2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
43 #include "ext4_jbd2.h"
48 #include <trace/events/ext4.h>
50 #define MPAGE_DA_EXTENT_TAIL 0x01
52 static __u32
ext4_inode_csum(struct inode
*inode
, struct ext4_inode
*raw
,
53 struct ext4_inode_info
*ei
)
55 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
60 csum_lo
= le16_to_cpu(raw
->i_checksum_lo
);
61 raw
->i_checksum_lo
= 0;
62 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
63 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
)) {
64 csum_hi
= le16_to_cpu(raw
->i_checksum_hi
);
65 raw
->i_checksum_hi
= 0;
68 csum
= ext4_chksum(sbi
, ei
->i_csum_seed
, (__u8
*)raw
,
69 EXT4_INODE_SIZE(inode
->i_sb
));
71 raw
->i_checksum_lo
= cpu_to_le16(csum_lo
);
72 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
73 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
74 raw
->i_checksum_hi
= cpu_to_le16(csum_hi
);
79 static int ext4_inode_csum_verify(struct inode
*inode
, struct ext4_inode
*raw
,
80 struct ext4_inode_info
*ei
)
82 __u32 provided
, calculated
;
84 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
85 cpu_to_le32(EXT4_OS_LINUX
) ||
86 !EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
87 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
))
90 provided
= le16_to_cpu(raw
->i_checksum_lo
);
91 calculated
= ext4_inode_csum(inode
, raw
, ei
);
92 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
93 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
94 provided
|= ((__u32
)le16_to_cpu(raw
->i_checksum_hi
)) << 16;
98 return provided
== calculated
;
101 static void ext4_inode_csum_set(struct inode
*inode
, struct ext4_inode
*raw
,
102 struct ext4_inode_info
*ei
)
106 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
107 cpu_to_le32(EXT4_OS_LINUX
) ||
108 !EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
109 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
))
112 csum
= ext4_inode_csum(inode
, raw
, ei
);
113 raw
->i_checksum_lo
= cpu_to_le16(csum
& 0xFFFF);
114 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
115 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
116 raw
->i_checksum_hi
= cpu_to_le16(csum
>> 16);
119 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
122 trace_ext4_begin_ordered_truncate(inode
, new_size
);
124 * If jinode is zero, then we never opened the file for
125 * writing, so there's no need to call
126 * jbd2_journal_begin_ordered_truncate() since there's no
127 * outstanding writes we need to flush.
129 if (!EXT4_I(inode
)->jinode
)
131 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
132 EXT4_I(inode
)->jinode
,
136 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
137 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
138 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
139 static int ext4_discard_partial_page_buffers_no_lock(handle_t
*handle
,
140 struct inode
*inode
, struct page
*page
, loff_t from
,
141 loff_t length
, int flags
);
144 * Test whether an inode is a fast symlink.
146 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
148 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
149 (inode
->i_sb
->s_blocksize
>> 9) : 0;
151 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
155 * Restart the transaction associated with *handle. This does a commit,
156 * so before we call here everything must be consistently dirtied against
159 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
165 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
166 * moment, get_block can be called only for blocks inside i_size since
167 * page cache has been already dropped and writes are blocked by
168 * i_mutex. So we can safely drop the i_data_sem here.
170 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
171 jbd_debug(2, "restarting handle %p\n", handle
);
172 up_write(&EXT4_I(inode
)->i_data_sem
);
173 ret
= ext4_journal_restart(handle
, nblocks
);
174 down_write(&EXT4_I(inode
)->i_data_sem
);
175 ext4_discard_preallocations(inode
);
181 * Called at the last iput() if i_nlink is zero.
183 void ext4_evict_inode(struct inode
*inode
)
188 trace_ext4_evict_inode(inode
);
190 if (inode
->i_nlink
) {
192 * When journalling data dirty buffers are tracked only in the
193 * journal. So although mm thinks everything is clean and
194 * ready for reaping the inode might still have some pages to
195 * write in the running transaction or waiting to be
196 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 * (via truncate_inode_pages()) to discard these buffers can
198 * cause data loss. Also even if we did not discard these
199 * buffers, we would have no way to find them after the inode
200 * is reaped and thus user could see stale data if he tries to
201 * read them before the transaction is checkpointed. So be
202 * careful and force everything to disk here... We use
203 * ei->i_datasync_tid to store the newest transaction
204 * containing inode's data.
206 * Note that directories do not have this problem because they
207 * don't use page cache.
209 if (ext4_should_journal_data(inode
) &&
210 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
)) &&
211 inode
->i_ino
!= EXT4_JOURNAL_INO
) {
212 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
213 tid_t commit_tid
= EXT4_I(inode
)->i_datasync_tid
;
215 jbd2_complete_transaction(journal
, commit_tid
);
216 filemap_write_and_wait(&inode
->i_data
);
218 truncate_inode_pages(&inode
->i_data
, 0);
219 ext4_ioend_shutdown(inode
);
223 if (!is_bad_inode(inode
))
224 dquot_initialize(inode
);
226 if (ext4_should_order_data(inode
))
227 ext4_begin_ordered_truncate(inode
, 0);
228 truncate_inode_pages(&inode
->i_data
, 0);
229 ext4_ioend_shutdown(inode
);
231 if (is_bad_inode(inode
))
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
238 sb_start_intwrite(inode
->i_sb
);
239 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
,
240 ext4_blocks_for_truncate(inode
)+3);
241 if (IS_ERR(handle
)) {
242 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
248 ext4_orphan_del(NULL
, inode
);
249 sb_end_intwrite(inode
->i_sb
);
254 ext4_handle_sync(handle
);
256 err
= ext4_mark_inode_dirty(handle
, inode
);
258 ext4_warning(inode
->i_sb
,
259 "couldn't mark inode dirty (err %d)", err
);
263 ext4_truncate(inode
);
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
271 if (!ext4_handle_has_enough_credits(handle
, 3)) {
272 err
= ext4_journal_extend(handle
, 3);
274 err
= ext4_journal_restart(handle
, 3);
276 ext4_warning(inode
->i_sb
,
277 "couldn't extend journal (err %d)", err
);
279 ext4_journal_stop(handle
);
280 ext4_orphan_del(NULL
, inode
);
281 sb_end_intwrite(inode
->i_sb
);
287 * Kill off the orphan record which ext4_truncate created.
288 * AKPM: I think this can be inside the above `if'.
289 * Note that ext4_orphan_del() has to be able to cope with the
290 * deletion of a non-existent orphan - this is because we don't
291 * know if ext4_truncate() actually created an orphan record.
292 * (Well, we could do this if we need to, but heck - it works)
294 ext4_orphan_del(handle
, inode
);
295 EXT4_I(inode
)->i_dtime
= get_seconds();
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
304 if (ext4_mark_inode_dirty(handle
, inode
))
305 /* If that failed, just do the required in-core inode clear. */
306 ext4_clear_inode(inode
);
308 ext4_free_inode(handle
, inode
);
309 ext4_journal_stop(handle
);
310 sb_end_intwrite(inode
->i_sb
);
313 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
317 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
319 return &EXT4_I(inode
)->i_reserved_quota
;
324 * Calculate the number of metadata blocks need to reserve
325 * to allocate a block located at @lblock
327 static int ext4_calc_metadata_amount(struct inode
*inode
, ext4_lblk_t lblock
)
329 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
330 return ext4_ext_calc_metadata_amount(inode
, lblock
);
332 return ext4_ind_calc_metadata_amount(inode
, lblock
);
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
339 void ext4_da_update_reserve_space(struct inode
*inode
,
340 int used
, int quota_claim
)
342 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
343 struct ext4_inode_info
*ei
= EXT4_I(inode
);
345 spin_lock(&ei
->i_block_reservation_lock
);
346 trace_ext4_da_update_reserve_space(inode
, used
, quota_claim
);
347 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
348 ext4_warning(inode
->i_sb
, "%s: ino %lu, used %d "
349 "with only %d reserved data blocks",
350 __func__
, inode
->i_ino
, used
,
351 ei
->i_reserved_data_blocks
);
353 used
= ei
->i_reserved_data_blocks
;
356 if (unlikely(ei
->i_allocated_meta_blocks
> ei
->i_reserved_meta_blocks
)) {
357 ext4_warning(inode
->i_sb
, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode
->i_ino
, ei
->i_allocated_meta_blocks
,
361 ei
->i_reserved_meta_blocks
, used
,
362 ei
->i_reserved_data_blocks
);
364 ei
->i_allocated_meta_blocks
= ei
->i_reserved_meta_blocks
;
367 /* Update per-inode reservations */
368 ei
->i_reserved_data_blocks
-= used
;
369 ei
->i_reserved_meta_blocks
-= ei
->i_allocated_meta_blocks
;
370 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
371 used
+ ei
->i_allocated_meta_blocks
);
372 ei
->i_allocated_meta_blocks
= 0;
374 if (ei
->i_reserved_data_blocks
== 0) {
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
380 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
381 ei
->i_reserved_meta_blocks
);
382 ei
->i_reserved_meta_blocks
= 0;
383 ei
->i_da_metadata_calc_len
= 0;
385 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
387 /* Update quota subsystem for data blocks */
389 dquot_claim_block(inode
, EXT4_C2B(sbi
, used
));
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
394 * not re-claim the quota for fallocated blocks.
396 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, used
));
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
404 if ((ei
->i_reserved_data_blocks
== 0) &&
405 (atomic_read(&inode
->i_writecount
) == 0))
406 ext4_discard_preallocations(inode
);
409 static int __check_block_validity(struct inode
*inode
, const char *func
,
411 struct ext4_map_blocks
*map
)
413 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
415 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map
->m_lblk
,
424 #define check_block_validity(inode, map) \
425 __check_block_validity((inode), __func__, __LINE__, (map))
428 * Return the number of contiguous dirty pages in a given inode
429 * starting at page frame idx.
431 static pgoff_t
ext4_num_dirty_pages(struct inode
*inode
, pgoff_t idx
,
432 unsigned int max_pages
)
434 struct address_space
*mapping
= inode
->i_mapping
;
438 int i
, nr_pages
, done
= 0;
442 pagevec_init(&pvec
, 0);
445 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
447 (pgoff_t
)PAGEVEC_SIZE
);
450 for (i
= 0; i
< nr_pages
; i
++) {
451 struct page
*page
= pvec
.pages
[i
];
452 struct buffer_head
*bh
, *head
;
455 if (unlikely(page
->mapping
!= mapping
) ||
457 PageWriteback(page
) ||
458 page
->index
!= idx
) {
463 if (page_has_buffers(page
)) {
464 bh
= head
= page_buffers(page
);
466 if (!buffer_delay(bh
) &&
467 !buffer_unwritten(bh
))
469 bh
= bh
->b_this_page
;
470 } while (!done
&& (bh
!= head
));
477 if (num
>= max_pages
) {
482 pagevec_release(&pvec
);
487 #ifdef ES_AGGRESSIVE_TEST
488 static void ext4_map_blocks_es_recheck(handle_t
*handle
,
490 struct ext4_map_blocks
*es_map
,
491 struct ext4_map_blocks
*map
,
498 * There is a race window that the result is not the same.
499 * e.g. xfstests #223 when dioread_nolock enables. The reason
500 * is that we lookup a block mapping in extent status tree with
501 * out taking i_data_sem. So at the time the unwritten extent
502 * could be converted.
504 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
505 down_read((&EXT4_I(inode
)->i_data_sem
));
506 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
507 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
508 EXT4_GET_BLOCKS_KEEP_SIZE
);
510 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
511 EXT4_GET_BLOCKS_KEEP_SIZE
);
513 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
514 up_read((&EXT4_I(inode
)->i_data_sem
));
516 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
517 * because it shouldn't be marked in es_map->m_flags.
519 map
->m_flags
&= ~(EXT4_MAP_FROM_CLUSTER
| EXT4_MAP_BOUNDARY
);
522 * We don't check m_len because extent will be collpased in status
523 * tree. So the m_len might not equal.
525 if (es_map
->m_lblk
!= map
->m_lblk
||
526 es_map
->m_flags
!= map
->m_flags
||
527 es_map
->m_pblk
!= map
->m_pblk
) {
528 printk("ES cache assertation failed for inode: %lu "
529 "es_cached ex [%d/%d/%llu/%x] != "
530 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
531 inode
->i_ino
, es_map
->m_lblk
, es_map
->m_len
,
532 es_map
->m_pblk
, es_map
->m_flags
, map
->m_lblk
,
533 map
->m_len
, map
->m_pblk
, map
->m_flags
,
537 #endif /* ES_AGGRESSIVE_TEST */
540 * The ext4_map_blocks() function tries to look up the requested blocks,
541 * and returns if the blocks are already mapped.
543 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
544 * and store the allocated blocks in the result buffer head and mark it
547 * If file type is extents based, it will call ext4_ext_map_blocks(),
548 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
551 * On success, it returns the number of blocks being mapped or allocate.
552 * if create==0 and the blocks are pre-allocated and uninitialized block,
553 * the result buffer head is unmapped. If the create ==1, it will make sure
554 * the buffer head is mapped.
556 * It returns 0 if plain look up failed (blocks have not been allocated), in
557 * that case, buffer head is unmapped
559 * It returns the error in case of allocation failure.
561 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
562 struct ext4_map_blocks
*map
, int flags
)
564 struct extent_status es
;
566 #ifdef ES_AGGRESSIVE_TEST
567 struct ext4_map_blocks orig_map
;
569 memcpy(&orig_map
, map
, sizeof(*map
));
573 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
574 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
575 (unsigned long) map
->m_lblk
);
577 /* Lookup extent status tree firstly */
578 if (ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
579 if (ext4_es_is_written(&es
) || ext4_es_is_unwritten(&es
)) {
580 map
->m_pblk
= ext4_es_pblock(&es
) +
581 map
->m_lblk
- es
.es_lblk
;
582 map
->m_flags
|= ext4_es_is_written(&es
) ?
583 EXT4_MAP_MAPPED
: EXT4_MAP_UNWRITTEN
;
584 retval
= es
.es_len
- (map
->m_lblk
- es
.es_lblk
);
585 if (retval
> map
->m_len
)
588 } else if (ext4_es_is_delayed(&es
) || ext4_es_is_hole(&es
)) {
593 #ifdef ES_AGGRESSIVE_TEST
594 ext4_map_blocks_es_recheck(handle
, inode
, map
,
601 * Try to see if we can get the block without requesting a new
604 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
605 down_read((&EXT4_I(inode
)->i_data_sem
));
606 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
607 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
608 EXT4_GET_BLOCKS_KEEP_SIZE
);
610 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
611 EXT4_GET_BLOCKS_KEEP_SIZE
);
615 unsigned long long status
;
617 #ifdef ES_AGGRESSIVE_TEST
618 if (retval
!= map
->m_len
) {
619 printk("ES len assertation failed for inode: %lu "
620 "retval %d != map->m_len %d "
621 "in %s (lookup)\n", inode
->i_ino
, retval
,
622 map
->m_len
, __func__
);
626 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
627 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
628 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
629 !(status
& EXTENT_STATUS_WRITTEN
) &&
630 ext4_find_delalloc_range(inode
, map
->m_lblk
,
631 map
->m_lblk
+ map
->m_len
- 1))
632 status
|= EXTENT_STATUS_DELAYED
;
633 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
,
634 map
->m_len
, map
->m_pblk
, status
);
638 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
639 up_read((&EXT4_I(inode
)->i_data_sem
));
642 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
643 int ret
= check_block_validity(inode
, map
);
648 /* If it is only a block(s) look up */
649 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
653 * Returns if the blocks have already allocated
655 * Note that if blocks have been preallocated
656 * ext4_ext_get_block() returns the create = 0
657 * with buffer head unmapped.
659 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
663 * Here we clear m_flags because after allocating an new extent,
664 * it will be set again.
666 map
->m_flags
&= ~EXT4_MAP_FLAGS
;
669 * New blocks allocate and/or writing to uninitialized extent
670 * will possibly result in updating i_data, so we take
671 * the write lock of i_data_sem, and call get_blocks()
672 * with create == 1 flag.
674 down_write((&EXT4_I(inode
)->i_data_sem
));
677 * if the caller is from delayed allocation writeout path
678 * we have already reserved fs blocks for allocation
679 * let the underlying get_block() function know to
680 * avoid double accounting
682 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
683 ext4_set_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
685 * We need to check for EXT4 here because migrate
686 * could have changed the inode type in between
688 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
689 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
691 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
693 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
695 * We allocated new blocks which will result in
696 * i_data's format changing. Force the migrate
697 * to fail by clearing migrate flags
699 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
703 * Update reserved blocks/metadata blocks after successful
704 * block allocation which had been deferred till now. We don't
705 * support fallocate for non extent files. So we can update
706 * reserve space here.
709 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
710 ext4_da_update_reserve_space(inode
, retval
, 1);
712 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
713 ext4_clear_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
717 unsigned long long status
;
719 #ifdef ES_AGGRESSIVE_TEST
720 if (retval
!= map
->m_len
) {
721 printk("ES len assertation failed for inode: %lu "
722 "retval %d != map->m_len %d "
723 "in %s (allocation)\n", inode
->i_ino
, retval
,
724 map
->m_len
, __func__
);
729 * If the extent has been zeroed out, we don't need to update
730 * extent status tree.
732 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
) &&
733 ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
734 if (ext4_es_is_written(&es
))
737 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
738 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
739 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
740 !(status
& EXTENT_STATUS_WRITTEN
) &&
741 ext4_find_delalloc_range(inode
, map
->m_lblk
,
742 map
->m_lblk
+ map
->m_len
- 1))
743 status
|= EXTENT_STATUS_DELAYED
;
744 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
745 map
->m_pblk
, status
);
751 up_write((&EXT4_I(inode
)->i_data_sem
));
752 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
753 int ret
= check_block_validity(inode
, map
);
760 /* Maximum number of blocks we map for direct IO at once. */
761 #define DIO_MAX_BLOCKS 4096
763 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
764 struct buffer_head
*bh
, int flags
)
766 handle_t
*handle
= ext4_journal_current_handle();
767 struct ext4_map_blocks map
;
768 int ret
= 0, started
= 0;
771 if (ext4_has_inline_data(inode
))
775 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
777 if (flags
&& !(flags
& EXT4_GET_BLOCKS_NO_LOCK
) && !handle
) {
778 /* Direct IO write... */
779 if (map
.m_len
> DIO_MAX_BLOCKS
)
780 map
.m_len
= DIO_MAX_BLOCKS
;
781 dio_credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
782 handle
= ext4_journal_start(inode
, EXT4_HT_MAP_BLOCKS
,
784 if (IS_ERR(handle
)) {
785 ret
= PTR_ERR(handle
);
791 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
793 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
794 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
795 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
799 ext4_journal_stop(handle
);
803 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
804 struct buffer_head
*bh
, int create
)
806 return _ext4_get_block(inode
, iblock
, bh
,
807 create
? EXT4_GET_BLOCKS_CREATE
: 0);
811 * `handle' can be NULL if create is zero
813 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
814 ext4_lblk_t block
, int create
, int *errp
)
816 struct ext4_map_blocks map
;
817 struct buffer_head
*bh
;
820 J_ASSERT(handle
!= NULL
|| create
== 0);
824 err
= ext4_map_blocks(handle
, inode
, &map
,
825 create
? EXT4_GET_BLOCKS_CREATE
: 0);
827 /* ensure we send some value back into *errp */
830 if (create
&& err
== 0)
831 err
= -ENOSPC
; /* should never happen */
837 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
842 if (map
.m_flags
& EXT4_MAP_NEW
) {
843 J_ASSERT(create
!= 0);
844 J_ASSERT(handle
!= NULL
);
847 * Now that we do not always journal data, we should
848 * keep in mind whether this should always journal the
849 * new buffer as metadata. For now, regular file
850 * writes use ext4_get_block instead, so it's not a
854 BUFFER_TRACE(bh
, "call get_create_access");
855 fatal
= ext4_journal_get_create_access(handle
, bh
);
856 if (!fatal
&& !buffer_uptodate(bh
)) {
857 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
858 set_buffer_uptodate(bh
);
861 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
862 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
866 BUFFER_TRACE(bh
, "not a new buffer");
876 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
877 ext4_lblk_t block
, int create
, int *err
)
879 struct buffer_head
*bh
;
881 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
884 if (buffer_uptodate(bh
))
886 ll_rw_block(READ
| REQ_META
| REQ_PRIO
, 1, &bh
);
888 if (buffer_uptodate(bh
))
895 int ext4_walk_page_buffers(handle_t
*handle
,
896 struct buffer_head
*head
,
900 int (*fn
)(handle_t
*handle
,
901 struct buffer_head
*bh
))
903 struct buffer_head
*bh
;
904 unsigned block_start
, block_end
;
905 unsigned blocksize
= head
->b_size
;
907 struct buffer_head
*next
;
909 for (bh
= head
, block_start
= 0;
910 ret
== 0 && (bh
!= head
|| !block_start
);
911 block_start
= block_end
, bh
= next
) {
912 next
= bh
->b_this_page
;
913 block_end
= block_start
+ blocksize
;
914 if (block_end
<= from
|| block_start
>= to
) {
915 if (partial
&& !buffer_uptodate(bh
))
919 err
= (*fn
)(handle
, bh
);
927 * To preserve ordering, it is essential that the hole instantiation and
928 * the data write be encapsulated in a single transaction. We cannot
929 * close off a transaction and start a new one between the ext4_get_block()
930 * and the commit_write(). So doing the jbd2_journal_start at the start of
931 * prepare_write() is the right place.
933 * Also, this function can nest inside ext4_writepage(). In that case, we
934 * *know* that ext4_writepage() has generated enough buffer credits to do the
935 * whole page. So we won't block on the journal in that case, which is good,
936 * because the caller may be PF_MEMALLOC.
938 * By accident, ext4 can be reentered when a transaction is open via
939 * quota file writes. If we were to commit the transaction while thus
940 * reentered, there can be a deadlock - we would be holding a quota
941 * lock, and the commit would never complete if another thread had a
942 * transaction open and was blocking on the quota lock - a ranking
945 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
946 * will _not_ run commit under these circumstances because handle->h_ref
947 * is elevated. We'll still have enough credits for the tiny quotafile
950 int do_journal_get_write_access(handle_t
*handle
,
951 struct buffer_head
*bh
)
953 int dirty
= buffer_dirty(bh
);
956 if (!buffer_mapped(bh
) || buffer_freed(bh
))
959 * __block_write_begin() could have dirtied some buffers. Clean
960 * the dirty bit as jbd2_journal_get_write_access() could complain
961 * otherwise about fs integrity issues. Setting of the dirty bit
962 * by __block_write_begin() isn't a real problem here as we clear
963 * the bit before releasing a page lock and thus writeback cannot
964 * ever write the buffer.
967 clear_buffer_dirty(bh
);
968 ret
= ext4_journal_get_write_access(handle
, bh
);
970 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
974 static int ext4_get_block_write_nolock(struct inode
*inode
, sector_t iblock
,
975 struct buffer_head
*bh_result
, int create
);
976 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
977 loff_t pos
, unsigned len
, unsigned flags
,
978 struct page
**pagep
, void **fsdata
)
980 struct inode
*inode
= mapping
->host
;
981 int ret
, needed_blocks
;
988 trace_ext4_write_begin(inode
, pos
, len
, flags
);
990 * Reserve one block more for addition to orphan list in case
991 * we allocate blocks but write fails for some reason
993 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
994 index
= pos
>> PAGE_CACHE_SHIFT
;
995 from
= pos
& (PAGE_CACHE_SIZE
- 1);
998 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
999 ret
= ext4_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1008 * grab_cache_page_write_begin() can take a long time if the
1009 * system is thrashing due to memory pressure, or if the page
1010 * is being written back. So grab it first before we start
1011 * the transaction handle. This also allows us to allocate
1012 * the page (if needed) without using GFP_NOFS.
1015 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1021 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
, needed_blocks
);
1022 if (IS_ERR(handle
)) {
1023 page_cache_release(page
);
1024 return PTR_ERR(handle
);
1028 if (page
->mapping
!= mapping
) {
1029 /* The page got truncated from under us */
1031 page_cache_release(page
);
1032 ext4_journal_stop(handle
);
1035 /* In case writeback began while the page was unlocked */
1036 wait_for_stable_page(page
);
1038 if (ext4_should_dioread_nolock(inode
))
1039 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block_write
);
1041 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
1043 if (!ret
&& ext4_should_journal_data(inode
)) {
1044 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
),
1046 do_journal_get_write_access
);
1052 * __block_write_begin may have instantiated a few blocks
1053 * outside i_size. Trim these off again. Don't need
1054 * i_size_read because we hold i_mutex.
1056 * Add inode to orphan list in case we crash before
1059 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1060 ext4_orphan_add(handle
, inode
);
1062 ext4_journal_stop(handle
);
1063 if (pos
+ len
> inode
->i_size
) {
1064 ext4_truncate_failed_write(inode
);
1066 * If truncate failed early the inode might
1067 * still be on the orphan list; we need to
1068 * make sure the inode is removed from the
1069 * orphan list in that case.
1072 ext4_orphan_del(NULL
, inode
);
1075 if (ret
== -ENOSPC
&&
1076 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1078 page_cache_release(page
);
1085 /* For write_end() in data=journal mode */
1086 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1089 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1091 set_buffer_uptodate(bh
);
1092 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1093 clear_buffer_meta(bh
);
1094 clear_buffer_prio(bh
);
1099 * We need to pick up the new inode size which generic_commit_write gave us
1100 * `file' can be NULL - eg, when called from page_symlink().
1102 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1103 * buffers are managed internally.
1105 static int ext4_write_end(struct file
*file
,
1106 struct address_space
*mapping
,
1107 loff_t pos
, unsigned len
, unsigned copied
,
1108 struct page
*page
, void *fsdata
)
1110 handle_t
*handle
= ext4_journal_current_handle();
1111 struct inode
*inode
= mapping
->host
;
1113 int i_size_changed
= 0;
1115 trace_ext4_write_end(inode
, pos
, len
, copied
);
1116 if (ext4_test_inode_state(inode
, EXT4_STATE_ORDERED_MODE
)) {
1117 ret
= ext4_jbd2_file_inode(handle
, inode
);
1120 page_cache_release(page
);
1125 if (ext4_has_inline_data(inode
)) {
1126 ret
= ext4_write_inline_data_end(inode
, pos
, len
,
1132 copied
= block_write_end(file
, mapping
, pos
,
1133 len
, copied
, page
, fsdata
);
1136 * No need to use i_size_read() here, the i_size
1137 * cannot change under us because we hole i_mutex.
1139 * But it's important to update i_size while still holding page lock:
1140 * page writeout could otherwise come in and zero beyond i_size.
1142 if (pos
+ copied
> inode
->i_size
) {
1143 i_size_write(inode
, pos
+ copied
);
1147 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
1148 /* We need to mark inode dirty even if
1149 * new_i_size is less that inode->i_size
1150 * but greater than i_disksize. (hint delalloc)
1152 ext4_update_i_disksize(inode
, (pos
+ copied
));
1156 page_cache_release(page
);
1159 * Don't mark the inode dirty under page lock. First, it unnecessarily
1160 * makes the holding time of page lock longer. Second, it forces lock
1161 * ordering of page lock and transaction start for journaling
1165 ext4_mark_inode_dirty(handle
, inode
);
1169 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1170 /* if we have allocated more blocks and copied
1171 * less. We will have blocks allocated outside
1172 * inode->i_size. So truncate them
1174 ext4_orphan_add(handle
, inode
);
1176 ret2
= ext4_journal_stop(handle
);
1180 if (pos
+ len
> inode
->i_size
) {
1181 ext4_truncate_failed_write(inode
);
1183 * If truncate failed early the inode might still be
1184 * on the orphan list; we need to make sure the inode
1185 * is removed from the orphan list in that case.
1188 ext4_orphan_del(NULL
, inode
);
1191 return ret
? ret
: copied
;
1194 static int ext4_journalled_write_end(struct file
*file
,
1195 struct address_space
*mapping
,
1196 loff_t pos
, unsigned len
, unsigned copied
,
1197 struct page
*page
, void *fsdata
)
1199 handle_t
*handle
= ext4_journal_current_handle();
1200 struct inode
*inode
= mapping
->host
;
1206 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1207 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1210 BUG_ON(!ext4_handle_valid(handle
));
1212 if (ext4_has_inline_data(inode
))
1213 copied
= ext4_write_inline_data_end(inode
, pos
, len
,
1217 if (!PageUptodate(page
))
1219 page_zero_new_buffers(page
, from
+copied
, to
);
1222 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
), from
,
1223 to
, &partial
, write_end_fn
);
1225 SetPageUptodate(page
);
1227 new_i_size
= pos
+ copied
;
1228 if (new_i_size
> inode
->i_size
)
1229 i_size_write(inode
, pos
+copied
);
1230 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1231 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1232 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1233 ext4_update_i_disksize(inode
, new_i_size
);
1234 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1240 page_cache_release(page
);
1241 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1242 /* if we have allocated more blocks and copied
1243 * less. We will have blocks allocated outside
1244 * inode->i_size. So truncate them
1246 ext4_orphan_add(handle
, inode
);
1248 ret2
= ext4_journal_stop(handle
);
1251 if (pos
+ len
> inode
->i_size
) {
1252 ext4_truncate_failed_write(inode
);
1254 * If truncate failed early the inode might still be
1255 * on the orphan list; we need to make sure the inode
1256 * is removed from the orphan list in that case.
1259 ext4_orphan_del(NULL
, inode
);
1262 return ret
? ret
: copied
;
1266 * Reserve a metadata for a single block located at lblock
1268 static int ext4_da_reserve_metadata(struct inode
*inode
, ext4_lblk_t lblock
)
1270 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1271 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1272 unsigned int md_needed
;
1273 ext4_lblk_t save_last_lblock
;
1277 * recalculate the amount of metadata blocks to reserve
1278 * in order to allocate nrblocks
1279 * worse case is one extent per block
1281 spin_lock(&ei
->i_block_reservation_lock
);
1283 * ext4_calc_metadata_amount() has side effects, which we have
1284 * to be prepared undo if we fail to claim space.
1286 save_len
= ei
->i_da_metadata_calc_len
;
1287 save_last_lblock
= ei
->i_da_metadata_calc_last_lblock
;
1288 md_needed
= EXT4_NUM_B2C(sbi
,
1289 ext4_calc_metadata_amount(inode
, lblock
));
1290 trace_ext4_da_reserve_space(inode
, md_needed
);
1293 * We do still charge estimated metadata to the sb though;
1294 * we cannot afford to run out of free blocks.
1296 if (ext4_claim_free_clusters(sbi
, md_needed
, 0)) {
1297 ei
->i_da_metadata_calc_len
= save_len
;
1298 ei
->i_da_metadata_calc_last_lblock
= save_last_lblock
;
1299 spin_unlock(&ei
->i_block_reservation_lock
);
1302 ei
->i_reserved_meta_blocks
+= md_needed
;
1303 spin_unlock(&ei
->i_block_reservation_lock
);
1305 return 0; /* success */
1309 * Reserve a single cluster located at lblock
1311 static int ext4_da_reserve_space(struct inode
*inode
, ext4_lblk_t lblock
)
1313 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1314 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1315 unsigned int md_needed
;
1317 ext4_lblk_t save_last_lblock
;
1321 * We will charge metadata quota at writeout time; this saves
1322 * us from metadata over-estimation, though we may go over by
1323 * a small amount in the end. Here we just reserve for data.
1325 ret
= dquot_reserve_block(inode
, EXT4_C2B(sbi
, 1));
1330 * recalculate the amount of metadata blocks to reserve
1331 * in order to allocate nrblocks
1332 * worse case is one extent per block
1334 spin_lock(&ei
->i_block_reservation_lock
);
1336 * ext4_calc_metadata_amount() has side effects, which we have
1337 * to be prepared undo if we fail to claim space.
1339 save_len
= ei
->i_da_metadata_calc_len
;
1340 save_last_lblock
= ei
->i_da_metadata_calc_last_lblock
;
1341 md_needed
= EXT4_NUM_B2C(sbi
,
1342 ext4_calc_metadata_amount(inode
, lblock
));
1343 trace_ext4_da_reserve_space(inode
, md_needed
);
1346 * We do still charge estimated metadata to the sb though;
1347 * we cannot afford to run out of free blocks.
1349 if (ext4_claim_free_clusters(sbi
, md_needed
+ 1, 0)) {
1350 ei
->i_da_metadata_calc_len
= save_len
;
1351 ei
->i_da_metadata_calc_last_lblock
= save_last_lblock
;
1352 spin_unlock(&ei
->i_block_reservation_lock
);
1353 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, 1));
1356 ei
->i_reserved_data_blocks
++;
1357 ei
->i_reserved_meta_blocks
+= md_needed
;
1358 spin_unlock(&ei
->i_block_reservation_lock
);
1360 return 0; /* success */
1363 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1365 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1366 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1369 return; /* Nothing to release, exit */
1371 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1373 trace_ext4_da_release_space(inode
, to_free
);
1374 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1376 * if there aren't enough reserved blocks, then the
1377 * counter is messed up somewhere. Since this
1378 * function is called from invalidate page, it's
1379 * harmless to return without any action.
1381 ext4_warning(inode
->i_sb
, "ext4_da_release_space: "
1382 "ino %lu, to_free %d with only %d reserved "
1383 "data blocks", inode
->i_ino
, to_free
,
1384 ei
->i_reserved_data_blocks
);
1386 to_free
= ei
->i_reserved_data_blocks
;
1388 ei
->i_reserved_data_blocks
-= to_free
;
1390 if (ei
->i_reserved_data_blocks
== 0) {
1392 * We can release all of the reserved metadata blocks
1393 * only when we have written all of the delayed
1394 * allocation blocks.
1395 * Note that in case of bigalloc, i_reserved_meta_blocks,
1396 * i_reserved_data_blocks, etc. refer to number of clusters.
1398 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
1399 ei
->i_reserved_meta_blocks
);
1400 ei
->i_reserved_meta_blocks
= 0;
1401 ei
->i_da_metadata_calc_len
= 0;
1404 /* update fs dirty data blocks counter */
1405 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, to_free
);
1407 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1409 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, to_free
));
1412 static void ext4_da_page_release_reservation(struct page
*page
,
1413 unsigned long offset
)
1415 int to_release
= 0, contiguous_blks
= 0;
1416 struct buffer_head
*head
, *bh
;
1417 unsigned int curr_off
= 0;
1418 struct inode
*inode
= page
->mapping
->host
;
1419 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1423 head
= page_buffers(page
);
1426 unsigned int next_off
= curr_off
+ bh
->b_size
;
1428 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1431 clear_buffer_delay(bh
);
1432 } else if (contiguous_blks
) {
1433 lblk
= page
->index
<<
1434 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1435 lblk
+= (curr_off
>> inode
->i_blkbits
) -
1437 ext4_es_remove_extent(inode
, lblk
, contiguous_blks
);
1438 contiguous_blks
= 0;
1440 curr_off
= next_off
;
1441 } while ((bh
= bh
->b_this_page
) != head
);
1443 if (contiguous_blks
) {
1444 lblk
= page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1445 lblk
+= (curr_off
>> inode
->i_blkbits
) - contiguous_blks
;
1446 ext4_es_remove_extent(inode
, lblk
, contiguous_blks
);
1449 /* If we have released all the blocks belonging to a cluster, then we
1450 * need to release the reserved space for that cluster. */
1451 num_clusters
= EXT4_NUM_B2C(sbi
, to_release
);
1452 while (num_clusters
> 0) {
1453 lblk
= (page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
)) +
1454 ((num_clusters
- 1) << sbi
->s_cluster_bits
);
1455 if (sbi
->s_cluster_ratio
== 1 ||
1456 !ext4_find_delalloc_cluster(inode
, lblk
))
1457 ext4_da_release_space(inode
, 1);
1464 * Delayed allocation stuff
1468 * mpage_da_submit_io - walks through extent of pages and try to write
1469 * them with writepage() call back
1471 * @mpd->inode: inode
1472 * @mpd->first_page: first page of the extent
1473 * @mpd->next_page: page after the last page of the extent
1475 * By the time mpage_da_submit_io() is called we expect all blocks
1476 * to be allocated. this may be wrong if allocation failed.
1478 * As pages are already locked by write_cache_pages(), we can't use it
1480 static int mpage_da_submit_io(struct mpage_da_data
*mpd
,
1481 struct ext4_map_blocks
*map
)
1483 struct pagevec pvec
;
1484 unsigned long index
, end
;
1485 int ret
= 0, err
, nr_pages
, i
;
1486 struct inode
*inode
= mpd
->inode
;
1487 struct address_space
*mapping
= inode
->i_mapping
;
1488 loff_t size
= i_size_read(inode
);
1489 unsigned int len
, block_start
;
1490 struct buffer_head
*bh
, *page_bufs
= NULL
;
1491 sector_t pblock
= 0, cur_logical
= 0;
1492 struct ext4_io_submit io_submit
;
1494 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
1495 memset(&io_submit
, 0, sizeof(io_submit
));
1497 * We need to start from the first_page to the next_page - 1
1498 * to make sure we also write the mapped dirty buffer_heads.
1499 * If we look at mpd->b_blocknr we would only be looking
1500 * at the currently mapped buffer_heads.
1502 index
= mpd
->first_page
;
1503 end
= mpd
->next_page
- 1;
1505 pagevec_init(&pvec
, 0);
1506 while (index
<= end
) {
1507 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1510 for (i
= 0; i
< nr_pages
; i
++) {
1512 struct page
*page
= pvec
.pages
[i
];
1514 index
= page
->index
;
1518 if (index
== size
>> PAGE_CACHE_SHIFT
)
1519 len
= size
& ~PAGE_CACHE_MASK
;
1521 len
= PAGE_CACHE_SIZE
;
1523 cur_logical
= index
<< (PAGE_CACHE_SHIFT
-
1525 pblock
= map
->m_pblk
+ (cur_logical
-
1530 BUG_ON(!PageLocked(page
));
1531 BUG_ON(PageWriteback(page
));
1533 bh
= page_bufs
= page_buffers(page
);
1536 if (map
&& (cur_logical
>= map
->m_lblk
) &&
1537 (cur_logical
<= (map
->m_lblk
+
1538 (map
->m_len
- 1)))) {
1539 if (buffer_delay(bh
)) {
1540 clear_buffer_delay(bh
);
1541 bh
->b_blocknr
= pblock
;
1543 if (buffer_unwritten(bh
) ||
1545 BUG_ON(bh
->b_blocknr
!= pblock
);
1546 if (map
->m_flags
& EXT4_MAP_UNINIT
)
1547 set_buffer_uninit(bh
);
1548 clear_buffer_unwritten(bh
);
1552 * skip page if block allocation undone and
1555 if (ext4_bh_delay_or_unwritten(NULL
, bh
))
1557 bh
= bh
->b_this_page
;
1558 block_start
+= bh
->b_size
;
1561 } while (bh
!= page_bufs
);
1568 clear_page_dirty_for_io(page
);
1569 err
= ext4_bio_write_page(&io_submit
, page
, len
,
1572 mpd
->pages_written
++;
1574 * In error case, we have to continue because
1575 * remaining pages are still locked
1580 pagevec_release(&pvec
);
1582 ext4_io_submit(&io_submit
);
1586 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
)
1590 struct pagevec pvec
;
1591 struct inode
*inode
= mpd
->inode
;
1592 struct address_space
*mapping
= inode
->i_mapping
;
1593 ext4_lblk_t start
, last
;
1595 index
= mpd
->first_page
;
1596 end
= mpd
->next_page
- 1;
1598 start
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1599 last
= end
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1600 ext4_es_remove_extent(inode
, start
, last
- start
+ 1);
1602 pagevec_init(&pvec
, 0);
1603 while (index
<= end
) {
1604 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1607 for (i
= 0; i
< nr_pages
; i
++) {
1608 struct page
*page
= pvec
.pages
[i
];
1609 if (page
->index
> end
)
1611 BUG_ON(!PageLocked(page
));
1612 BUG_ON(PageWriteback(page
));
1613 block_invalidatepage(page
, 0);
1614 ClearPageUptodate(page
);
1617 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
1618 pagevec_release(&pvec
);
1623 static void ext4_print_free_blocks(struct inode
*inode
)
1625 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1626 struct super_block
*sb
= inode
->i_sb
;
1627 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1629 ext4_msg(sb
, KERN_CRIT
, "Total free blocks count %lld",
1630 EXT4_C2B(EXT4_SB(inode
->i_sb
),
1631 ext4_count_free_clusters(sb
)));
1632 ext4_msg(sb
, KERN_CRIT
, "Free/Dirty block details");
1633 ext4_msg(sb
, KERN_CRIT
, "free_blocks=%lld",
1634 (long long) EXT4_C2B(EXT4_SB(sb
),
1635 percpu_counter_sum(&sbi
->s_freeclusters_counter
)));
1636 ext4_msg(sb
, KERN_CRIT
, "dirty_blocks=%lld",
1637 (long long) EXT4_C2B(EXT4_SB(sb
),
1638 percpu_counter_sum(&sbi
->s_dirtyclusters_counter
)));
1639 ext4_msg(sb
, KERN_CRIT
, "Block reservation details");
1640 ext4_msg(sb
, KERN_CRIT
, "i_reserved_data_blocks=%u",
1641 ei
->i_reserved_data_blocks
);
1642 ext4_msg(sb
, KERN_CRIT
, "i_reserved_meta_blocks=%u",
1643 ei
->i_reserved_meta_blocks
);
1644 ext4_msg(sb
, KERN_CRIT
, "i_allocated_meta_blocks=%u",
1645 ei
->i_allocated_meta_blocks
);
1650 * mpage_da_map_and_submit - go through given space, map them
1651 * if necessary, and then submit them for I/O
1653 * @mpd - bh describing space
1655 * The function skips space we know is already mapped to disk blocks.
1658 static void mpage_da_map_and_submit(struct mpage_da_data
*mpd
)
1660 int err
, blks
, get_blocks_flags
;
1661 struct ext4_map_blocks map
, *mapp
= NULL
;
1662 sector_t next
= mpd
->b_blocknr
;
1663 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
1664 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
1665 handle_t
*handle
= NULL
;
1668 * If the blocks are mapped already, or we couldn't accumulate
1669 * any blocks, then proceed immediately to the submission stage.
1671 if ((mpd
->b_size
== 0) ||
1672 ((mpd
->b_state
& (1 << BH_Mapped
)) &&
1673 !(mpd
->b_state
& (1 << BH_Delay
)) &&
1674 !(mpd
->b_state
& (1 << BH_Unwritten
))))
1677 handle
= ext4_journal_current_handle();
1681 * Call ext4_map_blocks() to allocate any delayed allocation
1682 * blocks, or to convert an uninitialized extent to be
1683 * initialized (in the case where we have written into
1684 * one or more preallocated blocks).
1686 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1687 * indicate that we are on the delayed allocation path. This
1688 * affects functions in many different parts of the allocation
1689 * call path. This flag exists primarily because we don't
1690 * want to change *many* call functions, so ext4_map_blocks()
1691 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1692 * inode's allocation semaphore is taken.
1694 * If the blocks in questions were delalloc blocks, set
1695 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1696 * variables are updated after the blocks have been allocated.
1699 map
.m_len
= max_blocks
;
1701 * We're in delalloc path and it is possible that we're going to
1702 * need more metadata blocks than previously reserved. However
1703 * we must not fail because we're in writeback and there is
1704 * nothing we can do about it so it might result in data loss.
1705 * So use reserved blocks to allocate metadata if possible.
1707 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
|
1708 EXT4_GET_BLOCKS_METADATA_NOFAIL
;
1709 if (ext4_should_dioread_nolock(mpd
->inode
))
1710 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
1711 if (mpd
->b_state
& (1 << BH_Delay
))
1712 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
1715 blks
= ext4_map_blocks(handle
, mpd
->inode
, &map
, get_blocks_flags
);
1717 struct super_block
*sb
= mpd
->inode
->i_sb
;
1721 * If get block returns EAGAIN or ENOSPC and there
1722 * appears to be free blocks we will just let
1723 * mpage_da_submit_io() unlock all of the pages.
1728 if (err
== -ENOSPC
&& ext4_count_free_clusters(sb
)) {
1734 * get block failure will cause us to loop in
1735 * writepages, because a_ops->writepage won't be able
1736 * to make progress. The page will be redirtied by
1737 * writepage and writepages will again try to write
1740 if (!(EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
1741 ext4_msg(sb
, KERN_CRIT
,
1742 "delayed block allocation failed for inode %lu "
1743 "at logical offset %llu with max blocks %zd "
1744 "with error %d", mpd
->inode
->i_ino
,
1745 (unsigned long long) next
,
1746 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
1747 ext4_msg(sb
, KERN_CRIT
,
1748 "This should not happen!! Data will be lost");
1750 ext4_print_free_blocks(mpd
->inode
);
1752 /* invalidate all the pages */
1753 ext4_da_block_invalidatepages(mpd
);
1755 /* Mark this page range as having been completed */
1762 if (map
.m_flags
& EXT4_MAP_NEW
) {
1763 struct block_device
*bdev
= mpd
->inode
->i_sb
->s_bdev
;
1766 for (i
= 0; i
< map
.m_len
; i
++)
1767 unmap_underlying_metadata(bdev
, map
.m_pblk
+ i
);
1771 * Update on-disk size along with block allocation.
1773 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
1774 if (disksize
> i_size_read(mpd
->inode
))
1775 disksize
= i_size_read(mpd
->inode
);
1776 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
1777 ext4_update_i_disksize(mpd
->inode
, disksize
);
1778 err
= ext4_mark_inode_dirty(handle
, mpd
->inode
);
1780 ext4_error(mpd
->inode
->i_sb
,
1781 "Failed to mark inode %lu dirty",
1786 mpage_da_submit_io(mpd
, mapp
);
1790 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1791 (1 << BH_Delay) | (1 << BH_Unwritten))
1794 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1796 * @mpd->lbh - extent of blocks
1797 * @logical - logical number of the block in the file
1798 * @b_state - b_state of the buffer head added
1800 * the function is used to collect contig. blocks in same state
1802 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
, sector_t logical
,
1803 unsigned long b_state
)
1806 int blkbits
= mpd
->inode
->i_blkbits
;
1807 int nrblocks
= mpd
->b_size
>> blkbits
;
1810 * XXX Don't go larger than mballoc is willing to allocate
1811 * This is a stopgap solution. We eventually need to fold
1812 * mpage_da_submit_io() into this function and then call
1813 * ext4_map_blocks() multiple times in a loop
1815 if (nrblocks
>= (8*1024*1024 >> blkbits
))
1818 /* check if the reserved journal credits might overflow */
1819 if (!ext4_test_inode_flag(mpd
->inode
, EXT4_INODE_EXTENTS
)) {
1820 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
1822 * With non-extent format we are limited by the journal
1823 * credit available. Total credit needed to insert
1824 * nrblocks contiguous blocks is dependent on the
1825 * nrblocks. So limit nrblocks.
1831 * First block in the extent
1833 if (mpd
->b_size
== 0) {
1834 mpd
->b_blocknr
= logical
;
1835 mpd
->b_size
= 1 << blkbits
;
1836 mpd
->b_state
= b_state
& BH_FLAGS
;
1840 next
= mpd
->b_blocknr
+ nrblocks
;
1842 * Can we merge the block to our big extent?
1844 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
1845 mpd
->b_size
+= 1 << blkbits
;
1851 * We couldn't merge the block to our extent, so we
1852 * need to flush current extent and start new one
1854 mpage_da_map_and_submit(mpd
);
1858 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
1860 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
1864 * This function is grabs code from the very beginning of
1865 * ext4_map_blocks, but assumes that the caller is from delayed write
1866 * time. This function looks up the requested blocks and sets the
1867 * buffer delay bit under the protection of i_data_sem.
1869 static int ext4_da_map_blocks(struct inode
*inode
, sector_t iblock
,
1870 struct ext4_map_blocks
*map
,
1871 struct buffer_head
*bh
)
1873 struct extent_status es
;
1875 sector_t invalid_block
= ~((sector_t
) 0xffff);
1876 #ifdef ES_AGGRESSIVE_TEST
1877 struct ext4_map_blocks orig_map
;
1879 memcpy(&orig_map
, map
, sizeof(*map
));
1882 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
1886 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1887 "logical block %lu\n", inode
->i_ino
, map
->m_len
,
1888 (unsigned long) map
->m_lblk
);
1890 /* Lookup extent status tree firstly */
1891 if (ext4_es_lookup_extent(inode
, iblock
, &es
)) {
1893 if (ext4_es_is_hole(&es
)) {
1895 down_read((&EXT4_I(inode
)->i_data_sem
));
1900 * Delayed extent could be allocated by fallocate.
1901 * So we need to check it.
1903 if (ext4_es_is_delayed(&es
) && !ext4_es_is_unwritten(&es
)) {
1904 map_bh(bh
, inode
->i_sb
, invalid_block
);
1906 set_buffer_delay(bh
);
1910 map
->m_pblk
= ext4_es_pblock(&es
) + iblock
- es
.es_lblk
;
1911 retval
= es
.es_len
- (iblock
- es
.es_lblk
);
1912 if (retval
> map
->m_len
)
1913 retval
= map
->m_len
;
1914 map
->m_len
= retval
;
1915 if (ext4_es_is_written(&es
))
1916 map
->m_flags
|= EXT4_MAP_MAPPED
;
1917 else if (ext4_es_is_unwritten(&es
))
1918 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
1922 #ifdef ES_AGGRESSIVE_TEST
1923 ext4_map_blocks_es_recheck(NULL
, inode
, map
, &orig_map
, 0);
1929 * Try to see if we can get the block without requesting a new
1930 * file system block.
1932 down_read((&EXT4_I(inode
)->i_data_sem
));
1933 if (ext4_has_inline_data(inode
)) {
1935 * We will soon create blocks for this page, and let
1936 * us pretend as if the blocks aren't allocated yet.
1937 * In case of clusters, we have to handle the work
1938 * of mapping from cluster so that the reserved space
1939 * is calculated properly.
1941 if ((EXT4_SB(inode
->i_sb
)->s_cluster_ratio
> 1) &&
1942 ext4_find_delalloc_cluster(inode
, map
->m_lblk
))
1943 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
1945 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1946 retval
= ext4_ext_map_blocks(NULL
, inode
, map
,
1947 EXT4_GET_BLOCKS_NO_PUT_HOLE
);
1949 retval
= ext4_ind_map_blocks(NULL
, inode
, map
,
1950 EXT4_GET_BLOCKS_NO_PUT_HOLE
);
1956 * XXX: __block_prepare_write() unmaps passed block,
1960 * If the block was allocated from previously allocated cluster,
1961 * then we don't need to reserve it again. However we still need
1962 * to reserve metadata for every block we're going to write.
1964 if (!(map
->m_flags
& EXT4_MAP_FROM_CLUSTER
)) {
1965 ret
= ext4_da_reserve_space(inode
, iblock
);
1967 /* not enough space to reserve */
1972 ret
= ext4_da_reserve_metadata(inode
, iblock
);
1974 /* not enough space to reserve */
1980 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1981 ~0, EXTENT_STATUS_DELAYED
);
1987 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1988 * and it should not appear on the bh->b_state.
1990 map
->m_flags
&= ~EXT4_MAP_FROM_CLUSTER
;
1992 map_bh(bh
, inode
->i_sb
, invalid_block
);
1994 set_buffer_delay(bh
);
1995 } else if (retval
> 0) {
1997 unsigned long long status
;
1999 #ifdef ES_AGGRESSIVE_TEST
2000 if (retval
!= map
->m_len
) {
2001 printk("ES len assertation failed for inode: %lu "
2002 "retval %d != map->m_len %d "
2003 "in %s (lookup)\n", inode
->i_ino
, retval
,
2004 map
->m_len
, __func__
);
2008 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
2009 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
2010 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
2011 map
->m_pblk
, status
);
2017 up_read((&EXT4_I(inode
)->i_data_sem
));
2023 * This is a special get_blocks_t callback which is used by
2024 * ext4_da_write_begin(). It will either return mapped block or
2025 * reserve space for a single block.
2027 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2028 * We also have b_blocknr = -1 and b_bdev initialized properly
2030 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2031 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2032 * initialized properly.
2034 int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
2035 struct buffer_head
*bh
, int create
)
2037 struct ext4_map_blocks map
;
2040 BUG_ON(create
== 0);
2041 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
2043 map
.m_lblk
= iblock
;
2047 * first, we need to know whether the block is allocated already
2048 * preallocated blocks are unmapped but should treated
2049 * the same as allocated blocks.
2051 ret
= ext4_da_map_blocks(inode
, iblock
, &map
, bh
);
2055 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
2056 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
2058 if (buffer_unwritten(bh
)) {
2059 /* A delayed write to unwritten bh should be marked
2060 * new and mapped. Mapped ensures that we don't do
2061 * get_block multiple times when we write to the same
2062 * offset and new ensures that we do proper zero out
2063 * for partial write.
2066 set_buffer_mapped(bh
);
2071 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
2077 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
2083 static int __ext4_journalled_writepage(struct page
*page
,
2086 struct address_space
*mapping
= page
->mapping
;
2087 struct inode
*inode
= mapping
->host
;
2088 struct buffer_head
*page_bufs
= NULL
;
2089 handle_t
*handle
= NULL
;
2090 int ret
= 0, err
= 0;
2091 int inline_data
= ext4_has_inline_data(inode
);
2092 struct buffer_head
*inode_bh
= NULL
;
2094 ClearPageChecked(page
);
2097 BUG_ON(page
->index
!= 0);
2098 BUG_ON(len
> ext4_get_max_inline_size(inode
));
2099 inode_bh
= ext4_journalled_write_inline_data(inode
, len
, page
);
2100 if (inode_bh
== NULL
)
2103 page_bufs
= page_buffers(page
);
2108 ext4_walk_page_buffers(handle
, page_bufs
, 0, len
,
2112 * We need to release the page lock before we start the
2113 * journal, so grab a reference so the page won't disappear
2114 * out from under us.
2119 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
2120 ext4_writepage_trans_blocks(inode
));
2121 if (IS_ERR(handle
)) {
2122 ret
= PTR_ERR(handle
);
2124 goto out_no_pagelock
;
2126 BUG_ON(!ext4_handle_valid(handle
));
2130 if (page
->mapping
!= mapping
) {
2131 /* The page got truncated from under us */
2132 ext4_journal_stop(handle
);
2138 ret
= ext4_journal_get_write_access(handle
, inode_bh
);
2140 err
= ext4_handle_dirty_metadata(handle
, inode
, inode_bh
);
2143 ret
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2144 do_journal_get_write_access
);
2146 err
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2151 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
2152 err
= ext4_journal_stop(handle
);
2156 if (!ext4_has_inline_data(inode
))
2157 ext4_walk_page_buffers(handle
, page_bufs
, 0, len
,
2159 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
2168 * Note that we don't need to start a transaction unless we're journaling data
2169 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2170 * need to file the inode to the transaction's list in ordered mode because if
2171 * we are writing back data added by write(), the inode is already there and if
2172 * we are writing back data modified via mmap(), no one guarantees in which
2173 * transaction the data will hit the disk. In case we are journaling data, we
2174 * cannot start transaction directly because transaction start ranks above page
2175 * lock so we have to do some magic.
2177 * This function can get called via...
2178 * - ext4_da_writepages after taking page lock (have journal handle)
2179 * - journal_submit_inode_data_buffers (no journal handle)
2180 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2181 * - grab_page_cache when doing write_begin (have journal handle)
2183 * We don't do any block allocation in this function. If we have page with
2184 * multiple blocks we need to write those buffer_heads that are mapped. This
2185 * is important for mmaped based write. So if we do with blocksize 1K
2186 * truncate(f, 1024);
2187 * a = mmap(f, 0, 4096);
2189 * truncate(f, 4096);
2190 * we have in the page first buffer_head mapped via page_mkwrite call back
2191 * but other buffer_heads would be unmapped but dirty (dirty done via the
2192 * do_wp_page). So writepage should write the first block. If we modify
2193 * the mmap area beyond 1024 we will again get a page_fault and the
2194 * page_mkwrite callback will do the block allocation and mark the
2195 * buffer_heads mapped.
2197 * We redirty the page if we have any buffer_heads that is either delay or
2198 * unwritten in the page.
2200 * We can get recursively called as show below.
2202 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2205 * But since we don't do any block allocation we should not deadlock.
2206 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2208 static int ext4_writepage(struct page
*page
,
2209 struct writeback_control
*wbc
)
2214 struct buffer_head
*page_bufs
= NULL
;
2215 struct inode
*inode
= page
->mapping
->host
;
2216 struct ext4_io_submit io_submit
;
2218 trace_ext4_writepage(page
);
2219 size
= i_size_read(inode
);
2220 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
2221 len
= size
& ~PAGE_CACHE_MASK
;
2223 len
= PAGE_CACHE_SIZE
;
2225 page_bufs
= page_buffers(page
);
2227 * We cannot do block allocation or other extent handling in this
2228 * function. If there are buffers needing that, we have to redirty
2229 * the page. But we may reach here when we do a journal commit via
2230 * journal_submit_inode_data_buffers() and in that case we must write
2231 * allocated buffers to achieve data=ordered mode guarantees.
2233 if (ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2234 ext4_bh_delay_or_unwritten
)) {
2235 redirty_page_for_writepage(wbc
, page
);
2236 if (current
->flags
& PF_MEMALLOC
) {
2238 * For memory cleaning there's no point in writing only
2239 * some buffers. So just bail out. Warn if we came here
2240 * from direct reclaim.
2242 WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
))
2249 if (PageChecked(page
) && ext4_should_journal_data(inode
))
2251 * It's mmapped pagecache. Add buffers and journal it. There
2252 * doesn't seem much point in redirtying the page here.
2254 return __ext4_journalled_writepage(page
, len
);
2256 memset(&io_submit
, 0, sizeof(io_submit
));
2257 ret
= ext4_bio_write_page(&io_submit
, page
, len
, wbc
);
2258 ext4_io_submit(&io_submit
);
2263 * This is called via ext4_da_writepages() to
2264 * calculate the total number of credits to reserve to fit
2265 * a single extent allocation into a single transaction,
2266 * ext4_da_writpeages() will loop calling this before
2267 * the block allocation.
2270 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2272 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
2275 * With non-extent format the journal credit needed to
2276 * insert nrblocks contiguous block is dependent on
2277 * number of contiguous block. So we will limit
2278 * number of contiguous block to a sane value
2280 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) &&
2281 (max_blocks
> EXT4_MAX_TRANS_DATA
))
2282 max_blocks
= EXT4_MAX_TRANS_DATA
;
2284 return ext4_chunk_trans_blocks(inode
, max_blocks
);
2288 * write_cache_pages_da - walk the list of dirty pages of the given
2289 * address space and accumulate pages that need writing, and call
2290 * mpage_da_map_and_submit to map a single contiguous memory region
2291 * and then write them.
2293 static int write_cache_pages_da(handle_t
*handle
,
2294 struct address_space
*mapping
,
2295 struct writeback_control
*wbc
,
2296 struct mpage_da_data
*mpd
,
2297 pgoff_t
*done_index
)
2299 struct buffer_head
*bh
, *head
;
2300 struct inode
*inode
= mapping
->host
;
2301 struct pagevec pvec
;
2302 unsigned int nr_pages
;
2305 long nr_to_write
= wbc
->nr_to_write
;
2306 int i
, tag
, ret
= 0;
2308 memset(mpd
, 0, sizeof(struct mpage_da_data
));
2311 pagevec_init(&pvec
, 0);
2312 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2313 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2315 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2316 tag
= PAGECACHE_TAG_TOWRITE
;
2318 tag
= PAGECACHE_TAG_DIRTY
;
2320 *done_index
= index
;
2321 while (index
<= end
) {
2322 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2323 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
2327 for (i
= 0; i
< nr_pages
; i
++) {
2328 struct page
*page
= pvec
.pages
[i
];
2331 * At this point, the page may be truncated or
2332 * invalidated (changing page->mapping to NULL), or
2333 * even swizzled back from swapper_space to tmpfs file
2334 * mapping. However, page->index will not change
2335 * because we have a reference on the page.
2337 if (page
->index
> end
)
2340 *done_index
= page
->index
+ 1;
2343 * If we can't merge this page, and we have
2344 * accumulated an contiguous region, write it
2346 if ((mpd
->next_page
!= page
->index
) &&
2347 (mpd
->next_page
!= mpd
->first_page
)) {
2348 mpage_da_map_and_submit(mpd
);
2349 goto ret_extent_tail
;
2355 * If the page is no longer dirty, or its
2356 * mapping no longer corresponds to inode we
2357 * are writing (which means it has been
2358 * truncated or invalidated), or the page is
2359 * already under writeback and we are not
2360 * doing a data integrity writeback, skip the page
2362 if (!PageDirty(page
) ||
2363 (PageWriteback(page
) &&
2364 (wbc
->sync_mode
== WB_SYNC_NONE
)) ||
2365 unlikely(page
->mapping
!= mapping
)) {
2370 wait_on_page_writeback(page
);
2371 BUG_ON(PageWriteback(page
));
2374 * If we have inline data and arrive here, it means that
2375 * we will soon create the block for the 1st page, so
2376 * we'd better clear the inline data here.
2378 if (ext4_has_inline_data(inode
)) {
2379 BUG_ON(ext4_test_inode_state(inode
,
2380 EXT4_STATE_MAY_INLINE_DATA
));
2381 ext4_destroy_inline_data(handle
, inode
);
2384 if (mpd
->next_page
!= page
->index
)
2385 mpd
->first_page
= page
->index
;
2386 mpd
->next_page
= page
->index
+ 1;
2387 logical
= (sector_t
) page
->index
<<
2388 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2390 /* Add all dirty buffers to mpd */
2391 head
= page_buffers(page
);
2394 BUG_ON(buffer_locked(bh
));
2396 * We need to try to allocate unmapped blocks
2397 * in the same page. Otherwise we won't make
2398 * progress with the page in ext4_writepage
2400 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2401 mpage_add_bh_to_extent(mpd
, logical
,
2404 goto ret_extent_tail
;
2405 } else if (buffer_dirty(bh
) &&
2406 buffer_mapped(bh
)) {
2408 * mapped dirty buffer. We need to
2409 * update the b_state because we look
2410 * at b_state in mpage_da_map_blocks.
2411 * We don't update b_size because if we
2412 * find an unmapped buffer_head later
2413 * we need to use the b_state flag of
2416 if (mpd
->b_size
== 0)
2418 bh
->b_state
& BH_FLAGS
;
2421 } while ((bh
= bh
->b_this_page
) != head
);
2423 if (nr_to_write
> 0) {
2425 if (nr_to_write
== 0 &&
2426 wbc
->sync_mode
== WB_SYNC_NONE
)
2428 * We stop writing back only if we are
2429 * not doing integrity sync. In case of
2430 * integrity sync we have to keep going
2431 * because someone may be concurrently
2432 * dirtying pages, and we might have
2433 * synced a lot of newly appeared dirty
2434 * pages, but have not synced all of the
2440 pagevec_release(&pvec
);
2445 ret
= MPAGE_DA_EXTENT_TAIL
;
2447 pagevec_release(&pvec
);
2453 static int ext4_da_writepages(struct address_space
*mapping
,
2454 struct writeback_control
*wbc
)
2457 int range_whole
= 0;
2458 handle_t
*handle
= NULL
;
2459 struct mpage_da_data mpd
;
2460 struct inode
*inode
= mapping
->host
;
2461 int pages_written
= 0;
2462 unsigned int max_pages
;
2463 int range_cyclic
, cycled
= 1, io_done
= 0;
2464 int needed_blocks
, ret
= 0;
2465 long desired_nr_to_write
, nr_to_writebump
= 0;
2466 loff_t range_start
= wbc
->range_start
;
2467 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2468 pgoff_t done_index
= 0;
2470 struct blk_plug plug
;
2472 trace_ext4_da_writepages(inode
, wbc
);
2475 * No pages to write? This is mainly a kludge to avoid starting
2476 * a transaction for special inodes like journal inode on last iput()
2477 * because that could violate lock ordering on umount
2479 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2483 * If the filesystem has aborted, it is read-only, so return
2484 * right away instead of dumping stack traces later on that
2485 * will obscure the real source of the problem. We test
2486 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2487 * the latter could be true if the filesystem is mounted
2488 * read-only, and in that case, ext4_da_writepages should
2489 * *never* be called, so if that ever happens, we would want
2492 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2495 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2498 range_cyclic
= wbc
->range_cyclic
;
2499 if (wbc
->range_cyclic
) {
2500 index
= mapping
->writeback_index
;
2503 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2504 wbc
->range_end
= LLONG_MAX
;
2505 wbc
->range_cyclic
= 0;
2508 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2509 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2513 * This works around two forms of stupidity. The first is in
2514 * the writeback code, which caps the maximum number of pages
2515 * written to be 1024 pages. This is wrong on multiple
2516 * levels; different architectues have a different page size,
2517 * which changes the maximum amount of data which gets
2518 * written. Secondly, 4 megabytes is way too small. XFS
2519 * forces this value to be 16 megabytes by multiplying
2520 * nr_to_write parameter by four, and then relies on its
2521 * allocator to allocate larger extents to make them
2522 * contiguous. Unfortunately this brings us to the second
2523 * stupidity, which is that ext4's mballoc code only allocates
2524 * at most 2048 blocks. So we force contiguous writes up to
2525 * the number of dirty blocks in the inode, or
2526 * sbi->max_writeback_mb_bump whichever is smaller.
2528 max_pages
= sbi
->s_max_writeback_mb_bump
<< (20 - PAGE_CACHE_SHIFT
);
2529 if (!range_cyclic
&& range_whole
) {
2530 if (wbc
->nr_to_write
== LONG_MAX
)
2531 desired_nr_to_write
= wbc
->nr_to_write
;
2533 desired_nr_to_write
= wbc
->nr_to_write
* 8;
2535 desired_nr_to_write
= ext4_num_dirty_pages(inode
, index
,
2537 if (desired_nr_to_write
> max_pages
)
2538 desired_nr_to_write
= max_pages
;
2540 if (wbc
->nr_to_write
< desired_nr_to_write
) {
2541 nr_to_writebump
= desired_nr_to_write
- wbc
->nr_to_write
;
2542 wbc
->nr_to_write
= desired_nr_to_write
;
2546 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2547 tag_pages_for_writeback(mapping
, index
, end
);
2549 blk_start_plug(&plug
);
2550 while (!ret
&& wbc
->nr_to_write
> 0) {
2553 * we insert one extent at a time. So we need
2554 * credit needed for single extent allocation.
2555 * journalled mode is currently not supported
2558 BUG_ON(ext4_should_journal_data(inode
));
2559 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2561 /* start a new transaction*/
2562 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
2564 if (IS_ERR(handle
)) {
2565 ret
= PTR_ERR(handle
);
2566 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2567 "%ld pages, ino %lu; err %d", __func__
,
2568 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2569 blk_finish_plug(&plug
);
2570 goto out_writepages
;
2574 * Now call write_cache_pages_da() to find the next
2575 * contiguous region of logical blocks that need
2576 * blocks to be allocated by ext4 and submit them.
2578 ret
= write_cache_pages_da(handle
, mapping
,
2579 wbc
, &mpd
, &done_index
);
2581 * If we have a contiguous extent of pages and we
2582 * haven't done the I/O yet, map the blocks and submit
2585 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
2586 mpage_da_map_and_submit(&mpd
);
2587 ret
= MPAGE_DA_EXTENT_TAIL
;
2589 trace_ext4_da_write_pages(inode
, &mpd
);
2590 wbc
->nr_to_write
-= mpd
.pages_written
;
2592 ext4_journal_stop(handle
);
2594 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
2595 /* commit the transaction which would
2596 * free blocks released in the transaction
2599 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2601 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
2603 * Got one extent now try with rest of the pages.
2604 * If mpd.retval is set -EIO, journal is aborted.
2605 * So we don't need to write any more.
2607 pages_written
+= mpd
.pages_written
;
2610 } else if (wbc
->nr_to_write
)
2612 * There is no more writeout needed
2613 * or we requested for a noblocking writeout
2614 * and we found the device congested
2618 blk_finish_plug(&plug
);
2619 if (!io_done
&& !cycled
) {
2622 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2623 wbc
->range_end
= mapping
->writeback_index
- 1;
2628 wbc
->range_cyclic
= range_cyclic
;
2629 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2631 * set the writeback_index so that range_cyclic
2632 * mode will write it back later
2634 mapping
->writeback_index
= done_index
;
2637 wbc
->nr_to_write
-= nr_to_writebump
;
2638 wbc
->range_start
= range_start
;
2639 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
2643 static int ext4_nonda_switch(struct super_block
*sb
)
2645 s64 free_clusters
, dirty_clusters
;
2646 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2649 * switch to non delalloc mode if we are running low
2650 * on free block. The free block accounting via percpu
2651 * counters can get slightly wrong with percpu_counter_batch getting
2652 * accumulated on each CPU without updating global counters
2653 * Delalloc need an accurate free block accounting. So switch
2654 * to non delalloc when we are near to error range.
2657 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
);
2659 percpu_counter_read_positive(&sbi
->s_dirtyclusters_counter
);
2661 * Start pushing delalloc when 1/2 of free blocks are dirty.
2663 if (dirty_clusters
&& (free_clusters
< 2 * dirty_clusters
))
2664 try_to_writeback_inodes_sb(sb
, WB_REASON_FS_FREE_SPACE
);
2666 if (2 * free_clusters
< 3 * dirty_clusters
||
2667 free_clusters
< (dirty_clusters
+ EXT4_FREECLUSTERS_WATERMARK
)) {
2669 * free block count is less than 150% of dirty blocks
2670 * or free blocks is less than watermark
2677 /* We always reserve for an inode update; the superblock could be there too */
2678 static int ext4_da_write_credits(struct inode
*inode
, loff_t pos
, unsigned len
)
2680 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
2681 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
)))
2684 if (pos
+ len
<= 0x7fffffffULL
)
2687 /* We might need to update the superblock to set LARGE_FILE */
2691 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2692 loff_t pos
, unsigned len
, unsigned flags
,
2693 struct page
**pagep
, void **fsdata
)
2695 int ret
, retries
= 0;
2698 struct inode
*inode
= mapping
->host
;
2701 index
= pos
>> PAGE_CACHE_SHIFT
;
2703 if (ext4_nonda_switch(inode
->i_sb
)) {
2704 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2705 return ext4_write_begin(file
, mapping
, pos
,
2706 len
, flags
, pagep
, fsdata
);
2708 *fsdata
= (void *)0;
2709 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2711 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
2712 ret
= ext4_da_write_inline_data_begin(mapping
, inode
,
2722 * grab_cache_page_write_begin() can take a long time if the
2723 * system is thrashing due to memory pressure, or if the page
2724 * is being written back. So grab it first before we start
2725 * the transaction handle. This also allows us to allocate
2726 * the page (if needed) without using GFP_NOFS.
2729 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2735 * With delayed allocation, we don't log the i_disksize update
2736 * if there is delayed block allocation. But we still need
2737 * to journalling the i_disksize update if writes to the end
2738 * of file which has an already mapped buffer.
2741 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
2742 ext4_da_write_credits(inode
, pos
, len
));
2743 if (IS_ERR(handle
)) {
2744 page_cache_release(page
);
2745 return PTR_ERR(handle
);
2749 if (page
->mapping
!= mapping
) {
2750 /* The page got truncated from under us */
2752 page_cache_release(page
);
2753 ext4_journal_stop(handle
);
2756 /* In case writeback began while the page was unlocked */
2757 wait_for_stable_page(page
);
2759 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
2762 ext4_journal_stop(handle
);
2764 * block_write_begin may have instantiated a few blocks
2765 * outside i_size. Trim these off again. Don't need
2766 * i_size_read because we hold i_mutex.
2768 if (pos
+ len
> inode
->i_size
)
2769 ext4_truncate_failed_write(inode
);
2771 if (ret
== -ENOSPC
&&
2772 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2775 page_cache_release(page
);
2784 * Check if we should update i_disksize
2785 * when write to the end of file but not require block allocation
2787 static int ext4_da_should_update_i_disksize(struct page
*page
,
2788 unsigned long offset
)
2790 struct buffer_head
*bh
;
2791 struct inode
*inode
= page
->mapping
->host
;
2795 bh
= page_buffers(page
);
2796 idx
= offset
>> inode
->i_blkbits
;
2798 for (i
= 0; i
< idx
; i
++)
2799 bh
= bh
->b_this_page
;
2801 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
2806 static int ext4_da_write_end(struct file
*file
,
2807 struct address_space
*mapping
,
2808 loff_t pos
, unsigned len
, unsigned copied
,
2809 struct page
*page
, void *fsdata
)
2811 struct inode
*inode
= mapping
->host
;
2813 handle_t
*handle
= ext4_journal_current_handle();
2815 unsigned long start
, end
;
2816 int write_mode
= (int)(unsigned long)fsdata
;
2818 if (write_mode
== FALL_BACK_TO_NONDELALLOC
)
2819 return ext4_write_end(file
, mapping
, pos
,
2820 len
, copied
, page
, fsdata
);
2822 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
2823 start
= pos
& (PAGE_CACHE_SIZE
- 1);
2824 end
= start
+ copied
- 1;
2827 * generic_write_end() will run mark_inode_dirty() if i_size
2828 * changes. So let's piggyback the i_disksize mark_inode_dirty
2831 new_i_size
= pos
+ copied
;
2832 if (copied
&& new_i_size
> EXT4_I(inode
)->i_disksize
) {
2833 if (ext4_has_inline_data(inode
) ||
2834 ext4_da_should_update_i_disksize(page
, end
)) {
2835 down_write(&EXT4_I(inode
)->i_data_sem
);
2836 if (new_i_size
> EXT4_I(inode
)->i_disksize
)
2837 EXT4_I(inode
)->i_disksize
= new_i_size
;
2838 up_write(&EXT4_I(inode
)->i_data_sem
);
2839 /* We need to mark inode dirty even if
2840 * new_i_size is less that inode->i_size
2841 * bu greater than i_disksize.(hint delalloc)
2843 ext4_mark_inode_dirty(handle
, inode
);
2847 if (write_mode
!= CONVERT_INLINE_DATA
&&
2848 ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
) &&
2849 ext4_has_inline_data(inode
))
2850 ret2
= ext4_da_write_inline_data_end(inode
, pos
, len
, copied
,
2853 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
2859 ret2
= ext4_journal_stop(handle
);
2863 return ret
? ret
: copied
;
2866 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
2869 * Drop reserved blocks
2871 BUG_ON(!PageLocked(page
));
2872 if (!page_has_buffers(page
))
2875 ext4_da_page_release_reservation(page
, offset
);
2878 ext4_invalidatepage(page
, offset
);
2884 * Force all delayed allocation blocks to be allocated for a given inode.
2886 int ext4_alloc_da_blocks(struct inode
*inode
)
2888 trace_ext4_alloc_da_blocks(inode
);
2890 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
2891 !EXT4_I(inode
)->i_reserved_meta_blocks
)
2895 * We do something simple for now. The filemap_flush() will
2896 * also start triggering a write of the data blocks, which is
2897 * not strictly speaking necessary (and for users of
2898 * laptop_mode, not even desirable). However, to do otherwise
2899 * would require replicating code paths in:
2901 * ext4_da_writepages() ->
2902 * write_cache_pages() ---> (via passed in callback function)
2903 * __mpage_da_writepage() -->
2904 * mpage_add_bh_to_extent()
2905 * mpage_da_map_blocks()
2907 * The problem is that write_cache_pages(), located in
2908 * mm/page-writeback.c, marks pages clean in preparation for
2909 * doing I/O, which is not desirable if we're not planning on
2912 * We could call write_cache_pages(), and then redirty all of
2913 * the pages by calling redirty_page_for_writepage() but that
2914 * would be ugly in the extreme. So instead we would need to
2915 * replicate parts of the code in the above functions,
2916 * simplifying them because we wouldn't actually intend to
2917 * write out the pages, but rather only collect contiguous
2918 * logical block extents, call the multi-block allocator, and
2919 * then update the buffer heads with the block allocations.
2921 * For now, though, we'll cheat by calling filemap_flush(),
2922 * which will map the blocks, and start the I/O, but not
2923 * actually wait for the I/O to complete.
2925 return filemap_flush(inode
->i_mapping
);
2929 * bmap() is special. It gets used by applications such as lilo and by
2930 * the swapper to find the on-disk block of a specific piece of data.
2932 * Naturally, this is dangerous if the block concerned is still in the
2933 * journal. If somebody makes a swapfile on an ext4 data-journaling
2934 * filesystem and enables swap, then they may get a nasty shock when the
2935 * data getting swapped to that swapfile suddenly gets overwritten by
2936 * the original zero's written out previously to the journal and
2937 * awaiting writeback in the kernel's buffer cache.
2939 * So, if we see any bmap calls here on a modified, data-journaled file,
2940 * take extra steps to flush any blocks which might be in the cache.
2942 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
2944 struct inode
*inode
= mapping
->host
;
2949 * We can get here for an inline file via the FIBMAP ioctl
2951 if (ext4_has_inline_data(inode
))
2954 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
2955 test_opt(inode
->i_sb
, DELALLOC
)) {
2957 * With delalloc we want to sync the file
2958 * so that we can make sure we allocate
2961 filemap_write_and_wait(mapping
);
2964 if (EXT4_JOURNAL(inode
) &&
2965 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
2967 * This is a REALLY heavyweight approach, but the use of
2968 * bmap on dirty files is expected to be extremely rare:
2969 * only if we run lilo or swapon on a freshly made file
2970 * do we expect this to happen.
2972 * (bmap requires CAP_SYS_RAWIO so this does not
2973 * represent an unprivileged user DOS attack --- we'd be
2974 * in trouble if mortal users could trigger this path at
2977 * NB. EXT4_STATE_JDATA is not set on files other than
2978 * regular files. If somebody wants to bmap a directory
2979 * or symlink and gets confused because the buffer
2980 * hasn't yet been flushed to disk, they deserve
2981 * everything they get.
2984 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
2985 journal
= EXT4_JOURNAL(inode
);
2986 jbd2_journal_lock_updates(journal
);
2987 err
= jbd2_journal_flush(journal
);
2988 jbd2_journal_unlock_updates(journal
);
2994 return generic_block_bmap(mapping
, block
, ext4_get_block
);
2997 static int ext4_readpage(struct file
*file
, struct page
*page
)
3000 struct inode
*inode
= page
->mapping
->host
;
3002 trace_ext4_readpage(page
);
3004 if (ext4_has_inline_data(inode
))
3005 ret
= ext4_readpage_inline(inode
, page
);
3008 return mpage_readpage(page
, ext4_get_block
);
3014 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3015 struct list_head
*pages
, unsigned nr_pages
)
3017 struct inode
*inode
= mapping
->host
;
3019 /* If the file has inline data, no need to do readpages. */
3020 if (ext4_has_inline_data(inode
))
3023 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
3026 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
3028 trace_ext4_invalidatepage(page
, offset
);
3030 /* No journalling happens on data buffers when this function is used */
3031 WARN_ON(page_has_buffers(page
) && buffer_jbd(page_buffers(page
)));
3033 block_invalidatepage(page
, offset
);
3036 static int __ext4_journalled_invalidatepage(struct page
*page
,
3037 unsigned long offset
)
3039 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3041 trace_ext4_journalled_invalidatepage(page
, offset
);
3044 * If it's a full truncate we just forget about the pending dirtying
3047 ClearPageChecked(page
);
3049 return jbd2_journal_invalidatepage(journal
, page
, offset
);
3052 /* Wrapper for aops... */
3053 static void ext4_journalled_invalidatepage(struct page
*page
,
3054 unsigned long offset
)
3056 WARN_ON(__ext4_journalled_invalidatepage(page
, offset
) < 0);
3059 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3061 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3063 trace_ext4_releasepage(page
);
3065 /* Page has dirty journalled data -> cannot release */
3066 if (PageChecked(page
))
3069 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3071 return try_to_free_buffers(page
);
3075 * ext4_get_block used when preparing for a DIO write or buffer write.
3076 * We allocate an uinitialized extent if blocks haven't been allocated.
3077 * The extent will be converted to initialized after the IO is complete.
3079 int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
3080 struct buffer_head
*bh_result
, int create
)
3082 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3083 inode
->i_ino
, create
);
3084 return _ext4_get_block(inode
, iblock
, bh_result
,
3085 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
3088 static int ext4_get_block_write_nolock(struct inode
*inode
, sector_t iblock
,
3089 struct buffer_head
*bh_result
, int create
)
3091 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3092 inode
->i_ino
, create
);
3093 return _ext4_get_block(inode
, iblock
, bh_result
,
3094 EXT4_GET_BLOCKS_NO_LOCK
);
3097 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
3098 ssize_t size
, void *private, int ret
,
3101 struct inode
*inode
= file_inode(iocb
->ki_filp
);
3102 ext4_io_end_t
*io_end
= iocb
->private;
3104 /* if not async direct IO or dio with 0 bytes write, just return */
3105 if (!io_end
|| !size
)
3108 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3109 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3110 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
3113 iocb
->private = NULL
;
3115 /* if not aio dio with unwritten extents, just free io and return */
3116 if (!(io_end
->flag
& EXT4_IO_END_UNWRITTEN
)) {
3117 ext4_free_io_end(io_end
);
3119 inode_dio_done(inode
);
3121 aio_complete(iocb
, ret
, 0);
3125 io_end
->offset
= offset
;
3126 io_end
->size
= size
;
3128 io_end
->iocb
= iocb
;
3129 io_end
->result
= ret
;
3132 ext4_add_complete_io(io_end
);
3136 * For ext4 extent files, ext4 will do direct-io write to holes,
3137 * preallocated extents, and those write extend the file, no need to
3138 * fall back to buffered IO.
3140 * For holes, we fallocate those blocks, mark them as uninitialized
3141 * If those blocks were preallocated, we mark sure they are split, but
3142 * still keep the range to write as uninitialized.
3144 * The unwritten extents will be converted to written when DIO is completed.
3145 * For async direct IO, since the IO may still pending when return, we
3146 * set up an end_io call back function, which will do the conversion
3147 * when async direct IO completed.
3149 * If the O_DIRECT write will extend the file then add this inode to the
3150 * orphan list. So recovery will truncate it back to the original size
3151 * if the machine crashes during the write.
3154 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
3155 const struct iovec
*iov
, loff_t offset
,
3156 unsigned long nr_segs
)
3158 struct file
*file
= iocb
->ki_filp
;
3159 struct inode
*inode
= file
->f_mapping
->host
;
3161 size_t count
= iov_length(iov
, nr_segs
);
3163 get_block_t
*get_block_func
= NULL
;
3165 loff_t final_size
= offset
+ count
;
3167 /* Use the old path for reads and writes beyond i_size. */
3168 if (rw
!= WRITE
|| final_size
> inode
->i_size
)
3169 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3171 BUG_ON(iocb
->private == NULL
);
3173 /* If we do a overwrite dio, i_mutex locking can be released */
3174 overwrite
= *((int *)iocb
->private);
3177 atomic_inc(&inode
->i_dio_count
);
3178 down_read(&EXT4_I(inode
)->i_data_sem
);
3179 mutex_unlock(&inode
->i_mutex
);
3183 * We could direct write to holes and fallocate.
3185 * Allocated blocks to fill the hole are marked as
3186 * uninitialized to prevent parallel buffered read to expose
3187 * the stale data before DIO complete the data IO.
3189 * As to previously fallocated extents, ext4 get_block will
3190 * just simply mark the buffer mapped but still keep the
3191 * extents uninitialized.
3193 * For non AIO case, we will convert those unwritten extents
3194 * to written after return back from blockdev_direct_IO.
3196 * For async DIO, the conversion needs to be deferred when the
3197 * IO is completed. The ext4 end_io callback function will be
3198 * called to take care of the conversion work. Here for async
3199 * case, we allocate an io_end structure to hook to the iocb.
3201 iocb
->private = NULL
;
3202 ext4_inode_aio_set(inode
, NULL
);
3203 if (!is_sync_kiocb(iocb
)) {
3204 ext4_io_end_t
*io_end
= ext4_init_io_end(inode
, GFP_NOFS
);
3209 io_end
->flag
|= EXT4_IO_END_DIRECT
;
3210 iocb
->private = io_end
;
3212 * we save the io structure for current async direct
3213 * IO, so that later ext4_map_blocks() could flag the
3214 * io structure whether there is a unwritten extents
3215 * needs to be converted when IO is completed.
3217 ext4_inode_aio_set(inode
, io_end
);
3221 get_block_func
= ext4_get_block_write_nolock
;
3223 get_block_func
= ext4_get_block_write
;
3224 dio_flags
= DIO_LOCKING
;
3226 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
3227 inode
->i_sb
->s_bdev
, iov
,
3235 ext4_inode_aio_set(inode
, NULL
);
3237 * The io_end structure takes a reference to the inode, that
3238 * structure needs to be destroyed and the reference to the
3239 * inode need to be dropped, when IO is complete, even with 0
3240 * byte write, or failed.
3242 * In the successful AIO DIO case, the io_end structure will
3243 * be destroyed and the reference to the inode will be dropped
3244 * after the end_io call back function is called.
3246 * In the case there is 0 byte write, or error case, since VFS
3247 * direct IO won't invoke the end_io call back function, we
3248 * need to free the end_io structure here.
3250 if (ret
!= -EIOCBQUEUED
&& ret
<= 0 && iocb
->private) {
3251 ext4_free_io_end(iocb
->private);
3252 iocb
->private = NULL
;
3253 } else if (ret
> 0 && !overwrite
&& ext4_test_inode_state(inode
,
3254 EXT4_STATE_DIO_UNWRITTEN
)) {
3257 * for non AIO case, since the IO is already
3258 * completed, we could do the conversion right here
3260 err
= ext4_convert_unwritten_extents(inode
,
3264 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3268 /* take i_mutex locking again if we do a ovewrite dio */
3270 inode_dio_done(inode
);
3271 up_read(&EXT4_I(inode
)->i_data_sem
);
3272 mutex_lock(&inode
->i_mutex
);
3278 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3279 const struct iovec
*iov
, loff_t offset
,
3280 unsigned long nr_segs
)
3282 struct file
*file
= iocb
->ki_filp
;
3283 struct inode
*inode
= file
->f_mapping
->host
;
3287 * If we are doing data journalling we don't support O_DIRECT
3289 if (ext4_should_journal_data(inode
))
3292 /* Let buffer I/O handle the inline data case. */
3293 if (ext4_has_inline_data(inode
))
3296 trace_ext4_direct_IO_enter(inode
, offset
, iov_length(iov
, nr_segs
), rw
);
3297 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3298 ret
= ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3300 ret
= ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3301 trace_ext4_direct_IO_exit(inode
, offset
,
3302 iov_length(iov
, nr_segs
), rw
, ret
);
3307 * Pages can be marked dirty completely asynchronously from ext4's journalling
3308 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3309 * much here because ->set_page_dirty is called under VFS locks. The page is
3310 * not necessarily locked.
3312 * We cannot just dirty the page and leave attached buffers clean, because the
3313 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3314 * or jbddirty because all the journalling code will explode.
3316 * So what we do is to mark the page "pending dirty" and next time writepage
3317 * is called, propagate that into the buffers appropriately.
3319 static int ext4_journalled_set_page_dirty(struct page
*page
)
3321 SetPageChecked(page
);
3322 return __set_page_dirty_nobuffers(page
);
3325 static const struct address_space_operations ext4_aops
= {
3326 .readpage
= ext4_readpage
,
3327 .readpages
= ext4_readpages
,
3328 .writepage
= ext4_writepage
,
3329 .write_begin
= ext4_write_begin
,
3330 .write_end
= ext4_write_end
,
3332 .invalidatepage
= ext4_invalidatepage
,
3333 .releasepage
= ext4_releasepage
,
3334 .direct_IO
= ext4_direct_IO
,
3335 .migratepage
= buffer_migrate_page
,
3336 .is_partially_uptodate
= block_is_partially_uptodate
,
3337 .error_remove_page
= generic_error_remove_page
,
3340 static const struct address_space_operations ext4_journalled_aops
= {
3341 .readpage
= ext4_readpage
,
3342 .readpages
= ext4_readpages
,
3343 .writepage
= ext4_writepage
,
3344 .write_begin
= ext4_write_begin
,
3345 .write_end
= ext4_journalled_write_end
,
3346 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3348 .invalidatepage
= ext4_journalled_invalidatepage
,
3349 .releasepage
= ext4_releasepage
,
3350 .direct_IO
= ext4_direct_IO
,
3351 .is_partially_uptodate
= block_is_partially_uptodate
,
3352 .error_remove_page
= generic_error_remove_page
,
3355 static const struct address_space_operations ext4_da_aops
= {
3356 .readpage
= ext4_readpage
,
3357 .readpages
= ext4_readpages
,
3358 .writepage
= ext4_writepage
,
3359 .writepages
= ext4_da_writepages
,
3360 .write_begin
= ext4_da_write_begin
,
3361 .write_end
= ext4_da_write_end
,
3363 .invalidatepage
= ext4_da_invalidatepage
,
3364 .releasepage
= ext4_releasepage
,
3365 .direct_IO
= ext4_direct_IO
,
3366 .migratepage
= buffer_migrate_page
,
3367 .is_partially_uptodate
= block_is_partially_uptodate
,
3368 .error_remove_page
= generic_error_remove_page
,
3371 void ext4_set_aops(struct inode
*inode
)
3373 switch (ext4_inode_journal_mode(inode
)) {
3374 case EXT4_INODE_ORDERED_DATA_MODE
:
3375 ext4_set_inode_state(inode
, EXT4_STATE_ORDERED_MODE
);
3377 case EXT4_INODE_WRITEBACK_DATA_MODE
:
3378 ext4_clear_inode_state(inode
, EXT4_STATE_ORDERED_MODE
);
3380 case EXT4_INODE_JOURNAL_DATA_MODE
:
3381 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3386 if (test_opt(inode
->i_sb
, DELALLOC
))
3387 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3389 inode
->i_mapping
->a_ops
= &ext4_aops
;
3394 * ext4_discard_partial_page_buffers()
3395 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3396 * This function finds and locks the page containing the offset
3397 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3398 * Calling functions that already have the page locked should call
3399 * ext4_discard_partial_page_buffers_no_lock directly.
3401 int ext4_discard_partial_page_buffers(handle_t
*handle
,
3402 struct address_space
*mapping
, loff_t from
,
3403 loff_t length
, int flags
)
3405 struct inode
*inode
= mapping
->host
;
3409 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3410 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3414 err
= ext4_discard_partial_page_buffers_no_lock(handle
, inode
, page
,
3415 from
, length
, flags
);
3418 page_cache_release(page
);
3423 * ext4_discard_partial_page_buffers_no_lock()
3424 * Zeros a page range of length 'length' starting from offset 'from'.
3425 * Buffer heads that correspond to the block aligned regions of the
3426 * zeroed range will be unmapped. Unblock aligned regions
3427 * will have the corresponding buffer head mapped if needed so that
3428 * that region of the page can be updated with the partial zero out.
3430 * This function assumes that the page has already been locked. The
3431 * The range to be discarded must be contained with in the given page.
3432 * If the specified range exceeds the end of the page it will be shortened
3433 * to the end of the page that corresponds to 'from'. This function is
3434 * appropriate for updating a page and it buffer heads to be unmapped and
3435 * zeroed for blocks that have been either released, or are going to be
3438 * handle: The journal handle
3439 * inode: The files inode
3440 * page: A locked page that contains the offset "from"
3441 * from: The starting byte offset (from the beginning of the file)
3442 * to begin discarding
3443 * len: The length of bytes to discard
3444 * flags: Optional flags that may be used:
3446 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3447 * Only zero the regions of the page whose buffer heads
3448 * have already been unmapped. This flag is appropriate
3449 * for updating the contents of a page whose blocks may
3450 * have already been released, and we only want to zero
3451 * out the regions that correspond to those released blocks.
3453 * Returns zero on success or negative on failure.
3455 static int ext4_discard_partial_page_buffers_no_lock(handle_t
*handle
,
3456 struct inode
*inode
, struct page
*page
, loff_t from
,
3457 loff_t length
, int flags
)
3459 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3460 unsigned int offset
= from
& (PAGE_CACHE_SIZE
-1);
3461 unsigned int blocksize
, max
, pos
;
3463 struct buffer_head
*bh
;
3466 blocksize
= inode
->i_sb
->s_blocksize
;
3467 max
= PAGE_CACHE_SIZE
- offset
;
3469 if (index
!= page
->index
)
3473 * correct length if it does not fall between
3474 * 'from' and the end of the page
3476 if (length
> max
|| length
< 0)
3479 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3481 if (!page_has_buffers(page
))
3482 create_empty_buffers(page
, blocksize
, 0);
3484 /* Find the buffer that contains "offset" */
3485 bh
= page_buffers(page
);
3487 while (offset
>= pos
) {
3488 bh
= bh
->b_this_page
;
3494 while (pos
< offset
+ length
) {
3495 unsigned int end_of_block
, range_to_discard
;
3499 /* The length of space left to zero and unmap */
3500 range_to_discard
= offset
+ length
- pos
;
3502 /* The length of space until the end of the block */
3503 end_of_block
= blocksize
- (pos
& (blocksize
-1));
3506 * Do not unmap or zero past end of block
3507 * for this buffer head
3509 if (range_to_discard
> end_of_block
)
3510 range_to_discard
= end_of_block
;
3514 * Skip this buffer head if we are only zeroing unampped
3515 * regions of the page
3517 if (flags
& EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
&&
3521 /* If the range is block aligned, unmap */
3522 if (range_to_discard
== blocksize
) {
3523 clear_buffer_dirty(bh
);
3525 clear_buffer_mapped(bh
);
3526 clear_buffer_req(bh
);
3527 clear_buffer_new(bh
);
3528 clear_buffer_delay(bh
);
3529 clear_buffer_unwritten(bh
);
3530 clear_buffer_uptodate(bh
);
3531 zero_user(page
, pos
, range_to_discard
);
3532 BUFFER_TRACE(bh
, "Buffer discarded");
3537 * If this block is not completely contained in the range
3538 * to be discarded, then it is not going to be released. Because
3539 * we need to keep this block, we need to make sure this part
3540 * of the page is uptodate before we modify it by writeing
3541 * partial zeros on it.
3543 if (!buffer_mapped(bh
)) {
3545 * Buffer head must be mapped before we can read
3548 BUFFER_TRACE(bh
, "unmapped");
3549 ext4_get_block(inode
, iblock
, bh
, 0);
3550 /* unmapped? It's a hole - nothing to do */
3551 if (!buffer_mapped(bh
)) {
3552 BUFFER_TRACE(bh
, "still unmapped");
3557 /* Ok, it's mapped. Make sure it's up-to-date */
3558 if (PageUptodate(page
))
3559 set_buffer_uptodate(bh
);
3561 if (!buffer_uptodate(bh
)) {
3563 ll_rw_block(READ
, 1, &bh
);
3565 /* Uhhuh. Read error. Complain and punt.*/
3566 if (!buffer_uptodate(bh
))
3570 if (ext4_should_journal_data(inode
)) {
3571 BUFFER_TRACE(bh
, "get write access");
3572 err
= ext4_journal_get_write_access(handle
, bh
);
3577 zero_user(page
, pos
, range_to_discard
);
3580 if (ext4_should_journal_data(inode
)) {
3581 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3583 mark_buffer_dirty(bh
);
3585 BUFFER_TRACE(bh
, "Partial buffer zeroed");
3587 bh
= bh
->b_this_page
;
3589 pos
+= range_to_discard
;
3595 int ext4_can_truncate(struct inode
*inode
)
3597 if (S_ISREG(inode
->i_mode
))
3599 if (S_ISDIR(inode
->i_mode
))
3601 if (S_ISLNK(inode
->i_mode
))
3602 return !ext4_inode_is_fast_symlink(inode
);
3607 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3608 * associated with the given offset and length
3610 * @inode: File inode
3611 * @offset: The offset where the hole will begin
3612 * @len: The length of the hole
3614 * Returns: 0 on success or negative on failure
3617 int ext4_punch_hole(struct file
*file
, loff_t offset
, loff_t length
)
3619 struct inode
*inode
= file_inode(file
);
3620 struct super_block
*sb
= inode
->i_sb
;
3621 ext4_lblk_t first_block
, stop_block
;
3622 struct address_space
*mapping
= inode
->i_mapping
;
3623 loff_t first_page
, last_page
, page_len
;
3624 loff_t first_page_offset
, last_page_offset
;
3626 unsigned int credits
;
3629 if (!S_ISREG(inode
->i_mode
))
3632 if (EXT4_SB(sb
)->s_cluster_ratio
> 1) {
3633 /* TODO: Add support for bigalloc file systems */
3637 trace_ext4_punch_hole(inode
, offset
, length
);
3640 * Write out all dirty pages to avoid race conditions
3641 * Then release them.
3643 if (mapping
->nrpages
&& mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
3644 ret
= filemap_write_and_wait_range(mapping
, offset
,
3645 offset
+ length
- 1);
3650 mutex_lock(&inode
->i_mutex
);
3651 /* It's not possible punch hole on append only file */
3652 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
)) {
3656 if (IS_SWAPFILE(inode
)) {
3661 /* No need to punch hole beyond i_size */
3662 if (offset
>= inode
->i_size
)
3666 * If the hole extends beyond i_size, set the hole
3667 * to end after the page that contains i_size
3669 if (offset
+ length
> inode
->i_size
) {
3670 length
= inode
->i_size
+
3671 PAGE_CACHE_SIZE
- (inode
->i_size
& (PAGE_CACHE_SIZE
- 1)) -
3675 first_page
= (offset
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
3676 last_page
= (offset
+ length
) >> PAGE_CACHE_SHIFT
;
3678 first_page_offset
= first_page
<< PAGE_CACHE_SHIFT
;
3679 last_page_offset
= last_page
<< PAGE_CACHE_SHIFT
;
3681 /* Now release the pages */
3682 if (last_page_offset
> first_page_offset
) {
3683 truncate_pagecache_range(inode
, first_page_offset
,
3684 last_page_offset
- 1);
3687 /* Wait all existing dio workers, newcomers will block on i_mutex */
3688 ext4_inode_block_unlocked_dio(inode
);
3689 ret
= ext4_flush_unwritten_io(inode
);
3692 inode_dio_wait(inode
);
3694 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3695 credits
= ext4_writepage_trans_blocks(inode
);
3697 credits
= ext4_blocks_for_truncate(inode
);
3698 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
3699 if (IS_ERR(handle
)) {
3700 ret
= PTR_ERR(handle
);
3701 ext4_std_error(sb
, ret
);
3706 * Now we need to zero out the non-page-aligned data in the
3707 * pages at the start and tail of the hole, and unmap the
3708 * buffer heads for the block aligned regions of the page that
3709 * were completely zeroed.
3711 if (first_page
> last_page
) {
3713 * If the file space being truncated is contained
3714 * within a page just zero out and unmap the middle of
3717 ret
= ext4_discard_partial_page_buffers(handle
,
3718 mapping
, offset
, length
, 0);
3724 * zero out and unmap the partial page that contains
3725 * the start of the hole
3727 page_len
= first_page_offset
- offset
;
3729 ret
= ext4_discard_partial_page_buffers(handle
, mapping
,
3730 offset
, page_len
, 0);
3736 * zero out and unmap the partial page that contains
3737 * the end of the hole
3739 page_len
= offset
+ length
- last_page_offset
;
3741 ret
= ext4_discard_partial_page_buffers(handle
, mapping
,
3742 last_page_offset
, page_len
, 0);
3749 * If i_size is contained in the last page, we need to
3750 * unmap and zero the partial page after i_size
3752 if (inode
->i_size
>> PAGE_CACHE_SHIFT
== last_page
&&
3753 inode
->i_size
% PAGE_CACHE_SIZE
!= 0) {
3754 page_len
= PAGE_CACHE_SIZE
-
3755 (inode
->i_size
& (PAGE_CACHE_SIZE
- 1));
3758 ret
= ext4_discard_partial_page_buffers(handle
,
3759 mapping
, inode
->i_size
, page_len
, 0);
3766 first_block
= (offset
+ sb
->s_blocksize
- 1) >>
3767 EXT4_BLOCK_SIZE_BITS(sb
);
3768 stop_block
= (offset
+ length
) >> EXT4_BLOCK_SIZE_BITS(sb
);
3770 /* If there are no blocks to remove, return now */
3771 if (first_block
>= stop_block
)
3774 down_write(&EXT4_I(inode
)->i_data_sem
);
3775 ext4_discard_preallocations(inode
);
3777 ret
= ext4_es_remove_extent(inode
, first_block
,
3778 stop_block
- first_block
);
3780 up_write(&EXT4_I(inode
)->i_data_sem
);
3784 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3785 ret
= ext4_ext_remove_space(inode
, first_block
,
3788 ret
= ext4_free_hole_blocks(handle
, inode
, first_block
,
3791 ext4_discard_preallocations(inode
);
3792 up_write(&EXT4_I(inode
)->i_data_sem
);
3794 ext4_handle_sync(handle
);
3795 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
3796 ext4_mark_inode_dirty(handle
, inode
);
3798 ext4_journal_stop(handle
);
3800 ext4_inode_resume_unlocked_dio(inode
);
3802 mutex_unlock(&inode
->i_mutex
);
3809 * We block out ext4_get_block() block instantiations across the entire
3810 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3811 * simultaneously on behalf of the same inode.
3813 * As we work through the truncate and commit bits of it to the journal there
3814 * is one core, guiding principle: the file's tree must always be consistent on
3815 * disk. We must be able to restart the truncate after a crash.
3817 * The file's tree may be transiently inconsistent in memory (although it
3818 * probably isn't), but whenever we close off and commit a journal transaction,
3819 * the contents of (the filesystem + the journal) must be consistent and
3820 * restartable. It's pretty simple, really: bottom up, right to left (although
3821 * left-to-right works OK too).
3823 * Note that at recovery time, journal replay occurs *before* the restart of
3824 * truncate against the orphan inode list.
3826 * The committed inode has the new, desired i_size (which is the same as
3827 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3828 * that this inode's truncate did not complete and it will again call
3829 * ext4_truncate() to have another go. So there will be instantiated blocks
3830 * to the right of the truncation point in a crashed ext4 filesystem. But
3831 * that's fine - as long as they are linked from the inode, the post-crash
3832 * ext4_truncate() run will find them and release them.
3834 void ext4_truncate(struct inode
*inode
)
3836 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3837 unsigned int credits
;
3839 struct address_space
*mapping
= inode
->i_mapping
;
3843 * There is a possibility that we're either freeing the inode
3844 * or it completely new indode. In those cases we might not
3845 * have i_mutex locked because it's not necessary.
3847 if (!(inode
->i_state
& (I_NEW
|I_FREEING
)))
3848 WARN_ON(!mutex_is_locked(&inode
->i_mutex
));
3849 trace_ext4_truncate_enter(inode
);
3851 if (!ext4_can_truncate(inode
))
3854 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3856 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
3857 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
3859 if (ext4_has_inline_data(inode
)) {
3862 ext4_inline_data_truncate(inode
, &has_inline
);
3868 * finish any pending end_io work so we won't run the risk of
3869 * converting any truncated blocks to initialized later
3871 ext4_flush_unwritten_io(inode
);
3873 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3874 credits
= ext4_writepage_trans_blocks(inode
);
3876 credits
= ext4_blocks_for_truncate(inode
);
3878 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
3879 if (IS_ERR(handle
)) {
3880 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
3884 if (inode
->i_size
% PAGE_CACHE_SIZE
!= 0) {
3885 page_len
= PAGE_CACHE_SIZE
-
3886 (inode
->i_size
& (PAGE_CACHE_SIZE
- 1));
3888 if (ext4_discard_partial_page_buffers(handle
,
3889 mapping
, inode
->i_size
, page_len
, 0))
3894 * We add the inode to the orphan list, so that if this
3895 * truncate spans multiple transactions, and we crash, we will
3896 * resume the truncate when the filesystem recovers. It also
3897 * marks the inode dirty, to catch the new size.
3899 * Implication: the file must always be in a sane, consistent
3900 * truncatable state while each transaction commits.
3902 if (ext4_orphan_add(handle
, inode
))
3905 down_write(&EXT4_I(inode
)->i_data_sem
);
3907 ext4_discard_preallocations(inode
);
3909 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3910 ext4_ext_truncate(handle
, inode
);
3912 ext4_ind_truncate(handle
, inode
);
3914 up_write(&ei
->i_data_sem
);
3917 ext4_handle_sync(handle
);
3921 * If this was a simple ftruncate() and the file will remain alive,
3922 * then we need to clear up the orphan record which we created above.
3923 * However, if this was a real unlink then we were called by
3924 * ext4_delete_inode(), and we allow that function to clean up the
3925 * orphan info for us.
3928 ext4_orphan_del(handle
, inode
);
3930 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
3931 ext4_mark_inode_dirty(handle
, inode
);
3932 ext4_journal_stop(handle
);
3934 trace_ext4_truncate_exit(inode
);
3938 * ext4_get_inode_loc returns with an extra refcount against the inode's
3939 * underlying buffer_head on success. If 'in_mem' is true, we have all
3940 * data in memory that is needed to recreate the on-disk version of this
3943 static int __ext4_get_inode_loc(struct inode
*inode
,
3944 struct ext4_iloc
*iloc
, int in_mem
)
3946 struct ext4_group_desc
*gdp
;
3947 struct buffer_head
*bh
;
3948 struct super_block
*sb
= inode
->i_sb
;
3950 int inodes_per_block
, inode_offset
;
3953 if (!ext4_valid_inum(sb
, inode
->i_ino
))
3956 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
3957 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
3962 * Figure out the offset within the block group inode table
3964 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
3965 inode_offset
= ((inode
->i_ino
- 1) %
3966 EXT4_INODES_PER_GROUP(sb
));
3967 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
3968 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
3970 bh
= sb_getblk(sb
, block
);
3973 if (!buffer_uptodate(bh
)) {
3977 * If the buffer has the write error flag, we have failed
3978 * to write out another inode in the same block. In this
3979 * case, we don't have to read the block because we may
3980 * read the old inode data successfully.
3982 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
3983 set_buffer_uptodate(bh
);
3985 if (buffer_uptodate(bh
)) {
3986 /* someone brought it uptodate while we waited */
3992 * If we have all information of the inode in memory and this
3993 * is the only valid inode in the block, we need not read the
3997 struct buffer_head
*bitmap_bh
;
4000 start
= inode_offset
& ~(inodes_per_block
- 1);
4002 /* Is the inode bitmap in cache? */
4003 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4004 if (unlikely(!bitmap_bh
))
4008 * If the inode bitmap isn't in cache then the
4009 * optimisation may end up performing two reads instead
4010 * of one, so skip it.
4012 if (!buffer_uptodate(bitmap_bh
)) {
4016 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4017 if (i
== inode_offset
)
4019 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4023 if (i
== start
+ inodes_per_block
) {
4024 /* all other inodes are free, so skip I/O */
4025 memset(bh
->b_data
, 0, bh
->b_size
);
4026 set_buffer_uptodate(bh
);
4034 * If we need to do any I/O, try to pre-readahead extra
4035 * blocks from the inode table.
4037 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4038 ext4_fsblk_t b
, end
, table
;
4040 __u32 ra_blks
= EXT4_SB(sb
)->s_inode_readahead_blks
;
4042 table
= ext4_inode_table(sb
, gdp
);
4043 /* s_inode_readahead_blks is always a power of 2 */
4044 b
= block
& ~((ext4_fsblk_t
) ra_blks
- 1);
4048 num
= EXT4_INODES_PER_GROUP(sb
);
4049 if (ext4_has_group_desc_csum(sb
))
4050 num
-= ext4_itable_unused_count(sb
, gdp
);
4051 table
+= num
/ inodes_per_block
;
4055 sb_breadahead(sb
, b
++);
4059 * There are other valid inodes in the buffer, this inode
4060 * has in-inode xattrs, or we don't have this inode in memory.
4061 * Read the block from disk.
4063 trace_ext4_load_inode(inode
);
4065 bh
->b_end_io
= end_buffer_read_sync
;
4066 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
4068 if (!buffer_uptodate(bh
)) {
4069 EXT4_ERROR_INODE_BLOCK(inode
, block
,
4070 "unable to read itable block");
4080 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4082 /* We have all inode data except xattrs in memory here. */
4083 return __ext4_get_inode_loc(inode
, iloc
,
4084 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
4087 void ext4_set_inode_flags(struct inode
*inode
)
4089 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4090 unsigned int new_fl
= 0;
4092 if (flags
& EXT4_SYNC_FL
)
4094 if (flags
& EXT4_APPEND_FL
)
4096 if (flags
& EXT4_IMMUTABLE_FL
)
4097 new_fl
|= S_IMMUTABLE
;
4098 if (flags
& EXT4_NOATIME_FL
)
4099 new_fl
|= S_NOATIME
;
4100 if (flags
& EXT4_DIRSYNC_FL
)
4101 new_fl
|= S_DIRSYNC
;
4102 set_mask_bits(&inode
->i_flags
,
4103 S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
, new_fl
);
4106 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4107 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4109 unsigned int vfs_fl
;
4110 unsigned long old_fl
, new_fl
;
4113 vfs_fl
= ei
->vfs_inode
.i_flags
;
4114 old_fl
= ei
->i_flags
;
4115 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4116 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
4118 if (vfs_fl
& S_SYNC
)
4119 new_fl
|= EXT4_SYNC_FL
;
4120 if (vfs_fl
& S_APPEND
)
4121 new_fl
|= EXT4_APPEND_FL
;
4122 if (vfs_fl
& S_IMMUTABLE
)
4123 new_fl
|= EXT4_IMMUTABLE_FL
;
4124 if (vfs_fl
& S_NOATIME
)
4125 new_fl
|= EXT4_NOATIME_FL
;
4126 if (vfs_fl
& S_DIRSYNC
)
4127 new_fl
|= EXT4_DIRSYNC_FL
;
4128 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
4131 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4132 struct ext4_inode_info
*ei
)
4135 struct inode
*inode
= &(ei
->vfs_inode
);
4136 struct super_block
*sb
= inode
->i_sb
;
4138 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4139 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
4140 /* we are using combined 48 bit field */
4141 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4142 le32_to_cpu(raw_inode
->i_blocks_lo
);
4143 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
4144 /* i_blocks represent file system block size */
4145 return i_blocks
<< (inode
->i_blkbits
- 9);
4150 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4154 static inline void ext4_iget_extra_inode(struct inode
*inode
,
4155 struct ext4_inode
*raw_inode
,
4156 struct ext4_inode_info
*ei
)
4158 __le32
*magic
= (void *)raw_inode
+
4159 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
;
4160 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4161 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
4162 ext4_find_inline_data_nolock(inode
);
4164 EXT4_I(inode
)->i_inline_off
= 0;
4167 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4169 struct ext4_iloc iloc
;
4170 struct ext4_inode
*raw_inode
;
4171 struct ext4_inode_info
*ei
;
4172 struct inode
*inode
;
4173 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4179 inode
= iget_locked(sb
, ino
);
4181 return ERR_PTR(-ENOMEM
);
4182 if (!(inode
->i_state
& I_NEW
))
4188 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4191 raw_inode
= ext4_raw_inode(&iloc
);
4193 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4194 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4195 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4196 EXT4_INODE_SIZE(inode
->i_sb
)) {
4197 EXT4_ERROR_INODE(inode
, "bad extra_isize (%u != %u)",
4198 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
,
4199 EXT4_INODE_SIZE(inode
->i_sb
));
4204 ei
->i_extra_isize
= 0;
4206 /* Precompute checksum seed for inode metadata */
4207 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4208 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
)) {
4209 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4211 __le32 inum
= cpu_to_le32(inode
->i_ino
);
4212 __le32 gen
= raw_inode
->i_generation
;
4213 csum
= ext4_chksum(sbi
, sbi
->s_csum_seed
, (__u8
*)&inum
,
4215 ei
->i_csum_seed
= ext4_chksum(sbi
, csum
, (__u8
*)&gen
,
4219 if (!ext4_inode_csum_verify(inode
, raw_inode
, ei
)) {
4220 EXT4_ERROR_INODE(inode
, "checksum invalid");
4225 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4226 i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4227 i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4228 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4229 i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4230 i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4232 i_uid_write(inode
, i_uid
);
4233 i_gid_write(inode
, i_gid
);
4234 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
4236 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
4237 ei
->i_inline_off
= 0;
4238 ei
->i_dir_start_lookup
= 0;
4239 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4240 /* We now have enough fields to check if the inode was active or not.
4241 * This is needed because nfsd might try to access dead inodes
4242 * the test is that same one that e2fsck uses
4243 * NeilBrown 1999oct15
4245 if (inode
->i_nlink
== 0) {
4246 if ((inode
->i_mode
== 0 ||
4247 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) &&
4248 ino
!= EXT4_BOOT_LOADER_INO
) {
4249 /* this inode is deleted */
4253 /* The only unlinked inodes we let through here have
4254 * valid i_mode and are being read by the orphan
4255 * recovery code: that's fine, we're about to complete
4256 * the process of deleting those.
4257 * OR it is the EXT4_BOOT_LOADER_INO which is
4258 * not initialized on a new filesystem. */
4260 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4261 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4262 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4263 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
4265 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4266 inode
->i_size
= ext4_isize(raw_inode
);
4267 ei
->i_disksize
= inode
->i_size
;
4269 ei
->i_reserved_quota
= 0;
4271 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4272 ei
->i_block_group
= iloc
.block_group
;
4273 ei
->i_last_alloc_group
= ~0;
4275 * NOTE! The in-memory inode i_data array is in little-endian order
4276 * even on big-endian machines: we do NOT byteswap the block numbers!
4278 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4279 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4280 INIT_LIST_HEAD(&ei
->i_orphan
);
4283 * Set transaction id's of transactions that have to be committed
4284 * to finish f[data]sync. We set them to currently running transaction
4285 * as we cannot be sure that the inode or some of its metadata isn't
4286 * part of the transaction - the inode could have been reclaimed and
4287 * now it is reread from disk.
4290 transaction_t
*transaction
;
4293 read_lock(&journal
->j_state_lock
);
4294 if (journal
->j_running_transaction
)
4295 transaction
= journal
->j_running_transaction
;
4297 transaction
= journal
->j_committing_transaction
;
4299 tid
= transaction
->t_tid
;
4301 tid
= journal
->j_commit_sequence
;
4302 read_unlock(&journal
->j_state_lock
);
4303 ei
->i_sync_tid
= tid
;
4304 ei
->i_datasync_tid
= tid
;
4307 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4308 if (ei
->i_extra_isize
== 0) {
4309 /* The extra space is currently unused. Use it. */
4310 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4311 EXT4_GOOD_OLD_INODE_SIZE
;
4313 ext4_iget_extra_inode(inode
, raw_inode
, ei
);
4317 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4318 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4319 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4320 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4322 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4323 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4324 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4326 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4330 if (ei
->i_file_acl
&&
4331 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
4332 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
4336 } else if (!ext4_has_inline_data(inode
)) {
4337 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
4338 if ((S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4339 (S_ISLNK(inode
->i_mode
) &&
4340 !ext4_inode_is_fast_symlink(inode
))))
4341 /* Validate extent which is part of inode */
4342 ret
= ext4_ext_check_inode(inode
);
4343 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4344 (S_ISLNK(inode
->i_mode
) &&
4345 !ext4_inode_is_fast_symlink(inode
))) {
4346 /* Validate block references which are part of inode */
4347 ret
= ext4_ind_check_inode(inode
);
4353 if (S_ISREG(inode
->i_mode
)) {
4354 inode
->i_op
= &ext4_file_inode_operations
;
4355 inode
->i_fop
= &ext4_file_operations
;
4356 ext4_set_aops(inode
);
4357 } else if (S_ISDIR(inode
->i_mode
)) {
4358 inode
->i_op
= &ext4_dir_inode_operations
;
4359 inode
->i_fop
= &ext4_dir_operations
;
4360 } else if (S_ISLNK(inode
->i_mode
)) {
4361 if (ext4_inode_is_fast_symlink(inode
)) {
4362 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4363 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4364 sizeof(ei
->i_data
) - 1);
4366 inode
->i_op
= &ext4_symlink_inode_operations
;
4367 ext4_set_aops(inode
);
4369 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4370 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4371 inode
->i_op
= &ext4_special_inode_operations
;
4372 if (raw_inode
->i_block
[0])
4373 init_special_inode(inode
, inode
->i_mode
,
4374 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4376 init_special_inode(inode
, inode
->i_mode
,
4377 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4378 } else if (ino
== EXT4_BOOT_LOADER_INO
) {
4379 make_bad_inode(inode
);
4382 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
4386 ext4_set_inode_flags(inode
);
4387 unlock_new_inode(inode
);
4393 return ERR_PTR(ret
);
4396 struct inode
*ext4_iget_normal(struct super_block
*sb
, unsigned long ino
)
4398 if (ino
< EXT4_FIRST_INO(sb
) && ino
!= EXT4_ROOT_INO
)
4399 return ERR_PTR(-EIO
);
4400 return ext4_iget(sb
, ino
);
4403 static int ext4_inode_blocks_set(handle_t
*handle
,
4404 struct ext4_inode
*raw_inode
,
4405 struct ext4_inode_info
*ei
)
4407 struct inode
*inode
= &(ei
->vfs_inode
);
4408 u64 i_blocks
= inode
->i_blocks
;
4409 struct super_block
*sb
= inode
->i_sb
;
4411 if (i_blocks
<= ~0U) {
4413 * i_blocks can be represented in a 32 bit variable
4414 * as multiple of 512 bytes
4416 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4417 raw_inode
->i_blocks_high
= 0;
4418 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4421 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
4424 if (i_blocks
<= 0xffffffffffffULL
) {
4426 * i_blocks can be represented in a 48 bit variable
4427 * as multiple of 512 bytes
4429 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4430 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4431 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4433 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4434 /* i_block is stored in file system block size */
4435 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
4436 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4437 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4443 * Post the struct inode info into an on-disk inode location in the
4444 * buffer-cache. This gobbles the caller's reference to the
4445 * buffer_head in the inode location struct.
4447 * The caller must have write access to iloc->bh.
4449 static int ext4_do_update_inode(handle_t
*handle
,
4450 struct inode
*inode
,
4451 struct ext4_iloc
*iloc
)
4453 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
4454 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4455 struct buffer_head
*bh
= iloc
->bh
;
4456 int err
= 0, rc
, block
;
4457 int need_datasync
= 0;
4461 /* For fields not not tracking in the in-memory inode,
4462 * initialise them to zero for new inodes. */
4463 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
4464 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
4466 ext4_get_inode_flags(ei
);
4467 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
4468 i_uid
= i_uid_read(inode
);
4469 i_gid
= i_gid_read(inode
);
4470 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4471 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(i_uid
));
4472 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(i_gid
));
4474 * Fix up interoperability with old kernels. Otherwise, old inodes get
4475 * re-used with the upper 16 bits of the uid/gid intact
4478 raw_inode
->i_uid_high
=
4479 cpu_to_le16(high_16_bits(i_uid
));
4480 raw_inode
->i_gid_high
=
4481 cpu_to_le16(high_16_bits(i_gid
));
4483 raw_inode
->i_uid_high
= 0;
4484 raw_inode
->i_gid_high
= 0;
4487 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(i_uid
));
4488 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(i_gid
));
4489 raw_inode
->i_uid_high
= 0;
4490 raw_inode
->i_gid_high
= 0;
4492 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
4494 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
4495 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
4496 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
4497 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
4499 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
4501 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
4502 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
4503 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
4504 cpu_to_le32(EXT4_OS_HURD
))
4505 raw_inode
->i_file_acl_high
=
4506 cpu_to_le16(ei
->i_file_acl
>> 32);
4507 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
4508 if (ei
->i_disksize
!= ext4_isize(raw_inode
)) {
4509 ext4_isize_set(raw_inode
, ei
->i_disksize
);
4512 if (ei
->i_disksize
> 0x7fffffffULL
) {
4513 struct super_block
*sb
= inode
->i_sb
;
4514 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4515 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
4516 EXT4_SB(sb
)->s_es
->s_rev_level
==
4517 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
4518 /* If this is the first large file
4519 * created, add a flag to the superblock.
4521 err
= ext4_journal_get_write_access(handle
,
4522 EXT4_SB(sb
)->s_sbh
);
4525 ext4_update_dynamic_rev(sb
);
4526 EXT4_SET_RO_COMPAT_FEATURE(sb
,
4527 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
4528 ext4_handle_sync(handle
);
4529 err
= ext4_handle_dirty_super(handle
, sb
);
4532 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
4533 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
4534 if (old_valid_dev(inode
->i_rdev
)) {
4535 raw_inode
->i_block
[0] =
4536 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
4537 raw_inode
->i_block
[1] = 0;
4539 raw_inode
->i_block
[0] = 0;
4540 raw_inode
->i_block
[1] =
4541 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
4542 raw_inode
->i_block
[2] = 0;
4544 } else if (!ext4_has_inline_data(inode
)) {
4545 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4546 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
4549 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
4550 if (ei
->i_extra_isize
) {
4551 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4552 raw_inode
->i_version_hi
=
4553 cpu_to_le32(inode
->i_version
>> 32);
4554 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
4557 ext4_inode_csum_set(inode
, raw_inode
, ei
);
4559 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4560 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
4563 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
4565 ext4_update_inode_fsync_trans(handle
, inode
, need_datasync
);
4568 ext4_std_error(inode
->i_sb
, err
);
4573 * ext4_write_inode()
4575 * We are called from a few places:
4577 * - Within generic_file_write() for O_SYNC files.
4578 * Here, there will be no transaction running. We wait for any running
4579 * transaction to commit.
4581 * - Within sys_sync(), kupdate and such.
4582 * We wait on commit, if tol to.
4584 * - Within prune_icache() (PF_MEMALLOC == true)
4585 * Here we simply return. We can't afford to block kswapd on the
4588 * In all cases it is actually safe for us to return without doing anything,
4589 * because the inode has been copied into a raw inode buffer in
4590 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4593 * Note that we are absolutely dependent upon all inode dirtiers doing the
4594 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4595 * which we are interested.
4597 * It would be a bug for them to not do this. The code:
4599 * mark_inode_dirty(inode)
4601 * inode->i_size = expr;
4603 * is in error because a kswapd-driven write_inode() could occur while
4604 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4605 * will no longer be on the superblock's dirty inode list.
4607 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4611 if (current
->flags
& PF_MEMALLOC
)
4614 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
4615 if (ext4_journal_current_handle()) {
4616 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4621 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
4624 err
= ext4_force_commit(inode
->i_sb
);
4626 struct ext4_iloc iloc
;
4628 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4631 if (wbc
->sync_mode
== WB_SYNC_ALL
)
4632 sync_dirty_buffer(iloc
.bh
);
4633 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
4634 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
4635 "IO error syncing inode");
4644 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4645 * buffers that are attached to a page stradding i_size and are undergoing
4646 * commit. In that case we have to wait for commit to finish and try again.
4648 static void ext4_wait_for_tail_page_commit(struct inode
*inode
)
4652 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
4653 tid_t commit_tid
= 0;
4656 offset
= inode
->i_size
& (PAGE_CACHE_SIZE
- 1);
4658 * All buffers in the last page remain valid? Then there's nothing to
4659 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4662 if (offset
> PAGE_CACHE_SIZE
- (1 << inode
->i_blkbits
))
4665 page
= find_lock_page(inode
->i_mapping
,
4666 inode
->i_size
>> PAGE_CACHE_SHIFT
);
4669 ret
= __ext4_journalled_invalidatepage(page
, offset
);
4671 page_cache_release(page
);
4675 read_lock(&journal
->j_state_lock
);
4676 if (journal
->j_committing_transaction
)
4677 commit_tid
= journal
->j_committing_transaction
->t_tid
;
4678 read_unlock(&journal
->j_state_lock
);
4680 jbd2_log_wait_commit(journal
, commit_tid
);
4687 * Called from notify_change.
4689 * We want to trap VFS attempts to truncate the file as soon as
4690 * possible. In particular, we want to make sure that when the VFS
4691 * shrinks i_size, we put the inode on the orphan list and modify
4692 * i_disksize immediately, so that during the subsequent flushing of
4693 * dirty pages and freeing of disk blocks, we can guarantee that any
4694 * commit will leave the blocks being flushed in an unused state on
4695 * disk. (On recovery, the inode will get truncated and the blocks will
4696 * be freed, so we have a strong guarantee that no future commit will
4697 * leave these blocks visible to the user.)
4699 * Another thing we have to assure is that if we are in ordered mode
4700 * and inode is still attached to the committing transaction, we must
4701 * we start writeout of all the dirty pages which are being truncated.
4702 * This way we are sure that all the data written in the previous
4703 * transaction are already on disk (truncate waits for pages under
4706 * Called with inode->i_mutex down.
4708 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4710 struct inode
*inode
= dentry
->d_inode
;
4713 const unsigned int ia_valid
= attr
->ia_valid
;
4715 error
= inode_change_ok(inode
, attr
);
4719 if (is_quota_modification(inode
, attr
))
4720 dquot_initialize(inode
);
4721 if ((ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
4722 (ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
4725 /* (user+group)*(old+new) structure, inode write (sb,
4726 * inode block, ? - but truncate inode update has it) */
4727 handle
= ext4_journal_start(inode
, EXT4_HT_QUOTA
,
4728 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
) +
4729 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
)) + 3);
4730 if (IS_ERR(handle
)) {
4731 error
= PTR_ERR(handle
);
4734 error
= dquot_transfer(inode
, attr
);
4736 ext4_journal_stop(handle
);
4739 /* Update corresponding info in inode so that everything is in
4740 * one transaction */
4741 if (attr
->ia_valid
& ATTR_UID
)
4742 inode
->i_uid
= attr
->ia_uid
;
4743 if (attr
->ia_valid
& ATTR_GID
)
4744 inode
->i_gid
= attr
->ia_gid
;
4745 error
= ext4_mark_inode_dirty(handle
, inode
);
4746 ext4_journal_stop(handle
);
4749 if (attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
!= inode
->i_size
) {
4751 loff_t oldsize
= inode
->i_size
;
4753 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
4754 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4756 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
4760 if (IS_I_VERSION(inode
) && attr
->ia_size
!= inode
->i_size
)
4761 inode_inc_iversion(inode
);
4763 if (S_ISREG(inode
->i_mode
) &&
4764 (attr
->ia_size
< inode
->i_size
)) {
4765 if (ext4_should_order_data(inode
)) {
4766 error
= ext4_begin_ordered_truncate(inode
,
4771 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 3);
4772 if (IS_ERR(handle
)) {
4773 error
= PTR_ERR(handle
);
4776 if (ext4_handle_valid(handle
)) {
4777 error
= ext4_orphan_add(handle
, inode
);
4780 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
4781 rc
= ext4_mark_inode_dirty(handle
, inode
);
4784 ext4_journal_stop(handle
);
4786 ext4_orphan_del(NULL
, inode
);
4791 i_size_write(inode
, attr
->ia_size
);
4793 * Blocks are going to be removed from the inode. Wait
4794 * for dio in flight. Temporarily disable
4795 * dioread_nolock to prevent livelock.
4798 if (!ext4_should_journal_data(inode
)) {
4799 ext4_inode_block_unlocked_dio(inode
);
4800 inode_dio_wait(inode
);
4801 ext4_inode_resume_unlocked_dio(inode
);
4803 ext4_wait_for_tail_page_commit(inode
);
4806 * Truncate pagecache after we've waited for commit
4807 * in data=journal mode to make pages freeable.
4809 truncate_pagecache(inode
, oldsize
, inode
->i_size
);
4812 * We want to call ext4_truncate() even if attr->ia_size ==
4813 * inode->i_size for cases like truncation of fallocated space
4815 if (attr
->ia_valid
& ATTR_SIZE
)
4816 ext4_truncate(inode
);
4819 setattr_copy(inode
, attr
);
4820 mark_inode_dirty(inode
);
4824 * If the call to ext4_truncate failed to get a transaction handle at
4825 * all, we need to clean up the in-core orphan list manually.
4827 if (orphan
&& inode
->i_nlink
)
4828 ext4_orphan_del(NULL
, inode
);
4830 if (!rc
&& (ia_valid
& ATTR_MODE
))
4831 rc
= ext4_acl_chmod(inode
);
4834 ext4_std_error(inode
->i_sb
, error
);
4840 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
4843 struct inode
*inode
;
4844 unsigned long long delalloc_blocks
;
4846 inode
= dentry
->d_inode
;
4847 generic_fillattr(inode
, stat
);
4850 * We can't update i_blocks if the block allocation is delayed
4851 * otherwise in the case of system crash before the real block
4852 * allocation is done, we will have i_blocks inconsistent with
4853 * on-disk file blocks.
4854 * We always keep i_blocks updated together with real
4855 * allocation. But to not confuse with user, stat
4856 * will return the blocks that include the delayed allocation
4857 * blocks for this file.
4859 delalloc_blocks
= EXT4_C2B(EXT4_SB(inode
->i_sb
),
4860 EXT4_I(inode
)->i_reserved_data_blocks
);
4862 stat
->blocks
+= delalloc_blocks
<< (inode
->i_sb
->s_blocksize_bits
-9);
4866 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4868 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4869 return ext4_ind_trans_blocks(inode
, nrblocks
, chunk
);
4870 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
4874 * Account for index blocks, block groups bitmaps and block group
4875 * descriptor blocks if modify datablocks and index blocks
4876 * worse case, the indexs blocks spread over different block groups
4878 * If datablocks are discontiguous, they are possible to spread over
4879 * different block groups too. If they are contiguous, with flexbg,
4880 * they could still across block group boundary.
4882 * Also account for superblock, inode, quota and xattr blocks
4884 static int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4886 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
4892 * How many index blocks need to touch to modify nrblocks?
4893 * The "Chunk" flag indicating whether the nrblocks is
4894 * physically contiguous on disk
4896 * For Direct IO and fallocate, they calls get_block to allocate
4897 * one single extent at a time, so they could set the "Chunk" flag
4899 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
4904 * Now let's see how many group bitmaps and group descriptors need
4914 if (groups
> ngroups
)
4916 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
4917 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
4919 /* bitmaps and block group descriptor blocks */
4920 ret
+= groups
+ gdpblocks
;
4922 /* Blocks for super block, inode, quota and xattr blocks */
4923 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
4929 * Calculate the total number of credits to reserve to fit
4930 * the modification of a single pages into a single transaction,
4931 * which may include multiple chunks of block allocations.
4933 * This could be called via ext4_write_begin()
4935 * We need to consider the worse case, when
4936 * one new block per extent.
4938 int ext4_writepage_trans_blocks(struct inode
*inode
)
4940 int bpp
= ext4_journal_blocks_per_page(inode
);
4943 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
4945 /* Account for data blocks for journalled mode */
4946 if (ext4_should_journal_data(inode
))
4952 * Calculate the journal credits for a chunk of data modification.
4954 * This is called from DIO, fallocate or whoever calling
4955 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4957 * journal buffers for data blocks are not included here, as DIO
4958 * and fallocate do no need to journal data buffers.
4960 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
4962 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
4966 * The caller must have previously called ext4_reserve_inode_write().
4967 * Give this, we know that the caller already has write access to iloc->bh.
4969 int ext4_mark_iloc_dirty(handle_t
*handle
,
4970 struct inode
*inode
, struct ext4_iloc
*iloc
)
4974 if (IS_I_VERSION(inode
))
4975 inode_inc_iversion(inode
);
4977 /* the do_update_inode consumes one bh->b_count */
4980 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4981 err
= ext4_do_update_inode(handle
, inode
, iloc
);
4987 * On success, We end up with an outstanding reference count against
4988 * iloc->bh. This _must_ be cleaned up later.
4992 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
4993 struct ext4_iloc
*iloc
)
4997 err
= ext4_get_inode_loc(inode
, iloc
);
4999 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5000 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5006 ext4_std_error(inode
->i_sb
, err
);
5011 * Expand an inode by new_extra_isize bytes.
5012 * Returns 0 on success or negative error number on failure.
5014 static int ext4_expand_extra_isize(struct inode
*inode
,
5015 unsigned int new_extra_isize
,
5016 struct ext4_iloc iloc
,
5019 struct ext4_inode
*raw_inode
;
5020 struct ext4_xattr_ibody_header
*header
;
5022 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
5025 raw_inode
= ext4_raw_inode(&iloc
);
5027 header
= IHDR(inode
, raw_inode
);
5029 /* No extended attributes present */
5030 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
5031 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5032 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
5034 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5038 /* try to expand with EAs present */
5039 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5044 * What we do here is to mark the in-core inode as clean with respect to inode
5045 * dirtiness (it may still be data-dirty).
5046 * This means that the in-core inode may be reaped by prune_icache
5047 * without having to perform any I/O. This is a very good thing,
5048 * because *any* task may call prune_icache - even ones which
5049 * have a transaction open against a different journal.
5051 * Is this cheating? Not really. Sure, we haven't written the
5052 * inode out, but prune_icache isn't a user-visible syncing function.
5053 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5054 * we start and wait on commits.
5056 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5058 struct ext4_iloc iloc
;
5059 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5060 static unsigned int mnt_count
;
5064 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
5065 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5066 if (ext4_handle_valid(handle
) &&
5067 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5068 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
5070 * We need extra buffer credits since we may write into EA block
5071 * with this same handle. If journal_extend fails, then it will
5072 * only result in a minor loss of functionality for that inode.
5073 * If this is felt to be critical, then e2fsck should be run to
5074 * force a large enough s_min_extra_isize.
5076 if ((jbd2_journal_extend(handle
,
5077 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5078 ret
= ext4_expand_extra_isize(inode
,
5079 sbi
->s_want_extra_isize
,
5082 ext4_set_inode_state(inode
,
5083 EXT4_STATE_NO_EXPAND
);
5085 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5086 ext4_warning(inode
->i_sb
,
5087 "Unable to expand inode %lu. Delete"
5088 " some EAs or run e2fsck.",
5091 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5097 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5102 * ext4_dirty_inode() is called from __mark_inode_dirty()
5104 * We're really interested in the case where a file is being extended.
5105 * i_size has been changed by generic_commit_write() and we thus need
5106 * to include the updated inode in the current transaction.
5108 * Also, dquot_alloc_block() will always dirty the inode when blocks
5109 * are allocated to the file.
5111 * If the inode is marked synchronous, we don't honour that here - doing
5112 * so would cause a commit on atime updates, which we don't bother doing.
5113 * We handle synchronous inodes at the highest possible level.
5115 void ext4_dirty_inode(struct inode
*inode
, int flags
)
5119 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 2);
5123 ext4_mark_inode_dirty(handle
, inode
);
5125 ext4_journal_stop(handle
);
5132 * Bind an inode's backing buffer_head into this transaction, to prevent
5133 * it from being flushed to disk early. Unlike
5134 * ext4_reserve_inode_write, this leaves behind no bh reference and
5135 * returns no iloc structure, so the caller needs to repeat the iloc
5136 * lookup to mark the inode dirty later.
5138 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5140 struct ext4_iloc iloc
;
5144 err
= ext4_get_inode_loc(inode
, &iloc
);
5146 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5147 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5149 err
= ext4_handle_dirty_metadata(handle
,
5155 ext4_std_error(inode
->i_sb
, err
);
5160 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5167 * We have to be very careful here: changing a data block's
5168 * journaling status dynamically is dangerous. If we write a
5169 * data block to the journal, change the status and then delete
5170 * that block, we risk forgetting to revoke the old log record
5171 * from the journal and so a subsequent replay can corrupt data.
5172 * So, first we make sure that the journal is empty and that
5173 * nobody is changing anything.
5176 journal
= EXT4_JOURNAL(inode
);
5179 if (is_journal_aborted(journal
))
5181 /* We have to allocate physical blocks for delalloc blocks
5182 * before flushing journal. otherwise delalloc blocks can not
5183 * be allocated any more. even more truncate on delalloc blocks
5184 * could trigger BUG by flushing delalloc blocks in journal.
5185 * There is no delalloc block in non-journal data mode.
5187 if (val
&& test_opt(inode
->i_sb
, DELALLOC
)) {
5188 err
= ext4_alloc_da_blocks(inode
);
5193 /* Wait for all existing dio workers */
5194 ext4_inode_block_unlocked_dio(inode
);
5195 inode_dio_wait(inode
);
5197 jbd2_journal_lock_updates(journal
);
5200 * OK, there are no updates running now, and all cached data is
5201 * synced to disk. We are now in a completely consistent state
5202 * which doesn't have anything in the journal, and we know that
5203 * no filesystem updates are running, so it is safe to modify
5204 * the inode's in-core data-journaling state flag now.
5208 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5210 jbd2_journal_flush(journal
);
5211 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5213 ext4_set_aops(inode
);
5215 jbd2_journal_unlock_updates(journal
);
5216 ext4_inode_resume_unlocked_dio(inode
);
5218 /* Finally we can mark the inode as dirty. */
5220 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
5222 return PTR_ERR(handle
);
5224 err
= ext4_mark_inode_dirty(handle
, inode
);
5225 ext4_handle_sync(handle
);
5226 ext4_journal_stop(handle
);
5227 ext4_std_error(inode
->i_sb
, err
);
5232 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5234 return !buffer_mapped(bh
);
5237 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5239 struct page
*page
= vmf
->page
;
5243 struct file
*file
= vma
->vm_file
;
5244 struct inode
*inode
= file_inode(file
);
5245 struct address_space
*mapping
= inode
->i_mapping
;
5247 get_block_t
*get_block
;
5250 sb_start_pagefault(inode
->i_sb
);
5251 file_update_time(vma
->vm_file
);
5252 /* Delalloc case is easy... */
5253 if (test_opt(inode
->i_sb
, DELALLOC
) &&
5254 !ext4_should_journal_data(inode
) &&
5255 !ext4_nonda_switch(inode
->i_sb
)) {
5257 ret
= __block_page_mkwrite(vma
, vmf
,
5258 ext4_da_get_block_prep
);
5259 } while (ret
== -ENOSPC
&&
5260 ext4_should_retry_alloc(inode
->i_sb
, &retries
));
5265 size
= i_size_read(inode
);
5266 /* Page got truncated from under us? */
5267 if (page
->mapping
!= mapping
|| page_offset(page
) > size
) {
5269 ret
= VM_FAULT_NOPAGE
;
5273 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5274 len
= size
& ~PAGE_CACHE_MASK
;
5276 len
= PAGE_CACHE_SIZE
;
5278 * Return if we have all the buffers mapped. This avoids the need to do
5279 * journal_start/journal_stop which can block and take a long time
5281 if (page_has_buffers(page
)) {
5282 if (!ext4_walk_page_buffers(NULL
, page_buffers(page
),
5284 ext4_bh_unmapped
)) {
5285 /* Wait so that we don't change page under IO */
5286 wait_for_stable_page(page
);
5287 ret
= VM_FAULT_LOCKED
;
5292 /* OK, we need to fill the hole... */
5293 if (ext4_should_dioread_nolock(inode
))
5294 get_block
= ext4_get_block_write
;
5296 get_block
= ext4_get_block
;
5298 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
5299 ext4_writepage_trans_blocks(inode
));
5300 if (IS_ERR(handle
)) {
5301 ret
= VM_FAULT_SIGBUS
;
5304 ret
= __block_page_mkwrite(vma
, vmf
, get_block
);
5305 if (!ret
&& ext4_should_journal_data(inode
)) {
5306 if (ext4_walk_page_buffers(handle
, page_buffers(page
), 0,
5307 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
)) {
5309 ret
= VM_FAULT_SIGBUS
;
5310 ext4_journal_stop(handle
);
5313 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
5315 ext4_journal_stop(handle
);
5316 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
5319 ret
= block_page_mkwrite_return(ret
);
5321 sb_end_pagefault(inode
->i_sb
);