2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly
;
113 unsigned int sysctl_net_busy_poll __read_mostly
;
116 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
);
117 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
);
118 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
120 static int sock_close(struct inode
*inode
, struct file
*file
);
121 static unsigned int sock_poll(struct file
*file
,
122 struct poll_table_struct
*wait
);
123 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
125 static long compat_sock_ioctl(struct file
*file
,
126 unsigned int cmd
, unsigned long arg
);
128 static int sock_fasync(int fd
, struct file
*filp
, int on
);
129 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
130 int offset
, size_t size
, loff_t
*ppos
, int more
);
131 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
132 struct pipe_inode_info
*pipe
, size_t len
,
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops
= {
141 .owner
= THIS_MODULE
,
143 .read_iter
= sock_read_iter
,
144 .write_iter
= sock_write_iter
,
146 .unlocked_ioctl
= sock_ioctl
,
148 .compat_ioctl
= compat_sock_ioctl
,
151 .release
= sock_close
,
152 .fasync
= sock_fasync
,
153 .sendpage
= sock_sendpage
,
154 .splice_write
= generic_splice_sendpage
,
155 .splice_read
= sock_splice_read
,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock
);
163 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
166 * Statistics counters of the socket lists
169 static DEFINE_PER_CPU(int, sockets_in_use
);
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
190 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
194 if (copy_from_user(kaddr
, uaddr
, ulen
))
196 return audit_sockaddr(ulen
, kaddr
);
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
216 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
217 void __user
*uaddr
, int __user
*ulen
)
222 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
223 err
= get_user(len
, ulen
);
231 if (audit_sockaddr(klen
, kaddr
))
233 if (copy_to_user(uaddr
, kaddr
, len
))
237 * "fromlen shall refer to the value before truncation.."
240 return __put_user(klen
, ulen
);
243 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
245 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
247 struct socket_alloc
*ei
;
248 struct socket_wq
*wq
;
250 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
253 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
255 kmem_cache_free(sock_inode_cachep
, ei
);
258 init_waitqueue_head(&wq
->wait
);
259 wq
->fasync_list
= NULL
;
261 RCU_INIT_POINTER(ei
->socket
.wq
, wq
);
263 ei
->socket
.state
= SS_UNCONNECTED
;
264 ei
->socket
.flags
= 0;
265 ei
->socket
.ops
= NULL
;
266 ei
->socket
.sk
= NULL
;
267 ei
->socket
.file
= NULL
;
269 return &ei
->vfs_inode
;
272 static void sock_destroy_inode(struct inode
*inode
)
274 struct socket_alloc
*ei
;
275 struct socket_wq
*wq
;
277 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
278 wq
= rcu_dereference_protected(ei
->socket
.wq
, 1);
280 kmem_cache_free(sock_inode_cachep
, ei
);
283 static void init_once(void *foo
)
285 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
287 inode_init_once(&ei
->vfs_inode
);
290 static int init_inodecache(void)
292 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc
),
295 (SLAB_HWCACHE_ALIGN
|
296 SLAB_RECLAIM_ACCOUNT
|
297 SLAB_MEM_SPREAD
| SLAB_ACCOUNT
),
299 if (sock_inode_cachep
== NULL
)
304 static const struct super_operations sockfs_ops
= {
305 .alloc_inode
= sock_alloc_inode
,
306 .destroy_inode
= sock_destroy_inode
,
307 .statfs
= simple_statfs
,
311 * sockfs_dname() is called from d_path().
313 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
315 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
316 d_inode(dentry
)->i_ino
);
319 static const struct dentry_operations sockfs_dentry_operations
= {
320 .d_dname
= sockfs_dname
,
323 static int sockfs_xattr_get(const struct xattr_handler
*handler
,
324 struct dentry
*dentry
, struct inode
*inode
,
325 const char *suffix
, void *value
, size_t size
)
328 if (dentry
->d_name
.len
+ 1 > size
)
330 memcpy(value
, dentry
->d_name
.name
, dentry
->d_name
.len
+ 1);
332 return dentry
->d_name
.len
+ 1;
335 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
336 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
337 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
339 static const struct xattr_handler sockfs_xattr_handler
= {
340 .name
= XATTR_NAME_SOCKPROTONAME
,
341 .get
= sockfs_xattr_get
,
344 static int sockfs_security_xattr_set(const struct xattr_handler
*handler
,
345 struct dentry
*dentry
, struct inode
*inode
,
346 const char *suffix
, const void *value
,
347 size_t size
, int flags
)
349 /* Handled by LSM. */
353 static const struct xattr_handler sockfs_security_xattr_handler
= {
354 .prefix
= XATTR_SECURITY_PREFIX
,
355 .set
= sockfs_security_xattr_set
,
358 static const struct xattr_handler
*sockfs_xattr_handlers
[] = {
359 &sockfs_xattr_handler
,
360 &sockfs_security_xattr_handler
,
364 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
365 int flags
, const char *dev_name
, void *data
)
367 return mount_pseudo_xattr(fs_type
, "socket:", &sockfs_ops
,
368 sockfs_xattr_handlers
,
369 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
372 static struct vfsmount
*sock_mnt __read_mostly
;
374 static struct file_system_type sock_fs_type
= {
376 .mount
= sockfs_mount
,
377 .kill_sb
= kill_anon_super
,
381 * Obtains the first available file descriptor and sets it up for use.
383 * These functions create file structures and maps them to fd space
384 * of the current process. On success it returns file descriptor
385 * and file struct implicitly stored in sock->file.
386 * Note that another thread may close file descriptor before we return
387 * from this function. We use the fact that now we do not refer
388 * to socket after mapping. If one day we will need it, this
389 * function will increment ref. count on file by 1.
391 * In any case returned fd MAY BE not valid!
392 * This race condition is unavoidable
393 * with shared fd spaces, we cannot solve it inside kernel,
394 * but we take care of internal coherence yet.
397 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
399 struct qstr name
= { .name
= "" };
405 name
.len
= strlen(name
.name
);
406 } else if (sock
->sk
) {
407 name
.name
= sock
->sk
->sk_prot_creator
->name
;
408 name
.len
= strlen(name
.name
);
410 path
.dentry
= d_alloc_pseudo(sock_mnt
->mnt_sb
, &name
);
411 if (unlikely(!path
.dentry
))
412 return ERR_PTR(-ENOMEM
);
413 path
.mnt
= mntget(sock_mnt
);
415 d_instantiate(path
.dentry
, SOCK_INODE(sock
));
417 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
,
420 /* drop dentry, keep inode */
421 ihold(d_inode(path
.dentry
));
427 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
428 file
->private_data
= sock
;
431 EXPORT_SYMBOL(sock_alloc_file
);
433 static int sock_map_fd(struct socket
*sock
, int flags
)
435 struct file
*newfile
;
436 int fd
= get_unused_fd_flags(flags
);
437 if (unlikely(fd
< 0))
440 newfile
= sock_alloc_file(sock
, flags
, NULL
);
441 if (likely(!IS_ERR(newfile
))) {
442 fd_install(fd
, newfile
);
447 return PTR_ERR(newfile
);
450 struct socket
*sock_from_file(struct file
*file
, int *err
)
452 if (file
->f_op
== &socket_file_ops
)
453 return file
->private_data
; /* set in sock_map_fd */
458 EXPORT_SYMBOL(sock_from_file
);
461 * sockfd_lookup - Go from a file number to its socket slot
463 * @err: pointer to an error code return
465 * The file handle passed in is locked and the socket it is bound
466 * too is returned. If an error occurs the err pointer is overwritten
467 * with a negative errno code and NULL is returned. The function checks
468 * for both invalid handles and passing a handle which is not a socket.
470 * On a success the socket object pointer is returned.
473 struct socket
*sockfd_lookup(int fd
, int *err
)
484 sock
= sock_from_file(file
, err
);
489 EXPORT_SYMBOL(sockfd_lookup
);
491 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
493 struct fd f
= fdget(fd
);
498 sock
= sock_from_file(f
.file
, err
);
500 *fput_needed
= f
.flags
;
508 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
514 len
= security_inode_listsecurity(d_inode(dentry
), buffer
, size
);
524 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
529 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
536 int sockfs_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
538 int err
= simple_setattr(dentry
, iattr
);
540 if (!err
&& (iattr
->ia_valid
& ATTR_UID
)) {
541 struct socket
*sock
= SOCKET_I(d_inode(dentry
));
543 sock
->sk
->sk_uid
= iattr
->ia_uid
;
549 static const struct inode_operations sockfs_inode_ops
= {
550 .listxattr
= sockfs_listxattr
,
551 .setattr
= sockfs_setattr
,
555 * sock_alloc - allocate a socket
557 * Allocate a new inode and socket object. The two are bound together
558 * and initialised. The socket is then returned. If we are out of inodes
562 struct socket
*sock_alloc(void)
567 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
571 sock
= SOCKET_I(inode
);
573 kmemcheck_annotate_bitfield(sock
, type
);
574 inode
->i_ino
= get_next_ino();
575 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
576 inode
->i_uid
= current_fsuid();
577 inode
->i_gid
= current_fsgid();
578 inode
->i_op
= &sockfs_inode_ops
;
580 this_cpu_add(sockets_in_use
, 1);
583 EXPORT_SYMBOL(sock_alloc
);
586 * sock_release - close a socket
587 * @sock: socket to close
589 * The socket is released from the protocol stack if it has a release
590 * callback, and the inode is then released if the socket is bound to
591 * an inode not a file.
594 void sock_release(struct socket
*sock
)
597 struct module
*owner
= sock
->ops
->owner
;
599 sock
->ops
->release(sock
);
604 if (rcu_dereference_protected(sock
->wq
, 1)->fasync_list
)
605 pr_err("%s: fasync list not empty!\n", __func__
);
607 this_cpu_sub(sockets_in_use
, 1);
609 iput(SOCK_INODE(sock
));
614 EXPORT_SYMBOL(sock_release
);
616 void __sock_tx_timestamp(__u16 tsflags
, __u8
*tx_flags
)
618 u8 flags
= *tx_flags
;
620 if (tsflags
& SOF_TIMESTAMPING_TX_HARDWARE
)
621 flags
|= SKBTX_HW_TSTAMP
;
623 if (tsflags
& SOF_TIMESTAMPING_TX_SOFTWARE
)
624 flags
|= SKBTX_SW_TSTAMP
;
626 if (tsflags
& SOF_TIMESTAMPING_TX_SCHED
)
627 flags
|= SKBTX_SCHED_TSTAMP
;
631 EXPORT_SYMBOL(__sock_tx_timestamp
);
633 static inline int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
)
635 int ret
= sock
->ops
->sendmsg(sock
, msg
, msg_data_left(msg
));
636 BUG_ON(ret
== -EIOCBQUEUED
);
640 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
)
642 int err
= security_socket_sendmsg(sock
, msg
,
645 return err
?: sock_sendmsg_nosec(sock
, msg
);
647 EXPORT_SYMBOL(sock_sendmsg
);
649 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
650 struct kvec
*vec
, size_t num
, size_t size
)
652 iov_iter_kvec(&msg
->msg_iter
, WRITE
| ITER_KVEC
, vec
, num
, size
);
653 return sock_sendmsg(sock
, msg
);
655 EXPORT_SYMBOL(kernel_sendmsg
);
658 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
660 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
663 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
664 struct scm_timestamping tss
;
666 struct skb_shared_hwtstamps
*shhwtstamps
=
669 /* Race occurred between timestamp enabling and packet
670 receiving. Fill in the current time for now. */
671 if (need_software_tstamp
&& skb
->tstamp
== 0)
672 __net_timestamp(skb
);
674 if (need_software_tstamp
) {
675 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
677 skb_get_timestamp(skb
, &tv
);
678 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
682 skb_get_timestampns(skb
, &ts
);
683 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
688 memset(&tss
, 0, sizeof(tss
));
689 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
) &&
690 ktime_to_timespec_cond(skb
->tstamp
, tss
.ts
+ 0))
693 (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
) &&
694 ktime_to_timespec_cond(shhwtstamps
->hwtstamp
, tss
.ts
+ 2))
697 put_cmsg(msg
, SOL_SOCKET
,
698 SCM_TIMESTAMPING
, sizeof(tss
), &tss
);
700 if (skb
->len
&& (sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_STATS
))
701 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_OPT_STATS
,
702 skb
->len
, skb
->data
);
705 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
707 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
712 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
714 if (!skb
->wifi_acked_valid
)
717 ack
= skb
->wifi_acked
;
719 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
721 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
723 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
726 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& SOCK_SKB_CB(skb
)->dropcount
)
727 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
728 sizeof(__u32
), &SOCK_SKB_CB(skb
)->dropcount
);
731 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
734 sock_recv_timestamp(msg
, sk
, skb
);
735 sock_recv_drops(msg
, sk
, skb
);
737 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
739 static inline int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
742 return sock
->ops
->recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
745 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
, int flags
)
747 int err
= security_socket_recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
749 return err
?: sock_recvmsg_nosec(sock
, msg
, flags
);
751 EXPORT_SYMBOL(sock_recvmsg
);
754 * kernel_recvmsg - Receive a message from a socket (kernel space)
755 * @sock: The socket to receive the message from
756 * @msg: Received message
757 * @vec: Input s/g array for message data
758 * @num: Size of input s/g array
759 * @size: Number of bytes to read
760 * @flags: Message flags (MSG_DONTWAIT, etc...)
762 * On return the msg structure contains the scatter/gather array passed in the
763 * vec argument. The array is modified so that it consists of the unfilled
764 * portion of the original array.
766 * The returned value is the total number of bytes received, or an error.
768 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
769 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
771 mm_segment_t oldfs
= get_fs();
774 iov_iter_kvec(&msg
->msg_iter
, READ
| ITER_KVEC
, vec
, num
, size
);
776 result
= sock_recvmsg(sock
, msg
, flags
);
780 EXPORT_SYMBOL(kernel_recvmsg
);
782 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
783 int offset
, size_t size
, loff_t
*ppos
, int more
)
788 sock
= file
->private_data
;
790 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
791 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
794 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
797 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
798 struct pipe_inode_info
*pipe
, size_t len
,
801 struct socket
*sock
= file
->private_data
;
803 if (unlikely(!sock
->ops
->splice_read
))
806 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
809 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
811 struct file
*file
= iocb
->ki_filp
;
812 struct socket
*sock
= file
->private_data
;
813 struct msghdr msg
= {.msg_iter
= *to
,
817 if (file
->f_flags
& O_NONBLOCK
)
818 msg
.msg_flags
= MSG_DONTWAIT
;
820 if (iocb
->ki_pos
!= 0)
823 if (!iov_iter_count(to
)) /* Match SYS5 behaviour */
826 res
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
831 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
833 struct file
*file
= iocb
->ki_filp
;
834 struct socket
*sock
= file
->private_data
;
835 struct msghdr msg
= {.msg_iter
= *from
,
839 if (iocb
->ki_pos
!= 0)
842 if (file
->f_flags
& O_NONBLOCK
)
843 msg
.msg_flags
= MSG_DONTWAIT
;
845 if (sock
->type
== SOCK_SEQPACKET
)
846 msg
.msg_flags
|= MSG_EOR
;
848 res
= sock_sendmsg(sock
, &msg
);
849 *from
= msg
.msg_iter
;
854 * Atomic setting of ioctl hooks to avoid race
855 * with module unload.
858 static DEFINE_MUTEX(br_ioctl_mutex
);
859 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
861 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
863 mutex_lock(&br_ioctl_mutex
);
864 br_ioctl_hook
= hook
;
865 mutex_unlock(&br_ioctl_mutex
);
867 EXPORT_SYMBOL(brioctl_set
);
869 static DEFINE_MUTEX(vlan_ioctl_mutex
);
870 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
872 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
874 mutex_lock(&vlan_ioctl_mutex
);
875 vlan_ioctl_hook
= hook
;
876 mutex_unlock(&vlan_ioctl_mutex
);
878 EXPORT_SYMBOL(vlan_ioctl_set
);
880 static DEFINE_MUTEX(dlci_ioctl_mutex
);
881 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
883 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
885 mutex_lock(&dlci_ioctl_mutex
);
886 dlci_ioctl_hook
= hook
;
887 mutex_unlock(&dlci_ioctl_mutex
);
889 EXPORT_SYMBOL(dlci_ioctl_set
);
891 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
892 unsigned int cmd
, unsigned long arg
)
895 void __user
*argp
= (void __user
*)arg
;
897 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
900 * If this ioctl is unknown try to hand it down
903 if (err
== -ENOIOCTLCMD
)
904 err
= dev_ioctl(net
, cmd
, argp
);
910 * With an ioctl, arg may well be a user mode pointer, but we don't know
911 * what to do with it - that's up to the protocol still.
914 static struct ns_common
*get_net_ns(struct ns_common
*ns
)
916 return &get_net(container_of(ns
, struct net
, ns
))->ns
;
919 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
923 void __user
*argp
= (void __user
*)arg
;
927 sock
= file
->private_data
;
930 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
931 err
= dev_ioctl(net
, cmd
, argp
);
933 #ifdef CONFIG_WEXT_CORE
934 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
935 err
= dev_ioctl(net
, cmd
, argp
);
942 if (get_user(pid
, (int __user
*)argp
))
944 f_setown(sock
->file
, pid
, 1);
949 err
= put_user(f_getown(sock
->file
),
958 request_module("bridge");
960 mutex_lock(&br_ioctl_mutex
);
962 err
= br_ioctl_hook(net
, cmd
, argp
);
963 mutex_unlock(&br_ioctl_mutex
);
968 if (!vlan_ioctl_hook
)
969 request_module("8021q");
971 mutex_lock(&vlan_ioctl_mutex
);
973 err
= vlan_ioctl_hook(net
, argp
);
974 mutex_unlock(&vlan_ioctl_mutex
);
979 if (!dlci_ioctl_hook
)
980 request_module("dlci");
982 mutex_lock(&dlci_ioctl_mutex
);
984 err
= dlci_ioctl_hook(cmd
, argp
);
985 mutex_unlock(&dlci_ioctl_mutex
);
989 if (!ns_capable(net
->user_ns
, CAP_NET_ADMIN
))
992 err
= open_related_ns(&net
->ns
, get_net_ns
);
995 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1001 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1004 struct socket
*sock
= NULL
;
1006 err
= security_socket_create(family
, type
, protocol
, 1);
1010 sock
= sock_alloc();
1017 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1029 EXPORT_SYMBOL(sock_create_lite
);
1031 /* No kernel lock held - perfect */
1032 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
1034 unsigned int busy_flag
= 0;
1035 struct socket
*sock
;
1038 * We can't return errors to poll, so it's either yes or no.
1040 sock
= file
->private_data
;
1042 if (sk_can_busy_loop(sock
->sk
)) {
1043 /* this socket can poll_ll so tell the system call */
1044 busy_flag
= POLL_BUSY_LOOP
;
1046 /* once, only if requested by syscall */
1047 if (wait
&& (wait
->_key
& POLL_BUSY_LOOP
))
1048 sk_busy_loop(sock
->sk
, 1);
1051 return busy_flag
| sock
->ops
->poll(file
, sock
, wait
);
1054 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1056 struct socket
*sock
= file
->private_data
;
1058 return sock
->ops
->mmap(file
, sock
, vma
);
1061 static int sock_close(struct inode
*inode
, struct file
*filp
)
1063 sock_release(SOCKET_I(inode
));
1068 * Update the socket async list
1070 * Fasync_list locking strategy.
1072 * 1. fasync_list is modified only under process context socket lock
1073 * i.e. under semaphore.
1074 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1075 * or under socket lock
1078 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1080 struct socket
*sock
= filp
->private_data
;
1081 struct sock
*sk
= sock
->sk
;
1082 struct socket_wq
*wq
;
1088 wq
= rcu_dereference_protected(sock
->wq
, lockdep_sock_is_held(sk
));
1089 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1091 if (!wq
->fasync_list
)
1092 sock_reset_flag(sk
, SOCK_FASYNC
);
1094 sock_set_flag(sk
, SOCK_FASYNC
);
1100 /* This function may be called only under rcu_lock */
1102 int sock_wake_async(struct socket_wq
*wq
, int how
, int band
)
1104 if (!wq
|| !wq
->fasync_list
)
1108 case SOCK_WAKE_WAITD
:
1109 if (test_bit(SOCKWQ_ASYNC_WAITDATA
, &wq
->flags
))
1112 case SOCK_WAKE_SPACE
:
1113 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE
, &wq
->flags
))
1118 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1121 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1126 EXPORT_SYMBOL(sock_wake_async
);
1128 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1129 struct socket
**res
, int kern
)
1132 struct socket
*sock
;
1133 const struct net_proto_family
*pf
;
1136 * Check protocol is in range
1138 if (family
< 0 || family
>= NPROTO
)
1139 return -EAFNOSUPPORT
;
1140 if (type
< 0 || type
>= SOCK_MAX
)
1145 This uglymoron is moved from INET layer to here to avoid
1146 deadlock in module load.
1148 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1149 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1154 err
= security_socket_create(family
, type
, protocol
, kern
);
1159 * Allocate the socket and allow the family to set things up. if
1160 * the protocol is 0, the family is instructed to select an appropriate
1163 sock
= sock_alloc();
1165 net_warn_ratelimited("socket: no more sockets\n");
1166 return -ENFILE
; /* Not exactly a match, but its the
1167 closest posix thing */
1172 #ifdef CONFIG_MODULES
1173 /* Attempt to load a protocol module if the find failed.
1175 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1176 * requested real, full-featured networking support upon configuration.
1177 * Otherwise module support will break!
1179 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1180 request_module("net-pf-%d", family
);
1184 pf
= rcu_dereference(net_families
[family
]);
1185 err
= -EAFNOSUPPORT
;
1190 * We will call the ->create function, that possibly is in a loadable
1191 * module, so we have to bump that loadable module refcnt first.
1193 if (!try_module_get(pf
->owner
))
1196 /* Now protected by module ref count */
1199 err
= pf
->create(net
, sock
, protocol
, kern
);
1201 goto out_module_put
;
1204 * Now to bump the refcnt of the [loadable] module that owns this
1205 * socket at sock_release time we decrement its refcnt.
1207 if (!try_module_get(sock
->ops
->owner
))
1208 goto out_module_busy
;
1211 * Now that we're done with the ->create function, the [loadable]
1212 * module can have its refcnt decremented
1214 module_put(pf
->owner
);
1215 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1217 goto out_sock_release
;
1223 err
= -EAFNOSUPPORT
;
1226 module_put(pf
->owner
);
1233 goto out_sock_release
;
1235 EXPORT_SYMBOL(__sock_create
);
1237 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1239 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1241 EXPORT_SYMBOL(sock_create
);
1243 int sock_create_kern(struct net
*net
, int family
, int type
, int protocol
, struct socket
**res
)
1245 return __sock_create(net
, family
, type
, protocol
, res
, 1);
1247 EXPORT_SYMBOL(sock_create_kern
);
1249 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1252 struct socket
*sock
;
1255 /* Check the SOCK_* constants for consistency. */
1256 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1257 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1258 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1259 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1261 flags
= type
& ~SOCK_TYPE_MASK
;
1262 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1264 type
&= SOCK_TYPE_MASK
;
1266 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1267 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1269 retval
= sock_create(family
, type
, protocol
, &sock
);
1273 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1278 /* It may be already another descriptor 8) Not kernel problem. */
1287 * Create a pair of connected sockets.
1290 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1291 int __user
*, usockvec
)
1293 struct socket
*sock1
, *sock2
;
1295 struct file
*newfile1
, *newfile2
;
1298 flags
= type
& ~SOCK_TYPE_MASK
;
1299 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1301 type
&= SOCK_TYPE_MASK
;
1303 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1304 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1307 * Obtain the first socket and check if the underlying protocol
1308 * supports the socketpair call.
1311 err
= sock_create(family
, type
, protocol
, &sock1
);
1315 err
= sock_create(family
, type
, protocol
, &sock2
);
1319 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1321 goto out_release_both
;
1323 fd1
= get_unused_fd_flags(flags
);
1324 if (unlikely(fd1
< 0)) {
1326 goto out_release_both
;
1329 fd2
= get_unused_fd_flags(flags
);
1330 if (unlikely(fd2
< 0)) {
1332 goto out_put_unused_1
;
1335 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1336 if (IS_ERR(newfile1
)) {
1337 err
= PTR_ERR(newfile1
);
1338 goto out_put_unused_both
;
1341 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1342 if (IS_ERR(newfile2
)) {
1343 err
= PTR_ERR(newfile2
);
1347 err
= put_user(fd1
, &usockvec
[0]);
1351 err
= put_user(fd2
, &usockvec
[1]);
1355 audit_fd_pair(fd1
, fd2
);
1357 fd_install(fd1
, newfile1
);
1358 fd_install(fd2
, newfile2
);
1359 /* fd1 and fd2 may be already another descriptors.
1360 * Not kernel problem.
1376 sock_release(sock2
);
1379 out_put_unused_both
:
1384 sock_release(sock2
);
1386 sock_release(sock1
);
1392 * Bind a name to a socket. Nothing much to do here since it's
1393 * the protocol's responsibility to handle the local address.
1395 * We move the socket address to kernel space before we call
1396 * the protocol layer (having also checked the address is ok).
1399 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1401 struct socket
*sock
;
1402 struct sockaddr_storage address
;
1403 int err
, fput_needed
;
1405 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1407 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1409 err
= security_socket_bind(sock
,
1410 (struct sockaddr
*)&address
,
1413 err
= sock
->ops
->bind(sock
,
1417 fput_light(sock
->file
, fput_needed
);
1423 * Perform a listen. Basically, we allow the protocol to do anything
1424 * necessary for a listen, and if that works, we mark the socket as
1425 * ready for listening.
1428 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1430 struct socket
*sock
;
1431 int err
, fput_needed
;
1434 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1436 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1437 if ((unsigned int)backlog
> somaxconn
)
1438 backlog
= somaxconn
;
1440 err
= security_socket_listen(sock
, backlog
);
1442 err
= sock
->ops
->listen(sock
, backlog
);
1444 fput_light(sock
->file
, fput_needed
);
1450 * For accept, we attempt to create a new socket, set up the link
1451 * with the client, wake up the client, then return the new
1452 * connected fd. We collect the address of the connector in kernel
1453 * space and move it to user at the very end. This is unclean because
1454 * we open the socket then return an error.
1456 * 1003.1g adds the ability to recvmsg() to query connection pending
1457 * status to recvmsg. We need to add that support in a way thats
1458 * clean when we restucture accept also.
1461 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1462 int __user
*, upeer_addrlen
, int, flags
)
1464 struct socket
*sock
, *newsock
;
1465 struct file
*newfile
;
1466 int err
, len
, newfd
, fput_needed
;
1467 struct sockaddr_storage address
;
1469 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1472 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1473 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1475 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1480 newsock
= sock_alloc();
1484 newsock
->type
= sock
->type
;
1485 newsock
->ops
= sock
->ops
;
1488 * We don't need try_module_get here, as the listening socket (sock)
1489 * has the protocol module (sock->ops->owner) held.
1491 __module_get(newsock
->ops
->owner
);
1493 newfd
= get_unused_fd_flags(flags
);
1494 if (unlikely(newfd
< 0)) {
1496 sock_release(newsock
);
1499 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1500 if (IS_ERR(newfile
)) {
1501 err
= PTR_ERR(newfile
);
1502 put_unused_fd(newfd
);
1503 sock_release(newsock
);
1507 err
= security_socket_accept(sock
, newsock
);
1511 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1515 if (upeer_sockaddr
) {
1516 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1518 err
= -ECONNABORTED
;
1521 err
= move_addr_to_user(&address
,
1522 len
, upeer_sockaddr
, upeer_addrlen
);
1527 /* File flags are not inherited via accept() unlike another OSes. */
1529 fd_install(newfd
, newfile
);
1533 fput_light(sock
->file
, fput_needed
);
1538 put_unused_fd(newfd
);
1542 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1543 int __user
*, upeer_addrlen
)
1545 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1549 * Attempt to connect to a socket with the server address. The address
1550 * is in user space so we verify it is OK and move it to kernel space.
1552 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1555 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1556 * other SEQPACKET protocols that take time to connect() as it doesn't
1557 * include the -EINPROGRESS status for such sockets.
1560 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1563 struct socket
*sock
;
1564 struct sockaddr_storage address
;
1565 int err
, fput_needed
;
1567 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1570 err
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1575 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1579 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1580 sock
->file
->f_flags
);
1582 fput_light(sock
->file
, fput_needed
);
1588 * Get the local address ('name') of a socket object. Move the obtained
1589 * name to user space.
1592 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1593 int __user
*, usockaddr_len
)
1595 struct socket
*sock
;
1596 struct sockaddr_storage address
;
1597 int len
, err
, fput_needed
;
1599 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1603 err
= security_socket_getsockname(sock
);
1607 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1610 err
= move_addr_to_user(&address
, len
, usockaddr
, usockaddr_len
);
1613 fput_light(sock
->file
, fput_needed
);
1619 * Get the remote address ('name') of a socket object. Move the obtained
1620 * name to user space.
1623 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1624 int __user
*, usockaddr_len
)
1626 struct socket
*sock
;
1627 struct sockaddr_storage address
;
1628 int len
, err
, fput_needed
;
1630 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1632 err
= security_socket_getpeername(sock
);
1634 fput_light(sock
->file
, fput_needed
);
1639 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1642 err
= move_addr_to_user(&address
, len
, usockaddr
,
1644 fput_light(sock
->file
, fput_needed
);
1650 * Send a datagram to a given address. We move the address into kernel
1651 * space and check the user space data area is readable before invoking
1655 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1656 unsigned int, flags
, struct sockaddr __user
*, addr
,
1659 struct socket
*sock
;
1660 struct sockaddr_storage address
;
1666 err
= import_single_range(WRITE
, buff
, len
, &iov
, &msg
.msg_iter
);
1669 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1673 msg
.msg_name
= NULL
;
1674 msg
.msg_control
= NULL
;
1675 msg
.msg_controllen
= 0;
1676 msg
.msg_namelen
= 0;
1678 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1681 msg
.msg_name
= (struct sockaddr
*)&address
;
1682 msg
.msg_namelen
= addr_len
;
1684 if (sock
->file
->f_flags
& O_NONBLOCK
)
1685 flags
|= MSG_DONTWAIT
;
1686 msg
.msg_flags
= flags
;
1687 err
= sock_sendmsg(sock
, &msg
);
1690 fput_light(sock
->file
, fput_needed
);
1696 * Send a datagram down a socket.
1699 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1700 unsigned int, flags
)
1702 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1706 * Receive a frame from the socket and optionally record the address of the
1707 * sender. We verify the buffers are writable and if needed move the
1708 * sender address from kernel to user space.
1711 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1712 unsigned int, flags
, struct sockaddr __user
*, addr
,
1713 int __user
*, addr_len
)
1715 struct socket
*sock
;
1718 struct sockaddr_storage address
;
1722 err
= import_single_range(READ
, ubuf
, size
, &iov
, &msg
.msg_iter
);
1725 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1729 msg
.msg_control
= NULL
;
1730 msg
.msg_controllen
= 0;
1731 /* Save some cycles and don't copy the address if not needed */
1732 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
1733 /* We assume all kernel code knows the size of sockaddr_storage */
1734 msg
.msg_namelen
= 0;
1735 msg
.msg_iocb
= NULL
;
1736 if (sock
->file
->f_flags
& O_NONBLOCK
)
1737 flags
|= MSG_DONTWAIT
;
1738 err
= sock_recvmsg(sock
, &msg
, flags
);
1740 if (err
>= 0 && addr
!= NULL
) {
1741 err2
= move_addr_to_user(&address
,
1742 msg
.msg_namelen
, addr
, addr_len
);
1747 fput_light(sock
->file
, fput_needed
);
1753 * Receive a datagram from a socket.
1756 SYSCALL_DEFINE4(recv
, int, fd
, void __user
*, ubuf
, size_t, size
,
1757 unsigned int, flags
)
1759 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1763 * Set a socket option. Because we don't know the option lengths we have
1764 * to pass the user mode parameter for the protocols to sort out.
1767 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1768 char __user
*, optval
, int, optlen
)
1770 int err
, fput_needed
;
1771 struct socket
*sock
;
1776 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1778 err
= security_socket_setsockopt(sock
, level
, optname
);
1782 if (level
== SOL_SOCKET
)
1784 sock_setsockopt(sock
, level
, optname
, optval
,
1788 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1791 fput_light(sock
->file
, fput_needed
);
1797 * Get a socket option. Because we don't know the option lengths we have
1798 * to pass a user mode parameter for the protocols to sort out.
1801 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1802 char __user
*, optval
, int __user
*, optlen
)
1804 int err
, fput_needed
;
1805 struct socket
*sock
;
1807 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1809 err
= security_socket_getsockopt(sock
, level
, optname
);
1813 if (level
== SOL_SOCKET
)
1815 sock_getsockopt(sock
, level
, optname
, optval
,
1819 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1822 fput_light(sock
->file
, fput_needed
);
1828 * Shutdown a socket.
1831 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1833 int err
, fput_needed
;
1834 struct socket
*sock
;
1836 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1838 err
= security_socket_shutdown(sock
, how
);
1840 err
= sock
->ops
->shutdown(sock
, how
);
1841 fput_light(sock
->file
, fput_needed
);
1846 /* A couple of helpful macros for getting the address of the 32/64 bit
1847 * fields which are the same type (int / unsigned) on our platforms.
1849 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1850 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1851 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1853 struct used_address
{
1854 struct sockaddr_storage name
;
1855 unsigned int name_len
;
1858 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
1859 struct user_msghdr __user
*umsg
,
1860 struct sockaddr __user
**save_addr
,
1863 struct sockaddr __user
*uaddr
;
1864 struct iovec __user
*uiov
;
1868 if (!access_ok(VERIFY_READ
, umsg
, sizeof(*umsg
)) ||
1869 __get_user(uaddr
, &umsg
->msg_name
) ||
1870 __get_user(kmsg
->msg_namelen
, &umsg
->msg_namelen
) ||
1871 __get_user(uiov
, &umsg
->msg_iov
) ||
1872 __get_user(nr_segs
, &umsg
->msg_iovlen
) ||
1873 __get_user(kmsg
->msg_control
, &umsg
->msg_control
) ||
1874 __get_user(kmsg
->msg_controllen
, &umsg
->msg_controllen
) ||
1875 __get_user(kmsg
->msg_flags
, &umsg
->msg_flags
))
1879 kmsg
->msg_namelen
= 0;
1881 if (kmsg
->msg_namelen
< 0)
1884 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
1885 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
1890 if (uaddr
&& kmsg
->msg_namelen
) {
1892 err
= move_addr_to_kernel(uaddr
, kmsg
->msg_namelen
,
1898 kmsg
->msg_name
= NULL
;
1899 kmsg
->msg_namelen
= 0;
1902 if (nr_segs
> UIO_MAXIOV
)
1905 kmsg
->msg_iocb
= NULL
;
1907 return import_iovec(save_addr
? READ
: WRITE
, uiov
, nr_segs
,
1908 UIO_FASTIOV
, iov
, &kmsg
->msg_iter
);
1911 static int ___sys_sendmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
1912 struct msghdr
*msg_sys
, unsigned int flags
,
1913 struct used_address
*used_address
,
1914 unsigned int allowed_msghdr_flags
)
1916 struct compat_msghdr __user
*msg_compat
=
1917 (struct compat_msghdr __user
*)msg
;
1918 struct sockaddr_storage address
;
1919 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1920 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1921 __aligned(sizeof(__kernel_size_t
));
1922 /* 20 is size of ipv6_pktinfo */
1923 unsigned char *ctl_buf
= ctl
;
1927 msg_sys
->msg_name
= &address
;
1929 if (MSG_CMSG_COMPAT
& flags
)
1930 err
= get_compat_msghdr(msg_sys
, msg_compat
, NULL
, &iov
);
1932 err
= copy_msghdr_from_user(msg_sys
, msg
, NULL
, &iov
);
1938 if (msg_sys
->msg_controllen
> INT_MAX
)
1940 flags
|= (msg_sys
->msg_flags
& allowed_msghdr_flags
);
1941 ctl_len
= msg_sys
->msg_controllen
;
1942 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1944 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
1948 ctl_buf
= msg_sys
->msg_control
;
1949 ctl_len
= msg_sys
->msg_controllen
;
1950 } else if (ctl_len
) {
1951 if (ctl_len
> sizeof(ctl
)) {
1952 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1953 if (ctl_buf
== NULL
)
1958 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1959 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1960 * checking falls down on this.
1962 if (copy_from_user(ctl_buf
,
1963 (void __user __force
*)msg_sys
->msg_control
,
1966 msg_sys
->msg_control
= ctl_buf
;
1968 msg_sys
->msg_flags
= flags
;
1970 if (sock
->file
->f_flags
& O_NONBLOCK
)
1971 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
1973 * If this is sendmmsg() and current destination address is same as
1974 * previously succeeded address, omit asking LSM's decision.
1975 * used_address->name_len is initialized to UINT_MAX so that the first
1976 * destination address never matches.
1978 if (used_address
&& msg_sys
->msg_name
&&
1979 used_address
->name_len
== msg_sys
->msg_namelen
&&
1980 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
1981 used_address
->name_len
)) {
1982 err
= sock_sendmsg_nosec(sock
, msg_sys
);
1985 err
= sock_sendmsg(sock
, msg_sys
);
1987 * If this is sendmmsg() and sending to current destination address was
1988 * successful, remember it.
1990 if (used_address
&& err
>= 0) {
1991 used_address
->name_len
= msg_sys
->msg_namelen
;
1992 if (msg_sys
->msg_name
)
1993 memcpy(&used_address
->name
, msg_sys
->msg_name
,
1994 used_address
->name_len
);
1999 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
2006 * BSD sendmsg interface
2009 long __sys_sendmsg(int fd
, struct user_msghdr __user
*msg
, unsigned flags
)
2011 int fput_needed
, err
;
2012 struct msghdr msg_sys
;
2013 struct socket
*sock
;
2015 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2019 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
, 0);
2021 fput_light(sock
->file
, fput_needed
);
2026 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct user_msghdr __user
*, msg
, unsigned int, flags
)
2028 if (flags
& MSG_CMSG_COMPAT
)
2030 return __sys_sendmsg(fd
, msg
, flags
);
2034 * Linux sendmmsg interface
2037 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2040 int fput_needed
, err
, datagrams
;
2041 struct socket
*sock
;
2042 struct mmsghdr __user
*entry
;
2043 struct compat_mmsghdr __user
*compat_entry
;
2044 struct msghdr msg_sys
;
2045 struct used_address used_address
;
2046 unsigned int oflags
= flags
;
2048 if (vlen
> UIO_MAXIOV
)
2053 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2057 used_address
.name_len
= UINT_MAX
;
2059 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2063 while (datagrams
< vlen
) {
2064 if (datagrams
== vlen
- 1)
2067 if (MSG_CMSG_COMPAT
& flags
) {
2068 err
= ___sys_sendmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2069 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2072 err
= __put_user(err
, &compat_entry
->msg_len
);
2075 err
= ___sys_sendmsg(sock
,
2076 (struct user_msghdr __user
*)entry
,
2077 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2080 err
= put_user(err
, &entry
->msg_len
);
2087 if (msg_data_left(&msg_sys
))
2092 fput_light(sock
->file
, fput_needed
);
2094 /* We only return an error if no datagrams were able to be sent */
2101 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2102 unsigned int, vlen
, unsigned int, flags
)
2104 if (flags
& MSG_CMSG_COMPAT
)
2106 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
);
2109 static int ___sys_recvmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2110 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2112 struct compat_msghdr __user
*msg_compat
=
2113 (struct compat_msghdr __user
*)msg
;
2114 struct iovec iovstack
[UIO_FASTIOV
];
2115 struct iovec
*iov
= iovstack
;
2116 unsigned long cmsg_ptr
;
2120 /* kernel mode address */
2121 struct sockaddr_storage addr
;
2123 /* user mode address pointers */
2124 struct sockaddr __user
*uaddr
;
2125 int __user
*uaddr_len
= COMPAT_NAMELEN(msg
);
2127 msg_sys
->msg_name
= &addr
;
2129 if (MSG_CMSG_COMPAT
& flags
)
2130 err
= get_compat_msghdr(msg_sys
, msg_compat
, &uaddr
, &iov
);
2132 err
= copy_msghdr_from_user(msg_sys
, msg
, &uaddr
, &iov
);
2136 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2137 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2139 /* We assume all kernel code knows the size of sockaddr_storage */
2140 msg_sys
->msg_namelen
= 0;
2142 if (sock
->file
->f_flags
& O_NONBLOCK
)
2143 flags
|= MSG_DONTWAIT
;
2144 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
, flags
);
2149 if (uaddr
!= NULL
) {
2150 err
= move_addr_to_user(&addr
,
2151 msg_sys
->msg_namelen
, uaddr
,
2156 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2160 if (MSG_CMSG_COMPAT
& flags
)
2161 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2162 &msg_compat
->msg_controllen
);
2164 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2165 &msg
->msg_controllen
);
2176 * BSD recvmsg interface
2179 long __sys_recvmsg(int fd
, struct user_msghdr __user
*msg
, unsigned flags
)
2181 int fput_needed
, err
;
2182 struct msghdr msg_sys
;
2183 struct socket
*sock
;
2185 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2189 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2191 fput_light(sock
->file
, fput_needed
);
2196 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct user_msghdr __user
*, msg
,
2197 unsigned int, flags
)
2199 if (flags
& MSG_CMSG_COMPAT
)
2201 return __sys_recvmsg(fd
, msg
, flags
);
2205 * Linux recvmmsg interface
2208 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2209 unsigned int flags
, struct timespec
*timeout
)
2211 int fput_needed
, err
, datagrams
;
2212 struct socket
*sock
;
2213 struct mmsghdr __user
*entry
;
2214 struct compat_mmsghdr __user
*compat_entry
;
2215 struct msghdr msg_sys
;
2216 struct timespec64 end_time
;
2217 struct timespec64 timeout64
;
2220 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2226 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2230 err
= sock_error(sock
->sk
);
2235 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2237 while (datagrams
< vlen
) {
2239 * No need to ask LSM for more than the first datagram.
2241 if (MSG_CMSG_COMPAT
& flags
) {
2242 err
= ___sys_recvmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2243 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2247 err
= __put_user(err
, &compat_entry
->msg_len
);
2250 err
= ___sys_recvmsg(sock
,
2251 (struct user_msghdr __user
*)entry
,
2252 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2256 err
= put_user(err
, &entry
->msg_len
);
2264 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2265 if (flags
& MSG_WAITFORONE
)
2266 flags
|= MSG_DONTWAIT
;
2269 ktime_get_ts64(&timeout64
);
2270 *timeout
= timespec64_to_timespec(
2271 timespec64_sub(end_time
, timeout64
));
2272 if (timeout
->tv_sec
< 0) {
2273 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2277 /* Timeout, return less than vlen datagrams */
2278 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2282 /* Out of band data, return right away */
2283 if (msg_sys
.msg_flags
& MSG_OOB
)
2291 if (datagrams
== 0) {
2297 * We may return less entries than requested (vlen) if the
2298 * sock is non block and there aren't enough datagrams...
2300 if (err
!= -EAGAIN
) {
2302 * ... or if recvmsg returns an error after we
2303 * received some datagrams, where we record the
2304 * error to return on the next call or if the
2305 * app asks about it using getsockopt(SO_ERROR).
2307 sock
->sk
->sk_err
= -err
;
2310 fput_light(sock
->file
, fput_needed
);
2315 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2316 unsigned int, vlen
, unsigned int, flags
,
2317 struct timespec __user
*, timeout
)
2320 struct timespec timeout_sys
;
2322 if (flags
& MSG_CMSG_COMPAT
)
2326 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2328 if (copy_from_user(&timeout_sys
, timeout
, sizeof(timeout_sys
)))
2331 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2333 if (datagrams
> 0 &&
2334 copy_to_user(timeout
, &timeout_sys
, sizeof(timeout_sys
)))
2335 datagrams
= -EFAULT
;
2340 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2341 /* Argument list sizes for sys_socketcall */
2342 #define AL(x) ((x) * sizeof(unsigned long))
2343 static const unsigned char nargs
[21] = {
2344 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2345 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2346 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2353 * System call vectors.
2355 * Argument checking cleaned up. Saved 20% in size.
2356 * This function doesn't need to set the kernel lock because
2357 * it is set by the callees.
2360 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2362 unsigned long a
[AUDITSC_ARGS
];
2363 unsigned long a0
, a1
;
2367 if (call
< 1 || call
> SYS_SENDMMSG
)
2371 if (len
> sizeof(a
))
2374 /* copy_from_user should be SMP safe. */
2375 if (copy_from_user(a
, args
, len
))
2378 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2387 err
= sys_socket(a0
, a1
, a
[2]);
2390 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2393 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2396 err
= sys_listen(a0
, a1
);
2399 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2400 (int __user
*)a
[2], 0);
2402 case SYS_GETSOCKNAME
:
2404 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2405 (int __user
*)a
[2]);
2407 case SYS_GETPEERNAME
:
2409 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2410 (int __user
*)a
[2]);
2412 case SYS_SOCKETPAIR
:
2413 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2416 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2419 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2420 (struct sockaddr __user
*)a
[4], a
[5]);
2423 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2426 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2427 (struct sockaddr __user
*)a
[4],
2428 (int __user
*)a
[5]);
2431 err
= sys_shutdown(a0
, a1
);
2433 case SYS_SETSOCKOPT
:
2434 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2436 case SYS_GETSOCKOPT
:
2438 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2439 (int __user
*)a
[4]);
2442 err
= sys_sendmsg(a0
, (struct user_msghdr __user
*)a1
, a
[2]);
2445 err
= sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3]);
2448 err
= sys_recvmsg(a0
, (struct user_msghdr __user
*)a1
, a
[2]);
2451 err
= sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3],
2452 (struct timespec __user
*)a
[4]);
2455 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2456 (int __user
*)a
[2], a
[3]);
2465 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2468 * sock_register - add a socket protocol handler
2469 * @ops: description of protocol
2471 * This function is called by a protocol handler that wants to
2472 * advertise its address family, and have it linked into the
2473 * socket interface. The value ops->family corresponds to the
2474 * socket system call protocol family.
2476 int sock_register(const struct net_proto_family
*ops
)
2480 if (ops
->family
>= NPROTO
) {
2481 pr_crit("protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2485 spin_lock(&net_family_lock
);
2486 if (rcu_dereference_protected(net_families
[ops
->family
],
2487 lockdep_is_held(&net_family_lock
)))
2490 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2493 spin_unlock(&net_family_lock
);
2495 pr_info("NET: Registered protocol family %d\n", ops
->family
);
2498 EXPORT_SYMBOL(sock_register
);
2501 * sock_unregister - remove a protocol handler
2502 * @family: protocol family to remove
2504 * This function is called by a protocol handler that wants to
2505 * remove its address family, and have it unlinked from the
2506 * new socket creation.
2508 * If protocol handler is a module, then it can use module reference
2509 * counts to protect against new references. If protocol handler is not
2510 * a module then it needs to provide its own protection in
2511 * the ops->create routine.
2513 void sock_unregister(int family
)
2515 BUG_ON(family
< 0 || family
>= NPROTO
);
2517 spin_lock(&net_family_lock
);
2518 RCU_INIT_POINTER(net_families
[family
], NULL
);
2519 spin_unlock(&net_family_lock
);
2523 pr_info("NET: Unregistered protocol family %d\n", family
);
2525 EXPORT_SYMBOL(sock_unregister
);
2527 static int __init
sock_init(void)
2531 * Initialize the network sysctl infrastructure.
2533 err
= net_sysctl_init();
2538 * Initialize skbuff SLAB cache
2543 * Initialize the protocols module.
2548 err
= register_filesystem(&sock_fs_type
);
2551 sock_mnt
= kern_mount(&sock_fs_type
);
2552 if (IS_ERR(sock_mnt
)) {
2553 err
= PTR_ERR(sock_mnt
);
2557 /* The real protocol initialization is performed in later initcalls.
2560 #ifdef CONFIG_NETFILTER
2561 err
= netfilter_init();
2566 ptp_classifier_init();
2572 unregister_filesystem(&sock_fs_type
);
2577 core_initcall(sock_init
); /* early initcall */
2579 #ifdef CONFIG_PROC_FS
2580 void socket_seq_show(struct seq_file
*seq
)
2585 for_each_possible_cpu(cpu
)
2586 counter
+= per_cpu(sockets_in_use
, cpu
);
2588 /* It can be negative, by the way. 8) */
2592 seq_printf(seq
, "sockets: used %d\n", counter
);
2594 #endif /* CONFIG_PROC_FS */
2596 #ifdef CONFIG_COMPAT
2597 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2598 unsigned int cmd
, void __user
*up
)
2600 mm_segment_t old_fs
= get_fs();
2605 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2608 err
= compat_put_timeval(&ktv
, up
);
2613 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2614 unsigned int cmd
, void __user
*up
)
2616 mm_segment_t old_fs
= get_fs();
2617 struct timespec kts
;
2621 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2624 err
= compat_put_timespec(&kts
, up
);
2629 static int dev_ifname32(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2631 struct ifreq __user
*uifr
;
2634 uifr
= compat_alloc_user_space(sizeof(struct ifreq
));
2635 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2638 err
= dev_ioctl(net
, SIOCGIFNAME
, uifr
);
2642 if (copy_in_user(uifr32
, uifr
, sizeof(struct compat_ifreq
)))
2648 static int dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2650 struct compat_ifconf ifc32
;
2652 struct ifconf __user
*uifc
;
2653 struct compat_ifreq __user
*ifr32
;
2654 struct ifreq __user
*ifr
;
2658 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2661 memset(&ifc
, 0, sizeof(ifc
));
2662 if (ifc32
.ifcbuf
== 0) {
2666 uifc
= compat_alloc_user_space(sizeof(struct ifconf
));
2668 size_t len
= ((ifc32
.ifc_len
/ sizeof(struct compat_ifreq
)) + 1) *
2669 sizeof(struct ifreq
);
2670 uifc
= compat_alloc_user_space(sizeof(struct ifconf
) + len
);
2672 ifr
= ifc
.ifc_req
= (void __user
*)(uifc
+ 1);
2673 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2674 for (i
= 0; i
< ifc32
.ifc_len
; i
+= sizeof(struct compat_ifreq
)) {
2675 if (copy_in_user(ifr
, ifr32
, sizeof(struct compat_ifreq
)))
2681 if (copy_to_user(uifc
, &ifc
, sizeof(struct ifconf
)))
2684 err
= dev_ioctl(net
, SIOCGIFCONF
, uifc
);
2688 if (copy_from_user(&ifc
, uifc
, sizeof(struct ifconf
)))
2692 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2694 i
+ sizeof(struct compat_ifreq
) <= ifc32
.ifc_len
&& j
< ifc
.ifc_len
;
2695 i
+= sizeof(struct compat_ifreq
), j
+= sizeof(struct ifreq
)) {
2696 if (copy_in_user(ifr32
, ifr
, sizeof(struct compat_ifreq
)))
2702 if (ifc32
.ifcbuf
== 0) {
2703 /* Translate from 64-bit structure multiple to
2707 i
= ((i
/ sizeof(struct ifreq
)) * sizeof(struct compat_ifreq
));
2712 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2718 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2720 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2721 bool convert_in
= false, convert_out
= false;
2722 size_t buf_size
= ALIGN(sizeof(struct ifreq
), 8);
2723 struct ethtool_rxnfc __user
*rxnfc
;
2724 struct ifreq __user
*ifr
;
2725 u32 rule_cnt
= 0, actual_rule_cnt
;
2730 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2733 compat_rxnfc
= compat_ptr(data
);
2735 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2738 /* Most ethtool structures are defined without padding.
2739 * Unfortunately struct ethtool_rxnfc is an exception.
2744 case ETHTOOL_GRXCLSRLALL
:
2745 /* Buffer size is variable */
2746 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2748 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2750 buf_size
+= rule_cnt
* sizeof(u32
);
2752 case ETHTOOL_GRXRINGS
:
2753 case ETHTOOL_GRXCLSRLCNT
:
2754 case ETHTOOL_GRXCLSRULE
:
2755 case ETHTOOL_SRXCLSRLINS
:
2758 case ETHTOOL_SRXCLSRLDEL
:
2759 buf_size
+= sizeof(struct ethtool_rxnfc
);
2764 ifr
= compat_alloc_user_space(buf_size
);
2765 rxnfc
= (void __user
*)ifr
+ ALIGN(sizeof(struct ifreq
), 8);
2767 if (copy_in_user(&ifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2770 if (put_user(convert_in
? rxnfc
: compat_ptr(data
),
2771 &ifr
->ifr_ifru
.ifru_data
))
2775 /* We expect there to be holes between fs.m_ext and
2776 * fs.ring_cookie and at the end of fs, but nowhere else.
2778 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2779 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2780 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2781 sizeof(rxnfc
->fs
.m_ext
));
2783 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2784 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2785 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2786 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2788 if (copy_in_user(rxnfc
, compat_rxnfc
,
2789 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2790 (void __user
*)rxnfc
) ||
2791 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2792 &compat_rxnfc
->fs
.ring_cookie
,
2793 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
2794 (void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2795 copy_in_user(&rxnfc
->rule_cnt
, &compat_rxnfc
->rule_cnt
,
2796 sizeof(rxnfc
->rule_cnt
)))
2800 ret
= dev_ioctl(net
, SIOCETHTOOL
, ifr
);
2805 if (copy_in_user(compat_rxnfc
, rxnfc
,
2806 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2807 (const void __user
*)rxnfc
) ||
2808 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2809 &rxnfc
->fs
.ring_cookie
,
2810 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
2811 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2812 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2813 sizeof(rxnfc
->rule_cnt
)))
2816 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2817 /* As an optimisation, we only copy the actual
2818 * number of rules that the underlying
2819 * function returned. Since Mallory might
2820 * change the rule count in user memory, we
2821 * check that it is less than the rule count
2822 * originally given (as the user buffer size),
2823 * which has been range-checked.
2825 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2827 if (actual_rule_cnt
< rule_cnt
)
2828 rule_cnt
= actual_rule_cnt
;
2829 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2830 &rxnfc
->rule_locs
[0],
2831 rule_cnt
* sizeof(u32
)))
2839 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2842 compat_uptr_t uptr32
;
2843 struct ifreq __user
*uifr
;
2845 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2846 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2849 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2852 uptr
= compat_ptr(uptr32
);
2854 if (put_user(uptr
, &uifr
->ifr_settings
.ifs_ifsu
.raw_hdlc
))
2857 return dev_ioctl(net
, SIOCWANDEV
, uifr
);
2860 static int bond_ioctl(struct net
*net
, unsigned int cmd
,
2861 struct compat_ifreq __user
*ifr32
)
2864 mm_segment_t old_fs
;
2868 case SIOCBONDENSLAVE
:
2869 case SIOCBONDRELEASE
:
2870 case SIOCBONDSETHWADDR
:
2871 case SIOCBONDCHANGEACTIVE
:
2872 if (copy_from_user(&kifr
, ifr32
, sizeof(struct compat_ifreq
)))
2877 err
= dev_ioctl(net
, cmd
,
2878 (struct ifreq __user __force
*) &kifr
);
2883 return -ENOIOCTLCMD
;
2887 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2888 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
2889 struct compat_ifreq __user
*u_ifreq32
)
2891 struct ifreq __user
*u_ifreq64
;
2892 char tmp_buf
[IFNAMSIZ
];
2893 void __user
*data64
;
2896 if (copy_from_user(&tmp_buf
[0], &(u_ifreq32
->ifr_ifrn
.ifrn_name
[0]),
2899 if (get_user(data32
, &u_ifreq32
->ifr_ifru
.ifru_data
))
2901 data64
= compat_ptr(data32
);
2903 u_ifreq64
= compat_alloc_user_space(sizeof(*u_ifreq64
));
2905 if (copy_to_user(&u_ifreq64
->ifr_ifrn
.ifrn_name
[0], &tmp_buf
[0],
2908 if (put_user(data64
, &u_ifreq64
->ifr_ifru
.ifru_data
))
2911 return dev_ioctl(net
, cmd
, u_ifreq64
);
2914 static int dev_ifsioc(struct net
*net
, struct socket
*sock
,
2915 unsigned int cmd
, struct compat_ifreq __user
*uifr32
)
2917 struct ifreq __user
*uifr
;
2920 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2921 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
2924 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
2935 case SIOCGIFBRDADDR
:
2936 case SIOCGIFDSTADDR
:
2937 case SIOCGIFNETMASK
:
2942 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
2950 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
2951 struct compat_ifreq __user
*uifr32
)
2954 struct compat_ifmap __user
*uifmap32
;
2955 mm_segment_t old_fs
;
2958 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
2959 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
2960 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2961 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2962 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2963 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2964 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2965 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
2971 err
= dev_ioctl(net
, cmd
, (void __user __force
*)&ifr
);
2974 if (cmd
== SIOCGIFMAP
&& !err
) {
2975 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
2976 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2977 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2978 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2979 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2980 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2981 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
2990 struct sockaddr rt_dst
; /* target address */
2991 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
2992 struct sockaddr rt_genmask
; /* target network mask (IP) */
2993 unsigned short rt_flags
;
2996 unsigned char rt_tos
;
2997 unsigned char rt_class
;
2999 short rt_metric
; /* +1 for binary compatibility! */
3000 /* char * */ u32 rt_dev
; /* forcing the device at add */
3001 u32 rt_mtu
; /* per route MTU/Window */
3002 u32 rt_window
; /* Window clamping */
3003 unsigned short rt_irtt
; /* Initial RTT */
3006 struct in6_rtmsg32
{
3007 struct in6_addr rtmsg_dst
;
3008 struct in6_addr rtmsg_src
;
3009 struct in6_addr rtmsg_gateway
;
3019 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3020 unsigned int cmd
, void __user
*argp
)
3024 struct in6_rtmsg r6
;
3028 mm_segment_t old_fs
= get_fs();
3030 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3031 struct in6_rtmsg32 __user
*ur6
= argp
;
3032 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3033 3 * sizeof(struct in6_addr
));
3034 ret
|= get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3035 ret
|= get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3036 ret
|= get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3037 ret
|= get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3038 ret
|= get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3039 ret
|= get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3040 ret
|= get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3044 struct rtentry32 __user
*ur4
= argp
;
3045 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3046 3 * sizeof(struct sockaddr
));
3047 ret
|= get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3048 ret
|= get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3049 ret
|= get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3050 ret
|= get_user(r4
.rt_window
, &(ur4
->rt_window
));
3051 ret
|= get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3052 ret
|= get_user(rtdev
, &(ur4
->rt_dev
));
3054 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3055 r4
.rt_dev
= (char __user __force
*)devname
;
3069 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3076 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3077 * for some operations; this forces use of the newer bridge-utils that
3078 * use compatible ioctls
3080 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3084 if (get_user(tmp
, argp
))
3086 if (tmp
== BRCTL_GET_VERSION
)
3087 return BRCTL_VERSION
+ 1;
3091 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3092 unsigned int cmd
, unsigned long arg
)
3094 void __user
*argp
= compat_ptr(arg
);
3095 struct sock
*sk
= sock
->sk
;
3096 struct net
*net
= sock_net(sk
);
3098 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3099 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3104 return old_bridge_ioctl(argp
);
3106 return dev_ifname32(net
, argp
);
3108 return dev_ifconf(net
, argp
);
3110 return ethtool_ioctl(net
, argp
);
3112 return compat_siocwandev(net
, argp
);
3115 return compat_sioc_ifmap(net
, cmd
, argp
);
3116 case SIOCBONDENSLAVE
:
3117 case SIOCBONDRELEASE
:
3118 case SIOCBONDSETHWADDR
:
3119 case SIOCBONDCHANGEACTIVE
:
3120 return bond_ioctl(net
, cmd
, argp
);
3123 return routing_ioctl(net
, sock
, cmd
, argp
);
3125 return do_siocgstamp(net
, sock
, cmd
, argp
);
3127 return do_siocgstampns(net
, sock
, cmd
, argp
);
3128 case SIOCBONDSLAVEINFOQUERY
:
3129 case SIOCBONDINFOQUERY
:
3132 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3145 return sock_ioctl(file
, cmd
, arg
);
3162 case SIOCSIFHWBROADCAST
:
3164 case SIOCGIFBRDADDR
:
3165 case SIOCSIFBRDADDR
:
3166 case SIOCGIFDSTADDR
:
3167 case SIOCSIFDSTADDR
:
3168 case SIOCGIFNETMASK
:
3169 case SIOCSIFNETMASK
:
3180 return dev_ifsioc(net
, sock
, cmd
, argp
);
3186 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3189 return -ENOIOCTLCMD
;
3192 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3195 struct socket
*sock
= file
->private_data
;
3196 int ret
= -ENOIOCTLCMD
;
3203 if (sock
->ops
->compat_ioctl
)
3204 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3206 if (ret
== -ENOIOCTLCMD
&&
3207 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3208 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3210 if (ret
== -ENOIOCTLCMD
)
3211 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3217 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3219 return sock
->ops
->bind(sock
, addr
, addrlen
);
3221 EXPORT_SYMBOL(kernel_bind
);
3223 int kernel_listen(struct socket
*sock
, int backlog
)
3225 return sock
->ops
->listen(sock
, backlog
);
3227 EXPORT_SYMBOL(kernel_listen
);
3229 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3231 struct sock
*sk
= sock
->sk
;
3234 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3239 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
3241 sock_release(*newsock
);
3246 (*newsock
)->ops
= sock
->ops
;
3247 __module_get((*newsock
)->ops
->owner
);
3252 EXPORT_SYMBOL(kernel_accept
);
3254 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3257 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3259 EXPORT_SYMBOL(kernel_connect
);
3261 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
3264 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
3266 EXPORT_SYMBOL(kernel_getsockname
);
3268 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
3271 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
3273 EXPORT_SYMBOL(kernel_getpeername
);
3275 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3276 char *optval
, int *optlen
)
3278 mm_segment_t oldfs
= get_fs();
3279 char __user
*uoptval
;
3280 int __user
*uoptlen
;
3283 uoptval
= (char __user __force
*) optval
;
3284 uoptlen
= (int __user __force
*) optlen
;
3287 if (level
== SOL_SOCKET
)
3288 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3290 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3295 EXPORT_SYMBOL(kernel_getsockopt
);
3297 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3298 char *optval
, unsigned int optlen
)
3300 mm_segment_t oldfs
= get_fs();
3301 char __user
*uoptval
;
3304 uoptval
= (char __user __force
*) optval
;
3307 if (level
== SOL_SOCKET
)
3308 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3310 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3315 EXPORT_SYMBOL(kernel_setsockopt
);
3317 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3318 size_t size
, int flags
)
3320 if (sock
->ops
->sendpage
)
3321 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3323 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3325 EXPORT_SYMBOL(kernel_sendpage
);
3327 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
3329 mm_segment_t oldfs
= get_fs();
3333 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
3338 EXPORT_SYMBOL(kernel_sock_ioctl
);
3340 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3342 return sock
->ops
->shutdown(sock
, how
);
3344 EXPORT_SYMBOL(kernel_sock_shutdown
);