tty(tty->session);
1845 if (o_tty)
1846 session_clear_tty(o_tty->session);
1847 read_unlock(&tasklist_lock);
1850 mutex_unlock(&tty_mutex);
1851 tty_unlock_pair(tty, o_tty);
1852 /* At this point the TTY_CLOSING flag should ensure a dead tty
1853 cannot be re-opened by a racing opener */
1855 /* check whether both sides are closing ... */
1856 if (!tty_closing || (o_tty && !o_tty_closing))
1857 return 0;
1859 #ifdef TTY_DEBUG_HANGUP
1860 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1861 #endif
1863 * Ask the line discipline code to release its structures
1865 tty_ldisc_release(tty, o_tty);
1867 /* Wait for pending work before tty destruction commmences */
1868 tty_flush_works(tty);
1869 if (o_tty)
1870 tty_flush_works(o_tty);
1872 #ifdef TTY_DEBUG_HANGUP
1873 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1874 #endif
1876 * The release_tty function takes care of the details of clearing
1877 * the slots and preserving the termios structure. The tty_unlock_pair
1878 * should be safe as we keep a kref while the tty is locked (so the
1879 * unlock never unlocks a freed tty).
1881 mutex_lock(&tty_mutex);
1882 release_tty(tty, idx);
1883 mutex_unlock(&tty_mutex);
1885 return 0;
1889 * tty_open_current_tty - get tty of current task for open
1890 * @device: device number
1891 * @filp: file pointer to tty
1892 * @return: tty of the current task iff @device is /dev/tty
1894 * We cannot return driver and index like for the other nodes because
1895 * devpts will not work then. It expects inodes to be from devpts FS.
1897 * We need to move to returning a refcounted object from all the lookup
1898 * paths including this one.
1900 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1902 struct tty_struct *tty;
1904 if (device != MKDEV(TTYAUX_MAJOR, 0))
1905 return NULL;
1907 tty = get_current_tty();
1908 if (!tty)
1909 return ERR_PTR(-ENXIO);
1911 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1912 /* noctty = 1; */
1913 tty_kref_put(tty);
1914 /* FIXME: we put a reference and return a TTY! */
1915 /* This is only safe because the caller holds tty_mutex */
1916 return tty;
1920 * tty_lookup_driver - lookup a tty driver for a given device file
1921 * @device: device number
1922 * @filp: file pointer to tty
1923 * @noctty: set if the device should not become a controlling tty
1924 * @index: index for the device in the @return driver
1925 * @return: driver for this inode (with increased refcount)
1927 * If @return is not erroneous, the caller is responsible to decrement the
1928 * refcount by tty_driver_kref_put.
1930 * Locking: tty_mutex protects get_tty_driver
1932 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1933 int *noctty, int *index)
1935 struct tty_driver *driver;
1937 switch (device) {
1938 #ifdef CONFIG_VT
1939 case MKDEV(TTY_MAJOR, 0): {
1940 extern struct tty_driver *console_driver;
1941 driver = tty_driver_kref_get(console_driver);
1942 *index = fg_console;
1943 *noctty = 1;
1944 break;
1946 #endif
1947 case MKDEV(TTYAUX_MAJOR, 1): {
1948 struct tty_driver *console_driver = console_device(index);
1949 if (console_driver) {
1950 driver = tty_driver_kref_get(console_driver);
1951 if (driver) {
1952 /* Don't let /dev/console block */
1953 filp->f_flags |= O_NONBLOCK;
1954 *noctty = 1;
1955 break;
1958 return ERR_PTR(-ENODEV);
1960 default:
1961 driver = get_tty_driver(device, index);
1962 if (!driver)
1963 return ERR_PTR(-ENODEV);
1964 break;
1966 return driver;
1970 * tty_open - open a tty device
1971 * @inode: inode of device file
1972 * @filp: file pointer to tty
1974 * tty_open and tty_release keep up the tty count that contains the
1975 * number of opens done on a tty. We cannot use the inode-count, as
1976 * different inodes might point to the same tty.
1978 * Open-counting is needed for pty masters, as well as for keeping
1979 * track of serial lines: DTR is dropped when the last close happens.
1980 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1982 * The termios state of a pty is reset on first open so that
1983 * settings don't persist across reuse.
1985 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1986 * tty->count should protect the rest.
1987 * ->siglock protects ->signal/->sighand
1989 * Note: the tty_unlock/lock cases without a ref are only safe due to
1990 * tty_mutex
1993 static int tty_open(struct inode *inode, struct file *filp)
1995 struct tty_struct *tty;
1996 int noctty, retval;
1997 struct tty_driver *driver = NULL;
1998 int index;
1999 dev_t device = inode->i_rdev;
2000 unsigned saved_flags = filp->f_flags;
2002 nonseekable_open(inode, filp);
2004 retry_open:
2005 retval = tty_alloc_file(filp);
2006 if (retval)
2007 return -ENOMEM;
2009 noctty = filp->f_flags & O_NOCTTY;
2010 index = -1;
2011 retval = 0;
2013 mutex_lock(&tty_mutex);
2014 /* This is protected by the tty_mutex */
2015 tty = tty_open_current_tty(device, filp);
2016 if (IS_ERR(tty)) {
2017 retval = PTR_ERR(tty);
2018 goto err_unlock;
2019 } else if (!tty) {
2020 driver = tty_lookup_driver(device, filp, &noctty, &index);
2021 if (IS_ERR(driver)) {
2022 retval = PTR_ERR(driver);
2023 goto err_unlock;
2026 /* check whether we're reopening an existing tty */
2027 tty = tty_driver_lookup_tty(driver, inode, index);
2028 if (IS_ERR(tty)) {
2029 retval = PTR_ERR(tty);
2030 goto err_unlock;
2034 if (tty) {
2035 tty_lock(tty);
2036 retval = tty_reopen(tty);
2037 if (retval < 0) {
2038 tty_unlock(tty);
2039 tty = ERR_PTR(retval);
2041 } else /* Returns with the tty_lock held for now */
2042 tty = tty_init_dev(driver, index);
2044 mutex_unlock(&tty_mutex);
2045 if (driver)
2046 tty_driver_kref_put(driver);
2047 if (IS_ERR(tty)) {
2048 retval = PTR_ERR(tty);
2049 goto err_file;
2052 tty_add_file(tty, filp);
2054 check_tty_count(tty, __func__);
2055 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2056 tty->driver->subtype == PTY_TYPE_MASTER)
2057 noctty = 1;
2058 #ifdef TTY_DEBUG_HANGUP
2059 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2060 #endif
2061 if (tty->ops->open)
2062 retval = tty->ops->open(tty, filp);
2063 else
2064 retval = -ENODEV;
2065 filp->f_flags = saved_flags;
2067 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2068 !capable(CAP_SYS_ADMIN))
2069 retval = -EBUSY;
2071 if (retval) {
2072 #ifdef TTY_DEBUG_HANGUP
2073 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2074 retval, tty->name);
2075 #endif
2076 tty_unlock(tty); /* need to call tty_release without BTM */
2077 tty_release(inode, filp);
2078 if (retval != -ERESTARTSYS)
2079 return retval;
2081 if (signal_pending(current))
2082 return retval;
2084 schedule();
2086 * Need to reset f_op in case a hangup happened.
2088 if (filp->f_op == &hung_up_tty_fops)
2089 filp->f_op = &tty_fops;
2090 goto retry_open;
2092 tty_unlock(tty);
2095 mutex_lock(&tty_mutex);
2096 tty_lock(tty);
2097 spin_lock_irq(&current->sighand->siglock);
2098 if (!noctty &&
2099 current->signal->leader &&
2100 !current->signal->tty &&
2101 tty->session == NULL)
2102 __proc_set_tty(current, tty);
2103 spin_unlock_irq(&current->sighand->siglock);
2104 tty_unlock(tty);
2105 mutex_unlock(&tty_mutex);
2106 return 0;
2107 err_unlock:
2108 mutex_unlock(&tty_mutex);
2109 /* after locks to avoid deadlock */
2110 if (!IS_ERR_OR_NULL(driver))
2111 tty_driver_kref_put(driver);
2112 err_file:
2113 tty_free_file(filp);
2114 return retval;
2120 * tty_poll - check tty status
2121 * @filp: file being polled
2122 * @wait: poll wait structures to update
2124 * Call the line discipline polling method to obtain the poll
2125 * status of the device.
2127 * Locking: locks called line discipline but ldisc poll method
2128 * may be re-entered freely by other callers.
2131 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2133 struct tty_struct *tty = file_tty(filp);
2134 struct tty_ldisc *ld;
2135 int ret = 0;
2137 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2138 return 0;
2140 ld = tty_ldisc_ref_wait(tty);
2141 if (ld->ops->poll)
2142 ret = (ld->ops->poll)(tty, filp, wait);
2143 tty_ldisc_deref(ld);
2144 return ret;
2147 static int __tty_fasync(int fd, struct file *filp, int on)
2149 struct tty_struct *tty = file_tty(filp);
2150 unsigned long flags;
2151 int retval = 0;
2153 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2154 goto out;
2156 retval = fasync_helper(fd, filp, on, &tty->fasync);
2157 if (retval <= 0)
2158 goto out;
2160 if (on) {
2161 enum pid_type type;
2162 struct pid *pid;
2163 if (!waitqueue_active(&tty->read_wait))
2164 tty->minimum_to_wake = 1;
2165 spin_lock_irqsave(&tty->ctrl_lock, flags);
2166 if (tty->pgrp) {
2167 pid = tty->pgrp;
2168 type = PIDTYPE_PGID;
2169 } else {
2170 pid = task_pid(current);
2171 type = PIDTYPE_PID;
2173 get_pid(pid);
2174 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2175 retval = __f_setown(filp, pid, type, 0);
2176 put_pid(pid);
2177 if (retval)
2178 goto out;
2179 } else {
2180 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2181 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2183 retval = 0;
2184 out:
2185 return retval;
2188 static int tty_fasync(int fd, struct file *filp, int on)
2190 struct tty_struct *tty = file_tty(filp);
2191 int retval;
2193 tty_lock(tty);
2194 retval = __tty_fasync(fd, filp, on);
2195 tty_unlock(tty);
2197 return retval;
2201 * tiocsti - fake input character
2202 * @tty: tty to fake input into
2203 * @p: pointer to character
2205 * Fake input to a tty device. Does the necessary locking and
2206 * input management.
2208 * FIXME: does not honour flow control ??
2210 * Locking:
2211 * Called functions take tty_ldisc_lock
2212 * current->signal->tty check is safe without locks
2214 * FIXME: may race normal receive processing
2217 static int tiocsti(struct tty_struct *tty, char __user *p)
2219 char ch, mbz = 0;
2220 struct tty_ldisc *ld;
2222 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2223 return -EPERM;
2224 if (get_user(ch, p))
2225 return -EFAULT;
2226 tty_audit_tiocsti(tty, ch);
2227 ld = tty_ldisc_ref_wait(tty);
2228 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2229 tty_ldisc_deref(ld);
2230 return 0;
2234 * tiocgwinsz - implement window query ioctl
2235 * @tty; tty
2236 * @arg: user buffer for result
2238 * Copies the kernel idea of the window size into the user buffer.
2240 * Locking: tty->termios_mutex is taken to ensure the winsize data
2241 * is consistent.
2244 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2246 int err;
2248 mutex_lock(&tty->termios_mutex);
2249 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2250 mutex_unlock(&tty->termios_mutex);
2252 return err ? -EFAULT: 0;
2256 * tty_do_resize - resize event
2257 * @tty: tty being resized
2258 * @rows: rows (character)
2259 * @cols: cols (character)
2261 * Update the termios variables and send the necessary signals to
2262 * peform a terminal resize correctly
2265 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2267 struct pid *pgrp;
2268 unsigned long flags;
2270 /* Lock the tty */
2271 mutex_lock(&tty->termios_mutex);
2272 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2273 goto done;
2274 /* Get the PID values and reference them so we can
2275 avoid holding the tty ctrl lock while sending signals */
2276 spin_lock_irqsave(&tty->ctrl_lock, flags);
2277 pgrp = get_pid(tty->pgrp);
2278 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2280 if (pgrp)
2281 kill_pgrp(pgrp, SIGWINCH, 1);
2282 put_pid(pgrp);
2284 tty->winsize = *ws;
2285 done:
2286 mutex_unlock(&tty->termios_mutex);
2287 return 0;
2289 EXPORT_SYMBOL(tty_do_resize);
2292 * tiocswinsz - implement window size set ioctl
2293 * @tty; tty side of tty
2294 * @arg: user buffer for result
2296 * Copies the user idea of the window size to the kernel. Traditionally
2297 * this is just advisory information but for the Linux console it
2298 * actually has driver level meaning and triggers a VC resize.
2300 * Locking:
2301 * Driver dependent. The default do_resize method takes the
2302 * tty termios mutex and ctrl_lock. The console takes its own lock
2303 * then calls into the default method.
2306 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2308 struct winsize tmp_ws;
2309 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2310 return -EFAULT;
2312 if (tty->ops->resize)
2313 return tty->ops->resize(tty, &tmp_ws);
2314 else
2315 return tty_do_resize(tty, &tmp_ws);
2319 * tioccons - allow admin to move logical console
2320 * @file: the file to become console
2322 * Allow the administrator to move the redirected console device
2324 * Locking: uses redirect_lock to guard the redirect information
2327 static int tioccons(struct file *file)
2329 if (!capable(CAP_SYS_ADMIN))
2330 return -EPERM;
2331 if (file->f_op->write == redirected_tty_write) {
2332 struct file *f;
2333 spin_lock(&redirect_lock);
2334 f = redirect;
2335 redirect = NULL;
2336 spin_unlock(&redirect_lock);
2337 if (f)
2338 fput(f);
2339 return 0;
2341 spin_lock(&redirect_lock);
2342 if (redirect) {
2343 spin_unlock(&redirect_lock);
2344 return -EBUSY;
2346 redirect = get_file(file);
2347 spin_unlock(&redirect_lock);
2348 return 0;
2352 * fionbio - non blocking ioctl
2353 * @file: file to set blocking value
2354 * @p: user parameter
2356 * Historical tty interfaces had a blocking control ioctl before
2357 * the generic functionality existed. This piece of history is preserved
2358 * in the expected tty API of posix OS's.
2360 * Locking: none, the open file handle ensures it won't go away.
2363 static int fionbio(struct file *file, int __user *p)
2365 int nonblock;
2367 if (get_user(nonblock, p))
2368 return -EFAULT;
2370 spin_lock(&file->f_lock);
2371 if (nonblock)
2372 file->f_flags |= O_NONBLOCK;
2373 else
2374 file->f_flags &= ~O_NONBLOCK;
2375 spin_unlock(&file->f_lock);
2376 return 0;
2380 * tiocsctty - set controlling tty
2381 * @tty: tty structure
2382 * @arg: user argument
2384 * This ioctl is used to manage job control. It permits a session
2385 * leader to set this tty as the controlling tty for the session.
2387 * Locking:
2388 * Takes tty_mutex() to protect tty instance
2389 * Takes tasklist_lock internally to walk sessions
2390 * Takes ->siglock() when updating signal->tty
2393 static int tiocsctty(struct tty_struct *tty, int arg)
2395 int ret = 0;
2396 if (current->signal->leader && (task_session(current) == tty->session))
2397 return ret;
2399 mutex_lock(&tty_mutex);
2401 * The process must be a session leader and
2402 * not have a controlling tty already.
2404 if (!current->signal->leader || current->signal->tty) {
2405 ret = -EPERM;
2406 goto unlock;
2409 if (tty->session) {
2411 * This tty is already the controlling
2412 * tty for another session group!
2414 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2416 * Steal it away
2418 read_lock(&tasklist_lock);
2419 session_clear_tty(tty->session);
2420 read_unlock(&tasklist_lock);
2421 } else {
2422 ret = -EPERM;
2423 goto unlock;
2426 proc_set_tty(current, tty);
2427 unlock:
2428 mutex_unlock(&tty_mutex);
2429 return ret;
2433 * tty_get_pgrp - return a ref counted pgrp pid
2434 * @tty: tty to read
2436 * Returns a refcounted instance of the pid struct for the process
2437 * group controlling the tty.
2440 struct pid *tty_get_pgrp(struct tty_struct *tty)
2442 unsigned long flags;
2443 struct pid *pgrp;
2445 spin_lock_irqsave(&tty->ctrl_lock, flags);
2446 pgrp = get_pid(tty->pgrp);
2447 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2449 return pgrp;
2451 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2454 * tiocgpgrp - get process group
2455 * @tty: tty passed by user
2456 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2457 * @p: returned pid
2459 * Obtain the process group of the tty. If there is no process group
2460 * return an error.
2462 * Locking: none. Reference to current->signal->tty is safe.
2465 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2467 struct pid *pid;
2468 int ret;
2470 * (tty == real_tty) is a cheap way of
2471 * testing if the tty is NOT a master pty.
2473 if (tty == real_tty && current->signal->tty != real_tty)
2474 return -ENOTTY;
2475 pid = tty_get_pgrp(real_tty);
2476 ret = put_user(pid_vnr(pid), p);
2477 put_pid(pid);
2478 return ret;
2482 * tiocspgrp - attempt to set process group
2483 * @tty: tty passed by user
2484 * @real_tty: tty side device matching tty passed by user
2485 * @p: pid pointer
2487 * Set the process group of the tty to the session passed. Only
2488 * permitted where the tty session is our session.
2490 * Locking: RCU, ctrl lock
2493 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2495 struct pid *pgrp;
2496 pid_t pgrp_nr;
2497 int retval = tty_check_change(real_tty);
2498 unsigned long flags;
2500 if (retval == -EIO)
2501 return -ENOTTY;
2502 if (retval)
2503 return retval;
2504 if (!current->signal->tty ||
2505 (current->signal->tty != real_tty) ||
2506 (real_tty->session != task_session(current)))
2507 return -ENOTTY;
2508 if (get_user(pgrp_nr, p))
2509 return -EFAULT;
2510 if (pgrp_nr < 0)
2511 return -EINVAL;
2512 rcu_read_lock();
2513 pgrp = find_vpid(pgrp_nr);
2514 retval = -ESRCH;
2515 if (!pgrp)
2516 goto out_unlock;
2517 retval = -EPERM;
2518 if (session_of_pgrp(pgrp) != task_session(current))
2519 goto out_unlock;
2520 retval = 0;
2521 spin_lock_irqsave(&tty->ctrl_lock, flags);
2522 put_pid(real_tty->pgrp);
2523 real_tty->pgrp = get_pid(pgrp);
2524 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2525 out_unlock:
2526 rcu_read_unlock();
2527 return retval;
2531 * tiocgsid - get session id
2532 * @tty: tty passed by user
2533 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2534 * @p: pointer to returned session id
2536 * Obtain the session id of the tty. If there is no session
2537 * return an error.
2539 * Locking: none. Reference to current->signal->tty is safe.
2542 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2545 * (tty == real_tty) is a cheap way of
2546 * testing if the tty is NOT a master pty.
2548 if (tty == real_tty && current->signal->tty != real_tty)
2549 return -ENOTTY;
2550 if (!real_tty->session)
2551 return -ENOTTY;
2552 return put_user(pid_vnr(real_tty->session), p);
2556 * tiocsetd - set line discipline
2557 * @tty: tty device
2558 * @p: pointer to user data
2560 * Set the line discipline according to user request.
2562 * Locking: see tty_set_ldisc, this function is just a helper
2565 static int tiocsetd(struct tty_struct *tty, int __user *p)
2567 int ldisc;
2568 int ret;
2570 if (get_user(ldisc, p))
2571 return -EFAULT;
2573 ret = tty_set_ldisc(tty, ldisc);
2575 return ret;
2579 * send_break - performed time break
2580 * @tty: device to break on
2581 * @duration: timeout in mS
2583 * Perform a timed break on hardware that lacks its own driver level
2584 * timed break functionality.
2586 * Locking:
2587 * atomic_write_lock serializes
2591 static int send_break(struct tty_struct *tty, unsigned int duration)
2593 int retval;
2595 if (tty->ops->break_ctl == NULL)
2596 return 0;
2598 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2599 retval = tty->ops->break_ctl(tty, duration);
2600 else {
2601 /* Do the work ourselves */
2602 if (tty_write_lock(tty, 0) < 0)
2603 return -EINTR;
2604 retval = tty->ops->break_ctl(tty, -1);
2605 if (retval)
2606 goto out;
2607 if (!signal_pending(current))
2608 msleep_interruptible(duration);
2609 retval = tty->ops->break_ctl(tty, 0);
2610 out:
2611 tty_write_unlock(tty);
2612 if (signal_pending(current))
2613 retval = -EINTR;
2615 return retval;
2619 * tty_tiocmget - get modem status
2620 * @tty: tty device
2621 * @file: user file pointer
2622 * @p: pointer to result
2624 * Obtain the modem status bits from the tty driver if the feature
2625 * is supported. Return -EINVAL if it is not available.
2627 * Locking: none (up to the driver)
2630 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2632 int retval = -EINVAL;
2634 if (tty->ops->tiocmget) {
2635 retval = tty->ops->tiocmget(tty);
2637 if (retval >= 0)
2638 retval = put_user(retval, p);
2640 return retval;
2644 * tty_tiocmset - set modem status
2645 * @tty: tty device
2646 * @cmd: command - clear bits, set bits or set all
2647 * @p: pointer to desired bits
2649 * Set the modem status bits from the tty driver if the feature
2650 * is supported. Return -EINVAL if it is not available.
2652 * Locking: none (up to the driver)
2655 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2656 unsigned __user *p)
2658 int retval;
2659 unsigned int set, clear, val;
2661 if (tty->ops->tiocmset == NULL)
2662 return -EINVAL;
2664 retval = get_user(val, p);
2665 if (retval)
2666 return retval;
2667 set = clear = 0;
2668 switch (cmd) {
2669 case TIOCMBIS:
2670 set = val;
2671 break;
2672 case TIOCMBIC:
2673 clear = val;
2674 break;
2675 case TIOCMSET:
2676 set = val;
2677 clear = ~val;
2678 break;
2680 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2681 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2682 return tty->ops->tiocmset(tty, set, clear);
2685 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2687 int retval = -EINVAL;
2688 struct serial_icounter_struct icount;
2689 memset(&icount, 0, sizeof(icount));
2690 if (tty->ops->get_icount)
2691 retval = tty->ops->get_icount(tty, &icount);
2692 if (retval != 0)
2693 return retval;
2694 if (copy_to_user(arg, &icount, sizeof(icount)))
2695 return -EFAULT;
2696 return 0;
2699 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2701 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2702 tty->driver->subtype == PTY_TYPE_MASTER)
2703 tty = tty->link;
2704 return tty;
2706 EXPORT_SYMBOL(tty_pair_get_tty);
2708 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2710 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2711 tty->driver->subtype == PTY_TYPE_MASTER)
2712 return tty;
2713 return tty->link;
2715 EXPORT_SYMBOL(tty_pair_get_pty);
2718 * Split this up, as gcc can choke on it otherwise..
2720 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2722 struct tty_struct *tty = file_tty(file);
2723 struct tty_struct *real_tty;
2724 void __user *p = (void __user *)arg;
2725 int retval;
2726 struct tty_ldisc *ld;
2728 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2729 return -EINVAL;
2731 real_tty = tty_pair_get_tty(tty);
2734 * Factor out some common prep work
2736 switch (cmd) {
2737 case TIOCSETD:
2738 case TIOCSBRK:
2739 case TIOCCBRK:
2740 case TCSBRK:
2741 case TCSBRKP:
2742 retval = tty_check_change(tty);
2743 if (retval)
2744 return retval;
2745 if (cmd != TIOCCBRK) {
2746 tty_wait_until_sent(tty, 0);
2747 if (signal_pending(current))
2748 return -EINTR;
2750 break;
2754 * Now do the stuff.
2756 switch (cmd) {
2757 case TIOCSTI:
2758 return tiocsti(tty, p);
2759 case TIOCGWINSZ:
2760 return tiocgwinsz(real_tty, p);
2761 case TIOCSWINSZ:
2762 return tiocswinsz(real_tty, p);
2763 case TIOCCONS:
2764 return real_tty != tty ? -EINVAL : tioccons(file);
2765 case FIONBIO:
2766 return fionbio(file, p);
2767 case TIOCEXCL:
2768 set_bit(TTY_EXCLUSIVE, &tty->flags);
2769 return 0;
2770 case TIOCNXCL:
2771 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2772 return 0;
2773 case TIOCGEXCL:
2775 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2776 return put_user(excl, (int __user *)p);
2778 case TIOCNOTTY:
2779 if (current->signal->tty != tty)
2780 return -ENOTTY;
2781 no_tty();
2782 return 0;
2783 case TIOCSCTTY:
2784 return tiocsctty(tty, arg);
2785 case TIOCGPGRP:
2786 return tiocgpgrp(tty, real_tty, p);
2787 case TIOCSPGRP:
2788 return tiocspgrp(tty, real_tty, p);
2789 case TIOCGSID:
2790 return tiocgsid(tty, real_tty, p);
2791 case TIOCGETD:
2792 return put_user(tty->ldisc->ops->num, (int __user *)p);
2793 case TIOCSETD:
2794 return tiocsetd(tty, p);
2795 case TIOCVHANGUP:
2796 if (!capable(CAP_SYS_ADMIN))
2797 return -EPERM;
2798 tty_vhangup(tty);
2799 return 0;
2800 case TIOCGDEV:
2802 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2803 return put_user(ret, (unsigned int __user *)p);
2806 * Break handling
2808 case TIOCSBRK: /* Turn break on, unconditionally */
2809 if (tty->ops->break_ctl)
2810 return tty->ops->break_ctl(tty, -1);
2811 return 0;
2812 case TIOCCBRK: /* Turn break off, unconditionally */
2813 if (tty->ops->break_ctl)
2814 return tty->ops->break_ctl(tty, 0);
2815 return 0;
2816 case TCSBRK: /* SVID version: non-zero arg --> no break */
2817 /* non-zero arg means wait for all output data
2818 * to be sent (performed above) but don't send break.
2819 * This is used by the tcdrain() termios function.
2821 if (!arg)
2822 return send_break(tty, 250);
2823 return 0;
2824 case TCSBRKP: /* support for POSIX tcsendbreak() */
2825 return send_break(tty, arg ? arg*100 : 250);
2827 case TIOCMGET:
2828 return tty_tiocmget(tty, p);
2829 case TIOCMSET:
2830 case TIOCMBIC:
2831 case TIOCMBIS:
2832 return tty_tiocmset(tty, cmd, p);
2833 case TIOCGICOUNT:
2834 retval = tty_tiocgicount(tty, p);
2835 /* For the moment allow fall through to the old method */
2836 if (retval != -EINVAL)
2837 return retval;
2838 break;
2839 case TCFLSH:
2840 switch (arg) {
2841 case TCIFLUSH:
2842 case TCIOFLUSH:
2843 /* flush tty buffer and allow ldisc to process ioctl */
2844 tty_buffer_flush(tty);
2845 break;
2847 break;
2849 if (tty->ops->ioctl) {
2850 retval = (tty->ops->ioctl)(tty, cmd, arg);
2851 if (retval != -ENOIOCTLCMD)
2852 return retval;
2854 ld = tty_ldisc_ref_wait(tty);
2855 retval = -EINVAL;
2856 if (ld->ops->ioctl) {
2857 retval = ld->ops->ioctl(tty, file, cmd, arg);
2858 if (retval == -ENOIOCTLCMD)
2859 retval = -ENOTTY;
2861 tty_ldisc_deref(ld);
2862 return retval;
2865 #ifdef CONFIG_COMPAT
2866 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2867 unsigned long arg)
2869 struct tty_struct *tty = file_tty(file);
2870 struct tty_ldisc *ld;
2871 int retval = -ENOIOCTLCMD;
2873 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2874 return -EINVAL;
2876 if (tty->ops->compat_ioctl) {
2877 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2878 if (retval != -ENOIOCTLCMD)
2879 return retval;
2882 ld = tty_ldisc_ref_wait(tty);
2883 if (ld->ops->compat_ioctl)
2884 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2885 else
2886 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2887 tty_ldisc_deref(ld);
2889 return retval;
2891 #endif
2893 static int this_tty(const void *t, struct file *file, unsigned fd)
2895 if (likely(file->f_op->read != tty_read))
2896 return 0;
2897 return file_tty(file) != t ? 0 : fd + 1;
2901 * This implements the "Secure Attention Key" --- the idea is to
2902 * prevent trojan horses by killing all processes associated with this
2903 * tty when the user hits the "Secure Attention Key". Required for
2904 * super-paranoid applications --- see the Orange Book for more details.
2906 * This code could be nicer; ideally it should send a HUP, wait a few
2907 * seconds, then send a INT, and then a KILL signal. But you then
2908 * have to coordinate with the init process, since all processes associated
2909 * with the current tty must be dead before the new getty is allowed
2910 * to spawn.
2912 * Now, if it would be correct ;-/ The current code has a nasty hole -
2913 * it doesn't catch files in flight. We may send the descriptor to ourselves
2914 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2916 * Nasty bug: do_SAK is being called in interrupt context. This can
2917 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2919 void __do_SAK(struct tty_struct *tty)
2921 #ifdef TTY_SOFT_SAK
2922 tty_hangup(tty);
2923 #else
2924 struct task_struct *g, *p;
2925 struct pid *session;
2926 int i;
2928 if (!tty)
2929 return;
2930 session = tty->session;
2932 tty_ldisc_flush(tty);
2934 tty_driver_flush_buffer(tty);
2936 read_lock(&tasklist_lock);
2937 /* Kill the entire session */
2938 do_each_pid_task(session, PIDTYPE_SID, p) {
2939 printk(KERN_NOTICE "SAK: killed process %d"
2940 " (%s): task_session(p)==tty->session\n",
2941 task_pid_nr(p), p->comm);
2942 send_sig(SIGKILL, p, 1);
2943 } while_each_pid_task(session, PIDTYPE_SID, p);
2944 /* Now kill any processes that happen to have the
2945 * tty open.
2947 do_each_thread(g, p) {
2948 if (p->signal->tty == tty) {
2949 printk(KERN_NOTICE "SAK: killed process %d"
2950 " (%s): task_session(p)==tty->session\n",
2951 task_pid_nr(p), p->comm);
2952 send_sig(SIGKILL, p, 1);
2953 continue;
2955 task_lock(p);
2956 i = iterate_fd(p->files, 0, this_tty, tty);
2957 if (i != 0) {
2958 printk(KERN_NOTICE "SAK: killed process %d"
2959 " (%s): fd#%d opened to the tty\n",
2960 task_pid_nr(p), p->comm, i - 1);
2961 force_sig(SIGKILL, p);
2963 task_unlock(p);
2964 } while_each_thread(g, p);
2965 read_unlock(&tasklist_lock);
2966 #endif
2969 static void do_SAK_work(struct work_struct *work)
2971 struct tty_struct *tty =
2972 container_of(work, struct tty_struct, SAK_work);
2973 __do_SAK(tty);
2977 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2978 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2979 * the values which we write to it will be identical to the values which it
2980 * already has. --akpm
2982 void do_SAK(struct tty_struct *tty)
2984 if (!tty)
2985 return;
2986 schedule_work(&tty->SAK_work);
2989 EXPORT_SYMBOL(do_SAK);
2991 static int dev_match_devt(struct device *dev, const void *data)
2993 const dev_t *devt = data;
2994 return dev->devt == *devt;
2997 /* Must put_device() after it's unused! */
2998 static struct device *tty_get_device(struct tty_struct *tty)
3000 dev_t devt = tty_devnum(tty);
3001 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3006 * initialize_tty_struct
3007 * @tty: tty to initialize
3009 * This subroutine initializes a tty structure that has been newly
3010 * allocated.
3012 * Locking: none - tty in question must not be exposed at this point
3015 void initialize_tty_struct(struct tty_struct *tty,
3016 struct tty_driver *driver, int idx)
3018 memset(tty, 0, sizeof(struct tty_struct));
3019 kref_init(&tty->kref);
3020 tty->magic = TTY_MAGIC;
3021 tty_ldisc_init(tty);
3022 tty->session = NULL;
3023 tty->pgrp = NULL;
3024 mutex_init(&tty->legacy_mutex);
3025 mutex_init(&tty->termios_mutex);
3026 mutex_init(&tty->ldisc_mutex);
3027 init_waitqueue_head(&tty->write_wait);
3028 init_waitqueue_head(&tty->read_wait);
3029 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3030 mutex_init(&tty->atomic_write_lock);
3031 spin_lock_init(&tty->ctrl_lock);
3032 INIT_LIST_HEAD(&tty->tty_files);
3033 INIT_WORK(&tty->SAK_work, do_SAK_work);
3035 tty->driver = driver;
3036 tty->ops = driver->ops;
3037 tty->index = idx;
3038 tty_line_name(driver, idx, tty->name);
3039 tty->dev = tty_get_device(tty);
3043 * deinitialize_tty_struct
3044 * @tty: tty to deinitialize
3046 * This subroutine deinitializes a tty structure that has been newly
3047 * allocated but tty_release cannot be called on that yet.
3049 * Locking: none - tty in question must not be exposed at this point
3051 void deinitialize_tty_struct(struct tty_struct *tty)
3053 tty_ldisc_deinit(tty);
3057 * tty_put_char - write one character to a tty
3058 * @tty: tty
3059 * @ch: character
3061 * Write one byte to the tty using the provided put_char method
3062 * if present. Returns the number of characters successfully output.
3064 * Note: the specific put_char operation in the driver layer may go
3065 * away soon. Don't call it directly, use this method
3068 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3070 if (tty->ops->put_char)
3071 return tty->ops->put_char(tty, ch);
3072 return tty->ops->write(tty, &ch, 1);
3074 EXPORT_SYMBOL_GPL(tty_put_char);
3076 struct class *tty_class;
3078 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3079 unsigned int index, unsigned int count)
3081 /* init here, since reused cdevs cause crashes */
3082 cdev_init(&driver->cdevs[index], &tty_fops);
3083 driver->cdevs[index].owner = driver->owner;
3084 return cdev_add(&driver->cdevs[index], dev, count);
3088 * tty_register_device - register a tty device
3089 * @driver: the tty driver that describes the tty device
3090 * @index: the index in the tty driver for this tty device
3091 * @device: a struct device that is associated with this tty device.
3092 * This field is optional, if there is no known struct device
3093 * for this tty device it can be set to NULL safely.
3095 * Returns a pointer to the struct device for this tty device
3096 * (or ERR_PTR(-EFOO) on error).
3098 * This call is required to be made to register an individual tty device
3099 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3100 * that bit is not set, this function should not be called by a tty
3101 * driver.
3103 * Locking: ??
3106 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3107 struct device *device)
3109 return tty_register_device_attr(driver, index, device, NULL, NULL);
3111 EXPORT_SYMBOL(tty_register_device);
3113 static void tty_device_create_release(struct device *dev)
3115 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3116 kfree(dev);
3120 * tty_register_device_attr - register a tty device
3121 * @driver: the tty driver that describes the tty device
3122 * @index: the index in the tty driver for this tty device
3123 * @device: a struct device that is associated with this tty device.
3124 * This field is optional, if there is no known struct device
3125 * for this tty device it can be set to NULL safely.
3126 * @drvdata: Driver data to be set to device.
3127 * @attr_grp: Attribute group to be set on device.
3129 * Returns a pointer to the struct device for this tty device
3130 * (or ERR_PTR(-EFOO) on error).
3132 * This call is required to be made to register an individual tty device
3133 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3134 * that bit is not set, this function should not be called by a tty
3135 * driver.
3137 * Locking: ??
3139 struct device *tty_register_device_attr(struct tty_driver *driver,
3140 unsigned index, struct device *device,
3141 void *drvdata,
3142 const struct attribute_group **attr_grp)
3144 char name[64];
3145 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3146 struct device *dev = NULL;
3147 int retval = -ENODEV;
3148 bool cdev = false;
3150 if (index >= driver->num) {
3151 printk(KERN_ERR "Attempt to register invalid tty line number "
3152 " (%d).\n", index);
3153 return ERR_PTR(-EINVAL);
3156 if (driver->type == TTY_DRIVER_TYPE_PTY)
3157 pty_line_name(driver, index, name);
3158 else
3159 tty_line_name(driver, index, name);
3161 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3162 retval = tty_cdev_add(driver, devt, index, 1);
3163 if (retval)
3164 goto error;
3165 cdev = true;
3168 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3169 if (!dev) {
3170 retval = -ENOMEM;
3171 goto error;
3174 dev->devt = devt;
3175 dev->class = tty_class;
3176 dev->parent = device;
3177 dev->release = tty_device_create_release;
3178 dev_set_name(dev, "%s", name);
3179 dev->groups = attr_grp;
3180 dev_set_drvdata(dev, drvdata);
3182 retval = device_register(dev);
3183 if (retval)
3184 goto error;
3186 return dev;
3188 error:
3189 put_device(dev);
3190 if (cdev)
3191 cdev_del(&driver->cdevs[index]);
3192 return ERR_PTR(retval);
3194 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3197 * tty_unregister_device - unregister a tty device
3198 * @driver: the tty driver that describes the tty device
3199 * @index: the index in the tty driver for this tty device
3201 * If a tty device is registered with a call to tty_register_device() then
3202 * this function must be called when the tty device is gone.
3204 * Locking: ??
3207 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3209 device_destroy(tty_class,
3210 MKDEV(driver->major, driver->minor_start) + index);
3211 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3212 cdev_del(&driver->cdevs[index]);
3214 EXPORT_SYMBOL(tty_unregister_device);
3217 * __tty_alloc_driver -- allocate tty driver
3218 * @lines: count of lines this driver can handle at most
3219 * @owner: module which is repsonsible for this driver
3220 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3222 * This should not be called directly, some of the provided macros should be
3223 * used instead. Use IS_ERR and friends on @retval.
3225 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3226 unsigned long flags)
3228 struct tty_driver *driver;
3229 unsigned int cdevs = 1;
3230 int err;
3232 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3233 return ERR_PTR(-EINVAL);
3235 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3236 if (!driver)
3237 return ERR_PTR(-ENOMEM);
3239 kref_init(&driver->kref);
3240 driver->magic = TTY_DRIVER_MAGIC;
3241 driver->num = lines;
3242 driver->owner = owner;
3243 driver->flags = flags;
3245 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3246 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3247 GFP_KERNEL);
3248 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3249 GFP_KERNEL);
3250 if (!driver->ttys || !driver->termios) {
3251 err = -ENOMEM;
3252 goto err_free_all;
3256 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3257 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3258 GFP_KERNEL);
3259 if (!driver->ports) {
3260 err = -ENOMEM;
3261 goto err_free_all;
3263 cdevs = lines;
3266 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3267 if (!driver->cdevs) {
3268 err = -ENOMEM;
3269 goto err_free_all;
3272 return driver;
3273 err_free_all:
3274 kfree(driver->ports);
3275 kfree(driver->ttys);
3276 kfree(driver->termios);
3277 kfree(driver);
3278 return ERR_PTR(err);
3280 EXPORT_SYMBOL(__tty_alloc_driver);
3282 static void destruct_tty_driver(struct kref *kref)
3284 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3285 int i;
3286 struct ktermios *tp;
3288 if (driver->flags & TTY_DRIVER_INSTALLED) {
3290 * Free the termios and termios_locked structures because
3291 * we don't want to get memory leaks when modular tty
3292 * drivers are removed from the kernel.
3294 for (i = 0; i < driver->num; i++) {
3295 tp = driver->termios[i];
3296 if (tp) {
3297 driver->termios[i] = NULL;
3298 kfree(tp);
3300 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3301 tty_unregister_device(driver, i);
3303 proc_tty_unregister_driver(driver);
3304 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3305 cdev_del(&driver->cdevs[0]);
3307 kfree(driver->cdevs);
3308 kfree(driver->ports);
3309 kfree(driver->termios);
3310 kfree(driver->ttys);
3311 kfree(driver);
3314 void tty_driver_kref_put(struct tty_driver *driver)
3316 kref_put(&driver->kref, destruct_tty_driver);
3318 EXPORT_SYMBOL(tty_driver_kref_put);
3320 void tty_set_operations(struct tty_driver *driver,
3321 const struct tty_operations *op)
3323 driver->ops = op;
3325 EXPORT_SYMBOL(tty_set_operations);
3327 void put_tty_driver(struct tty_driver *d)
3329 tty_driver_kref_put(d);
3331 EXPORT_SYMBOL(put_tty_driver);
3334 * Called by a tty driver to register itself.
3336 int tty_register_driver(struct tty_driver *driver)
3338 int error;
3339 int i;
3340 dev_t dev;
3341 struct device *d;
3343 if (!driver->major) {
3344 error = alloc_chrdev_region(&dev, driver->minor_start,
3345 driver->num, driver->name);
3346 if (!error) {
3347 driver->major = MAJOR(dev);
3348 driver->minor_start = MINOR(dev);
3350 } else {
3351 dev = MKDEV(driver->major, driver->minor_start);
3352 error = register_chrdev_region(dev, driver->num, driver->name);
3354 if (error < 0)
3355 goto err;
3357 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3358 error = tty_cdev_add(driver, dev, 0, driver->num);
3359 if (error)
3360 goto err_unreg_char;
3363 mutex_lock(&tty_mutex);
3364 list_add(&driver->tty_drivers, &tty_drivers);
3365 mutex_unlock(&tty_mutex);
3367 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3368 for (i = 0; i < driver->num; i++) {
3369 d = tty_register_device(driver, i, NULL);
3370 if (IS_ERR(d)) {
3371 error = PTR_ERR(d);
3372 goto err_unreg_devs;
3376 proc_tty_register_driver(driver);
3377 driver->flags |= TTY_DRIVER_INSTALLED;
3378 return 0;
3380 err_unreg_devs:
3381 for (i--; i >= 0; i--)
3382 tty_unregister_device(driver, i);
3384 mutex_lock(&tty_mutex);
3385 list_del(&driver->tty_drivers);
3386 mutex_unlock(&tty_mutex);
3388 err_unreg_char:
3389 unregister_chrdev_region(dev, driver->num);
3390 err:
3391 return error;
3393 EXPORT_SYMBOL(tty_register_driver);
3396 * Called by a tty driver to unregister itself.
3398 int tty_unregister_driver(struct tty_driver *driver)
3400 #if 0
3401 /* FIXME */
3402 if (driver->refcount)
3403 return -EBUSY;
3404 #endif
3405 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3406 driver->num);
3407 mutex_lock(&tty_mutex);
3408 list_del(&driver->tty_drivers);
3409 mutex_unlock(&tty_mutex);
3410 return 0;
3413 EXPORT_SYMBOL(tty_unregister_driver);
3415 dev_t tty_devnum(struct tty_struct *tty)
3417 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3419 EXPORT_SYMBOL(tty_devnum);
3421 void proc_clear_tty(struct task_struct *p)
3423 unsigned long flags;
3424 struct tty_struct *tty;
3425 spin_lock_irqsave(&p->sighand->siglock, flags);
3426 tty = p->signal->tty;
3427 p->signal->tty = NULL;
3428 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3429 tty_kref_put(tty);
3432 /* Called under the sighand lock */
3434 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3436 if (tty) {
3437 unsigned long flags;
3438 /* We should not have a session or pgrp to put here but.... */
3439 spin_lock_irqsave(&tty->ctrl_lock, flags);
3440 put_pid(tty->session);
3441 put_pid(tty->pgrp);
3442 tty->pgrp = get_pid(task_pgrp(tsk));
3443 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3444 tty->session = get_pid(task_session(tsk));
3445 if (tsk->signal->tty) {
3446 printk(KERN_DEBUG "tty not NULL!!\n");
3447 tty_kref_put(tsk->signal->tty);
3450 put_pid(tsk->signal->tty_old_pgrp);
3451 tsk->signal->tty = tty_kref_get(tty);
3452 tsk->signal->tty_old_pgrp = NULL;
3455 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3457 spin_lock_irq(&tsk->sighand->siglock);
3458 __proc_set_tty(tsk, tty);
3459 spin_unlock_irq(&tsk->sighand->siglock);
3462 struct tty_struct *get_current_tty(void)
3464 struct tty_struct *tty;
3465 unsigned long flags;
3467 spin_lock_irqsave(&current->sighand->siglock, flags);
3468 tty = tty_kref_get(current->signal->tty);
3469 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3470 return tty;
3472 EXPORT_SYMBOL_GPL(get_current_tty);
3474 void tty_default_fops(struct file_operations *fops)
3476 *fops = tty_fops;
3480 * Initialize the console device. This is called *early*, so
3481 * we can't necessarily depend on lots of kernel help here.
3482 * Just do some early initializations, and do the complex setup
3483 * later.
3485 void __init console_init(void)
3487 initcall_t *call;
3489 /* Setup the default TTY line discipline. */
3490 tty_ldisc_begin();
3493 * set up the console device so that later boot sequences can
3494 * inform about problems etc..
3496 call = __con_initcall_start;
3497 while (call < __con_initcall_end) {
3498 (*call)();
3499 call++;
3503 static char *tty_devnode(struct device *dev, umode_t *mode)
3505 if (!mode)
3506 return NULL;
3507 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3508 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3509 *mode = 0666;
3510 return NULL;
3513 static int __init tty_class_init(void)
3515 tty_class = class_create(THIS_MODULE, "tty");
3516 if (IS_ERR(tty_class))
3517 return PTR_ERR(tty_class);
3518 tty_class->devnode = tty_devnode;
3519 return 0;
3522 postcore_initcall(tty_class_init);
3524 /* 3/2004 jmc: why do these devices exist? */
3525 static struct cdev tty_cdev, console_cdev;
3527 static ssize_t show_cons_active(struct device *dev,
3528 struct device_attribute *attr, char *buf)
3530 struct console *cs[16];
3531 int i = 0;
3532 struct console *c;
3533 ssize_t count = 0;
3535 console_lock();
3536 for_each_console(c) {
3537 if (!c->device)
3538 continue;
3539 if (!c->write)
3540 continue;
3541 if ((c->flags & CON_ENABLED) == 0)
3542 continue;
3543 cs[i++] = c;
3544 if (i >= ARRAY_SIZE(cs))
3545 break;
3547 while (i--) {
3548 int index = cs[i]->index;
3549 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3551 /* don't resolve tty0 as some programs depend on it */
3552 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3553 count += tty_line_name(drv, index, buf + count);
3554 else
3555 count += sprintf(buf + count, "%s%d",
3556 cs[i]->name, cs[i]->index);
3558 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3560 console_unlock();
3562 return count;
3564 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3566 static struct device *consdev;
3568 void console_sysfs_notify(void)
3570 if (consdev)
3571 sysfs_notify(&consdev->kobj, NULL, "active");
3575 * Ok, now we can initialize the rest of the tty devices and can count
3576 * on memory allocations, interrupts etc..
3578 int __init tty_init(void)
3580 cdev_init(&tty_cdev, &tty_fops);
3581 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3582 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3583 panic("Couldn't register /dev/tty driver\n");
3584 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3586 cdev_init(&console_cdev, &console_fops);
3587 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3588 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3589 panic("Couldn't register /dev/console driver\n");
3590 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3591 "console");
3592 if (IS_ERR(consdev))
3593 consdev = NULL;
3594 else
3595 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3597 #ifdef CONFIG_VT
3598 vty_init(&console_fops);
3599 #endif
3600 return 0;