sctp: translate host order to network order when setting a hmacid
[linux/fpc-iii.git] / fs / ext4 / extents.c
blobdf633bb25909a354c5627bc5a5e51a90bf2fddb4
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
47 #include <trace/events/ext4.h>
50 * used by extent splitting.
52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
53 due to ENOSPC */
54 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
55 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 struct ext4_extent_header *eh)
63 struct ext4_inode_info *ei = EXT4_I(inode);
64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65 __u32 csum;
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 EXT4_EXTENT_TAIL_OFFSET(eh));
69 return cpu_to_le32(csum);
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 struct ext4_extent_header *eh)
75 struct ext4_extent_tail *et;
77 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79 return 1;
81 et = find_ext4_extent_tail(eh);
82 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83 return 0;
84 return 1;
87 static void ext4_extent_block_csum_set(struct inode *inode,
88 struct ext4_extent_header *eh)
90 struct ext4_extent_tail *et;
92 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94 return;
96 et = find_ext4_extent_tail(eh);
97 et->et_checksum = ext4_extent_block_csum(inode, eh);
100 static int ext4_split_extent(handle_t *handle,
101 struct inode *inode,
102 struct ext4_ext_path *path,
103 struct ext4_map_blocks *map,
104 int split_flag,
105 int flags);
107 static int ext4_split_extent_at(handle_t *handle,
108 struct inode *inode,
109 struct ext4_ext_path *path,
110 ext4_lblk_t split,
111 int split_flag,
112 int flags);
114 static int ext4_find_delayed_extent(struct inode *inode,
115 struct extent_status *newes);
117 static int ext4_ext_truncate_extend_restart(handle_t *handle,
118 struct inode *inode,
119 int needed)
121 int err;
123 if (!ext4_handle_valid(handle))
124 return 0;
125 if (handle->h_buffer_credits > needed)
126 return 0;
127 err = ext4_journal_extend(handle, needed);
128 if (err <= 0)
129 return err;
130 err = ext4_truncate_restart_trans(handle, inode, needed);
131 if (err == 0)
132 err = -EAGAIN;
134 return err;
138 * could return:
139 * - EROFS
140 * - ENOMEM
142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143 struct ext4_ext_path *path)
145 if (path->p_bh) {
146 /* path points to block */
147 return ext4_journal_get_write_access(handle, path->p_bh);
149 /* path points to leaf/index in inode body */
150 /* we use in-core data, no need to protect them */
151 return 0;
155 * could return:
156 * - EROFS
157 * - ENOMEM
158 * - EIO
160 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
161 struct inode *inode, struct ext4_ext_path *path)
163 int err;
164 if (path->p_bh) {
165 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
166 /* path points to block */
167 err = __ext4_handle_dirty_metadata(where, line, handle,
168 inode, path->p_bh);
169 } else {
170 /* path points to leaf/index in inode body */
171 err = ext4_mark_inode_dirty(handle, inode);
173 return err;
176 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
177 struct ext4_ext_path *path,
178 ext4_lblk_t block)
180 if (path) {
181 int depth = path->p_depth;
182 struct ext4_extent *ex;
185 * Try to predict block placement assuming that we are
186 * filling in a file which will eventually be
187 * non-sparse --- i.e., in the case of libbfd writing
188 * an ELF object sections out-of-order but in a way
189 * the eventually results in a contiguous object or
190 * executable file, or some database extending a table
191 * space file. However, this is actually somewhat
192 * non-ideal if we are writing a sparse file such as
193 * qemu or KVM writing a raw image file that is going
194 * to stay fairly sparse, since it will end up
195 * fragmenting the file system's free space. Maybe we
196 * should have some hueristics or some way to allow
197 * userspace to pass a hint to file system,
198 * especially if the latter case turns out to be
199 * common.
201 ex = path[depth].p_ext;
202 if (ex) {
203 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
204 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
206 if (block > ext_block)
207 return ext_pblk + (block - ext_block);
208 else
209 return ext_pblk - (ext_block - block);
212 /* it looks like index is empty;
213 * try to find starting block from index itself */
214 if (path[depth].p_bh)
215 return path[depth].p_bh->b_blocknr;
218 /* OK. use inode's group */
219 return ext4_inode_to_goal_block(inode);
223 * Allocation for a meta data block
225 static ext4_fsblk_t
226 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
227 struct ext4_ext_path *path,
228 struct ext4_extent *ex, int *err, unsigned int flags)
230 ext4_fsblk_t goal, newblock;
232 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
233 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
234 NULL, err);
235 return newblock;
238 static inline int ext4_ext_space_block(struct inode *inode, int check)
240 int size;
242 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
243 / sizeof(struct ext4_extent);
244 #ifdef AGGRESSIVE_TEST
245 if (!check && size > 6)
246 size = 6;
247 #endif
248 return size;
251 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
253 int size;
255 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
256 / sizeof(struct ext4_extent_idx);
257 #ifdef AGGRESSIVE_TEST
258 if (!check && size > 5)
259 size = 5;
260 #endif
261 return size;
264 static inline int ext4_ext_space_root(struct inode *inode, int check)
266 int size;
268 size = sizeof(EXT4_I(inode)->i_data);
269 size -= sizeof(struct ext4_extent_header);
270 size /= sizeof(struct ext4_extent);
271 #ifdef AGGRESSIVE_TEST
272 if (!check && size > 3)
273 size = 3;
274 #endif
275 return size;
278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
280 int size;
282 size = sizeof(EXT4_I(inode)->i_data);
283 size -= sizeof(struct ext4_extent_header);
284 size /= sizeof(struct ext4_extent_idx);
285 #ifdef AGGRESSIVE_TEST
286 if (!check && size > 4)
287 size = 4;
288 #endif
289 return size;
293 * Calculate the number of metadata blocks needed
294 * to allocate @blocks
295 * Worse case is one block per extent
297 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
299 struct ext4_inode_info *ei = EXT4_I(inode);
300 int idxs;
302 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
303 / sizeof(struct ext4_extent_idx));
306 * If the new delayed allocation block is contiguous with the
307 * previous da block, it can share index blocks with the
308 * previous block, so we only need to allocate a new index
309 * block every idxs leaf blocks. At ldxs**2 blocks, we need
310 * an additional index block, and at ldxs**3 blocks, yet
311 * another index blocks.
313 if (ei->i_da_metadata_calc_len &&
314 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
315 int num = 0;
317 if ((ei->i_da_metadata_calc_len % idxs) == 0)
318 num++;
319 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
320 num++;
321 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
322 num++;
323 ei->i_da_metadata_calc_len = 0;
324 } else
325 ei->i_da_metadata_calc_len++;
326 ei->i_da_metadata_calc_last_lblock++;
327 return num;
331 * In the worst case we need a new set of index blocks at
332 * every level of the inode's extent tree.
334 ei->i_da_metadata_calc_len = 1;
335 ei->i_da_metadata_calc_last_lblock = lblock;
336 return ext_depth(inode) + 1;
339 static int
340 ext4_ext_max_entries(struct inode *inode, int depth)
342 int max;
344 if (depth == ext_depth(inode)) {
345 if (depth == 0)
346 max = ext4_ext_space_root(inode, 1);
347 else
348 max = ext4_ext_space_root_idx(inode, 1);
349 } else {
350 if (depth == 0)
351 max = ext4_ext_space_block(inode, 1);
352 else
353 max = ext4_ext_space_block_idx(inode, 1);
356 return max;
359 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
361 ext4_fsblk_t block = ext4_ext_pblock(ext);
362 int len = ext4_ext_get_actual_len(ext);
363 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
364 ext4_lblk_t last = lblock + len - 1;
366 if (len == 0 || lblock > last)
367 return 0;
368 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
371 static int ext4_valid_extent_idx(struct inode *inode,
372 struct ext4_extent_idx *ext_idx)
374 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
376 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
379 static int ext4_valid_extent_entries(struct inode *inode,
380 struct ext4_extent_header *eh,
381 int depth)
383 unsigned short entries;
384 if (eh->eh_entries == 0)
385 return 1;
387 entries = le16_to_cpu(eh->eh_entries);
389 if (depth == 0) {
390 /* leaf entries */
391 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
392 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
393 ext4_fsblk_t pblock = 0;
394 ext4_lblk_t lblock = 0;
395 ext4_lblk_t prev = 0;
396 int len = 0;
397 while (entries) {
398 if (!ext4_valid_extent(inode, ext))
399 return 0;
401 /* Check for overlapping extents */
402 lblock = le32_to_cpu(ext->ee_block);
403 len = ext4_ext_get_actual_len(ext);
404 if ((lblock <= prev) && prev) {
405 pblock = ext4_ext_pblock(ext);
406 es->s_last_error_block = cpu_to_le64(pblock);
407 return 0;
409 ext++;
410 entries--;
411 prev = lblock + len - 1;
413 } else {
414 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
415 while (entries) {
416 if (!ext4_valid_extent_idx(inode, ext_idx))
417 return 0;
418 ext_idx++;
419 entries--;
422 return 1;
425 static int __ext4_ext_check(const char *function, unsigned int line,
426 struct inode *inode, struct ext4_extent_header *eh,
427 int depth)
429 const char *error_msg;
430 int max = 0;
432 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
433 error_msg = "invalid magic";
434 goto corrupted;
436 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
437 error_msg = "unexpected eh_depth";
438 goto corrupted;
440 if (unlikely(eh->eh_max == 0)) {
441 error_msg = "invalid eh_max";
442 goto corrupted;
444 max = ext4_ext_max_entries(inode, depth);
445 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
446 error_msg = "too large eh_max";
447 goto corrupted;
449 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
450 error_msg = "invalid eh_entries";
451 goto corrupted;
453 if (!ext4_valid_extent_entries(inode, eh, depth)) {
454 error_msg = "invalid extent entries";
455 goto corrupted;
457 /* Verify checksum on non-root extent tree nodes */
458 if (ext_depth(inode) != depth &&
459 !ext4_extent_block_csum_verify(inode, eh)) {
460 error_msg = "extent tree corrupted";
461 goto corrupted;
463 return 0;
465 corrupted:
466 ext4_error_inode(inode, function, line, 0,
467 "bad header/extent: %s - magic %x, "
468 "entries %u, max %u(%u), depth %u(%u)",
469 error_msg, le16_to_cpu(eh->eh_magic),
470 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
471 max, le16_to_cpu(eh->eh_depth), depth);
473 return -EIO;
476 #define ext4_ext_check(inode, eh, depth) \
477 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
479 int ext4_ext_check_inode(struct inode *inode)
481 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
484 static int __ext4_ext_check_block(const char *function, unsigned int line,
485 struct inode *inode,
486 struct ext4_extent_header *eh,
487 int depth,
488 struct buffer_head *bh)
490 int ret;
492 if (buffer_verified(bh))
493 return 0;
494 ret = ext4_ext_check(inode, eh, depth);
495 if (ret)
496 return ret;
497 set_buffer_verified(bh);
498 return ret;
501 #define ext4_ext_check_block(inode, eh, depth, bh) \
502 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
504 #ifdef EXT_DEBUG
505 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
507 int k, l = path->p_depth;
509 ext_debug("path:");
510 for (k = 0; k <= l; k++, path++) {
511 if (path->p_idx) {
512 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
513 ext4_idx_pblock(path->p_idx));
514 } else if (path->p_ext) {
515 ext_debug(" %d:[%d]%d:%llu ",
516 le32_to_cpu(path->p_ext->ee_block),
517 ext4_ext_is_uninitialized(path->p_ext),
518 ext4_ext_get_actual_len(path->p_ext),
519 ext4_ext_pblock(path->p_ext));
520 } else
521 ext_debug(" []");
523 ext_debug("\n");
526 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
528 int depth = ext_depth(inode);
529 struct ext4_extent_header *eh;
530 struct ext4_extent *ex;
531 int i;
533 if (!path)
534 return;
536 eh = path[depth].p_hdr;
537 ex = EXT_FIRST_EXTENT(eh);
539 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
541 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
542 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
543 ext4_ext_is_uninitialized(ex),
544 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
546 ext_debug("\n");
549 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
550 ext4_fsblk_t newblock, int level)
552 int depth = ext_depth(inode);
553 struct ext4_extent *ex;
555 if (depth != level) {
556 struct ext4_extent_idx *idx;
557 idx = path[level].p_idx;
558 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
559 ext_debug("%d: move %d:%llu in new index %llu\n", level,
560 le32_to_cpu(idx->ei_block),
561 ext4_idx_pblock(idx),
562 newblock);
563 idx++;
566 return;
569 ex = path[depth].p_ext;
570 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
571 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
572 le32_to_cpu(ex->ee_block),
573 ext4_ext_pblock(ex),
574 ext4_ext_is_uninitialized(ex),
575 ext4_ext_get_actual_len(ex),
576 newblock);
577 ex++;
581 #else
582 #define ext4_ext_show_path(inode, path)
583 #define ext4_ext_show_leaf(inode, path)
584 #define ext4_ext_show_move(inode, path, newblock, level)
585 #endif
587 void ext4_ext_drop_refs(struct ext4_ext_path *path)
589 int depth = path->p_depth;
590 int i;
592 for (i = 0; i <= depth; i++, path++)
593 if (path->p_bh) {
594 brelse(path->p_bh);
595 path->p_bh = NULL;
600 * ext4_ext_binsearch_idx:
601 * binary search for the closest index of the given block
602 * the header must be checked before calling this
604 static void
605 ext4_ext_binsearch_idx(struct inode *inode,
606 struct ext4_ext_path *path, ext4_lblk_t block)
608 struct ext4_extent_header *eh = path->p_hdr;
609 struct ext4_extent_idx *r, *l, *m;
612 ext_debug("binsearch for %u(idx): ", block);
614 l = EXT_FIRST_INDEX(eh) + 1;
615 r = EXT_LAST_INDEX(eh);
616 while (l <= r) {
617 m = l + (r - l) / 2;
618 if (block < le32_to_cpu(m->ei_block))
619 r = m - 1;
620 else
621 l = m + 1;
622 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
623 m, le32_to_cpu(m->ei_block),
624 r, le32_to_cpu(r->ei_block));
627 path->p_idx = l - 1;
628 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
629 ext4_idx_pblock(path->p_idx));
631 #ifdef CHECK_BINSEARCH
633 struct ext4_extent_idx *chix, *ix;
634 int k;
636 chix = ix = EXT_FIRST_INDEX(eh);
637 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
638 if (k != 0 &&
639 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
640 printk(KERN_DEBUG "k=%d, ix=0x%p, "
641 "first=0x%p\n", k,
642 ix, EXT_FIRST_INDEX(eh));
643 printk(KERN_DEBUG "%u <= %u\n",
644 le32_to_cpu(ix->ei_block),
645 le32_to_cpu(ix[-1].ei_block));
647 BUG_ON(k && le32_to_cpu(ix->ei_block)
648 <= le32_to_cpu(ix[-1].ei_block));
649 if (block < le32_to_cpu(ix->ei_block))
650 break;
651 chix = ix;
653 BUG_ON(chix != path->p_idx);
655 #endif
660 * ext4_ext_binsearch:
661 * binary search for closest extent of the given block
662 * the header must be checked before calling this
664 static void
665 ext4_ext_binsearch(struct inode *inode,
666 struct ext4_ext_path *path, ext4_lblk_t block)
668 struct ext4_extent_header *eh = path->p_hdr;
669 struct ext4_extent *r, *l, *m;
671 if (eh->eh_entries == 0) {
673 * this leaf is empty:
674 * we get such a leaf in split/add case
676 return;
679 ext_debug("binsearch for %u: ", block);
681 l = EXT_FIRST_EXTENT(eh) + 1;
682 r = EXT_LAST_EXTENT(eh);
684 while (l <= r) {
685 m = l + (r - l) / 2;
686 if (block < le32_to_cpu(m->ee_block))
687 r = m - 1;
688 else
689 l = m + 1;
690 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
691 m, le32_to_cpu(m->ee_block),
692 r, le32_to_cpu(r->ee_block));
695 path->p_ext = l - 1;
696 ext_debug(" -> %d:%llu:[%d]%d ",
697 le32_to_cpu(path->p_ext->ee_block),
698 ext4_ext_pblock(path->p_ext),
699 ext4_ext_is_uninitialized(path->p_ext),
700 ext4_ext_get_actual_len(path->p_ext));
702 #ifdef CHECK_BINSEARCH
704 struct ext4_extent *chex, *ex;
705 int k;
707 chex = ex = EXT_FIRST_EXTENT(eh);
708 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
709 BUG_ON(k && le32_to_cpu(ex->ee_block)
710 <= le32_to_cpu(ex[-1].ee_block));
711 if (block < le32_to_cpu(ex->ee_block))
712 break;
713 chex = ex;
715 BUG_ON(chex != path->p_ext);
717 #endif
721 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
723 struct ext4_extent_header *eh;
725 eh = ext_inode_hdr(inode);
726 eh->eh_depth = 0;
727 eh->eh_entries = 0;
728 eh->eh_magic = EXT4_EXT_MAGIC;
729 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
730 ext4_mark_inode_dirty(handle, inode);
731 return 0;
734 struct ext4_ext_path *
735 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
736 struct ext4_ext_path *path)
738 struct ext4_extent_header *eh;
739 struct buffer_head *bh;
740 short int depth, i, ppos = 0, alloc = 0;
741 int ret;
743 eh = ext_inode_hdr(inode);
744 depth = ext_depth(inode);
746 /* account possible depth increase */
747 if (!path) {
748 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
749 GFP_NOFS);
750 if (!path)
751 return ERR_PTR(-ENOMEM);
752 alloc = 1;
754 path[0].p_hdr = eh;
755 path[0].p_bh = NULL;
757 i = depth;
758 /* walk through the tree */
759 while (i) {
760 ext_debug("depth %d: num %d, max %d\n",
761 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
763 ext4_ext_binsearch_idx(inode, path + ppos, block);
764 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
765 path[ppos].p_depth = i;
766 path[ppos].p_ext = NULL;
768 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
769 if (unlikely(!bh)) {
770 ret = -ENOMEM;
771 goto err;
773 if (!bh_uptodate_or_lock(bh)) {
774 trace_ext4_ext_load_extent(inode, block,
775 path[ppos].p_block);
776 ret = bh_submit_read(bh);
777 if (ret < 0) {
778 put_bh(bh);
779 goto err;
782 eh = ext_block_hdr(bh);
783 ppos++;
784 if (unlikely(ppos > depth)) {
785 put_bh(bh);
786 EXT4_ERROR_INODE(inode,
787 "ppos %d > depth %d", ppos, depth);
788 ret = -EIO;
789 goto err;
791 path[ppos].p_bh = bh;
792 path[ppos].p_hdr = eh;
793 i--;
795 ret = ext4_ext_check_block(inode, eh, i, bh);
796 if (ret < 0)
797 goto err;
800 path[ppos].p_depth = i;
801 path[ppos].p_ext = NULL;
802 path[ppos].p_idx = NULL;
804 /* find extent */
805 ext4_ext_binsearch(inode, path + ppos, block);
806 /* if not an empty leaf */
807 if (path[ppos].p_ext)
808 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
810 ext4_ext_show_path(inode, path);
812 return path;
814 err:
815 ext4_ext_drop_refs(path);
816 if (alloc)
817 kfree(path);
818 return ERR_PTR(ret);
822 * ext4_ext_insert_index:
823 * insert new index [@logical;@ptr] into the block at @curp;
824 * check where to insert: before @curp or after @curp
826 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
827 struct ext4_ext_path *curp,
828 int logical, ext4_fsblk_t ptr)
830 struct ext4_extent_idx *ix;
831 int len, err;
833 err = ext4_ext_get_access(handle, inode, curp);
834 if (err)
835 return err;
837 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
838 EXT4_ERROR_INODE(inode,
839 "logical %d == ei_block %d!",
840 logical, le32_to_cpu(curp->p_idx->ei_block));
841 return -EIO;
844 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
845 >= le16_to_cpu(curp->p_hdr->eh_max))) {
846 EXT4_ERROR_INODE(inode,
847 "eh_entries %d >= eh_max %d!",
848 le16_to_cpu(curp->p_hdr->eh_entries),
849 le16_to_cpu(curp->p_hdr->eh_max));
850 return -EIO;
853 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
854 /* insert after */
855 ext_debug("insert new index %d after: %llu\n", logical, ptr);
856 ix = curp->p_idx + 1;
857 } else {
858 /* insert before */
859 ext_debug("insert new index %d before: %llu\n", logical, ptr);
860 ix = curp->p_idx;
863 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
864 BUG_ON(len < 0);
865 if (len > 0) {
866 ext_debug("insert new index %d: "
867 "move %d indices from 0x%p to 0x%p\n",
868 logical, len, ix, ix + 1);
869 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
872 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
873 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
874 return -EIO;
877 ix->ei_block = cpu_to_le32(logical);
878 ext4_idx_store_pblock(ix, ptr);
879 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
881 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
882 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
883 return -EIO;
886 err = ext4_ext_dirty(handle, inode, curp);
887 ext4_std_error(inode->i_sb, err);
889 return err;
893 * ext4_ext_split:
894 * inserts new subtree into the path, using free index entry
895 * at depth @at:
896 * - allocates all needed blocks (new leaf and all intermediate index blocks)
897 * - makes decision where to split
898 * - moves remaining extents and index entries (right to the split point)
899 * into the newly allocated blocks
900 * - initializes subtree
902 static int ext4_ext_split(handle_t *handle, struct inode *inode,
903 unsigned int flags,
904 struct ext4_ext_path *path,
905 struct ext4_extent *newext, int at)
907 struct buffer_head *bh = NULL;
908 int depth = ext_depth(inode);
909 struct ext4_extent_header *neh;
910 struct ext4_extent_idx *fidx;
911 int i = at, k, m, a;
912 ext4_fsblk_t newblock, oldblock;
913 __le32 border;
914 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
915 int err = 0;
917 /* make decision: where to split? */
918 /* FIXME: now decision is simplest: at current extent */
920 /* if current leaf will be split, then we should use
921 * border from split point */
922 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
923 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
924 return -EIO;
926 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
927 border = path[depth].p_ext[1].ee_block;
928 ext_debug("leaf will be split."
929 " next leaf starts at %d\n",
930 le32_to_cpu(border));
931 } else {
932 border = newext->ee_block;
933 ext_debug("leaf will be added."
934 " next leaf starts at %d\n",
935 le32_to_cpu(border));
939 * If error occurs, then we break processing
940 * and mark filesystem read-only. index won't
941 * be inserted and tree will be in consistent
942 * state. Next mount will repair buffers too.
946 * Get array to track all allocated blocks.
947 * We need this to handle errors and free blocks
948 * upon them.
950 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
951 if (!ablocks)
952 return -ENOMEM;
954 /* allocate all needed blocks */
955 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
956 for (a = 0; a < depth - at; a++) {
957 newblock = ext4_ext_new_meta_block(handle, inode, path,
958 newext, &err, flags);
959 if (newblock == 0)
960 goto cleanup;
961 ablocks[a] = newblock;
964 /* initialize new leaf */
965 newblock = ablocks[--a];
966 if (unlikely(newblock == 0)) {
967 EXT4_ERROR_INODE(inode, "newblock == 0!");
968 err = -EIO;
969 goto cleanup;
971 bh = sb_getblk(inode->i_sb, newblock);
972 if (unlikely(!bh)) {
973 err = -ENOMEM;
974 goto cleanup;
976 lock_buffer(bh);
978 err = ext4_journal_get_create_access(handle, bh);
979 if (err)
980 goto cleanup;
982 neh = ext_block_hdr(bh);
983 neh->eh_entries = 0;
984 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
985 neh->eh_magic = EXT4_EXT_MAGIC;
986 neh->eh_depth = 0;
988 /* move remainder of path[depth] to the new leaf */
989 if (unlikely(path[depth].p_hdr->eh_entries !=
990 path[depth].p_hdr->eh_max)) {
991 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
992 path[depth].p_hdr->eh_entries,
993 path[depth].p_hdr->eh_max);
994 err = -EIO;
995 goto cleanup;
997 /* start copy from next extent */
998 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
999 ext4_ext_show_move(inode, path, newblock, depth);
1000 if (m) {
1001 struct ext4_extent *ex;
1002 ex = EXT_FIRST_EXTENT(neh);
1003 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1004 le16_add_cpu(&neh->eh_entries, m);
1007 ext4_extent_block_csum_set(inode, neh);
1008 set_buffer_uptodate(bh);
1009 unlock_buffer(bh);
1011 err = ext4_handle_dirty_metadata(handle, inode, bh);
1012 if (err)
1013 goto cleanup;
1014 brelse(bh);
1015 bh = NULL;
1017 /* correct old leaf */
1018 if (m) {
1019 err = ext4_ext_get_access(handle, inode, path + depth);
1020 if (err)
1021 goto cleanup;
1022 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1023 err = ext4_ext_dirty(handle, inode, path + depth);
1024 if (err)
1025 goto cleanup;
1029 /* create intermediate indexes */
1030 k = depth - at - 1;
1031 if (unlikely(k < 0)) {
1032 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1033 err = -EIO;
1034 goto cleanup;
1036 if (k)
1037 ext_debug("create %d intermediate indices\n", k);
1038 /* insert new index into current index block */
1039 /* current depth stored in i var */
1040 i = depth - 1;
1041 while (k--) {
1042 oldblock = newblock;
1043 newblock = ablocks[--a];
1044 bh = sb_getblk(inode->i_sb, newblock);
1045 if (unlikely(!bh)) {
1046 err = -ENOMEM;
1047 goto cleanup;
1049 lock_buffer(bh);
1051 err = ext4_journal_get_create_access(handle, bh);
1052 if (err)
1053 goto cleanup;
1055 neh = ext_block_hdr(bh);
1056 neh->eh_entries = cpu_to_le16(1);
1057 neh->eh_magic = EXT4_EXT_MAGIC;
1058 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1059 neh->eh_depth = cpu_to_le16(depth - i);
1060 fidx = EXT_FIRST_INDEX(neh);
1061 fidx->ei_block = border;
1062 ext4_idx_store_pblock(fidx, oldblock);
1064 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1065 i, newblock, le32_to_cpu(border), oldblock);
1067 /* move remainder of path[i] to the new index block */
1068 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1069 EXT_LAST_INDEX(path[i].p_hdr))) {
1070 EXT4_ERROR_INODE(inode,
1071 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1072 le32_to_cpu(path[i].p_ext->ee_block));
1073 err = -EIO;
1074 goto cleanup;
1076 /* start copy indexes */
1077 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1078 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1079 EXT_MAX_INDEX(path[i].p_hdr));
1080 ext4_ext_show_move(inode, path, newblock, i);
1081 if (m) {
1082 memmove(++fidx, path[i].p_idx,
1083 sizeof(struct ext4_extent_idx) * m);
1084 le16_add_cpu(&neh->eh_entries, m);
1086 ext4_extent_block_csum_set(inode, neh);
1087 set_buffer_uptodate(bh);
1088 unlock_buffer(bh);
1090 err = ext4_handle_dirty_metadata(handle, inode, bh);
1091 if (err)
1092 goto cleanup;
1093 brelse(bh);
1094 bh = NULL;
1096 /* correct old index */
1097 if (m) {
1098 err = ext4_ext_get_access(handle, inode, path + i);
1099 if (err)
1100 goto cleanup;
1101 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1102 err = ext4_ext_dirty(handle, inode, path + i);
1103 if (err)
1104 goto cleanup;
1107 i--;
1110 /* insert new index */
1111 err = ext4_ext_insert_index(handle, inode, path + at,
1112 le32_to_cpu(border), newblock);
1114 cleanup:
1115 if (bh) {
1116 if (buffer_locked(bh))
1117 unlock_buffer(bh);
1118 brelse(bh);
1121 if (err) {
1122 /* free all allocated blocks in error case */
1123 for (i = 0; i < depth; i++) {
1124 if (!ablocks[i])
1125 continue;
1126 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1127 EXT4_FREE_BLOCKS_METADATA);
1130 kfree(ablocks);
1132 return err;
1136 * ext4_ext_grow_indepth:
1137 * implements tree growing procedure:
1138 * - allocates new block
1139 * - moves top-level data (index block or leaf) into the new block
1140 * - initializes new top-level, creating index that points to the
1141 * just created block
1143 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1144 unsigned int flags,
1145 struct ext4_extent *newext)
1147 struct ext4_extent_header *neh;
1148 struct buffer_head *bh;
1149 ext4_fsblk_t newblock;
1150 int err = 0;
1152 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1153 newext, &err, flags);
1154 if (newblock == 0)
1155 return err;
1157 bh = sb_getblk(inode->i_sb, newblock);
1158 if (unlikely(!bh))
1159 return -ENOMEM;
1160 lock_buffer(bh);
1162 err = ext4_journal_get_create_access(handle, bh);
1163 if (err) {
1164 unlock_buffer(bh);
1165 goto out;
1168 /* move top-level index/leaf into new block */
1169 memmove(bh->b_data, EXT4_I(inode)->i_data,
1170 sizeof(EXT4_I(inode)->i_data));
1172 /* set size of new block */
1173 neh = ext_block_hdr(bh);
1174 /* old root could have indexes or leaves
1175 * so calculate e_max right way */
1176 if (ext_depth(inode))
1177 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1178 else
1179 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1180 neh->eh_magic = EXT4_EXT_MAGIC;
1181 ext4_extent_block_csum_set(inode, neh);
1182 set_buffer_uptodate(bh);
1183 unlock_buffer(bh);
1185 err = ext4_handle_dirty_metadata(handle, inode, bh);
1186 if (err)
1187 goto out;
1189 /* Update top-level index: num,max,pointer */
1190 neh = ext_inode_hdr(inode);
1191 neh->eh_entries = cpu_to_le16(1);
1192 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1193 if (neh->eh_depth == 0) {
1194 /* Root extent block becomes index block */
1195 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1196 EXT_FIRST_INDEX(neh)->ei_block =
1197 EXT_FIRST_EXTENT(neh)->ee_block;
1199 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1200 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1201 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1202 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1204 le16_add_cpu(&neh->eh_depth, 1);
1205 ext4_mark_inode_dirty(handle, inode);
1206 out:
1207 brelse(bh);
1209 return err;
1213 * ext4_ext_create_new_leaf:
1214 * finds empty index and adds new leaf.
1215 * if no free index is found, then it requests in-depth growing.
1217 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1218 unsigned int flags,
1219 struct ext4_ext_path *path,
1220 struct ext4_extent *newext)
1222 struct ext4_ext_path *curp;
1223 int depth, i, err = 0;
1225 repeat:
1226 i = depth = ext_depth(inode);
1228 /* walk up to the tree and look for free index entry */
1229 curp = path + depth;
1230 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1231 i--;
1232 curp--;
1235 /* we use already allocated block for index block,
1236 * so subsequent data blocks should be contiguous */
1237 if (EXT_HAS_FREE_INDEX(curp)) {
1238 /* if we found index with free entry, then use that
1239 * entry: create all needed subtree and add new leaf */
1240 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1241 if (err)
1242 goto out;
1244 /* refill path */
1245 ext4_ext_drop_refs(path);
1246 path = ext4_ext_find_extent(inode,
1247 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1248 path);
1249 if (IS_ERR(path))
1250 err = PTR_ERR(path);
1251 } else {
1252 /* tree is full, time to grow in depth */
1253 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1254 if (err)
1255 goto out;
1257 /* refill path */
1258 ext4_ext_drop_refs(path);
1259 path = ext4_ext_find_extent(inode,
1260 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1261 path);
1262 if (IS_ERR(path)) {
1263 err = PTR_ERR(path);
1264 goto out;
1268 * only first (depth 0 -> 1) produces free space;
1269 * in all other cases we have to split the grown tree
1271 depth = ext_depth(inode);
1272 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1273 /* now we need to split */
1274 goto repeat;
1278 out:
1279 return err;
1283 * search the closest allocated block to the left for *logical
1284 * and returns it at @logical + it's physical address at @phys
1285 * if *logical is the smallest allocated block, the function
1286 * returns 0 at @phys
1287 * return value contains 0 (success) or error code
1289 static int ext4_ext_search_left(struct inode *inode,
1290 struct ext4_ext_path *path,
1291 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1293 struct ext4_extent_idx *ix;
1294 struct ext4_extent *ex;
1295 int depth, ee_len;
1297 if (unlikely(path == NULL)) {
1298 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1299 return -EIO;
1301 depth = path->p_depth;
1302 *phys = 0;
1304 if (depth == 0 && path->p_ext == NULL)
1305 return 0;
1307 /* usually extent in the path covers blocks smaller
1308 * then *logical, but it can be that extent is the
1309 * first one in the file */
1311 ex = path[depth].p_ext;
1312 ee_len = ext4_ext_get_actual_len(ex);
1313 if (*logical < le32_to_cpu(ex->ee_block)) {
1314 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1315 EXT4_ERROR_INODE(inode,
1316 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1317 *logical, le32_to_cpu(ex->ee_block));
1318 return -EIO;
1320 while (--depth >= 0) {
1321 ix = path[depth].p_idx;
1322 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1323 EXT4_ERROR_INODE(inode,
1324 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1325 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1326 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1327 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1328 depth);
1329 return -EIO;
1332 return 0;
1335 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1336 EXT4_ERROR_INODE(inode,
1337 "logical %d < ee_block %d + ee_len %d!",
1338 *logical, le32_to_cpu(ex->ee_block), ee_len);
1339 return -EIO;
1342 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1343 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1344 return 0;
1348 * search the closest allocated block to the right for *logical
1349 * and returns it at @logical + it's physical address at @phys
1350 * if *logical is the largest allocated block, the function
1351 * returns 0 at @phys
1352 * return value contains 0 (success) or error code
1354 static int ext4_ext_search_right(struct inode *inode,
1355 struct ext4_ext_path *path,
1356 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1357 struct ext4_extent **ret_ex)
1359 struct buffer_head *bh = NULL;
1360 struct ext4_extent_header *eh;
1361 struct ext4_extent_idx *ix;
1362 struct ext4_extent *ex;
1363 ext4_fsblk_t block;
1364 int depth; /* Note, NOT eh_depth; depth from top of tree */
1365 int ee_len;
1367 if (unlikely(path == NULL)) {
1368 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1369 return -EIO;
1371 depth = path->p_depth;
1372 *phys = 0;
1374 if (depth == 0 && path->p_ext == NULL)
1375 return 0;
1377 /* usually extent in the path covers blocks smaller
1378 * then *logical, but it can be that extent is the
1379 * first one in the file */
1381 ex = path[depth].p_ext;
1382 ee_len = ext4_ext_get_actual_len(ex);
1383 if (*logical < le32_to_cpu(ex->ee_block)) {
1384 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1385 EXT4_ERROR_INODE(inode,
1386 "first_extent(path[%d].p_hdr) != ex",
1387 depth);
1388 return -EIO;
1390 while (--depth >= 0) {
1391 ix = path[depth].p_idx;
1392 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1393 EXT4_ERROR_INODE(inode,
1394 "ix != EXT_FIRST_INDEX *logical %d!",
1395 *logical);
1396 return -EIO;
1399 goto found_extent;
1402 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1403 EXT4_ERROR_INODE(inode,
1404 "logical %d < ee_block %d + ee_len %d!",
1405 *logical, le32_to_cpu(ex->ee_block), ee_len);
1406 return -EIO;
1409 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1410 /* next allocated block in this leaf */
1411 ex++;
1412 goto found_extent;
1415 /* go up and search for index to the right */
1416 while (--depth >= 0) {
1417 ix = path[depth].p_idx;
1418 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1419 goto got_index;
1422 /* we've gone up to the root and found no index to the right */
1423 return 0;
1425 got_index:
1426 /* we've found index to the right, let's
1427 * follow it and find the closest allocated
1428 * block to the right */
1429 ix++;
1430 block = ext4_idx_pblock(ix);
1431 while (++depth < path->p_depth) {
1432 bh = sb_bread(inode->i_sb, block);
1433 if (bh == NULL)
1434 return -EIO;
1435 eh = ext_block_hdr(bh);
1436 /* subtract from p_depth to get proper eh_depth */
1437 if (ext4_ext_check_block(inode, eh,
1438 path->p_depth - depth, bh)) {
1439 put_bh(bh);
1440 return -EIO;
1442 ix = EXT_FIRST_INDEX(eh);
1443 block = ext4_idx_pblock(ix);
1444 put_bh(bh);
1447 bh = sb_bread(inode->i_sb, block);
1448 if (bh == NULL)
1449 return -EIO;
1450 eh = ext_block_hdr(bh);
1451 if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1452 put_bh(bh);
1453 return -EIO;
1455 ex = EXT_FIRST_EXTENT(eh);
1456 found_extent:
1457 *logical = le32_to_cpu(ex->ee_block);
1458 *phys = ext4_ext_pblock(ex);
1459 *ret_ex = ex;
1460 if (bh)
1461 put_bh(bh);
1462 return 0;
1466 * ext4_ext_next_allocated_block:
1467 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1468 * NOTE: it considers block number from index entry as
1469 * allocated block. Thus, index entries have to be consistent
1470 * with leaves.
1472 static ext4_lblk_t
1473 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1475 int depth;
1477 BUG_ON(path == NULL);
1478 depth = path->p_depth;
1480 if (depth == 0 && path->p_ext == NULL)
1481 return EXT_MAX_BLOCKS;
1483 while (depth >= 0) {
1484 if (depth == path->p_depth) {
1485 /* leaf */
1486 if (path[depth].p_ext &&
1487 path[depth].p_ext !=
1488 EXT_LAST_EXTENT(path[depth].p_hdr))
1489 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1490 } else {
1491 /* index */
1492 if (path[depth].p_idx !=
1493 EXT_LAST_INDEX(path[depth].p_hdr))
1494 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1496 depth--;
1499 return EXT_MAX_BLOCKS;
1503 * ext4_ext_next_leaf_block:
1504 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1506 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1508 int depth;
1510 BUG_ON(path == NULL);
1511 depth = path->p_depth;
1513 /* zero-tree has no leaf blocks at all */
1514 if (depth == 0)
1515 return EXT_MAX_BLOCKS;
1517 /* go to index block */
1518 depth--;
1520 while (depth >= 0) {
1521 if (path[depth].p_idx !=
1522 EXT_LAST_INDEX(path[depth].p_hdr))
1523 return (ext4_lblk_t)
1524 le32_to_cpu(path[depth].p_idx[1].ei_block);
1525 depth--;
1528 return EXT_MAX_BLOCKS;
1532 * ext4_ext_correct_indexes:
1533 * if leaf gets modified and modified extent is first in the leaf,
1534 * then we have to correct all indexes above.
1535 * TODO: do we need to correct tree in all cases?
1537 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1538 struct ext4_ext_path *path)
1540 struct ext4_extent_header *eh;
1541 int depth = ext_depth(inode);
1542 struct ext4_extent *ex;
1543 __le32 border;
1544 int k, err = 0;
1546 eh = path[depth].p_hdr;
1547 ex = path[depth].p_ext;
1549 if (unlikely(ex == NULL || eh == NULL)) {
1550 EXT4_ERROR_INODE(inode,
1551 "ex %p == NULL or eh %p == NULL", ex, eh);
1552 return -EIO;
1555 if (depth == 0) {
1556 /* there is no tree at all */
1557 return 0;
1560 if (ex != EXT_FIRST_EXTENT(eh)) {
1561 /* we correct tree if first leaf got modified only */
1562 return 0;
1566 * TODO: we need correction if border is smaller than current one
1568 k = depth - 1;
1569 border = path[depth].p_ext->ee_block;
1570 err = ext4_ext_get_access(handle, inode, path + k);
1571 if (err)
1572 return err;
1573 path[k].p_idx->ei_block = border;
1574 err = ext4_ext_dirty(handle, inode, path + k);
1575 if (err)
1576 return err;
1578 while (k--) {
1579 /* change all left-side indexes */
1580 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1581 break;
1582 err = ext4_ext_get_access(handle, inode, path + k);
1583 if (err)
1584 break;
1585 path[k].p_idx->ei_block = border;
1586 err = ext4_ext_dirty(handle, inode, path + k);
1587 if (err)
1588 break;
1591 return err;
1595 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1596 struct ext4_extent *ex2)
1598 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1601 * Make sure that both extents are initialized. We don't merge
1602 * uninitialized extents so that we can be sure that end_io code has
1603 * the extent that was written properly split out and conversion to
1604 * initialized is trivial.
1606 if (ext4_ext_is_uninitialized(ex1) || ext4_ext_is_uninitialized(ex2))
1607 return 0;
1609 if (ext4_ext_is_uninitialized(ex1))
1610 max_len = EXT_UNINIT_MAX_LEN;
1611 else
1612 max_len = EXT_INIT_MAX_LEN;
1614 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1615 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1617 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1618 le32_to_cpu(ex2->ee_block))
1619 return 0;
1622 * To allow future support for preallocated extents to be added
1623 * as an RO_COMPAT feature, refuse to merge to extents if
1624 * this can result in the top bit of ee_len being set.
1626 if (ext1_ee_len + ext2_ee_len > max_len)
1627 return 0;
1628 #ifdef AGGRESSIVE_TEST
1629 if (ext1_ee_len >= 4)
1630 return 0;
1631 #endif
1633 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1634 return 1;
1635 return 0;
1639 * This function tries to merge the "ex" extent to the next extent in the tree.
1640 * It always tries to merge towards right. If you want to merge towards
1641 * left, pass "ex - 1" as argument instead of "ex".
1642 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1643 * 1 if they got merged.
1645 static int ext4_ext_try_to_merge_right(struct inode *inode,
1646 struct ext4_ext_path *path,
1647 struct ext4_extent *ex)
1649 struct ext4_extent_header *eh;
1650 unsigned int depth, len;
1651 int merge_done = 0;
1652 int uninitialized = 0;
1654 depth = ext_depth(inode);
1655 BUG_ON(path[depth].p_hdr == NULL);
1656 eh = path[depth].p_hdr;
1658 while (ex < EXT_LAST_EXTENT(eh)) {
1659 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1660 break;
1661 /* merge with next extent! */
1662 if (ext4_ext_is_uninitialized(ex))
1663 uninitialized = 1;
1664 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1665 + ext4_ext_get_actual_len(ex + 1));
1666 if (uninitialized)
1667 ext4_ext_mark_uninitialized(ex);
1669 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1670 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1671 * sizeof(struct ext4_extent);
1672 memmove(ex + 1, ex + 2, len);
1674 le16_add_cpu(&eh->eh_entries, -1);
1675 merge_done = 1;
1676 WARN_ON(eh->eh_entries == 0);
1677 if (!eh->eh_entries)
1678 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1681 return merge_done;
1685 * This function does a very simple check to see if we can collapse
1686 * an extent tree with a single extent tree leaf block into the inode.
1688 static void ext4_ext_try_to_merge_up(handle_t *handle,
1689 struct inode *inode,
1690 struct ext4_ext_path *path)
1692 size_t s;
1693 unsigned max_root = ext4_ext_space_root(inode, 0);
1694 ext4_fsblk_t blk;
1696 if ((path[0].p_depth != 1) ||
1697 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1698 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1699 return;
1702 * We need to modify the block allocation bitmap and the block
1703 * group descriptor to release the extent tree block. If we
1704 * can't get the journal credits, give up.
1706 if (ext4_journal_extend(handle, 2))
1707 return;
1710 * Copy the extent data up to the inode
1712 blk = ext4_idx_pblock(path[0].p_idx);
1713 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1714 sizeof(struct ext4_extent_idx);
1715 s += sizeof(struct ext4_extent_header);
1717 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1718 path[0].p_depth = 0;
1719 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1720 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1721 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1723 brelse(path[1].p_bh);
1724 ext4_free_blocks(handle, inode, NULL, blk, 1,
1725 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET |
1726 EXT4_FREE_BLOCKS_RESERVE);
1730 * This function tries to merge the @ex extent to neighbours in the tree.
1731 * return 1 if merge left else 0.
1733 static void ext4_ext_try_to_merge(handle_t *handle,
1734 struct inode *inode,
1735 struct ext4_ext_path *path,
1736 struct ext4_extent *ex) {
1737 struct ext4_extent_header *eh;
1738 unsigned int depth;
1739 int merge_done = 0;
1741 depth = ext_depth(inode);
1742 BUG_ON(path[depth].p_hdr == NULL);
1743 eh = path[depth].p_hdr;
1745 if (ex > EXT_FIRST_EXTENT(eh))
1746 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1748 if (!merge_done)
1749 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1751 ext4_ext_try_to_merge_up(handle, inode, path);
1755 * check if a portion of the "newext" extent overlaps with an
1756 * existing extent.
1758 * If there is an overlap discovered, it updates the length of the newext
1759 * such that there will be no overlap, and then returns 1.
1760 * If there is no overlap found, it returns 0.
1762 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1763 struct inode *inode,
1764 struct ext4_extent *newext,
1765 struct ext4_ext_path *path)
1767 ext4_lblk_t b1, b2;
1768 unsigned int depth, len1;
1769 unsigned int ret = 0;
1771 b1 = le32_to_cpu(newext->ee_block);
1772 len1 = ext4_ext_get_actual_len(newext);
1773 depth = ext_depth(inode);
1774 if (!path[depth].p_ext)
1775 goto out;
1776 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1779 * get the next allocated block if the extent in the path
1780 * is before the requested block(s)
1782 if (b2 < b1) {
1783 b2 = ext4_ext_next_allocated_block(path);
1784 if (b2 == EXT_MAX_BLOCKS)
1785 goto out;
1786 b2 = EXT4_LBLK_CMASK(sbi, b2);
1789 /* check for wrap through zero on extent logical start block*/
1790 if (b1 + len1 < b1) {
1791 len1 = EXT_MAX_BLOCKS - b1;
1792 newext->ee_len = cpu_to_le16(len1);
1793 ret = 1;
1796 /* check for overlap */
1797 if (b1 + len1 > b2) {
1798 newext->ee_len = cpu_to_le16(b2 - b1);
1799 ret = 1;
1801 out:
1802 return ret;
1806 * ext4_ext_insert_extent:
1807 * tries to merge requsted extent into the existing extent or
1808 * inserts requested extent as new one into the tree,
1809 * creating new leaf in the no-space case.
1811 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1812 struct ext4_ext_path *path,
1813 struct ext4_extent *newext, int flag)
1815 struct ext4_extent_header *eh;
1816 struct ext4_extent *ex, *fex;
1817 struct ext4_extent *nearex; /* nearest extent */
1818 struct ext4_ext_path *npath = NULL;
1819 int depth, len, err;
1820 ext4_lblk_t next;
1821 unsigned uninitialized = 0;
1822 int flags = 0;
1824 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1825 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1826 return -EIO;
1828 depth = ext_depth(inode);
1829 ex = path[depth].p_ext;
1830 eh = path[depth].p_hdr;
1831 if (unlikely(path[depth].p_hdr == NULL)) {
1832 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1833 return -EIO;
1836 /* try to insert block into found extent and return */
1837 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)) {
1840 * Try to see whether we should rather test the extent on
1841 * right from ex, or from the left of ex. This is because
1842 * ext4_ext_find_extent() can return either extent on the
1843 * left, or on the right from the searched position. This
1844 * will make merging more effective.
1846 if (ex < EXT_LAST_EXTENT(eh) &&
1847 (le32_to_cpu(ex->ee_block) +
1848 ext4_ext_get_actual_len(ex) <
1849 le32_to_cpu(newext->ee_block))) {
1850 ex += 1;
1851 goto prepend;
1852 } else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1853 (le32_to_cpu(newext->ee_block) +
1854 ext4_ext_get_actual_len(newext) <
1855 le32_to_cpu(ex->ee_block)))
1856 ex -= 1;
1858 /* Try to append newex to the ex */
1859 if (ext4_can_extents_be_merged(inode, ex, newext)) {
1860 ext_debug("append [%d]%d block to %u:[%d]%d"
1861 "(from %llu)\n",
1862 ext4_ext_is_uninitialized(newext),
1863 ext4_ext_get_actual_len(newext),
1864 le32_to_cpu(ex->ee_block),
1865 ext4_ext_is_uninitialized(ex),
1866 ext4_ext_get_actual_len(ex),
1867 ext4_ext_pblock(ex));
1868 err = ext4_ext_get_access(handle, inode,
1869 path + depth);
1870 if (err)
1871 return err;
1874 * ext4_can_extents_be_merged should have checked
1875 * that either both extents are uninitialized, or
1876 * both aren't. Thus we need to check only one of
1877 * them here.
1879 if (ext4_ext_is_uninitialized(ex))
1880 uninitialized = 1;
1881 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1882 + ext4_ext_get_actual_len(newext));
1883 if (uninitialized)
1884 ext4_ext_mark_uninitialized(ex);
1885 eh = path[depth].p_hdr;
1886 nearex = ex;
1887 goto merge;
1890 prepend:
1891 /* Try to prepend newex to the ex */
1892 if (ext4_can_extents_be_merged(inode, newext, ex)) {
1893 ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1894 "(from %llu)\n",
1895 le32_to_cpu(newext->ee_block),
1896 ext4_ext_is_uninitialized(newext),
1897 ext4_ext_get_actual_len(newext),
1898 le32_to_cpu(ex->ee_block),
1899 ext4_ext_is_uninitialized(ex),
1900 ext4_ext_get_actual_len(ex),
1901 ext4_ext_pblock(ex));
1902 err = ext4_ext_get_access(handle, inode,
1903 path + depth);
1904 if (err)
1905 return err;
1908 * ext4_can_extents_be_merged should have checked
1909 * that either both extents are uninitialized, or
1910 * both aren't. Thus we need to check only one of
1911 * them here.
1913 if (ext4_ext_is_uninitialized(ex))
1914 uninitialized = 1;
1915 ex->ee_block = newext->ee_block;
1916 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1917 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1918 + ext4_ext_get_actual_len(newext));
1919 if (uninitialized)
1920 ext4_ext_mark_uninitialized(ex);
1921 eh = path[depth].p_hdr;
1922 nearex = ex;
1923 goto merge;
1927 depth = ext_depth(inode);
1928 eh = path[depth].p_hdr;
1929 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1930 goto has_space;
1932 /* probably next leaf has space for us? */
1933 fex = EXT_LAST_EXTENT(eh);
1934 next = EXT_MAX_BLOCKS;
1935 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1936 next = ext4_ext_next_leaf_block(path);
1937 if (next != EXT_MAX_BLOCKS) {
1938 ext_debug("next leaf block - %u\n", next);
1939 BUG_ON(npath != NULL);
1940 npath = ext4_ext_find_extent(inode, next, NULL);
1941 if (IS_ERR(npath))
1942 return PTR_ERR(npath);
1943 BUG_ON(npath->p_depth != path->p_depth);
1944 eh = npath[depth].p_hdr;
1945 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1946 ext_debug("next leaf isn't full(%d)\n",
1947 le16_to_cpu(eh->eh_entries));
1948 path = npath;
1949 goto has_space;
1951 ext_debug("next leaf has no free space(%d,%d)\n",
1952 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1956 * There is no free space in the found leaf.
1957 * We're gonna add a new leaf in the tree.
1959 if (flag & EXT4_GET_BLOCKS_METADATA_NOFAIL)
1960 flags = EXT4_MB_USE_RESERVED;
1961 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1962 if (err)
1963 goto cleanup;
1964 depth = ext_depth(inode);
1965 eh = path[depth].p_hdr;
1967 has_space:
1968 nearex = path[depth].p_ext;
1970 err = ext4_ext_get_access(handle, inode, path + depth);
1971 if (err)
1972 goto cleanup;
1974 if (!nearex) {
1975 /* there is no extent in this leaf, create first one */
1976 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1977 le32_to_cpu(newext->ee_block),
1978 ext4_ext_pblock(newext),
1979 ext4_ext_is_uninitialized(newext),
1980 ext4_ext_get_actual_len(newext));
1981 nearex = EXT_FIRST_EXTENT(eh);
1982 } else {
1983 if (le32_to_cpu(newext->ee_block)
1984 > le32_to_cpu(nearex->ee_block)) {
1985 /* Insert after */
1986 ext_debug("insert %u:%llu:[%d]%d before: "
1987 "nearest %p\n",
1988 le32_to_cpu(newext->ee_block),
1989 ext4_ext_pblock(newext),
1990 ext4_ext_is_uninitialized(newext),
1991 ext4_ext_get_actual_len(newext),
1992 nearex);
1993 nearex++;
1994 } else {
1995 /* Insert before */
1996 BUG_ON(newext->ee_block == nearex->ee_block);
1997 ext_debug("insert %u:%llu:[%d]%d after: "
1998 "nearest %p\n",
1999 le32_to_cpu(newext->ee_block),
2000 ext4_ext_pblock(newext),
2001 ext4_ext_is_uninitialized(newext),
2002 ext4_ext_get_actual_len(newext),
2003 nearex);
2005 len = EXT_LAST_EXTENT(eh) - nearex + 1;
2006 if (len > 0) {
2007 ext_debug("insert %u:%llu:[%d]%d: "
2008 "move %d extents from 0x%p to 0x%p\n",
2009 le32_to_cpu(newext->ee_block),
2010 ext4_ext_pblock(newext),
2011 ext4_ext_is_uninitialized(newext),
2012 ext4_ext_get_actual_len(newext),
2013 len, nearex, nearex + 1);
2014 memmove(nearex + 1, nearex,
2015 len * sizeof(struct ext4_extent));
2019 le16_add_cpu(&eh->eh_entries, 1);
2020 path[depth].p_ext = nearex;
2021 nearex->ee_block = newext->ee_block;
2022 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2023 nearex->ee_len = newext->ee_len;
2025 merge:
2026 /* try to merge extents */
2027 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
2028 ext4_ext_try_to_merge(handle, inode, path, nearex);
2031 /* time to correct all indexes above */
2032 err = ext4_ext_correct_indexes(handle, inode, path);
2033 if (err)
2034 goto cleanup;
2036 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2038 cleanup:
2039 if (npath) {
2040 ext4_ext_drop_refs(npath);
2041 kfree(npath);
2043 return err;
2046 static int ext4_fill_fiemap_extents(struct inode *inode,
2047 ext4_lblk_t block, ext4_lblk_t num,
2048 struct fiemap_extent_info *fieinfo)
2050 struct ext4_ext_path *path = NULL;
2051 struct ext4_extent *ex;
2052 struct extent_status es;
2053 ext4_lblk_t next, next_del, start = 0, end = 0;
2054 ext4_lblk_t last = block + num;
2055 int exists, depth = 0, err = 0;
2056 unsigned int flags = 0;
2057 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2059 while (block < last && block != EXT_MAX_BLOCKS) {
2060 num = last - block;
2061 /* find extent for this block */
2062 down_read(&EXT4_I(inode)->i_data_sem);
2064 if (path && ext_depth(inode) != depth) {
2065 /* depth was changed. we have to realloc path */
2066 kfree(path);
2067 path = NULL;
2070 path = ext4_ext_find_extent(inode, block, path);
2071 if (IS_ERR(path)) {
2072 up_read(&EXT4_I(inode)->i_data_sem);
2073 err = PTR_ERR(path);
2074 path = NULL;
2075 break;
2078 depth = ext_depth(inode);
2079 if (unlikely(path[depth].p_hdr == NULL)) {
2080 up_read(&EXT4_I(inode)->i_data_sem);
2081 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2082 err = -EIO;
2083 break;
2085 ex = path[depth].p_ext;
2086 next = ext4_ext_next_allocated_block(path);
2087 ext4_ext_drop_refs(path);
2089 flags = 0;
2090 exists = 0;
2091 if (!ex) {
2092 /* there is no extent yet, so try to allocate
2093 * all requested space */
2094 start = block;
2095 end = block + num;
2096 } else if (le32_to_cpu(ex->ee_block) > block) {
2097 /* need to allocate space before found extent */
2098 start = block;
2099 end = le32_to_cpu(ex->ee_block);
2100 if (block + num < end)
2101 end = block + num;
2102 } else if (block >= le32_to_cpu(ex->ee_block)
2103 + ext4_ext_get_actual_len(ex)) {
2104 /* need to allocate space after found extent */
2105 start = block;
2106 end = block + num;
2107 if (end >= next)
2108 end = next;
2109 } else if (block >= le32_to_cpu(ex->ee_block)) {
2111 * some part of requested space is covered
2112 * by found extent
2114 start = block;
2115 end = le32_to_cpu(ex->ee_block)
2116 + ext4_ext_get_actual_len(ex);
2117 if (block + num < end)
2118 end = block + num;
2119 exists = 1;
2120 } else {
2121 BUG();
2123 BUG_ON(end <= start);
2125 if (!exists) {
2126 es.es_lblk = start;
2127 es.es_len = end - start;
2128 es.es_pblk = 0;
2129 } else {
2130 es.es_lblk = le32_to_cpu(ex->ee_block);
2131 es.es_len = ext4_ext_get_actual_len(ex);
2132 es.es_pblk = ext4_ext_pblock(ex);
2133 if (ext4_ext_is_uninitialized(ex))
2134 flags |= FIEMAP_EXTENT_UNWRITTEN;
2138 * Find delayed extent and update es accordingly. We call
2139 * it even in !exists case to find out whether es is the
2140 * last existing extent or not.
2142 next_del = ext4_find_delayed_extent(inode, &es);
2143 if (!exists && next_del) {
2144 exists = 1;
2145 flags |= FIEMAP_EXTENT_DELALLOC;
2147 up_read(&EXT4_I(inode)->i_data_sem);
2149 if (unlikely(es.es_len == 0)) {
2150 EXT4_ERROR_INODE(inode, "es.es_len == 0");
2151 err = -EIO;
2152 break;
2156 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2157 * we need to check next == EXT_MAX_BLOCKS because it is
2158 * possible that an extent is with unwritten and delayed
2159 * status due to when an extent is delayed allocated and
2160 * is allocated by fallocate status tree will track both of
2161 * them in a extent.
2163 * So we could return a unwritten and delayed extent, and
2164 * its block is equal to 'next'.
2166 if (next == next_del && next == EXT_MAX_BLOCKS) {
2167 flags |= FIEMAP_EXTENT_LAST;
2168 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2169 next != EXT_MAX_BLOCKS)) {
2170 EXT4_ERROR_INODE(inode,
2171 "next extent == %u, next "
2172 "delalloc extent = %u",
2173 next, next_del);
2174 err = -EIO;
2175 break;
2179 if (exists) {
2180 err = fiemap_fill_next_extent(fieinfo,
2181 (__u64)es.es_lblk << blksize_bits,
2182 (__u64)es.es_pblk << blksize_bits,
2183 (__u64)es.es_len << blksize_bits,
2184 flags);
2185 if (err < 0)
2186 break;
2187 if (err == 1) {
2188 err = 0;
2189 break;
2193 block = es.es_lblk + es.es_len;
2196 if (path) {
2197 ext4_ext_drop_refs(path);
2198 kfree(path);
2201 return err;
2205 * ext4_ext_put_gap_in_cache:
2206 * calculate boundaries of the gap that the requested block fits into
2207 * and cache this gap
2209 static void
2210 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2211 ext4_lblk_t block)
2213 int depth = ext_depth(inode);
2214 unsigned long len;
2215 ext4_lblk_t lblock;
2216 struct ext4_extent *ex;
2218 ex = path[depth].p_ext;
2219 if (ex == NULL) {
2221 * there is no extent yet, so gap is [0;-] and we
2222 * don't cache it
2224 ext_debug("cache gap(whole file):");
2225 } else if (block < le32_to_cpu(ex->ee_block)) {
2226 lblock = block;
2227 len = le32_to_cpu(ex->ee_block) - block;
2228 ext_debug("cache gap(before): %u [%u:%u]",
2229 block,
2230 le32_to_cpu(ex->ee_block),
2231 ext4_ext_get_actual_len(ex));
2232 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2233 ext4_es_insert_extent(inode, lblock, len, ~0,
2234 EXTENT_STATUS_HOLE);
2235 } else if (block >= le32_to_cpu(ex->ee_block)
2236 + ext4_ext_get_actual_len(ex)) {
2237 ext4_lblk_t next;
2238 lblock = le32_to_cpu(ex->ee_block)
2239 + ext4_ext_get_actual_len(ex);
2241 next = ext4_ext_next_allocated_block(path);
2242 ext_debug("cache gap(after): [%u:%u] %u",
2243 le32_to_cpu(ex->ee_block),
2244 ext4_ext_get_actual_len(ex),
2245 block);
2246 BUG_ON(next == lblock);
2247 len = next - lblock;
2248 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2249 ext4_es_insert_extent(inode, lblock, len, ~0,
2250 EXTENT_STATUS_HOLE);
2251 } else {
2252 lblock = len = 0;
2253 BUG();
2256 ext_debug(" -> %u:%lu\n", lblock, len);
2260 * ext4_ext_rm_idx:
2261 * removes index from the index block.
2263 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2264 struct ext4_ext_path *path, int depth)
2266 int err;
2267 ext4_fsblk_t leaf;
2269 /* free index block */
2270 depth--;
2271 path = path + depth;
2272 leaf = ext4_idx_pblock(path->p_idx);
2273 if (unlikely(path->p_hdr->eh_entries == 0)) {
2274 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2275 return -EIO;
2277 err = ext4_ext_get_access(handle, inode, path);
2278 if (err)
2279 return err;
2281 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2282 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2283 len *= sizeof(struct ext4_extent_idx);
2284 memmove(path->p_idx, path->p_idx + 1, len);
2287 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2288 err = ext4_ext_dirty(handle, inode, path);
2289 if (err)
2290 return err;
2291 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2292 trace_ext4_ext_rm_idx(inode, leaf);
2294 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2295 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2297 while (--depth >= 0) {
2298 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2299 break;
2300 path--;
2301 err = ext4_ext_get_access(handle, inode, path);
2302 if (err)
2303 break;
2304 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2305 err = ext4_ext_dirty(handle, inode, path);
2306 if (err)
2307 break;
2309 return err;
2313 * ext4_ext_calc_credits_for_single_extent:
2314 * This routine returns max. credits that needed to insert an extent
2315 * to the extent tree.
2316 * When pass the actual path, the caller should calculate credits
2317 * under i_data_sem.
2319 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2320 struct ext4_ext_path *path)
2322 if (path) {
2323 int depth = ext_depth(inode);
2324 int ret = 0;
2326 /* probably there is space in leaf? */
2327 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2328 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2331 * There are some space in the leaf tree, no
2332 * need to account for leaf block credit
2334 * bitmaps and block group descriptor blocks
2335 * and other metadata blocks still need to be
2336 * accounted.
2338 /* 1 bitmap, 1 block group descriptor */
2339 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2340 return ret;
2344 return ext4_chunk_trans_blocks(inode, nrblocks);
2348 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2350 * if nrblocks are fit in a single extent (chunk flag is 1), then
2351 * in the worse case, each tree level index/leaf need to be changed
2352 * if the tree split due to insert a new extent, then the old tree
2353 * index/leaf need to be updated too
2355 * If the nrblocks are discontiguous, they could cause
2356 * the whole tree split more than once, but this is really rare.
2358 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2360 int index;
2361 int depth;
2363 /* If we are converting the inline data, only one is needed here. */
2364 if (ext4_has_inline_data(inode))
2365 return 1;
2367 depth = ext_depth(inode);
2369 if (chunk)
2370 index = depth * 2;
2371 else
2372 index = depth * 3;
2374 return index;
2377 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2378 struct ext4_extent *ex,
2379 ext4_fsblk_t *partial_cluster,
2380 ext4_lblk_t from, ext4_lblk_t to)
2382 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2383 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2384 ext4_fsblk_t pblk;
2385 int flags = 0;
2387 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2388 flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2389 else if (ext4_should_journal_data(inode))
2390 flags |= EXT4_FREE_BLOCKS_FORGET;
2393 * For bigalloc file systems, we never free a partial cluster
2394 * at the beginning of the extent. Instead, we make a note
2395 * that we tried freeing the cluster, and check to see if we
2396 * need to free it on a subsequent call to ext4_remove_blocks,
2397 * or at the end of the ext4_truncate() operation.
2399 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2401 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2403 * If we have a partial cluster, and it's different from the
2404 * cluster of the last block, we need to explicitly free the
2405 * partial cluster here.
2407 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2408 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2409 ext4_free_blocks(handle, inode, NULL,
2410 EXT4_C2B(sbi, *partial_cluster),
2411 sbi->s_cluster_ratio, flags);
2412 *partial_cluster = 0;
2415 #ifdef EXTENTS_STATS
2417 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2418 spin_lock(&sbi->s_ext_stats_lock);
2419 sbi->s_ext_blocks += ee_len;
2420 sbi->s_ext_extents++;
2421 if (ee_len < sbi->s_ext_min)
2422 sbi->s_ext_min = ee_len;
2423 if (ee_len > sbi->s_ext_max)
2424 sbi->s_ext_max = ee_len;
2425 if (ext_depth(inode) > sbi->s_depth_max)
2426 sbi->s_depth_max = ext_depth(inode);
2427 spin_unlock(&sbi->s_ext_stats_lock);
2429 #endif
2430 if (from >= le32_to_cpu(ex->ee_block)
2431 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2432 /* tail removal */
2433 ext4_lblk_t num;
2435 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2436 pblk = ext4_ext_pblock(ex) + ee_len - num;
2437 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2438 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2440 * If the block range to be freed didn't start at the
2441 * beginning of a cluster, and we removed the entire
2442 * extent, save the partial cluster here, since we
2443 * might need to delete if we determine that the
2444 * truncate operation has removed all of the blocks in
2445 * the cluster.
2447 if (EXT4_PBLK_COFF(sbi, pblk) &&
2448 (ee_len == num))
2449 *partial_cluster = EXT4_B2C(sbi, pblk);
2450 else
2451 *partial_cluster = 0;
2452 } else if (from == le32_to_cpu(ex->ee_block)
2453 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2454 /* head removal */
2455 ext4_lblk_t num;
2456 ext4_fsblk_t start;
2458 num = to - from;
2459 start = ext4_ext_pblock(ex);
2461 ext_debug("free first %u blocks starting %llu\n", num, start);
2462 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2464 } else {
2465 printk(KERN_INFO "strange request: removal(2) "
2466 "%u-%u from %u:%u\n",
2467 from, to, le32_to_cpu(ex->ee_block), ee_len);
2469 return 0;
2474 * ext4_ext_rm_leaf() Removes the extents associated with the
2475 * blocks appearing between "start" and "end", and splits the extents
2476 * if "start" and "end" appear in the same extent
2478 * @handle: The journal handle
2479 * @inode: The files inode
2480 * @path: The path to the leaf
2481 * @start: The first block to remove
2482 * @end: The last block to remove
2484 static int
2485 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2486 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2487 ext4_lblk_t start, ext4_lblk_t end)
2489 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2490 int err = 0, correct_index = 0;
2491 int depth = ext_depth(inode), credits;
2492 struct ext4_extent_header *eh;
2493 ext4_lblk_t a, b;
2494 unsigned num;
2495 ext4_lblk_t ex_ee_block;
2496 unsigned short ex_ee_len;
2497 unsigned uninitialized = 0;
2498 struct ext4_extent *ex;
2500 /* the header must be checked already in ext4_ext_remove_space() */
2501 ext_debug("truncate since %u in leaf to %u\n", start, end);
2502 if (!path[depth].p_hdr)
2503 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2504 eh = path[depth].p_hdr;
2505 if (unlikely(path[depth].p_hdr == NULL)) {
2506 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2507 return -EIO;
2509 /* find where to start removing */
2510 ex = EXT_LAST_EXTENT(eh);
2512 ex_ee_block = le32_to_cpu(ex->ee_block);
2513 ex_ee_len = ext4_ext_get_actual_len(ex);
2516 * If we're starting with an extent other than the last one in the
2517 * node, we need to see if it shares a cluster with the extent to
2518 * the right (towards the end of the file). If its leftmost cluster
2519 * is this extent's rightmost cluster and it is not cluster aligned,
2520 * we'll mark it as a partial that is not to be deallocated.
2523 if (ex != EXT_LAST_EXTENT(eh)) {
2524 ext4_fsblk_t current_pblk, right_pblk;
2525 long long current_cluster, right_cluster;
2527 current_pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2528 current_cluster = (long long)EXT4_B2C(sbi, current_pblk);
2529 right_pblk = ext4_ext_pblock(ex + 1);
2530 right_cluster = (long long)EXT4_B2C(sbi, right_pblk);
2531 if (current_cluster == right_cluster &&
2532 EXT4_PBLK_COFF(sbi, right_pblk))
2533 *partial_cluster = -right_cluster;
2536 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2538 while (ex >= EXT_FIRST_EXTENT(eh) &&
2539 ex_ee_block + ex_ee_len > start) {
2541 if (ext4_ext_is_uninitialized(ex))
2542 uninitialized = 1;
2543 else
2544 uninitialized = 0;
2546 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2547 uninitialized, ex_ee_len);
2548 path[depth].p_ext = ex;
2550 a = ex_ee_block > start ? ex_ee_block : start;
2551 b = ex_ee_block+ex_ee_len - 1 < end ?
2552 ex_ee_block+ex_ee_len - 1 : end;
2554 ext_debug(" border %u:%u\n", a, b);
2556 /* If this extent is beyond the end of the hole, skip it */
2557 if (end < ex_ee_block) {
2558 ex--;
2559 ex_ee_block = le32_to_cpu(ex->ee_block);
2560 ex_ee_len = ext4_ext_get_actual_len(ex);
2561 continue;
2562 } else if (b != ex_ee_block + ex_ee_len - 1) {
2563 EXT4_ERROR_INODE(inode,
2564 "can not handle truncate %u:%u "
2565 "on extent %u:%u",
2566 start, end, ex_ee_block,
2567 ex_ee_block + ex_ee_len - 1);
2568 err = -EIO;
2569 goto out;
2570 } else if (a != ex_ee_block) {
2571 /* remove tail of the extent */
2572 num = a - ex_ee_block;
2573 } else {
2574 /* remove whole extent: excellent! */
2575 num = 0;
2578 * 3 for leaf, sb, and inode plus 2 (bmap and group
2579 * descriptor) for each block group; assume two block
2580 * groups plus ex_ee_len/blocks_per_block_group for
2581 * the worst case
2583 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2584 if (ex == EXT_FIRST_EXTENT(eh)) {
2585 correct_index = 1;
2586 credits += (ext_depth(inode)) + 1;
2588 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2590 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2591 if (err)
2592 goto out;
2594 err = ext4_ext_get_access(handle, inode, path + depth);
2595 if (err)
2596 goto out;
2598 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2599 a, b);
2600 if (err)
2601 goto out;
2603 if (num == 0)
2604 /* this extent is removed; mark slot entirely unused */
2605 ext4_ext_store_pblock(ex, 0);
2607 ex->ee_len = cpu_to_le16(num);
2609 * Do not mark uninitialized if all the blocks in the
2610 * extent have been removed.
2612 if (uninitialized && num)
2613 ext4_ext_mark_uninitialized(ex);
2615 * If the extent was completely released,
2616 * we need to remove it from the leaf
2618 if (num == 0) {
2619 if (end != EXT_MAX_BLOCKS - 1) {
2621 * For hole punching, we need to scoot all the
2622 * extents up when an extent is removed so that
2623 * we dont have blank extents in the middle
2625 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2626 sizeof(struct ext4_extent));
2628 /* Now get rid of the one at the end */
2629 memset(EXT_LAST_EXTENT(eh), 0,
2630 sizeof(struct ext4_extent));
2632 le16_add_cpu(&eh->eh_entries, -1);
2633 } else
2634 *partial_cluster = 0;
2636 err = ext4_ext_dirty(handle, inode, path + depth);
2637 if (err)
2638 goto out;
2640 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2641 ext4_ext_pblock(ex));
2642 ex--;
2643 ex_ee_block = le32_to_cpu(ex->ee_block);
2644 ex_ee_len = ext4_ext_get_actual_len(ex);
2647 if (correct_index && eh->eh_entries)
2648 err = ext4_ext_correct_indexes(handle, inode, path);
2651 * If there is still a entry in the leaf node, check to see if
2652 * it references the partial cluster. This is the only place
2653 * where it could; if it doesn't, we can free the cluster.
2655 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2656 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2657 *partial_cluster)) {
2658 int flags = EXT4_FREE_BLOCKS_FORGET;
2660 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2661 flags |= EXT4_FREE_BLOCKS_METADATA;
2663 ext4_free_blocks(handle, inode, NULL,
2664 EXT4_C2B(sbi, *partial_cluster),
2665 sbi->s_cluster_ratio, flags);
2666 *partial_cluster = 0;
2669 /* if this leaf is free, then we should
2670 * remove it from index block above */
2671 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2672 err = ext4_ext_rm_idx(handle, inode, path, depth);
2674 out:
2675 return err;
2679 * ext4_ext_more_to_rm:
2680 * returns 1 if current index has to be freed (even partial)
2682 static int
2683 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2685 BUG_ON(path->p_idx == NULL);
2687 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2688 return 0;
2691 * if truncate on deeper level happened, it wasn't partial,
2692 * so we have to consider current index for truncation
2694 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2695 return 0;
2696 return 1;
2699 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2700 ext4_lblk_t end)
2702 struct super_block *sb = inode->i_sb;
2703 int depth = ext_depth(inode);
2704 struct ext4_ext_path *path = NULL;
2705 ext4_fsblk_t partial_cluster = 0;
2706 handle_t *handle;
2707 int i = 0, err = 0;
2709 ext_debug("truncate since %u to %u\n", start, end);
2711 /* probably first extent we're gonna free will be last in block */
2712 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2713 if (IS_ERR(handle))
2714 return PTR_ERR(handle);
2716 again:
2717 trace_ext4_ext_remove_space(inode, start, depth);
2720 * Check if we are removing extents inside the extent tree. If that
2721 * is the case, we are going to punch a hole inside the extent tree
2722 * so we have to check whether we need to split the extent covering
2723 * the last block to remove so we can easily remove the part of it
2724 * in ext4_ext_rm_leaf().
2726 if (end < EXT_MAX_BLOCKS - 1) {
2727 struct ext4_extent *ex;
2728 ext4_lblk_t ee_block;
2730 /* find extent for this block */
2731 path = ext4_ext_find_extent(inode, end, NULL);
2732 if (IS_ERR(path)) {
2733 ext4_journal_stop(handle);
2734 return PTR_ERR(path);
2736 depth = ext_depth(inode);
2737 /* Leaf not may not exist only if inode has no blocks at all */
2738 ex = path[depth].p_ext;
2739 if (!ex) {
2740 if (depth) {
2741 EXT4_ERROR_INODE(inode,
2742 "path[%d].p_hdr == NULL",
2743 depth);
2744 err = -EIO;
2746 goto out;
2749 ee_block = le32_to_cpu(ex->ee_block);
2752 * See if the last block is inside the extent, if so split
2753 * the extent at 'end' block so we can easily remove the
2754 * tail of the first part of the split extent in
2755 * ext4_ext_rm_leaf().
2757 if (end >= ee_block &&
2758 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2759 int split_flag = 0;
2761 if (ext4_ext_is_uninitialized(ex))
2762 split_flag = EXT4_EXT_MARK_UNINIT1 |
2763 EXT4_EXT_MARK_UNINIT2;
2766 * Split the extent in two so that 'end' is the last
2767 * block in the first new extent. Also we should not
2768 * fail removing space due to ENOSPC so try to use
2769 * reserved block if that happens.
2771 err = ext4_split_extent_at(handle, inode, path,
2772 end + 1, split_flag,
2773 EXT4_GET_BLOCKS_PRE_IO |
2774 EXT4_GET_BLOCKS_METADATA_NOFAIL);
2776 if (err < 0)
2777 goto out;
2781 * We start scanning from right side, freeing all the blocks
2782 * after i_size and walking into the tree depth-wise.
2784 depth = ext_depth(inode);
2785 if (path) {
2786 int k = i = depth;
2787 while (--k > 0)
2788 path[k].p_block =
2789 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2790 } else {
2791 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2792 GFP_NOFS);
2793 if (path == NULL) {
2794 ext4_journal_stop(handle);
2795 return -ENOMEM;
2797 path[0].p_depth = depth;
2798 path[0].p_hdr = ext_inode_hdr(inode);
2799 i = 0;
2801 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2802 err = -EIO;
2803 goto out;
2806 err = 0;
2808 while (i >= 0 && err == 0) {
2809 if (i == depth) {
2810 /* this is leaf block */
2811 err = ext4_ext_rm_leaf(handle, inode, path,
2812 &partial_cluster, start,
2813 end);
2814 /* root level has p_bh == NULL, brelse() eats this */
2815 brelse(path[i].p_bh);
2816 path[i].p_bh = NULL;
2817 i--;
2818 continue;
2821 /* this is index block */
2822 if (!path[i].p_hdr) {
2823 ext_debug("initialize header\n");
2824 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2827 if (!path[i].p_idx) {
2828 /* this level hasn't been touched yet */
2829 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2830 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2831 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2832 path[i].p_hdr,
2833 le16_to_cpu(path[i].p_hdr->eh_entries));
2834 } else {
2835 /* we were already here, see at next index */
2836 path[i].p_idx--;
2839 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2840 i, EXT_FIRST_INDEX(path[i].p_hdr),
2841 path[i].p_idx);
2842 if (ext4_ext_more_to_rm(path + i)) {
2843 struct buffer_head *bh;
2844 /* go to the next level */
2845 ext_debug("move to level %d (block %llu)\n",
2846 i + 1, ext4_idx_pblock(path[i].p_idx));
2847 memset(path + i + 1, 0, sizeof(*path));
2848 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2849 if (!bh) {
2850 /* should we reset i_size? */
2851 err = -EIO;
2852 break;
2854 if (WARN_ON(i + 1 > depth)) {
2855 err = -EIO;
2856 break;
2858 if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2859 depth - i - 1, bh)) {
2860 err = -EIO;
2861 break;
2863 path[i + 1].p_bh = bh;
2865 /* save actual number of indexes since this
2866 * number is changed at the next iteration */
2867 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2868 i++;
2869 } else {
2870 /* we finished processing this index, go up */
2871 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2872 /* index is empty, remove it;
2873 * handle must be already prepared by the
2874 * truncatei_leaf() */
2875 err = ext4_ext_rm_idx(handle, inode, path, i);
2877 /* root level has p_bh == NULL, brelse() eats this */
2878 brelse(path[i].p_bh);
2879 path[i].p_bh = NULL;
2880 i--;
2881 ext_debug("return to level %d\n", i);
2885 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2886 path->p_hdr->eh_entries);
2888 /* If we still have something in the partial cluster and we have removed
2889 * even the first extent, then we should free the blocks in the partial
2890 * cluster as well. */
2891 if (partial_cluster && path->p_hdr->eh_entries == 0) {
2892 int flags = EXT4_FREE_BLOCKS_FORGET;
2894 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2895 flags |= EXT4_FREE_BLOCKS_METADATA;
2897 ext4_free_blocks(handle, inode, NULL,
2898 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2899 EXT4_SB(sb)->s_cluster_ratio, flags);
2900 partial_cluster = 0;
2903 /* TODO: flexible tree reduction should be here */
2904 if (path->p_hdr->eh_entries == 0) {
2906 * truncate to zero freed all the tree,
2907 * so we need to correct eh_depth
2909 err = ext4_ext_get_access(handle, inode, path);
2910 if (err == 0) {
2911 ext_inode_hdr(inode)->eh_depth = 0;
2912 ext_inode_hdr(inode)->eh_max =
2913 cpu_to_le16(ext4_ext_space_root(inode, 0));
2914 err = ext4_ext_dirty(handle, inode, path);
2917 out:
2918 ext4_ext_drop_refs(path);
2919 kfree(path);
2920 if (err == -EAGAIN) {
2921 path = NULL;
2922 goto again;
2924 ext4_journal_stop(handle);
2926 return err;
2930 * called at mount time
2932 void ext4_ext_init(struct super_block *sb)
2935 * possible initialization would be here
2938 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2939 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2940 printk(KERN_INFO "EXT4-fs: file extents enabled"
2941 #ifdef AGGRESSIVE_TEST
2942 ", aggressive tests"
2943 #endif
2944 #ifdef CHECK_BINSEARCH
2945 ", check binsearch"
2946 #endif
2947 #ifdef EXTENTS_STATS
2948 ", stats"
2949 #endif
2950 "\n");
2951 #endif
2952 #ifdef EXTENTS_STATS
2953 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2954 EXT4_SB(sb)->s_ext_min = 1 << 30;
2955 EXT4_SB(sb)->s_ext_max = 0;
2956 #endif
2961 * called at umount time
2963 void ext4_ext_release(struct super_block *sb)
2965 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2966 return;
2968 #ifdef EXTENTS_STATS
2969 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2970 struct ext4_sb_info *sbi = EXT4_SB(sb);
2971 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2972 sbi->s_ext_blocks, sbi->s_ext_extents,
2973 sbi->s_ext_blocks / sbi->s_ext_extents);
2974 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2975 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2977 #endif
2980 /* FIXME!! we need to try to merge to left or right after zero-out */
2981 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2983 ext4_fsblk_t ee_pblock;
2984 unsigned int ee_len;
2985 int ret;
2987 ee_len = ext4_ext_get_actual_len(ex);
2988 ee_pblock = ext4_ext_pblock(ex);
2990 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2991 if (ret > 0)
2992 ret = 0;
2994 return ret;
2998 * ext4_split_extent_at() splits an extent at given block.
3000 * @handle: the journal handle
3001 * @inode: the file inode
3002 * @path: the path to the extent
3003 * @split: the logical block where the extent is splitted.
3004 * @split_flags: indicates if the extent could be zeroout if split fails, and
3005 * the states(init or uninit) of new extents.
3006 * @flags: flags used to insert new extent to extent tree.
3009 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3010 * of which are deterimined by split_flag.
3012 * There are two cases:
3013 * a> the extent are splitted into two extent.
3014 * b> split is not needed, and just mark the extent.
3016 * return 0 on success.
3018 static int ext4_split_extent_at(handle_t *handle,
3019 struct inode *inode,
3020 struct ext4_ext_path *path,
3021 ext4_lblk_t split,
3022 int split_flag,
3023 int flags)
3025 ext4_fsblk_t newblock;
3026 ext4_lblk_t ee_block;
3027 struct ext4_extent *ex, newex, orig_ex, zero_ex;
3028 struct ext4_extent *ex2 = NULL;
3029 unsigned int ee_len, depth;
3030 int err = 0;
3032 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3033 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3035 ext_debug("ext4_split_extents_at: inode %lu, logical"
3036 "block %llu\n", inode->i_ino, (unsigned long long)split);
3038 ext4_ext_show_leaf(inode, path);
3040 depth = ext_depth(inode);
3041 ex = path[depth].p_ext;
3042 ee_block = le32_to_cpu(ex->ee_block);
3043 ee_len = ext4_ext_get_actual_len(ex);
3044 newblock = split - ee_block + ext4_ext_pblock(ex);
3046 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3047 BUG_ON(!ext4_ext_is_uninitialized(ex) &&
3048 split_flag & (EXT4_EXT_MAY_ZEROOUT |
3049 EXT4_EXT_MARK_UNINIT1 |
3050 EXT4_EXT_MARK_UNINIT2));
3052 err = ext4_ext_get_access(handle, inode, path + depth);
3053 if (err)
3054 goto out;
3056 if (split == ee_block) {
3058 * case b: block @split is the block that the extent begins with
3059 * then we just change the state of the extent, and splitting
3060 * is not needed.
3062 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3063 ext4_ext_mark_uninitialized(ex);
3064 else
3065 ext4_ext_mark_initialized(ex);
3067 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3068 ext4_ext_try_to_merge(handle, inode, path, ex);
3070 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3071 goto out;
3074 /* case a */
3075 memcpy(&orig_ex, ex, sizeof(orig_ex));
3076 ex->ee_len = cpu_to_le16(split - ee_block);
3077 if (split_flag & EXT4_EXT_MARK_UNINIT1)
3078 ext4_ext_mark_uninitialized(ex);
3081 * path may lead to new leaf, not to original leaf any more
3082 * after ext4_ext_insert_extent() returns,
3084 err = ext4_ext_dirty(handle, inode, path + depth);
3085 if (err)
3086 goto fix_extent_len;
3088 ex2 = &newex;
3089 ex2->ee_block = cpu_to_le32(split);
3090 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3091 ext4_ext_store_pblock(ex2, newblock);
3092 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3093 ext4_ext_mark_uninitialized(ex2);
3095 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3096 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3097 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3098 if (split_flag & EXT4_EXT_DATA_VALID1) {
3099 err = ext4_ext_zeroout(inode, ex2);
3100 zero_ex.ee_block = ex2->ee_block;
3101 zero_ex.ee_len = cpu_to_le16(
3102 ext4_ext_get_actual_len(ex2));
3103 ext4_ext_store_pblock(&zero_ex,
3104 ext4_ext_pblock(ex2));
3105 } else {
3106 err = ext4_ext_zeroout(inode, ex);
3107 zero_ex.ee_block = ex->ee_block;
3108 zero_ex.ee_len = cpu_to_le16(
3109 ext4_ext_get_actual_len(ex));
3110 ext4_ext_store_pblock(&zero_ex,
3111 ext4_ext_pblock(ex));
3113 } else {
3114 err = ext4_ext_zeroout(inode, &orig_ex);
3115 zero_ex.ee_block = orig_ex.ee_block;
3116 zero_ex.ee_len = cpu_to_le16(
3117 ext4_ext_get_actual_len(&orig_ex));
3118 ext4_ext_store_pblock(&zero_ex,
3119 ext4_ext_pblock(&orig_ex));
3122 if (err)
3123 goto fix_extent_len;
3124 /* update the extent length and mark as initialized */
3125 ex->ee_len = cpu_to_le16(ee_len);
3126 ext4_ext_try_to_merge(handle, inode, path, ex);
3127 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3128 if (err)
3129 goto fix_extent_len;
3131 /* update extent status tree */
3132 err = ext4_es_zeroout(inode, &zero_ex);
3134 goto out;
3135 } else if (err)
3136 goto fix_extent_len;
3138 out:
3139 ext4_ext_show_leaf(inode, path);
3140 return err;
3142 fix_extent_len:
3143 ex->ee_len = orig_ex.ee_len;
3144 ext4_ext_dirty(handle, inode, path + depth);
3145 return err;
3149 * ext4_split_extents() splits an extent and mark extent which is covered
3150 * by @map as split_flags indicates
3152 * It may result in splitting the extent into multiple extents (upto three)
3153 * There are three possibilities:
3154 * a> There is no split required
3155 * b> Splits in two extents: Split is happening at either end of the extent
3156 * c> Splits in three extents: Somone is splitting in middle of the extent
3159 static int ext4_split_extent(handle_t *handle,
3160 struct inode *inode,
3161 struct ext4_ext_path *path,
3162 struct ext4_map_blocks *map,
3163 int split_flag,
3164 int flags)
3166 ext4_lblk_t ee_block;
3167 struct ext4_extent *ex;
3168 unsigned int ee_len, depth;
3169 int err = 0;
3170 int uninitialized;
3171 int split_flag1, flags1;
3172 int allocated = map->m_len;
3174 depth = ext_depth(inode);
3175 ex = path[depth].p_ext;
3176 ee_block = le32_to_cpu(ex->ee_block);
3177 ee_len = ext4_ext_get_actual_len(ex);
3178 uninitialized = ext4_ext_is_uninitialized(ex);
3180 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3181 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3182 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3183 if (uninitialized)
3184 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3185 EXT4_EXT_MARK_UNINIT2;
3186 if (split_flag & EXT4_EXT_DATA_VALID2)
3187 split_flag1 |= EXT4_EXT_DATA_VALID1;
3188 err = ext4_split_extent_at(handle, inode, path,
3189 map->m_lblk + map->m_len, split_flag1, flags1);
3190 if (err)
3191 goto out;
3192 } else {
3193 allocated = ee_len - (map->m_lblk - ee_block);
3196 * Update path is required because previous ext4_split_extent_at() may
3197 * result in split of original leaf or extent zeroout.
3199 ext4_ext_drop_refs(path);
3200 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3201 if (IS_ERR(path))
3202 return PTR_ERR(path);
3203 depth = ext_depth(inode);
3204 ex = path[depth].p_ext;
3205 uninitialized = ext4_ext_is_uninitialized(ex);
3206 split_flag1 = 0;
3208 if (map->m_lblk >= ee_block) {
3209 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3210 if (uninitialized) {
3211 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3212 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3213 EXT4_EXT_MARK_UNINIT2);
3215 err = ext4_split_extent_at(handle, inode, path,
3216 map->m_lblk, split_flag1, flags);
3217 if (err)
3218 goto out;
3221 ext4_ext_show_leaf(inode, path);
3222 out:
3223 return err ? err : allocated;
3227 * This function is called by ext4_ext_map_blocks() if someone tries to write
3228 * to an uninitialized extent. It may result in splitting the uninitialized
3229 * extent into multiple extents (up to three - one initialized and two
3230 * uninitialized).
3231 * There are three possibilities:
3232 * a> There is no split required: Entire extent should be initialized
3233 * b> Splits in two extents: Write is happening at either end of the extent
3234 * c> Splits in three extents: Somone is writing in middle of the extent
3236 * Pre-conditions:
3237 * - The extent pointed to by 'path' is uninitialized.
3238 * - The extent pointed to by 'path' contains a superset
3239 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3241 * Post-conditions on success:
3242 * - the returned value is the number of blocks beyond map->l_lblk
3243 * that are allocated and initialized.
3244 * It is guaranteed to be >= map->m_len.
3246 static int ext4_ext_convert_to_initialized(handle_t *handle,
3247 struct inode *inode,
3248 struct ext4_map_blocks *map,
3249 struct ext4_ext_path *path,
3250 int flags)
3252 struct ext4_sb_info *sbi;
3253 struct ext4_extent_header *eh;
3254 struct ext4_map_blocks split_map;
3255 struct ext4_extent zero_ex;
3256 struct ext4_extent *ex, *abut_ex;
3257 ext4_lblk_t ee_block, eof_block;
3258 unsigned int ee_len, depth, map_len = map->m_len;
3259 int allocated = 0, max_zeroout = 0;
3260 int err = 0;
3261 int split_flag = 0;
3263 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3264 "block %llu, max_blocks %u\n", inode->i_ino,
3265 (unsigned long long)map->m_lblk, map_len);
3267 sbi = EXT4_SB(inode->i_sb);
3268 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3269 inode->i_sb->s_blocksize_bits;
3270 if (eof_block < map->m_lblk + map_len)
3271 eof_block = map->m_lblk + map_len;
3273 depth = ext_depth(inode);
3274 eh = path[depth].p_hdr;
3275 ex = path[depth].p_ext;
3276 ee_block = le32_to_cpu(ex->ee_block);
3277 ee_len = ext4_ext_get_actual_len(ex);
3278 zero_ex.ee_len = 0;
3280 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3282 /* Pre-conditions */
3283 BUG_ON(!ext4_ext_is_uninitialized(ex));
3284 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3287 * Attempt to transfer newly initialized blocks from the currently
3288 * uninitialized extent to its neighbor. This is much cheaper
3289 * than an insertion followed by a merge as those involve costly
3290 * memmove() calls. Transferring to the left is the common case in
3291 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3292 * followed by append writes.
3294 * Limitations of the current logic:
3295 * - L1: we do not deal with writes covering the whole extent.
3296 * This would require removing the extent if the transfer
3297 * is possible.
3298 * - L2: we only attempt to merge with an extent stored in the
3299 * same extent tree node.
3301 if ((map->m_lblk == ee_block) &&
3302 /* See if we can merge left */
3303 (map_len < ee_len) && /*L1*/
3304 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/
3305 ext4_lblk_t prev_lblk;
3306 ext4_fsblk_t prev_pblk, ee_pblk;
3307 unsigned int prev_len;
3309 abut_ex = ex - 1;
3310 prev_lblk = le32_to_cpu(abut_ex->ee_block);
3311 prev_len = ext4_ext_get_actual_len(abut_ex);
3312 prev_pblk = ext4_ext_pblock(abut_ex);
3313 ee_pblk = ext4_ext_pblock(ex);
3316 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3317 * upon those conditions:
3318 * - C1: abut_ex is initialized,
3319 * - C2: abut_ex is logically abutting ex,
3320 * - C3: abut_ex is physically abutting ex,
3321 * - C4: abut_ex can receive the additional blocks without
3322 * overflowing the (initialized) length limit.
3324 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/
3325 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3326 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3327 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3328 err = ext4_ext_get_access(handle, inode, path + depth);
3329 if (err)
3330 goto out;
3332 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3333 map, ex, abut_ex);
3335 /* Shift the start of ex by 'map_len' blocks */
3336 ex->ee_block = cpu_to_le32(ee_block + map_len);
3337 ext4_ext_store_pblock(ex, ee_pblk + map_len);
3338 ex->ee_len = cpu_to_le16(ee_len - map_len);
3339 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3341 /* Extend abut_ex by 'map_len' blocks */
3342 abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3344 /* Result: number of initialized blocks past m_lblk */
3345 allocated = map_len;
3347 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3348 (map_len < ee_len) && /*L1*/
3349 ex < EXT_LAST_EXTENT(eh)) { /*L2*/
3350 /* See if we can merge right */
3351 ext4_lblk_t next_lblk;
3352 ext4_fsblk_t next_pblk, ee_pblk;
3353 unsigned int next_len;
3355 abut_ex = ex + 1;
3356 next_lblk = le32_to_cpu(abut_ex->ee_block);
3357 next_len = ext4_ext_get_actual_len(abut_ex);
3358 next_pblk = ext4_ext_pblock(abut_ex);
3359 ee_pblk = ext4_ext_pblock(ex);
3362 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3363 * upon those conditions:
3364 * - C1: abut_ex is initialized,
3365 * - C2: abut_ex is logically abutting ex,
3366 * - C3: abut_ex is physically abutting ex,
3367 * - C4: abut_ex can receive the additional blocks without
3368 * overflowing the (initialized) length limit.
3370 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/
3371 ((map->m_lblk + map_len) == next_lblk) && /*C2*/
3372 ((ee_pblk + ee_len) == next_pblk) && /*C3*/
3373 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3374 err = ext4_ext_get_access(handle, inode, path + depth);
3375 if (err)
3376 goto out;
3378 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3379 map, ex, abut_ex);
3381 /* Shift the start of abut_ex by 'map_len' blocks */
3382 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3383 ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3384 ex->ee_len = cpu_to_le16(ee_len - map_len);
3385 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3387 /* Extend abut_ex by 'map_len' blocks */
3388 abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3390 /* Result: number of initialized blocks past m_lblk */
3391 allocated = map_len;
3394 if (allocated) {
3395 /* Mark the block containing both extents as dirty */
3396 ext4_ext_dirty(handle, inode, path + depth);
3398 /* Update path to point to the right extent */
3399 path[depth].p_ext = abut_ex;
3400 goto out;
3401 } else
3402 allocated = ee_len - (map->m_lblk - ee_block);
3404 WARN_ON(map->m_lblk < ee_block);
3406 * It is safe to convert extent to initialized via explicit
3407 * zeroout only if extent is fully insde i_size or new_size.
3409 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3411 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3412 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3413 (inode->i_sb->s_blocksize_bits - 10);
3415 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3416 if (max_zeroout && (ee_len <= max_zeroout)) {
3417 err = ext4_ext_zeroout(inode, ex);
3418 if (err)
3419 goto out;
3420 zero_ex.ee_block = ex->ee_block;
3421 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3422 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3424 err = ext4_ext_get_access(handle, inode, path + depth);
3425 if (err)
3426 goto out;
3427 ext4_ext_mark_initialized(ex);
3428 ext4_ext_try_to_merge(handle, inode, path, ex);
3429 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3430 goto out;
3434 * four cases:
3435 * 1. split the extent into three extents.
3436 * 2. split the extent into two extents, zeroout the first half.
3437 * 3. split the extent into two extents, zeroout the second half.
3438 * 4. split the extent into two extents with out zeroout.
3440 split_map.m_lblk = map->m_lblk;
3441 split_map.m_len = map->m_len;
3443 if (max_zeroout && (allocated > map->m_len)) {
3444 if (allocated <= max_zeroout) {
3445 /* case 3 */
3446 zero_ex.ee_block =
3447 cpu_to_le32(map->m_lblk);
3448 zero_ex.ee_len = cpu_to_le16(allocated);
3449 ext4_ext_store_pblock(&zero_ex,
3450 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3451 err = ext4_ext_zeroout(inode, &zero_ex);
3452 if (err)
3453 goto out;
3454 split_map.m_lblk = map->m_lblk;
3455 split_map.m_len = allocated;
3456 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3457 /* case 2 */
3458 if (map->m_lblk != ee_block) {
3459 zero_ex.ee_block = ex->ee_block;
3460 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3461 ee_block);
3462 ext4_ext_store_pblock(&zero_ex,
3463 ext4_ext_pblock(ex));
3464 err = ext4_ext_zeroout(inode, &zero_ex);
3465 if (err)
3466 goto out;
3469 split_map.m_lblk = ee_block;
3470 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3471 allocated = map->m_len;
3475 allocated = ext4_split_extent(handle, inode, path,
3476 &split_map, split_flag, flags);
3477 if (allocated < 0)
3478 err = allocated;
3480 out:
3481 /* If we have gotten a failure, don't zero out status tree */
3482 if (!err)
3483 err = ext4_es_zeroout(inode, &zero_ex);
3484 return err ? err : allocated;
3488 * This function is called by ext4_ext_map_blocks() from
3489 * ext4_get_blocks_dio_write() when DIO to write
3490 * to an uninitialized extent.
3492 * Writing to an uninitialized extent may result in splitting the uninitialized
3493 * extent into multiple initialized/uninitialized extents (up to three)
3494 * There are three possibilities:
3495 * a> There is no split required: Entire extent should be uninitialized
3496 * b> Splits in two extents: Write is happening at either end of the extent
3497 * c> Splits in three extents: Somone is writing in middle of the extent
3499 * One of more index blocks maybe needed if the extent tree grow after
3500 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3501 * complete, we need to split the uninitialized extent before DIO submit
3502 * the IO. The uninitialized extent called at this time will be split
3503 * into three uninitialized extent(at most). After IO complete, the part
3504 * being filled will be convert to initialized by the end_io callback function
3505 * via ext4_convert_unwritten_extents().
3507 * Returns the size of uninitialized extent to be written on success.
3509 static int ext4_split_unwritten_extents(handle_t *handle,
3510 struct inode *inode,
3511 struct ext4_map_blocks *map,
3512 struct ext4_ext_path *path,
3513 int flags)
3515 ext4_lblk_t eof_block;
3516 ext4_lblk_t ee_block;
3517 struct ext4_extent *ex;
3518 unsigned int ee_len;
3519 int split_flag = 0, depth;
3521 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3522 "block %llu, max_blocks %u\n", inode->i_ino,
3523 (unsigned long long)map->m_lblk, map->m_len);
3525 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3526 inode->i_sb->s_blocksize_bits;
3527 if (eof_block < map->m_lblk + map->m_len)
3528 eof_block = map->m_lblk + map->m_len;
3530 * It is safe to convert extent to initialized via explicit
3531 * zeroout only if extent is fully insde i_size or new_size.
3533 depth = ext_depth(inode);
3534 ex = path[depth].p_ext;
3535 ee_block = le32_to_cpu(ex->ee_block);
3536 ee_len = ext4_ext_get_actual_len(ex);
3538 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3539 split_flag |= EXT4_EXT_MARK_UNINIT2;
3540 if (flags & EXT4_GET_BLOCKS_CONVERT)
3541 split_flag |= EXT4_EXT_DATA_VALID2;
3542 flags |= EXT4_GET_BLOCKS_PRE_IO;
3543 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3546 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3547 struct inode *inode,
3548 struct ext4_map_blocks *map,
3549 struct ext4_ext_path *path)
3551 struct ext4_extent *ex;
3552 ext4_lblk_t ee_block;
3553 unsigned int ee_len;
3554 int depth;
3555 int err = 0;
3557 depth = ext_depth(inode);
3558 ex = path[depth].p_ext;
3559 ee_block = le32_to_cpu(ex->ee_block);
3560 ee_len = ext4_ext_get_actual_len(ex);
3562 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3563 "block %llu, max_blocks %u\n", inode->i_ino,
3564 (unsigned long long)ee_block, ee_len);
3566 /* If extent is larger than requested it is a clear sign that we still
3567 * have some extent state machine issues left. So extent_split is still
3568 * required.
3569 * TODO: Once all related issues will be fixed this situation should be
3570 * illegal.
3572 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3573 #ifdef EXT4_DEBUG
3574 ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3575 " len %u; IO logical block %llu, len %u\n",
3576 inode->i_ino, (unsigned long long)ee_block, ee_len,
3577 (unsigned long long)map->m_lblk, map->m_len);
3578 #endif
3579 err = ext4_split_unwritten_extents(handle, inode, map, path,
3580 EXT4_GET_BLOCKS_CONVERT);
3581 if (err < 0)
3582 goto out;
3583 ext4_ext_drop_refs(path);
3584 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3585 if (IS_ERR(path)) {
3586 err = PTR_ERR(path);
3587 goto out;
3589 depth = ext_depth(inode);
3590 ex = path[depth].p_ext;
3593 err = ext4_ext_get_access(handle, inode, path + depth);
3594 if (err)
3595 goto out;
3596 /* first mark the extent as initialized */
3597 ext4_ext_mark_initialized(ex);
3599 /* note: ext4_ext_correct_indexes() isn't needed here because
3600 * borders are not changed
3602 ext4_ext_try_to_merge(handle, inode, path, ex);
3604 /* Mark modified extent as dirty */
3605 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3606 out:
3607 ext4_ext_show_leaf(inode, path);
3608 return err;
3611 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3612 sector_t block, int count)
3614 int i;
3615 for (i = 0; i < count; i++)
3616 unmap_underlying_metadata(bdev, block + i);
3620 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3622 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3623 ext4_lblk_t lblk,
3624 struct ext4_ext_path *path,
3625 unsigned int len)
3627 int i, depth;
3628 struct ext4_extent_header *eh;
3629 struct ext4_extent *last_ex;
3631 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3632 return 0;
3634 depth = ext_depth(inode);
3635 eh = path[depth].p_hdr;
3638 * We're going to remove EOFBLOCKS_FL entirely in future so we
3639 * do not care for this case anymore. Simply remove the flag
3640 * if there are no extents.
3642 if (unlikely(!eh->eh_entries))
3643 goto out;
3644 last_ex = EXT_LAST_EXTENT(eh);
3646 * We should clear the EOFBLOCKS_FL flag if we are writing the
3647 * last block in the last extent in the file. We test this by
3648 * first checking to see if the caller to
3649 * ext4_ext_get_blocks() was interested in the last block (or
3650 * a block beyond the last block) in the current extent. If
3651 * this turns out to be false, we can bail out from this
3652 * function immediately.
3654 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3655 ext4_ext_get_actual_len(last_ex))
3656 return 0;
3658 * If the caller does appear to be planning to write at or
3659 * beyond the end of the current extent, we then test to see
3660 * if the current extent is the last extent in the file, by
3661 * checking to make sure it was reached via the rightmost node
3662 * at each level of the tree.
3664 for (i = depth-1; i >= 0; i--)
3665 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3666 return 0;
3667 out:
3668 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3669 return ext4_mark_inode_dirty(handle, inode);
3673 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3675 * Return 1 if there is a delalloc block in the range, otherwise 0.
3677 int ext4_find_delalloc_range(struct inode *inode,
3678 ext4_lblk_t lblk_start,
3679 ext4_lblk_t lblk_end)
3681 struct extent_status es;
3683 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3684 if (es.es_len == 0)
3685 return 0; /* there is no delay extent in this tree */
3686 else if (es.es_lblk <= lblk_start &&
3687 lblk_start < es.es_lblk + es.es_len)
3688 return 1;
3689 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3690 return 1;
3691 else
3692 return 0;
3695 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3697 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3698 ext4_lblk_t lblk_start, lblk_end;
3699 lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3700 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3702 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3706 * Determines how many complete clusters (out of those specified by the 'map')
3707 * are under delalloc and were reserved quota for.
3708 * This function is called when we are writing out the blocks that were
3709 * originally written with their allocation delayed, but then the space was
3710 * allocated using fallocate() before the delayed allocation could be resolved.
3711 * The cases to look for are:
3712 * ('=' indicated delayed allocated blocks
3713 * '-' indicates non-delayed allocated blocks)
3714 * (a) partial clusters towards beginning and/or end outside of allocated range
3715 * are not delalloc'ed.
3716 * Ex:
3717 * |----c---=|====c====|====c====|===-c----|
3718 * |++++++ allocated ++++++|
3719 * ==> 4 complete clusters in above example
3721 * (b) partial cluster (outside of allocated range) towards either end is
3722 * marked for delayed allocation. In this case, we will exclude that
3723 * cluster.
3724 * Ex:
3725 * |----====c========|========c========|
3726 * |++++++ allocated ++++++|
3727 * ==> 1 complete clusters in above example
3729 * Ex:
3730 * |================c================|
3731 * |++++++ allocated ++++++|
3732 * ==> 0 complete clusters in above example
3734 * The ext4_da_update_reserve_space will be called only if we
3735 * determine here that there were some "entire" clusters that span
3736 * this 'allocated' range.
3737 * In the non-bigalloc case, this function will just end up returning num_blks
3738 * without ever calling ext4_find_delalloc_range.
3740 static unsigned int
3741 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3742 unsigned int num_blks)
3744 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3745 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3746 ext4_lblk_t lblk_from, lblk_to, c_offset;
3747 unsigned int allocated_clusters = 0;
3749 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3750 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3752 /* max possible clusters for this allocation */
3753 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3755 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3757 /* Check towards left side */
3758 c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3759 if (c_offset) {
3760 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3761 lblk_to = lblk_from + c_offset - 1;
3763 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3764 allocated_clusters--;
3767 /* Now check towards right. */
3768 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3769 if (allocated_clusters && c_offset) {
3770 lblk_from = lblk_start + num_blks;
3771 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3773 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3774 allocated_clusters--;
3777 return allocated_clusters;
3780 static int
3781 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3782 struct ext4_map_blocks *map,
3783 struct ext4_ext_path *path, int flags,
3784 unsigned int allocated, ext4_fsblk_t newblock)
3786 int ret = 0;
3787 int err = 0;
3788 ext4_io_end_t *io = ext4_inode_aio(inode);
3790 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3791 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3792 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3793 flags, allocated);
3794 ext4_ext_show_leaf(inode, path);
3797 * When writing into uninitialized space, we should not fail to
3798 * allocate metadata blocks for the new extent block if needed.
3800 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
3802 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3803 allocated, newblock);
3805 /* get_block() before submit the IO, split the extent */
3806 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3807 ret = ext4_split_unwritten_extents(handle, inode, map,
3808 path, flags);
3809 if (ret <= 0)
3810 goto out;
3812 * Flag the inode(non aio case) or end_io struct (aio case)
3813 * that this IO needs to conversion to written when IO is
3814 * completed
3816 if (io)
3817 ext4_set_io_unwritten_flag(inode, io);
3818 else
3819 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3820 map->m_flags |= EXT4_MAP_UNWRITTEN;
3821 if (ext4_should_dioread_nolock(inode))
3822 map->m_flags |= EXT4_MAP_UNINIT;
3823 goto out;
3825 /* IO end_io complete, convert the filled extent to written */
3826 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3827 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3828 path);
3829 if (ret >= 0) {
3830 ext4_update_inode_fsync_trans(handle, inode, 1);
3831 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3832 path, map->m_len);
3833 } else
3834 err = ret;
3835 map->m_flags |= EXT4_MAP_MAPPED;
3836 if (allocated > map->m_len)
3837 allocated = map->m_len;
3838 map->m_len = allocated;
3839 goto out2;
3841 /* buffered IO case */
3843 * repeat fallocate creation request
3844 * we already have an unwritten extent
3846 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3847 map->m_flags |= EXT4_MAP_UNWRITTEN;
3848 goto map_out;
3851 /* buffered READ or buffered write_begin() lookup */
3852 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3854 * We have blocks reserved already. We
3855 * return allocated blocks so that delalloc
3856 * won't do block reservation for us. But
3857 * the buffer head will be unmapped so that
3858 * a read from the block returns 0s.
3860 map->m_flags |= EXT4_MAP_UNWRITTEN;
3861 goto out1;
3864 /* buffered write, writepage time, convert*/
3865 ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
3866 if (ret >= 0)
3867 ext4_update_inode_fsync_trans(handle, inode, 1);
3868 out:
3869 if (ret <= 0) {
3870 err = ret;
3871 goto out2;
3872 } else
3873 allocated = ret;
3874 map->m_flags |= EXT4_MAP_NEW;
3876 * if we allocated more blocks than requested
3877 * we need to make sure we unmap the extra block
3878 * allocated. The actual needed block will get
3879 * unmapped later when we find the buffer_head marked
3880 * new.
3882 if (allocated > map->m_len) {
3883 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3884 newblock + map->m_len,
3885 allocated - map->m_len);
3886 allocated = map->m_len;
3888 map->m_len = allocated;
3891 * If we have done fallocate with the offset that is already
3892 * delayed allocated, we would have block reservation
3893 * and quota reservation done in the delayed write path.
3894 * But fallocate would have already updated quota and block
3895 * count for this offset. So cancel these reservation
3897 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3898 unsigned int reserved_clusters;
3899 reserved_clusters = get_reserved_cluster_alloc(inode,
3900 map->m_lblk, map->m_len);
3901 if (reserved_clusters)
3902 ext4_da_update_reserve_space(inode,
3903 reserved_clusters,
3907 map_out:
3908 map->m_flags |= EXT4_MAP_MAPPED;
3909 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3910 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3911 map->m_len);
3912 if (err < 0)
3913 goto out2;
3915 out1:
3916 if (allocated > map->m_len)
3917 allocated = map->m_len;
3918 ext4_ext_show_leaf(inode, path);
3919 map->m_pblk = newblock;
3920 map->m_len = allocated;
3921 out2:
3922 if (path) {
3923 ext4_ext_drop_refs(path);
3924 kfree(path);
3926 return err ? err : allocated;
3930 * get_implied_cluster_alloc - check to see if the requested
3931 * allocation (in the map structure) overlaps with a cluster already
3932 * allocated in an extent.
3933 * @sb The filesystem superblock structure
3934 * @map The requested lblk->pblk mapping
3935 * @ex The extent structure which might contain an implied
3936 * cluster allocation
3938 * This function is called by ext4_ext_map_blocks() after we failed to
3939 * find blocks that were already in the inode's extent tree. Hence,
3940 * we know that the beginning of the requested region cannot overlap
3941 * the extent from the inode's extent tree. There are three cases we
3942 * want to catch. The first is this case:
3944 * |--- cluster # N--|
3945 * |--- extent ---| |---- requested region ---|
3946 * |==========|
3948 * The second case that we need to test for is this one:
3950 * |--------- cluster # N ----------------|
3951 * |--- requested region --| |------- extent ----|
3952 * |=======================|
3954 * The third case is when the requested region lies between two extents
3955 * within the same cluster:
3956 * |------------- cluster # N-------------|
3957 * |----- ex -----| |---- ex_right ----|
3958 * |------ requested region ------|
3959 * |================|
3961 * In each of the above cases, we need to set the map->m_pblk and
3962 * map->m_len so it corresponds to the return the extent labelled as
3963 * "|====|" from cluster #N, since it is already in use for data in
3964 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3965 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3966 * as a new "allocated" block region. Otherwise, we will return 0 and
3967 * ext4_ext_map_blocks() will then allocate one or more new clusters
3968 * by calling ext4_mb_new_blocks().
3970 static int get_implied_cluster_alloc(struct super_block *sb,
3971 struct ext4_map_blocks *map,
3972 struct ext4_extent *ex,
3973 struct ext4_ext_path *path)
3975 struct ext4_sb_info *sbi = EXT4_SB(sb);
3976 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
3977 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3978 ext4_lblk_t rr_cluster_start;
3979 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3980 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3981 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3983 /* The extent passed in that we are trying to match */
3984 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3985 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3987 /* The requested region passed into ext4_map_blocks() */
3988 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3990 if ((rr_cluster_start == ex_cluster_end) ||
3991 (rr_cluster_start == ex_cluster_start)) {
3992 if (rr_cluster_start == ex_cluster_end)
3993 ee_start += ee_len - 1;
3994 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
3995 map->m_len = min(map->m_len,
3996 (unsigned) sbi->s_cluster_ratio - c_offset);
3998 * Check for and handle this case:
4000 * |--------- cluster # N-------------|
4001 * |------- extent ----|
4002 * |--- requested region ---|
4003 * |===========|
4006 if (map->m_lblk < ee_block)
4007 map->m_len = min(map->m_len, ee_block - map->m_lblk);
4010 * Check for the case where there is already another allocated
4011 * block to the right of 'ex' but before the end of the cluster.
4013 * |------------- cluster # N-------------|
4014 * |----- ex -----| |---- ex_right ----|
4015 * |------ requested region ------|
4016 * |================|
4018 if (map->m_lblk > ee_block) {
4019 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4020 map->m_len = min(map->m_len, next - map->m_lblk);
4023 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4024 return 1;
4027 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4028 return 0;
4033 * Block allocation/map/preallocation routine for extents based files
4036 * Need to be called with
4037 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4038 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4040 * return > 0, number of of blocks already mapped/allocated
4041 * if create == 0 and these are pre-allocated blocks
4042 * buffer head is unmapped
4043 * otherwise blocks are mapped
4045 * return = 0, if plain look up failed (blocks have not been allocated)
4046 * buffer head is unmapped
4048 * return < 0, error case.
4050 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4051 struct ext4_map_blocks *map, int flags)
4053 struct ext4_ext_path *path = NULL;
4054 struct ext4_extent newex, *ex, *ex2;
4055 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4056 ext4_fsblk_t newblock = 0;
4057 int free_on_err = 0, err = 0, depth, ret;
4058 unsigned int allocated = 0, offset = 0;
4059 unsigned int allocated_clusters = 0;
4060 struct ext4_allocation_request ar;
4061 ext4_io_end_t *io = ext4_inode_aio(inode);
4062 ext4_lblk_t cluster_offset;
4063 int set_unwritten = 0;
4065 ext_debug("blocks %u/%u requested for inode %lu\n",
4066 map->m_lblk, map->m_len, inode->i_ino);
4067 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4069 /* find extent for this block */
4070 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
4071 if (IS_ERR(path)) {
4072 err = PTR_ERR(path);
4073 path = NULL;
4074 goto out2;
4077 depth = ext_depth(inode);
4080 * consistent leaf must not be empty;
4081 * this situation is possible, though, _during_ tree modification;
4082 * this is why assert can't be put in ext4_ext_find_extent()
4084 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4085 EXT4_ERROR_INODE(inode, "bad extent address "
4086 "lblock: %lu, depth: %d pblock %lld",
4087 (unsigned long) map->m_lblk, depth,
4088 path[depth].p_block);
4089 err = -EIO;
4090 goto out2;
4093 ex = path[depth].p_ext;
4094 if (ex) {
4095 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4096 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4097 unsigned short ee_len;
4100 * Uninitialized extents are treated as holes, except that
4101 * we split out initialized portions during a write.
4103 ee_len = ext4_ext_get_actual_len(ex);
4105 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4107 /* if found extent covers block, simply return it */
4108 if (in_range(map->m_lblk, ee_block, ee_len)) {
4109 newblock = map->m_lblk - ee_block + ee_start;
4110 /* number of remaining blocks in the extent */
4111 allocated = ee_len - (map->m_lblk - ee_block);
4112 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4113 ee_block, ee_len, newblock);
4115 if (!ext4_ext_is_uninitialized(ex))
4116 goto out;
4118 ret = ext4_ext_handle_uninitialized_extents(
4119 handle, inode, map, path, flags,
4120 allocated, newblock);
4121 if (ret < 0)
4122 err = ret;
4123 else
4124 allocated = ret;
4125 goto out3;
4129 if ((sbi->s_cluster_ratio > 1) &&
4130 ext4_find_delalloc_cluster(inode, map->m_lblk))
4131 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4134 * requested block isn't allocated yet;
4135 * we couldn't try to create block if create flag is zero
4137 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4139 * put just found gap into cache to speed up
4140 * subsequent requests
4142 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4143 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4144 goto out2;
4148 * Okay, we need to do block allocation.
4150 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4151 newex.ee_block = cpu_to_le32(map->m_lblk);
4152 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4155 * If we are doing bigalloc, check to see if the extent returned
4156 * by ext4_ext_find_extent() implies a cluster we can use.
4158 if (cluster_offset && ex &&
4159 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4160 ar.len = allocated = map->m_len;
4161 newblock = map->m_pblk;
4162 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4163 goto got_allocated_blocks;
4166 /* find neighbour allocated blocks */
4167 ar.lleft = map->m_lblk;
4168 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4169 if (err)
4170 goto out2;
4171 ar.lright = map->m_lblk;
4172 ex2 = NULL;
4173 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4174 if (err)
4175 goto out2;
4177 /* Check if the extent after searching to the right implies a
4178 * cluster we can use. */
4179 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4180 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4181 ar.len = allocated = map->m_len;
4182 newblock = map->m_pblk;
4183 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4184 goto got_allocated_blocks;
4188 * See if request is beyond maximum number of blocks we can have in
4189 * a single extent. For an initialized extent this limit is
4190 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4191 * EXT_UNINIT_MAX_LEN.
4193 if (map->m_len > EXT_INIT_MAX_LEN &&
4194 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4195 map->m_len = EXT_INIT_MAX_LEN;
4196 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4197 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4198 map->m_len = EXT_UNINIT_MAX_LEN;
4200 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4201 newex.ee_len = cpu_to_le16(map->m_len);
4202 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4203 if (err)
4204 allocated = ext4_ext_get_actual_len(&newex);
4205 else
4206 allocated = map->m_len;
4208 /* allocate new block */
4209 ar.inode = inode;
4210 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4211 ar.logical = map->m_lblk;
4213 * We calculate the offset from the beginning of the cluster
4214 * for the logical block number, since when we allocate a
4215 * physical cluster, the physical block should start at the
4216 * same offset from the beginning of the cluster. This is
4217 * needed so that future calls to get_implied_cluster_alloc()
4218 * work correctly.
4220 offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4221 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4222 ar.goal -= offset;
4223 ar.logical -= offset;
4224 if (S_ISREG(inode->i_mode))
4225 ar.flags = EXT4_MB_HINT_DATA;
4226 else
4227 /* disable in-core preallocation for non-regular files */
4228 ar.flags = 0;
4229 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4230 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4231 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4232 if (!newblock)
4233 goto out2;
4234 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4235 ar.goal, newblock, allocated);
4236 free_on_err = 1;
4237 allocated_clusters = ar.len;
4238 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4239 if (ar.len > allocated)
4240 ar.len = allocated;
4242 got_allocated_blocks:
4243 /* try to insert new extent into found leaf and return */
4244 ext4_ext_store_pblock(&newex, newblock + offset);
4245 newex.ee_len = cpu_to_le16(ar.len);
4246 /* Mark uninitialized */
4247 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4248 ext4_ext_mark_uninitialized(&newex);
4249 map->m_flags |= EXT4_MAP_UNWRITTEN;
4251 * io_end structure was created for every IO write to an
4252 * uninitialized extent. To avoid unnecessary conversion,
4253 * here we flag the IO that really needs the conversion.
4254 * For non asycn direct IO case, flag the inode state
4255 * that we need to perform conversion when IO is done.
4257 if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4258 set_unwritten = 1;
4259 if (ext4_should_dioread_nolock(inode))
4260 map->m_flags |= EXT4_MAP_UNINIT;
4263 err = 0;
4264 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4265 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4266 path, ar.len);
4267 if (!err)
4268 err = ext4_ext_insert_extent(handle, inode, path,
4269 &newex, flags);
4271 if (!err && set_unwritten) {
4272 if (io)
4273 ext4_set_io_unwritten_flag(inode, io);
4274 else
4275 ext4_set_inode_state(inode,
4276 EXT4_STATE_DIO_UNWRITTEN);
4279 if (err && free_on_err) {
4280 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4281 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4282 /* free data blocks we just allocated */
4283 /* not a good idea to call discard here directly,
4284 * but otherwise we'd need to call it every free() */
4285 ext4_discard_preallocations(inode);
4286 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4287 ext4_ext_get_actual_len(&newex), fb_flags);
4288 goto out2;
4291 /* previous routine could use block we allocated */
4292 newblock = ext4_ext_pblock(&newex);
4293 allocated = ext4_ext_get_actual_len(&newex);
4294 if (allocated > map->m_len)
4295 allocated = map->m_len;
4296 map->m_flags |= EXT4_MAP_NEW;
4299 * Update reserved blocks/metadata blocks after successful
4300 * block allocation which had been deferred till now.
4302 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4303 unsigned int reserved_clusters;
4305 * Check how many clusters we had reserved this allocated range
4307 reserved_clusters = get_reserved_cluster_alloc(inode,
4308 map->m_lblk, allocated);
4309 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4310 if (reserved_clusters) {
4312 * We have clusters reserved for this range.
4313 * But since we are not doing actual allocation
4314 * and are simply using blocks from previously
4315 * allocated cluster, we should release the
4316 * reservation and not claim quota.
4318 ext4_da_update_reserve_space(inode,
4319 reserved_clusters, 0);
4321 } else {
4322 BUG_ON(allocated_clusters < reserved_clusters);
4323 if (reserved_clusters < allocated_clusters) {
4324 struct ext4_inode_info *ei = EXT4_I(inode);
4325 int reservation = allocated_clusters -
4326 reserved_clusters;
4328 * It seems we claimed few clusters outside of
4329 * the range of this allocation. We should give
4330 * it back to the reservation pool. This can
4331 * happen in the following case:
4333 * * Suppose s_cluster_ratio is 4 (i.e., each
4334 * cluster has 4 blocks. Thus, the clusters
4335 * are [0-3],[4-7],[8-11]...
4336 * * First comes delayed allocation write for
4337 * logical blocks 10 & 11. Since there were no
4338 * previous delayed allocated blocks in the
4339 * range [8-11], we would reserve 1 cluster
4340 * for this write.
4341 * * Next comes write for logical blocks 3 to 8.
4342 * In this case, we will reserve 2 clusters
4343 * (for [0-3] and [4-7]; and not for [8-11] as
4344 * that range has a delayed allocated blocks.
4345 * Thus total reserved clusters now becomes 3.
4346 * * Now, during the delayed allocation writeout
4347 * time, we will first write blocks [3-8] and
4348 * allocate 3 clusters for writing these
4349 * blocks. Also, we would claim all these
4350 * three clusters above.
4351 * * Now when we come here to writeout the
4352 * blocks [10-11], we would expect to claim
4353 * the reservation of 1 cluster we had made
4354 * (and we would claim it since there are no
4355 * more delayed allocated blocks in the range
4356 * [8-11]. But our reserved cluster count had
4357 * already gone to 0.
4359 * Thus, at the step 4 above when we determine
4360 * that there are still some unwritten delayed
4361 * allocated blocks outside of our current
4362 * block range, we should increment the
4363 * reserved clusters count so that when the
4364 * remaining blocks finally gets written, we
4365 * could claim them.
4367 dquot_reserve_block(inode,
4368 EXT4_C2B(sbi, reservation));
4369 spin_lock(&ei->i_block_reservation_lock);
4370 ei->i_reserved_data_blocks += reservation;
4371 spin_unlock(&ei->i_block_reservation_lock);
4374 * We will claim quota for all newly allocated blocks.
4375 * We're updating the reserved space *after* the
4376 * correction above so we do not accidentally free
4377 * all the metadata reservation because we might
4378 * actually need it later on.
4380 ext4_da_update_reserve_space(inode, allocated_clusters,
4386 * Cache the extent and update transaction to commit on fdatasync only
4387 * when it is _not_ an uninitialized extent.
4389 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4390 ext4_update_inode_fsync_trans(handle, inode, 1);
4391 else
4392 ext4_update_inode_fsync_trans(handle, inode, 0);
4393 out:
4394 if (allocated > map->m_len)
4395 allocated = map->m_len;
4396 ext4_ext_show_leaf(inode, path);
4397 map->m_flags |= EXT4_MAP_MAPPED;
4398 map->m_pblk = newblock;
4399 map->m_len = allocated;
4400 out2:
4401 if (path) {
4402 ext4_ext_drop_refs(path);
4403 kfree(path);
4406 out3:
4407 trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated);
4409 return err ? err : allocated;
4412 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4414 struct super_block *sb = inode->i_sb;
4415 ext4_lblk_t last_block;
4416 int err = 0;
4419 * TODO: optimization is possible here.
4420 * Probably we need not scan at all,
4421 * because page truncation is enough.
4424 /* we have to know where to truncate from in crash case */
4425 EXT4_I(inode)->i_disksize = inode->i_size;
4426 ext4_mark_inode_dirty(handle, inode);
4428 last_block = (inode->i_size + sb->s_blocksize - 1)
4429 >> EXT4_BLOCK_SIZE_BITS(sb);
4430 retry:
4431 err = ext4_es_remove_extent(inode, last_block,
4432 EXT_MAX_BLOCKS - last_block);
4433 if (err == -ENOMEM) {
4434 cond_resched();
4435 congestion_wait(BLK_RW_ASYNC, HZ/50);
4436 goto retry;
4438 if (err) {
4439 ext4_std_error(inode->i_sb, err);
4440 return;
4442 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4443 ext4_std_error(inode->i_sb, err);
4446 static void ext4_falloc_update_inode(struct inode *inode,
4447 int mode, loff_t new_size, int update_ctime)
4449 struct timespec now;
4451 if (update_ctime) {
4452 now = current_fs_time(inode->i_sb);
4453 if (!timespec_equal(&inode->i_ctime, &now))
4454 inode->i_ctime = now;
4457 * Update only when preallocation was requested beyond
4458 * the file size.
4460 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4461 if (new_size > i_size_read(inode))
4462 i_size_write(inode, new_size);
4463 if (new_size > EXT4_I(inode)->i_disksize)
4464 ext4_update_i_disksize(inode, new_size);
4465 } else {
4467 * Mark that we allocate beyond EOF so the subsequent truncate
4468 * can proceed even if the new size is the same as i_size.
4470 if (new_size > i_size_read(inode))
4471 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4477 * preallocate space for a file. This implements ext4's fallocate file
4478 * operation, which gets called from sys_fallocate system call.
4479 * For block-mapped files, posix_fallocate should fall back to the method
4480 * of writing zeroes to the required new blocks (the same behavior which is
4481 * expected for file systems which do not support fallocate() system call).
4483 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4485 struct inode *inode = file_inode(file);
4486 handle_t *handle;
4487 loff_t new_size;
4488 unsigned int max_blocks;
4489 int ret = 0;
4490 int ret2 = 0;
4491 int retries = 0;
4492 int flags;
4493 struct ext4_map_blocks map;
4494 unsigned int credits, blkbits = inode->i_blkbits;
4496 /* Return error if mode is not supported */
4497 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4498 return -EOPNOTSUPP;
4500 if (mode & FALLOC_FL_PUNCH_HOLE)
4501 return ext4_punch_hole(file, offset, len);
4503 ret = ext4_convert_inline_data(inode);
4504 if (ret)
4505 return ret;
4508 * currently supporting (pre)allocate mode for extent-based
4509 * files _only_
4511 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4512 return -EOPNOTSUPP;
4514 trace_ext4_fallocate_enter(inode, offset, len, mode);
4515 map.m_lblk = offset >> blkbits;
4517 * We can't just convert len to max_blocks because
4518 * If blocksize = 4096 offset = 3072 and len = 2048
4520 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4521 - map.m_lblk;
4523 * credits to insert 1 extent into extent tree
4525 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4526 mutex_lock(&inode->i_mutex);
4527 ret = inode_newsize_ok(inode, (len + offset));
4528 if (ret) {
4529 mutex_unlock(&inode->i_mutex);
4530 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4531 return ret;
4533 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4534 if (mode & FALLOC_FL_KEEP_SIZE)
4535 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4537 * Don't normalize the request if it can fit in one extent so
4538 * that it doesn't get unnecessarily split into multiple
4539 * extents.
4541 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4542 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4544 retry:
4545 while (ret >= 0 && ret < max_blocks) {
4546 map.m_lblk = map.m_lblk + ret;
4547 map.m_len = max_blocks = max_blocks - ret;
4548 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4549 credits);
4550 if (IS_ERR(handle)) {
4551 ret = PTR_ERR(handle);
4552 break;
4554 ret = ext4_map_blocks(handle, inode, &map, flags);
4555 if (ret <= 0) {
4556 #ifdef EXT4FS_DEBUG
4557 ext4_warning(inode->i_sb,
4558 "inode #%lu: block %u: len %u: "
4559 "ext4_ext_map_blocks returned %d",
4560 inode->i_ino, map.m_lblk,
4561 map.m_len, ret);
4562 #endif
4563 ext4_mark_inode_dirty(handle, inode);
4564 ret2 = ext4_journal_stop(handle);
4565 break;
4567 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4568 blkbits) >> blkbits))
4569 new_size = offset + len;
4570 else
4571 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4573 ext4_falloc_update_inode(inode, mode, new_size,
4574 (map.m_flags & EXT4_MAP_NEW));
4575 ext4_mark_inode_dirty(handle, inode);
4576 if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4577 ext4_handle_sync(handle);
4578 ret2 = ext4_journal_stop(handle);
4579 if (ret2)
4580 break;
4582 if (ret == -ENOSPC &&
4583 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4584 ret = 0;
4585 goto retry;
4587 mutex_unlock(&inode->i_mutex);
4588 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4589 ret > 0 ? ret2 : ret);
4590 return ret > 0 ? ret2 : ret;
4594 * This function convert a range of blocks to written extents
4595 * The caller of this function will pass the start offset and the size.
4596 * all unwritten extents within this range will be converted to
4597 * written extents.
4599 * This function is called from the direct IO end io call back
4600 * function, to convert the fallocated extents after IO is completed.
4601 * Returns 0 on success.
4603 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4604 ssize_t len)
4606 handle_t *handle;
4607 unsigned int max_blocks;
4608 int ret = 0;
4609 int ret2 = 0;
4610 struct ext4_map_blocks map;
4611 unsigned int credits, blkbits = inode->i_blkbits;
4613 map.m_lblk = offset >> blkbits;
4615 * We can't just convert len to max_blocks because
4616 * If blocksize = 4096 offset = 3072 and len = 2048
4618 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4619 map.m_lblk);
4621 * credits to insert 1 extent into extent tree
4623 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4624 while (ret >= 0 && ret < max_blocks) {
4625 map.m_lblk += ret;
4626 map.m_len = (max_blocks -= ret);
4627 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
4628 if (IS_ERR(handle)) {
4629 ret = PTR_ERR(handle);
4630 break;
4632 ret = ext4_map_blocks(handle, inode, &map,
4633 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4634 if (ret <= 0)
4635 ext4_warning(inode->i_sb,
4636 "inode #%lu: block %u: len %u: "
4637 "ext4_ext_map_blocks returned %d",
4638 inode->i_ino, map.m_lblk,
4639 map.m_len, ret);
4640 ext4_mark_inode_dirty(handle, inode);
4641 ret2 = ext4_journal_stop(handle);
4642 if (ret <= 0 || ret2 )
4643 break;
4645 return ret > 0 ? ret2 : ret;
4649 * If newes is not existing extent (newes->ec_pblk equals zero) find
4650 * delayed extent at start of newes and update newes accordingly and
4651 * return start of the next delayed extent.
4653 * If newes is existing extent (newes->ec_pblk is not equal zero)
4654 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4655 * extent found. Leave newes unmodified.
4657 static int ext4_find_delayed_extent(struct inode *inode,
4658 struct extent_status *newes)
4660 struct extent_status es;
4661 ext4_lblk_t block, next_del;
4663 if (newes->es_pblk == 0) {
4664 ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
4665 newes->es_lblk + newes->es_len - 1, &es);
4668 * No extent in extent-tree contains block @newes->es_pblk,
4669 * then the block may stay in 1)a hole or 2)delayed-extent.
4671 if (es.es_len == 0)
4672 /* A hole found. */
4673 return 0;
4675 if (es.es_lblk > newes->es_lblk) {
4676 /* A hole found. */
4677 newes->es_len = min(es.es_lblk - newes->es_lblk,
4678 newes->es_len);
4679 return 0;
4682 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
4685 block = newes->es_lblk + newes->es_len;
4686 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
4687 if (es.es_len == 0)
4688 next_del = EXT_MAX_BLOCKS;
4689 else
4690 next_del = es.es_lblk;
4692 return next_del;
4694 /* fiemap flags we can handle specified here */
4695 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4697 static int ext4_xattr_fiemap(struct inode *inode,
4698 struct fiemap_extent_info *fieinfo)
4700 __u64 physical = 0;
4701 __u64 length;
4702 __u32 flags = FIEMAP_EXTENT_LAST;
4703 int blockbits = inode->i_sb->s_blocksize_bits;
4704 int error = 0;
4706 /* in-inode? */
4707 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4708 struct ext4_iloc iloc;
4709 int offset; /* offset of xattr in inode */
4711 error = ext4_get_inode_loc(inode, &iloc);
4712 if (error)
4713 return error;
4714 physical = (__u64)iloc.bh->b_blocknr << blockbits;
4715 offset = EXT4_GOOD_OLD_INODE_SIZE +
4716 EXT4_I(inode)->i_extra_isize;
4717 physical += offset;
4718 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4719 flags |= FIEMAP_EXTENT_DATA_INLINE;
4720 brelse(iloc.bh);
4721 } else { /* external block */
4722 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
4723 length = inode->i_sb->s_blocksize;
4726 if (physical)
4727 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4728 length, flags);
4729 return (error < 0 ? error : 0);
4732 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4733 __u64 start, __u64 len)
4735 ext4_lblk_t start_blk;
4736 int error = 0;
4738 if (ext4_has_inline_data(inode)) {
4739 int has_inline = 1;
4741 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4743 if (has_inline)
4744 return error;
4747 /* fallback to generic here if not in extents fmt */
4748 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4749 return generic_block_fiemap(inode, fieinfo, start, len,
4750 ext4_get_block);
4752 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4753 return -EBADR;
4755 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4756 error = ext4_xattr_fiemap(inode, fieinfo);
4757 } else {
4758 ext4_lblk_t len_blks;
4759 __u64 last_blk;
4761 start_blk = start >> inode->i_sb->s_blocksize_bits;
4762 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4763 if (last_blk >= EXT_MAX_BLOCKS)
4764 last_blk = EXT_MAX_BLOCKS-1;
4765 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4768 * Walk the extent tree gathering extent information
4769 * and pushing extents back to the user.
4771 error = ext4_fill_fiemap_extents(inode, start_blk,
4772 len_blks, fieinfo);
4775 return error;