sctp: translate host order to network order when setting a hmacid
[linux/fpc-iii.git] / fs / ext4 / indirect.c
blobb07a221c31386f068b0245b772507157ae3eaa0b
1 /*
2 * linux/fs/ext4/indirect.c
4 * from
6 * linux/fs/ext4/inode.c
8 * Copyright (C) 1992, 1993, 1994, 1995
9 * Remy Card (card@masi.ibp.fr)
10 * Laboratoire MASI - Institut Blaise Pascal
11 * Universite Pierre et Marie Curie (Paris VI)
13 * from
15 * linux/fs/minix/inode.c
17 * Copyright (C) 1991, 1992 Linus Torvalds
19 * Goal-directed block allocation by Stephen Tweedie
20 * (sct@redhat.com), 1993, 1998
23 #include <linux/aio.h>
24 #include "ext4_jbd2.h"
25 #include "truncate.h"
26 #include "ext4_extents.h" /* Needed for EXT_MAX_BLOCKS */
28 #include <trace/events/ext4.h>
30 typedef struct {
31 __le32 *p;
32 __le32 key;
33 struct buffer_head *bh;
34 } Indirect;
36 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
38 p->key = *(p->p = v);
39 p->bh = bh;
42 /**
43 * ext4_block_to_path - parse the block number into array of offsets
44 * @inode: inode in question (we are only interested in its superblock)
45 * @i_block: block number to be parsed
46 * @offsets: array to store the offsets in
47 * @boundary: set this non-zero if the referred-to block is likely to be
48 * followed (on disk) by an indirect block.
50 * To store the locations of file's data ext4 uses a data structure common
51 * for UNIX filesystems - tree of pointers anchored in the inode, with
52 * data blocks at leaves and indirect blocks in intermediate nodes.
53 * This function translates the block number into path in that tree -
54 * return value is the path length and @offsets[n] is the offset of
55 * pointer to (n+1)th node in the nth one. If @block is out of range
56 * (negative or too large) warning is printed and zero returned.
58 * Note: function doesn't find node addresses, so no IO is needed. All
59 * we need to know is the capacity of indirect blocks (taken from the
60 * inode->i_sb).
64 * Portability note: the last comparison (check that we fit into triple
65 * indirect block) is spelled differently, because otherwise on an
66 * architecture with 32-bit longs and 8Kb pages we might get into trouble
67 * if our filesystem had 8Kb blocks. We might use long long, but that would
68 * kill us on x86. Oh, well, at least the sign propagation does not matter -
69 * i_block would have to be negative in the very beginning, so we would not
70 * get there at all.
73 static int ext4_block_to_path(struct inode *inode,
74 ext4_lblk_t i_block,
75 ext4_lblk_t offsets[4], int *boundary)
77 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
78 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
79 const long direct_blocks = EXT4_NDIR_BLOCKS,
80 indirect_blocks = ptrs,
81 double_blocks = (1 << (ptrs_bits * 2));
82 int n = 0;
83 int final = 0;
85 if (i_block < direct_blocks) {
86 offsets[n++] = i_block;
87 final = direct_blocks;
88 } else if ((i_block -= direct_blocks) < indirect_blocks) {
89 offsets[n++] = EXT4_IND_BLOCK;
90 offsets[n++] = i_block;
91 final = ptrs;
92 } else if ((i_block -= indirect_blocks) < double_blocks) {
93 offsets[n++] = EXT4_DIND_BLOCK;
94 offsets[n++] = i_block >> ptrs_bits;
95 offsets[n++] = i_block & (ptrs - 1);
96 final = ptrs;
97 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
98 offsets[n++] = EXT4_TIND_BLOCK;
99 offsets[n++] = i_block >> (ptrs_bits * 2);
100 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
101 offsets[n++] = i_block & (ptrs - 1);
102 final = ptrs;
103 } else {
104 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
105 i_block + direct_blocks +
106 indirect_blocks + double_blocks, inode->i_ino);
108 if (boundary)
109 *boundary = final - 1 - (i_block & (ptrs - 1));
110 return n;
114 * ext4_get_branch - read the chain of indirect blocks leading to data
115 * @inode: inode in question
116 * @depth: depth of the chain (1 - direct pointer, etc.)
117 * @offsets: offsets of pointers in inode/indirect blocks
118 * @chain: place to store the result
119 * @err: here we store the error value
121 * Function fills the array of triples <key, p, bh> and returns %NULL
122 * if everything went OK or the pointer to the last filled triple
123 * (incomplete one) otherwise. Upon the return chain[i].key contains
124 * the number of (i+1)-th block in the chain (as it is stored in memory,
125 * i.e. little-endian 32-bit), chain[i].p contains the address of that
126 * number (it points into struct inode for i==0 and into the bh->b_data
127 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
128 * block for i>0 and NULL for i==0. In other words, it holds the block
129 * numbers of the chain, addresses they were taken from (and where we can
130 * verify that chain did not change) and buffer_heads hosting these
131 * numbers.
133 * Function stops when it stumbles upon zero pointer (absent block)
134 * (pointer to last triple returned, *@err == 0)
135 * or when it gets an IO error reading an indirect block
136 * (ditto, *@err == -EIO)
137 * or when it reads all @depth-1 indirect blocks successfully and finds
138 * the whole chain, all way to the data (returns %NULL, *err == 0).
140 * Need to be called with
141 * down_read(&EXT4_I(inode)->i_data_sem)
143 static Indirect *ext4_get_branch(struct inode *inode, int depth,
144 ext4_lblk_t *offsets,
145 Indirect chain[4], int *err)
147 struct super_block *sb = inode->i_sb;
148 Indirect *p = chain;
149 struct buffer_head *bh;
150 int ret = -EIO;
152 *err = 0;
153 /* i_data is not going away, no lock needed */
154 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
155 if (!p->key)
156 goto no_block;
157 while (--depth) {
158 bh = sb_getblk(sb, le32_to_cpu(p->key));
159 if (unlikely(!bh)) {
160 ret = -ENOMEM;
161 goto failure;
164 if (!bh_uptodate_or_lock(bh)) {
165 if (bh_submit_read(bh) < 0) {
166 put_bh(bh);
167 goto failure;
169 /* validate block references */
170 if (ext4_check_indirect_blockref(inode, bh)) {
171 put_bh(bh);
172 goto failure;
176 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
177 /* Reader: end */
178 if (!p->key)
179 goto no_block;
181 return NULL;
183 failure:
184 *err = ret;
185 no_block:
186 return p;
190 * ext4_find_near - find a place for allocation with sufficient locality
191 * @inode: owner
192 * @ind: descriptor of indirect block.
194 * This function returns the preferred place for block allocation.
195 * It is used when heuristic for sequential allocation fails.
196 * Rules are:
197 * + if there is a block to the left of our position - allocate near it.
198 * + if pointer will live in indirect block - allocate near that block.
199 * + if pointer will live in inode - allocate in the same
200 * cylinder group.
202 * In the latter case we colour the starting block by the callers PID to
203 * prevent it from clashing with concurrent allocations for a different inode
204 * in the same block group. The PID is used here so that functionally related
205 * files will be close-by on-disk.
207 * Caller must make sure that @ind is valid and will stay that way.
209 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
211 struct ext4_inode_info *ei = EXT4_I(inode);
212 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
213 __le32 *p;
215 /* Try to find previous block */
216 for (p = ind->p - 1; p >= start; p--) {
217 if (*p)
218 return le32_to_cpu(*p);
221 /* No such thing, so let's try location of indirect block */
222 if (ind->bh)
223 return ind->bh->b_blocknr;
226 * It is going to be referred to from the inode itself? OK, just put it
227 * into the same cylinder group then.
229 return ext4_inode_to_goal_block(inode);
233 * ext4_find_goal - find a preferred place for allocation.
234 * @inode: owner
235 * @block: block we want
236 * @partial: pointer to the last triple within a chain
238 * Normally this function find the preferred place for block allocation,
239 * returns it.
240 * Because this is only used for non-extent files, we limit the block nr
241 * to 32 bits.
243 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
244 Indirect *partial)
246 ext4_fsblk_t goal;
249 * XXX need to get goal block from mballoc's data structures
252 goal = ext4_find_near(inode, partial);
253 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
254 return goal;
258 * ext4_blks_to_allocate - Look up the block map and count the number
259 * of direct blocks need to be allocated for the given branch.
261 * @branch: chain of indirect blocks
262 * @k: number of blocks need for indirect blocks
263 * @blks: number of data blocks to be mapped.
264 * @blocks_to_boundary: the offset in the indirect block
266 * return the total number of blocks to be allocate, including the
267 * direct and indirect blocks.
269 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
270 int blocks_to_boundary)
272 unsigned int count = 0;
275 * Simple case, [t,d]Indirect block(s) has not allocated yet
276 * then it's clear blocks on that path have not allocated
278 if (k > 0) {
279 /* right now we don't handle cross boundary allocation */
280 if (blks < blocks_to_boundary + 1)
281 count += blks;
282 else
283 count += blocks_to_boundary + 1;
284 return count;
287 count++;
288 while (count < blks && count <= blocks_to_boundary &&
289 le32_to_cpu(*(branch[0].p + count)) == 0) {
290 count++;
292 return count;
296 * ext4_alloc_branch - allocate and set up a chain of blocks.
297 * @handle: handle for this transaction
298 * @inode: owner
299 * @indirect_blks: number of allocated indirect blocks
300 * @blks: number of allocated direct blocks
301 * @goal: preferred place for allocation
302 * @offsets: offsets (in the blocks) to store the pointers to next.
303 * @branch: place to store the chain in.
305 * This function allocates blocks, zeroes out all but the last one,
306 * links them into chain and (if we are synchronous) writes them to disk.
307 * In other words, it prepares a branch that can be spliced onto the
308 * inode. It stores the information about that chain in the branch[], in
309 * the same format as ext4_get_branch() would do. We are calling it after
310 * we had read the existing part of chain and partial points to the last
311 * triple of that (one with zero ->key). Upon the exit we have the same
312 * picture as after the successful ext4_get_block(), except that in one
313 * place chain is disconnected - *branch->p is still zero (we did not
314 * set the last link), but branch->key contains the number that should
315 * be placed into *branch->p to fill that gap.
317 * If allocation fails we free all blocks we've allocated (and forget
318 * their buffer_heads) and return the error value the from failed
319 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
320 * as described above and return 0.
322 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
323 ext4_lblk_t iblock, int indirect_blks,
324 int *blks, ext4_fsblk_t goal,
325 ext4_lblk_t *offsets, Indirect *branch)
327 struct ext4_allocation_request ar;
328 struct buffer_head * bh;
329 ext4_fsblk_t b, new_blocks[4];
330 __le32 *p;
331 int i, j, err, len = 1;
334 * Set up for the direct block allocation
336 memset(&ar, 0, sizeof(ar));
337 ar.inode = inode;
338 ar.len = *blks;
339 ar.logical = iblock;
340 if (S_ISREG(inode->i_mode))
341 ar.flags = EXT4_MB_HINT_DATA;
343 for (i = 0; i <= indirect_blks; i++) {
344 if (i == indirect_blks) {
345 ar.goal = goal;
346 new_blocks[i] = ext4_mb_new_blocks(handle, &ar, &err);
347 } else
348 goal = new_blocks[i] = ext4_new_meta_blocks(handle, inode,
349 goal, 0, NULL, &err);
350 if (err) {
351 i--;
352 goto failed;
354 branch[i].key = cpu_to_le32(new_blocks[i]);
355 if (i == 0)
356 continue;
358 bh = branch[i].bh = sb_getblk(inode->i_sb, new_blocks[i-1]);
359 if (unlikely(!bh)) {
360 err = -ENOMEM;
361 goto failed;
363 lock_buffer(bh);
364 BUFFER_TRACE(bh, "call get_create_access");
365 err = ext4_journal_get_create_access(handle, bh);
366 if (err) {
367 unlock_buffer(bh);
368 goto failed;
371 memset(bh->b_data, 0, bh->b_size);
372 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
373 b = new_blocks[i];
375 if (i == indirect_blks)
376 len = ar.len;
377 for (j = 0; j < len; j++)
378 *p++ = cpu_to_le32(b++);
380 BUFFER_TRACE(bh, "marking uptodate");
381 set_buffer_uptodate(bh);
382 unlock_buffer(bh);
384 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
385 err = ext4_handle_dirty_metadata(handle, inode, bh);
386 if (err)
387 goto failed;
389 *blks = ar.len;
390 return 0;
391 failed:
392 for (; i >= 0; i--) {
394 * We want to ext4_forget() only freshly allocated indirect
395 * blocks. Buffer for new_blocks[i-1] is at branch[i].bh and
396 * buffer at branch[0].bh is indirect block / inode already
397 * existing before ext4_alloc_branch() was called.
399 if (i > 0 && i != indirect_blks && branch[i].bh)
400 ext4_forget(handle, 1, inode, branch[i].bh,
401 branch[i].bh->b_blocknr);
402 ext4_free_blocks(handle, inode, NULL, new_blocks[i],
403 (i == indirect_blks) ? ar.len : 1, 0);
405 return err;
409 * ext4_splice_branch - splice the allocated branch onto inode.
410 * @handle: handle for this transaction
411 * @inode: owner
412 * @block: (logical) number of block we are adding
413 * @chain: chain of indirect blocks (with a missing link - see
414 * ext4_alloc_branch)
415 * @where: location of missing link
416 * @num: number of indirect blocks we are adding
417 * @blks: number of direct blocks we are adding
419 * This function fills the missing link and does all housekeeping needed in
420 * inode (->i_blocks, etc.). In case of success we end up with the full
421 * chain to new block and return 0.
423 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
424 ext4_lblk_t block, Indirect *where, int num,
425 int blks)
427 int i;
428 int err = 0;
429 ext4_fsblk_t current_block;
432 * If we're splicing into a [td]indirect block (as opposed to the
433 * inode) then we need to get write access to the [td]indirect block
434 * before the splice.
436 if (where->bh) {
437 BUFFER_TRACE(where->bh, "get_write_access");
438 err = ext4_journal_get_write_access(handle, where->bh);
439 if (err)
440 goto err_out;
442 /* That's it */
444 *where->p = where->key;
447 * Update the host buffer_head or inode to point to more just allocated
448 * direct blocks blocks
450 if (num == 0 && blks > 1) {
451 current_block = le32_to_cpu(where->key) + 1;
452 for (i = 1; i < blks; i++)
453 *(where->p + i) = cpu_to_le32(current_block++);
456 /* We are done with atomic stuff, now do the rest of housekeeping */
457 /* had we spliced it onto indirect block? */
458 if (where->bh) {
460 * If we spliced it onto an indirect block, we haven't
461 * altered the inode. Note however that if it is being spliced
462 * onto an indirect block at the very end of the file (the
463 * file is growing) then we *will* alter the inode to reflect
464 * the new i_size. But that is not done here - it is done in
465 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
467 jbd_debug(5, "splicing indirect only\n");
468 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
469 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
470 if (err)
471 goto err_out;
472 } else {
474 * OK, we spliced it into the inode itself on a direct block.
476 ext4_mark_inode_dirty(handle, inode);
477 jbd_debug(5, "splicing direct\n");
479 return err;
481 err_out:
482 for (i = 1; i <= num; i++) {
484 * branch[i].bh is newly allocated, so there is no
485 * need to revoke the block, which is why we don't
486 * need to set EXT4_FREE_BLOCKS_METADATA.
488 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
489 EXT4_FREE_BLOCKS_FORGET);
491 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
492 blks, 0);
494 return err;
498 * The ext4_ind_map_blocks() function handles non-extents inodes
499 * (i.e., using the traditional indirect/double-indirect i_blocks
500 * scheme) for ext4_map_blocks().
502 * Allocation strategy is simple: if we have to allocate something, we will
503 * have to go the whole way to leaf. So let's do it before attaching anything
504 * to tree, set linkage between the newborn blocks, write them if sync is
505 * required, recheck the path, free and repeat if check fails, otherwise
506 * set the last missing link (that will protect us from any truncate-generated
507 * removals - all blocks on the path are immune now) and possibly force the
508 * write on the parent block.
509 * That has a nice additional property: no special recovery from the failed
510 * allocations is needed - we simply release blocks and do not touch anything
511 * reachable from inode.
513 * `handle' can be NULL if create == 0.
515 * return > 0, # of blocks mapped or allocated.
516 * return = 0, if plain lookup failed.
517 * return < 0, error case.
519 * The ext4_ind_get_blocks() function should be called with
520 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
521 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
522 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
523 * blocks.
525 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
526 struct ext4_map_blocks *map,
527 int flags)
529 int err = -EIO;
530 ext4_lblk_t offsets[4];
531 Indirect chain[4];
532 Indirect *partial;
533 ext4_fsblk_t goal;
534 int indirect_blks;
535 int blocks_to_boundary = 0;
536 int depth;
537 int count = 0;
538 ext4_fsblk_t first_block = 0;
540 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
541 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
542 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
543 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
544 &blocks_to_boundary);
546 if (depth == 0)
547 goto out;
549 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
551 /* Simplest case - block found, no allocation needed */
552 if (!partial) {
553 first_block = le32_to_cpu(chain[depth - 1].key);
554 count++;
555 /*map more blocks*/
556 while (count < map->m_len && count <= blocks_to_boundary) {
557 ext4_fsblk_t blk;
559 blk = le32_to_cpu(*(chain[depth-1].p + count));
561 if (blk == first_block + count)
562 count++;
563 else
564 break;
566 goto got_it;
569 /* Next simple case - plain lookup or failed read of indirect block */
570 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
571 goto cleanup;
574 * Okay, we need to do block allocation.
576 if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
577 EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
578 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
579 "non-extent mapped inodes with bigalloc");
580 return -EUCLEAN;
583 goal = ext4_find_goal(inode, map->m_lblk, partial);
585 /* the number of blocks need to allocate for [d,t]indirect blocks */
586 indirect_blks = (chain + depth) - partial - 1;
589 * Next look up the indirect map to count the totoal number of
590 * direct blocks to allocate for this branch.
592 count = ext4_blks_to_allocate(partial, indirect_blks,
593 map->m_len, blocks_to_boundary);
595 * Block out ext4_truncate while we alter the tree
597 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
598 &count, goal,
599 offsets + (partial - chain), partial);
602 * The ext4_splice_branch call will free and forget any buffers
603 * on the new chain if there is a failure, but that risks using
604 * up transaction credits, especially for bitmaps where the
605 * credits cannot be returned. Can we handle this somehow? We
606 * may need to return -EAGAIN upwards in the worst case. --sct
608 if (!err)
609 err = ext4_splice_branch(handle, inode, map->m_lblk,
610 partial, indirect_blks, count);
611 if (err)
612 goto cleanup;
614 map->m_flags |= EXT4_MAP_NEW;
616 ext4_update_inode_fsync_trans(handle, inode, 1);
617 got_it:
618 map->m_flags |= EXT4_MAP_MAPPED;
619 map->m_pblk = le32_to_cpu(chain[depth-1].key);
620 map->m_len = count;
621 if (count > blocks_to_boundary)
622 map->m_flags |= EXT4_MAP_BOUNDARY;
623 err = count;
624 /* Clean up and exit */
625 partial = chain + depth - 1; /* the whole chain */
626 cleanup:
627 while (partial > chain) {
628 BUFFER_TRACE(partial->bh, "call brelse");
629 brelse(partial->bh);
630 partial--;
632 out:
633 trace_ext4_ind_map_blocks_exit(inode, map, err);
634 return err;
638 * O_DIRECT for ext3 (or indirect map) based files
640 * If the O_DIRECT write will extend the file then add this inode to the
641 * orphan list. So recovery will truncate it back to the original size
642 * if the machine crashes during the write.
644 * If the O_DIRECT write is intantiating holes inside i_size and the machine
645 * crashes then stale disk data _may_ be exposed inside the file. But current
646 * VFS code falls back into buffered path in that case so we are safe.
648 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
649 const struct iovec *iov, loff_t offset,
650 unsigned long nr_segs)
652 struct file *file = iocb->ki_filp;
653 struct inode *inode = file->f_mapping->host;
654 struct ext4_inode_info *ei = EXT4_I(inode);
655 handle_t *handle;
656 ssize_t ret;
657 int orphan = 0;
658 size_t count = iov_length(iov, nr_segs);
659 int retries = 0;
661 if (rw == WRITE) {
662 loff_t final_size = offset + count;
664 if (final_size > inode->i_size) {
665 /* Credits for sb + inode write */
666 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
667 if (IS_ERR(handle)) {
668 ret = PTR_ERR(handle);
669 goto out;
671 ret = ext4_orphan_add(handle, inode);
672 if (ret) {
673 ext4_journal_stop(handle);
674 goto out;
676 orphan = 1;
677 ei->i_disksize = inode->i_size;
678 ext4_journal_stop(handle);
682 retry:
683 if (rw == READ && ext4_should_dioread_nolock(inode)) {
684 if (unlikely(atomic_read(&EXT4_I(inode)->i_unwritten))) {
685 mutex_lock(&inode->i_mutex);
686 ext4_flush_unwritten_io(inode);
687 mutex_unlock(&inode->i_mutex);
690 * Nolock dioread optimization may be dynamically disabled
691 * via ext4_inode_block_unlocked_dio(). Check inode's state
692 * while holding extra i_dio_count ref.
694 atomic_inc(&inode->i_dio_count);
695 smp_mb();
696 if (unlikely(ext4_test_inode_state(inode,
697 EXT4_STATE_DIOREAD_LOCK))) {
698 inode_dio_done(inode);
699 goto locked;
701 ret = __blockdev_direct_IO(rw, iocb, inode,
702 inode->i_sb->s_bdev, iov,
703 offset, nr_segs,
704 ext4_get_block, NULL, NULL, 0);
705 inode_dio_done(inode);
706 } else {
707 locked:
708 ret = blockdev_direct_IO(rw, iocb, inode, iov,
709 offset, nr_segs, ext4_get_block);
711 if (unlikely((rw & WRITE) && ret < 0)) {
712 loff_t isize = i_size_read(inode);
713 loff_t end = offset + iov_length(iov, nr_segs);
715 if (end > isize)
716 ext4_truncate_failed_write(inode);
719 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
720 goto retry;
722 if (orphan) {
723 int err;
725 /* Credits for sb + inode write */
726 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
727 if (IS_ERR(handle)) {
728 /* This is really bad luck. We've written the data
729 * but cannot extend i_size. Bail out and pretend
730 * the write failed... */
731 ret = PTR_ERR(handle);
732 if (inode->i_nlink)
733 ext4_orphan_del(NULL, inode);
735 goto out;
737 if (inode->i_nlink)
738 ext4_orphan_del(handle, inode);
739 if (ret > 0) {
740 loff_t end = offset + ret;
741 if (end > inode->i_size) {
742 ei->i_disksize = end;
743 i_size_write(inode, end);
745 * We're going to return a positive `ret'
746 * here due to non-zero-length I/O, so there's
747 * no way of reporting error returns from
748 * ext4_mark_inode_dirty() to userspace. So
749 * ignore it.
751 ext4_mark_inode_dirty(handle, inode);
754 err = ext4_journal_stop(handle);
755 if (ret == 0)
756 ret = err;
758 out:
759 return ret;
763 * Calculate the number of metadata blocks need to reserve
764 * to allocate a new block at @lblocks for non extent file based file
766 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
768 struct ext4_inode_info *ei = EXT4_I(inode);
769 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
770 int blk_bits;
772 if (lblock < EXT4_NDIR_BLOCKS)
773 return 0;
775 lblock -= EXT4_NDIR_BLOCKS;
777 if (ei->i_da_metadata_calc_len &&
778 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
779 ei->i_da_metadata_calc_len++;
780 return 0;
782 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
783 ei->i_da_metadata_calc_len = 1;
784 blk_bits = order_base_2(lblock);
785 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
788 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk)
790 int indirects;
792 /* if nrblocks are contiguous */
793 if (chunk) {
795 * With N contiguous data blocks, we need at most
796 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
797 * 2 dindirect blocks, and 1 tindirect block
799 return DIV_ROUND_UP(nrblocks,
800 EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
803 * if nrblocks are not contiguous, worse case, each block touch
804 * a indirect block, and each indirect block touch a double indirect
805 * block, plus a triple indirect block
807 indirects = nrblocks * 2 + 1;
808 return indirects;
812 * Truncate transactions can be complex and absolutely huge. So we need to
813 * be able to restart the transaction at a conventient checkpoint to make
814 * sure we don't overflow the journal.
816 * Try to extend this transaction for the purposes of truncation. If
817 * extend fails, we need to propagate the failure up and restart the
818 * transaction in the top-level truncate loop. --sct
820 * Returns 0 if we managed to create more room. If we can't create more
821 * room, and the transaction must be restarted we return 1.
823 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
825 if (!ext4_handle_valid(handle))
826 return 0;
827 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
828 return 0;
829 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
830 return 0;
831 return 1;
835 * Probably it should be a library function... search for first non-zero word
836 * or memcmp with zero_page, whatever is better for particular architecture.
837 * Linus?
839 static inline int all_zeroes(__le32 *p, __le32 *q)
841 while (p < q)
842 if (*p++)
843 return 0;
844 return 1;
848 * ext4_find_shared - find the indirect blocks for partial truncation.
849 * @inode: inode in question
850 * @depth: depth of the affected branch
851 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
852 * @chain: place to store the pointers to partial indirect blocks
853 * @top: place to the (detached) top of branch
855 * This is a helper function used by ext4_truncate().
857 * When we do truncate() we may have to clean the ends of several
858 * indirect blocks but leave the blocks themselves alive. Block is
859 * partially truncated if some data below the new i_size is referred
860 * from it (and it is on the path to the first completely truncated
861 * data block, indeed). We have to free the top of that path along
862 * with everything to the right of the path. Since no allocation
863 * past the truncation point is possible until ext4_truncate()
864 * finishes, we may safely do the latter, but top of branch may
865 * require special attention - pageout below the truncation point
866 * might try to populate it.
868 * We atomically detach the top of branch from the tree, store the
869 * block number of its root in *@top, pointers to buffer_heads of
870 * partially truncated blocks - in @chain[].bh and pointers to
871 * their last elements that should not be removed - in
872 * @chain[].p. Return value is the pointer to last filled element
873 * of @chain.
875 * The work left to caller to do the actual freeing of subtrees:
876 * a) free the subtree starting from *@top
877 * b) free the subtrees whose roots are stored in
878 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
879 * c) free the subtrees growing from the inode past the @chain[0].
880 * (no partially truncated stuff there). */
882 static Indirect *ext4_find_shared(struct inode *inode, int depth,
883 ext4_lblk_t offsets[4], Indirect chain[4],
884 __le32 *top)
886 Indirect *partial, *p;
887 int k, err;
889 *top = 0;
890 /* Make k index the deepest non-null offset + 1 */
891 for (k = depth; k > 1 && !offsets[k-1]; k--)
893 partial = ext4_get_branch(inode, k, offsets, chain, &err);
894 /* Writer: pointers */
895 if (!partial)
896 partial = chain + k-1;
898 * If the branch acquired continuation since we've looked at it -
899 * fine, it should all survive and (new) top doesn't belong to us.
901 if (!partial->key && *partial->p)
902 /* Writer: end */
903 goto no_top;
904 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
907 * OK, we've found the last block that must survive. The rest of our
908 * branch should be detached before unlocking. However, if that rest
909 * of branch is all ours and does not grow immediately from the inode
910 * it's easier to cheat and just decrement partial->p.
912 if (p == chain + k - 1 && p > chain) {
913 p->p--;
914 } else {
915 *top = *p->p;
916 /* Nope, don't do this in ext4. Must leave the tree intact */
917 #if 0
918 *p->p = 0;
919 #endif
921 /* Writer: end */
923 while (partial > p) {
924 brelse(partial->bh);
925 partial--;
927 no_top:
928 return partial;
932 * Zero a number of block pointers in either an inode or an indirect block.
933 * If we restart the transaction we must again get write access to the
934 * indirect block for further modification.
936 * We release `count' blocks on disk, but (last - first) may be greater
937 * than `count' because there can be holes in there.
939 * Return 0 on success, 1 on invalid block range
940 * and < 0 on fatal error.
942 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
943 struct buffer_head *bh,
944 ext4_fsblk_t block_to_free,
945 unsigned long count, __le32 *first,
946 __le32 *last)
948 __le32 *p;
949 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
950 int err;
952 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
953 flags |= EXT4_FREE_BLOCKS_METADATA;
955 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
956 count)) {
957 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
958 "blocks %llu len %lu",
959 (unsigned long long) block_to_free, count);
960 return 1;
963 if (try_to_extend_transaction(handle, inode)) {
964 if (bh) {
965 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
966 err = ext4_handle_dirty_metadata(handle, inode, bh);
967 if (unlikely(err))
968 goto out_err;
970 err = ext4_mark_inode_dirty(handle, inode);
971 if (unlikely(err))
972 goto out_err;
973 err = ext4_truncate_restart_trans(handle, inode,
974 ext4_blocks_for_truncate(inode));
975 if (unlikely(err))
976 goto out_err;
977 if (bh) {
978 BUFFER_TRACE(bh, "retaking write access");
979 err = ext4_journal_get_write_access(handle, bh);
980 if (unlikely(err))
981 goto out_err;
985 for (p = first; p < last; p++)
986 *p = 0;
988 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
989 return 0;
990 out_err:
991 ext4_std_error(inode->i_sb, err);
992 return err;
996 * ext4_free_data - free a list of data blocks
997 * @handle: handle for this transaction
998 * @inode: inode we are dealing with
999 * @this_bh: indirect buffer_head which contains *@first and *@last
1000 * @first: array of block numbers
1001 * @last: points immediately past the end of array
1003 * We are freeing all blocks referred from that array (numbers are stored as
1004 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1006 * We accumulate contiguous runs of blocks to free. Conveniently, if these
1007 * blocks are contiguous then releasing them at one time will only affect one
1008 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1009 * actually use a lot of journal space.
1011 * @this_bh will be %NULL if @first and @last point into the inode's direct
1012 * block pointers.
1014 static void ext4_free_data(handle_t *handle, struct inode *inode,
1015 struct buffer_head *this_bh,
1016 __le32 *first, __le32 *last)
1018 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
1019 unsigned long count = 0; /* Number of blocks in the run */
1020 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
1021 corresponding to
1022 block_to_free */
1023 ext4_fsblk_t nr; /* Current block # */
1024 __le32 *p; /* Pointer into inode/ind
1025 for current block */
1026 int err = 0;
1028 if (this_bh) { /* For indirect block */
1029 BUFFER_TRACE(this_bh, "get_write_access");
1030 err = ext4_journal_get_write_access(handle, this_bh);
1031 /* Important: if we can't update the indirect pointers
1032 * to the blocks, we can't free them. */
1033 if (err)
1034 return;
1037 for (p = first; p < last; p++) {
1038 nr = le32_to_cpu(*p);
1039 if (nr) {
1040 /* accumulate blocks to free if they're contiguous */
1041 if (count == 0) {
1042 block_to_free = nr;
1043 block_to_free_p = p;
1044 count = 1;
1045 } else if (nr == block_to_free + count) {
1046 count++;
1047 } else {
1048 err = ext4_clear_blocks(handle, inode, this_bh,
1049 block_to_free, count,
1050 block_to_free_p, p);
1051 if (err)
1052 break;
1053 block_to_free = nr;
1054 block_to_free_p = p;
1055 count = 1;
1060 if (!err && count > 0)
1061 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1062 count, block_to_free_p, p);
1063 if (err < 0)
1064 /* fatal error */
1065 return;
1067 if (this_bh) {
1068 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1071 * The buffer head should have an attached journal head at this
1072 * point. However, if the data is corrupted and an indirect
1073 * block pointed to itself, it would have been detached when
1074 * the block was cleared. Check for this instead of OOPSing.
1076 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1077 ext4_handle_dirty_metadata(handle, inode, this_bh);
1078 else
1079 EXT4_ERROR_INODE(inode,
1080 "circular indirect block detected at "
1081 "block %llu",
1082 (unsigned long long) this_bh->b_blocknr);
1087 * ext4_free_branches - free an array of branches
1088 * @handle: JBD handle for this transaction
1089 * @inode: inode we are dealing with
1090 * @parent_bh: the buffer_head which contains *@first and *@last
1091 * @first: array of block numbers
1092 * @last: pointer immediately past the end of array
1093 * @depth: depth of the branches to free
1095 * We are freeing all blocks referred from these branches (numbers are
1096 * stored as little-endian 32-bit) and updating @inode->i_blocks
1097 * appropriately.
1099 static void ext4_free_branches(handle_t *handle, struct inode *inode,
1100 struct buffer_head *parent_bh,
1101 __le32 *first, __le32 *last, int depth)
1103 ext4_fsblk_t nr;
1104 __le32 *p;
1106 if (ext4_handle_is_aborted(handle))
1107 return;
1109 if (depth--) {
1110 struct buffer_head *bh;
1111 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1112 p = last;
1113 while (--p >= first) {
1114 nr = le32_to_cpu(*p);
1115 if (!nr)
1116 continue; /* A hole */
1118 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1119 nr, 1)) {
1120 EXT4_ERROR_INODE(inode,
1121 "invalid indirect mapped "
1122 "block %lu (level %d)",
1123 (unsigned long) nr, depth);
1124 break;
1127 /* Go read the buffer for the next level down */
1128 bh = sb_bread(inode->i_sb, nr);
1131 * A read failure? Report error and clear slot
1132 * (should be rare).
1134 if (!bh) {
1135 EXT4_ERROR_INODE_BLOCK(inode, nr,
1136 "Read failure");
1137 continue;
1140 /* This zaps the entire block. Bottom up. */
1141 BUFFER_TRACE(bh, "free child branches");
1142 ext4_free_branches(handle, inode, bh,
1143 (__le32 *) bh->b_data,
1144 (__le32 *) bh->b_data + addr_per_block,
1145 depth);
1146 brelse(bh);
1149 * Everything below this this pointer has been
1150 * released. Now let this top-of-subtree go.
1152 * We want the freeing of this indirect block to be
1153 * atomic in the journal with the updating of the
1154 * bitmap block which owns it. So make some room in
1155 * the journal.
1157 * We zero the parent pointer *after* freeing its
1158 * pointee in the bitmaps, so if extend_transaction()
1159 * for some reason fails to put the bitmap changes and
1160 * the release into the same transaction, recovery
1161 * will merely complain about releasing a free block,
1162 * rather than leaking blocks.
1164 if (ext4_handle_is_aborted(handle))
1165 return;
1166 if (try_to_extend_transaction(handle, inode)) {
1167 ext4_mark_inode_dirty(handle, inode);
1168 ext4_truncate_restart_trans(handle, inode,
1169 ext4_blocks_for_truncate(inode));
1173 * The forget flag here is critical because if
1174 * we are journaling (and not doing data
1175 * journaling), we have to make sure a revoke
1176 * record is written to prevent the journal
1177 * replay from overwriting the (former)
1178 * indirect block if it gets reallocated as a
1179 * data block. This must happen in the same
1180 * transaction where the data blocks are
1181 * actually freed.
1183 ext4_free_blocks(handle, inode, NULL, nr, 1,
1184 EXT4_FREE_BLOCKS_METADATA|
1185 EXT4_FREE_BLOCKS_FORGET);
1187 if (parent_bh) {
1189 * The block which we have just freed is
1190 * pointed to by an indirect block: journal it
1192 BUFFER_TRACE(parent_bh, "get_write_access");
1193 if (!ext4_journal_get_write_access(handle,
1194 parent_bh)){
1195 *p = 0;
1196 BUFFER_TRACE(parent_bh,
1197 "call ext4_handle_dirty_metadata");
1198 ext4_handle_dirty_metadata(handle,
1199 inode,
1200 parent_bh);
1204 } else {
1205 /* We have reached the bottom of the tree. */
1206 BUFFER_TRACE(parent_bh, "free data blocks");
1207 ext4_free_data(handle, inode, parent_bh, first, last);
1211 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1213 struct ext4_inode_info *ei = EXT4_I(inode);
1214 __le32 *i_data = ei->i_data;
1215 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1216 ext4_lblk_t offsets[4];
1217 Indirect chain[4];
1218 Indirect *partial;
1219 __le32 nr = 0;
1220 int n = 0;
1221 ext4_lblk_t last_block, max_block;
1222 unsigned blocksize = inode->i_sb->s_blocksize;
1224 last_block = (inode->i_size + blocksize-1)
1225 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1226 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1227 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1229 if (last_block != max_block) {
1230 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1231 if (n == 0)
1232 return;
1235 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1238 * The orphan list entry will now protect us from any crash which
1239 * occurs before the truncate completes, so it is now safe to propagate
1240 * the new, shorter inode size (held for now in i_size) into the
1241 * on-disk inode. We do this via i_disksize, which is the value which
1242 * ext4 *really* writes onto the disk inode.
1244 ei->i_disksize = inode->i_size;
1246 if (last_block == max_block) {
1248 * It is unnecessary to free any data blocks if last_block is
1249 * equal to the indirect block limit.
1251 return;
1252 } else if (n == 1) { /* direct blocks */
1253 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1254 i_data + EXT4_NDIR_BLOCKS);
1255 goto do_indirects;
1258 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1259 /* Kill the top of shared branch (not detached) */
1260 if (nr) {
1261 if (partial == chain) {
1262 /* Shared branch grows from the inode */
1263 ext4_free_branches(handle, inode, NULL,
1264 &nr, &nr+1, (chain+n-1) - partial);
1265 *partial->p = 0;
1267 * We mark the inode dirty prior to restart,
1268 * and prior to stop. No need for it here.
1270 } else {
1271 /* Shared branch grows from an indirect block */
1272 BUFFER_TRACE(partial->bh, "get_write_access");
1273 ext4_free_branches(handle, inode, partial->bh,
1274 partial->p,
1275 partial->p+1, (chain+n-1) - partial);
1278 /* Clear the ends of indirect blocks on the shared branch */
1279 while (partial > chain) {
1280 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1281 (__le32*)partial->bh->b_data+addr_per_block,
1282 (chain+n-1) - partial);
1283 BUFFER_TRACE(partial->bh, "call brelse");
1284 brelse(partial->bh);
1285 partial--;
1287 do_indirects:
1288 /* Kill the remaining (whole) subtrees */
1289 switch (offsets[0]) {
1290 default:
1291 nr = i_data[EXT4_IND_BLOCK];
1292 if (nr) {
1293 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1294 i_data[EXT4_IND_BLOCK] = 0;
1296 case EXT4_IND_BLOCK:
1297 nr = i_data[EXT4_DIND_BLOCK];
1298 if (nr) {
1299 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1300 i_data[EXT4_DIND_BLOCK] = 0;
1302 case EXT4_DIND_BLOCK:
1303 nr = i_data[EXT4_TIND_BLOCK];
1304 if (nr) {
1305 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1306 i_data[EXT4_TIND_BLOCK] = 0;
1308 case EXT4_TIND_BLOCK:
1313 static int free_hole_blocks(handle_t *handle, struct inode *inode,
1314 struct buffer_head *parent_bh, __le32 *i_data,
1315 int level, ext4_lblk_t first,
1316 ext4_lblk_t count, int max)
1318 struct buffer_head *bh = NULL;
1319 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1320 int ret = 0;
1321 int i, inc;
1322 ext4_lblk_t offset;
1323 __le32 blk;
1325 inc = 1 << ((EXT4_BLOCK_SIZE_BITS(inode->i_sb) - 2) * level);
1326 for (i = 0, offset = 0; i < max; i++, i_data++, offset += inc) {
1327 if (offset >= count + first)
1328 break;
1329 if (*i_data == 0 || (offset + inc) <= first)
1330 continue;
1331 blk = *i_data;
1332 if (level > 0) {
1333 ext4_lblk_t first2;
1334 ext4_lblk_t count2;
1336 bh = sb_bread(inode->i_sb, le32_to_cpu(blk));
1337 if (!bh) {
1338 EXT4_ERROR_INODE_BLOCK(inode, le32_to_cpu(blk),
1339 "Read failure");
1340 return -EIO;
1342 if (first > offset) {
1343 first2 = first - offset;
1344 count2 = count;
1345 } else {
1346 first2 = 0;
1347 count2 = count - (offset - first);
1349 ret = free_hole_blocks(handle, inode, bh,
1350 (__le32 *)bh->b_data, level - 1,
1351 first2, count2,
1352 inode->i_sb->s_blocksize >> 2);
1353 if (ret) {
1354 brelse(bh);
1355 goto err;
1358 if (level == 0 ||
1359 (bh && all_zeroes((__le32 *)bh->b_data,
1360 (__le32 *)bh->b_data + addr_per_block))) {
1361 ext4_free_data(handle, inode, parent_bh, &blk, &blk+1);
1362 *i_data = 0;
1364 brelse(bh);
1365 bh = NULL;
1368 err:
1369 return ret;
1372 int ext4_free_hole_blocks(handle_t *handle, struct inode *inode,
1373 ext4_lblk_t first, ext4_lblk_t stop)
1375 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1376 int level, ret = 0;
1377 int num = EXT4_NDIR_BLOCKS;
1378 ext4_lblk_t count, max = EXT4_NDIR_BLOCKS;
1379 __le32 *i_data = EXT4_I(inode)->i_data;
1381 count = stop - first;
1382 for (level = 0; level < 4; level++, max *= addr_per_block) {
1383 if (first < max) {
1384 ret = free_hole_blocks(handle, inode, NULL, i_data,
1385 level, first, count, num);
1386 if (ret)
1387 goto err;
1388 if (count > max - first)
1389 count -= max - first;
1390 else
1391 break;
1392 first = 0;
1393 } else {
1394 first -= max;
1396 i_data += num;
1397 if (level == 0) {
1398 num = 1;
1399 max = 1;
1403 err:
1404 return ret;