2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
24 #include "ext4_jbd2.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly
;
34 module_param_named(mballoc_debug
, ext4_mballoc_debug
, ushort
, 0644);
35 MODULE_PARM_DESC(mballoc_debug
, "Debugging level for ext4's mballoc");
40 * - test ext4_ext_search_left() and ext4_ext_search_right()
41 * - search for metadata in few groups
44 * - normalization should take into account whether file is still open
45 * - discard preallocations if no free space left (policy?)
46 * - don't normalize tails
48 * - reservation for superuser
51 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
52 * - track min/max extents in each group for better group selection
53 * - mb_mark_used() may allocate chunk right after splitting buddy
54 * - tree of groups sorted by number of free blocks
59 * The allocation request involve request for multiple number of blocks
60 * near to the goal(block) value specified.
62 * During initialization phase of the allocator we decide to use the
63 * group preallocation or inode preallocation depending on the size of
64 * the file. The size of the file could be the resulting file size we
65 * would have after allocation, or the current file size, which ever
66 * is larger. If the size is less than sbi->s_mb_stream_request we
67 * select to use the group preallocation. The default value of
68 * s_mb_stream_request is 16 blocks. This can also be tuned via
69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70 * terms of number of blocks.
72 * The main motivation for having small file use group preallocation is to
73 * ensure that we have small files closer together on the disk.
75 * First stage the allocator looks at the inode prealloc list,
76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77 * spaces for this particular inode. The inode prealloc space is
80 * pa_lstart -> the logical start block for this prealloc space
81 * pa_pstart -> the physical start block for this prealloc space
82 * pa_len -> length for this prealloc space (in clusters)
83 * pa_free -> free space available in this prealloc space (in clusters)
85 * The inode preallocation space is used looking at the _logical_ start
86 * block. If only the logical file block falls within the range of prealloc
87 * space we will consume the particular prealloc space. This makes sure that
88 * we have contiguous physical blocks representing the file blocks
90 * The important thing to be noted in case of inode prealloc space is that
91 * we don't modify the values associated to inode prealloc space except
94 * If we are not able to find blocks in the inode prealloc space and if we
95 * have the group allocation flag set then we look at the locality group
96 * prealloc space. These are per CPU prealloc list represented as
98 * ext4_sb_info.s_locality_groups[smp_processor_id()]
100 * The reason for having a per cpu locality group is to reduce the contention
101 * between CPUs. It is possible to get scheduled at this point.
103 * The locality group prealloc space is used looking at whether we have
104 * enough free space (pa_free) within the prealloc space.
106 * If we can't allocate blocks via inode prealloc or/and locality group
107 * prealloc then we look at the buddy cache. The buddy cache is represented
108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109 * mapped to the buddy and bitmap information regarding different
110 * groups. The buddy information is attached to buddy cache inode so that
111 * we can access them through the page cache. The information regarding
112 * each group is loaded via ext4_mb_load_buddy. The information involve
113 * block bitmap and buddy information. The information are stored in the
117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
120 * one block each for bitmap and buddy information. So for each group we
121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122 * blocksize) blocks. So it can have information regarding groups_per_page
123 * which is blocks_per_page/2
125 * The buddy cache inode is not stored on disk. The inode is thrown
126 * away when the filesystem is unmounted.
128 * We look for count number of blocks in the buddy cache. If we were able
129 * to locate that many free blocks we return with additional information
130 * regarding rest of the contiguous physical block available
132 * Before allocating blocks via buddy cache we normalize the request
133 * blocks. This ensure we ask for more blocks that we needed. The extra
134 * blocks that we get after allocation is added to the respective prealloc
135 * list. In case of inode preallocation we follow a list of heuristics
136 * based on file size. This can be found in ext4_mb_normalize_request. If
137 * we are doing a group prealloc we try to normalize the request to
138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
139 * dependent on the cluster size; for non-bigalloc file systems, it is
140 * 512 blocks. This can be tuned via
141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142 * terms of number of blocks. If we have mounted the file system with -O
143 * stripe=<value> option the group prealloc request is normalized to the
144 * the smallest multiple of the stripe value (sbi->s_stripe) which is
145 * greater than the default mb_group_prealloc.
147 * The regular allocator (using the buddy cache) supports a few tunables.
149 * /sys/fs/ext4/<partition>/mb_min_to_scan
150 * /sys/fs/ext4/<partition>/mb_max_to_scan
151 * /sys/fs/ext4/<partition>/mb_order2_req
153 * The regular allocator uses buddy scan only if the request len is power of
154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155 * value of s_mb_order2_reqs can be tuned via
156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
157 * stripe size (sbi->s_stripe), we try to search for contiguous block in
158 * stripe size. This should result in better allocation on RAID setups. If
159 * not, we search in the specific group using bitmap for best extents. The
160 * tunable min_to_scan and max_to_scan control the behaviour here.
161 * min_to_scan indicate how long the mballoc __must__ look for a best
162 * extent and max_to_scan indicates how long the mballoc __can__ look for a
163 * best extent in the found extents. Searching for the blocks starts with
164 * the group specified as the goal value in allocation context via
165 * ac_g_ex. Each group is first checked based on the criteria whether it
166 * can be used for allocation. ext4_mb_good_group explains how the groups are
169 * Both the prealloc space are getting populated as above. So for the first
170 * request we will hit the buddy cache which will result in this prealloc
171 * space getting filled. The prealloc space is then later used for the
172 * subsequent request.
176 * mballoc operates on the following data:
178 * - in-core buddy (actually includes buddy and bitmap)
179 * - preallocation descriptors (PAs)
181 * there are two types of preallocations:
183 * assiged to specific inode and can be used for this inode only.
184 * it describes part of inode's space preallocated to specific
185 * physical blocks. any block from that preallocated can be used
186 * independent. the descriptor just tracks number of blocks left
187 * unused. so, before taking some block from descriptor, one must
188 * make sure corresponded logical block isn't allocated yet. this
189 * also means that freeing any block within descriptor's range
190 * must discard all preallocated blocks.
192 * assigned to specific locality group which does not translate to
193 * permanent set of inodes: inode can join and leave group. space
194 * from this type of preallocation can be used for any inode. thus
195 * it's consumed from the beginning to the end.
197 * relation between them can be expressed as:
198 * in-core buddy = on-disk bitmap + preallocation descriptors
200 * this mean blocks mballoc considers used are:
201 * - allocated blocks (persistent)
202 * - preallocated blocks (non-persistent)
204 * consistency in mballoc world means that at any time a block is either
205 * free or used in ALL structures. notice: "any time" should not be read
206 * literally -- time is discrete and delimited by locks.
208 * to keep it simple, we don't use block numbers, instead we count number of
209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
211 * all operations can be expressed as:
212 * - init buddy: buddy = on-disk + PAs
213 * - new PA: buddy += N; PA = N
214 * - use inode PA: on-disk += N; PA -= N
215 * - discard inode PA buddy -= on-disk - PA; PA = 0
216 * - use locality group PA on-disk += N; PA -= N
217 * - discard locality group PA buddy -= PA; PA = 0
218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219 * is used in real operation because we can't know actual used
220 * bits from PA, only from on-disk bitmap
222 * if we follow this strict logic, then all operations above should be atomic.
223 * given some of them can block, we'd have to use something like semaphores
224 * killing performance on high-end SMP hardware. let's try to relax it using
225 * the following knowledge:
226 * 1) if buddy is referenced, it's already initialized
227 * 2) while block is used in buddy and the buddy is referenced,
228 * nobody can re-allocate that block
229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230 * bit set and PA claims same block, it's OK. IOW, one can set bit in
231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
234 * so, now we're building a concurrency table:
237 * blocks for PA are allocated in the buddy, buddy must be referenced
238 * until PA is linked to allocation group to avoid concurrent buddy init
240 * we need to make sure that either on-disk bitmap or PA has uptodate data
241 * given (3) we care that PA-=N operation doesn't interfere with init
243 * the simplest way would be to have buddy initialized by the discard
244 * - use locality group PA
245 * again PA-=N must be serialized with init
246 * - discard locality group PA
247 * the simplest way would be to have buddy initialized by the discard
250 * i_data_sem serializes them
252 * discard process must wait until PA isn't used by another process
253 * - use locality group PA
254 * some mutex should serialize them
255 * - discard locality group PA
256 * discard process must wait until PA isn't used by another process
259 * i_data_sem or another mutex should serializes them
261 * discard process must wait until PA isn't used by another process
262 * - use locality group PA
263 * nothing wrong here -- they're different PAs covering different blocks
264 * - discard locality group PA
265 * discard process must wait until PA isn't used by another process
267 * now we're ready to make few consequences:
268 * - PA is referenced and while it is no discard is possible
269 * - PA is referenced until block isn't marked in on-disk bitmap
270 * - PA changes only after on-disk bitmap
271 * - discard must not compete with init. either init is done before
272 * any discard or they're serialized somehow
273 * - buddy init as sum of on-disk bitmap and PAs is done atomically
275 * a special case when we've used PA to emptiness. no need to modify buddy
276 * in this case, but we should care about concurrent init
281 * Logic in few words:
286 * mark bits in on-disk bitmap
289 * - use preallocation:
290 * find proper PA (per-inode or group)
292 * mark bits in on-disk bitmap
298 * mark bits in on-disk bitmap
301 * - discard preallocations in group:
303 * move them onto local list
304 * load on-disk bitmap
306 * remove PA from object (inode or locality group)
307 * mark free blocks in-core
309 * - discard inode's preallocations:
316 * - bitlock on a group (group)
317 * - object (inode/locality) (object)
328 * - release consumed pa:
333 * - generate in-core bitmap:
337 * - discard all for given object (inode, locality group):
342 * - discard all for given group:
349 static struct kmem_cache
*ext4_pspace_cachep
;
350 static struct kmem_cache
*ext4_ac_cachep
;
351 static struct kmem_cache
*ext4_free_data_cachep
;
353 /* We create slab caches for groupinfo data structures based on the
354 * superblock block size. There will be one per mounted filesystem for
355 * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache
*ext4_groupinfo_caches
[NR_GRPINFO_CACHES
];
359 static const char *ext4_groupinfo_slab_names
[NR_GRPINFO_CACHES
] = {
360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
365 static void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
367 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
369 static void ext4_free_data_callback(struct super_block
*sb
,
370 struct ext4_journal_cb_entry
*jce
, int rc
);
372 static inline void *mb_correct_addr_and_bit(int *bit
, void *addr
)
374 #if BITS_PER_LONG == 64
375 *bit
+= ((unsigned long) addr
& 7UL) << 3;
376 addr
= (void *) ((unsigned long) addr
& ~7UL);
377 #elif BITS_PER_LONG == 32
378 *bit
+= ((unsigned long) addr
& 3UL) << 3;
379 addr
= (void *) ((unsigned long) addr
& ~3UL);
381 #error "how many bits you are?!"
386 static inline int mb_test_bit(int bit
, void *addr
)
389 * ext4_test_bit on architecture like powerpc
390 * needs unsigned long aligned address
392 addr
= mb_correct_addr_and_bit(&bit
, addr
);
393 return ext4_test_bit(bit
, addr
);
396 static inline void mb_set_bit(int bit
, void *addr
)
398 addr
= mb_correct_addr_and_bit(&bit
, addr
);
399 ext4_set_bit(bit
, addr
);
402 static inline void mb_clear_bit(int bit
, void *addr
)
404 addr
= mb_correct_addr_and_bit(&bit
, addr
);
405 ext4_clear_bit(bit
, addr
);
408 static inline int mb_test_and_clear_bit(int bit
, void *addr
)
410 addr
= mb_correct_addr_and_bit(&bit
, addr
);
411 return ext4_test_and_clear_bit(bit
, addr
);
414 static inline int mb_find_next_zero_bit(void *addr
, int max
, int start
)
416 int fix
= 0, ret
, tmpmax
;
417 addr
= mb_correct_addr_and_bit(&fix
, addr
);
421 ret
= ext4_find_next_zero_bit(addr
, tmpmax
, start
) - fix
;
427 static inline int mb_find_next_bit(void *addr
, int max
, int start
)
429 int fix
= 0, ret
, tmpmax
;
430 addr
= mb_correct_addr_and_bit(&fix
, addr
);
434 ret
= ext4_find_next_bit(addr
, tmpmax
, start
) - fix
;
440 static void *mb_find_buddy(struct ext4_buddy
*e4b
, int order
, int *max
)
444 BUG_ON(e4b
->bd_bitmap
== e4b
->bd_buddy
);
447 if (order
> e4b
->bd_blkbits
+ 1) {
452 /* at order 0 we see each particular block */
454 *max
= 1 << (e4b
->bd_blkbits
+ 3);
455 return e4b
->bd_bitmap
;
458 bb
= e4b
->bd_buddy
+ EXT4_SB(e4b
->bd_sb
)->s_mb_offsets
[order
];
459 *max
= EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[order
];
465 static void mb_free_blocks_double(struct inode
*inode
, struct ext4_buddy
*e4b
,
466 int first
, int count
)
469 struct super_block
*sb
= e4b
->bd_sb
;
471 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
473 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
474 for (i
= 0; i
< count
; i
++) {
475 if (!mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
)) {
476 ext4_fsblk_t blocknr
;
478 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
479 blocknr
+= EXT4_C2B(EXT4_SB(sb
), first
+ i
);
480 ext4_grp_locked_error(sb
, e4b
->bd_group
,
481 inode
? inode
->i_ino
: 0,
483 "freeing block already freed "
487 mb_clear_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
491 static void mb_mark_used_double(struct ext4_buddy
*e4b
, int first
, int count
)
495 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
497 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
498 for (i
= 0; i
< count
; i
++) {
499 BUG_ON(mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
));
500 mb_set_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
504 static void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
506 if (memcmp(e4b
->bd_info
->bb_bitmap
, bitmap
, e4b
->bd_sb
->s_blocksize
)) {
507 unsigned char *b1
, *b2
;
509 b1
= (unsigned char *) e4b
->bd_info
->bb_bitmap
;
510 b2
= (unsigned char *) bitmap
;
511 for (i
= 0; i
< e4b
->bd_sb
->s_blocksize
; i
++) {
512 if (b1
[i
] != b2
[i
]) {
513 ext4_msg(e4b
->bd_sb
, KERN_ERR
,
514 "corruption in group %u "
515 "at byte %u(%u): %x in copy != %x "
517 e4b
->bd_group
, i
, i
* 8, b1
[i
], b2
[i
]);
525 static inline void mb_free_blocks_double(struct inode
*inode
,
526 struct ext4_buddy
*e4b
, int first
, int count
)
530 static inline void mb_mark_used_double(struct ext4_buddy
*e4b
,
531 int first
, int count
)
535 static inline void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
541 #ifdef AGGRESSIVE_CHECK
543 #define MB_CHECK_ASSERT(assert) \
547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
548 function, file, line, # assert); \
553 static int __mb_check_buddy(struct ext4_buddy
*e4b
, char *file
,
554 const char *function
, int line
)
556 struct super_block
*sb
= e4b
->bd_sb
;
557 int order
= e4b
->bd_blkbits
+ 1;
564 struct ext4_group_info
*grp
;
567 struct list_head
*cur
;
572 static int mb_check_counter
;
573 if (mb_check_counter
++ % 100 != 0)
578 buddy
= mb_find_buddy(e4b
, order
, &max
);
579 MB_CHECK_ASSERT(buddy
);
580 buddy2
= mb_find_buddy(e4b
, order
- 1, &max2
);
581 MB_CHECK_ASSERT(buddy2
);
582 MB_CHECK_ASSERT(buddy
!= buddy2
);
583 MB_CHECK_ASSERT(max
* 2 == max2
);
586 for (i
= 0; i
< max
; i
++) {
588 if (mb_test_bit(i
, buddy
)) {
589 /* only single bit in buddy2 may be 1 */
590 if (!mb_test_bit(i
<< 1, buddy2
)) {
592 mb_test_bit((i
<<1)+1, buddy2
));
593 } else if (!mb_test_bit((i
<< 1) + 1, buddy2
)) {
595 mb_test_bit(i
<< 1, buddy2
));
600 /* both bits in buddy2 must be 1 */
601 MB_CHECK_ASSERT(mb_test_bit(i
<< 1, buddy2
));
602 MB_CHECK_ASSERT(mb_test_bit((i
<< 1) + 1, buddy2
));
604 for (j
= 0; j
< (1 << order
); j
++) {
605 k
= (i
* (1 << order
)) + j
;
607 !mb_test_bit(k
, e4b
->bd_bitmap
));
611 MB_CHECK_ASSERT(e4b
->bd_info
->bb_counters
[order
] == count
);
616 buddy
= mb_find_buddy(e4b
, 0, &max
);
617 for (i
= 0; i
< max
; i
++) {
618 if (!mb_test_bit(i
, buddy
)) {
619 MB_CHECK_ASSERT(i
>= e4b
->bd_info
->bb_first_free
);
627 /* check used bits only */
628 for (j
= 0; j
< e4b
->bd_blkbits
+ 1; j
++) {
629 buddy2
= mb_find_buddy(e4b
, j
, &max2
);
631 MB_CHECK_ASSERT(k
< max2
);
632 MB_CHECK_ASSERT(mb_test_bit(k
, buddy2
));
635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b
->bd_info
));
636 MB_CHECK_ASSERT(e4b
->bd_info
->bb_fragments
== fragments
);
638 grp
= ext4_get_group_info(sb
, e4b
->bd_group
);
639 list_for_each(cur
, &grp
->bb_prealloc_list
) {
640 ext4_group_t groupnr
;
641 struct ext4_prealloc_space
*pa
;
642 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
643 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &groupnr
, &k
);
644 MB_CHECK_ASSERT(groupnr
== e4b
->bd_group
);
645 for (i
= 0; i
< pa
->pa_len
; i
++)
646 MB_CHECK_ASSERT(mb_test_bit(k
+ i
, buddy
));
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
652 __FILE__, __func__, __LINE__)
654 #define mb_check_buddy(e4b)
658 * Divide blocks started from @first with length @len into
659 * smaller chunks with power of 2 blocks.
660 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661 * then increase bb_counters[] for corresponded chunk size.
663 static void ext4_mb_mark_free_simple(struct super_block
*sb
,
664 void *buddy
, ext4_grpblk_t first
, ext4_grpblk_t len
,
665 struct ext4_group_info
*grp
)
667 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
671 unsigned short border
;
673 BUG_ON(len
> EXT4_CLUSTERS_PER_GROUP(sb
));
675 border
= 2 << sb
->s_blocksize_bits
;
678 /* find how many blocks can be covered since this position */
679 max
= ffs(first
| border
) - 1;
681 /* find how many blocks of power 2 we need to mark */
688 /* mark multiblock chunks only */
689 grp
->bb_counters
[min
]++;
691 mb_clear_bit(first
>> min
,
692 buddy
+ sbi
->s_mb_offsets
[min
]);
700 * Cache the order of the largest free extent we have available in this block
704 mb_set_largest_free_order(struct super_block
*sb
, struct ext4_group_info
*grp
)
709 grp
->bb_largest_free_order
= -1; /* uninit */
711 bits
= sb
->s_blocksize_bits
+ 1;
712 for (i
= bits
; i
>= 0; i
--) {
713 if (grp
->bb_counters
[i
] > 0) {
714 grp
->bb_largest_free_order
= i
;
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block
*sb
,
722 void *buddy
, void *bitmap
, ext4_group_t group
)
724 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
725 ext4_grpblk_t max
= EXT4_CLUSTERS_PER_GROUP(sb
);
730 unsigned fragments
= 0;
731 unsigned long long period
= get_cycles();
733 /* initialize buddy from bitmap which is aggregation
734 * of on-disk bitmap and preallocations */
735 i
= mb_find_next_zero_bit(bitmap
, max
, 0);
736 grp
->bb_first_free
= i
;
740 i
= mb_find_next_bit(bitmap
, max
, i
);
744 ext4_mb_mark_free_simple(sb
, buddy
, first
, len
, grp
);
746 grp
->bb_counters
[0]++;
748 i
= mb_find_next_zero_bit(bitmap
, max
, i
);
750 grp
->bb_fragments
= fragments
;
752 if (free
!= grp
->bb_free
) {
753 ext4_grp_locked_error(sb
, group
, 0, 0,
754 "%u clusters in bitmap, %u in gd",
757 * If we intent to continue, we consider group descritor
758 * corrupt and update bb_free using bitmap value
762 mb_set_largest_free_order(sb
, grp
);
764 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
, &(grp
->bb_state
));
766 period
= get_cycles() - period
;
767 spin_lock(&EXT4_SB(sb
)->s_bal_lock
);
768 EXT4_SB(sb
)->s_mb_buddies_generated
++;
769 EXT4_SB(sb
)->s_mb_generation_time
+= period
;
770 spin_unlock(&EXT4_SB(sb
)->s_bal_lock
);
773 static void mb_regenerate_buddy(struct ext4_buddy
*e4b
)
779 while ((buddy
= mb_find_buddy(e4b
, order
++, &count
))) {
780 ext4_set_bits(buddy
, 0, count
);
782 e4b
->bd_info
->bb_fragments
= 0;
783 memset(e4b
->bd_info
->bb_counters
, 0,
784 sizeof(*e4b
->bd_info
->bb_counters
) *
785 (e4b
->bd_sb
->s_blocksize_bits
+ 2));
787 ext4_mb_generate_buddy(e4b
->bd_sb
, e4b
->bd_buddy
,
788 e4b
->bd_bitmap
, e4b
->bd_group
);
791 /* The buddy information is attached the buddy cache inode
792 * for convenience. The information regarding each group
793 * is loaded via ext4_mb_load_buddy. The information involve
794 * block bitmap and buddy information. The information are
795 * stored in the inode as
798 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
801 * one block each for bitmap and buddy information.
802 * So for each group we take up 2 blocks. A page can
803 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
804 * So it can have information regarding groups_per_page which
805 * is blocks_per_page/2
807 * Locking note: This routine takes the block group lock of all groups
808 * for this page; do not hold this lock when calling this routine!
811 static int ext4_mb_init_cache(struct page
*page
, char *incore
)
813 ext4_group_t ngroups
;
819 ext4_group_t first_group
, group
;
821 struct super_block
*sb
;
822 struct buffer_head
*bhs
;
823 struct buffer_head
**bh
= NULL
;
827 struct ext4_group_info
*grinfo
;
829 mb_debug(1, "init page %lu\n", page
->index
);
831 inode
= page
->mapping
->host
;
833 ngroups
= ext4_get_groups_count(sb
);
834 blocksize
= 1 << inode
->i_blkbits
;
835 blocks_per_page
= PAGE_CACHE_SIZE
/ blocksize
;
837 groups_per_page
= blocks_per_page
>> 1;
838 if (groups_per_page
== 0)
841 /* allocate buffer_heads to read bitmaps */
842 if (groups_per_page
> 1) {
843 i
= sizeof(struct buffer_head
*) * groups_per_page
;
844 bh
= kzalloc(i
, GFP_NOFS
);
852 first_group
= page
->index
* blocks_per_page
/ 2;
854 /* read all groups the page covers into the cache */
855 for (i
= 0, group
= first_group
; i
< groups_per_page
; i
++, group
++) {
856 if (group
>= ngroups
)
859 grinfo
= ext4_get_group_info(sb
, group
);
861 * If page is uptodate then we came here after online resize
862 * which added some new uninitialized group info structs, so
863 * we must skip all initialized uptodate buddies on the page,
864 * which may be currently in use by an allocating task.
866 if (PageUptodate(page
) && !EXT4_MB_GRP_NEED_INIT(grinfo
)) {
870 if (!(bh
[i
] = ext4_read_block_bitmap_nowait(sb
, group
))) {
874 mb_debug(1, "read bitmap for group %u\n", group
);
877 /* wait for I/O completion */
878 for (i
= 0, group
= first_group
; i
< groups_per_page
; i
++, group
++) {
879 if (bh
[i
] && ext4_wait_block_bitmap(sb
, group
, bh
[i
])) {
885 first_block
= page
->index
* blocks_per_page
;
886 for (i
= 0; i
< blocks_per_page
; i
++) {
887 group
= (first_block
+ i
) >> 1;
888 if (group
>= ngroups
)
891 if (!bh
[group
- first_group
])
892 /* skip initialized uptodate buddy */
896 * data carry information regarding this
897 * particular group in the format specified
901 data
= page_address(page
) + (i
* blocksize
);
902 bitmap
= bh
[group
- first_group
]->b_data
;
905 * We place the buddy block and bitmap block
908 if ((first_block
+ i
) & 1) {
909 /* this is block of buddy */
910 BUG_ON(incore
== NULL
);
911 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
912 group
, page
->index
, i
* blocksize
);
913 trace_ext4_mb_buddy_bitmap_load(sb
, group
);
914 grinfo
= ext4_get_group_info(sb
, group
);
915 grinfo
->bb_fragments
= 0;
916 memset(grinfo
->bb_counters
, 0,
917 sizeof(*grinfo
->bb_counters
) *
918 (sb
->s_blocksize_bits
+2));
920 * incore got set to the group block bitmap below
922 ext4_lock_group(sb
, group
);
924 memset(data
, 0xff, blocksize
);
925 ext4_mb_generate_buddy(sb
, data
, incore
, group
);
926 ext4_unlock_group(sb
, group
);
929 /* this is block of bitmap */
930 BUG_ON(incore
!= NULL
);
931 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
932 group
, page
->index
, i
* blocksize
);
933 trace_ext4_mb_bitmap_load(sb
, group
);
935 /* see comments in ext4_mb_put_pa() */
936 ext4_lock_group(sb
, group
);
937 memcpy(data
, bitmap
, blocksize
);
939 /* mark all preallocated blks used in in-core bitmap */
940 ext4_mb_generate_from_pa(sb
, data
, group
);
941 ext4_mb_generate_from_freelist(sb
, data
, group
);
942 ext4_unlock_group(sb
, group
);
944 /* set incore so that the buddy information can be
945 * generated using this
950 SetPageUptodate(page
);
954 for (i
= 0; i
< groups_per_page
; i
++)
963 * Lock the buddy and bitmap pages. This make sure other parallel init_group
964 * on the same buddy page doesn't happen whild holding the buddy page lock.
965 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
966 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
968 static int ext4_mb_get_buddy_page_lock(struct super_block
*sb
,
969 ext4_group_t group
, struct ext4_buddy
*e4b
)
971 struct inode
*inode
= EXT4_SB(sb
)->s_buddy_cache
;
972 int block
, pnum
, poff
;
976 e4b
->bd_buddy_page
= NULL
;
977 e4b
->bd_bitmap_page
= NULL
;
979 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
981 * the buddy cache inode stores the block bitmap
982 * and buddy information in consecutive blocks.
983 * So for each group we need two blocks.
986 pnum
= block
/ blocks_per_page
;
987 poff
= block
% blocks_per_page
;
988 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
991 BUG_ON(page
->mapping
!= inode
->i_mapping
);
992 e4b
->bd_bitmap_page
= page
;
993 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
995 if (blocks_per_page
>= 2) {
996 /* buddy and bitmap are on the same page */
1001 pnum
= block
/ blocks_per_page
;
1002 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1005 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1006 e4b
->bd_buddy_page
= page
;
1010 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy
*e4b
)
1012 if (e4b
->bd_bitmap_page
) {
1013 unlock_page(e4b
->bd_bitmap_page
);
1014 page_cache_release(e4b
->bd_bitmap_page
);
1016 if (e4b
->bd_buddy_page
) {
1017 unlock_page(e4b
->bd_buddy_page
);
1018 page_cache_release(e4b
->bd_buddy_page
);
1023 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1024 * block group lock of all groups for this page; do not hold the BG lock when
1025 * calling this routine!
1027 static noinline_for_stack
1028 int ext4_mb_init_group(struct super_block
*sb
, ext4_group_t group
)
1031 struct ext4_group_info
*this_grp
;
1032 struct ext4_buddy e4b
;
1037 mb_debug(1, "init group %u\n", group
);
1038 this_grp
= ext4_get_group_info(sb
, group
);
1040 * This ensures that we don't reinit the buddy cache
1041 * page which map to the group from which we are already
1042 * allocating. If we are looking at the buddy cache we would
1043 * have taken a reference using ext4_mb_load_buddy and that
1044 * would have pinned buddy page to page cache.
1046 ret
= ext4_mb_get_buddy_page_lock(sb
, group
, &e4b
);
1047 if (ret
|| !EXT4_MB_GRP_NEED_INIT(this_grp
)) {
1049 * somebody initialized the group
1050 * return without doing anything
1055 page
= e4b
.bd_bitmap_page
;
1056 ret
= ext4_mb_init_cache(page
, NULL
);
1059 if (!PageUptodate(page
)) {
1063 mark_page_accessed(page
);
1065 if (e4b
.bd_buddy_page
== NULL
) {
1067 * If both the bitmap and buddy are in
1068 * the same page we don't need to force
1074 /* init buddy cache */
1075 page
= e4b
.bd_buddy_page
;
1076 ret
= ext4_mb_init_cache(page
, e4b
.bd_bitmap
);
1079 if (!PageUptodate(page
)) {
1083 mark_page_accessed(page
);
1085 ext4_mb_put_buddy_page_lock(&e4b
);
1090 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1091 * block group lock of all groups for this page; do not hold the BG lock when
1092 * calling this routine!
1094 static noinline_for_stack
int
1095 ext4_mb_load_buddy(struct super_block
*sb
, ext4_group_t group
,
1096 struct ext4_buddy
*e4b
)
1098 int blocks_per_page
;
1104 struct ext4_group_info
*grp
;
1105 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1106 struct inode
*inode
= sbi
->s_buddy_cache
;
1109 mb_debug(1, "load group %u\n", group
);
1111 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1112 grp
= ext4_get_group_info(sb
, group
);
1114 e4b
->bd_blkbits
= sb
->s_blocksize_bits
;
1117 e4b
->bd_group
= group
;
1118 e4b
->bd_buddy_page
= NULL
;
1119 e4b
->bd_bitmap_page
= NULL
;
1121 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
1123 * we need full data about the group
1124 * to make a good selection
1126 ret
= ext4_mb_init_group(sb
, group
);
1132 * the buddy cache inode stores the block bitmap
1133 * and buddy information in consecutive blocks.
1134 * So for each group we need two blocks.
1137 pnum
= block
/ blocks_per_page
;
1138 poff
= block
% blocks_per_page
;
1140 /* we could use find_or_create_page(), but it locks page
1141 * what we'd like to avoid in fast path ... */
1142 page
= find_get_page(inode
->i_mapping
, pnum
);
1143 if (page
== NULL
|| !PageUptodate(page
)) {
1146 * drop the page reference and try
1147 * to get the page with lock. If we
1148 * are not uptodate that implies
1149 * somebody just created the page but
1150 * is yet to initialize the same. So
1151 * wait for it to initialize.
1153 page_cache_release(page
);
1154 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1156 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1157 if (!PageUptodate(page
)) {
1158 ret
= ext4_mb_init_cache(page
, NULL
);
1163 mb_cmp_bitmaps(e4b
, page_address(page
) +
1164 (poff
* sb
->s_blocksize
));
1169 if (page
== NULL
|| !PageUptodate(page
)) {
1173 e4b
->bd_bitmap_page
= page
;
1174 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1175 mark_page_accessed(page
);
1178 pnum
= block
/ blocks_per_page
;
1179 poff
= block
% blocks_per_page
;
1181 page
= find_get_page(inode
->i_mapping
, pnum
);
1182 if (page
== NULL
|| !PageUptodate(page
)) {
1184 page_cache_release(page
);
1185 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1187 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1188 if (!PageUptodate(page
)) {
1189 ret
= ext4_mb_init_cache(page
, e4b
->bd_bitmap
);
1198 if (page
== NULL
|| !PageUptodate(page
)) {
1202 e4b
->bd_buddy_page
= page
;
1203 e4b
->bd_buddy
= page_address(page
) + (poff
* sb
->s_blocksize
);
1204 mark_page_accessed(page
);
1206 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
1207 BUG_ON(e4b
->bd_buddy_page
== NULL
);
1213 page_cache_release(page
);
1214 if (e4b
->bd_bitmap_page
)
1215 page_cache_release(e4b
->bd_bitmap_page
);
1216 if (e4b
->bd_buddy_page
)
1217 page_cache_release(e4b
->bd_buddy_page
);
1218 e4b
->bd_buddy
= NULL
;
1219 e4b
->bd_bitmap
= NULL
;
1223 static void ext4_mb_unload_buddy(struct ext4_buddy
*e4b
)
1225 if (e4b
->bd_bitmap_page
)
1226 page_cache_release(e4b
->bd_bitmap_page
);
1227 if (e4b
->bd_buddy_page
)
1228 page_cache_release(e4b
->bd_buddy_page
);
1232 static int mb_find_order_for_block(struct ext4_buddy
*e4b
, int block
)
1237 BUG_ON(e4b
->bd_bitmap
== e4b
->bd_buddy
);
1238 BUG_ON(block
>= (1 << (e4b
->bd_blkbits
+ 3)));
1241 while (order
<= e4b
->bd_blkbits
+ 1) {
1243 if (!mb_test_bit(block
, bb
)) {
1244 /* this block is part of buddy of order 'order' */
1247 bb
+= 1 << (e4b
->bd_blkbits
- order
);
1253 static void mb_clear_bits(void *bm
, int cur
, int len
)
1259 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1260 /* fast path: clear whole word at once */
1261 addr
= bm
+ (cur
>> 3);
1266 mb_clear_bit(cur
, bm
);
1271 /* clear bits in given range
1272 * will return first found zero bit if any, -1 otherwise
1274 static int mb_test_and_clear_bits(void *bm
, int cur
, int len
)
1281 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1282 /* fast path: clear whole word at once */
1283 addr
= bm
+ (cur
>> 3);
1284 if (*addr
!= (__u32
)(-1) && zero_bit
== -1)
1285 zero_bit
= cur
+ mb_find_next_zero_bit(addr
, 32, 0);
1290 if (!mb_test_and_clear_bit(cur
, bm
) && zero_bit
== -1)
1298 void ext4_set_bits(void *bm
, int cur
, int len
)
1304 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1305 /* fast path: set whole word at once */
1306 addr
= bm
+ (cur
>> 3);
1311 mb_set_bit(cur
, bm
);
1317 * _________________________________________________________________ */
1319 static inline int mb_buddy_adjust_border(int* bit
, void* bitmap
, int side
)
1321 if (mb_test_bit(*bit
+ side
, bitmap
)) {
1322 mb_clear_bit(*bit
, bitmap
);
1328 mb_set_bit(*bit
, bitmap
);
1333 static void mb_buddy_mark_free(struct ext4_buddy
*e4b
, int first
, int last
)
1337 void *buddy
= mb_find_buddy(e4b
, order
, &max
);
1342 /* Bits in range [first; last] are known to be set since
1343 * corresponding blocks were allocated. Bits in range
1344 * (first; last) will stay set because they form buddies on
1345 * upper layer. We just deal with borders if they don't
1346 * align with upper layer and then go up.
1347 * Releasing entire group is all about clearing
1348 * single bit of highest order buddy.
1352 * ---------------------------------
1354 * ---------------------------------
1355 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1356 * ---------------------------------
1358 * \_____________________/
1360 * Neither [1] nor [6] is aligned to above layer.
1361 * Left neighbour [0] is free, so mark it busy,
1362 * decrease bb_counters and extend range to
1364 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1365 * mark [6] free, increase bb_counters and shrink range to
1367 * Then shift range to [0; 2], go up and do the same.
1372 e4b
->bd_info
->bb_counters
[order
] += mb_buddy_adjust_border(&first
, buddy
, -1);
1374 e4b
->bd_info
->bb_counters
[order
] += mb_buddy_adjust_border(&last
, buddy
, 1);
1379 if (first
== last
|| !(buddy2
= mb_find_buddy(e4b
, order
, &max
))) {
1380 mb_clear_bits(buddy
, first
, last
- first
+ 1);
1381 e4b
->bd_info
->bb_counters
[order
- 1] += last
- first
+ 1;
1390 static void mb_free_blocks(struct inode
*inode
, struct ext4_buddy
*e4b
,
1391 int first
, int count
)
1393 int left_is_free
= 0;
1394 int right_is_free
= 0;
1396 int last
= first
+ count
- 1;
1397 struct super_block
*sb
= e4b
->bd_sb
;
1399 if (WARN_ON(count
== 0))
1401 BUG_ON(last
>= (sb
->s_blocksize
<< 3));
1402 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
1403 mb_check_buddy(e4b
);
1404 mb_free_blocks_double(inode
, e4b
, first
, count
);
1406 e4b
->bd_info
->bb_free
+= count
;
1407 if (first
< e4b
->bd_info
->bb_first_free
)
1408 e4b
->bd_info
->bb_first_free
= first
;
1410 /* access memory sequentially: check left neighbour,
1411 * clear range and then check right neighbour
1414 left_is_free
= !mb_test_bit(first
- 1, e4b
->bd_bitmap
);
1415 block
= mb_test_and_clear_bits(e4b
->bd_bitmap
, first
, count
);
1416 if (last
+ 1 < EXT4_SB(sb
)->s_mb_maxs
[0])
1417 right_is_free
= !mb_test_bit(last
+ 1, e4b
->bd_bitmap
);
1419 if (unlikely(block
!= -1)) {
1420 ext4_fsblk_t blocknr
;
1422 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
1423 blocknr
+= EXT4_C2B(EXT4_SB(sb
), block
);
1424 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1425 inode
? inode
->i_ino
: 0,
1427 "freeing already freed block "
1429 mb_regenerate_buddy(e4b
);
1433 /* let's maintain fragments counter */
1434 if (left_is_free
&& right_is_free
)
1435 e4b
->bd_info
->bb_fragments
--;
1436 else if (!left_is_free
&& !right_is_free
)
1437 e4b
->bd_info
->bb_fragments
++;
1439 /* buddy[0] == bd_bitmap is a special case, so handle
1440 * it right away and let mb_buddy_mark_free stay free of
1441 * zero order checks.
1442 * Check if neighbours are to be coaleasced,
1443 * adjust bitmap bb_counters and borders appropriately.
1446 first
+= !left_is_free
;
1447 e4b
->bd_info
->bb_counters
[0] += left_is_free
? -1 : 1;
1450 last
-= !right_is_free
;
1451 e4b
->bd_info
->bb_counters
[0] += right_is_free
? -1 : 1;
1455 mb_buddy_mark_free(e4b
, first
>> 1, last
>> 1);
1458 mb_set_largest_free_order(sb
, e4b
->bd_info
);
1459 mb_check_buddy(e4b
);
1462 static int mb_find_extent(struct ext4_buddy
*e4b
, int block
,
1463 int needed
, struct ext4_free_extent
*ex
)
1469 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1472 buddy
= mb_find_buddy(e4b
, 0, &max
);
1473 BUG_ON(buddy
== NULL
);
1474 BUG_ON(block
>= max
);
1475 if (mb_test_bit(block
, buddy
)) {
1482 /* find actual order */
1483 order
= mb_find_order_for_block(e4b
, block
);
1484 block
= block
>> order
;
1486 ex
->fe_len
= 1 << order
;
1487 ex
->fe_start
= block
<< order
;
1488 ex
->fe_group
= e4b
->bd_group
;
1490 /* calc difference from given start */
1491 next
= next
- ex
->fe_start
;
1493 ex
->fe_start
+= next
;
1495 while (needed
> ex
->fe_len
&&
1496 mb_find_buddy(e4b
, order
, &max
)) {
1498 if (block
+ 1 >= max
)
1501 next
= (block
+ 1) * (1 << order
);
1502 if (mb_test_bit(next
, e4b
->bd_bitmap
))
1505 order
= mb_find_order_for_block(e4b
, next
);
1507 block
= next
>> order
;
1508 ex
->fe_len
+= 1 << order
;
1511 BUG_ON(ex
->fe_start
+ ex
->fe_len
> (1 << (e4b
->bd_blkbits
+ 3)));
1515 static int mb_mark_used(struct ext4_buddy
*e4b
, struct ext4_free_extent
*ex
)
1521 int start
= ex
->fe_start
;
1522 int len
= ex
->fe_len
;
1527 BUG_ON(start
+ len
> (e4b
->bd_sb
->s_blocksize
<< 3));
1528 BUG_ON(e4b
->bd_group
!= ex
->fe_group
);
1529 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1530 mb_check_buddy(e4b
);
1531 mb_mark_used_double(e4b
, start
, len
);
1533 e4b
->bd_info
->bb_free
-= len
;
1534 if (e4b
->bd_info
->bb_first_free
== start
)
1535 e4b
->bd_info
->bb_first_free
+= len
;
1537 /* let's maintain fragments counter */
1539 mlen
= !mb_test_bit(start
- 1, e4b
->bd_bitmap
);
1540 if (start
+ len
< EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[0])
1541 max
= !mb_test_bit(start
+ len
, e4b
->bd_bitmap
);
1543 e4b
->bd_info
->bb_fragments
++;
1544 else if (!mlen
&& !max
)
1545 e4b
->bd_info
->bb_fragments
--;
1547 /* let's maintain buddy itself */
1549 ord
= mb_find_order_for_block(e4b
, start
);
1551 if (((start
>> ord
) << ord
) == start
&& len
>= (1 << ord
)) {
1552 /* the whole chunk may be allocated at once! */
1554 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1555 BUG_ON((start
>> ord
) >= max
);
1556 mb_set_bit(start
>> ord
, buddy
);
1557 e4b
->bd_info
->bb_counters
[ord
]--;
1564 /* store for history */
1566 ret
= len
| (ord
<< 16);
1568 /* we have to split large buddy */
1570 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1571 mb_set_bit(start
>> ord
, buddy
);
1572 e4b
->bd_info
->bb_counters
[ord
]--;
1575 cur
= (start
>> ord
) & ~1U;
1576 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1577 mb_clear_bit(cur
, buddy
);
1578 mb_clear_bit(cur
+ 1, buddy
);
1579 e4b
->bd_info
->bb_counters
[ord
]++;
1580 e4b
->bd_info
->bb_counters
[ord
]++;
1582 mb_set_largest_free_order(e4b
->bd_sb
, e4b
->bd_info
);
1584 ext4_set_bits(e4b
->bd_bitmap
, ex
->fe_start
, len0
);
1585 mb_check_buddy(e4b
);
1591 * Must be called under group lock!
1593 static void ext4_mb_use_best_found(struct ext4_allocation_context
*ac
,
1594 struct ext4_buddy
*e4b
)
1596 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1599 BUG_ON(ac
->ac_b_ex
.fe_group
!= e4b
->bd_group
);
1600 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1602 ac
->ac_b_ex
.fe_len
= min(ac
->ac_b_ex
.fe_len
, ac
->ac_g_ex
.fe_len
);
1603 ac
->ac_b_ex
.fe_logical
= ac
->ac_g_ex
.fe_logical
;
1604 ret
= mb_mark_used(e4b
, &ac
->ac_b_ex
);
1606 /* preallocation can change ac_b_ex, thus we store actually
1607 * allocated blocks for history */
1608 ac
->ac_f_ex
= ac
->ac_b_ex
;
1610 ac
->ac_status
= AC_STATUS_FOUND
;
1611 ac
->ac_tail
= ret
& 0xffff;
1612 ac
->ac_buddy
= ret
>> 16;
1615 * take the page reference. We want the page to be pinned
1616 * so that we don't get a ext4_mb_init_cache_call for this
1617 * group until we update the bitmap. That would mean we
1618 * double allocate blocks. The reference is dropped
1619 * in ext4_mb_release_context
1621 ac
->ac_bitmap_page
= e4b
->bd_bitmap_page
;
1622 get_page(ac
->ac_bitmap_page
);
1623 ac
->ac_buddy_page
= e4b
->bd_buddy_page
;
1624 get_page(ac
->ac_buddy_page
);
1625 /* store last allocated for subsequent stream allocation */
1626 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
1627 spin_lock(&sbi
->s_md_lock
);
1628 sbi
->s_mb_last_group
= ac
->ac_f_ex
.fe_group
;
1629 sbi
->s_mb_last_start
= ac
->ac_f_ex
.fe_start
;
1630 spin_unlock(&sbi
->s_md_lock
);
1635 * regular allocator, for general purposes allocation
1638 static void ext4_mb_check_limits(struct ext4_allocation_context
*ac
,
1639 struct ext4_buddy
*e4b
,
1642 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1643 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1644 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1645 struct ext4_free_extent ex
;
1648 if (ac
->ac_status
== AC_STATUS_FOUND
)
1651 * We don't want to scan for a whole year
1653 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
&&
1654 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1655 ac
->ac_status
= AC_STATUS_BREAK
;
1660 * Haven't found good chunk so far, let's continue
1662 if (bex
->fe_len
< gex
->fe_len
)
1665 if ((finish_group
|| ac
->ac_found
> sbi
->s_mb_min_to_scan
)
1666 && bex
->fe_group
== e4b
->bd_group
) {
1667 /* recheck chunk's availability - we don't know
1668 * when it was found (within this lock-unlock
1670 max
= mb_find_extent(e4b
, bex
->fe_start
, gex
->fe_len
, &ex
);
1671 if (max
>= gex
->fe_len
) {
1672 ext4_mb_use_best_found(ac
, e4b
);
1679 * The routine checks whether found extent is good enough. If it is,
1680 * then the extent gets marked used and flag is set to the context
1681 * to stop scanning. Otherwise, the extent is compared with the
1682 * previous found extent and if new one is better, then it's stored
1683 * in the context. Later, the best found extent will be used, if
1684 * mballoc can't find good enough extent.
1686 * FIXME: real allocation policy is to be designed yet!
1688 static void ext4_mb_measure_extent(struct ext4_allocation_context
*ac
,
1689 struct ext4_free_extent
*ex
,
1690 struct ext4_buddy
*e4b
)
1692 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1693 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1695 BUG_ON(ex
->fe_len
<= 0);
1696 BUG_ON(ex
->fe_len
> EXT4_CLUSTERS_PER_GROUP(ac
->ac_sb
));
1697 BUG_ON(ex
->fe_start
>= EXT4_CLUSTERS_PER_GROUP(ac
->ac_sb
));
1698 BUG_ON(ac
->ac_status
!= AC_STATUS_CONTINUE
);
1703 * The special case - take what you catch first
1705 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1707 ext4_mb_use_best_found(ac
, e4b
);
1712 * Let's check whether the chuck is good enough
1714 if (ex
->fe_len
== gex
->fe_len
) {
1716 ext4_mb_use_best_found(ac
, e4b
);
1721 * If this is first found extent, just store it in the context
1723 if (bex
->fe_len
== 0) {
1729 * If new found extent is better, store it in the context
1731 if (bex
->fe_len
< gex
->fe_len
) {
1732 /* if the request isn't satisfied, any found extent
1733 * larger than previous best one is better */
1734 if (ex
->fe_len
> bex
->fe_len
)
1736 } else if (ex
->fe_len
> gex
->fe_len
) {
1737 /* if the request is satisfied, then we try to find
1738 * an extent that still satisfy the request, but is
1739 * smaller than previous one */
1740 if (ex
->fe_len
< bex
->fe_len
)
1744 ext4_mb_check_limits(ac
, e4b
, 0);
1747 static noinline_for_stack
1748 int ext4_mb_try_best_found(struct ext4_allocation_context
*ac
,
1749 struct ext4_buddy
*e4b
)
1751 struct ext4_free_extent ex
= ac
->ac_b_ex
;
1752 ext4_group_t group
= ex
.fe_group
;
1756 BUG_ON(ex
.fe_len
<= 0);
1757 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1761 ext4_lock_group(ac
->ac_sb
, group
);
1762 max
= mb_find_extent(e4b
, ex
.fe_start
, ex
.fe_len
, &ex
);
1766 ext4_mb_use_best_found(ac
, e4b
);
1769 ext4_unlock_group(ac
->ac_sb
, group
);
1770 ext4_mb_unload_buddy(e4b
);
1775 static noinline_for_stack
1776 int ext4_mb_find_by_goal(struct ext4_allocation_context
*ac
,
1777 struct ext4_buddy
*e4b
)
1779 ext4_group_t group
= ac
->ac_g_ex
.fe_group
;
1782 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1783 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
1784 struct ext4_free_extent ex
;
1786 if (!(ac
->ac_flags
& EXT4_MB_HINT_TRY_GOAL
))
1788 if (grp
->bb_free
== 0)
1791 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1795 ext4_lock_group(ac
->ac_sb
, group
);
1796 max
= mb_find_extent(e4b
, ac
->ac_g_ex
.fe_start
,
1797 ac
->ac_g_ex
.fe_len
, &ex
);
1799 if (max
>= ac
->ac_g_ex
.fe_len
&& ac
->ac_g_ex
.fe_len
== sbi
->s_stripe
) {
1802 start
= ext4_group_first_block_no(ac
->ac_sb
, e4b
->bd_group
) +
1804 /* use do_div to get remainder (would be 64-bit modulo) */
1805 if (do_div(start
, sbi
->s_stripe
) == 0) {
1808 ext4_mb_use_best_found(ac
, e4b
);
1810 } else if (max
>= ac
->ac_g_ex
.fe_len
) {
1811 BUG_ON(ex
.fe_len
<= 0);
1812 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1813 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1816 ext4_mb_use_best_found(ac
, e4b
);
1817 } else if (max
> 0 && (ac
->ac_flags
& EXT4_MB_HINT_MERGE
)) {
1818 /* Sometimes, caller may want to merge even small
1819 * number of blocks to an existing extent */
1820 BUG_ON(ex
.fe_len
<= 0);
1821 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1822 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1825 ext4_mb_use_best_found(ac
, e4b
);
1827 ext4_unlock_group(ac
->ac_sb
, group
);
1828 ext4_mb_unload_buddy(e4b
);
1834 * The routine scans buddy structures (not bitmap!) from given order
1835 * to max order and tries to find big enough chunk to satisfy the req
1837 static noinline_for_stack
1838 void ext4_mb_simple_scan_group(struct ext4_allocation_context
*ac
,
1839 struct ext4_buddy
*e4b
)
1841 struct super_block
*sb
= ac
->ac_sb
;
1842 struct ext4_group_info
*grp
= e4b
->bd_info
;
1848 BUG_ON(ac
->ac_2order
<= 0);
1849 for (i
= ac
->ac_2order
; i
<= sb
->s_blocksize_bits
+ 1; i
++) {
1850 if (grp
->bb_counters
[i
] == 0)
1853 buddy
= mb_find_buddy(e4b
, i
, &max
);
1854 BUG_ON(buddy
== NULL
);
1856 k
= mb_find_next_zero_bit(buddy
, max
, 0);
1861 ac
->ac_b_ex
.fe_len
= 1 << i
;
1862 ac
->ac_b_ex
.fe_start
= k
<< i
;
1863 ac
->ac_b_ex
.fe_group
= e4b
->bd_group
;
1865 ext4_mb_use_best_found(ac
, e4b
);
1867 BUG_ON(ac
->ac_b_ex
.fe_len
!= ac
->ac_g_ex
.fe_len
);
1869 if (EXT4_SB(sb
)->s_mb_stats
)
1870 atomic_inc(&EXT4_SB(sb
)->s_bal_2orders
);
1877 * The routine scans the group and measures all found extents.
1878 * In order to optimize scanning, caller must pass number of
1879 * free blocks in the group, so the routine can know upper limit.
1881 static noinline_for_stack
1882 void ext4_mb_complex_scan_group(struct ext4_allocation_context
*ac
,
1883 struct ext4_buddy
*e4b
)
1885 struct super_block
*sb
= ac
->ac_sb
;
1886 void *bitmap
= e4b
->bd_bitmap
;
1887 struct ext4_free_extent ex
;
1891 free
= e4b
->bd_info
->bb_free
;
1894 i
= e4b
->bd_info
->bb_first_free
;
1896 while (free
&& ac
->ac_status
== AC_STATUS_CONTINUE
) {
1897 i
= mb_find_next_zero_bit(bitmap
,
1898 EXT4_CLUSTERS_PER_GROUP(sb
), i
);
1899 if (i
>= EXT4_CLUSTERS_PER_GROUP(sb
)) {
1901 * IF we have corrupt bitmap, we won't find any
1902 * free blocks even though group info says we
1903 * we have free blocks
1905 ext4_grp_locked_error(sb
, e4b
->bd_group
, 0, 0,
1906 "%d free clusters as per "
1907 "group info. But bitmap says 0",
1912 mb_find_extent(e4b
, i
, ac
->ac_g_ex
.fe_len
, &ex
);
1913 BUG_ON(ex
.fe_len
<= 0);
1914 if (free
< ex
.fe_len
) {
1915 ext4_grp_locked_error(sb
, e4b
->bd_group
, 0, 0,
1916 "%d free clusters as per "
1917 "group info. But got %d blocks",
1920 * The number of free blocks differs. This mostly
1921 * indicate that the bitmap is corrupt. So exit
1922 * without claiming the space.
1927 ext4_mb_measure_extent(ac
, &ex
, e4b
);
1933 ext4_mb_check_limits(ac
, e4b
, 1);
1937 * This is a special case for storages like raid5
1938 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1940 static noinline_for_stack
1941 void ext4_mb_scan_aligned(struct ext4_allocation_context
*ac
,
1942 struct ext4_buddy
*e4b
)
1944 struct super_block
*sb
= ac
->ac_sb
;
1945 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1946 void *bitmap
= e4b
->bd_bitmap
;
1947 struct ext4_free_extent ex
;
1948 ext4_fsblk_t first_group_block
;
1953 BUG_ON(sbi
->s_stripe
== 0);
1955 /* find first stripe-aligned block in group */
1956 first_group_block
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
1958 a
= first_group_block
+ sbi
->s_stripe
- 1;
1959 do_div(a
, sbi
->s_stripe
);
1960 i
= (a
* sbi
->s_stripe
) - first_group_block
;
1962 while (i
< EXT4_CLUSTERS_PER_GROUP(sb
)) {
1963 if (!mb_test_bit(i
, bitmap
)) {
1964 max
= mb_find_extent(e4b
, i
, sbi
->s_stripe
, &ex
);
1965 if (max
>= sbi
->s_stripe
) {
1968 ext4_mb_use_best_found(ac
, e4b
);
1976 /* This is now called BEFORE we load the buddy bitmap. */
1977 static int ext4_mb_good_group(struct ext4_allocation_context
*ac
,
1978 ext4_group_t group
, int cr
)
1980 unsigned free
, fragments
;
1981 int flex_size
= ext4_flex_bg_size(EXT4_SB(ac
->ac_sb
));
1982 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
1984 BUG_ON(cr
< 0 || cr
>= 4);
1986 free
= grp
->bb_free
;
1989 if (cr
<= 2 && free
< ac
->ac_g_ex
.fe_len
)
1992 /* We only do this if the grp has never been initialized */
1993 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
1994 int ret
= ext4_mb_init_group(ac
->ac_sb
, group
);
1999 fragments
= grp
->bb_fragments
;
2005 BUG_ON(ac
->ac_2order
== 0);
2007 /* Avoid using the first bg of a flexgroup for data files */
2008 if ((ac
->ac_flags
& EXT4_MB_HINT_DATA
) &&
2009 (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) &&
2010 ((group
% flex_size
) == 0))
2013 if ((ac
->ac_2order
> ac
->ac_sb
->s_blocksize_bits
+1) ||
2014 (free
/ fragments
) >= ac
->ac_g_ex
.fe_len
)
2017 if (grp
->bb_largest_free_order
< ac
->ac_2order
)
2022 if ((free
/ fragments
) >= ac
->ac_g_ex
.fe_len
)
2026 if (free
>= ac
->ac_g_ex
.fe_len
)
2038 static noinline_for_stack
int
2039 ext4_mb_regular_allocator(struct ext4_allocation_context
*ac
)
2041 ext4_group_t ngroups
, group
, i
;
2044 struct ext4_sb_info
*sbi
;
2045 struct super_block
*sb
;
2046 struct ext4_buddy e4b
;
2050 ngroups
= ext4_get_groups_count(sb
);
2051 /* non-extent files are limited to low blocks/groups */
2052 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)))
2053 ngroups
= sbi
->s_blockfile_groups
;
2055 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
2057 /* first, try the goal */
2058 err
= ext4_mb_find_by_goal(ac
, &e4b
);
2059 if (err
|| ac
->ac_status
== AC_STATUS_FOUND
)
2062 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
2066 * ac->ac2_order is set only if the fe_len is a power of 2
2067 * if ac2_order is set we also set criteria to 0 so that we
2068 * try exact allocation using buddy.
2070 i
= fls(ac
->ac_g_ex
.fe_len
);
2073 * We search using buddy data only if the order of the request
2074 * is greater than equal to the sbi_s_mb_order2_reqs
2075 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2077 if (i
>= sbi
->s_mb_order2_reqs
) {
2079 * This should tell if fe_len is exactly power of 2
2081 if ((ac
->ac_g_ex
.fe_len
& (~(1 << (i
- 1)))) == 0)
2082 ac
->ac_2order
= i
- 1;
2085 /* if stream allocation is enabled, use global goal */
2086 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
2087 /* TBD: may be hot point */
2088 spin_lock(&sbi
->s_md_lock
);
2089 ac
->ac_g_ex
.fe_group
= sbi
->s_mb_last_group
;
2090 ac
->ac_g_ex
.fe_start
= sbi
->s_mb_last_start
;
2091 spin_unlock(&sbi
->s_md_lock
);
2094 /* Let's just scan groups to find more-less suitable blocks */
2095 cr
= ac
->ac_2order
? 0 : 1;
2097 * cr == 0 try to get exact allocation,
2098 * cr == 3 try to get anything
2101 for (; cr
< 4 && ac
->ac_status
== AC_STATUS_CONTINUE
; cr
++) {
2102 ac
->ac_criteria
= cr
;
2104 * searching for the right group start
2105 * from the goal value specified
2107 group
= ac
->ac_g_ex
.fe_group
;
2109 for (i
= 0; i
< ngroups
; group
++, i
++) {
2111 * Artificially restricted ngroups for non-extent
2112 * files makes group > ngroups possible on first loop.
2114 if (group
>= ngroups
)
2117 /* This now checks without needing the buddy page */
2118 if (!ext4_mb_good_group(ac
, group
, cr
))
2121 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2125 ext4_lock_group(sb
, group
);
2128 * We need to check again after locking the
2131 if (!ext4_mb_good_group(ac
, group
, cr
)) {
2132 ext4_unlock_group(sb
, group
);
2133 ext4_mb_unload_buddy(&e4b
);
2137 ac
->ac_groups_scanned
++;
2138 if (cr
== 0 && ac
->ac_2order
< sb
->s_blocksize_bits
+2)
2139 ext4_mb_simple_scan_group(ac
, &e4b
);
2140 else if (cr
== 1 && sbi
->s_stripe
&&
2141 !(ac
->ac_g_ex
.fe_len
% sbi
->s_stripe
))
2142 ext4_mb_scan_aligned(ac
, &e4b
);
2144 ext4_mb_complex_scan_group(ac
, &e4b
);
2146 ext4_unlock_group(sb
, group
);
2147 ext4_mb_unload_buddy(&e4b
);
2149 if (ac
->ac_status
!= AC_STATUS_CONTINUE
)
2154 if (ac
->ac_b_ex
.fe_len
> 0 && ac
->ac_status
!= AC_STATUS_FOUND
&&
2155 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
2157 * We've been searching too long. Let's try to allocate
2158 * the best chunk we've found so far
2161 ext4_mb_try_best_found(ac
, &e4b
);
2162 if (ac
->ac_status
!= AC_STATUS_FOUND
) {
2164 * Someone more lucky has already allocated it.
2165 * The only thing we can do is just take first
2167 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2169 ac
->ac_b_ex
.fe_group
= 0;
2170 ac
->ac_b_ex
.fe_start
= 0;
2171 ac
->ac_b_ex
.fe_len
= 0;
2172 ac
->ac_status
= AC_STATUS_CONTINUE
;
2173 ac
->ac_flags
|= EXT4_MB_HINT_FIRST
;
2175 atomic_inc(&sbi
->s_mb_lost_chunks
);
2183 static void *ext4_mb_seq_groups_start(struct seq_file
*seq
, loff_t
*pos
)
2185 struct super_block
*sb
= seq
->private;
2188 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2191 return (void *) ((unsigned long) group
);
2194 static void *ext4_mb_seq_groups_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2196 struct super_block
*sb
= seq
->private;
2200 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2203 return (void *) ((unsigned long) group
);
2206 static int ext4_mb_seq_groups_show(struct seq_file
*seq
, void *v
)
2208 struct super_block
*sb
= seq
->private;
2209 ext4_group_t group
= (ext4_group_t
) ((unsigned long) v
);
2211 int err
, buddy_loaded
= 0;
2212 struct ext4_buddy e4b
;
2213 struct ext4_group_info
*grinfo
;
2215 struct ext4_group_info info
;
2216 ext4_grpblk_t counters
[16];
2221 seq_printf(seq
, "#%-5s: %-5s %-5s %-5s "
2222 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2223 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2224 "group", "free", "frags", "first",
2225 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2226 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2228 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(sg
.info
.bb_counters
[0]) +
2229 sizeof(struct ext4_group_info
);
2230 grinfo
= ext4_get_group_info(sb
, group
);
2231 /* Load the group info in memory only if not already loaded. */
2232 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo
))) {
2233 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2235 seq_printf(seq
, "#%-5u: I/O error\n", group
);
2241 memcpy(&sg
, ext4_get_group_info(sb
, group
), i
);
2244 ext4_mb_unload_buddy(&e4b
);
2246 seq_printf(seq
, "#%-5u: %-5u %-5u %-5u [", group
, sg
.info
.bb_free
,
2247 sg
.info
.bb_fragments
, sg
.info
.bb_first_free
);
2248 for (i
= 0; i
<= 13; i
++)
2249 seq_printf(seq
, " %-5u", i
<= sb
->s_blocksize_bits
+ 1 ?
2250 sg
.info
.bb_counters
[i
] : 0);
2251 seq_printf(seq
, " ]\n");
2256 static void ext4_mb_seq_groups_stop(struct seq_file
*seq
, void *v
)
2260 static const struct seq_operations ext4_mb_seq_groups_ops
= {
2261 .start
= ext4_mb_seq_groups_start
,
2262 .next
= ext4_mb_seq_groups_next
,
2263 .stop
= ext4_mb_seq_groups_stop
,
2264 .show
= ext4_mb_seq_groups_show
,
2267 static int ext4_mb_seq_groups_open(struct inode
*inode
, struct file
*file
)
2269 struct super_block
*sb
= PDE_DATA(inode
);
2272 rc
= seq_open(file
, &ext4_mb_seq_groups_ops
);
2274 struct seq_file
*m
= file
->private_data
;
2281 static const struct file_operations ext4_mb_seq_groups_fops
= {
2282 .owner
= THIS_MODULE
,
2283 .open
= ext4_mb_seq_groups_open
,
2285 .llseek
= seq_lseek
,
2286 .release
= seq_release
,
2289 static struct kmem_cache
*get_groupinfo_cache(int blocksize_bits
)
2291 int cache_index
= blocksize_bits
- EXT4_MIN_BLOCK_LOG_SIZE
;
2292 struct kmem_cache
*cachep
= ext4_groupinfo_caches
[cache_index
];
2299 * Allocate the top-level s_group_info array for the specified number
2302 int ext4_mb_alloc_groupinfo(struct super_block
*sb
, ext4_group_t ngroups
)
2304 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2306 struct ext4_group_info
***new_groupinfo
;
2308 size
= (ngroups
+ EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2309 EXT4_DESC_PER_BLOCK_BITS(sb
);
2310 if (size
<= sbi
->s_group_info_size
)
2313 size
= roundup_pow_of_two(sizeof(*sbi
->s_group_info
) * size
);
2314 new_groupinfo
= ext4_kvzalloc(size
, GFP_KERNEL
);
2315 if (!new_groupinfo
) {
2316 ext4_msg(sb
, KERN_ERR
, "can't allocate buddy meta group");
2319 if (sbi
->s_group_info
) {
2320 memcpy(new_groupinfo
, sbi
->s_group_info
,
2321 sbi
->s_group_info_size
* sizeof(*sbi
->s_group_info
));
2322 ext4_kvfree(sbi
->s_group_info
);
2324 sbi
->s_group_info
= new_groupinfo
;
2325 sbi
->s_group_info_size
= size
/ sizeof(*sbi
->s_group_info
);
2326 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2327 sbi
->s_group_info_size
);
2331 /* Create and initialize ext4_group_info data for the given group. */
2332 int ext4_mb_add_groupinfo(struct super_block
*sb
, ext4_group_t group
,
2333 struct ext4_group_desc
*desc
)
2337 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2338 struct ext4_group_info
**meta_group_info
;
2339 struct kmem_cache
*cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2342 * First check if this group is the first of a reserved block.
2343 * If it's true, we have to allocate a new table of pointers
2344 * to ext4_group_info structures
2346 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2347 metalen
= sizeof(*meta_group_info
) <<
2348 EXT4_DESC_PER_BLOCK_BITS(sb
);
2349 meta_group_info
= kmalloc(metalen
, GFP_KERNEL
);
2350 if (meta_group_info
== NULL
) {
2351 ext4_msg(sb
, KERN_ERR
, "can't allocate mem "
2352 "for a buddy group");
2353 goto exit_meta_group_info
;
2355 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)] =
2360 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)];
2361 i
= group
& (EXT4_DESC_PER_BLOCK(sb
) - 1);
2363 meta_group_info
[i
] = kmem_cache_zalloc(cachep
, GFP_KERNEL
);
2364 if (meta_group_info
[i
] == NULL
) {
2365 ext4_msg(sb
, KERN_ERR
, "can't allocate buddy mem");
2366 goto exit_group_info
;
2368 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
,
2369 &(meta_group_info
[i
]->bb_state
));
2372 * initialize bb_free to be able to skip
2373 * empty groups without initialization
2375 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2376 meta_group_info
[i
]->bb_free
=
2377 ext4_free_clusters_after_init(sb
, group
, desc
);
2379 meta_group_info
[i
]->bb_free
=
2380 ext4_free_group_clusters(sb
, desc
);
2383 INIT_LIST_HEAD(&meta_group_info
[i
]->bb_prealloc_list
);
2384 init_rwsem(&meta_group_info
[i
]->alloc_sem
);
2385 meta_group_info
[i
]->bb_free_root
= RB_ROOT
;
2386 meta_group_info
[i
]->bb_largest_free_order
= -1; /* uninit */
2390 struct buffer_head
*bh
;
2391 meta_group_info
[i
]->bb_bitmap
=
2392 kmalloc(sb
->s_blocksize
, GFP_KERNEL
);
2393 BUG_ON(meta_group_info
[i
]->bb_bitmap
== NULL
);
2394 bh
= ext4_read_block_bitmap(sb
, group
);
2396 memcpy(meta_group_info
[i
]->bb_bitmap
, bh
->b_data
,
2405 /* If a meta_group_info table has been allocated, release it now */
2406 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2407 kfree(sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)]);
2408 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)] = NULL
;
2410 exit_meta_group_info
:
2412 } /* ext4_mb_add_groupinfo */
2414 static int ext4_mb_init_backend(struct super_block
*sb
)
2416 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2418 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2420 struct ext4_group_desc
*desc
;
2421 struct kmem_cache
*cachep
;
2423 err
= ext4_mb_alloc_groupinfo(sb
, ngroups
);
2427 sbi
->s_buddy_cache
= new_inode(sb
);
2428 if (sbi
->s_buddy_cache
== NULL
) {
2429 ext4_msg(sb
, KERN_ERR
, "can't get new inode");
2432 /* To avoid potentially colliding with an valid on-disk inode number,
2433 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2434 * not in the inode hash, so it should never be found by iget(), but
2435 * this will avoid confusion if it ever shows up during debugging. */
2436 sbi
->s_buddy_cache
->i_ino
= EXT4_BAD_INO
;
2437 EXT4_I(sbi
->s_buddy_cache
)->i_disksize
= 0;
2438 for (i
= 0; i
< ngroups
; i
++) {
2439 desc
= ext4_get_group_desc(sb
, i
, NULL
);
2441 ext4_msg(sb
, KERN_ERR
, "can't read descriptor %u", i
);
2444 if (ext4_mb_add_groupinfo(sb
, i
, desc
) != 0)
2451 cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2453 kmem_cache_free(cachep
, ext4_get_group_info(sb
, i
));
2454 i
= sbi
->s_group_info_size
;
2456 kfree(sbi
->s_group_info
[i
]);
2457 iput(sbi
->s_buddy_cache
);
2459 ext4_kvfree(sbi
->s_group_info
);
2463 static void ext4_groupinfo_destroy_slabs(void)
2467 for (i
= 0; i
< NR_GRPINFO_CACHES
; i
++) {
2468 if (ext4_groupinfo_caches
[i
])
2469 kmem_cache_destroy(ext4_groupinfo_caches
[i
]);
2470 ext4_groupinfo_caches
[i
] = NULL
;
2474 static int ext4_groupinfo_create_slab(size_t size
)
2476 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex
);
2478 int blocksize_bits
= order_base_2(size
);
2479 int cache_index
= blocksize_bits
- EXT4_MIN_BLOCK_LOG_SIZE
;
2480 struct kmem_cache
*cachep
;
2482 if (cache_index
>= NR_GRPINFO_CACHES
)
2485 if (unlikely(cache_index
< 0))
2488 mutex_lock(&ext4_grpinfo_slab_create_mutex
);
2489 if (ext4_groupinfo_caches
[cache_index
]) {
2490 mutex_unlock(&ext4_grpinfo_slab_create_mutex
);
2491 return 0; /* Already created */
2494 slab_size
= offsetof(struct ext4_group_info
,
2495 bb_counters
[blocksize_bits
+ 2]);
2497 cachep
= kmem_cache_create(ext4_groupinfo_slab_names
[cache_index
],
2498 slab_size
, 0, SLAB_RECLAIM_ACCOUNT
,
2501 ext4_groupinfo_caches
[cache_index
] = cachep
;
2503 mutex_unlock(&ext4_grpinfo_slab_create_mutex
);
2506 "EXT4-fs: no memory for groupinfo slab cache\n");
2513 int ext4_mb_init(struct super_block
*sb
)
2515 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2521 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_offsets
);
2523 sbi
->s_mb_offsets
= kmalloc(i
, GFP_KERNEL
);
2524 if (sbi
->s_mb_offsets
== NULL
) {
2529 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_maxs
);
2530 sbi
->s_mb_maxs
= kmalloc(i
, GFP_KERNEL
);
2531 if (sbi
->s_mb_maxs
== NULL
) {
2536 ret
= ext4_groupinfo_create_slab(sb
->s_blocksize
);
2540 /* order 0 is regular bitmap */
2541 sbi
->s_mb_maxs
[0] = sb
->s_blocksize
<< 3;
2542 sbi
->s_mb_offsets
[0] = 0;
2546 max
= sb
->s_blocksize
<< 2;
2548 sbi
->s_mb_offsets
[i
] = offset
;
2549 sbi
->s_mb_maxs
[i
] = max
;
2550 offset
+= 1 << (sb
->s_blocksize_bits
- i
);
2553 } while (i
<= sb
->s_blocksize_bits
+ 1);
2555 spin_lock_init(&sbi
->s_md_lock
);
2556 spin_lock_init(&sbi
->s_bal_lock
);
2558 sbi
->s_mb_max_to_scan
= MB_DEFAULT_MAX_TO_SCAN
;
2559 sbi
->s_mb_min_to_scan
= MB_DEFAULT_MIN_TO_SCAN
;
2560 sbi
->s_mb_stats
= MB_DEFAULT_STATS
;
2561 sbi
->s_mb_stream_request
= MB_DEFAULT_STREAM_THRESHOLD
;
2562 sbi
->s_mb_order2_reqs
= MB_DEFAULT_ORDER2_REQS
;
2564 * The default group preallocation is 512, which for 4k block
2565 * sizes translates to 2 megabytes. However for bigalloc file
2566 * systems, this is probably too big (i.e, if the cluster size
2567 * is 1 megabyte, then group preallocation size becomes half a
2568 * gigabyte!). As a default, we will keep a two megabyte
2569 * group pralloc size for cluster sizes up to 64k, and after
2570 * that, we will force a minimum group preallocation size of
2571 * 32 clusters. This translates to 8 megs when the cluster
2572 * size is 256k, and 32 megs when the cluster size is 1 meg,
2573 * which seems reasonable as a default.
2575 sbi
->s_mb_group_prealloc
= max(MB_DEFAULT_GROUP_PREALLOC
>>
2576 sbi
->s_cluster_bits
, 32);
2578 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2579 * to the lowest multiple of s_stripe which is bigger than
2580 * the s_mb_group_prealloc as determined above. We want
2581 * the preallocation size to be an exact multiple of the
2582 * RAID stripe size so that preallocations don't fragment
2585 if (sbi
->s_stripe
> 1) {
2586 sbi
->s_mb_group_prealloc
= roundup(
2587 sbi
->s_mb_group_prealloc
, sbi
->s_stripe
);
2590 sbi
->s_locality_groups
= alloc_percpu(struct ext4_locality_group
);
2591 if (sbi
->s_locality_groups
== NULL
) {
2593 goto out_free_groupinfo_slab
;
2595 for_each_possible_cpu(i
) {
2596 struct ext4_locality_group
*lg
;
2597 lg
= per_cpu_ptr(sbi
->s_locality_groups
, i
);
2598 mutex_init(&lg
->lg_mutex
);
2599 for (j
= 0; j
< PREALLOC_TB_SIZE
; j
++)
2600 INIT_LIST_HEAD(&lg
->lg_prealloc_list
[j
]);
2601 spin_lock_init(&lg
->lg_prealloc_lock
);
2604 /* init file for buddy data */
2605 ret
= ext4_mb_init_backend(sb
);
2607 goto out_free_locality_groups
;
2610 proc_create_data("mb_groups", S_IRUGO
, sbi
->s_proc
,
2611 &ext4_mb_seq_groups_fops
, sb
);
2615 out_free_locality_groups
:
2616 free_percpu(sbi
->s_locality_groups
);
2617 sbi
->s_locality_groups
= NULL
;
2618 out_free_groupinfo_slab
:
2619 ext4_groupinfo_destroy_slabs();
2621 kfree(sbi
->s_mb_offsets
);
2622 sbi
->s_mb_offsets
= NULL
;
2623 kfree(sbi
->s_mb_maxs
);
2624 sbi
->s_mb_maxs
= NULL
;
2628 /* need to called with the ext4 group lock held */
2629 static void ext4_mb_cleanup_pa(struct ext4_group_info
*grp
)
2631 struct ext4_prealloc_space
*pa
;
2632 struct list_head
*cur
, *tmp
;
2635 list_for_each_safe(cur
, tmp
, &grp
->bb_prealloc_list
) {
2636 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
2637 list_del(&pa
->pa_group_list
);
2639 kmem_cache_free(ext4_pspace_cachep
, pa
);
2642 mb_debug(1, "mballoc: %u PAs left\n", count
);
2646 int ext4_mb_release(struct super_block
*sb
)
2648 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2650 int num_meta_group_infos
;
2651 struct ext4_group_info
*grinfo
;
2652 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2653 struct kmem_cache
*cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2656 remove_proc_entry("mb_groups", sbi
->s_proc
);
2658 if (sbi
->s_group_info
) {
2659 for (i
= 0; i
< ngroups
; i
++) {
2660 grinfo
= ext4_get_group_info(sb
, i
);
2662 kfree(grinfo
->bb_bitmap
);
2664 ext4_lock_group(sb
, i
);
2665 ext4_mb_cleanup_pa(grinfo
);
2666 ext4_unlock_group(sb
, i
);
2667 kmem_cache_free(cachep
, grinfo
);
2669 num_meta_group_infos
= (ngroups
+
2670 EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2671 EXT4_DESC_PER_BLOCK_BITS(sb
);
2672 for (i
= 0; i
< num_meta_group_infos
; i
++)
2673 kfree(sbi
->s_group_info
[i
]);
2674 ext4_kvfree(sbi
->s_group_info
);
2676 kfree(sbi
->s_mb_offsets
);
2677 kfree(sbi
->s_mb_maxs
);
2678 if (sbi
->s_buddy_cache
)
2679 iput(sbi
->s_buddy_cache
);
2680 if (sbi
->s_mb_stats
) {
2681 ext4_msg(sb
, KERN_INFO
,
2682 "mballoc: %u blocks %u reqs (%u success)",
2683 atomic_read(&sbi
->s_bal_allocated
),
2684 atomic_read(&sbi
->s_bal_reqs
),
2685 atomic_read(&sbi
->s_bal_success
));
2686 ext4_msg(sb
, KERN_INFO
,
2687 "mballoc: %u extents scanned, %u goal hits, "
2688 "%u 2^N hits, %u breaks, %u lost",
2689 atomic_read(&sbi
->s_bal_ex_scanned
),
2690 atomic_read(&sbi
->s_bal_goals
),
2691 atomic_read(&sbi
->s_bal_2orders
),
2692 atomic_read(&sbi
->s_bal_breaks
),
2693 atomic_read(&sbi
->s_mb_lost_chunks
));
2694 ext4_msg(sb
, KERN_INFO
,
2695 "mballoc: %lu generated and it took %Lu",
2696 sbi
->s_mb_buddies_generated
,
2697 sbi
->s_mb_generation_time
);
2698 ext4_msg(sb
, KERN_INFO
,
2699 "mballoc: %u preallocated, %u discarded",
2700 atomic_read(&sbi
->s_mb_preallocated
),
2701 atomic_read(&sbi
->s_mb_discarded
));
2704 free_percpu(sbi
->s_locality_groups
);
2709 static inline int ext4_issue_discard(struct super_block
*sb
,
2710 ext4_group_t block_group
, ext4_grpblk_t cluster
, int count
)
2712 ext4_fsblk_t discard_block
;
2714 discard_block
= (EXT4_C2B(EXT4_SB(sb
), cluster
) +
2715 ext4_group_first_block_no(sb
, block_group
));
2716 count
= EXT4_C2B(EXT4_SB(sb
), count
);
2717 trace_ext4_discard_blocks(sb
,
2718 (unsigned long long) discard_block
, count
);
2719 return sb_issue_discard(sb
, discard_block
, count
, GFP_NOFS
, 0);
2723 * This function is called by the jbd2 layer once the commit has finished,
2724 * so we know we can free the blocks that were released with that commit.
2726 static void ext4_free_data_callback(struct super_block
*sb
,
2727 struct ext4_journal_cb_entry
*jce
,
2730 struct ext4_free_data
*entry
= (struct ext4_free_data
*)jce
;
2731 struct ext4_buddy e4b
;
2732 struct ext4_group_info
*db
;
2733 int err
, count
= 0, count2
= 0;
2735 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2736 entry
->efd_count
, entry
->efd_group
, entry
);
2738 if (test_opt(sb
, DISCARD
)) {
2739 err
= ext4_issue_discard(sb
, entry
->efd_group
,
2740 entry
->efd_start_cluster
,
2742 if (err
&& err
!= -EOPNOTSUPP
)
2743 ext4_msg(sb
, KERN_WARNING
, "discard request in"
2744 " group:%d block:%d count:%d failed"
2745 " with %d", entry
->efd_group
,
2746 entry
->efd_start_cluster
,
2747 entry
->efd_count
, err
);
2750 err
= ext4_mb_load_buddy(sb
, entry
->efd_group
, &e4b
);
2751 /* we expect to find existing buddy because it's pinned */
2756 /* there are blocks to put in buddy to make them really free */
2757 count
+= entry
->efd_count
;
2759 ext4_lock_group(sb
, entry
->efd_group
);
2760 /* Take it out of per group rb tree */
2761 rb_erase(&entry
->efd_node
, &(db
->bb_free_root
));
2762 mb_free_blocks(NULL
, &e4b
, entry
->efd_start_cluster
, entry
->efd_count
);
2765 * Clear the trimmed flag for the group so that the next
2766 * ext4_trim_fs can trim it.
2767 * If the volume is mounted with -o discard, online discard
2768 * is supported and the free blocks will be trimmed online.
2770 if (!test_opt(sb
, DISCARD
))
2771 EXT4_MB_GRP_CLEAR_TRIMMED(db
);
2773 if (!db
->bb_free_root
.rb_node
) {
2774 /* No more items in the per group rb tree
2775 * balance refcounts from ext4_mb_free_metadata()
2777 page_cache_release(e4b
.bd_buddy_page
);
2778 page_cache_release(e4b
.bd_bitmap_page
);
2780 ext4_unlock_group(sb
, entry
->efd_group
);
2781 kmem_cache_free(ext4_free_data_cachep
, entry
);
2782 ext4_mb_unload_buddy(&e4b
);
2784 mb_debug(1, "freed %u blocks in %u structures\n", count
, count2
);
2787 int __init
ext4_init_mballoc(void)
2789 ext4_pspace_cachep
= KMEM_CACHE(ext4_prealloc_space
,
2790 SLAB_RECLAIM_ACCOUNT
);
2791 if (ext4_pspace_cachep
== NULL
)
2794 ext4_ac_cachep
= KMEM_CACHE(ext4_allocation_context
,
2795 SLAB_RECLAIM_ACCOUNT
);
2796 if (ext4_ac_cachep
== NULL
) {
2797 kmem_cache_destroy(ext4_pspace_cachep
);
2801 ext4_free_data_cachep
= KMEM_CACHE(ext4_free_data
,
2802 SLAB_RECLAIM_ACCOUNT
);
2803 if (ext4_free_data_cachep
== NULL
) {
2804 kmem_cache_destroy(ext4_pspace_cachep
);
2805 kmem_cache_destroy(ext4_ac_cachep
);
2811 void ext4_exit_mballoc(void)
2814 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2815 * before destroying the slab cache.
2818 kmem_cache_destroy(ext4_pspace_cachep
);
2819 kmem_cache_destroy(ext4_ac_cachep
);
2820 kmem_cache_destroy(ext4_free_data_cachep
);
2821 ext4_groupinfo_destroy_slabs();
2826 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2827 * Returns 0 if success or error code
2829 static noinline_for_stack
int
2830 ext4_mb_mark_diskspace_used(struct ext4_allocation_context
*ac
,
2831 handle_t
*handle
, unsigned int reserv_clstrs
)
2833 struct buffer_head
*bitmap_bh
= NULL
;
2834 struct ext4_group_desc
*gdp
;
2835 struct buffer_head
*gdp_bh
;
2836 struct ext4_sb_info
*sbi
;
2837 struct super_block
*sb
;
2841 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
2842 BUG_ON(ac
->ac_b_ex
.fe_len
<= 0);
2848 bitmap_bh
= ext4_read_block_bitmap(sb
, ac
->ac_b_ex
.fe_group
);
2852 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
2857 gdp
= ext4_get_group_desc(sb
, ac
->ac_b_ex
.fe_group
, &gdp_bh
);
2861 ext4_debug("using block group %u(%d)\n", ac
->ac_b_ex
.fe_group
,
2862 ext4_free_group_clusters(sb
, gdp
));
2864 err
= ext4_journal_get_write_access(handle
, gdp_bh
);
2868 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
2870 len
= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
2871 if (!ext4_data_block_valid(sbi
, block
, len
)) {
2872 ext4_error(sb
, "Allocating blocks %llu-%llu which overlap "
2873 "fs metadata", block
, block
+len
);
2874 /* File system mounted not to panic on error
2875 * Fix the bitmap and repeat the block allocation
2876 * We leak some of the blocks here.
2878 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2879 ext4_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
2880 ac
->ac_b_ex
.fe_len
);
2881 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2882 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2888 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2889 #ifdef AGGRESSIVE_CHECK
2892 for (i
= 0; i
< ac
->ac_b_ex
.fe_len
; i
++) {
2893 BUG_ON(mb_test_bit(ac
->ac_b_ex
.fe_start
+ i
,
2894 bitmap_bh
->b_data
));
2898 ext4_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
2899 ac
->ac_b_ex
.fe_len
);
2900 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2901 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
2902 ext4_free_group_clusters_set(sb
, gdp
,
2903 ext4_free_clusters_after_init(sb
,
2904 ac
->ac_b_ex
.fe_group
, gdp
));
2906 len
= ext4_free_group_clusters(sb
, gdp
) - ac
->ac_b_ex
.fe_len
;
2907 ext4_free_group_clusters_set(sb
, gdp
, len
);
2908 ext4_block_bitmap_csum_set(sb
, ac
->ac_b_ex
.fe_group
, gdp
, bitmap_bh
);
2909 ext4_group_desc_csum_set(sb
, ac
->ac_b_ex
.fe_group
, gdp
);
2911 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2912 percpu_counter_sub(&sbi
->s_freeclusters_counter
, ac
->ac_b_ex
.fe_len
);
2914 * Now reduce the dirty block count also. Should not go negative
2916 if (!(ac
->ac_flags
& EXT4_MB_DELALLOC_RESERVED
))
2917 /* release all the reserved blocks if non delalloc */
2918 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
2921 if (sbi
->s_log_groups_per_flex
) {
2922 ext4_group_t flex_group
= ext4_flex_group(sbi
,
2923 ac
->ac_b_ex
.fe_group
);
2924 atomic64_sub(ac
->ac_b_ex
.fe_len
,
2925 &sbi
->s_flex_groups
[flex_group
].free_clusters
);
2928 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2931 err
= ext4_handle_dirty_metadata(handle
, NULL
, gdp_bh
);
2939 * here we normalize request for locality group
2940 * Group request are normalized to s_mb_group_prealloc, which goes to
2941 * s_strip if we set the same via mount option.
2942 * s_mb_group_prealloc can be configured via
2943 * /sys/fs/ext4/<partition>/mb_group_prealloc
2945 * XXX: should we try to preallocate more than the group has now?
2947 static void ext4_mb_normalize_group_request(struct ext4_allocation_context
*ac
)
2949 struct super_block
*sb
= ac
->ac_sb
;
2950 struct ext4_locality_group
*lg
= ac
->ac_lg
;
2953 ac
->ac_g_ex
.fe_len
= EXT4_SB(sb
)->s_mb_group_prealloc
;
2954 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2955 current
->pid
, ac
->ac_g_ex
.fe_len
);
2959 * Normalization means making request better in terms of
2960 * size and alignment
2962 static noinline_for_stack
void
2963 ext4_mb_normalize_request(struct ext4_allocation_context
*ac
,
2964 struct ext4_allocation_request
*ar
)
2966 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
2969 loff_t size
, start_off
;
2970 loff_t orig_size __maybe_unused
;
2972 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
2973 struct ext4_prealloc_space
*pa
;
2975 /* do normalize only data requests, metadata requests
2976 do not need preallocation */
2977 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
2980 /* sometime caller may want exact blocks */
2981 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
2984 /* caller may indicate that preallocation isn't
2985 * required (it's a tail, for example) */
2986 if (ac
->ac_flags
& EXT4_MB_HINT_NOPREALLOC
)
2989 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
) {
2990 ext4_mb_normalize_group_request(ac
);
2994 bsbits
= ac
->ac_sb
->s_blocksize_bits
;
2996 /* first, let's learn actual file size
2997 * given current request is allocated */
2998 size
= ac
->ac_o_ex
.fe_logical
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
);
2999 size
= size
<< bsbits
;
3000 if (size
< i_size_read(ac
->ac_inode
))
3001 size
= i_size_read(ac
->ac_inode
);
3004 /* max size of free chunks */
3007 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3008 (req <= (size) || max <= (chunk_size))
3010 /* first, try to predict filesize */
3011 /* XXX: should this table be tunable? */
3013 if (size
<= 16 * 1024) {
3015 } else if (size
<= 32 * 1024) {
3017 } else if (size
<= 64 * 1024) {
3019 } else if (size
<= 128 * 1024) {
3021 } else if (size
<= 256 * 1024) {
3023 } else if (size
<= 512 * 1024) {
3025 } else if (size
<= 1024 * 1024) {
3027 } else if (NRL_CHECK_SIZE(size
, 4 * 1024 * 1024, max
, 2 * 1024)) {
3028 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3029 (21 - bsbits
)) << 21;
3030 size
= 2 * 1024 * 1024;
3031 } else if (NRL_CHECK_SIZE(size
, 8 * 1024 * 1024, max
, 4 * 1024)) {
3032 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3033 (22 - bsbits
)) << 22;
3034 size
= 4 * 1024 * 1024;
3035 } else if (NRL_CHECK_SIZE(ac
->ac_o_ex
.fe_len
,
3036 (8<<20)>>bsbits
, max
, 8 * 1024)) {
3037 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3038 (23 - bsbits
)) << 23;
3039 size
= 8 * 1024 * 1024;
3041 start_off
= (loff_t
)ac
->ac_o_ex
.fe_logical
<< bsbits
;
3042 size
= ac
->ac_o_ex
.fe_len
<< bsbits
;
3044 size
= size
>> bsbits
;
3045 start
= start_off
>> bsbits
;
3047 /* don't cover already allocated blocks in selected range */
3048 if (ar
->pleft
&& start
<= ar
->lleft
) {
3049 size
-= ar
->lleft
+ 1 - start
;
3050 start
= ar
->lleft
+ 1;
3052 if (ar
->pright
&& start
+ size
- 1 >= ar
->lright
)
3053 size
-= start
+ size
- ar
->lright
;
3057 /* check we don't cross already preallocated blocks */
3059 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3064 spin_lock(&pa
->pa_lock
);
3065 if (pa
->pa_deleted
) {
3066 spin_unlock(&pa
->pa_lock
);
3070 pa_end
= pa
->pa_lstart
+ EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3073 /* PA must not overlap original request */
3074 BUG_ON(!(ac
->ac_o_ex
.fe_logical
>= pa_end
||
3075 ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
));
3077 /* skip PAs this normalized request doesn't overlap with */
3078 if (pa
->pa_lstart
>= end
|| pa_end
<= start
) {
3079 spin_unlock(&pa
->pa_lock
);
3082 BUG_ON(pa
->pa_lstart
<= start
&& pa_end
>= end
);
3084 /* adjust start or end to be adjacent to this pa */
3085 if (pa_end
<= ac
->ac_o_ex
.fe_logical
) {
3086 BUG_ON(pa_end
< start
);
3088 } else if (pa
->pa_lstart
> ac
->ac_o_ex
.fe_logical
) {
3089 BUG_ON(pa
->pa_lstart
> end
);
3090 end
= pa
->pa_lstart
;
3092 spin_unlock(&pa
->pa_lock
);
3097 /* XXX: extra loop to check we really don't overlap preallocations */
3099 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3102 spin_lock(&pa
->pa_lock
);
3103 if (pa
->pa_deleted
== 0) {
3104 pa_end
= pa
->pa_lstart
+ EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3106 BUG_ON(!(start
>= pa_end
|| end
<= pa
->pa_lstart
));
3108 spin_unlock(&pa
->pa_lock
);
3112 if (start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
3113 start
> ac
->ac_o_ex
.fe_logical
) {
3114 ext4_msg(ac
->ac_sb
, KERN_ERR
,
3115 "start %lu, size %lu, fe_logical %lu",
3116 (unsigned long) start
, (unsigned long) size
,
3117 (unsigned long) ac
->ac_o_ex
.fe_logical
);
3119 BUG_ON(start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
3120 start
> ac
->ac_o_ex
.fe_logical
);
3121 BUG_ON(size
<= 0 || size
> EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
3123 /* now prepare goal request */
3125 /* XXX: is it better to align blocks WRT to logical
3126 * placement or satisfy big request as is */
3127 ac
->ac_g_ex
.fe_logical
= start
;
3128 ac
->ac_g_ex
.fe_len
= EXT4_NUM_B2C(sbi
, size
);
3130 /* define goal start in order to merge */
3131 if (ar
->pright
&& (ar
->lright
== (start
+ size
))) {
3132 /* merge to the right */
3133 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pright
- size
,
3134 &ac
->ac_f_ex
.fe_group
,
3135 &ac
->ac_f_ex
.fe_start
);
3136 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3138 if (ar
->pleft
&& (ar
->lleft
+ 1 == start
)) {
3139 /* merge to the left */
3140 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pleft
+ 1,
3141 &ac
->ac_f_ex
.fe_group
,
3142 &ac
->ac_f_ex
.fe_start
);
3143 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3146 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size
,
3147 (unsigned) orig_size
, (unsigned) start
);
3150 static void ext4_mb_collect_stats(struct ext4_allocation_context
*ac
)
3152 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3154 if (sbi
->s_mb_stats
&& ac
->ac_g_ex
.fe_len
> 1) {
3155 atomic_inc(&sbi
->s_bal_reqs
);
3156 atomic_add(ac
->ac_b_ex
.fe_len
, &sbi
->s_bal_allocated
);
3157 if (ac
->ac_b_ex
.fe_len
>= ac
->ac_o_ex
.fe_len
)
3158 atomic_inc(&sbi
->s_bal_success
);
3159 atomic_add(ac
->ac_found
, &sbi
->s_bal_ex_scanned
);
3160 if (ac
->ac_g_ex
.fe_start
== ac
->ac_b_ex
.fe_start
&&
3161 ac
->ac_g_ex
.fe_group
== ac
->ac_b_ex
.fe_group
)
3162 atomic_inc(&sbi
->s_bal_goals
);
3163 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
)
3164 atomic_inc(&sbi
->s_bal_breaks
);
3167 if (ac
->ac_op
== EXT4_MB_HISTORY_ALLOC
)
3168 trace_ext4_mballoc_alloc(ac
);
3170 trace_ext4_mballoc_prealloc(ac
);
3174 * Called on failure; free up any blocks from the inode PA for this
3175 * context. We don't need this for MB_GROUP_PA because we only change
3176 * pa_free in ext4_mb_release_context(), but on failure, we've already
3177 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3179 static void ext4_discard_allocated_blocks(struct ext4_allocation_context
*ac
)
3181 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
3182 struct ext4_buddy e4b
;
3186 if (ac
->ac_f_ex
.fe_len
== 0)
3188 err
= ext4_mb_load_buddy(ac
->ac_sb
, ac
->ac_f_ex
.fe_group
, &e4b
);
3191 * This should never happen since we pin the
3192 * pages in the ext4_allocation_context so
3193 * ext4_mb_load_buddy() should never fail.
3195 WARN(1, "mb_load_buddy failed (%d)", err
);
3198 ext4_lock_group(ac
->ac_sb
, ac
->ac_f_ex
.fe_group
);
3199 mb_free_blocks(ac
->ac_inode
, &e4b
, ac
->ac_f_ex
.fe_start
,
3200 ac
->ac_f_ex
.fe_len
);
3201 ext4_unlock_group(ac
->ac_sb
, ac
->ac_f_ex
.fe_group
);
3202 ext4_mb_unload_buddy(&e4b
);
3205 if (pa
->pa_type
== MB_INODE_PA
)
3206 pa
->pa_free
+= ac
->ac_b_ex
.fe_len
;
3210 * use blocks preallocated to inode
3212 static void ext4_mb_use_inode_pa(struct ext4_allocation_context
*ac
,
3213 struct ext4_prealloc_space
*pa
)
3215 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3220 /* found preallocated blocks, use them */
3221 start
= pa
->pa_pstart
+ (ac
->ac_o_ex
.fe_logical
- pa
->pa_lstart
);
3222 end
= min(pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
),
3223 start
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
));
3224 len
= EXT4_NUM_B2C(sbi
, end
- start
);
3225 ext4_get_group_no_and_offset(ac
->ac_sb
, start
, &ac
->ac_b_ex
.fe_group
,
3226 &ac
->ac_b_ex
.fe_start
);
3227 ac
->ac_b_ex
.fe_len
= len
;
3228 ac
->ac_status
= AC_STATUS_FOUND
;
3231 BUG_ON(start
< pa
->pa_pstart
);
3232 BUG_ON(end
> pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
));
3233 BUG_ON(pa
->pa_free
< len
);
3236 mb_debug(1, "use %llu/%u from inode pa %p\n", start
, len
, pa
);
3240 * use blocks preallocated to locality group
3242 static void ext4_mb_use_group_pa(struct ext4_allocation_context
*ac
,
3243 struct ext4_prealloc_space
*pa
)
3245 unsigned int len
= ac
->ac_o_ex
.fe_len
;
3247 ext4_get_group_no_and_offset(ac
->ac_sb
, pa
->pa_pstart
,
3248 &ac
->ac_b_ex
.fe_group
,
3249 &ac
->ac_b_ex
.fe_start
);
3250 ac
->ac_b_ex
.fe_len
= len
;
3251 ac
->ac_status
= AC_STATUS_FOUND
;
3254 /* we don't correct pa_pstart or pa_plen here to avoid
3255 * possible race when the group is being loaded concurrently
3256 * instead we correct pa later, after blocks are marked
3257 * in on-disk bitmap -- see ext4_mb_release_context()
3258 * Other CPUs are prevented from allocating from this pa by lg_mutex
3260 mb_debug(1, "use %u/%u from group pa %p\n", pa
->pa_lstart
-len
, len
, pa
);
3264 * Return the prealloc space that have minimal distance
3265 * from the goal block. @cpa is the prealloc
3266 * space that is having currently known minimal distance
3267 * from the goal block.
3269 static struct ext4_prealloc_space
*
3270 ext4_mb_check_group_pa(ext4_fsblk_t goal_block
,
3271 struct ext4_prealloc_space
*pa
,
3272 struct ext4_prealloc_space
*cpa
)
3274 ext4_fsblk_t cur_distance
, new_distance
;
3277 atomic_inc(&pa
->pa_count
);
3280 cur_distance
= abs(goal_block
- cpa
->pa_pstart
);
3281 new_distance
= abs(goal_block
- pa
->pa_pstart
);
3283 if (cur_distance
<= new_distance
)
3286 /* drop the previous reference */
3287 atomic_dec(&cpa
->pa_count
);
3288 atomic_inc(&pa
->pa_count
);
3293 * search goal blocks in preallocated space
3295 static noinline_for_stack
int
3296 ext4_mb_use_preallocated(struct ext4_allocation_context
*ac
)
3298 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3300 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3301 struct ext4_locality_group
*lg
;
3302 struct ext4_prealloc_space
*pa
, *cpa
= NULL
;
3303 ext4_fsblk_t goal_block
;
3305 /* only data can be preallocated */
3306 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3309 /* first, try per-file preallocation */
3311 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3313 /* all fields in this condition don't change,
3314 * so we can skip locking for them */
3315 if (ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
||
3316 ac
->ac_o_ex
.fe_logical
>= (pa
->pa_lstart
+
3317 EXT4_C2B(sbi
, pa
->pa_len
)))
3320 /* non-extent files can't have physical blocks past 2^32 */
3321 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)) &&
3322 (pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
) >
3323 EXT4_MAX_BLOCK_FILE_PHYS
))
3326 /* found preallocated blocks, use them */
3327 spin_lock(&pa
->pa_lock
);
3328 if (pa
->pa_deleted
== 0 && pa
->pa_free
) {
3329 atomic_inc(&pa
->pa_count
);
3330 ext4_mb_use_inode_pa(ac
, pa
);
3331 spin_unlock(&pa
->pa_lock
);
3332 ac
->ac_criteria
= 10;
3336 spin_unlock(&pa
->pa_lock
);
3340 /* can we use group allocation? */
3341 if (!(ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
))
3344 /* inode may have no locality group for some reason */
3348 order
= fls(ac
->ac_o_ex
.fe_len
) - 1;
3349 if (order
> PREALLOC_TB_SIZE
- 1)
3350 /* The max size of hash table is PREALLOC_TB_SIZE */
3351 order
= PREALLOC_TB_SIZE
- 1;
3353 goal_block
= ext4_grp_offs_to_block(ac
->ac_sb
, &ac
->ac_g_ex
);
3355 * search for the prealloc space that is having
3356 * minimal distance from the goal block.
3358 for (i
= order
; i
< PREALLOC_TB_SIZE
; i
++) {
3360 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[i
],
3362 spin_lock(&pa
->pa_lock
);
3363 if (pa
->pa_deleted
== 0 &&
3364 pa
->pa_free
>= ac
->ac_o_ex
.fe_len
) {
3366 cpa
= ext4_mb_check_group_pa(goal_block
,
3369 spin_unlock(&pa
->pa_lock
);
3374 ext4_mb_use_group_pa(ac
, cpa
);
3375 ac
->ac_criteria
= 20;
3382 * the function goes through all block freed in the group
3383 * but not yet committed and marks them used in in-core bitmap.
3384 * buddy must be generated from this bitmap
3385 * Need to be called with the ext4 group lock held
3387 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
3391 struct ext4_group_info
*grp
;
3392 struct ext4_free_data
*entry
;
3394 grp
= ext4_get_group_info(sb
, group
);
3395 n
= rb_first(&(grp
->bb_free_root
));
3398 entry
= rb_entry(n
, struct ext4_free_data
, efd_node
);
3399 ext4_set_bits(bitmap
, entry
->efd_start_cluster
, entry
->efd_count
);
3406 * the function goes through all preallocation in this group and marks them
3407 * used in in-core bitmap. buddy must be generated from this bitmap
3408 * Need to be called with ext4 group lock held
3410 static noinline_for_stack
3411 void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
3414 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3415 struct ext4_prealloc_space
*pa
;
3416 struct list_head
*cur
;
3417 ext4_group_t groupnr
;
3418 ext4_grpblk_t start
;
3419 int preallocated
= 0;
3422 /* all form of preallocation discards first load group,
3423 * so the only competing code is preallocation use.
3424 * we don't need any locking here
3425 * notice we do NOT ignore preallocations with pa_deleted
3426 * otherwise we could leave used blocks available for
3427 * allocation in buddy when concurrent ext4_mb_put_pa()
3428 * is dropping preallocation
3430 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3431 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
3432 spin_lock(&pa
->pa_lock
);
3433 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3436 spin_unlock(&pa
->pa_lock
);
3437 if (unlikely(len
== 0))
3439 BUG_ON(groupnr
!= group
);
3440 ext4_set_bits(bitmap
, start
, len
);
3441 preallocated
+= len
;
3443 mb_debug(1, "prellocated %u for group %u\n", preallocated
, group
);
3446 static void ext4_mb_pa_callback(struct rcu_head
*head
)
3448 struct ext4_prealloc_space
*pa
;
3449 pa
= container_of(head
, struct ext4_prealloc_space
, u
.pa_rcu
);
3451 BUG_ON(atomic_read(&pa
->pa_count
));
3452 BUG_ON(pa
->pa_deleted
== 0);
3453 kmem_cache_free(ext4_pspace_cachep
, pa
);
3457 * drops a reference to preallocated space descriptor
3458 * if this was the last reference and the space is consumed
3460 static void ext4_mb_put_pa(struct ext4_allocation_context
*ac
,
3461 struct super_block
*sb
, struct ext4_prealloc_space
*pa
)
3464 ext4_fsblk_t grp_blk
;
3466 /* in this short window concurrent discard can set pa_deleted */
3467 spin_lock(&pa
->pa_lock
);
3468 if (!atomic_dec_and_test(&pa
->pa_count
) || pa
->pa_free
!= 0) {
3469 spin_unlock(&pa
->pa_lock
);
3473 if (pa
->pa_deleted
== 1) {
3474 spin_unlock(&pa
->pa_lock
);
3479 spin_unlock(&pa
->pa_lock
);
3481 grp_blk
= pa
->pa_pstart
;
3483 * If doing group-based preallocation, pa_pstart may be in the
3484 * next group when pa is used up
3486 if (pa
->pa_type
== MB_GROUP_PA
)
3489 grp
= ext4_get_group_number(sb
, grp_blk
);
3494 * P1 (buddy init) P2 (regular allocation)
3495 * find block B in PA
3496 * copy on-disk bitmap to buddy
3497 * mark B in on-disk bitmap
3498 * drop PA from group
3499 * mark all PAs in buddy
3501 * thus, P1 initializes buddy with B available. to prevent this
3502 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3505 ext4_lock_group(sb
, grp
);
3506 list_del(&pa
->pa_group_list
);
3507 ext4_unlock_group(sb
, grp
);
3509 spin_lock(pa
->pa_obj_lock
);
3510 list_del_rcu(&pa
->pa_inode_list
);
3511 spin_unlock(pa
->pa_obj_lock
);
3513 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3517 * creates new preallocated space for given inode
3519 static noinline_for_stack
int
3520 ext4_mb_new_inode_pa(struct ext4_allocation_context
*ac
)
3522 struct super_block
*sb
= ac
->ac_sb
;
3523 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3524 struct ext4_prealloc_space
*pa
;
3525 struct ext4_group_info
*grp
;
3526 struct ext4_inode_info
*ei
;
3528 /* preallocate only when found space is larger then requested */
3529 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3530 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3531 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3533 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3537 if (ac
->ac_b_ex
.fe_len
< ac
->ac_g_ex
.fe_len
) {
3543 /* we can't allocate as much as normalizer wants.
3544 * so, found space must get proper lstart
3545 * to cover original request */
3546 BUG_ON(ac
->ac_g_ex
.fe_logical
> ac
->ac_o_ex
.fe_logical
);
3547 BUG_ON(ac
->ac_g_ex
.fe_len
< ac
->ac_o_ex
.fe_len
);
3549 /* we're limited by original request in that
3550 * logical block must be covered any way
3551 * winl is window we can move our chunk within */
3552 winl
= ac
->ac_o_ex
.fe_logical
- ac
->ac_g_ex
.fe_logical
;
3554 /* also, we should cover whole original request */
3555 wins
= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
- ac
->ac_o_ex
.fe_len
);
3557 /* the smallest one defines real window */
3558 win
= min(winl
, wins
);
3560 offs
= ac
->ac_o_ex
.fe_logical
%
3561 EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
3562 if (offs
&& offs
< win
)
3565 ac
->ac_b_ex
.fe_logical
= ac
->ac_o_ex
.fe_logical
-
3566 EXT4_NUM_B2C(sbi
, win
);
3567 BUG_ON(ac
->ac_o_ex
.fe_logical
< ac
->ac_b_ex
.fe_logical
);
3568 BUG_ON(ac
->ac_o_ex
.fe_len
> ac
->ac_b_ex
.fe_len
);
3571 /* preallocation can change ac_b_ex, thus we store actually
3572 * allocated blocks for history */
3573 ac
->ac_f_ex
= ac
->ac_b_ex
;
3575 pa
->pa_lstart
= ac
->ac_b_ex
.fe_logical
;
3576 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3577 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3578 pa
->pa_free
= pa
->pa_len
;
3579 atomic_set(&pa
->pa_count
, 1);
3580 spin_lock_init(&pa
->pa_lock
);
3581 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3582 INIT_LIST_HEAD(&pa
->pa_group_list
);
3584 pa
->pa_type
= MB_INODE_PA
;
3586 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa
,
3587 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3588 trace_ext4_mb_new_inode_pa(ac
, pa
);
3590 ext4_mb_use_inode_pa(ac
, pa
);
3591 atomic_add(pa
->pa_free
, &sbi
->s_mb_preallocated
);
3593 ei
= EXT4_I(ac
->ac_inode
);
3594 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3596 pa
->pa_obj_lock
= &ei
->i_prealloc_lock
;
3597 pa
->pa_inode
= ac
->ac_inode
;
3599 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3600 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3601 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3603 spin_lock(pa
->pa_obj_lock
);
3604 list_add_rcu(&pa
->pa_inode_list
, &ei
->i_prealloc_list
);
3605 spin_unlock(pa
->pa_obj_lock
);
3611 * creates new preallocated space for locality group inodes belongs to
3613 static noinline_for_stack
int
3614 ext4_mb_new_group_pa(struct ext4_allocation_context
*ac
)
3616 struct super_block
*sb
= ac
->ac_sb
;
3617 struct ext4_locality_group
*lg
;
3618 struct ext4_prealloc_space
*pa
;
3619 struct ext4_group_info
*grp
;
3621 /* preallocate only when found space is larger then requested */
3622 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3623 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3624 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3626 BUG_ON(ext4_pspace_cachep
== NULL
);
3627 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3631 /* preallocation can change ac_b_ex, thus we store actually
3632 * allocated blocks for history */
3633 ac
->ac_f_ex
= ac
->ac_b_ex
;
3635 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3636 pa
->pa_lstart
= pa
->pa_pstart
;
3637 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3638 pa
->pa_free
= pa
->pa_len
;
3639 atomic_set(&pa
->pa_count
, 1);
3640 spin_lock_init(&pa
->pa_lock
);
3641 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3642 INIT_LIST_HEAD(&pa
->pa_group_list
);
3644 pa
->pa_type
= MB_GROUP_PA
;
3646 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa
,
3647 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3648 trace_ext4_mb_new_group_pa(ac
, pa
);
3650 ext4_mb_use_group_pa(ac
, pa
);
3651 atomic_add(pa
->pa_free
, &EXT4_SB(sb
)->s_mb_preallocated
);
3653 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3657 pa
->pa_obj_lock
= &lg
->lg_prealloc_lock
;
3658 pa
->pa_inode
= NULL
;
3660 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3661 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3662 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3665 * We will later add the new pa to the right bucket
3666 * after updating the pa_free in ext4_mb_release_context
3671 static int ext4_mb_new_preallocation(struct ext4_allocation_context
*ac
)
3675 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
3676 err
= ext4_mb_new_group_pa(ac
);
3678 err
= ext4_mb_new_inode_pa(ac
);
3683 * finds all unused blocks in on-disk bitmap, frees them in
3684 * in-core bitmap and buddy.
3685 * @pa must be unlinked from inode and group lists, so that
3686 * nobody else can find/use it.
3687 * the caller MUST hold group/inode locks.
3688 * TODO: optimize the case when there are no in-core structures yet
3690 static noinline_for_stack
int
3691 ext4_mb_release_inode_pa(struct ext4_buddy
*e4b
, struct buffer_head
*bitmap_bh
,
3692 struct ext4_prealloc_space
*pa
)
3694 struct super_block
*sb
= e4b
->bd_sb
;
3695 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3700 unsigned long long grp_blk_start
;
3704 BUG_ON(pa
->pa_deleted
== 0);
3705 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3706 grp_blk_start
= pa
->pa_pstart
- EXT4_C2B(sbi
, bit
);
3707 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3708 end
= bit
+ pa
->pa_len
;
3711 bit
= mb_find_next_zero_bit(bitmap_bh
->b_data
, end
, bit
);
3714 next
= mb_find_next_bit(bitmap_bh
->b_data
, end
, bit
);
3715 mb_debug(1, " free preallocated %u/%u in group %u\n",
3716 (unsigned) ext4_group_first_block_no(sb
, group
) + bit
,
3717 (unsigned) next
- bit
, (unsigned) group
);
3720 trace_ext4_mballoc_discard(sb
, NULL
, group
, bit
, next
- bit
);
3721 trace_ext4_mb_release_inode_pa(pa
, (grp_blk_start
+
3722 EXT4_C2B(sbi
, bit
)),
3724 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, next
- bit
);
3727 if (free
!= pa
->pa_free
) {
3728 ext4_msg(e4b
->bd_sb
, KERN_CRIT
,
3729 "pa %p: logic %lu, phys. %lu, len %lu",
3730 pa
, (unsigned long) pa
->pa_lstart
,
3731 (unsigned long) pa
->pa_pstart
,
3732 (unsigned long) pa
->pa_len
);
3733 ext4_grp_locked_error(sb
, group
, 0, 0, "free %u, pa_free %u",
3736 * pa is already deleted so we use the value obtained
3737 * from the bitmap and continue.
3740 atomic_add(free
, &sbi
->s_mb_discarded
);
3745 static noinline_for_stack
int
3746 ext4_mb_release_group_pa(struct ext4_buddy
*e4b
,
3747 struct ext4_prealloc_space
*pa
)
3749 struct super_block
*sb
= e4b
->bd_sb
;
3753 trace_ext4_mb_release_group_pa(sb
, pa
);
3754 BUG_ON(pa
->pa_deleted
== 0);
3755 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3756 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3757 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, pa
->pa_len
);
3758 atomic_add(pa
->pa_len
, &EXT4_SB(sb
)->s_mb_discarded
);
3759 trace_ext4_mballoc_discard(sb
, NULL
, group
, bit
, pa
->pa_len
);
3765 * releases all preallocations in given group
3767 * first, we need to decide discard policy:
3768 * - when do we discard
3770 * - how many do we discard
3771 * 1) how many requested
3773 static noinline_for_stack
int
3774 ext4_mb_discard_group_preallocations(struct super_block
*sb
,
3775 ext4_group_t group
, int needed
)
3777 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3778 struct buffer_head
*bitmap_bh
= NULL
;
3779 struct ext4_prealloc_space
*pa
, *tmp
;
3780 struct list_head list
;
3781 struct ext4_buddy e4b
;
3786 mb_debug(1, "discard preallocation for group %u\n", group
);
3788 if (list_empty(&grp
->bb_prealloc_list
))
3791 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3792 if (bitmap_bh
== NULL
) {
3793 ext4_error(sb
, "Error reading block bitmap for %u", group
);
3797 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3799 ext4_error(sb
, "Error loading buddy information for %u", group
);
3805 needed
= EXT4_CLUSTERS_PER_GROUP(sb
) + 1;
3807 INIT_LIST_HEAD(&list
);
3809 ext4_lock_group(sb
, group
);
3810 list_for_each_entry_safe(pa
, tmp
,
3811 &grp
->bb_prealloc_list
, pa_group_list
) {
3812 spin_lock(&pa
->pa_lock
);
3813 if (atomic_read(&pa
->pa_count
)) {
3814 spin_unlock(&pa
->pa_lock
);
3818 if (pa
->pa_deleted
) {
3819 spin_unlock(&pa
->pa_lock
);
3823 /* seems this one can be freed ... */
3826 /* we can trust pa_free ... */
3827 free
+= pa
->pa_free
;
3829 spin_unlock(&pa
->pa_lock
);
3831 list_del(&pa
->pa_group_list
);
3832 list_add(&pa
->u
.pa_tmp_list
, &list
);
3835 /* if we still need more blocks and some PAs were used, try again */
3836 if (free
< needed
&& busy
) {
3838 ext4_unlock_group(sb
, group
);
3843 /* found anything to free? */
3844 if (list_empty(&list
)) {
3849 /* now free all selected PAs */
3850 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3852 /* remove from object (inode or locality group) */
3853 spin_lock(pa
->pa_obj_lock
);
3854 list_del_rcu(&pa
->pa_inode_list
);
3855 spin_unlock(pa
->pa_obj_lock
);
3857 if (pa
->pa_type
== MB_GROUP_PA
)
3858 ext4_mb_release_group_pa(&e4b
, pa
);
3860 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
);
3862 list_del(&pa
->u
.pa_tmp_list
);
3863 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3867 ext4_unlock_group(sb
, group
);
3868 ext4_mb_unload_buddy(&e4b
);
3874 * releases all non-used preallocated blocks for given inode
3876 * It's important to discard preallocations under i_data_sem
3877 * We don't want another block to be served from the prealloc
3878 * space when we are discarding the inode prealloc space.
3880 * FIXME!! Make sure it is valid at all the call sites
3882 void ext4_discard_preallocations(struct inode
*inode
)
3884 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3885 struct super_block
*sb
= inode
->i_sb
;
3886 struct buffer_head
*bitmap_bh
= NULL
;
3887 struct ext4_prealloc_space
*pa
, *tmp
;
3888 ext4_group_t group
= 0;
3889 struct list_head list
;
3890 struct ext4_buddy e4b
;
3893 if (!S_ISREG(inode
->i_mode
)) {
3894 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3898 mb_debug(1, "discard preallocation for inode %lu\n", inode
->i_ino
);
3899 trace_ext4_discard_preallocations(inode
);
3901 INIT_LIST_HEAD(&list
);
3904 /* first, collect all pa's in the inode */
3905 spin_lock(&ei
->i_prealloc_lock
);
3906 while (!list_empty(&ei
->i_prealloc_list
)) {
3907 pa
= list_entry(ei
->i_prealloc_list
.next
,
3908 struct ext4_prealloc_space
, pa_inode_list
);
3909 BUG_ON(pa
->pa_obj_lock
!= &ei
->i_prealloc_lock
);
3910 spin_lock(&pa
->pa_lock
);
3911 if (atomic_read(&pa
->pa_count
)) {
3912 /* this shouldn't happen often - nobody should
3913 * use preallocation while we're discarding it */
3914 spin_unlock(&pa
->pa_lock
);
3915 spin_unlock(&ei
->i_prealloc_lock
);
3916 ext4_msg(sb
, KERN_ERR
,
3917 "uh-oh! used pa while discarding");
3919 schedule_timeout_uninterruptible(HZ
);
3923 if (pa
->pa_deleted
== 0) {
3925 spin_unlock(&pa
->pa_lock
);
3926 list_del_rcu(&pa
->pa_inode_list
);
3927 list_add(&pa
->u
.pa_tmp_list
, &list
);
3931 /* someone is deleting pa right now */
3932 spin_unlock(&pa
->pa_lock
);
3933 spin_unlock(&ei
->i_prealloc_lock
);
3935 /* we have to wait here because pa_deleted
3936 * doesn't mean pa is already unlinked from
3937 * the list. as we might be called from
3938 * ->clear_inode() the inode will get freed
3939 * and concurrent thread which is unlinking
3940 * pa from inode's list may access already
3941 * freed memory, bad-bad-bad */
3943 /* XXX: if this happens too often, we can
3944 * add a flag to force wait only in case
3945 * of ->clear_inode(), but not in case of
3946 * regular truncate */
3947 schedule_timeout_uninterruptible(HZ
);
3950 spin_unlock(&ei
->i_prealloc_lock
);
3952 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3953 BUG_ON(pa
->pa_type
!= MB_INODE_PA
);
3954 group
= ext4_get_group_number(sb
, pa
->pa_pstart
);
3956 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3958 ext4_error(sb
, "Error loading buddy information for %u",
3963 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3964 if (bitmap_bh
== NULL
) {
3965 ext4_error(sb
, "Error reading block bitmap for %u",
3967 ext4_mb_unload_buddy(&e4b
);
3971 ext4_lock_group(sb
, group
);
3972 list_del(&pa
->pa_group_list
);
3973 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
);
3974 ext4_unlock_group(sb
, group
);
3976 ext4_mb_unload_buddy(&e4b
);
3979 list_del(&pa
->u
.pa_tmp_list
);
3980 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3984 #ifdef CONFIG_EXT4_DEBUG
3985 static void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
3987 struct super_block
*sb
= ac
->ac_sb
;
3988 ext4_group_t ngroups
, i
;
3990 if (!ext4_mballoc_debug
||
3991 (EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
))
3994 ext4_msg(ac
->ac_sb
, KERN_ERR
, "Can't allocate:"
3995 " Allocation context details:");
3996 ext4_msg(ac
->ac_sb
, KERN_ERR
, "status %d flags %d",
3997 ac
->ac_status
, ac
->ac_flags
);
3998 ext4_msg(ac
->ac_sb
, KERN_ERR
, "orig %lu/%lu/%lu@%lu, "
3999 "goal %lu/%lu/%lu@%lu, "
4000 "best %lu/%lu/%lu@%lu cr %d",
4001 (unsigned long)ac
->ac_o_ex
.fe_group
,
4002 (unsigned long)ac
->ac_o_ex
.fe_start
,
4003 (unsigned long)ac
->ac_o_ex
.fe_len
,
4004 (unsigned long)ac
->ac_o_ex
.fe_logical
,
4005 (unsigned long)ac
->ac_g_ex
.fe_group
,
4006 (unsigned long)ac
->ac_g_ex
.fe_start
,
4007 (unsigned long)ac
->ac_g_ex
.fe_len
,
4008 (unsigned long)ac
->ac_g_ex
.fe_logical
,
4009 (unsigned long)ac
->ac_b_ex
.fe_group
,
4010 (unsigned long)ac
->ac_b_ex
.fe_start
,
4011 (unsigned long)ac
->ac_b_ex
.fe_len
,
4012 (unsigned long)ac
->ac_b_ex
.fe_logical
,
4013 (int)ac
->ac_criteria
);
4014 ext4_msg(ac
->ac_sb
, KERN_ERR
, "%lu scanned, %d found",
4015 ac
->ac_ex_scanned
, ac
->ac_found
);
4016 ext4_msg(ac
->ac_sb
, KERN_ERR
, "groups: ");
4017 ngroups
= ext4_get_groups_count(sb
);
4018 for (i
= 0; i
< ngroups
; i
++) {
4019 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, i
);
4020 struct ext4_prealloc_space
*pa
;
4021 ext4_grpblk_t start
;
4022 struct list_head
*cur
;
4023 ext4_lock_group(sb
, i
);
4024 list_for_each(cur
, &grp
->bb_prealloc_list
) {
4025 pa
= list_entry(cur
, struct ext4_prealloc_space
,
4027 spin_lock(&pa
->pa_lock
);
4028 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
4030 spin_unlock(&pa
->pa_lock
);
4031 printk(KERN_ERR
"PA:%u:%d:%u \n", i
,
4034 ext4_unlock_group(sb
, i
);
4036 if (grp
->bb_free
== 0)
4038 printk(KERN_ERR
"%u: %d/%d \n",
4039 i
, grp
->bb_free
, grp
->bb_fragments
);
4041 printk(KERN_ERR
"\n");
4044 static inline void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
4051 * We use locality group preallocation for small size file. The size of the
4052 * file is determined by the current size or the resulting size after
4053 * allocation which ever is larger
4055 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4057 static void ext4_mb_group_or_file(struct ext4_allocation_context
*ac
)
4059 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
4060 int bsbits
= ac
->ac_sb
->s_blocksize_bits
;
4063 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
4066 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
4069 size
= ac
->ac_o_ex
.fe_logical
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
);
4070 isize
= (i_size_read(ac
->ac_inode
) + ac
->ac_sb
->s_blocksize
- 1)
4073 if ((size
== isize
) &&
4074 !ext4_fs_is_busy(sbi
) &&
4075 (atomic_read(&ac
->ac_inode
->i_writecount
) == 0)) {
4076 ac
->ac_flags
|= EXT4_MB_HINT_NOPREALLOC
;
4080 if (sbi
->s_mb_group_prealloc
<= 0) {
4081 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
4085 /* don't use group allocation for large files */
4086 size
= max(size
, isize
);
4087 if (size
> sbi
->s_mb_stream_request
) {
4088 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
4092 BUG_ON(ac
->ac_lg
!= NULL
);
4094 * locality group prealloc space are per cpu. The reason for having
4095 * per cpu locality group is to reduce the contention between block
4096 * request from multiple CPUs.
4098 ac
->ac_lg
= __this_cpu_ptr(sbi
->s_locality_groups
);
4100 /* we're going to use group allocation */
4101 ac
->ac_flags
|= EXT4_MB_HINT_GROUP_ALLOC
;
4103 /* serialize all allocations in the group */
4104 mutex_lock(&ac
->ac_lg
->lg_mutex
);
4107 static noinline_for_stack
int
4108 ext4_mb_initialize_context(struct ext4_allocation_context
*ac
,
4109 struct ext4_allocation_request
*ar
)
4111 struct super_block
*sb
= ar
->inode
->i_sb
;
4112 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4113 struct ext4_super_block
*es
= sbi
->s_es
;
4117 ext4_grpblk_t block
;
4119 /* we can't allocate > group size */
4122 /* just a dirty hack to filter too big requests */
4123 if (len
>= EXT4_CLUSTERS_PER_GROUP(sb
))
4124 len
= EXT4_CLUSTERS_PER_GROUP(sb
);
4126 /* start searching from the goal */
4128 if (goal
< le32_to_cpu(es
->s_first_data_block
) ||
4129 goal
>= ext4_blocks_count(es
))
4130 goal
= le32_to_cpu(es
->s_first_data_block
);
4131 ext4_get_group_no_and_offset(sb
, goal
, &group
, &block
);
4133 /* set up allocation goals */
4134 ac
->ac_b_ex
.fe_logical
= EXT4_LBLK_CMASK(sbi
, ar
->logical
);
4135 ac
->ac_status
= AC_STATUS_CONTINUE
;
4137 ac
->ac_inode
= ar
->inode
;
4138 ac
->ac_o_ex
.fe_logical
= ac
->ac_b_ex
.fe_logical
;
4139 ac
->ac_o_ex
.fe_group
= group
;
4140 ac
->ac_o_ex
.fe_start
= block
;
4141 ac
->ac_o_ex
.fe_len
= len
;
4142 ac
->ac_g_ex
= ac
->ac_o_ex
;
4143 ac
->ac_flags
= ar
->flags
;
4145 /* we have to define context: we'll we work with a file or
4146 * locality group. this is a policy, actually */
4147 ext4_mb_group_or_file(ac
);
4149 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4150 "left: %u/%u, right %u/%u to %swritable\n",
4151 (unsigned) ar
->len
, (unsigned) ar
->logical
,
4152 (unsigned) ar
->goal
, ac
->ac_flags
, ac
->ac_2order
,
4153 (unsigned) ar
->lleft
, (unsigned) ar
->pleft
,
4154 (unsigned) ar
->lright
, (unsigned) ar
->pright
,
4155 atomic_read(&ar
->inode
->i_writecount
) ? "" : "non-");
4160 static noinline_for_stack
void
4161 ext4_mb_discard_lg_preallocations(struct super_block
*sb
,
4162 struct ext4_locality_group
*lg
,
4163 int order
, int total_entries
)
4165 ext4_group_t group
= 0;
4166 struct ext4_buddy e4b
;
4167 struct list_head discard_list
;
4168 struct ext4_prealloc_space
*pa
, *tmp
;
4170 mb_debug(1, "discard locality group preallocation\n");
4172 INIT_LIST_HEAD(&discard_list
);
4174 spin_lock(&lg
->lg_prealloc_lock
);
4175 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[order
],
4177 spin_lock(&pa
->pa_lock
);
4178 if (atomic_read(&pa
->pa_count
)) {
4180 * This is the pa that we just used
4181 * for block allocation. So don't
4184 spin_unlock(&pa
->pa_lock
);
4187 if (pa
->pa_deleted
) {
4188 spin_unlock(&pa
->pa_lock
);
4191 /* only lg prealloc space */
4192 BUG_ON(pa
->pa_type
!= MB_GROUP_PA
);
4194 /* seems this one can be freed ... */
4196 spin_unlock(&pa
->pa_lock
);
4198 list_del_rcu(&pa
->pa_inode_list
);
4199 list_add(&pa
->u
.pa_tmp_list
, &discard_list
);
4202 if (total_entries
<= 5) {
4204 * we want to keep only 5 entries
4205 * allowing it to grow to 8. This
4206 * mak sure we don't call discard
4207 * soon for this list.
4212 spin_unlock(&lg
->lg_prealloc_lock
);
4214 list_for_each_entry_safe(pa
, tmp
, &discard_list
, u
.pa_tmp_list
) {
4216 group
= ext4_get_group_number(sb
, pa
->pa_pstart
);
4217 if (ext4_mb_load_buddy(sb
, group
, &e4b
)) {
4218 ext4_error(sb
, "Error loading buddy information for %u",
4222 ext4_lock_group(sb
, group
);
4223 list_del(&pa
->pa_group_list
);
4224 ext4_mb_release_group_pa(&e4b
, pa
);
4225 ext4_unlock_group(sb
, group
);
4227 ext4_mb_unload_buddy(&e4b
);
4228 list_del(&pa
->u
.pa_tmp_list
);
4229 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4234 * We have incremented pa_count. So it cannot be freed at this
4235 * point. Also we hold lg_mutex. So no parallel allocation is
4236 * possible from this lg. That means pa_free cannot be updated.
4238 * A parallel ext4_mb_discard_group_preallocations is possible.
4239 * which can cause the lg_prealloc_list to be updated.
4242 static void ext4_mb_add_n_trim(struct ext4_allocation_context
*ac
)
4244 int order
, added
= 0, lg_prealloc_count
= 1;
4245 struct super_block
*sb
= ac
->ac_sb
;
4246 struct ext4_locality_group
*lg
= ac
->ac_lg
;
4247 struct ext4_prealloc_space
*tmp_pa
, *pa
= ac
->ac_pa
;
4249 order
= fls(pa
->pa_free
) - 1;
4250 if (order
> PREALLOC_TB_SIZE
- 1)
4251 /* The max size of hash table is PREALLOC_TB_SIZE */
4252 order
= PREALLOC_TB_SIZE
- 1;
4253 /* Add the prealloc space to lg */
4254 spin_lock(&lg
->lg_prealloc_lock
);
4255 list_for_each_entry_rcu(tmp_pa
, &lg
->lg_prealloc_list
[order
],
4257 spin_lock(&tmp_pa
->pa_lock
);
4258 if (tmp_pa
->pa_deleted
) {
4259 spin_unlock(&tmp_pa
->pa_lock
);
4262 if (!added
&& pa
->pa_free
< tmp_pa
->pa_free
) {
4263 /* Add to the tail of the previous entry */
4264 list_add_tail_rcu(&pa
->pa_inode_list
,
4265 &tmp_pa
->pa_inode_list
);
4268 * we want to count the total
4269 * number of entries in the list
4272 spin_unlock(&tmp_pa
->pa_lock
);
4273 lg_prealloc_count
++;
4276 list_add_tail_rcu(&pa
->pa_inode_list
,
4277 &lg
->lg_prealloc_list
[order
]);
4278 spin_unlock(&lg
->lg_prealloc_lock
);
4280 /* Now trim the list to be not more than 8 elements */
4281 if (lg_prealloc_count
> 8) {
4282 ext4_mb_discard_lg_preallocations(sb
, lg
,
4283 order
, lg_prealloc_count
);
4290 * release all resource we used in allocation
4292 static int ext4_mb_release_context(struct ext4_allocation_context
*ac
)
4294 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
4295 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
4297 if (pa
->pa_type
== MB_GROUP_PA
) {
4298 /* see comment in ext4_mb_use_group_pa() */
4299 spin_lock(&pa
->pa_lock
);
4300 pa
->pa_pstart
+= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
4301 pa
->pa_lstart
+= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
4302 pa
->pa_free
-= ac
->ac_b_ex
.fe_len
;
4303 pa
->pa_len
-= ac
->ac_b_ex
.fe_len
;
4304 spin_unlock(&pa
->pa_lock
);
4309 * We want to add the pa to the right bucket.
4310 * Remove it from the list and while adding
4311 * make sure the list to which we are adding
4314 if ((pa
->pa_type
== MB_GROUP_PA
) && likely(pa
->pa_free
)) {
4315 spin_lock(pa
->pa_obj_lock
);
4316 list_del_rcu(&pa
->pa_inode_list
);
4317 spin_unlock(pa
->pa_obj_lock
);
4318 ext4_mb_add_n_trim(ac
);
4320 ext4_mb_put_pa(ac
, ac
->ac_sb
, pa
);
4322 if (ac
->ac_bitmap_page
)
4323 page_cache_release(ac
->ac_bitmap_page
);
4324 if (ac
->ac_buddy_page
)
4325 page_cache_release(ac
->ac_buddy_page
);
4326 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
4327 mutex_unlock(&ac
->ac_lg
->lg_mutex
);
4328 ext4_mb_collect_stats(ac
);
4332 static int ext4_mb_discard_preallocations(struct super_block
*sb
, int needed
)
4334 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
4338 trace_ext4_mb_discard_preallocations(sb
, needed
);
4339 for (i
= 0; i
< ngroups
&& needed
> 0; i
++) {
4340 ret
= ext4_mb_discard_group_preallocations(sb
, i
, needed
);
4349 * Main entry point into mballoc to allocate blocks
4350 * it tries to use preallocation first, then falls back
4351 * to usual allocation
4353 ext4_fsblk_t
ext4_mb_new_blocks(handle_t
*handle
,
4354 struct ext4_allocation_request
*ar
, int *errp
)
4357 struct ext4_allocation_context
*ac
= NULL
;
4358 struct ext4_sb_info
*sbi
;
4359 struct super_block
*sb
;
4360 ext4_fsblk_t block
= 0;
4361 unsigned int inquota
= 0;
4362 unsigned int reserv_clstrs
= 0;
4365 sb
= ar
->inode
->i_sb
;
4368 trace_ext4_request_blocks(ar
);
4370 /* Allow to use superuser reservation for quota file */
4371 if (IS_NOQUOTA(ar
->inode
))
4372 ar
->flags
|= EXT4_MB_USE_ROOT_BLOCKS
;
4375 * For delayed allocation, we could skip the ENOSPC and
4376 * EDQUOT check, as blocks and quotas have been already
4377 * reserved when data being copied into pagecache.
4379 if (ext4_test_inode_state(ar
->inode
, EXT4_STATE_DELALLOC_RESERVED
))
4380 ar
->flags
|= EXT4_MB_DELALLOC_RESERVED
;
4382 /* Without delayed allocation we need to verify
4383 * there is enough free blocks to do block allocation
4384 * and verify allocation doesn't exceed the quota limits.
4387 ext4_claim_free_clusters(sbi
, ar
->len
, ar
->flags
)) {
4389 /* let others to free the space */
4391 ar
->len
= ar
->len
>> 1;
4397 reserv_clstrs
= ar
->len
;
4398 if (ar
->flags
& EXT4_MB_USE_ROOT_BLOCKS
) {
4399 dquot_alloc_block_nofail(ar
->inode
,
4400 EXT4_C2B(sbi
, ar
->len
));
4403 dquot_alloc_block(ar
->inode
,
4404 EXT4_C2B(sbi
, ar
->len
))) {
4406 ar
->flags
|= EXT4_MB_HINT_NOPREALLOC
;
4417 ac
= kmem_cache_zalloc(ext4_ac_cachep
, GFP_NOFS
);
4424 *errp
= ext4_mb_initialize_context(ac
, ar
);
4430 ac
->ac_op
= EXT4_MB_HISTORY_PREALLOC
;
4431 if (!ext4_mb_use_preallocated(ac
)) {
4432 ac
->ac_op
= EXT4_MB_HISTORY_ALLOC
;
4433 ext4_mb_normalize_request(ac
, ar
);
4435 /* allocate space in core */
4436 *errp
= ext4_mb_regular_allocator(ac
);
4438 ext4_discard_allocated_blocks(ac
);
4442 /* as we've just preallocated more space than
4443 * user requested orinally, we store allocated
4444 * space in a special descriptor */
4445 if (ac
->ac_status
== AC_STATUS_FOUND
&&
4446 ac
->ac_o_ex
.fe_len
< ac
->ac_b_ex
.fe_len
)
4447 ext4_mb_new_preallocation(ac
);
4449 if (likely(ac
->ac_status
== AC_STATUS_FOUND
)) {
4450 *errp
= ext4_mb_mark_diskspace_used(ac
, handle
, reserv_clstrs
);
4451 if (*errp
== -EAGAIN
) {
4453 * drop the reference that we took
4454 * in ext4_mb_use_best_found
4456 ext4_mb_release_context(ac
);
4457 ac
->ac_b_ex
.fe_group
= 0;
4458 ac
->ac_b_ex
.fe_start
= 0;
4459 ac
->ac_b_ex
.fe_len
= 0;
4460 ac
->ac_status
= AC_STATUS_CONTINUE
;
4463 ext4_discard_allocated_blocks(ac
);
4466 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
4467 ar
->len
= ac
->ac_b_ex
.fe_len
;
4470 freed
= ext4_mb_discard_preallocations(sb
, ac
->ac_o_ex
.fe_len
);
4478 ac
->ac_b_ex
.fe_len
= 0;
4480 ext4_mb_show_ac(ac
);
4482 ext4_mb_release_context(ac
);
4485 kmem_cache_free(ext4_ac_cachep
, ac
);
4486 if (inquota
&& ar
->len
< inquota
)
4487 dquot_free_block(ar
->inode
, EXT4_C2B(sbi
, inquota
- ar
->len
));
4489 if (!ext4_test_inode_state(ar
->inode
,
4490 EXT4_STATE_DELALLOC_RESERVED
))
4491 /* release all the reserved blocks if non delalloc */
4492 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
4496 trace_ext4_allocate_blocks(ar
, (unsigned long long)block
);
4502 * We can merge two free data extents only if the physical blocks
4503 * are contiguous, AND the extents were freed by the same transaction,
4504 * AND the blocks are associated with the same group.
4506 static int can_merge(struct ext4_free_data
*entry1
,
4507 struct ext4_free_data
*entry2
)
4509 if ((entry1
->efd_tid
== entry2
->efd_tid
) &&
4510 (entry1
->efd_group
== entry2
->efd_group
) &&
4511 ((entry1
->efd_start_cluster
+ entry1
->efd_count
) == entry2
->efd_start_cluster
))
4516 static noinline_for_stack
int
4517 ext4_mb_free_metadata(handle_t
*handle
, struct ext4_buddy
*e4b
,
4518 struct ext4_free_data
*new_entry
)
4520 ext4_group_t group
= e4b
->bd_group
;
4521 ext4_grpblk_t cluster
;
4522 struct ext4_free_data
*entry
;
4523 struct ext4_group_info
*db
= e4b
->bd_info
;
4524 struct super_block
*sb
= e4b
->bd_sb
;
4525 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4526 struct rb_node
**n
= &db
->bb_free_root
.rb_node
, *node
;
4527 struct rb_node
*parent
= NULL
, *new_node
;
4529 BUG_ON(!ext4_handle_valid(handle
));
4530 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
4531 BUG_ON(e4b
->bd_buddy_page
== NULL
);
4533 new_node
= &new_entry
->efd_node
;
4534 cluster
= new_entry
->efd_start_cluster
;
4537 /* first free block exent. We need to
4538 protect buddy cache from being freed,
4539 * otherwise we'll refresh it from
4540 * on-disk bitmap and lose not-yet-available
4542 page_cache_get(e4b
->bd_buddy_page
);
4543 page_cache_get(e4b
->bd_bitmap_page
);
4547 entry
= rb_entry(parent
, struct ext4_free_data
, efd_node
);
4548 if (cluster
< entry
->efd_start_cluster
)
4550 else if (cluster
>= (entry
->efd_start_cluster
+ entry
->efd_count
))
4551 n
= &(*n
)->rb_right
;
4553 ext4_grp_locked_error(sb
, group
, 0,
4554 ext4_group_first_block_no(sb
, group
) +
4555 EXT4_C2B(sbi
, cluster
),
4556 "Block already on to-be-freed list");
4561 rb_link_node(new_node
, parent
, n
);
4562 rb_insert_color(new_node
, &db
->bb_free_root
);
4564 /* Now try to see the extent can be merged to left and right */
4565 node
= rb_prev(new_node
);
4567 entry
= rb_entry(node
, struct ext4_free_data
, efd_node
);
4568 if (can_merge(entry
, new_entry
) &&
4569 ext4_journal_callback_try_del(handle
, &entry
->efd_jce
)) {
4570 new_entry
->efd_start_cluster
= entry
->efd_start_cluster
;
4571 new_entry
->efd_count
+= entry
->efd_count
;
4572 rb_erase(node
, &(db
->bb_free_root
));
4573 kmem_cache_free(ext4_free_data_cachep
, entry
);
4577 node
= rb_next(new_node
);
4579 entry
= rb_entry(node
, struct ext4_free_data
, efd_node
);
4580 if (can_merge(new_entry
, entry
) &&
4581 ext4_journal_callback_try_del(handle
, &entry
->efd_jce
)) {
4582 new_entry
->efd_count
+= entry
->efd_count
;
4583 rb_erase(node
, &(db
->bb_free_root
));
4584 kmem_cache_free(ext4_free_data_cachep
, entry
);
4587 /* Add the extent to transaction's private list */
4588 ext4_journal_callback_add(handle
, ext4_free_data_callback
,
4589 &new_entry
->efd_jce
);
4594 * ext4_free_blocks() -- Free given blocks and update quota
4595 * @handle: handle for this transaction
4597 * @block: start physical block to free
4598 * @count: number of blocks to count
4599 * @flags: flags used by ext4_free_blocks
4601 void ext4_free_blocks(handle_t
*handle
, struct inode
*inode
,
4602 struct buffer_head
*bh
, ext4_fsblk_t block
,
4603 unsigned long count
, int flags
)
4605 struct buffer_head
*bitmap_bh
= NULL
;
4606 struct super_block
*sb
= inode
->i_sb
;
4607 struct ext4_group_desc
*gdp
;
4608 unsigned int overflow
;
4610 struct buffer_head
*gd_bh
;
4611 ext4_group_t block_group
;
4612 struct ext4_sb_info
*sbi
;
4613 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4614 struct ext4_buddy e4b
;
4615 unsigned int count_clusters
;
4622 BUG_ON(block
!= bh
->b_blocknr
);
4624 block
= bh
->b_blocknr
;
4628 if (!(flags
& EXT4_FREE_BLOCKS_VALIDATED
) &&
4629 !ext4_data_block_valid(sbi
, block
, count
)) {
4630 ext4_error(sb
, "Freeing blocks not in datazone - "
4631 "block = %llu, count = %lu", block
, count
);
4635 ext4_debug("freeing block %llu\n", block
);
4636 trace_ext4_free_blocks(inode
, block
, count
, flags
);
4638 if (flags
& EXT4_FREE_BLOCKS_FORGET
) {
4639 struct buffer_head
*tbh
= bh
;
4642 BUG_ON(bh
&& (count
> 1));
4644 for (i
= 0; i
< count
; i
++) {
4646 tbh
= sb_find_get_block(inode
->i_sb
,
4650 ext4_forget(handle
, flags
& EXT4_FREE_BLOCKS_METADATA
,
4651 inode
, tbh
, block
+ i
);
4656 * We need to make sure we don't reuse the freed block until
4657 * after the transaction is committed, which we can do by
4658 * treating the block as metadata, below. We make an
4659 * exception if the inode is to be written in writeback mode
4660 * since writeback mode has weak data consistency guarantees.
4662 if (!ext4_should_writeback_data(inode
))
4663 flags
|= EXT4_FREE_BLOCKS_METADATA
;
4666 * If the extent to be freed does not begin on a cluster
4667 * boundary, we need to deal with partial clusters at the
4668 * beginning and end of the extent. Normally we will free
4669 * blocks at the beginning or the end unless we are explicitly
4670 * requested to avoid doing so.
4672 overflow
= EXT4_PBLK_COFF(sbi
, block
);
4674 if (flags
& EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER
) {
4675 overflow
= sbi
->s_cluster_ratio
- overflow
;
4677 if (count
> overflow
)
4686 overflow
= EXT4_LBLK_COFF(sbi
, count
);
4688 if (flags
& EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER
) {
4689 if (count
> overflow
)
4694 count
+= sbi
->s_cluster_ratio
- overflow
;
4699 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
4702 * Check to see if we are freeing blocks across a group
4705 if (EXT4_C2B(sbi
, bit
) + count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
4706 overflow
= EXT4_C2B(sbi
, bit
) + count
-
4707 EXT4_BLOCKS_PER_GROUP(sb
);
4710 count_clusters
= EXT4_NUM_B2C(sbi
, count
);
4711 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
4716 gdp
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
4722 if (in_range(ext4_block_bitmap(sb
, gdp
), block
, count
) ||
4723 in_range(ext4_inode_bitmap(sb
, gdp
), block
, count
) ||
4724 in_range(block
, ext4_inode_table(sb
, gdp
),
4725 EXT4_SB(sb
)->s_itb_per_group
) ||
4726 in_range(block
+ count
- 1, ext4_inode_table(sb
, gdp
),
4727 EXT4_SB(sb
)->s_itb_per_group
)) {
4729 ext4_error(sb
, "Freeing blocks in system zone - "
4730 "Block = %llu, count = %lu", block
, count
);
4731 /* err = 0. ext4_std_error should be a no op */
4735 BUFFER_TRACE(bitmap_bh
, "getting write access");
4736 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
4741 * We are about to modify some metadata. Call the journal APIs
4742 * to unshare ->b_data if a currently-committing transaction is
4745 BUFFER_TRACE(gd_bh
, "get_write_access");
4746 err
= ext4_journal_get_write_access(handle
, gd_bh
);
4749 #ifdef AGGRESSIVE_CHECK
4752 for (i
= 0; i
< count_clusters
; i
++)
4753 BUG_ON(!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
));
4756 trace_ext4_mballoc_free(sb
, inode
, block_group
, bit
, count_clusters
);
4758 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
4762 if ((flags
& EXT4_FREE_BLOCKS_METADATA
) && ext4_handle_valid(handle
)) {
4763 struct ext4_free_data
*new_entry
;
4765 * blocks being freed are metadata. these blocks shouldn't
4766 * be used until this transaction is committed
4768 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4771 new_entry
= kmem_cache_alloc(ext4_free_data_cachep
,
4772 GFP_NOFS
|__GFP_NOFAIL
);
4773 new_entry
->efd_start_cluster
= bit
;
4774 new_entry
->efd_group
= block_group
;
4775 new_entry
->efd_count
= count_clusters
;
4776 new_entry
->efd_tid
= handle
->h_transaction
->t_tid
;
4778 ext4_lock_group(sb
, block_group
);
4779 mb_clear_bits(bitmap_bh
->b_data
, bit
, count_clusters
);
4780 ext4_mb_free_metadata(handle
, &e4b
, new_entry
);
4782 /* need to update group_info->bb_free and bitmap
4783 * with group lock held. generate_buddy look at
4784 * them with group lock_held
4786 if (test_opt(sb
, DISCARD
)) {
4787 err
= ext4_issue_discard(sb
, block_group
, bit
, count
);
4788 if (err
&& err
!= -EOPNOTSUPP
)
4789 ext4_msg(sb
, KERN_WARNING
, "discard request in"
4790 " group:%d block:%d count:%lu failed"
4791 " with %d", block_group
, bit
, count
,
4794 EXT4_MB_GRP_CLEAR_TRIMMED(e4b
.bd_info
);
4796 ext4_lock_group(sb
, block_group
);
4797 mb_clear_bits(bitmap_bh
->b_data
, bit
, count_clusters
);
4798 mb_free_blocks(inode
, &e4b
, bit
, count_clusters
);
4801 ret
= ext4_free_group_clusters(sb
, gdp
) + count_clusters
;
4802 ext4_free_group_clusters_set(sb
, gdp
, ret
);
4803 ext4_block_bitmap_csum_set(sb
, block_group
, gdp
, bitmap_bh
);
4804 ext4_group_desc_csum_set(sb
, block_group
, gdp
);
4805 ext4_unlock_group(sb
, block_group
);
4807 if (sbi
->s_log_groups_per_flex
) {
4808 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
4809 atomic64_add(count_clusters
,
4810 &sbi
->s_flex_groups
[flex_group
].free_clusters
);
4813 if (flags
& EXT4_FREE_BLOCKS_RESERVE
&& ei
->i_reserved_data_blocks
) {
4814 percpu_counter_add(&sbi
->s_dirtyclusters_counter
,
4816 spin_lock(&ei
->i_block_reservation_lock
);
4817 if (flags
& EXT4_FREE_BLOCKS_METADATA
)
4818 ei
->i_reserved_meta_blocks
+= count_clusters
;
4820 ei
->i_reserved_data_blocks
+= count_clusters
;
4821 spin_unlock(&ei
->i_block_reservation_lock
);
4822 if (!(flags
& EXT4_FREE_BLOCKS_NO_QUOT_UPDATE
))
4823 dquot_reclaim_block(inode
,
4824 EXT4_C2B(sbi
, count_clusters
));
4825 } else if (!(flags
& EXT4_FREE_BLOCKS_NO_QUOT_UPDATE
))
4826 dquot_free_block(inode
, EXT4_C2B(sbi
, count_clusters
));
4827 percpu_counter_add(&sbi
->s_freeclusters_counter
, count_clusters
);
4829 ext4_mb_unload_buddy(&e4b
);
4831 /* We dirtied the bitmap block */
4832 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
4833 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
4835 /* And the group descriptor block */
4836 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
4837 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
4841 if (overflow
&& !err
) {
4849 ext4_std_error(sb
, err
);
4854 * ext4_group_add_blocks() -- Add given blocks to an existing group
4855 * @handle: handle to this transaction
4857 * @block: start physical block to add to the block group
4858 * @count: number of blocks to free
4860 * This marks the blocks as free in the bitmap and buddy.
4862 int ext4_group_add_blocks(handle_t
*handle
, struct super_block
*sb
,
4863 ext4_fsblk_t block
, unsigned long count
)
4865 struct buffer_head
*bitmap_bh
= NULL
;
4866 struct buffer_head
*gd_bh
;
4867 ext4_group_t block_group
;
4870 struct ext4_group_desc
*desc
;
4871 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4872 struct ext4_buddy e4b
;
4873 int err
= 0, ret
, blk_free_count
;
4874 ext4_grpblk_t blocks_freed
;
4876 ext4_debug("Adding block(s) %llu-%llu\n", block
, block
+ count
- 1);
4881 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
4883 * Check to see if we are freeing blocks across a group
4886 if (bit
+ count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
4887 ext4_warning(sb
, "too much blocks added to group %u\n",
4893 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
4899 desc
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
4905 if (in_range(ext4_block_bitmap(sb
, desc
), block
, count
) ||
4906 in_range(ext4_inode_bitmap(sb
, desc
), block
, count
) ||
4907 in_range(block
, ext4_inode_table(sb
, desc
), sbi
->s_itb_per_group
) ||
4908 in_range(block
+ count
- 1, ext4_inode_table(sb
, desc
),
4909 sbi
->s_itb_per_group
)) {
4910 ext4_error(sb
, "Adding blocks in system zones - "
4911 "Block = %llu, count = %lu",
4917 BUFFER_TRACE(bitmap_bh
, "getting write access");
4918 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
4923 * We are about to modify some metadata. Call the journal APIs
4924 * to unshare ->b_data if a currently-committing transaction is
4927 BUFFER_TRACE(gd_bh
, "get_write_access");
4928 err
= ext4_journal_get_write_access(handle
, gd_bh
);
4932 for (i
= 0, blocks_freed
= 0; i
< count
; i
++) {
4933 BUFFER_TRACE(bitmap_bh
, "clear bit");
4934 if (!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
)) {
4935 ext4_error(sb
, "bit already cleared for block %llu",
4936 (ext4_fsblk_t
)(block
+ i
));
4937 BUFFER_TRACE(bitmap_bh
, "bit already cleared");
4943 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
4948 * need to update group_info->bb_free and bitmap
4949 * with group lock held. generate_buddy look at
4950 * them with group lock_held
4952 ext4_lock_group(sb
, block_group
);
4953 mb_clear_bits(bitmap_bh
->b_data
, bit
, count
);
4954 mb_free_blocks(NULL
, &e4b
, bit
, count
);
4955 blk_free_count
= blocks_freed
+ ext4_free_group_clusters(sb
, desc
);
4956 ext4_free_group_clusters_set(sb
, desc
, blk_free_count
);
4957 ext4_block_bitmap_csum_set(sb
, block_group
, desc
, bitmap_bh
);
4958 ext4_group_desc_csum_set(sb
, block_group
, desc
);
4959 ext4_unlock_group(sb
, block_group
);
4960 percpu_counter_add(&sbi
->s_freeclusters_counter
,
4961 EXT4_NUM_B2C(sbi
, blocks_freed
));
4963 if (sbi
->s_log_groups_per_flex
) {
4964 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
4965 atomic64_add(EXT4_NUM_B2C(sbi
, blocks_freed
),
4966 &sbi
->s_flex_groups
[flex_group
].free_clusters
);
4969 ext4_mb_unload_buddy(&e4b
);
4971 /* We dirtied the bitmap block */
4972 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
4973 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
4975 /* And the group descriptor block */
4976 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
4977 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
4983 ext4_std_error(sb
, err
);
4988 * ext4_trim_extent -- function to TRIM one single free extent in the group
4989 * @sb: super block for the file system
4990 * @start: starting block of the free extent in the alloc. group
4991 * @count: number of blocks to TRIM
4992 * @group: alloc. group we are working with
4993 * @e4b: ext4 buddy for the group
4995 * Trim "count" blocks starting at "start" in the "group". To assure that no
4996 * one will allocate those blocks, mark it as used in buddy bitmap. This must
4997 * be called with under the group lock.
4999 static int ext4_trim_extent(struct super_block
*sb
, int start
, int count
,
5000 ext4_group_t group
, struct ext4_buddy
*e4b
)
5002 struct ext4_free_extent ex
;
5005 trace_ext4_trim_extent(sb
, group
, start
, count
);
5007 assert_spin_locked(ext4_group_lock_ptr(sb
, group
));
5009 ex
.fe_start
= start
;
5010 ex
.fe_group
= group
;
5014 * Mark blocks used, so no one can reuse them while
5017 mb_mark_used(e4b
, &ex
);
5018 ext4_unlock_group(sb
, group
);
5019 ret
= ext4_issue_discard(sb
, group
, start
, count
);
5020 ext4_lock_group(sb
, group
);
5021 mb_free_blocks(NULL
, e4b
, start
, ex
.fe_len
);
5026 * ext4_trim_all_free -- function to trim all free space in alloc. group
5027 * @sb: super block for file system
5028 * @group: group to be trimmed
5029 * @start: first group block to examine
5030 * @max: last group block to examine
5031 * @minblocks: minimum extent block count
5033 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5034 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5038 * ext4_trim_all_free walks through group's block bitmap searching for free
5039 * extents. When the free extent is found, mark it as used in group buddy
5040 * bitmap. Then issue a TRIM command on this extent and free the extent in
5041 * the group buddy bitmap. This is done until whole group is scanned.
5043 static ext4_grpblk_t
5044 ext4_trim_all_free(struct super_block
*sb
, ext4_group_t group
,
5045 ext4_grpblk_t start
, ext4_grpblk_t max
,
5046 ext4_grpblk_t minblocks
)
5049 ext4_grpblk_t next
, count
= 0, free_count
= 0;
5050 struct ext4_buddy e4b
;
5053 trace_ext4_trim_all_free(sb
, group
, start
, max
);
5055 ret
= ext4_mb_load_buddy(sb
, group
, &e4b
);
5057 ext4_error(sb
, "Error in loading buddy "
5058 "information for %u", group
);
5061 bitmap
= e4b
.bd_bitmap
;
5063 ext4_lock_group(sb
, group
);
5064 if (EXT4_MB_GRP_WAS_TRIMMED(e4b
.bd_info
) &&
5065 minblocks
>= atomic_read(&EXT4_SB(sb
)->s_last_trim_minblks
))
5068 start
= (e4b
.bd_info
->bb_first_free
> start
) ?
5069 e4b
.bd_info
->bb_first_free
: start
;
5071 while (start
<= max
) {
5072 start
= mb_find_next_zero_bit(bitmap
, max
+ 1, start
);
5075 next
= mb_find_next_bit(bitmap
, max
+ 1, start
);
5077 if ((next
- start
) >= minblocks
) {
5078 ret
= ext4_trim_extent(sb
, start
,
5079 next
- start
, group
, &e4b
);
5080 if (ret
&& ret
!= -EOPNOTSUPP
)
5083 count
+= next
- start
;
5085 free_count
+= next
- start
;
5088 if (fatal_signal_pending(current
)) {
5089 count
= -ERESTARTSYS
;
5093 if (need_resched()) {
5094 ext4_unlock_group(sb
, group
);
5096 ext4_lock_group(sb
, group
);
5099 if ((e4b
.bd_info
->bb_free
- free_count
) < minblocks
)
5105 EXT4_MB_GRP_SET_TRIMMED(e4b
.bd_info
);
5108 ext4_unlock_group(sb
, group
);
5109 ext4_mb_unload_buddy(&e4b
);
5111 ext4_debug("trimmed %d blocks in the group %d\n",
5118 * ext4_trim_fs() -- trim ioctl handle function
5119 * @sb: superblock for filesystem
5120 * @range: fstrim_range structure
5122 * start: First Byte to trim
5123 * len: number of Bytes to trim from start
5124 * minlen: minimum extent length in Bytes
5125 * ext4_trim_fs goes through all allocation groups containing Bytes from
5126 * start to start+len. For each such a group ext4_trim_all_free function
5127 * is invoked to trim all free space.
5129 int ext4_trim_fs(struct super_block
*sb
, struct fstrim_range
*range
)
5131 struct ext4_group_info
*grp
;
5132 ext4_group_t group
, first_group
, last_group
;
5133 ext4_grpblk_t cnt
= 0, first_cluster
, last_cluster
;
5134 uint64_t start
, end
, minlen
, trimmed
= 0;
5135 ext4_fsblk_t first_data_blk
=
5136 le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
);
5137 ext4_fsblk_t max_blks
= ext4_blocks_count(EXT4_SB(sb
)->s_es
);
5140 start
= range
->start
>> sb
->s_blocksize_bits
;
5141 end
= start
+ (range
->len
>> sb
->s_blocksize_bits
) - 1;
5142 minlen
= EXT4_NUM_B2C(EXT4_SB(sb
),
5143 range
->minlen
>> sb
->s_blocksize_bits
);
5145 if (minlen
> EXT4_CLUSTERS_PER_GROUP(sb
) ||
5146 start
>= max_blks
||
5147 range
->len
< sb
->s_blocksize
)
5149 if (end
>= max_blks
)
5151 if (end
<= first_data_blk
)
5153 if (start
< first_data_blk
)
5154 start
= first_data_blk
;
5156 /* Determine first and last group to examine based on start and end */
5157 ext4_get_group_no_and_offset(sb
, (ext4_fsblk_t
) start
,
5158 &first_group
, &first_cluster
);
5159 ext4_get_group_no_and_offset(sb
, (ext4_fsblk_t
) end
,
5160 &last_group
, &last_cluster
);
5162 /* end now represents the last cluster to discard in this group */
5163 end
= EXT4_CLUSTERS_PER_GROUP(sb
) - 1;
5165 for (group
= first_group
; group
<= last_group
; group
++) {
5166 grp
= ext4_get_group_info(sb
, group
);
5167 /* We only do this if the grp has never been initialized */
5168 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
5169 ret
= ext4_mb_init_group(sb
, group
);
5175 * For all the groups except the last one, last cluster will
5176 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5177 * change it for the last group, note that last_cluster is
5178 * already computed earlier by ext4_get_group_no_and_offset()
5180 if (group
== last_group
)
5183 if (grp
->bb_free
>= minlen
) {
5184 cnt
= ext4_trim_all_free(sb
, group
, first_cluster
,
5194 * For every group except the first one, we are sure
5195 * that the first cluster to discard will be cluster #0.
5201 atomic_set(&EXT4_SB(sb
)->s_last_trim_minblks
, minlen
);
5204 range
->len
= EXT4_C2B(EXT4_SB(sb
), trimmed
) << sb
->s_blocksize_bits
;