2 * This contains encryption functions for per-file encryption.
4 * Copyright (C) 2015, Google, Inc.
5 * Copyright (C) 2015, Motorola Mobility
7 * Written by Michael Halcrow, 2014.
9 * Filename encryption additions
10 * Uday Savagaonkar, 2014
11 * Encryption policy handling additions
12 * Ildar Muslukhov, 2014
13 * Add fscrypt_pullback_bio_page()
16 * This has not yet undergone a rigorous security audit.
18 * The usage of AES-XTS should conform to recommendations in NIST
19 * Special Publication 800-38E and IEEE P1619/D16.
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/dcache.h>
28 #include <linux/namei.h>
29 #include <crypto/aes.h>
30 #include "fscrypt_private.h"
32 static unsigned int num_prealloc_crypto_pages
= 32;
33 static unsigned int num_prealloc_crypto_ctxs
= 128;
35 module_param(num_prealloc_crypto_pages
, uint
, 0444);
36 MODULE_PARM_DESC(num_prealloc_crypto_pages
,
37 "Number of crypto pages to preallocate");
38 module_param(num_prealloc_crypto_ctxs
, uint
, 0444);
39 MODULE_PARM_DESC(num_prealloc_crypto_ctxs
,
40 "Number of crypto contexts to preallocate");
42 static mempool_t
*fscrypt_bounce_page_pool
= NULL
;
44 static LIST_HEAD(fscrypt_free_ctxs
);
45 static DEFINE_SPINLOCK(fscrypt_ctx_lock
);
47 struct workqueue_struct
*fscrypt_read_workqueue
;
48 static DEFINE_MUTEX(fscrypt_init_mutex
);
50 static struct kmem_cache
*fscrypt_ctx_cachep
;
51 struct kmem_cache
*fscrypt_info_cachep
;
54 * fscrypt_release_ctx() - Releases an encryption context
55 * @ctx: The encryption context to release.
57 * If the encryption context was allocated from the pre-allocated pool, returns
58 * it to that pool. Else, frees it.
60 * If there's a bounce page in the context, this frees that.
62 void fscrypt_release_ctx(struct fscrypt_ctx
*ctx
)
66 if (ctx
->flags
& FS_CTX_HAS_BOUNCE_BUFFER_FL
&& ctx
->w
.bounce_page
) {
67 mempool_free(ctx
->w
.bounce_page
, fscrypt_bounce_page_pool
);
68 ctx
->w
.bounce_page
= NULL
;
70 ctx
->w
.control_page
= NULL
;
71 if (ctx
->flags
& FS_CTX_REQUIRES_FREE_ENCRYPT_FL
) {
72 kmem_cache_free(fscrypt_ctx_cachep
, ctx
);
74 spin_lock_irqsave(&fscrypt_ctx_lock
, flags
);
75 list_add(&ctx
->free_list
, &fscrypt_free_ctxs
);
76 spin_unlock_irqrestore(&fscrypt_ctx_lock
, flags
);
79 EXPORT_SYMBOL(fscrypt_release_ctx
);
82 * fscrypt_get_ctx() - Gets an encryption context
83 * @inode: The inode for which we are doing the crypto
84 * @gfp_flags: The gfp flag for memory allocation
86 * Allocates and initializes an encryption context.
88 * Return: An allocated and initialized encryption context on success; error
89 * value or NULL otherwise.
91 struct fscrypt_ctx
*fscrypt_get_ctx(const struct inode
*inode
, gfp_t gfp_flags
)
93 struct fscrypt_ctx
*ctx
= NULL
;
94 struct fscrypt_info
*ci
= inode
->i_crypt_info
;
98 return ERR_PTR(-ENOKEY
);
101 * We first try getting the ctx from a free list because in
102 * the common case the ctx will have an allocated and
103 * initialized crypto tfm, so it's probably a worthwhile
104 * optimization. For the bounce page, we first try getting it
105 * from the kernel allocator because that's just about as fast
106 * as getting it from a list and because a cache of free pages
107 * should generally be a "last resort" option for a filesystem
108 * to be able to do its job.
110 spin_lock_irqsave(&fscrypt_ctx_lock
, flags
);
111 ctx
= list_first_entry_or_null(&fscrypt_free_ctxs
,
112 struct fscrypt_ctx
, free_list
);
114 list_del(&ctx
->free_list
);
115 spin_unlock_irqrestore(&fscrypt_ctx_lock
, flags
);
117 ctx
= kmem_cache_zalloc(fscrypt_ctx_cachep
, gfp_flags
);
119 return ERR_PTR(-ENOMEM
);
120 ctx
->flags
|= FS_CTX_REQUIRES_FREE_ENCRYPT_FL
;
122 ctx
->flags
&= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL
;
124 ctx
->flags
&= ~FS_CTX_HAS_BOUNCE_BUFFER_FL
;
127 EXPORT_SYMBOL(fscrypt_get_ctx
);
130 * page_crypt_complete() - completion callback for page crypto
131 * @req: The asynchronous cipher request context
132 * @res: The result of the cipher operation
134 static void page_crypt_complete(struct crypto_async_request
*req
, int res
)
136 struct fscrypt_completion_result
*ecr
= req
->data
;
138 if (res
== -EINPROGRESS
)
141 complete(&ecr
->completion
);
144 int fscrypt_do_page_crypto(const struct inode
*inode
, fscrypt_direction_t rw
,
145 u64 lblk_num
, struct page
*src_page
,
146 struct page
*dest_page
, unsigned int len
,
147 unsigned int offs
, gfp_t gfp_flags
)
151 u8 padding
[FS_IV_SIZE
- sizeof(__le64
)];
153 struct skcipher_request
*req
= NULL
;
154 DECLARE_FS_COMPLETION_RESULT(ecr
);
155 struct scatterlist dst
, src
;
156 struct fscrypt_info
*ci
= inode
->i_crypt_info
;
157 struct crypto_skcipher
*tfm
= ci
->ci_ctfm
;
162 BUILD_BUG_ON(sizeof(iv
) != FS_IV_SIZE
);
163 BUILD_BUG_ON(AES_BLOCK_SIZE
!= FS_IV_SIZE
);
164 iv
.index
= cpu_to_le64(lblk_num
);
165 memset(iv
.padding
, 0, sizeof(iv
.padding
));
167 if (ci
->ci_essiv_tfm
!= NULL
) {
168 crypto_cipher_encrypt_one(ci
->ci_essiv_tfm
, (u8
*)&iv
,
172 req
= skcipher_request_alloc(tfm
, gfp_flags
);
174 printk_ratelimited(KERN_ERR
175 "%s: crypto_request_alloc() failed\n",
180 skcipher_request_set_callback(
181 req
, CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
182 page_crypt_complete
, &ecr
);
184 sg_init_table(&dst
, 1);
185 sg_set_page(&dst
, dest_page
, len
, offs
);
186 sg_init_table(&src
, 1);
187 sg_set_page(&src
, src_page
, len
, offs
);
188 skcipher_request_set_crypt(req
, &src
, &dst
, len
, &iv
);
189 if (rw
== FS_DECRYPT
)
190 res
= crypto_skcipher_decrypt(req
);
192 res
= crypto_skcipher_encrypt(req
);
193 if (res
== -EINPROGRESS
|| res
== -EBUSY
) {
194 BUG_ON(req
->base
.data
!= &ecr
);
195 wait_for_completion(&ecr
.completion
);
198 skcipher_request_free(req
);
200 printk_ratelimited(KERN_ERR
201 "%s: crypto_skcipher_encrypt() returned %d\n",
208 struct page
*fscrypt_alloc_bounce_page(struct fscrypt_ctx
*ctx
,
211 ctx
->w
.bounce_page
= mempool_alloc(fscrypt_bounce_page_pool
, gfp_flags
);
212 if (ctx
->w
.bounce_page
== NULL
)
213 return ERR_PTR(-ENOMEM
);
214 ctx
->flags
|= FS_CTX_HAS_BOUNCE_BUFFER_FL
;
215 return ctx
->w
.bounce_page
;
219 * fscypt_encrypt_page() - Encrypts a page
220 * @inode: The inode for which the encryption should take place
221 * @page: The page to encrypt. Must be locked for bounce-page
223 * @len: Length of data to encrypt in @page and encrypted
224 * data in returned page.
225 * @offs: Offset of data within @page and returned
226 * page holding encrypted data.
227 * @lblk_num: Logical block number. This must be unique for multiple
228 * calls with same inode, except when overwriting
229 * previously written data.
230 * @gfp_flags: The gfp flag for memory allocation
232 * Encrypts @page using the ctx encryption context. Performs encryption
233 * either in-place or into a newly allocated bounce page.
234 * Called on the page write path.
236 * Bounce page allocation is the default.
237 * In this case, the contents of @page are encrypted and stored in an
238 * allocated bounce page. @page has to be locked and the caller must call
239 * fscrypt_restore_control_page() on the returned ciphertext page to
240 * release the bounce buffer and the encryption context.
242 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
243 * fscrypt_operations. Here, the input-page is returned with its content
246 * Return: A page with the encrypted content on success. Else, an
247 * error value or NULL.
249 struct page
*fscrypt_encrypt_page(const struct inode
*inode
,
253 u64 lblk_num
, gfp_t gfp_flags
)
256 struct fscrypt_ctx
*ctx
;
257 struct page
*ciphertext_page
= page
;
260 BUG_ON(len
% FS_CRYPTO_BLOCK_SIZE
!= 0);
262 if (inode
->i_sb
->s_cop
->flags
& FS_CFLG_OWN_PAGES
) {
263 /* with inplace-encryption we just encrypt the page */
264 err
= fscrypt_do_page_crypto(inode
, FS_ENCRYPT
, lblk_num
, page
,
265 ciphertext_page
, len
, offs
,
270 return ciphertext_page
;
273 BUG_ON(!PageLocked(page
));
275 ctx
= fscrypt_get_ctx(inode
, gfp_flags
);
277 return (struct page
*)ctx
;
279 /* The encryption operation will require a bounce page. */
280 ciphertext_page
= fscrypt_alloc_bounce_page(ctx
, gfp_flags
);
281 if (IS_ERR(ciphertext_page
))
284 ctx
->w
.control_page
= page
;
285 err
= fscrypt_do_page_crypto(inode
, FS_ENCRYPT
, lblk_num
,
286 page
, ciphertext_page
, len
, offs
,
289 ciphertext_page
= ERR_PTR(err
);
292 SetPagePrivate(ciphertext_page
);
293 set_page_private(ciphertext_page
, (unsigned long)ctx
);
294 lock_page(ciphertext_page
);
295 return ciphertext_page
;
298 fscrypt_release_ctx(ctx
);
299 return ciphertext_page
;
301 EXPORT_SYMBOL(fscrypt_encrypt_page
);
304 * fscrypt_decrypt_page() - Decrypts a page in-place
305 * @inode: The corresponding inode for the page to decrypt.
306 * @page: The page to decrypt. Must be locked in case
307 * it is a writeback page (FS_CFLG_OWN_PAGES unset).
308 * @len: Number of bytes in @page to be decrypted.
309 * @offs: Start of data in @page.
310 * @lblk_num: Logical block number.
312 * Decrypts page in-place using the ctx encryption context.
314 * Called from the read completion callback.
316 * Return: Zero on success, non-zero otherwise.
318 int fscrypt_decrypt_page(const struct inode
*inode
, struct page
*page
,
319 unsigned int len
, unsigned int offs
, u64 lblk_num
)
321 if (!(inode
->i_sb
->s_cop
->flags
& FS_CFLG_OWN_PAGES
))
322 BUG_ON(!PageLocked(page
));
324 return fscrypt_do_page_crypto(inode
, FS_DECRYPT
, lblk_num
, page
, page
,
325 len
, offs
, GFP_NOFS
);
327 EXPORT_SYMBOL(fscrypt_decrypt_page
);
330 * Validate dentries for encrypted directories to make sure we aren't
331 * potentially caching stale data after a key has been added or
334 static int fscrypt_d_revalidate(struct dentry
*dentry
, unsigned int flags
)
337 int dir_has_key
, cached_with_key
;
339 if (flags
& LOOKUP_RCU
)
342 dir
= dget_parent(dentry
);
343 if (!d_inode(dir
)->i_sb
->s_cop
->is_encrypted(d_inode(dir
))) {
348 /* this should eventually be an flag in d_flags */
349 spin_lock(&dentry
->d_lock
);
350 cached_with_key
= dentry
->d_flags
& DCACHE_ENCRYPTED_WITH_KEY
;
351 spin_unlock(&dentry
->d_lock
);
352 dir_has_key
= (d_inode(dir
)->i_crypt_info
!= NULL
);
356 * If the dentry was cached without the key, and it is a
357 * negative dentry, it might be a valid name. We can't check
358 * if the key has since been made available due to locking
359 * reasons, so we fail the validation so ext4_lookup() can do
362 * We also fail the validation if the dentry was created with
363 * the key present, but we no longer have the key, or vice versa.
365 if ((!cached_with_key
&& d_is_negative(dentry
)) ||
366 (!cached_with_key
&& dir_has_key
) ||
367 (cached_with_key
&& !dir_has_key
))
372 const struct dentry_operations fscrypt_d_ops
= {
373 .d_revalidate
= fscrypt_d_revalidate
,
375 EXPORT_SYMBOL(fscrypt_d_ops
);
377 void fscrypt_restore_control_page(struct page
*page
)
379 struct fscrypt_ctx
*ctx
;
381 ctx
= (struct fscrypt_ctx
*)page_private(page
);
382 set_page_private(page
, (unsigned long)NULL
);
383 ClearPagePrivate(page
);
385 fscrypt_release_ctx(ctx
);
387 EXPORT_SYMBOL(fscrypt_restore_control_page
);
389 static void fscrypt_destroy(void)
391 struct fscrypt_ctx
*pos
, *n
;
393 list_for_each_entry_safe(pos
, n
, &fscrypt_free_ctxs
, free_list
)
394 kmem_cache_free(fscrypt_ctx_cachep
, pos
);
395 INIT_LIST_HEAD(&fscrypt_free_ctxs
);
396 mempool_destroy(fscrypt_bounce_page_pool
);
397 fscrypt_bounce_page_pool
= NULL
;
401 * fscrypt_initialize() - allocate major buffers for fs encryption.
402 * @cop_flags: fscrypt operations flags
404 * We only call this when we start accessing encrypted files, since it
405 * results in memory getting allocated that wouldn't otherwise be used.
407 * Return: Zero on success, non-zero otherwise.
409 int fscrypt_initialize(unsigned int cop_flags
)
411 int i
, res
= -ENOMEM
;
414 * No need to allocate a bounce page pool if there already is one or
415 * this FS won't use it.
417 if (cop_flags
& FS_CFLG_OWN_PAGES
|| fscrypt_bounce_page_pool
)
420 mutex_lock(&fscrypt_init_mutex
);
421 if (fscrypt_bounce_page_pool
)
422 goto already_initialized
;
424 for (i
= 0; i
< num_prealloc_crypto_ctxs
; i
++) {
425 struct fscrypt_ctx
*ctx
;
427 ctx
= kmem_cache_zalloc(fscrypt_ctx_cachep
, GFP_NOFS
);
430 list_add(&ctx
->free_list
, &fscrypt_free_ctxs
);
433 fscrypt_bounce_page_pool
=
434 mempool_create_page_pool(num_prealloc_crypto_pages
, 0);
435 if (!fscrypt_bounce_page_pool
)
439 mutex_unlock(&fscrypt_init_mutex
);
443 mutex_unlock(&fscrypt_init_mutex
);
448 * fscrypt_init() - Set up for fs encryption.
450 static int __init
fscrypt_init(void)
452 fscrypt_read_workqueue
= alloc_workqueue("fscrypt_read_queue",
454 if (!fscrypt_read_workqueue
)
457 fscrypt_ctx_cachep
= KMEM_CACHE(fscrypt_ctx
, SLAB_RECLAIM_ACCOUNT
);
458 if (!fscrypt_ctx_cachep
)
459 goto fail_free_queue
;
461 fscrypt_info_cachep
= KMEM_CACHE(fscrypt_info
, SLAB_RECLAIM_ACCOUNT
);
462 if (!fscrypt_info_cachep
)
468 kmem_cache_destroy(fscrypt_ctx_cachep
);
470 destroy_workqueue(fscrypt_read_workqueue
);
474 module_init(fscrypt_init
)
477 * fscrypt_exit() - Shutdown the fs encryption system
479 static void __exit
fscrypt_exit(void)
483 if (fscrypt_read_workqueue
)
484 destroy_workqueue(fscrypt_read_workqueue
);
485 kmem_cache_destroy(fscrypt_ctx_cachep
);
486 kmem_cache_destroy(fscrypt_info_cachep
);
488 fscrypt_essiv_cleanup();
490 module_exit(fscrypt_exit
);
492 MODULE_LICENSE("GPL");