cdc_ncm: fix divide-by-zero caused by invalid wMaxPacketSize
[linux/fpc-iii.git] / kernel / kprobes.c
blob1b66ccbb744a6a991dbaa8670f0bf26ff826837a
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Kernel Probes (KProbes)
4 * kernel/kprobes.c
6 * Copyright (C) IBM Corporation, 2002, 2004
8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9 * Probes initial implementation (includes suggestions from
10 * Rusty Russell).
11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12 * hlists and exceptions notifier as suggested by Andi Kleen.
13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14 * interface to access function arguments.
15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16 * exceptions notifier to be first on the priority list.
17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19 * <prasanna@in.ibm.com> added function-return probes.
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
39 #include <asm/sections.h>
40 #include <asm/cacheflush.h>
41 #include <asm/errno.h>
42 #include <linux/uaccess.h>
44 #define KPROBE_HASH_BITS 6
45 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
48 static int kprobes_initialized;
49 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
50 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
52 /* NOTE: change this value only with kprobe_mutex held */
53 static bool kprobes_all_disarmed;
55 /* This protects kprobe_table and optimizing_list */
56 static DEFINE_MUTEX(kprobe_mutex);
57 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
58 static struct {
59 raw_spinlock_t lock ____cacheline_aligned_in_smp;
60 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
62 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
63 unsigned int __unused)
65 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
68 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
70 return &(kretprobe_table_locks[hash].lock);
73 /* Blacklist -- list of struct kprobe_blacklist_entry */
74 static LIST_HEAD(kprobe_blacklist);
76 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
78 * kprobe->ainsn.insn points to the copy of the instruction to be
79 * single-stepped. x86_64, POWER4 and above have no-exec support and
80 * stepping on the instruction on a vmalloced/kmalloced/data page
81 * is a recipe for disaster
83 struct kprobe_insn_page {
84 struct list_head list;
85 kprobe_opcode_t *insns; /* Page of instruction slots */
86 struct kprobe_insn_cache *cache;
87 int nused;
88 int ngarbage;
89 char slot_used[];
92 #define KPROBE_INSN_PAGE_SIZE(slots) \
93 (offsetof(struct kprobe_insn_page, slot_used) + \
94 (sizeof(char) * (slots)))
96 static int slots_per_page(struct kprobe_insn_cache *c)
98 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
101 enum kprobe_slot_state {
102 SLOT_CLEAN = 0,
103 SLOT_DIRTY = 1,
104 SLOT_USED = 2,
107 void __weak *alloc_insn_page(void)
109 return module_alloc(PAGE_SIZE);
112 void __weak free_insn_page(void *page)
114 module_memfree(page);
117 struct kprobe_insn_cache kprobe_insn_slots = {
118 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
119 .alloc = alloc_insn_page,
120 .free = free_insn_page,
121 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
122 .insn_size = MAX_INSN_SIZE,
123 .nr_garbage = 0,
125 static int collect_garbage_slots(struct kprobe_insn_cache *c);
128 * __get_insn_slot() - Find a slot on an executable page for an instruction.
129 * We allocate an executable page if there's no room on existing ones.
131 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
133 struct kprobe_insn_page *kip;
134 kprobe_opcode_t *slot = NULL;
136 /* Since the slot array is not protected by rcu, we need a mutex */
137 mutex_lock(&c->mutex);
138 retry:
139 rcu_read_lock();
140 list_for_each_entry_rcu(kip, &c->pages, list) {
141 if (kip->nused < slots_per_page(c)) {
142 int i;
143 for (i = 0; i < slots_per_page(c); i++) {
144 if (kip->slot_used[i] == SLOT_CLEAN) {
145 kip->slot_used[i] = SLOT_USED;
146 kip->nused++;
147 slot = kip->insns + (i * c->insn_size);
148 rcu_read_unlock();
149 goto out;
152 /* kip->nused is broken. Fix it. */
153 kip->nused = slots_per_page(c);
154 WARN_ON(1);
157 rcu_read_unlock();
159 /* If there are any garbage slots, collect it and try again. */
160 if (c->nr_garbage && collect_garbage_slots(c) == 0)
161 goto retry;
163 /* All out of space. Need to allocate a new page. */
164 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
165 if (!kip)
166 goto out;
169 * Use module_alloc so this page is within +/- 2GB of where the
170 * kernel image and loaded module images reside. This is required
171 * so x86_64 can correctly handle the %rip-relative fixups.
173 kip->insns = c->alloc();
174 if (!kip->insns) {
175 kfree(kip);
176 goto out;
178 INIT_LIST_HEAD(&kip->list);
179 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
180 kip->slot_used[0] = SLOT_USED;
181 kip->nused = 1;
182 kip->ngarbage = 0;
183 kip->cache = c;
184 list_add_rcu(&kip->list, &c->pages);
185 slot = kip->insns;
186 out:
187 mutex_unlock(&c->mutex);
188 return slot;
191 /* Return 1 if all garbages are collected, otherwise 0. */
192 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
194 kip->slot_used[idx] = SLOT_CLEAN;
195 kip->nused--;
196 if (kip->nused == 0) {
198 * Page is no longer in use. Free it unless
199 * it's the last one. We keep the last one
200 * so as not to have to set it up again the
201 * next time somebody inserts a probe.
203 if (!list_is_singular(&kip->list)) {
204 list_del_rcu(&kip->list);
205 synchronize_rcu();
206 kip->cache->free(kip->insns);
207 kfree(kip);
209 return 1;
211 return 0;
214 static int collect_garbage_slots(struct kprobe_insn_cache *c)
216 struct kprobe_insn_page *kip, *next;
218 /* Ensure no-one is interrupted on the garbages */
219 synchronize_rcu();
221 list_for_each_entry_safe(kip, next, &c->pages, list) {
222 int i;
223 if (kip->ngarbage == 0)
224 continue;
225 kip->ngarbage = 0; /* we will collect all garbages */
226 for (i = 0; i < slots_per_page(c); i++) {
227 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
228 break;
231 c->nr_garbage = 0;
232 return 0;
235 void __free_insn_slot(struct kprobe_insn_cache *c,
236 kprobe_opcode_t *slot, int dirty)
238 struct kprobe_insn_page *kip;
239 long idx;
241 mutex_lock(&c->mutex);
242 rcu_read_lock();
243 list_for_each_entry_rcu(kip, &c->pages, list) {
244 idx = ((long)slot - (long)kip->insns) /
245 (c->insn_size * sizeof(kprobe_opcode_t));
246 if (idx >= 0 && idx < slots_per_page(c))
247 goto out;
249 /* Could not find this slot. */
250 WARN_ON(1);
251 kip = NULL;
252 out:
253 rcu_read_unlock();
254 /* Mark and sweep: this may sleep */
255 if (kip) {
256 /* Check double free */
257 WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 if (dirty) {
259 kip->slot_used[idx] = SLOT_DIRTY;
260 kip->ngarbage++;
261 if (++c->nr_garbage > slots_per_page(c))
262 collect_garbage_slots(c);
263 } else {
264 collect_one_slot(kip, idx);
267 mutex_unlock(&c->mutex);
271 * Check given address is on the page of kprobe instruction slots.
272 * This will be used for checking whether the address on a stack
273 * is on a text area or not.
275 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
277 struct kprobe_insn_page *kip;
278 bool ret = false;
280 rcu_read_lock();
281 list_for_each_entry_rcu(kip, &c->pages, list) {
282 if (addr >= (unsigned long)kip->insns &&
283 addr < (unsigned long)kip->insns + PAGE_SIZE) {
284 ret = true;
285 break;
288 rcu_read_unlock();
290 return ret;
293 #ifdef CONFIG_OPTPROBES
294 /* For optimized_kprobe buffer */
295 struct kprobe_insn_cache kprobe_optinsn_slots = {
296 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
297 .alloc = alloc_insn_page,
298 .free = free_insn_page,
299 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
300 /* .insn_size is initialized later */
301 .nr_garbage = 0,
303 #endif
304 #endif
306 /* We have preemption disabled.. so it is safe to use __ versions */
307 static inline void set_kprobe_instance(struct kprobe *kp)
309 __this_cpu_write(kprobe_instance, kp);
312 static inline void reset_kprobe_instance(void)
314 __this_cpu_write(kprobe_instance, NULL);
318 * This routine is called either:
319 * - under the kprobe_mutex - during kprobe_[un]register()
320 * OR
321 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
323 struct kprobe *get_kprobe(void *addr)
325 struct hlist_head *head;
326 struct kprobe *p;
328 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
329 hlist_for_each_entry_rcu(p, head, hlist) {
330 if (p->addr == addr)
331 return p;
334 return NULL;
336 NOKPROBE_SYMBOL(get_kprobe);
338 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
340 /* Return true if the kprobe is an aggregator */
341 static inline int kprobe_aggrprobe(struct kprobe *p)
343 return p->pre_handler == aggr_pre_handler;
346 /* Return true(!0) if the kprobe is unused */
347 static inline int kprobe_unused(struct kprobe *p)
349 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
350 list_empty(&p->list);
354 * Keep all fields in the kprobe consistent
356 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
358 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
359 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
362 #ifdef CONFIG_OPTPROBES
363 /* NOTE: change this value only with kprobe_mutex held */
364 static bool kprobes_allow_optimization;
367 * Call all pre_handler on the list, but ignores its return value.
368 * This must be called from arch-dep optimized caller.
370 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
372 struct kprobe *kp;
374 list_for_each_entry_rcu(kp, &p->list, list) {
375 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
376 set_kprobe_instance(kp);
377 kp->pre_handler(kp, regs);
379 reset_kprobe_instance();
382 NOKPROBE_SYMBOL(opt_pre_handler);
384 /* Free optimized instructions and optimized_kprobe */
385 static void free_aggr_kprobe(struct kprobe *p)
387 struct optimized_kprobe *op;
389 op = container_of(p, struct optimized_kprobe, kp);
390 arch_remove_optimized_kprobe(op);
391 arch_remove_kprobe(p);
392 kfree(op);
395 /* Return true(!0) if the kprobe is ready for optimization. */
396 static inline int kprobe_optready(struct kprobe *p)
398 struct optimized_kprobe *op;
400 if (kprobe_aggrprobe(p)) {
401 op = container_of(p, struct optimized_kprobe, kp);
402 return arch_prepared_optinsn(&op->optinsn);
405 return 0;
408 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
409 static inline int kprobe_disarmed(struct kprobe *p)
411 struct optimized_kprobe *op;
413 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
414 if (!kprobe_aggrprobe(p))
415 return kprobe_disabled(p);
417 op = container_of(p, struct optimized_kprobe, kp);
419 return kprobe_disabled(p) && list_empty(&op->list);
422 /* Return true(!0) if the probe is queued on (un)optimizing lists */
423 static int kprobe_queued(struct kprobe *p)
425 struct optimized_kprobe *op;
427 if (kprobe_aggrprobe(p)) {
428 op = container_of(p, struct optimized_kprobe, kp);
429 if (!list_empty(&op->list))
430 return 1;
432 return 0;
436 * Return an optimized kprobe whose optimizing code replaces
437 * instructions including addr (exclude breakpoint).
439 static struct kprobe *get_optimized_kprobe(unsigned long addr)
441 int i;
442 struct kprobe *p = NULL;
443 struct optimized_kprobe *op;
445 /* Don't check i == 0, since that is a breakpoint case. */
446 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
447 p = get_kprobe((void *)(addr - i));
449 if (p && kprobe_optready(p)) {
450 op = container_of(p, struct optimized_kprobe, kp);
451 if (arch_within_optimized_kprobe(op, addr))
452 return p;
455 return NULL;
458 /* Optimization staging list, protected by kprobe_mutex */
459 static LIST_HEAD(optimizing_list);
460 static LIST_HEAD(unoptimizing_list);
461 static LIST_HEAD(freeing_list);
463 static void kprobe_optimizer(struct work_struct *work);
464 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
465 #define OPTIMIZE_DELAY 5
468 * Optimize (replace a breakpoint with a jump) kprobes listed on
469 * optimizing_list.
471 static void do_optimize_kprobes(void)
473 lockdep_assert_held(&text_mutex);
475 * The optimization/unoptimization refers online_cpus via
476 * stop_machine() and cpu-hotplug modifies online_cpus.
477 * And same time, text_mutex will be held in cpu-hotplug and here.
478 * This combination can cause a deadlock (cpu-hotplug try to lock
479 * text_mutex but stop_machine can not be done because online_cpus
480 * has been changed)
481 * To avoid this deadlock, caller must have locked cpu hotplug
482 * for preventing cpu-hotplug outside of text_mutex locking.
484 lockdep_assert_cpus_held();
486 /* Optimization never be done when disarmed */
487 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
488 list_empty(&optimizing_list))
489 return;
491 arch_optimize_kprobes(&optimizing_list);
495 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
496 * if need) kprobes listed on unoptimizing_list.
498 static void do_unoptimize_kprobes(void)
500 struct optimized_kprobe *op, *tmp;
502 lockdep_assert_held(&text_mutex);
503 /* See comment in do_optimize_kprobes() */
504 lockdep_assert_cpus_held();
506 /* Unoptimization must be done anytime */
507 if (list_empty(&unoptimizing_list))
508 return;
510 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
511 /* Loop free_list for disarming */
512 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
513 /* Disarm probes if marked disabled */
514 if (kprobe_disabled(&op->kp))
515 arch_disarm_kprobe(&op->kp);
516 if (kprobe_unused(&op->kp)) {
518 * Remove unused probes from hash list. After waiting
519 * for synchronization, these probes are reclaimed.
520 * (reclaiming is done by do_free_cleaned_kprobes.)
522 hlist_del_rcu(&op->kp.hlist);
523 } else
524 list_del_init(&op->list);
528 /* Reclaim all kprobes on the free_list */
529 static void do_free_cleaned_kprobes(void)
531 struct optimized_kprobe *op, *tmp;
533 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
534 list_del_init(&op->list);
535 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
537 * This must not happen, but if there is a kprobe
538 * still in use, keep it on kprobes hash list.
540 continue;
542 free_aggr_kprobe(&op->kp);
546 /* Start optimizer after OPTIMIZE_DELAY passed */
547 static void kick_kprobe_optimizer(void)
549 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
552 /* Kprobe jump optimizer */
553 static void kprobe_optimizer(struct work_struct *work)
555 mutex_lock(&kprobe_mutex);
556 cpus_read_lock();
557 mutex_lock(&text_mutex);
558 /* Lock modules while optimizing kprobes */
559 mutex_lock(&module_mutex);
562 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
563 * kprobes before waiting for quiesence period.
565 do_unoptimize_kprobes();
568 * Step 2: Wait for quiesence period to ensure all potentially
569 * preempted tasks to have normally scheduled. Because optprobe
570 * may modify multiple instructions, there is a chance that Nth
571 * instruction is preempted. In that case, such tasks can return
572 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
573 * Note that on non-preemptive kernel, this is transparently converted
574 * to synchronoze_sched() to wait for all interrupts to have completed.
576 synchronize_rcu_tasks();
578 /* Step 3: Optimize kprobes after quiesence period */
579 do_optimize_kprobes();
581 /* Step 4: Free cleaned kprobes after quiesence period */
582 do_free_cleaned_kprobes();
584 mutex_unlock(&module_mutex);
585 mutex_unlock(&text_mutex);
586 cpus_read_unlock();
587 mutex_unlock(&kprobe_mutex);
589 /* Step 5: Kick optimizer again if needed */
590 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
591 kick_kprobe_optimizer();
594 /* Wait for completing optimization and unoptimization */
595 void wait_for_kprobe_optimizer(void)
597 mutex_lock(&kprobe_mutex);
599 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
600 mutex_unlock(&kprobe_mutex);
602 /* this will also make optimizing_work execute immmediately */
603 flush_delayed_work(&optimizing_work);
604 /* @optimizing_work might not have been queued yet, relax */
605 cpu_relax();
607 mutex_lock(&kprobe_mutex);
610 mutex_unlock(&kprobe_mutex);
613 /* Optimize kprobe if p is ready to be optimized */
614 static void optimize_kprobe(struct kprobe *p)
616 struct optimized_kprobe *op;
618 /* Check if the kprobe is disabled or not ready for optimization. */
619 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
620 (kprobe_disabled(p) || kprobes_all_disarmed))
621 return;
623 /* kprobes with post_handler can not be optimized */
624 if (p->post_handler)
625 return;
627 op = container_of(p, struct optimized_kprobe, kp);
629 /* Check there is no other kprobes at the optimized instructions */
630 if (arch_check_optimized_kprobe(op) < 0)
631 return;
633 /* Check if it is already optimized. */
634 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
635 return;
636 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
638 if (!list_empty(&op->list))
639 /* This is under unoptimizing. Just dequeue the probe */
640 list_del_init(&op->list);
641 else {
642 list_add(&op->list, &optimizing_list);
643 kick_kprobe_optimizer();
647 /* Short cut to direct unoptimizing */
648 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
650 lockdep_assert_cpus_held();
651 arch_unoptimize_kprobe(op);
652 if (kprobe_disabled(&op->kp))
653 arch_disarm_kprobe(&op->kp);
656 /* Unoptimize a kprobe if p is optimized */
657 static void unoptimize_kprobe(struct kprobe *p, bool force)
659 struct optimized_kprobe *op;
661 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
662 return; /* This is not an optprobe nor optimized */
664 op = container_of(p, struct optimized_kprobe, kp);
665 if (!kprobe_optimized(p)) {
666 /* Unoptimized or unoptimizing case */
667 if (force && !list_empty(&op->list)) {
669 * Only if this is unoptimizing kprobe and forced,
670 * forcibly unoptimize it. (No need to unoptimize
671 * unoptimized kprobe again :)
673 list_del_init(&op->list);
674 force_unoptimize_kprobe(op);
676 return;
679 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
680 if (!list_empty(&op->list)) {
681 /* Dequeue from the optimization queue */
682 list_del_init(&op->list);
683 return;
685 /* Optimized kprobe case */
686 if (force)
687 /* Forcibly update the code: this is a special case */
688 force_unoptimize_kprobe(op);
689 else {
690 list_add(&op->list, &unoptimizing_list);
691 kick_kprobe_optimizer();
695 /* Cancel unoptimizing for reusing */
696 static int reuse_unused_kprobe(struct kprobe *ap)
698 struct optimized_kprobe *op;
701 * Unused kprobe MUST be on the way of delayed unoptimizing (means
702 * there is still a relative jump) and disabled.
704 op = container_of(ap, struct optimized_kprobe, kp);
705 WARN_ON_ONCE(list_empty(&op->list));
706 /* Enable the probe again */
707 ap->flags &= ~KPROBE_FLAG_DISABLED;
708 /* Optimize it again (remove from op->list) */
709 if (!kprobe_optready(ap))
710 return -EINVAL;
712 optimize_kprobe(ap);
713 return 0;
716 /* Remove optimized instructions */
717 static void kill_optimized_kprobe(struct kprobe *p)
719 struct optimized_kprobe *op;
721 op = container_of(p, struct optimized_kprobe, kp);
722 if (!list_empty(&op->list))
723 /* Dequeue from the (un)optimization queue */
724 list_del_init(&op->list);
725 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
727 if (kprobe_unused(p)) {
728 /* Enqueue if it is unused */
729 list_add(&op->list, &freeing_list);
731 * Remove unused probes from the hash list. After waiting
732 * for synchronization, this probe is reclaimed.
733 * (reclaiming is done by do_free_cleaned_kprobes().)
735 hlist_del_rcu(&op->kp.hlist);
738 /* Don't touch the code, because it is already freed. */
739 arch_remove_optimized_kprobe(op);
742 static inline
743 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
745 if (!kprobe_ftrace(p))
746 arch_prepare_optimized_kprobe(op, p);
749 /* Try to prepare optimized instructions */
750 static void prepare_optimized_kprobe(struct kprobe *p)
752 struct optimized_kprobe *op;
754 op = container_of(p, struct optimized_kprobe, kp);
755 __prepare_optimized_kprobe(op, p);
758 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
759 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
761 struct optimized_kprobe *op;
763 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
764 if (!op)
765 return NULL;
767 INIT_LIST_HEAD(&op->list);
768 op->kp.addr = p->addr;
769 __prepare_optimized_kprobe(op, p);
771 return &op->kp;
774 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
777 * Prepare an optimized_kprobe and optimize it
778 * NOTE: p must be a normal registered kprobe
780 static void try_to_optimize_kprobe(struct kprobe *p)
782 struct kprobe *ap;
783 struct optimized_kprobe *op;
785 /* Impossible to optimize ftrace-based kprobe */
786 if (kprobe_ftrace(p))
787 return;
789 /* For preparing optimization, jump_label_text_reserved() is called */
790 cpus_read_lock();
791 jump_label_lock();
792 mutex_lock(&text_mutex);
794 ap = alloc_aggr_kprobe(p);
795 if (!ap)
796 goto out;
798 op = container_of(ap, struct optimized_kprobe, kp);
799 if (!arch_prepared_optinsn(&op->optinsn)) {
800 /* If failed to setup optimizing, fallback to kprobe */
801 arch_remove_optimized_kprobe(op);
802 kfree(op);
803 goto out;
806 init_aggr_kprobe(ap, p);
807 optimize_kprobe(ap); /* This just kicks optimizer thread */
809 out:
810 mutex_unlock(&text_mutex);
811 jump_label_unlock();
812 cpus_read_unlock();
815 #ifdef CONFIG_SYSCTL
816 static void optimize_all_kprobes(void)
818 struct hlist_head *head;
819 struct kprobe *p;
820 unsigned int i;
822 mutex_lock(&kprobe_mutex);
823 /* If optimization is already allowed, just return */
824 if (kprobes_allow_optimization)
825 goto out;
827 cpus_read_lock();
828 kprobes_allow_optimization = true;
829 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
830 head = &kprobe_table[i];
831 hlist_for_each_entry_rcu(p, head, hlist)
832 if (!kprobe_disabled(p))
833 optimize_kprobe(p);
835 cpus_read_unlock();
836 printk(KERN_INFO "Kprobes globally optimized\n");
837 out:
838 mutex_unlock(&kprobe_mutex);
841 static void unoptimize_all_kprobes(void)
843 struct hlist_head *head;
844 struct kprobe *p;
845 unsigned int i;
847 mutex_lock(&kprobe_mutex);
848 /* If optimization is already prohibited, just return */
849 if (!kprobes_allow_optimization) {
850 mutex_unlock(&kprobe_mutex);
851 return;
854 cpus_read_lock();
855 kprobes_allow_optimization = false;
856 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
857 head = &kprobe_table[i];
858 hlist_for_each_entry_rcu(p, head, hlist) {
859 if (!kprobe_disabled(p))
860 unoptimize_kprobe(p, false);
863 cpus_read_unlock();
864 mutex_unlock(&kprobe_mutex);
866 /* Wait for unoptimizing completion */
867 wait_for_kprobe_optimizer();
868 printk(KERN_INFO "Kprobes globally unoptimized\n");
871 static DEFINE_MUTEX(kprobe_sysctl_mutex);
872 int sysctl_kprobes_optimization;
873 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
874 void __user *buffer, size_t *length,
875 loff_t *ppos)
877 int ret;
879 mutex_lock(&kprobe_sysctl_mutex);
880 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
881 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
883 if (sysctl_kprobes_optimization)
884 optimize_all_kprobes();
885 else
886 unoptimize_all_kprobes();
887 mutex_unlock(&kprobe_sysctl_mutex);
889 return ret;
891 #endif /* CONFIG_SYSCTL */
893 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
894 static void __arm_kprobe(struct kprobe *p)
896 struct kprobe *_p;
898 /* Check collision with other optimized kprobes */
899 _p = get_optimized_kprobe((unsigned long)p->addr);
900 if (unlikely(_p))
901 /* Fallback to unoptimized kprobe */
902 unoptimize_kprobe(_p, true);
904 arch_arm_kprobe(p);
905 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
908 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
909 static void __disarm_kprobe(struct kprobe *p, bool reopt)
911 struct kprobe *_p;
913 /* Try to unoptimize */
914 unoptimize_kprobe(p, kprobes_all_disarmed);
916 if (!kprobe_queued(p)) {
917 arch_disarm_kprobe(p);
918 /* If another kprobe was blocked, optimize it. */
919 _p = get_optimized_kprobe((unsigned long)p->addr);
920 if (unlikely(_p) && reopt)
921 optimize_kprobe(_p);
923 /* TODO: reoptimize others after unoptimized this probe */
926 #else /* !CONFIG_OPTPROBES */
928 #define optimize_kprobe(p) do {} while (0)
929 #define unoptimize_kprobe(p, f) do {} while (0)
930 #define kill_optimized_kprobe(p) do {} while (0)
931 #define prepare_optimized_kprobe(p) do {} while (0)
932 #define try_to_optimize_kprobe(p) do {} while (0)
933 #define __arm_kprobe(p) arch_arm_kprobe(p)
934 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
935 #define kprobe_disarmed(p) kprobe_disabled(p)
936 #define wait_for_kprobe_optimizer() do {} while (0)
938 static int reuse_unused_kprobe(struct kprobe *ap)
941 * If the optimized kprobe is NOT supported, the aggr kprobe is
942 * released at the same time that the last aggregated kprobe is
943 * unregistered.
944 * Thus there should be no chance to reuse unused kprobe.
946 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
947 return -EINVAL;
950 static void free_aggr_kprobe(struct kprobe *p)
952 arch_remove_kprobe(p);
953 kfree(p);
956 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
958 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
960 #endif /* CONFIG_OPTPROBES */
962 #ifdef CONFIG_KPROBES_ON_FTRACE
963 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
964 .func = kprobe_ftrace_handler,
965 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
967 static int kprobe_ftrace_enabled;
969 /* Must ensure p->addr is really on ftrace */
970 static int prepare_kprobe(struct kprobe *p)
972 if (!kprobe_ftrace(p))
973 return arch_prepare_kprobe(p);
975 return arch_prepare_kprobe_ftrace(p);
978 /* Caller must lock kprobe_mutex */
979 static int arm_kprobe_ftrace(struct kprobe *p)
981 int ret = 0;
983 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
984 (unsigned long)p->addr, 0, 0);
985 if (ret) {
986 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
987 p->addr, ret);
988 return ret;
991 if (kprobe_ftrace_enabled == 0) {
992 ret = register_ftrace_function(&kprobe_ftrace_ops);
993 if (ret) {
994 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
995 goto err_ftrace;
999 kprobe_ftrace_enabled++;
1000 return ret;
1002 err_ftrace:
1004 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1005 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1006 * empty filter_hash which would undesirably trace all functions.
1008 ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1009 return ret;
1012 /* Caller must lock kprobe_mutex */
1013 static int disarm_kprobe_ftrace(struct kprobe *p)
1015 int ret = 0;
1017 if (kprobe_ftrace_enabled == 1) {
1018 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1019 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1020 return ret;
1023 kprobe_ftrace_enabled--;
1025 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1026 (unsigned long)p->addr, 1, 0);
1027 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1028 p->addr, ret);
1029 return ret;
1031 #else /* !CONFIG_KPROBES_ON_FTRACE */
1032 #define prepare_kprobe(p) arch_prepare_kprobe(p)
1033 #define arm_kprobe_ftrace(p) (-ENODEV)
1034 #define disarm_kprobe_ftrace(p) (-ENODEV)
1035 #endif
1037 /* Arm a kprobe with text_mutex */
1038 static int arm_kprobe(struct kprobe *kp)
1040 if (unlikely(kprobe_ftrace(kp)))
1041 return arm_kprobe_ftrace(kp);
1043 cpus_read_lock();
1044 mutex_lock(&text_mutex);
1045 __arm_kprobe(kp);
1046 mutex_unlock(&text_mutex);
1047 cpus_read_unlock();
1049 return 0;
1052 /* Disarm a kprobe with text_mutex */
1053 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1055 if (unlikely(kprobe_ftrace(kp)))
1056 return disarm_kprobe_ftrace(kp);
1058 cpus_read_lock();
1059 mutex_lock(&text_mutex);
1060 __disarm_kprobe(kp, reopt);
1061 mutex_unlock(&text_mutex);
1062 cpus_read_unlock();
1064 return 0;
1068 * Aggregate handlers for multiple kprobes support - these handlers
1069 * take care of invoking the individual kprobe handlers on p->list
1071 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1073 struct kprobe *kp;
1075 list_for_each_entry_rcu(kp, &p->list, list) {
1076 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1077 set_kprobe_instance(kp);
1078 if (kp->pre_handler(kp, regs))
1079 return 1;
1081 reset_kprobe_instance();
1083 return 0;
1085 NOKPROBE_SYMBOL(aggr_pre_handler);
1087 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1088 unsigned long flags)
1090 struct kprobe *kp;
1092 list_for_each_entry_rcu(kp, &p->list, list) {
1093 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1094 set_kprobe_instance(kp);
1095 kp->post_handler(kp, regs, flags);
1096 reset_kprobe_instance();
1100 NOKPROBE_SYMBOL(aggr_post_handler);
1102 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1103 int trapnr)
1105 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1108 * if we faulted "during" the execution of a user specified
1109 * probe handler, invoke just that probe's fault handler
1111 if (cur && cur->fault_handler) {
1112 if (cur->fault_handler(cur, regs, trapnr))
1113 return 1;
1115 return 0;
1117 NOKPROBE_SYMBOL(aggr_fault_handler);
1119 /* Walks the list and increments nmissed count for multiprobe case */
1120 void kprobes_inc_nmissed_count(struct kprobe *p)
1122 struct kprobe *kp;
1123 if (!kprobe_aggrprobe(p)) {
1124 p->nmissed++;
1125 } else {
1126 list_for_each_entry_rcu(kp, &p->list, list)
1127 kp->nmissed++;
1129 return;
1131 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1133 void recycle_rp_inst(struct kretprobe_instance *ri,
1134 struct hlist_head *head)
1136 struct kretprobe *rp = ri->rp;
1138 /* remove rp inst off the rprobe_inst_table */
1139 hlist_del(&ri->hlist);
1140 INIT_HLIST_NODE(&ri->hlist);
1141 if (likely(rp)) {
1142 raw_spin_lock(&rp->lock);
1143 hlist_add_head(&ri->hlist, &rp->free_instances);
1144 raw_spin_unlock(&rp->lock);
1145 } else
1146 /* Unregistering */
1147 hlist_add_head(&ri->hlist, head);
1149 NOKPROBE_SYMBOL(recycle_rp_inst);
1151 void kretprobe_hash_lock(struct task_struct *tsk,
1152 struct hlist_head **head, unsigned long *flags)
1153 __acquires(hlist_lock)
1155 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1156 raw_spinlock_t *hlist_lock;
1158 *head = &kretprobe_inst_table[hash];
1159 hlist_lock = kretprobe_table_lock_ptr(hash);
1160 raw_spin_lock_irqsave(hlist_lock, *flags);
1162 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1164 static void kretprobe_table_lock(unsigned long hash,
1165 unsigned long *flags)
1166 __acquires(hlist_lock)
1168 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1169 raw_spin_lock_irqsave(hlist_lock, *flags);
1171 NOKPROBE_SYMBOL(kretprobe_table_lock);
1173 void kretprobe_hash_unlock(struct task_struct *tsk,
1174 unsigned long *flags)
1175 __releases(hlist_lock)
1177 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1178 raw_spinlock_t *hlist_lock;
1180 hlist_lock = kretprobe_table_lock_ptr(hash);
1181 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1183 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1185 static void kretprobe_table_unlock(unsigned long hash,
1186 unsigned long *flags)
1187 __releases(hlist_lock)
1189 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1190 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1192 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1195 * This function is called from finish_task_switch when task tk becomes dead,
1196 * so that we can recycle any function-return probe instances associated
1197 * with this task. These left over instances represent probed functions
1198 * that have been called but will never return.
1200 void kprobe_flush_task(struct task_struct *tk)
1202 struct kretprobe_instance *ri;
1203 struct hlist_head *head, empty_rp;
1204 struct hlist_node *tmp;
1205 unsigned long hash, flags = 0;
1207 if (unlikely(!kprobes_initialized))
1208 /* Early boot. kretprobe_table_locks not yet initialized. */
1209 return;
1211 INIT_HLIST_HEAD(&empty_rp);
1212 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1213 head = &kretprobe_inst_table[hash];
1214 kretprobe_table_lock(hash, &flags);
1215 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1216 if (ri->task == tk)
1217 recycle_rp_inst(ri, &empty_rp);
1219 kretprobe_table_unlock(hash, &flags);
1220 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1221 hlist_del(&ri->hlist);
1222 kfree(ri);
1225 NOKPROBE_SYMBOL(kprobe_flush_task);
1227 static inline void free_rp_inst(struct kretprobe *rp)
1229 struct kretprobe_instance *ri;
1230 struct hlist_node *next;
1232 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1233 hlist_del(&ri->hlist);
1234 kfree(ri);
1238 static void cleanup_rp_inst(struct kretprobe *rp)
1240 unsigned long flags, hash;
1241 struct kretprobe_instance *ri;
1242 struct hlist_node *next;
1243 struct hlist_head *head;
1245 /* No race here */
1246 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1247 kretprobe_table_lock(hash, &flags);
1248 head = &kretprobe_inst_table[hash];
1249 hlist_for_each_entry_safe(ri, next, head, hlist) {
1250 if (ri->rp == rp)
1251 ri->rp = NULL;
1253 kretprobe_table_unlock(hash, &flags);
1255 free_rp_inst(rp);
1257 NOKPROBE_SYMBOL(cleanup_rp_inst);
1259 /* Add the new probe to ap->list */
1260 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1262 if (p->post_handler)
1263 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1265 list_add_rcu(&p->list, &ap->list);
1266 if (p->post_handler && !ap->post_handler)
1267 ap->post_handler = aggr_post_handler;
1269 return 0;
1273 * Fill in the required fields of the "manager kprobe". Replace the
1274 * earlier kprobe in the hlist with the manager kprobe
1276 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1278 /* Copy p's insn slot to ap */
1279 copy_kprobe(p, ap);
1280 flush_insn_slot(ap);
1281 ap->addr = p->addr;
1282 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1283 ap->pre_handler = aggr_pre_handler;
1284 ap->fault_handler = aggr_fault_handler;
1285 /* We don't care the kprobe which has gone. */
1286 if (p->post_handler && !kprobe_gone(p))
1287 ap->post_handler = aggr_post_handler;
1289 INIT_LIST_HEAD(&ap->list);
1290 INIT_HLIST_NODE(&ap->hlist);
1292 list_add_rcu(&p->list, &ap->list);
1293 hlist_replace_rcu(&p->hlist, &ap->hlist);
1297 * This is the second or subsequent kprobe at the address - handle
1298 * the intricacies
1300 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1302 int ret = 0;
1303 struct kprobe *ap = orig_p;
1305 cpus_read_lock();
1307 /* For preparing optimization, jump_label_text_reserved() is called */
1308 jump_label_lock();
1309 mutex_lock(&text_mutex);
1311 if (!kprobe_aggrprobe(orig_p)) {
1312 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1313 ap = alloc_aggr_kprobe(orig_p);
1314 if (!ap) {
1315 ret = -ENOMEM;
1316 goto out;
1318 init_aggr_kprobe(ap, orig_p);
1319 } else if (kprobe_unused(ap)) {
1320 /* This probe is going to die. Rescue it */
1321 ret = reuse_unused_kprobe(ap);
1322 if (ret)
1323 goto out;
1326 if (kprobe_gone(ap)) {
1328 * Attempting to insert new probe at the same location that
1329 * had a probe in the module vaddr area which already
1330 * freed. So, the instruction slot has already been
1331 * released. We need a new slot for the new probe.
1333 ret = arch_prepare_kprobe(ap);
1334 if (ret)
1336 * Even if fail to allocate new slot, don't need to
1337 * free aggr_probe. It will be used next time, or
1338 * freed by unregister_kprobe.
1340 goto out;
1342 /* Prepare optimized instructions if possible. */
1343 prepare_optimized_kprobe(ap);
1346 * Clear gone flag to prevent allocating new slot again, and
1347 * set disabled flag because it is not armed yet.
1349 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1350 | KPROBE_FLAG_DISABLED;
1353 /* Copy ap's insn slot to p */
1354 copy_kprobe(ap, p);
1355 ret = add_new_kprobe(ap, p);
1357 out:
1358 mutex_unlock(&text_mutex);
1359 jump_label_unlock();
1360 cpus_read_unlock();
1362 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1363 ap->flags &= ~KPROBE_FLAG_DISABLED;
1364 if (!kprobes_all_disarmed) {
1365 /* Arm the breakpoint again. */
1366 ret = arm_kprobe(ap);
1367 if (ret) {
1368 ap->flags |= KPROBE_FLAG_DISABLED;
1369 list_del_rcu(&p->list);
1370 synchronize_rcu();
1374 return ret;
1377 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1379 /* The __kprobes marked functions and entry code must not be probed */
1380 return addr >= (unsigned long)__kprobes_text_start &&
1381 addr < (unsigned long)__kprobes_text_end;
1384 static bool __within_kprobe_blacklist(unsigned long addr)
1386 struct kprobe_blacklist_entry *ent;
1388 if (arch_within_kprobe_blacklist(addr))
1389 return true;
1391 * If there exists a kprobe_blacklist, verify and
1392 * fail any probe registration in the prohibited area
1394 list_for_each_entry(ent, &kprobe_blacklist, list) {
1395 if (addr >= ent->start_addr && addr < ent->end_addr)
1396 return true;
1398 return false;
1401 bool within_kprobe_blacklist(unsigned long addr)
1403 char symname[KSYM_NAME_LEN], *p;
1405 if (__within_kprobe_blacklist(addr))
1406 return true;
1408 /* Check if the address is on a suffixed-symbol */
1409 if (!lookup_symbol_name(addr, symname)) {
1410 p = strchr(symname, '.');
1411 if (!p)
1412 return false;
1413 *p = '\0';
1414 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1415 if (addr)
1416 return __within_kprobe_blacklist(addr);
1418 return false;
1422 * If we have a symbol_name argument, look it up and add the offset field
1423 * to it. This way, we can specify a relative address to a symbol.
1424 * This returns encoded errors if it fails to look up symbol or invalid
1425 * combination of parameters.
1427 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1428 const char *symbol_name, unsigned int offset)
1430 if ((symbol_name && addr) || (!symbol_name && !addr))
1431 goto invalid;
1433 if (symbol_name) {
1434 addr = kprobe_lookup_name(symbol_name, offset);
1435 if (!addr)
1436 return ERR_PTR(-ENOENT);
1439 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1440 if (addr)
1441 return addr;
1443 invalid:
1444 return ERR_PTR(-EINVAL);
1447 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1449 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1452 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1453 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1455 struct kprobe *ap, *list_p;
1457 ap = get_kprobe(p->addr);
1458 if (unlikely(!ap))
1459 return NULL;
1461 if (p != ap) {
1462 list_for_each_entry_rcu(list_p, &ap->list, list)
1463 if (list_p == p)
1464 /* kprobe p is a valid probe */
1465 goto valid;
1466 return NULL;
1468 valid:
1469 return ap;
1472 /* Return error if the kprobe is being re-registered */
1473 static inline int check_kprobe_rereg(struct kprobe *p)
1475 int ret = 0;
1477 mutex_lock(&kprobe_mutex);
1478 if (__get_valid_kprobe(p))
1479 ret = -EINVAL;
1480 mutex_unlock(&kprobe_mutex);
1482 return ret;
1485 int __weak arch_check_ftrace_location(struct kprobe *p)
1487 unsigned long ftrace_addr;
1489 ftrace_addr = ftrace_location((unsigned long)p->addr);
1490 if (ftrace_addr) {
1491 #ifdef CONFIG_KPROBES_ON_FTRACE
1492 /* Given address is not on the instruction boundary */
1493 if ((unsigned long)p->addr != ftrace_addr)
1494 return -EILSEQ;
1495 p->flags |= KPROBE_FLAG_FTRACE;
1496 #else /* !CONFIG_KPROBES_ON_FTRACE */
1497 return -EINVAL;
1498 #endif
1500 return 0;
1503 static int check_kprobe_address_safe(struct kprobe *p,
1504 struct module **probed_mod)
1506 int ret;
1508 ret = arch_check_ftrace_location(p);
1509 if (ret)
1510 return ret;
1511 jump_label_lock();
1512 preempt_disable();
1514 /* Ensure it is not in reserved area nor out of text */
1515 if (!kernel_text_address((unsigned long) p->addr) ||
1516 within_kprobe_blacklist((unsigned long) p->addr) ||
1517 jump_label_text_reserved(p->addr, p->addr) ||
1518 find_bug((unsigned long)p->addr)) {
1519 ret = -EINVAL;
1520 goto out;
1523 /* Check if are we probing a module */
1524 *probed_mod = __module_text_address((unsigned long) p->addr);
1525 if (*probed_mod) {
1527 * We must hold a refcount of the probed module while updating
1528 * its code to prohibit unexpected unloading.
1530 if (unlikely(!try_module_get(*probed_mod))) {
1531 ret = -ENOENT;
1532 goto out;
1536 * If the module freed .init.text, we couldn't insert
1537 * kprobes in there.
1539 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1540 (*probed_mod)->state != MODULE_STATE_COMING) {
1541 module_put(*probed_mod);
1542 *probed_mod = NULL;
1543 ret = -ENOENT;
1546 out:
1547 preempt_enable();
1548 jump_label_unlock();
1550 return ret;
1553 int register_kprobe(struct kprobe *p)
1555 int ret;
1556 struct kprobe *old_p;
1557 struct module *probed_mod;
1558 kprobe_opcode_t *addr;
1560 /* Adjust probe address from symbol */
1561 addr = kprobe_addr(p);
1562 if (IS_ERR(addr))
1563 return PTR_ERR(addr);
1564 p->addr = addr;
1566 ret = check_kprobe_rereg(p);
1567 if (ret)
1568 return ret;
1570 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1571 p->flags &= KPROBE_FLAG_DISABLED;
1572 p->nmissed = 0;
1573 INIT_LIST_HEAD(&p->list);
1575 ret = check_kprobe_address_safe(p, &probed_mod);
1576 if (ret)
1577 return ret;
1579 mutex_lock(&kprobe_mutex);
1581 old_p = get_kprobe(p->addr);
1582 if (old_p) {
1583 /* Since this may unoptimize old_p, locking text_mutex. */
1584 ret = register_aggr_kprobe(old_p, p);
1585 goto out;
1588 cpus_read_lock();
1589 /* Prevent text modification */
1590 mutex_lock(&text_mutex);
1591 ret = prepare_kprobe(p);
1592 mutex_unlock(&text_mutex);
1593 cpus_read_unlock();
1594 if (ret)
1595 goto out;
1597 INIT_HLIST_NODE(&p->hlist);
1598 hlist_add_head_rcu(&p->hlist,
1599 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1601 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1602 ret = arm_kprobe(p);
1603 if (ret) {
1604 hlist_del_rcu(&p->hlist);
1605 synchronize_rcu();
1606 goto out;
1610 /* Try to optimize kprobe */
1611 try_to_optimize_kprobe(p);
1612 out:
1613 mutex_unlock(&kprobe_mutex);
1615 if (probed_mod)
1616 module_put(probed_mod);
1618 return ret;
1620 EXPORT_SYMBOL_GPL(register_kprobe);
1622 /* Check if all probes on the aggrprobe are disabled */
1623 static int aggr_kprobe_disabled(struct kprobe *ap)
1625 struct kprobe *kp;
1627 list_for_each_entry_rcu(kp, &ap->list, list)
1628 if (!kprobe_disabled(kp))
1630 * There is an active probe on the list.
1631 * We can't disable this ap.
1633 return 0;
1635 return 1;
1638 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1639 static struct kprobe *__disable_kprobe(struct kprobe *p)
1641 struct kprobe *orig_p;
1642 int ret;
1644 /* Get an original kprobe for return */
1645 orig_p = __get_valid_kprobe(p);
1646 if (unlikely(orig_p == NULL))
1647 return ERR_PTR(-EINVAL);
1649 if (!kprobe_disabled(p)) {
1650 /* Disable probe if it is a child probe */
1651 if (p != orig_p)
1652 p->flags |= KPROBE_FLAG_DISABLED;
1654 /* Try to disarm and disable this/parent probe */
1655 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1657 * If kprobes_all_disarmed is set, orig_p
1658 * should have already been disarmed, so
1659 * skip unneed disarming process.
1661 if (!kprobes_all_disarmed) {
1662 ret = disarm_kprobe(orig_p, true);
1663 if (ret) {
1664 p->flags &= ~KPROBE_FLAG_DISABLED;
1665 return ERR_PTR(ret);
1668 orig_p->flags |= KPROBE_FLAG_DISABLED;
1672 return orig_p;
1676 * Unregister a kprobe without a scheduler synchronization.
1678 static int __unregister_kprobe_top(struct kprobe *p)
1680 struct kprobe *ap, *list_p;
1682 /* Disable kprobe. This will disarm it if needed. */
1683 ap = __disable_kprobe(p);
1684 if (IS_ERR(ap))
1685 return PTR_ERR(ap);
1687 if (ap == p)
1689 * This probe is an independent(and non-optimized) kprobe
1690 * (not an aggrprobe). Remove from the hash list.
1692 goto disarmed;
1694 /* Following process expects this probe is an aggrprobe */
1695 WARN_ON(!kprobe_aggrprobe(ap));
1697 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1699 * !disarmed could be happen if the probe is under delayed
1700 * unoptimizing.
1702 goto disarmed;
1703 else {
1704 /* If disabling probe has special handlers, update aggrprobe */
1705 if (p->post_handler && !kprobe_gone(p)) {
1706 list_for_each_entry_rcu(list_p, &ap->list, list) {
1707 if ((list_p != p) && (list_p->post_handler))
1708 goto noclean;
1710 ap->post_handler = NULL;
1712 noclean:
1714 * Remove from the aggrprobe: this path will do nothing in
1715 * __unregister_kprobe_bottom().
1717 list_del_rcu(&p->list);
1718 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1720 * Try to optimize this probe again, because post
1721 * handler may have been changed.
1723 optimize_kprobe(ap);
1725 return 0;
1727 disarmed:
1728 hlist_del_rcu(&ap->hlist);
1729 return 0;
1732 static void __unregister_kprobe_bottom(struct kprobe *p)
1734 struct kprobe *ap;
1736 if (list_empty(&p->list))
1737 /* This is an independent kprobe */
1738 arch_remove_kprobe(p);
1739 else if (list_is_singular(&p->list)) {
1740 /* This is the last child of an aggrprobe */
1741 ap = list_entry(p->list.next, struct kprobe, list);
1742 list_del(&p->list);
1743 free_aggr_kprobe(ap);
1745 /* Otherwise, do nothing. */
1748 int register_kprobes(struct kprobe **kps, int num)
1750 int i, ret = 0;
1752 if (num <= 0)
1753 return -EINVAL;
1754 for (i = 0; i < num; i++) {
1755 ret = register_kprobe(kps[i]);
1756 if (ret < 0) {
1757 if (i > 0)
1758 unregister_kprobes(kps, i);
1759 break;
1762 return ret;
1764 EXPORT_SYMBOL_GPL(register_kprobes);
1766 void unregister_kprobe(struct kprobe *p)
1768 unregister_kprobes(&p, 1);
1770 EXPORT_SYMBOL_GPL(unregister_kprobe);
1772 void unregister_kprobes(struct kprobe **kps, int num)
1774 int i;
1776 if (num <= 0)
1777 return;
1778 mutex_lock(&kprobe_mutex);
1779 for (i = 0; i < num; i++)
1780 if (__unregister_kprobe_top(kps[i]) < 0)
1781 kps[i]->addr = NULL;
1782 mutex_unlock(&kprobe_mutex);
1784 synchronize_rcu();
1785 for (i = 0; i < num; i++)
1786 if (kps[i]->addr)
1787 __unregister_kprobe_bottom(kps[i]);
1789 EXPORT_SYMBOL_GPL(unregister_kprobes);
1791 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1792 unsigned long val, void *data)
1794 return NOTIFY_DONE;
1796 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1798 static struct notifier_block kprobe_exceptions_nb = {
1799 .notifier_call = kprobe_exceptions_notify,
1800 .priority = 0x7fffffff /* we need to be notified first */
1803 unsigned long __weak arch_deref_entry_point(void *entry)
1805 return (unsigned long)entry;
1808 #ifdef CONFIG_KRETPROBES
1810 * This kprobe pre_handler is registered with every kretprobe. When probe
1811 * hits it will set up the return probe.
1813 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1815 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1816 unsigned long hash, flags = 0;
1817 struct kretprobe_instance *ri;
1820 * To avoid deadlocks, prohibit return probing in NMI contexts,
1821 * just skip the probe and increase the (inexact) 'nmissed'
1822 * statistical counter, so that the user is informed that
1823 * something happened:
1825 if (unlikely(in_nmi())) {
1826 rp->nmissed++;
1827 return 0;
1830 /* TODO: consider to only swap the RA after the last pre_handler fired */
1831 hash = hash_ptr(current, KPROBE_HASH_BITS);
1832 raw_spin_lock_irqsave(&rp->lock, flags);
1833 if (!hlist_empty(&rp->free_instances)) {
1834 ri = hlist_entry(rp->free_instances.first,
1835 struct kretprobe_instance, hlist);
1836 hlist_del(&ri->hlist);
1837 raw_spin_unlock_irqrestore(&rp->lock, flags);
1839 ri->rp = rp;
1840 ri->task = current;
1842 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1843 raw_spin_lock_irqsave(&rp->lock, flags);
1844 hlist_add_head(&ri->hlist, &rp->free_instances);
1845 raw_spin_unlock_irqrestore(&rp->lock, flags);
1846 return 0;
1849 arch_prepare_kretprobe(ri, regs);
1851 /* XXX(hch): why is there no hlist_move_head? */
1852 INIT_HLIST_NODE(&ri->hlist);
1853 kretprobe_table_lock(hash, &flags);
1854 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1855 kretprobe_table_unlock(hash, &flags);
1856 } else {
1857 rp->nmissed++;
1858 raw_spin_unlock_irqrestore(&rp->lock, flags);
1860 return 0;
1862 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1864 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1866 return !offset;
1869 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1871 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1873 if (IS_ERR(kp_addr))
1874 return false;
1876 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1877 !arch_kprobe_on_func_entry(offset))
1878 return false;
1880 return true;
1883 int register_kretprobe(struct kretprobe *rp)
1885 int ret = 0;
1886 struct kretprobe_instance *inst;
1887 int i;
1888 void *addr;
1890 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1891 return -EINVAL;
1893 if (kretprobe_blacklist_size) {
1894 addr = kprobe_addr(&rp->kp);
1895 if (IS_ERR(addr))
1896 return PTR_ERR(addr);
1898 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1899 if (kretprobe_blacklist[i].addr == addr)
1900 return -EINVAL;
1904 rp->kp.pre_handler = pre_handler_kretprobe;
1905 rp->kp.post_handler = NULL;
1906 rp->kp.fault_handler = NULL;
1908 /* Pre-allocate memory for max kretprobe instances */
1909 if (rp->maxactive <= 0) {
1910 #ifdef CONFIG_PREEMPTION
1911 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1912 #else
1913 rp->maxactive = num_possible_cpus();
1914 #endif
1916 raw_spin_lock_init(&rp->lock);
1917 INIT_HLIST_HEAD(&rp->free_instances);
1918 for (i = 0; i < rp->maxactive; i++) {
1919 inst = kmalloc(sizeof(struct kretprobe_instance) +
1920 rp->data_size, GFP_KERNEL);
1921 if (inst == NULL) {
1922 free_rp_inst(rp);
1923 return -ENOMEM;
1925 INIT_HLIST_NODE(&inst->hlist);
1926 hlist_add_head(&inst->hlist, &rp->free_instances);
1929 rp->nmissed = 0;
1930 /* Establish function entry probe point */
1931 ret = register_kprobe(&rp->kp);
1932 if (ret != 0)
1933 free_rp_inst(rp);
1934 return ret;
1936 EXPORT_SYMBOL_GPL(register_kretprobe);
1938 int register_kretprobes(struct kretprobe **rps, int num)
1940 int ret = 0, i;
1942 if (num <= 0)
1943 return -EINVAL;
1944 for (i = 0; i < num; i++) {
1945 ret = register_kretprobe(rps[i]);
1946 if (ret < 0) {
1947 if (i > 0)
1948 unregister_kretprobes(rps, i);
1949 break;
1952 return ret;
1954 EXPORT_SYMBOL_GPL(register_kretprobes);
1956 void unregister_kretprobe(struct kretprobe *rp)
1958 unregister_kretprobes(&rp, 1);
1960 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1962 void unregister_kretprobes(struct kretprobe **rps, int num)
1964 int i;
1966 if (num <= 0)
1967 return;
1968 mutex_lock(&kprobe_mutex);
1969 for (i = 0; i < num; i++)
1970 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1971 rps[i]->kp.addr = NULL;
1972 mutex_unlock(&kprobe_mutex);
1974 synchronize_rcu();
1975 for (i = 0; i < num; i++) {
1976 if (rps[i]->kp.addr) {
1977 __unregister_kprobe_bottom(&rps[i]->kp);
1978 cleanup_rp_inst(rps[i]);
1982 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1984 #else /* CONFIG_KRETPROBES */
1985 int register_kretprobe(struct kretprobe *rp)
1987 return -ENOSYS;
1989 EXPORT_SYMBOL_GPL(register_kretprobe);
1991 int register_kretprobes(struct kretprobe **rps, int num)
1993 return -ENOSYS;
1995 EXPORT_SYMBOL_GPL(register_kretprobes);
1997 void unregister_kretprobe(struct kretprobe *rp)
2000 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2002 void unregister_kretprobes(struct kretprobe **rps, int num)
2005 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2007 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2009 return 0;
2011 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2013 #endif /* CONFIG_KRETPROBES */
2015 /* Set the kprobe gone and remove its instruction buffer. */
2016 static void kill_kprobe(struct kprobe *p)
2018 struct kprobe *kp;
2020 p->flags |= KPROBE_FLAG_GONE;
2021 if (kprobe_aggrprobe(p)) {
2023 * If this is an aggr_kprobe, we have to list all the
2024 * chained probes and mark them GONE.
2026 list_for_each_entry_rcu(kp, &p->list, list)
2027 kp->flags |= KPROBE_FLAG_GONE;
2028 p->post_handler = NULL;
2029 kill_optimized_kprobe(p);
2032 * Here, we can remove insn_slot safely, because no thread calls
2033 * the original probed function (which will be freed soon) any more.
2035 arch_remove_kprobe(p);
2038 /* Disable one kprobe */
2039 int disable_kprobe(struct kprobe *kp)
2041 int ret = 0;
2042 struct kprobe *p;
2044 mutex_lock(&kprobe_mutex);
2046 /* Disable this kprobe */
2047 p = __disable_kprobe(kp);
2048 if (IS_ERR(p))
2049 ret = PTR_ERR(p);
2051 mutex_unlock(&kprobe_mutex);
2052 return ret;
2054 EXPORT_SYMBOL_GPL(disable_kprobe);
2056 /* Enable one kprobe */
2057 int enable_kprobe(struct kprobe *kp)
2059 int ret = 0;
2060 struct kprobe *p;
2062 mutex_lock(&kprobe_mutex);
2064 /* Check whether specified probe is valid. */
2065 p = __get_valid_kprobe(kp);
2066 if (unlikely(p == NULL)) {
2067 ret = -EINVAL;
2068 goto out;
2071 if (kprobe_gone(kp)) {
2072 /* This kprobe has gone, we couldn't enable it. */
2073 ret = -EINVAL;
2074 goto out;
2077 if (p != kp)
2078 kp->flags &= ~KPROBE_FLAG_DISABLED;
2080 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2081 p->flags &= ~KPROBE_FLAG_DISABLED;
2082 ret = arm_kprobe(p);
2083 if (ret)
2084 p->flags |= KPROBE_FLAG_DISABLED;
2086 out:
2087 mutex_unlock(&kprobe_mutex);
2088 return ret;
2090 EXPORT_SYMBOL_GPL(enable_kprobe);
2092 /* Caller must NOT call this in usual path. This is only for critical case */
2093 void dump_kprobe(struct kprobe *kp)
2095 pr_err("Dumping kprobe:\n");
2096 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2097 kp->symbol_name, kp->offset, kp->addr);
2099 NOKPROBE_SYMBOL(dump_kprobe);
2101 int kprobe_add_ksym_blacklist(unsigned long entry)
2103 struct kprobe_blacklist_entry *ent;
2104 unsigned long offset = 0, size = 0;
2106 if (!kernel_text_address(entry) ||
2107 !kallsyms_lookup_size_offset(entry, &size, &offset))
2108 return -EINVAL;
2110 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2111 if (!ent)
2112 return -ENOMEM;
2113 ent->start_addr = entry;
2114 ent->end_addr = entry + size;
2115 INIT_LIST_HEAD(&ent->list);
2116 list_add_tail(&ent->list, &kprobe_blacklist);
2118 return (int)size;
2121 /* Add all symbols in given area into kprobe blacklist */
2122 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2124 unsigned long entry;
2125 int ret = 0;
2127 for (entry = start; entry < end; entry += ret) {
2128 ret = kprobe_add_ksym_blacklist(entry);
2129 if (ret < 0)
2130 return ret;
2131 if (ret == 0) /* In case of alias symbol */
2132 ret = 1;
2134 return 0;
2137 int __init __weak arch_populate_kprobe_blacklist(void)
2139 return 0;
2143 * Lookup and populate the kprobe_blacklist.
2145 * Unlike the kretprobe blacklist, we'll need to determine
2146 * the range of addresses that belong to the said functions,
2147 * since a kprobe need not necessarily be at the beginning
2148 * of a function.
2150 static int __init populate_kprobe_blacklist(unsigned long *start,
2151 unsigned long *end)
2153 unsigned long entry;
2154 unsigned long *iter;
2155 int ret;
2157 for (iter = start; iter < end; iter++) {
2158 entry = arch_deref_entry_point((void *)*iter);
2159 ret = kprobe_add_ksym_blacklist(entry);
2160 if (ret == -EINVAL)
2161 continue;
2162 if (ret < 0)
2163 return ret;
2166 /* Symbols in __kprobes_text are blacklisted */
2167 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2168 (unsigned long)__kprobes_text_end);
2170 return ret ? : arch_populate_kprobe_blacklist();
2173 /* Module notifier call back, checking kprobes on the module */
2174 static int kprobes_module_callback(struct notifier_block *nb,
2175 unsigned long val, void *data)
2177 struct module *mod = data;
2178 struct hlist_head *head;
2179 struct kprobe *p;
2180 unsigned int i;
2181 int checkcore = (val == MODULE_STATE_GOING);
2183 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2184 return NOTIFY_DONE;
2187 * When MODULE_STATE_GOING was notified, both of module .text and
2188 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2189 * notified, only .init.text section would be freed. We need to
2190 * disable kprobes which have been inserted in the sections.
2192 mutex_lock(&kprobe_mutex);
2193 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2194 head = &kprobe_table[i];
2195 hlist_for_each_entry_rcu(p, head, hlist)
2196 if (within_module_init((unsigned long)p->addr, mod) ||
2197 (checkcore &&
2198 within_module_core((unsigned long)p->addr, mod))) {
2200 * The vaddr this probe is installed will soon
2201 * be vfreed buy not synced to disk. Hence,
2202 * disarming the breakpoint isn't needed.
2204 * Note, this will also move any optimized probes
2205 * that are pending to be removed from their
2206 * corresponding lists to the freeing_list and
2207 * will not be touched by the delayed
2208 * kprobe_optimizer work handler.
2210 kill_kprobe(p);
2213 mutex_unlock(&kprobe_mutex);
2214 return NOTIFY_DONE;
2217 static struct notifier_block kprobe_module_nb = {
2218 .notifier_call = kprobes_module_callback,
2219 .priority = 0
2222 /* Markers of _kprobe_blacklist section */
2223 extern unsigned long __start_kprobe_blacklist[];
2224 extern unsigned long __stop_kprobe_blacklist[];
2226 static int __init init_kprobes(void)
2228 int i, err = 0;
2230 /* FIXME allocate the probe table, currently defined statically */
2231 /* initialize all list heads */
2232 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2233 INIT_HLIST_HEAD(&kprobe_table[i]);
2234 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2235 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2238 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2239 __stop_kprobe_blacklist);
2240 if (err) {
2241 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2242 pr_err("Please take care of using kprobes.\n");
2245 if (kretprobe_blacklist_size) {
2246 /* lookup the function address from its name */
2247 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2248 kretprobe_blacklist[i].addr =
2249 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2250 if (!kretprobe_blacklist[i].addr)
2251 printk("kretprobe: lookup failed: %s\n",
2252 kretprobe_blacklist[i].name);
2256 #if defined(CONFIG_OPTPROBES)
2257 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2258 /* Init kprobe_optinsn_slots */
2259 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2260 #endif
2261 /* By default, kprobes can be optimized */
2262 kprobes_allow_optimization = true;
2263 #endif
2265 /* By default, kprobes are armed */
2266 kprobes_all_disarmed = false;
2268 err = arch_init_kprobes();
2269 if (!err)
2270 err = register_die_notifier(&kprobe_exceptions_nb);
2271 if (!err)
2272 err = register_module_notifier(&kprobe_module_nb);
2274 kprobes_initialized = (err == 0);
2276 if (!err)
2277 init_test_probes();
2278 return err;
2280 subsys_initcall(init_kprobes);
2282 #ifdef CONFIG_DEBUG_FS
2283 static void report_probe(struct seq_file *pi, struct kprobe *p,
2284 const char *sym, int offset, char *modname, struct kprobe *pp)
2286 char *kprobe_type;
2287 void *addr = p->addr;
2289 if (p->pre_handler == pre_handler_kretprobe)
2290 kprobe_type = "r";
2291 else
2292 kprobe_type = "k";
2294 if (!kallsyms_show_value())
2295 addr = NULL;
2297 if (sym)
2298 seq_printf(pi, "%px %s %s+0x%x %s ",
2299 addr, kprobe_type, sym, offset,
2300 (modname ? modname : " "));
2301 else /* try to use %pS */
2302 seq_printf(pi, "%px %s %pS ",
2303 addr, kprobe_type, p->addr);
2305 if (!pp)
2306 pp = p;
2307 seq_printf(pi, "%s%s%s%s\n",
2308 (kprobe_gone(p) ? "[GONE]" : ""),
2309 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2310 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2311 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2314 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2316 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2319 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2321 (*pos)++;
2322 if (*pos >= KPROBE_TABLE_SIZE)
2323 return NULL;
2324 return pos;
2327 static void kprobe_seq_stop(struct seq_file *f, void *v)
2329 /* Nothing to do */
2332 static int show_kprobe_addr(struct seq_file *pi, void *v)
2334 struct hlist_head *head;
2335 struct kprobe *p, *kp;
2336 const char *sym = NULL;
2337 unsigned int i = *(loff_t *) v;
2338 unsigned long offset = 0;
2339 char *modname, namebuf[KSYM_NAME_LEN];
2341 head = &kprobe_table[i];
2342 preempt_disable();
2343 hlist_for_each_entry_rcu(p, head, hlist) {
2344 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2345 &offset, &modname, namebuf);
2346 if (kprobe_aggrprobe(p)) {
2347 list_for_each_entry_rcu(kp, &p->list, list)
2348 report_probe(pi, kp, sym, offset, modname, p);
2349 } else
2350 report_probe(pi, p, sym, offset, modname, NULL);
2352 preempt_enable();
2353 return 0;
2356 static const struct seq_operations kprobes_seq_ops = {
2357 .start = kprobe_seq_start,
2358 .next = kprobe_seq_next,
2359 .stop = kprobe_seq_stop,
2360 .show = show_kprobe_addr
2363 static int kprobes_open(struct inode *inode, struct file *filp)
2365 return seq_open(filp, &kprobes_seq_ops);
2368 static const struct file_operations debugfs_kprobes_operations = {
2369 .open = kprobes_open,
2370 .read = seq_read,
2371 .llseek = seq_lseek,
2372 .release = seq_release,
2375 /* kprobes/blacklist -- shows which functions can not be probed */
2376 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2378 return seq_list_start(&kprobe_blacklist, *pos);
2381 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2383 return seq_list_next(v, &kprobe_blacklist, pos);
2386 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2388 struct kprobe_blacklist_entry *ent =
2389 list_entry(v, struct kprobe_blacklist_entry, list);
2392 * If /proc/kallsyms is not showing kernel address, we won't
2393 * show them here either.
2395 if (!kallsyms_show_value())
2396 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2397 (void *)ent->start_addr);
2398 else
2399 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2400 (void *)ent->end_addr, (void *)ent->start_addr);
2401 return 0;
2404 static const struct seq_operations kprobe_blacklist_seq_ops = {
2405 .start = kprobe_blacklist_seq_start,
2406 .next = kprobe_blacklist_seq_next,
2407 .stop = kprobe_seq_stop, /* Reuse void function */
2408 .show = kprobe_blacklist_seq_show,
2411 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2413 return seq_open(filp, &kprobe_blacklist_seq_ops);
2416 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2417 .open = kprobe_blacklist_open,
2418 .read = seq_read,
2419 .llseek = seq_lseek,
2420 .release = seq_release,
2423 static int arm_all_kprobes(void)
2425 struct hlist_head *head;
2426 struct kprobe *p;
2427 unsigned int i, total = 0, errors = 0;
2428 int err, ret = 0;
2430 mutex_lock(&kprobe_mutex);
2432 /* If kprobes are armed, just return */
2433 if (!kprobes_all_disarmed)
2434 goto already_enabled;
2437 * optimize_kprobe() called by arm_kprobe() checks
2438 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2439 * arm_kprobe.
2441 kprobes_all_disarmed = false;
2442 /* Arming kprobes doesn't optimize kprobe itself */
2443 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2444 head = &kprobe_table[i];
2445 /* Arm all kprobes on a best-effort basis */
2446 hlist_for_each_entry_rcu(p, head, hlist) {
2447 if (!kprobe_disabled(p)) {
2448 err = arm_kprobe(p);
2449 if (err) {
2450 errors++;
2451 ret = err;
2453 total++;
2458 if (errors)
2459 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2460 errors, total);
2461 else
2462 pr_info("Kprobes globally enabled\n");
2464 already_enabled:
2465 mutex_unlock(&kprobe_mutex);
2466 return ret;
2469 static int disarm_all_kprobes(void)
2471 struct hlist_head *head;
2472 struct kprobe *p;
2473 unsigned int i, total = 0, errors = 0;
2474 int err, ret = 0;
2476 mutex_lock(&kprobe_mutex);
2478 /* If kprobes are already disarmed, just return */
2479 if (kprobes_all_disarmed) {
2480 mutex_unlock(&kprobe_mutex);
2481 return 0;
2484 kprobes_all_disarmed = true;
2486 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2487 head = &kprobe_table[i];
2488 /* Disarm all kprobes on a best-effort basis */
2489 hlist_for_each_entry_rcu(p, head, hlist) {
2490 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2491 err = disarm_kprobe(p, false);
2492 if (err) {
2493 errors++;
2494 ret = err;
2496 total++;
2501 if (errors)
2502 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2503 errors, total);
2504 else
2505 pr_info("Kprobes globally disabled\n");
2507 mutex_unlock(&kprobe_mutex);
2509 /* Wait for disarming all kprobes by optimizer */
2510 wait_for_kprobe_optimizer();
2512 return ret;
2516 * XXX: The debugfs bool file interface doesn't allow for callbacks
2517 * when the bool state is switched. We can reuse that facility when
2518 * available
2520 static ssize_t read_enabled_file_bool(struct file *file,
2521 char __user *user_buf, size_t count, loff_t *ppos)
2523 char buf[3];
2525 if (!kprobes_all_disarmed)
2526 buf[0] = '1';
2527 else
2528 buf[0] = '0';
2529 buf[1] = '\n';
2530 buf[2] = 0x00;
2531 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2534 static ssize_t write_enabled_file_bool(struct file *file,
2535 const char __user *user_buf, size_t count, loff_t *ppos)
2537 char buf[32];
2538 size_t buf_size;
2539 int ret = 0;
2541 buf_size = min(count, (sizeof(buf)-1));
2542 if (copy_from_user(buf, user_buf, buf_size))
2543 return -EFAULT;
2545 buf[buf_size] = '\0';
2546 switch (buf[0]) {
2547 case 'y':
2548 case 'Y':
2549 case '1':
2550 ret = arm_all_kprobes();
2551 break;
2552 case 'n':
2553 case 'N':
2554 case '0':
2555 ret = disarm_all_kprobes();
2556 break;
2557 default:
2558 return -EINVAL;
2561 if (ret)
2562 return ret;
2564 return count;
2567 static const struct file_operations fops_kp = {
2568 .read = read_enabled_file_bool,
2569 .write = write_enabled_file_bool,
2570 .llseek = default_llseek,
2573 static int __init debugfs_kprobe_init(void)
2575 struct dentry *dir;
2576 unsigned int value = 1;
2578 dir = debugfs_create_dir("kprobes", NULL);
2580 debugfs_create_file("list", 0400, dir, NULL,
2581 &debugfs_kprobes_operations);
2583 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2585 debugfs_create_file("blacklist", 0400, dir, NULL,
2586 &debugfs_kprobe_blacklist_ops);
2588 return 0;
2591 late_initcall(debugfs_kprobe_init);
2592 #endif /* CONFIG_DEBUG_FS */