btrfs: split extent_state ops
[linux/fpc-iii.git] / mm / shmem.c
blob269d049294abca49b518f158ef7e65fd7cb2547e
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
34 static struct vfsmount *shm_mnt;
36 #ifdef CONFIG_SHMEM
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/splice.h>
57 #include <linux/security.h>
58 #include <linux/swapops.h>
59 #include <linux/mempolicy.h>
60 #include <linux/namei.h>
61 #include <linux/ctype.h>
62 #include <linux/migrate.h>
63 #include <linux/highmem.h>
64 #include <linux/seq_file.h>
65 #include <linux/magic.h>
67 #include <asm/uaccess.h>
68 #include <asm/pgtable.h>
70 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
71 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73 /* Pretend that each entry is of this size in directory's i_size */
74 #define BOGO_DIRENT_SIZE 20
76 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
77 #define SHORT_SYMLINK_LEN 128
79 struct shmem_xattr {
80 struct list_head list; /* anchored by shmem_inode_info->xattr_list */
81 char *name; /* xattr name */
82 size_t size;
83 char value[0];
86 /* Flag allocation requirements to shmem_getpage */
87 enum sgp_type {
88 SGP_READ, /* don't exceed i_size, don't allocate page */
89 SGP_CACHE, /* don't exceed i_size, may allocate page */
90 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
91 SGP_WRITE, /* may exceed i_size, may allocate page */
94 #ifdef CONFIG_TMPFS
95 static unsigned long shmem_default_max_blocks(void)
97 return totalram_pages / 2;
100 static unsigned long shmem_default_max_inodes(void)
102 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
104 #endif
106 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
107 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
109 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
110 struct page **pagep, enum sgp_type sgp, int *fault_type)
112 return shmem_getpage_gfp(inode, index, pagep, sgp,
113 mapping_gfp_mask(inode->i_mapping), fault_type);
116 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
118 return sb->s_fs_info;
122 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
123 * for shared memory and for shared anonymous (/dev/zero) mappings
124 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
125 * consistent with the pre-accounting of private mappings ...
127 static inline int shmem_acct_size(unsigned long flags, loff_t size)
129 return (flags & VM_NORESERVE) ?
130 0 : security_vm_enough_memory_kern(VM_ACCT(size));
133 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
135 if (!(flags & VM_NORESERVE))
136 vm_unacct_memory(VM_ACCT(size));
140 * ... whereas tmpfs objects are accounted incrementally as
141 * pages are allocated, in order to allow huge sparse files.
142 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
143 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
145 static inline int shmem_acct_block(unsigned long flags)
147 return (flags & VM_NORESERVE) ?
148 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
151 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
153 if (flags & VM_NORESERVE)
154 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
157 static const struct super_operations shmem_ops;
158 static const struct address_space_operations shmem_aops;
159 static const struct file_operations shmem_file_operations;
160 static const struct inode_operations shmem_inode_operations;
161 static const struct inode_operations shmem_dir_inode_operations;
162 static const struct inode_operations shmem_special_inode_operations;
163 static const struct vm_operations_struct shmem_vm_ops;
165 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
166 .ra_pages = 0, /* No readahead */
167 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
170 static LIST_HEAD(shmem_swaplist);
171 static DEFINE_MUTEX(shmem_swaplist_mutex);
173 static int shmem_reserve_inode(struct super_block *sb)
175 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
176 if (sbinfo->max_inodes) {
177 spin_lock(&sbinfo->stat_lock);
178 if (!sbinfo->free_inodes) {
179 spin_unlock(&sbinfo->stat_lock);
180 return -ENOSPC;
182 sbinfo->free_inodes--;
183 spin_unlock(&sbinfo->stat_lock);
185 return 0;
188 static void shmem_free_inode(struct super_block *sb)
190 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
191 if (sbinfo->max_inodes) {
192 spin_lock(&sbinfo->stat_lock);
193 sbinfo->free_inodes++;
194 spin_unlock(&sbinfo->stat_lock);
199 * shmem_recalc_inode - recalculate the block usage of an inode
200 * @inode: inode to recalc
202 * We have to calculate the free blocks since the mm can drop
203 * undirtied hole pages behind our back.
205 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
206 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
208 * It has to be called with the spinlock held.
210 static void shmem_recalc_inode(struct inode *inode)
212 struct shmem_inode_info *info = SHMEM_I(inode);
213 long freed;
215 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
216 if (freed > 0) {
217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218 if (sbinfo->max_blocks)
219 percpu_counter_add(&sbinfo->used_blocks, -freed);
220 info->alloced -= freed;
221 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
222 shmem_unacct_blocks(info->flags, freed);
227 * Replace item expected in radix tree by a new item, while holding tree lock.
229 static int shmem_radix_tree_replace(struct address_space *mapping,
230 pgoff_t index, void *expected, void *replacement)
232 void **pslot;
233 void *item = NULL;
235 VM_BUG_ON(!expected);
236 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
237 if (pslot)
238 item = radix_tree_deref_slot_protected(pslot,
239 &mapping->tree_lock);
240 if (item != expected)
241 return -ENOENT;
242 if (replacement)
243 radix_tree_replace_slot(pslot, replacement);
244 else
245 radix_tree_delete(&mapping->page_tree, index);
246 return 0;
250 * Like add_to_page_cache_locked, but error if expected item has gone.
252 static int shmem_add_to_page_cache(struct page *page,
253 struct address_space *mapping,
254 pgoff_t index, gfp_t gfp, void *expected)
256 int error = 0;
258 VM_BUG_ON(!PageLocked(page));
259 VM_BUG_ON(!PageSwapBacked(page));
261 if (!expected)
262 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
263 if (!error) {
264 page_cache_get(page);
265 page->mapping = mapping;
266 page->index = index;
268 spin_lock_irq(&mapping->tree_lock);
269 if (!expected)
270 error = radix_tree_insert(&mapping->page_tree,
271 index, page);
272 else
273 error = shmem_radix_tree_replace(mapping, index,
274 expected, page);
275 if (!error) {
276 mapping->nrpages++;
277 __inc_zone_page_state(page, NR_FILE_PAGES);
278 __inc_zone_page_state(page, NR_SHMEM);
279 spin_unlock_irq(&mapping->tree_lock);
280 } else {
281 page->mapping = NULL;
282 spin_unlock_irq(&mapping->tree_lock);
283 page_cache_release(page);
285 if (!expected)
286 radix_tree_preload_end();
288 if (error)
289 mem_cgroup_uncharge_cache_page(page);
290 return error;
294 * Like delete_from_page_cache, but substitutes swap for page.
296 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
298 struct address_space *mapping = page->mapping;
299 int error;
301 spin_lock_irq(&mapping->tree_lock);
302 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
303 page->mapping = NULL;
304 mapping->nrpages--;
305 __dec_zone_page_state(page, NR_FILE_PAGES);
306 __dec_zone_page_state(page, NR_SHMEM);
307 spin_unlock_irq(&mapping->tree_lock);
308 page_cache_release(page);
309 BUG_ON(error);
313 * Like find_get_pages, but collecting swap entries as well as pages.
315 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
316 pgoff_t start, unsigned int nr_pages,
317 struct page **pages, pgoff_t *indices)
319 unsigned int i;
320 unsigned int ret;
321 unsigned int nr_found;
323 rcu_read_lock();
324 restart:
325 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
326 (void ***)pages, indices, start, nr_pages);
327 ret = 0;
328 for (i = 0; i < nr_found; i++) {
329 struct page *page;
330 repeat:
331 page = radix_tree_deref_slot((void **)pages[i]);
332 if (unlikely(!page))
333 continue;
334 if (radix_tree_exception(page)) {
335 if (radix_tree_deref_retry(page))
336 goto restart;
338 * Otherwise, we must be storing a swap entry
339 * here as an exceptional entry: so return it
340 * without attempting to raise page count.
342 goto export;
344 if (!page_cache_get_speculative(page))
345 goto repeat;
347 /* Has the page moved? */
348 if (unlikely(page != *((void **)pages[i]))) {
349 page_cache_release(page);
350 goto repeat;
352 export:
353 indices[ret] = indices[i];
354 pages[ret] = page;
355 ret++;
357 if (unlikely(!ret && nr_found))
358 goto restart;
359 rcu_read_unlock();
360 return ret;
364 * Remove swap entry from radix tree, free the swap and its page cache.
366 static int shmem_free_swap(struct address_space *mapping,
367 pgoff_t index, void *radswap)
369 int error;
371 spin_lock_irq(&mapping->tree_lock);
372 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
373 spin_unlock_irq(&mapping->tree_lock);
374 if (!error)
375 free_swap_and_cache(radix_to_swp_entry(radswap));
376 return error;
380 * Pagevec may contain swap entries, so shuffle up pages before releasing.
382 static void shmem_deswap_pagevec(struct pagevec *pvec)
384 int i, j;
386 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
387 struct page *page = pvec->pages[i];
388 if (!radix_tree_exceptional_entry(page))
389 pvec->pages[j++] = page;
391 pvec->nr = j;
395 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
397 void shmem_unlock_mapping(struct address_space *mapping)
399 struct pagevec pvec;
400 pgoff_t indices[PAGEVEC_SIZE];
401 pgoff_t index = 0;
403 pagevec_init(&pvec, 0);
405 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
407 while (!mapping_unevictable(mapping)) {
409 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
410 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
412 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
413 PAGEVEC_SIZE, pvec.pages, indices);
414 if (!pvec.nr)
415 break;
416 index = indices[pvec.nr - 1] + 1;
417 shmem_deswap_pagevec(&pvec);
418 check_move_unevictable_pages(pvec.pages, pvec.nr);
419 pagevec_release(&pvec);
420 cond_resched();
425 * Remove range of pages and swap entries from radix tree, and free them.
427 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
429 struct address_space *mapping = inode->i_mapping;
430 struct shmem_inode_info *info = SHMEM_I(inode);
431 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
432 unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
433 pgoff_t end = (lend >> PAGE_CACHE_SHIFT);
434 struct pagevec pvec;
435 pgoff_t indices[PAGEVEC_SIZE];
436 long nr_swaps_freed = 0;
437 pgoff_t index;
438 int i;
440 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
442 pagevec_init(&pvec, 0);
443 index = start;
444 while (index <= end) {
445 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
446 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
447 pvec.pages, indices);
448 if (!pvec.nr)
449 break;
450 mem_cgroup_uncharge_start();
451 for (i = 0; i < pagevec_count(&pvec); i++) {
452 struct page *page = pvec.pages[i];
454 index = indices[i];
455 if (index > end)
456 break;
458 if (radix_tree_exceptional_entry(page)) {
459 nr_swaps_freed += !shmem_free_swap(mapping,
460 index, page);
461 continue;
464 if (!trylock_page(page))
465 continue;
466 if (page->mapping == mapping) {
467 VM_BUG_ON(PageWriteback(page));
468 truncate_inode_page(mapping, page);
470 unlock_page(page);
472 shmem_deswap_pagevec(&pvec);
473 pagevec_release(&pvec);
474 mem_cgroup_uncharge_end();
475 cond_resched();
476 index++;
479 if (partial) {
480 struct page *page = NULL;
481 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
482 if (page) {
483 zero_user_segment(page, partial, PAGE_CACHE_SIZE);
484 set_page_dirty(page);
485 unlock_page(page);
486 page_cache_release(page);
490 index = start;
491 for ( ; ; ) {
492 cond_resched();
493 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
494 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
495 pvec.pages, indices);
496 if (!pvec.nr) {
497 if (index == start)
498 break;
499 index = start;
500 continue;
502 if (index == start && indices[0] > end) {
503 shmem_deswap_pagevec(&pvec);
504 pagevec_release(&pvec);
505 break;
507 mem_cgroup_uncharge_start();
508 for (i = 0; i < pagevec_count(&pvec); i++) {
509 struct page *page = pvec.pages[i];
511 index = indices[i];
512 if (index > end)
513 break;
515 if (radix_tree_exceptional_entry(page)) {
516 nr_swaps_freed += !shmem_free_swap(mapping,
517 index, page);
518 continue;
521 lock_page(page);
522 if (page->mapping == mapping) {
523 VM_BUG_ON(PageWriteback(page));
524 truncate_inode_page(mapping, page);
526 unlock_page(page);
528 shmem_deswap_pagevec(&pvec);
529 pagevec_release(&pvec);
530 mem_cgroup_uncharge_end();
531 index++;
534 spin_lock(&info->lock);
535 info->swapped -= nr_swaps_freed;
536 shmem_recalc_inode(inode);
537 spin_unlock(&info->lock);
539 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
541 EXPORT_SYMBOL_GPL(shmem_truncate_range);
543 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
545 struct inode *inode = dentry->d_inode;
546 int error;
548 error = inode_change_ok(inode, attr);
549 if (error)
550 return error;
552 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
553 loff_t oldsize = inode->i_size;
554 loff_t newsize = attr->ia_size;
556 if (newsize != oldsize) {
557 i_size_write(inode, newsize);
558 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
560 if (newsize < oldsize) {
561 loff_t holebegin = round_up(newsize, PAGE_SIZE);
562 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
563 shmem_truncate_range(inode, newsize, (loff_t)-1);
564 /* unmap again to remove racily COWed private pages */
565 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
569 setattr_copy(inode, attr);
570 #ifdef CONFIG_TMPFS_POSIX_ACL
571 if (attr->ia_valid & ATTR_MODE)
572 error = generic_acl_chmod(inode);
573 #endif
574 return error;
577 static void shmem_evict_inode(struct inode *inode)
579 struct shmem_inode_info *info = SHMEM_I(inode);
580 struct shmem_xattr *xattr, *nxattr;
582 if (inode->i_mapping->a_ops == &shmem_aops) {
583 shmem_unacct_size(info->flags, inode->i_size);
584 inode->i_size = 0;
585 shmem_truncate_range(inode, 0, (loff_t)-1);
586 if (!list_empty(&info->swaplist)) {
587 mutex_lock(&shmem_swaplist_mutex);
588 list_del_init(&info->swaplist);
589 mutex_unlock(&shmem_swaplist_mutex);
591 } else
592 kfree(info->symlink);
594 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
595 kfree(xattr->name);
596 kfree(xattr);
598 BUG_ON(inode->i_blocks);
599 shmem_free_inode(inode->i_sb);
600 end_writeback(inode);
604 * If swap found in inode, free it and move page from swapcache to filecache.
606 static int shmem_unuse_inode(struct shmem_inode_info *info,
607 swp_entry_t swap, struct page *page)
609 struct address_space *mapping = info->vfs_inode.i_mapping;
610 void *radswap;
611 pgoff_t index;
612 int error;
614 radswap = swp_to_radix_entry(swap);
615 index = radix_tree_locate_item(&mapping->page_tree, radswap);
616 if (index == -1)
617 return 0;
620 * Move _head_ to start search for next from here.
621 * But be careful: shmem_evict_inode checks list_empty without taking
622 * mutex, and there's an instant in list_move_tail when info->swaplist
623 * would appear empty, if it were the only one on shmem_swaplist.
625 if (shmem_swaplist.next != &info->swaplist)
626 list_move_tail(&shmem_swaplist, &info->swaplist);
629 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
630 * but also to hold up shmem_evict_inode(): so inode cannot be freed
631 * beneath us (pagelock doesn't help until the page is in pagecache).
633 error = shmem_add_to_page_cache(page, mapping, index,
634 GFP_NOWAIT, radswap);
635 /* which does mem_cgroup_uncharge_cache_page on error */
637 if (error != -ENOMEM) {
639 * Truncation and eviction use free_swap_and_cache(), which
640 * only does trylock page: if we raced, best clean up here.
642 delete_from_swap_cache(page);
643 set_page_dirty(page);
644 if (!error) {
645 spin_lock(&info->lock);
646 info->swapped--;
647 spin_unlock(&info->lock);
648 swap_free(swap);
650 error = 1; /* not an error, but entry was found */
652 return error;
656 * Search through swapped inodes to find and replace swap by page.
658 int shmem_unuse(swp_entry_t swap, struct page *page)
660 struct list_head *this, *next;
661 struct shmem_inode_info *info;
662 int found = 0;
663 int error;
666 * Charge page using GFP_KERNEL while we can wait, before taking
667 * the shmem_swaplist_mutex which might hold up shmem_writepage().
668 * Charged back to the user (not to caller) when swap account is used.
670 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
671 if (error)
672 goto out;
673 /* No radix_tree_preload: swap entry keeps a place for page in tree */
675 mutex_lock(&shmem_swaplist_mutex);
676 list_for_each_safe(this, next, &shmem_swaplist) {
677 info = list_entry(this, struct shmem_inode_info, swaplist);
678 if (info->swapped)
679 found = shmem_unuse_inode(info, swap, page);
680 else
681 list_del_init(&info->swaplist);
682 cond_resched();
683 if (found)
684 break;
686 mutex_unlock(&shmem_swaplist_mutex);
688 if (!found)
689 mem_cgroup_uncharge_cache_page(page);
690 if (found < 0)
691 error = found;
692 out:
693 unlock_page(page);
694 page_cache_release(page);
695 return error;
699 * Move the page from the page cache to the swap cache.
701 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
703 struct shmem_inode_info *info;
704 struct address_space *mapping;
705 struct inode *inode;
706 swp_entry_t swap;
707 pgoff_t index;
709 BUG_ON(!PageLocked(page));
710 mapping = page->mapping;
711 index = page->index;
712 inode = mapping->host;
713 info = SHMEM_I(inode);
714 if (info->flags & VM_LOCKED)
715 goto redirty;
716 if (!total_swap_pages)
717 goto redirty;
720 * shmem_backing_dev_info's capabilities prevent regular writeback or
721 * sync from ever calling shmem_writepage; but a stacking filesystem
722 * might use ->writepage of its underlying filesystem, in which case
723 * tmpfs should write out to swap only in response to memory pressure,
724 * and not for the writeback threads or sync.
726 if (!wbc->for_reclaim) {
727 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
728 goto redirty;
730 swap = get_swap_page();
731 if (!swap.val)
732 goto redirty;
735 * Add inode to shmem_unuse()'s list of swapped-out inodes,
736 * if it's not already there. Do it now before the page is
737 * moved to swap cache, when its pagelock no longer protects
738 * the inode from eviction. But don't unlock the mutex until
739 * we've incremented swapped, because shmem_unuse_inode() will
740 * prune a !swapped inode from the swaplist under this mutex.
742 mutex_lock(&shmem_swaplist_mutex);
743 if (list_empty(&info->swaplist))
744 list_add_tail(&info->swaplist, &shmem_swaplist);
746 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
747 swap_shmem_alloc(swap);
748 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
750 spin_lock(&info->lock);
751 info->swapped++;
752 shmem_recalc_inode(inode);
753 spin_unlock(&info->lock);
755 mutex_unlock(&shmem_swaplist_mutex);
756 BUG_ON(page_mapped(page));
757 swap_writepage(page, wbc);
758 return 0;
761 mutex_unlock(&shmem_swaplist_mutex);
762 swapcache_free(swap, NULL);
763 redirty:
764 set_page_dirty(page);
765 if (wbc->for_reclaim)
766 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
767 unlock_page(page);
768 return 0;
771 #ifdef CONFIG_NUMA
772 #ifdef CONFIG_TMPFS
773 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
775 char buffer[64];
777 if (!mpol || mpol->mode == MPOL_DEFAULT)
778 return; /* show nothing */
780 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
782 seq_printf(seq, ",mpol=%s", buffer);
785 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
787 struct mempolicy *mpol = NULL;
788 if (sbinfo->mpol) {
789 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
790 mpol = sbinfo->mpol;
791 mpol_get(mpol);
792 spin_unlock(&sbinfo->stat_lock);
794 return mpol;
796 #endif /* CONFIG_TMPFS */
798 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
799 struct shmem_inode_info *info, pgoff_t index)
801 struct mempolicy mpol, *spol;
802 struct vm_area_struct pvma;
804 spol = mpol_cond_copy(&mpol,
805 mpol_shared_policy_lookup(&info->policy, index));
807 /* Create a pseudo vma that just contains the policy */
808 pvma.vm_start = 0;
809 pvma.vm_pgoff = index;
810 pvma.vm_ops = NULL;
811 pvma.vm_policy = spol;
812 return swapin_readahead(swap, gfp, &pvma, 0);
815 static struct page *shmem_alloc_page(gfp_t gfp,
816 struct shmem_inode_info *info, pgoff_t index)
818 struct vm_area_struct pvma;
820 /* Create a pseudo vma that just contains the policy */
821 pvma.vm_start = 0;
822 pvma.vm_pgoff = index;
823 pvma.vm_ops = NULL;
824 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
827 * alloc_page_vma() will drop the shared policy reference
829 return alloc_page_vma(gfp, &pvma, 0);
831 #else /* !CONFIG_NUMA */
832 #ifdef CONFIG_TMPFS
833 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
836 #endif /* CONFIG_TMPFS */
838 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
839 struct shmem_inode_info *info, pgoff_t index)
841 return swapin_readahead(swap, gfp, NULL, 0);
844 static inline struct page *shmem_alloc_page(gfp_t gfp,
845 struct shmem_inode_info *info, pgoff_t index)
847 return alloc_page(gfp);
849 #endif /* CONFIG_NUMA */
851 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
852 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
854 return NULL;
856 #endif
859 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
861 * If we allocate a new one we do not mark it dirty. That's up to the
862 * vm. If we swap it in we mark it dirty since we also free the swap
863 * entry since a page cannot live in both the swap and page cache
865 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
866 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
868 struct address_space *mapping = inode->i_mapping;
869 struct shmem_inode_info *info;
870 struct shmem_sb_info *sbinfo;
871 struct page *page;
872 swp_entry_t swap;
873 int error;
874 int once = 0;
876 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
877 return -EFBIG;
878 repeat:
879 swap.val = 0;
880 page = find_lock_page(mapping, index);
881 if (radix_tree_exceptional_entry(page)) {
882 swap = radix_to_swp_entry(page);
883 page = NULL;
886 if (sgp != SGP_WRITE &&
887 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
888 error = -EINVAL;
889 goto failed;
892 if (page || (sgp == SGP_READ && !swap.val)) {
894 * Once we can get the page lock, it must be uptodate:
895 * if there were an error in reading back from swap,
896 * the page would not be inserted into the filecache.
898 BUG_ON(page && !PageUptodate(page));
899 *pagep = page;
900 return 0;
904 * Fast cache lookup did not find it:
905 * bring it back from swap or allocate.
907 info = SHMEM_I(inode);
908 sbinfo = SHMEM_SB(inode->i_sb);
910 if (swap.val) {
911 /* Look it up and read it in.. */
912 page = lookup_swap_cache(swap);
913 if (!page) {
914 /* here we actually do the io */
915 if (fault_type)
916 *fault_type |= VM_FAULT_MAJOR;
917 page = shmem_swapin(swap, gfp, info, index);
918 if (!page) {
919 error = -ENOMEM;
920 goto failed;
924 /* We have to do this with page locked to prevent races */
925 lock_page(page);
926 if (!PageUptodate(page)) {
927 error = -EIO;
928 goto failed;
930 wait_on_page_writeback(page);
932 /* Someone may have already done it for us */
933 if (page->mapping) {
934 if (page->mapping == mapping &&
935 page->index == index)
936 goto done;
937 error = -EEXIST;
938 goto failed;
941 error = mem_cgroup_cache_charge(page, current->mm,
942 gfp & GFP_RECLAIM_MASK);
943 if (!error)
944 error = shmem_add_to_page_cache(page, mapping, index,
945 gfp, swp_to_radix_entry(swap));
946 if (error)
947 goto failed;
949 spin_lock(&info->lock);
950 info->swapped--;
951 shmem_recalc_inode(inode);
952 spin_unlock(&info->lock);
954 delete_from_swap_cache(page);
955 set_page_dirty(page);
956 swap_free(swap);
958 } else {
959 if (shmem_acct_block(info->flags)) {
960 error = -ENOSPC;
961 goto failed;
963 if (sbinfo->max_blocks) {
964 if (percpu_counter_compare(&sbinfo->used_blocks,
965 sbinfo->max_blocks) >= 0) {
966 error = -ENOSPC;
967 goto unacct;
969 percpu_counter_inc(&sbinfo->used_blocks);
972 page = shmem_alloc_page(gfp, info, index);
973 if (!page) {
974 error = -ENOMEM;
975 goto decused;
978 SetPageSwapBacked(page);
979 __set_page_locked(page);
980 error = mem_cgroup_cache_charge(page, current->mm,
981 gfp & GFP_RECLAIM_MASK);
982 if (!error)
983 error = shmem_add_to_page_cache(page, mapping, index,
984 gfp, NULL);
985 if (error)
986 goto decused;
987 lru_cache_add_anon(page);
989 spin_lock(&info->lock);
990 info->alloced++;
991 inode->i_blocks += BLOCKS_PER_PAGE;
992 shmem_recalc_inode(inode);
993 spin_unlock(&info->lock);
995 clear_highpage(page);
996 flush_dcache_page(page);
997 SetPageUptodate(page);
998 if (sgp == SGP_DIRTY)
999 set_page_dirty(page);
1001 done:
1002 /* Perhaps the file has been truncated since we checked */
1003 if (sgp != SGP_WRITE &&
1004 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1005 error = -EINVAL;
1006 goto trunc;
1008 *pagep = page;
1009 return 0;
1012 * Error recovery.
1014 trunc:
1015 ClearPageDirty(page);
1016 delete_from_page_cache(page);
1017 spin_lock(&info->lock);
1018 info->alloced--;
1019 inode->i_blocks -= BLOCKS_PER_PAGE;
1020 spin_unlock(&info->lock);
1021 decused:
1022 if (sbinfo->max_blocks)
1023 percpu_counter_add(&sbinfo->used_blocks, -1);
1024 unacct:
1025 shmem_unacct_blocks(info->flags, 1);
1026 failed:
1027 if (swap.val && error != -EINVAL) {
1028 struct page *test = find_get_page(mapping, index);
1029 if (test && !radix_tree_exceptional_entry(test))
1030 page_cache_release(test);
1031 /* Have another try if the entry has changed */
1032 if (test != swp_to_radix_entry(swap))
1033 error = -EEXIST;
1035 if (page) {
1036 unlock_page(page);
1037 page_cache_release(page);
1039 if (error == -ENOSPC && !once++) {
1040 info = SHMEM_I(inode);
1041 spin_lock(&info->lock);
1042 shmem_recalc_inode(inode);
1043 spin_unlock(&info->lock);
1044 goto repeat;
1046 if (error == -EEXIST)
1047 goto repeat;
1048 return error;
1051 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1053 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1054 int error;
1055 int ret = VM_FAULT_LOCKED;
1057 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1058 if (error)
1059 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1061 if (ret & VM_FAULT_MAJOR) {
1062 count_vm_event(PGMAJFAULT);
1063 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1065 return ret;
1068 #ifdef CONFIG_NUMA
1069 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1071 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1072 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1075 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1076 unsigned long addr)
1078 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1079 pgoff_t index;
1081 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1082 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1084 #endif
1086 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1088 struct inode *inode = file->f_path.dentry->d_inode;
1089 struct shmem_inode_info *info = SHMEM_I(inode);
1090 int retval = -ENOMEM;
1092 spin_lock(&info->lock);
1093 if (lock && !(info->flags & VM_LOCKED)) {
1094 if (!user_shm_lock(inode->i_size, user))
1095 goto out_nomem;
1096 info->flags |= VM_LOCKED;
1097 mapping_set_unevictable(file->f_mapping);
1099 if (!lock && (info->flags & VM_LOCKED) && user) {
1100 user_shm_unlock(inode->i_size, user);
1101 info->flags &= ~VM_LOCKED;
1102 mapping_clear_unevictable(file->f_mapping);
1104 retval = 0;
1106 out_nomem:
1107 spin_unlock(&info->lock);
1108 return retval;
1111 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1113 file_accessed(file);
1114 vma->vm_ops = &shmem_vm_ops;
1115 vma->vm_flags |= VM_CAN_NONLINEAR;
1116 return 0;
1119 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1120 umode_t mode, dev_t dev, unsigned long flags)
1122 struct inode *inode;
1123 struct shmem_inode_info *info;
1124 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1126 if (shmem_reserve_inode(sb))
1127 return NULL;
1129 inode = new_inode(sb);
1130 if (inode) {
1131 inode->i_ino = get_next_ino();
1132 inode_init_owner(inode, dir, mode);
1133 inode->i_blocks = 0;
1134 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1135 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1136 inode->i_generation = get_seconds();
1137 info = SHMEM_I(inode);
1138 memset(info, 0, (char *)inode - (char *)info);
1139 spin_lock_init(&info->lock);
1140 info->flags = flags & VM_NORESERVE;
1141 INIT_LIST_HEAD(&info->swaplist);
1142 INIT_LIST_HEAD(&info->xattr_list);
1143 cache_no_acl(inode);
1145 switch (mode & S_IFMT) {
1146 default:
1147 inode->i_op = &shmem_special_inode_operations;
1148 init_special_inode(inode, mode, dev);
1149 break;
1150 case S_IFREG:
1151 inode->i_mapping->a_ops = &shmem_aops;
1152 inode->i_op = &shmem_inode_operations;
1153 inode->i_fop = &shmem_file_operations;
1154 mpol_shared_policy_init(&info->policy,
1155 shmem_get_sbmpol(sbinfo));
1156 break;
1157 case S_IFDIR:
1158 inc_nlink(inode);
1159 /* Some things misbehave if size == 0 on a directory */
1160 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1161 inode->i_op = &shmem_dir_inode_operations;
1162 inode->i_fop = &simple_dir_operations;
1163 break;
1164 case S_IFLNK:
1166 * Must not load anything in the rbtree,
1167 * mpol_free_shared_policy will not be called.
1169 mpol_shared_policy_init(&info->policy, NULL);
1170 break;
1172 } else
1173 shmem_free_inode(sb);
1174 return inode;
1177 #ifdef CONFIG_TMPFS
1178 static const struct inode_operations shmem_symlink_inode_operations;
1179 static const struct inode_operations shmem_short_symlink_operations;
1181 static int
1182 shmem_write_begin(struct file *file, struct address_space *mapping,
1183 loff_t pos, unsigned len, unsigned flags,
1184 struct page **pagep, void **fsdata)
1186 struct inode *inode = mapping->host;
1187 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1188 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1191 static int
1192 shmem_write_end(struct file *file, struct address_space *mapping,
1193 loff_t pos, unsigned len, unsigned copied,
1194 struct page *page, void *fsdata)
1196 struct inode *inode = mapping->host;
1198 if (pos + copied > inode->i_size)
1199 i_size_write(inode, pos + copied);
1201 set_page_dirty(page);
1202 unlock_page(page);
1203 page_cache_release(page);
1205 return copied;
1208 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1210 struct inode *inode = filp->f_path.dentry->d_inode;
1211 struct address_space *mapping = inode->i_mapping;
1212 pgoff_t index;
1213 unsigned long offset;
1214 enum sgp_type sgp = SGP_READ;
1217 * Might this read be for a stacking filesystem? Then when reading
1218 * holes of a sparse file, we actually need to allocate those pages,
1219 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1221 if (segment_eq(get_fs(), KERNEL_DS))
1222 sgp = SGP_DIRTY;
1224 index = *ppos >> PAGE_CACHE_SHIFT;
1225 offset = *ppos & ~PAGE_CACHE_MASK;
1227 for (;;) {
1228 struct page *page = NULL;
1229 pgoff_t end_index;
1230 unsigned long nr, ret;
1231 loff_t i_size = i_size_read(inode);
1233 end_index = i_size >> PAGE_CACHE_SHIFT;
1234 if (index > end_index)
1235 break;
1236 if (index == end_index) {
1237 nr = i_size & ~PAGE_CACHE_MASK;
1238 if (nr <= offset)
1239 break;
1242 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1243 if (desc->error) {
1244 if (desc->error == -EINVAL)
1245 desc->error = 0;
1246 break;
1248 if (page)
1249 unlock_page(page);
1252 * We must evaluate after, since reads (unlike writes)
1253 * are called without i_mutex protection against truncate
1255 nr = PAGE_CACHE_SIZE;
1256 i_size = i_size_read(inode);
1257 end_index = i_size >> PAGE_CACHE_SHIFT;
1258 if (index == end_index) {
1259 nr = i_size & ~PAGE_CACHE_MASK;
1260 if (nr <= offset) {
1261 if (page)
1262 page_cache_release(page);
1263 break;
1266 nr -= offset;
1268 if (page) {
1270 * If users can be writing to this page using arbitrary
1271 * virtual addresses, take care about potential aliasing
1272 * before reading the page on the kernel side.
1274 if (mapping_writably_mapped(mapping))
1275 flush_dcache_page(page);
1277 * Mark the page accessed if we read the beginning.
1279 if (!offset)
1280 mark_page_accessed(page);
1281 } else {
1282 page = ZERO_PAGE(0);
1283 page_cache_get(page);
1287 * Ok, we have the page, and it's up-to-date, so
1288 * now we can copy it to user space...
1290 * The actor routine returns how many bytes were actually used..
1291 * NOTE! This may not be the same as how much of a user buffer
1292 * we filled up (we may be padding etc), so we can only update
1293 * "pos" here (the actor routine has to update the user buffer
1294 * pointers and the remaining count).
1296 ret = actor(desc, page, offset, nr);
1297 offset += ret;
1298 index += offset >> PAGE_CACHE_SHIFT;
1299 offset &= ~PAGE_CACHE_MASK;
1301 page_cache_release(page);
1302 if (ret != nr || !desc->count)
1303 break;
1305 cond_resched();
1308 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1309 file_accessed(filp);
1312 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1313 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1315 struct file *filp = iocb->ki_filp;
1316 ssize_t retval;
1317 unsigned long seg;
1318 size_t count;
1319 loff_t *ppos = &iocb->ki_pos;
1321 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1322 if (retval)
1323 return retval;
1325 for (seg = 0; seg < nr_segs; seg++) {
1326 read_descriptor_t desc;
1328 desc.written = 0;
1329 desc.arg.buf = iov[seg].iov_base;
1330 desc.count = iov[seg].iov_len;
1331 if (desc.count == 0)
1332 continue;
1333 desc.error = 0;
1334 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1335 retval += desc.written;
1336 if (desc.error) {
1337 retval = retval ?: desc.error;
1338 break;
1340 if (desc.count > 0)
1341 break;
1343 return retval;
1346 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1347 struct pipe_inode_info *pipe, size_t len,
1348 unsigned int flags)
1350 struct address_space *mapping = in->f_mapping;
1351 struct inode *inode = mapping->host;
1352 unsigned int loff, nr_pages, req_pages;
1353 struct page *pages[PIPE_DEF_BUFFERS];
1354 struct partial_page partial[PIPE_DEF_BUFFERS];
1355 struct page *page;
1356 pgoff_t index, end_index;
1357 loff_t isize, left;
1358 int error, page_nr;
1359 struct splice_pipe_desc spd = {
1360 .pages = pages,
1361 .partial = partial,
1362 .flags = flags,
1363 .ops = &page_cache_pipe_buf_ops,
1364 .spd_release = spd_release_page,
1367 isize = i_size_read(inode);
1368 if (unlikely(*ppos >= isize))
1369 return 0;
1371 left = isize - *ppos;
1372 if (unlikely(left < len))
1373 len = left;
1375 if (splice_grow_spd(pipe, &spd))
1376 return -ENOMEM;
1378 index = *ppos >> PAGE_CACHE_SHIFT;
1379 loff = *ppos & ~PAGE_CACHE_MASK;
1380 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1381 nr_pages = min(req_pages, pipe->buffers);
1383 spd.nr_pages = find_get_pages_contig(mapping, index,
1384 nr_pages, spd.pages);
1385 index += spd.nr_pages;
1386 error = 0;
1388 while (spd.nr_pages < nr_pages) {
1389 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1390 if (error)
1391 break;
1392 unlock_page(page);
1393 spd.pages[spd.nr_pages++] = page;
1394 index++;
1397 index = *ppos >> PAGE_CACHE_SHIFT;
1398 nr_pages = spd.nr_pages;
1399 spd.nr_pages = 0;
1401 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1402 unsigned int this_len;
1404 if (!len)
1405 break;
1407 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1408 page = spd.pages[page_nr];
1410 if (!PageUptodate(page) || page->mapping != mapping) {
1411 error = shmem_getpage(inode, index, &page,
1412 SGP_CACHE, NULL);
1413 if (error)
1414 break;
1415 unlock_page(page);
1416 page_cache_release(spd.pages[page_nr]);
1417 spd.pages[page_nr] = page;
1420 isize = i_size_read(inode);
1421 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1422 if (unlikely(!isize || index > end_index))
1423 break;
1425 if (end_index == index) {
1426 unsigned int plen;
1428 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1429 if (plen <= loff)
1430 break;
1432 this_len = min(this_len, plen - loff);
1433 len = this_len;
1436 spd.partial[page_nr].offset = loff;
1437 spd.partial[page_nr].len = this_len;
1438 len -= this_len;
1439 loff = 0;
1440 spd.nr_pages++;
1441 index++;
1444 while (page_nr < nr_pages)
1445 page_cache_release(spd.pages[page_nr++]);
1447 if (spd.nr_pages)
1448 error = splice_to_pipe(pipe, &spd);
1450 splice_shrink_spd(pipe, &spd);
1452 if (error > 0) {
1453 *ppos += error;
1454 file_accessed(in);
1456 return error;
1459 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1461 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1463 buf->f_type = TMPFS_MAGIC;
1464 buf->f_bsize = PAGE_CACHE_SIZE;
1465 buf->f_namelen = NAME_MAX;
1466 if (sbinfo->max_blocks) {
1467 buf->f_blocks = sbinfo->max_blocks;
1468 buf->f_bavail =
1469 buf->f_bfree = sbinfo->max_blocks -
1470 percpu_counter_sum(&sbinfo->used_blocks);
1472 if (sbinfo->max_inodes) {
1473 buf->f_files = sbinfo->max_inodes;
1474 buf->f_ffree = sbinfo->free_inodes;
1476 /* else leave those fields 0 like simple_statfs */
1477 return 0;
1481 * File creation. Allocate an inode, and we're done..
1483 static int
1484 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1486 struct inode *inode;
1487 int error = -ENOSPC;
1489 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1490 if (inode) {
1491 error = security_inode_init_security(inode, dir,
1492 &dentry->d_name,
1493 NULL, NULL);
1494 if (error) {
1495 if (error != -EOPNOTSUPP) {
1496 iput(inode);
1497 return error;
1500 #ifdef CONFIG_TMPFS_POSIX_ACL
1501 error = generic_acl_init(inode, dir);
1502 if (error) {
1503 iput(inode);
1504 return error;
1506 #else
1507 error = 0;
1508 #endif
1509 dir->i_size += BOGO_DIRENT_SIZE;
1510 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1511 d_instantiate(dentry, inode);
1512 dget(dentry); /* Extra count - pin the dentry in core */
1514 return error;
1517 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1519 int error;
1521 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1522 return error;
1523 inc_nlink(dir);
1524 return 0;
1527 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1528 struct nameidata *nd)
1530 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1534 * Link a file..
1536 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1538 struct inode *inode = old_dentry->d_inode;
1539 int ret;
1542 * No ordinary (disk based) filesystem counts links as inodes;
1543 * but each new link needs a new dentry, pinning lowmem, and
1544 * tmpfs dentries cannot be pruned until they are unlinked.
1546 ret = shmem_reserve_inode(inode->i_sb);
1547 if (ret)
1548 goto out;
1550 dir->i_size += BOGO_DIRENT_SIZE;
1551 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1552 inc_nlink(inode);
1553 ihold(inode); /* New dentry reference */
1554 dget(dentry); /* Extra pinning count for the created dentry */
1555 d_instantiate(dentry, inode);
1556 out:
1557 return ret;
1560 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1562 struct inode *inode = dentry->d_inode;
1564 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1565 shmem_free_inode(inode->i_sb);
1567 dir->i_size -= BOGO_DIRENT_SIZE;
1568 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1569 drop_nlink(inode);
1570 dput(dentry); /* Undo the count from "create" - this does all the work */
1571 return 0;
1574 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1576 if (!simple_empty(dentry))
1577 return -ENOTEMPTY;
1579 drop_nlink(dentry->d_inode);
1580 drop_nlink(dir);
1581 return shmem_unlink(dir, dentry);
1585 * The VFS layer already does all the dentry stuff for rename,
1586 * we just have to decrement the usage count for the target if
1587 * it exists so that the VFS layer correctly free's it when it
1588 * gets overwritten.
1590 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1592 struct inode *inode = old_dentry->d_inode;
1593 int they_are_dirs = S_ISDIR(inode->i_mode);
1595 if (!simple_empty(new_dentry))
1596 return -ENOTEMPTY;
1598 if (new_dentry->d_inode) {
1599 (void) shmem_unlink(new_dir, new_dentry);
1600 if (they_are_dirs)
1601 drop_nlink(old_dir);
1602 } else if (they_are_dirs) {
1603 drop_nlink(old_dir);
1604 inc_nlink(new_dir);
1607 old_dir->i_size -= BOGO_DIRENT_SIZE;
1608 new_dir->i_size += BOGO_DIRENT_SIZE;
1609 old_dir->i_ctime = old_dir->i_mtime =
1610 new_dir->i_ctime = new_dir->i_mtime =
1611 inode->i_ctime = CURRENT_TIME;
1612 return 0;
1615 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1617 int error;
1618 int len;
1619 struct inode *inode;
1620 struct page *page;
1621 char *kaddr;
1622 struct shmem_inode_info *info;
1624 len = strlen(symname) + 1;
1625 if (len > PAGE_CACHE_SIZE)
1626 return -ENAMETOOLONG;
1628 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1629 if (!inode)
1630 return -ENOSPC;
1632 error = security_inode_init_security(inode, dir, &dentry->d_name,
1633 NULL, NULL);
1634 if (error) {
1635 if (error != -EOPNOTSUPP) {
1636 iput(inode);
1637 return error;
1639 error = 0;
1642 info = SHMEM_I(inode);
1643 inode->i_size = len-1;
1644 if (len <= SHORT_SYMLINK_LEN) {
1645 info->symlink = kmemdup(symname, len, GFP_KERNEL);
1646 if (!info->symlink) {
1647 iput(inode);
1648 return -ENOMEM;
1650 inode->i_op = &shmem_short_symlink_operations;
1651 } else {
1652 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1653 if (error) {
1654 iput(inode);
1655 return error;
1657 inode->i_mapping->a_ops = &shmem_aops;
1658 inode->i_op = &shmem_symlink_inode_operations;
1659 kaddr = kmap_atomic(page, KM_USER0);
1660 memcpy(kaddr, symname, len);
1661 kunmap_atomic(kaddr, KM_USER0);
1662 set_page_dirty(page);
1663 unlock_page(page);
1664 page_cache_release(page);
1666 dir->i_size += BOGO_DIRENT_SIZE;
1667 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1668 d_instantiate(dentry, inode);
1669 dget(dentry);
1670 return 0;
1673 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1675 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
1676 return NULL;
1679 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1681 struct page *page = NULL;
1682 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1683 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1684 if (page)
1685 unlock_page(page);
1686 return page;
1689 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1691 if (!IS_ERR(nd_get_link(nd))) {
1692 struct page *page = cookie;
1693 kunmap(page);
1694 mark_page_accessed(page);
1695 page_cache_release(page);
1699 #ifdef CONFIG_TMPFS_XATTR
1701 * Superblocks without xattr inode operations may get some security.* xattr
1702 * support from the LSM "for free". As soon as we have any other xattrs
1703 * like ACLs, we also need to implement the security.* handlers at
1704 * filesystem level, though.
1707 static int shmem_xattr_get(struct dentry *dentry, const char *name,
1708 void *buffer, size_t size)
1710 struct shmem_inode_info *info;
1711 struct shmem_xattr *xattr;
1712 int ret = -ENODATA;
1714 info = SHMEM_I(dentry->d_inode);
1716 spin_lock(&info->lock);
1717 list_for_each_entry(xattr, &info->xattr_list, list) {
1718 if (strcmp(name, xattr->name))
1719 continue;
1721 ret = xattr->size;
1722 if (buffer) {
1723 if (size < xattr->size)
1724 ret = -ERANGE;
1725 else
1726 memcpy(buffer, xattr->value, xattr->size);
1728 break;
1730 spin_unlock(&info->lock);
1731 return ret;
1734 static int shmem_xattr_set(struct dentry *dentry, const char *name,
1735 const void *value, size_t size, int flags)
1737 struct inode *inode = dentry->d_inode;
1738 struct shmem_inode_info *info = SHMEM_I(inode);
1739 struct shmem_xattr *xattr;
1740 struct shmem_xattr *new_xattr = NULL;
1741 size_t len;
1742 int err = 0;
1744 /* value == NULL means remove */
1745 if (value) {
1746 /* wrap around? */
1747 len = sizeof(*new_xattr) + size;
1748 if (len <= sizeof(*new_xattr))
1749 return -ENOMEM;
1751 new_xattr = kmalloc(len, GFP_KERNEL);
1752 if (!new_xattr)
1753 return -ENOMEM;
1755 new_xattr->name = kstrdup(name, GFP_KERNEL);
1756 if (!new_xattr->name) {
1757 kfree(new_xattr);
1758 return -ENOMEM;
1761 new_xattr->size = size;
1762 memcpy(new_xattr->value, value, size);
1765 spin_lock(&info->lock);
1766 list_for_each_entry(xattr, &info->xattr_list, list) {
1767 if (!strcmp(name, xattr->name)) {
1768 if (flags & XATTR_CREATE) {
1769 xattr = new_xattr;
1770 err = -EEXIST;
1771 } else if (new_xattr) {
1772 list_replace(&xattr->list, &new_xattr->list);
1773 } else {
1774 list_del(&xattr->list);
1776 goto out;
1779 if (flags & XATTR_REPLACE) {
1780 xattr = new_xattr;
1781 err = -ENODATA;
1782 } else {
1783 list_add(&new_xattr->list, &info->xattr_list);
1784 xattr = NULL;
1786 out:
1787 spin_unlock(&info->lock);
1788 if (xattr)
1789 kfree(xattr->name);
1790 kfree(xattr);
1791 return err;
1794 static const struct xattr_handler *shmem_xattr_handlers[] = {
1795 #ifdef CONFIG_TMPFS_POSIX_ACL
1796 &generic_acl_access_handler,
1797 &generic_acl_default_handler,
1798 #endif
1799 NULL
1802 static int shmem_xattr_validate(const char *name)
1804 struct { const char *prefix; size_t len; } arr[] = {
1805 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
1806 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
1808 int i;
1810 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1811 size_t preflen = arr[i].len;
1812 if (strncmp(name, arr[i].prefix, preflen) == 0) {
1813 if (!name[preflen])
1814 return -EINVAL;
1815 return 0;
1818 return -EOPNOTSUPP;
1821 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
1822 void *buffer, size_t size)
1824 int err;
1827 * If this is a request for a synthetic attribute in the system.*
1828 * namespace use the generic infrastructure to resolve a handler
1829 * for it via sb->s_xattr.
1831 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1832 return generic_getxattr(dentry, name, buffer, size);
1834 err = shmem_xattr_validate(name);
1835 if (err)
1836 return err;
1838 return shmem_xattr_get(dentry, name, buffer, size);
1841 static int shmem_setxattr(struct dentry *dentry, const char *name,
1842 const void *value, size_t size, int flags)
1844 int err;
1847 * If this is a request for a synthetic attribute in the system.*
1848 * namespace use the generic infrastructure to resolve a handler
1849 * for it via sb->s_xattr.
1851 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1852 return generic_setxattr(dentry, name, value, size, flags);
1854 err = shmem_xattr_validate(name);
1855 if (err)
1856 return err;
1858 if (size == 0)
1859 value = ""; /* empty EA, do not remove */
1861 return shmem_xattr_set(dentry, name, value, size, flags);
1865 static int shmem_removexattr(struct dentry *dentry, const char *name)
1867 int err;
1870 * If this is a request for a synthetic attribute in the system.*
1871 * namespace use the generic infrastructure to resolve a handler
1872 * for it via sb->s_xattr.
1874 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1875 return generic_removexattr(dentry, name);
1877 err = shmem_xattr_validate(name);
1878 if (err)
1879 return err;
1881 return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
1884 static bool xattr_is_trusted(const char *name)
1886 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
1889 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
1891 bool trusted = capable(CAP_SYS_ADMIN);
1892 struct shmem_xattr *xattr;
1893 struct shmem_inode_info *info;
1894 size_t used = 0;
1896 info = SHMEM_I(dentry->d_inode);
1898 spin_lock(&info->lock);
1899 list_for_each_entry(xattr, &info->xattr_list, list) {
1900 size_t len;
1902 /* skip "trusted." attributes for unprivileged callers */
1903 if (!trusted && xattr_is_trusted(xattr->name))
1904 continue;
1906 len = strlen(xattr->name) + 1;
1907 used += len;
1908 if (buffer) {
1909 if (size < used) {
1910 used = -ERANGE;
1911 break;
1913 memcpy(buffer, xattr->name, len);
1914 buffer += len;
1917 spin_unlock(&info->lock);
1919 return used;
1921 #endif /* CONFIG_TMPFS_XATTR */
1923 static const struct inode_operations shmem_short_symlink_operations = {
1924 .readlink = generic_readlink,
1925 .follow_link = shmem_follow_short_symlink,
1926 #ifdef CONFIG_TMPFS_XATTR
1927 .setxattr = shmem_setxattr,
1928 .getxattr = shmem_getxattr,
1929 .listxattr = shmem_listxattr,
1930 .removexattr = shmem_removexattr,
1931 #endif
1934 static const struct inode_operations shmem_symlink_inode_operations = {
1935 .readlink = generic_readlink,
1936 .follow_link = shmem_follow_link,
1937 .put_link = shmem_put_link,
1938 #ifdef CONFIG_TMPFS_XATTR
1939 .setxattr = shmem_setxattr,
1940 .getxattr = shmem_getxattr,
1941 .listxattr = shmem_listxattr,
1942 .removexattr = shmem_removexattr,
1943 #endif
1946 static struct dentry *shmem_get_parent(struct dentry *child)
1948 return ERR_PTR(-ESTALE);
1951 static int shmem_match(struct inode *ino, void *vfh)
1953 __u32 *fh = vfh;
1954 __u64 inum = fh[2];
1955 inum = (inum << 32) | fh[1];
1956 return ino->i_ino == inum && fh[0] == ino->i_generation;
1959 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1960 struct fid *fid, int fh_len, int fh_type)
1962 struct inode *inode;
1963 struct dentry *dentry = NULL;
1964 u64 inum = fid->raw[2];
1965 inum = (inum << 32) | fid->raw[1];
1967 if (fh_len < 3)
1968 return NULL;
1970 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1971 shmem_match, fid->raw);
1972 if (inode) {
1973 dentry = d_find_alias(inode);
1974 iput(inode);
1977 return dentry;
1980 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
1981 int connectable)
1983 struct inode *inode = dentry->d_inode;
1985 if (*len < 3) {
1986 *len = 3;
1987 return 255;
1990 if (inode_unhashed(inode)) {
1991 /* Unfortunately insert_inode_hash is not idempotent,
1992 * so as we hash inodes here rather than at creation
1993 * time, we need a lock to ensure we only try
1994 * to do it once
1996 static DEFINE_SPINLOCK(lock);
1997 spin_lock(&lock);
1998 if (inode_unhashed(inode))
1999 __insert_inode_hash(inode,
2000 inode->i_ino + inode->i_generation);
2001 spin_unlock(&lock);
2004 fh[0] = inode->i_generation;
2005 fh[1] = inode->i_ino;
2006 fh[2] = ((__u64)inode->i_ino) >> 32;
2008 *len = 3;
2009 return 1;
2012 static const struct export_operations shmem_export_ops = {
2013 .get_parent = shmem_get_parent,
2014 .encode_fh = shmem_encode_fh,
2015 .fh_to_dentry = shmem_fh_to_dentry,
2018 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2019 bool remount)
2021 char *this_char, *value, *rest;
2023 while (options != NULL) {
2024 this_char = options;
2025 for (;;) {
2027 * NUL-terminate this option: unfortunately,
2028 * mount options form a comma-separated list,
2029 * but mpol's nodelist may also contain commas.
2031 options = strchr(options, ',');
2032 if (options == NULL)
2033 break;
2034 options++;
2035 if (!isdigit(*options)) {
2036 options[-1] = '\0';
2037 break;
2040 if (!*this_char)
2041 continue;
2042 if ((value = strchr(this_char,'=')) != NULL) {
2043 *value++ = 0;
2044 } else {
2045 printk(KERN_ERR
2046 "tmpfs: No value for mount option '%s'\n",
2047 this_char);
2048 return 1;
2051 if (!strcmp(this_char,"size")) {
2052 unsigned long long size;
2053 size = memparse(value,&rest);
2054 if (*rest == '%') {
2055 size <<= PAGE_SHIFT;
2056 size *= totalram_pages;
2057 do_div(size, 100);
2058 rest++;
2060 if (*rest)
2061 goto bad_val;
2062 sbinfo->max_blocks =
2063 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2064 } else if (!strcmp(this_char,"nr_blocks")) {
2065 sbinfo->max_blocks = memparse(value, &rest);
2066 if (*rest)
2067 goto bad_val;
2068 } else if (!strcmp(this_char,"nr_inodes")) {
2069 sbinfo->max_inodes = memparse(value, &rest);
2070 if (*rest)
2071 goto bad_val;
2072 } else if (!strcmp(this_char,"mode")) {
2073 if (remount)
2074 continue;
2075 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2076 if (*rest)
2077 goto bad_val;
2078 } else if (!strcmp(this_char,"uid")) {
2079 if (remount)
2080 continue;
2081 sbinfo->uid = simple_strtoul(value, &rest, 0);
2082 if (*rest)
2083 goto bad_val;
2084 } else if (!strcmp(this_char,"gid")) {
2085 if (remount)
2086 continue;
2087 sbinfo->gid = simple_strtoul(value, &rest, 0);
2088 if (*rest)
2089 goto bad_val;
2090 } else if (!strcmp(this_char,"mpol")) {
2091 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2092 goto bad_val;
2093 } else {
2094 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2095 this_char);
2096 return 1;
2099 return 0;
2101 bad_val:
2102 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2103 value, this_char);
2104 return 1;
2108 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2110 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2111 struct shmem_sb_info config = *sbinfo;
2112 unsigned long inodes;
2113 int error = -EINVAL;
2115 if (shmem_parse_options(data, &config, true))
2116 return error;
2118 spin_lock(&sbinfo->stat_lock);
2119 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2120 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2121 goto out;
2122 if (config.max_inodes < inodes)
2123 goto out;
2125 * Those tests disallow limited->unlimited while any are in use;
2126 * but we must separately disallow unlimited->limited, because
2127 * in that case we have no record of how much is already in use.
2129 if (config.max_blocks && !sbinfo->max_blocks)
2130 goto out;
2131 if (config.max_inodes && !sbinfo->max_inodes)
2132 goto out;
2134 error = 0;
2135 sbinfo->max_blocks = config.max_blocks;
2136 sbinfo->max_inodes = config.max_inodes;
2137 sbinfo->free_inodes = config.max_inodes - inodes;
2139 mpol_put(sbinfo->mpol);
2140 sbinfo->mpol = config.mpol; /* transfers initial ref */
2141 out:
2142 spin_unlock(&sbinfo->stat_lock);
2143 return error;
2146 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2148 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2150 if (sbinfo->max_blocks != shmem_default_max_blocks())
2151 seq_printf(seq, ",size=%luk",
2152 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2153 if (sbinfo->max_inodes != shmem_default_max_inodes())
2154 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2155 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2156 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2157 if (sbinfo->uid != 0)
2158 seq_printf(seq, ",uid=%u", sbinfo->uid);
2159 if (sbinfo->gid != 0)
2160 seq_printf(seq, ",gid=%u", sbinfo->gid);
2161 shmem_show_mpol(seq, sbinfo->mpol);
2162 return 0;
2164 #endif /* CONFIG_TMPFS */
2166 static void shmem_put_super(struct super_block *sb)
2168 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2170 percpu_counter_destroy(&sbinfo->used_blocks);
2171 kfree(sbinfo);
2172 sb->s_fs_info = NULL;
2175 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2177 struct inode *inode;
2178 struct dentry *root;
2179 struct shmem_sb_info *sbinfo;
2180 int err = -ENOMEM;
2182 /* Round up to L1_CACHE_BYTES to resist false sharing */
2183 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2184 L1_CACHE_BYTES), GFP_KERNEL);
2185 if (!sbinfo)
2186 return -ENOMEM;
2188 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2189 sbinfo->uid = current_fsuid();
2190 sbinfo->gid = current_fsgid();
2191 sb->s_fs_info = sbinfo;
2193 #ifdef CONFIG_TMPFS
2195 * Per default we only allow half of the physical ram per
2196 * tmpfs instance, limiting inodes to one per page of lowmem;
2197 * but the internal instance is left unlimited.
2199 if (!(sb->s_flags & MS_NOUSER)) {
2200 sbinfo->max_blocks = shmem_default_max_blocks();
2201 sbinfo->max_inodes = shmem_default_max_inodes();
2202 if (shmem_parse_options(data, sbinfo, false)) {
2203 err = -EINVAL;
2204 goto failed;
2207 sb->s_export_op = &shmem_export_ops;
2208 #else
2209 sb->s_flags |= MS_NOUSER;
2210 #endif
2212 spin_lock_init(&sbinfo->stat_lock);
2213 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2214 goto failed;
2215 sbinfo->free_inodes = sbinfo->max_inodes;
2217 sb->s_maxbytes = MAX_LFS_FILESIZE;
2218 sb->s_blocksize = PAGE_CACHE_SIZE;
2219 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2220 sb->s_magic = TMPFS_MAGIC;
2221 sb->s_op = &shmem_ops;
2222 sb->s_time_gran = 1;
2223 #ifdef CONFIG_TMPFS_XATTR
2224 sb->s_xattr = shmem_xattr_handlers;
2225 #endif
2226 #ifdef CONFIG_TMPFS_POSIX_ACL
2227 sb->s_flags |= MS_POSIXACL;
2228 #endif
2230 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2231 if (!inode)
2232 goto failed;
2233 inode->i_uid = sbinfo->uid;
2234 inode->i_gid = sbinfo->gid;
2235 root = d_alloc_root(inode);
2236 if (!root)
2237 goto failed_iput;
2238 sb->s_root = root;
2239 return 0;
2241 failed_iput:
2242 iput(inode);
2243 failed:
2244 shmem_put_super(sb);
2245 return err;
2248 static struct kmem_cache *shmem_inode_cachep;
2250 static struct inode *shmem_alloc_inode(struct super_block *sb)
2252 struct shmem_inode_info *info;
2253 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2254 if (!info)
2255 return NULL;
2256 return &info->vfs_inode;
2259 static void shmem_destroy_callback(struct rcu_head *head)
2261 struct inode *inode = container_of(head, struct inode, i_rcu);
2262 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2265 static void shmem_destroy_inode(struct inode *inode)
2267 if (S_ISREG(inode->i_mode))
2268 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2269 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2272 static void shmem_init_inode(void *foo)
2274 struct shmem_inode_info *info = foo;
2275 inode_init_once(&info->vfs_inode);
2278 static int shmem_init_inodecache(void)
2280 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2281 sizeof(struct shmem_inode_info),
2282 0, SLAB_PANIC, shmem_init_inode);
2283 return 0;
2286 static void shmem_destroy_inodecache(void)
2288 kmem_cache_destroy(shmem_inode_cachep);
2291 static const struct address_space_operations shmem_aops = {
2292 .writepage = shmem_writepage,
2293 .set_page_dirty = __set_page_dirty_no_writeback,
2294 #ifdef CONFIG_TMPFS
2295 .write_begin = shmem_write_begin,
2296 .write_end = shmem_write_end,
2297 #endif
2298 .migratepage = migrate_page,
2299 .error_remove_page = generic_error_remove_page,
2302 static const struct file_operations shmem_file_operations = {
2303 .mmap = shmem_mmap,
2304 #ifdef CONFIG_TMPFS
2305 .llseek = generic_file_llseek,
2306 .read = do_sync_read,
2307 .write = do_sync_write,
2308 .aio_read = shmem_file_aio_read,
2309 .aio_write = generic_file_aio_write,
2310 .fsync = noop_fsync,
2311 .splice_read = shmem_file_splice_read,
2312 .splice_write = generic_file_splice_write,
2313 #endif
2316 static const struct inode_operations shmem_inode_operations = {
2317 .setattr = shmem_setattr,
2318 .truncate_range = shmem_truncate_range,
2319 #ifdef CONFIG_TMPFS_XATTR
2320 .setxattr = shmem_setxattr,
2321 .getxattr = shmem_getxattr,
2322 .listxattr = shmem_listxattr,
2323 .removexattr = shmem_removexattr,
2324 #endif
2327 static const struct inode_operations shmem_dir_inode_operations = {
2328 #ifdef CONFIG_TMPFS
2329 .create = shmem_create,
2330 .lookup = simple_lookup,
2331 .link = shmem_link,
2332 .unlink = shmem_unlink,
2333 .symlink = shmem_symlink,
2334 .mkdir = shmem_mkdir,
2335 .rmdir = shmem_rmdir,
2336 .mknod = shmem_mknod,
2337 .rename = shmem_rename,
2338 #endif
2339 #ifdef CONFIG_TMPFS_XATTR
2340 .setxattr = shmem_setxattr,
2341 .getxattr = shmem_getxattr,
2342 .listxattr = shmem_listxattr,
2343 .removexattr = shmem_removexattr,
2344 #endif
2345 #ifdef CONFIG_TMPFS_POSIX_ACL
2346 .setattr = shmem_setattr,
2347 #endif
2350 static const struct inode_operations shmem_special_inode_operations = {
2351 #ifdef CONFIG_TMPFS_XATTR
2352 .setxattr = shmem_setxattr,
2353 .getxattr = shmem_getxattr,
2354 .listxattr = shmem_listxattr,
2355 .removexattr = shmem_removexattr,
2356 #endif
2357 #ifdef CONFIG_TMPFS_POSIX_ACL
2358 .setattr = shmem_setattr,
2359 #endif
2362 static const struct super_operations shmem_ops = {
2363 .alloc_inode = shmem_alloc_inode,
2364 .destroy_inode = shmem_destroy_inode,
2365 #ifdef CONFIG_TMPFS
2366 .statfs = shmem_statfs,
2367 .remount_fs = shmem_remount_fs,
2368 .show_options = shmem_show_options,
2369 #endif
2370 .evict_inode = shmem_evict_inode,
2371 .drop_inode = generic_delete_inode,
2372 .put_super = shmem_put_super,
2375 static const struct vm_operations_struct shmem_vm_ops = {
2376 .fault = shmem_fault,
2377 #ifdef CONFIG_NUMA
2378 .set_policy = shmem_set_policy,
2379 .get_policy = shmem_get_policy,
2380 #endif
2383 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2384 int flags, const char *dev_name, void *data)
2386 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2389 static struct file_system_type shmem_fs_type = {
2390 .owner = THIS_MODULE,
2391 .name = "tmpfs",
2392 .mount = shmem_mount,
2393 .kill_sb = kill_litter_super,
2396 int __init shmem_init(void)
2398 int error;
2400 error = bdi_init(&shmem_backing_dev_info);
2401 if (error)
2402 goto out4;
2404 error = shmem_init_inodecache();
2405 if (error)
2406 goto out3;
2408 error = register_filesystem(&shmem_fs_type);
2409 if (error) {
2410 printk(KERN_ERR "Could not register tmpfs\n");
2411 goto out2;
2414 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2415 shmem_fs_type.name, NULL);
2416 if (IS_ERR(shm_mnt)) {
2417 error = PTR_ERR(shm_mnt);
2418 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2419 goto out1;
2421 return 0;
2423 out1:
2424 unregister_filesystem(&shmem_fs_type);
2425 out2:
2426 shmem_destroy_inodecache();
2427 out3:
2428 bdi_destroy(&shmem_backing_dev_info);
2429 out4:
2430 shm_mnt = ERR_PTR(error);
2431 return error;
2434 #else /* !CONFIG_SHMEM */
2437 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2439 * This is intended for small system where the benefits of the full
2440 * shmem code (swap-backed and resource-limited) are outweighed by
2441 * their complexity. On systems without swap this code should be
2442 * effectively equivalent, but much lighter weight.
2445 #include <linux/ramfs.h>
2447 static struct file_system_type shmem_fs_type = {
2448 .name = "tmpfs",
2449 .mount = ramfs_mount,
2450 .kill_sb = kill_litter_super,
2453 int __init shmem_init(void)
2455 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2457 shm_mnt = kern_mount(&shmem_fs_type);
2458 BUG_ON(IS_ERR(shm_mnt));
2460 return 0;
2463 int shmem_unuse(swp_entry_t swap, struct page *page)
2465 return 0;
2468 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2470 return 0;
2473 void shmem_unlock_mapping(struct address_space *mapping)
2477 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2479 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2481 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2483 #define shmem_vm_ops generic_file_vm_ops
2484 #define shmem_file_operations ramfs_file_operations
2485 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2486 #define shmem_acct_size(flags, size) 0
2487 #define shmem_unacct_size(flags, size) do {} while (0)
2489 #endif /* CONFIG_SHMEM */
2491 /* common code */
2494 * shmem_file_setup - get an unlinked file living in tmpfs
2495 * @name: name for dentry (to be seen in /proc/<pid>/maps
2496 * @size: size to be set for the file
2497 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2499 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2501 int error;
2502 struct file *file;
2503 struct inode *inode;
2504 struct path path;
2505 struct dentry *root;
2506 struct qstr this;
2508 if (IS_ERR(shm_mnt))
2509 return (void *)shm_mnt;
2511 if (size < 0 || size > MAX_LFS_FILESIZE)
2512 return ERR_PTR(-EINVAL);
2514 if (shmem_acct_size(flags, size))
2515 return ERR_PTR(-ENOMEM);
2517 error = -ENOMEM;
2518 this.name = name;
2519 this.len = strlen(name);
2520 this.hash = 0; /* will go */
2521 root = shm_mnt->mnt_root;
2522 path.dentry = d_alloc(root, &this);
2523 if (!path.dentry)
2524 goto put_memory;
2525 path.mnt = mntget(shm_mnt);
2527 error = -ENOSPC;
2528 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2529 if (!inode)
2530 goto put_dentry;
2532 d_instantiate(path.dentry, inode);
2533 inode->i_size = size;
2534 clear_nlink(inode); /* It is unlinked */
2535 #ifndef CONFIG_MMU
2536 error = ramfs_nommu_expand_for_mapping(inode, size);
2537 if (error)
2538 goto put_dentry;
2539 #endif
2541 error = -ENFILE;
2542 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2543 &shmem_file_operations);
2544 if (!file)
2545 goto put_dentry;
2547 return file;
2549 put_dentry:
2550 path_put(&path);
2551 put_memory:
2552 shmem_unacct_size(flags, size);
2553 return ERR_PTR(error);
2555 EXPORT_SYMBOL_GPL(shmem_file_setup);
2558 * shmem_zero_setup - setup a shared anonymous mapping
2559 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2561 int shmem_zero_setup(struct vm_area_struct *vma)
2563 struct file *file;
2564 loff_t size = vma->vm_end - vma->vm_start;
2566 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2567 if (IS_ERR(file))
2568 return PTR_ERR(file);
2570 if (vma->vm_file)
2571 fput(vma->vm_file);
2572 vma->vm_file = file;
2573 vma->vm_ops = &shmem_vm_ops;
2574 vma->vm_flags |= VM_CAN_NONLINEAR;
2575 return 0;
2579 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2580 * @mapping: the page's address_space
2581 * @index: the page index
2582 * @gfp: the page allocator flags to use if allocating
2584 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2585 * with any new page allocations done using the specified allocation flags.
2586 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2587 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2588 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2590 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2591 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2593 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2594 pgoff_t index, gfp_t gfp)
2596 #ifdef CONFIG_SHMEM
2597 struct inode *inode = mapping->host;
2598 struct page *page;
2599 int error;
2601 BUG_ON(mapping->a_ops != &shmem_aops);
2602 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2603 if (error)
2604 page = ERR_PTR(error);
2605 else
2606 unlock_page(page);
2607 return page;
2608 #else
2610 * The tiny !SHMEM case uses ramfs without swap
2612 return read_cache_page_gfp(mapping, index, gfp);
2613 #endif
2615 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);