2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly
;
113 unsigned int sysctl_net_busy_poll __read_mostly
;
116 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
117 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
118 unsigned long nr_segs
, loff_t pos
);
119 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
120 unsigned long nr_segs
, loff_t pos
);
121 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
123 static int sock_close(struct inode
*inode
, struct file
*file
);
124 static unsigned int sock_poll(struct file
*file
,
125 struct poll_table_struct
*wait
);
126 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
128 static long compat_sock_ioctl(struct file
*file
,
129 unsigned int cmd
, unsigned long arg
);
131 static int sock_fasync(int fd
, struct file
*filp
, int on
);
132 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
133 int offset
, size_t size
, loff_t
*ppos
, int more
);
134 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
135 struct pipe_inode_info
*pipe
, size_t len
,
139 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
140 * in the operation structures but are done directly via the socketcall() multiplexor.
143 static const struct file_operations socket_file_ops
= {
144 .owner
= THIS_MODULE
,
146 .aio_read
= sock_aio_read
,
147 .aio_write
= sock_aio_write
,
149 .unlocked_ioctl
= sock_ioctl
,
151 .compat_ioctl
= compat_sock_ioctl
,
154 .open
= sock_no_open
, /* special open code to disallow open via /proc */
155 .release
= sock_close
,
156 .fasync
= sock_fasync
,
157 .sendpage
= sock_sendpage
,
158 .splice_write
= generic_splice_sendpage
,
159 .splice_read
= sock_splice_read
,
163 * The protocol list. Each protocol is registered in here.
166 static DEFINE_SPINLOCK(net_family_lock
);
167 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
170 * Statistics counters of the socket lists
173 static DEFINE_PER_CPU(int, sockets_in_use
);
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
192 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
194 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
198 if (copy_from_user(kaddr
, uaddr
, ulen
))
200 return audit_sockaddr(ulen
, kaddr
);
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
220 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
221 void __user
*uaddr
, int __user
*ulen
)
226 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
227 err
= get_user(len
, ulen
);
235 if (audit_sockaddr(klen
, kaddr
))
237 if (copy_to_user(uaddr
, kaddr
, len
))
241 * "fromlen shall refer to the value before truncation.."
244 return __put_user(klen
, ulen
);
247 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
249 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
251 struct socket_alloc
*ei
;
252 struct socket_wq
*wq
;
254 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
257 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
259 kmem_cache_free(sock_inode_cachep
, ei
);
262 init_waitqueue_head(&wq
->wait
);
263 wq
->fasync_list
= NULL
;
264 RCU_INIT_POINTER(ei
->socket
.wq
, wq
);
266 ei
->socket
.state
= SS_UNCONNECTED
;
267 ei
->socket
.flags
= 0;
268 ei
->socket
.ops
= NULL
;
269 ei
->socket
.sk
= NULL
;
270 ei
->socket
.file
= NULL
;
272 return &ei
->vfs_inode
;
275 static void sock_destroy_inode(struct inode
*inode
)
277 struct socket_alloc
*ei
;
278 struct socket_wq
*wq
;
280 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
281 wq
= rcu_dereference_protected(ei
->socket
.wq
, 1);
283 kmem_cache_free(sock_inode_cachep
, ei
);
286 static void init_once(void *foo
)
288 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
290 inode_init_once(&ei
->vfs_inode
);
293 static int init_inodecache(void)
295 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
296 sizeof(struct socket_alloc
),
298 (SLAB_HWCACHE_ALIGN
|
299 SLAB_RECLAIM_ACCOUNT
|
302 if (sock_inode_cachep
== NULL
)
307 static const struct super_operations sockfs_ops
= {
308 .alloc_inode
= sock_alloc_inode
,
309 .destroy_inode
= sock_destroy_inode
,
310 .statfs
= simple_statfs
,
314 * sockfs_dname() is called from d_path().
316 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
318 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
319 dentry
->d_inode
->i_ino
);
322 static const struct dentry_operations sockfs_dentry_operations
= {
323 .d_dname
= sockfs_dname
,
326 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
327 int flags
, const char *dev_name
, void *data
)
329 return mount_pseudo(fs_type
, "socket:", &sockfs_ops
,
330 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
333 static struct vfsmount
*sock_mnt __read_mostly
;
335 static struct file_system_type sock_fs_type
= {
337 .mount
= sockfs_mount
,
338 .kill_sb
= kill_anon_super
,
342 * Obtains the first available file descriptor and sets it up for use.
344 * These functions create file structures and maps them to fd space
345 * of the current process. On success it returns file descriptor
346 * and file struct implicitly stored in sock->file.
347 * Note that another thread may close file descriptor before we return
348 * from this function. We use the fact that now we do not refer
349 * to socket after mapping. If one day we will need it, this
350 * function will increment ref. count on file by 1.
352 * In any case returned fd MAY BE not valid!
353 * This race condition is unavoidable
354 * with shared fd spaces, we cannot solve it inside kernel,
355 * but we take care of internal coherence yet.
358 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
360 struct qstr name
= { .name
= "" };
366 name
.len
= strlen(name
.name
);
367 } else if (sock
->sk
) {
368 name
.name
= sock
->sk
->sk_prot_creator
->name
;
369 name
.len
= strlen(name
.name
);
371 path
.dentry
= d_alloc_pseudo(sock_mnt
->mnt_sb
, &name
);
372 if (unlikely(!path
.dentry
))
373 return ERR_PTR(-ENOMEM
);
374 path
.mnt
= mntget(sock_mnt
);
376 d_instantiate(path
.dentry
, SOCK_INODE(sock
));
377 SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
379 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
,
381 if (unlikely(IS_ERR(file
))) {
382 /* drop dentry, keep inode */
383 ihold(path
.dentry
->d_inode
);
389 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
390 file
->private_data
= sock
;
393 EXPORT_SYMBOL(sock_alloc_file
);
395 static int sock_map_fd(struct socket
*sock
, int flags
)
397 struct file
*newfile
;
398 int fd
= get_unused_fd_flags(flags
);
399 if (unlikely(fd
< 0))
402 newfile
= sock_alloc_file(sock
, flags
, NULL
);
403 if (likely(!IS_ERR(newfile
))) {
404 fd_install(fd
, newfile
);
409 return PTR_ERR(newfile
);
412 struct socket
*sock_from_file(struct file
*file
, int *err
)
414 if (file
->f_op
== &socket_file_ops
)
415 return file
->private_data
; /* set in sock_map_fd */
420 EXPORT_SYMBOL(sock_from_file
);
423 * sockfd_lookup - Go from a file number to its socket slot
425 * @err: pointer to an error code return
427 * The file handle passed in is locked and the socket it is bound
428 * too is returned. If an error occurs the err pointer is overwritten
429 * with a negative errno code and NULL is returned. The function checks
430 * for both invalid handles and passing a handle which is not a socket.
432 * On a success the socket object pointer is returned.
435 struct socket
*sockfd_lookup(int fd
, int *err
)
446 sock
= sock_from_file(file
, err
);
451 EXPORT_SYMBOL(sockfd_lookup
);
453 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
455 struct fd f
= fdget(fd
);
460 sock
= sock_from_file(f
.file
, err
);
462 *fput_needed
= f
.flags
;
470 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
471 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
472 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
473 static ssize_t
sockfs_getxattr(struct dentry
*dentry
,
474 const char *name
, void *value
, size_t size
)
476 const char *proto_name
;
481 if (!strncmp(name
, XATTR_NAME_SOCKPROTONAME
, XATTR_NAME_SOCKPROTONAME_LEN
)) {
482 proto_name
= dentry
->d_name
.name
;
483 proto_size
= strlen(proto_name
);
487 if (proto_size
+ 1 > size
)
490 strncpy(value
, proto_name
, proto_size
+ 1);
492 error
= proto_size
+ 1;
499 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
505 len
= security_inode_listsecurity(dentry
->d_inode
, buffer
, size
);
515 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
520 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
527 static const struct inode_operations sockfs_inode_ops
= {
528 .getxattr
= sockfs_getxattr
,
529 .listxattr
= sockfs_listxattr
,
533 * sock_alloc - allocate a socket
535 * Allocate a new inode and socket object. The two are bound together
536 * and initialised. The socket is then returned. If we are out of inodes
540 static struct socket
*sock_alloc(void)
545 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
549 sock
= SOCKET_I(inode
);
551 kmemcheck_annotate_bitfield(sock
, type
);
552 inode
->i_ino
= get_next_ino();
553 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
554 inode
->i_uid
= current_fsuid();
555 inode
->i_gid
= current_fsgid();
556 inode
->i_op
= &sockfs_inode_ops
;
558 this_cpu_add(sockets_in_use
, 1);
563 * In theory you can't get an open on this inode, but /proc provides
564 * a back door. Remember to keep it shut otherwise you'll let the
565 * creepy crawlies in.
568 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
573 const struct file_operations bad_sock_fops
= {
574 .owner
= THIS_MODULE
,
575 .open
= sock_no_open
,
576 .llseek
= noop_llseek
,
580 * sock_release - close a socket
581 * @sock: socket to close
583 * The socket is released from the protocol stack if it has a release
584 * callback, and the inode is then released if the socket is bound to
585 * an inode not a file.
588 void sock_release(struct socket
*sock
)
591 struct module
*owner
= sock
->ops
->owner
;
593 sock
->ops
->release(sock
);
598 if (rcu_dereference_protected(sock
->wq
, 1)->fasync_list
)
599 pr_err("%s: fasync list not empty!\n", __func__
);
601 if (test_bit(SOCK_EXTERNALLY_ALLOCATED
, &sock
->flags
))
604 this_cpu_sub(sockets_in_use
, 1);
606 iput(SOCK_INODE(sock
));
611 EXPORT_SYMBOL(sock_release
);
613 void __sock_tx_timestamp(const struct sock
*sk
, __u8
*tx_flags
)
615 u8 flags
= *tx_flags
;
617 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_TX_HARDWARE
)
618 flags
|= SKBTX_HW_TSTAMP
;
620 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_TX_SOFTWARE
)
621 flags
|= SKBTX_SW_TSTAMP
;
623 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_TX_SCHED
)
624 flags
|= SKBTX_SCHED_TSTAMP
;
626 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_TX_ACK
)
627 flags
|= SKBTX_ACK_TSTAMP
;
631 EXPORT_SYMBOL(__sock_tx_timestamp
);
633 static inline int __sock_sendmsg_nosec(struct kiocb
*iocb
, struct socket
*sock
,
634 struct msghdr
*msg
, size_t size
)
636 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
643 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
646 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
647 struct msghdr
*msg
, size_t size
)
649 int err
= security_socket_sendmsg(sock
, msg
, size
);
651 return err
?: __sock_sendmsg_nosec(iocb
, sock
, msg
, size
);
654 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
657 struct sock_iocb siocb
;
660 init_sync_kiocb(&iocb
, NULL
);
661 iocb
.private = &siocb
;
662 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
663 if (-EIOCBQUEUED
== ret
)
664 ret
= wait_on_sync_kiocb(&iocb
);
667 EXPORT_SYMBOL(sock_sendmsg
);
669 static int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
672 struct sock_iocb siocb
;
675 init_sync_kiocb(&iocb
, NULL
);
676 iocb
.private = &siocb
;
677 ret
= __sock_sendmsg_nosec(&iocb
, sock
, msg
, size
);
678 if (-EIOCBQUEUED
== ret
)
679 ret
= wait_on_sync_kiocb(&iocb
);
683 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
684 struct kvec
*vec
, size_t num
, size_t size
)
686 mm_segment_t oldfs
= get_fs();
691 * the following is safe, since for compiler definitions of kvec and
692 * iovec are identical, yielding the same in-core layout and alignment
694 msg
->msg_iov
= (struct iovec
*)vec
;
695 msg
->msg_iovlen
= num
;
696 result
= sock_sendmsg(sock
, msg
, size
);
700 EXPORT_SYMBOL(kernel_sendmsg
);
703 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
705 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
708 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
709 struct scm_timestamping tss
;
711 struct skb_shared_hwtstamps
*shhwtstamps
=
714 /* Race occurred between timestamp enabling and packet
715 receiving. Fill in the current time for now. */
716 if (need_software_tstamp
&& skb
->tstamp
.tv64
== 0)
717 __net_timestamp(skb
);
719 if (need_software_tstamp
) {
720 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
722 skb_get_timestamp(skb
, &tv
);
723 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
727 skb_get_timestampns(skb
, &ts
);
728 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
733 memset(&tss
, 0, sizeof(tss
));
734 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
) &&
735 ktime_to_timespec_cond(skb
->tstamp
, tss
.ts
+ 0))
738 (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
) &&
739 ktime_to_timespec_cond(shhwtstamps
->hwtstamp
, tss
.ts
+ 2))
742 put_cmsg(msg
, SOL_SOCKET
,
743 SCM_TIMESTAMPING
, sizeof(tss
), &tss
);
745 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
747 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
752 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
754 if (!skb
->wifi_acked_valid
)
757 ack
= skb
->wifi_acked
;
759 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
761 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
763 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
766 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& skb
->dropcount
)
767 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
768 sizeof(__u32
), &skb
->dropcount
);
771 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
774 sock_recv_timestamp(msg
, sk
, skb
);
775 sock_recv_drops(msg
, sk
, skb
);
777 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
779 static inline int __sock_recvmsg_nosec(struct kiocb
*iocb
, struct socket
*sock
,
780 struct msghdr
*msg
, size_t size
, int flags
)
782 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
790 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
793 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
794 struct msghdr
*msg
, size_t size
, int flags
)
796 int err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
798 return err
?: __sock_recvmsg_nosec(iocb
, sock
, msg
, size
, flags
);
801 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
802 size_t size
, int flags
)
805 struct sock_iocb siocb
;
808 init_sync_kiocb(&iocb
, NULL
);
809 iocb
.private = &siocb
;
810 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
811 if (-EIOCBQUEUED
== ret
)
812 ret
= wait_on_sync_kiocb(&iocb
);
815 EXPORT_SYMBOL(sock_recvmsg
);
817 static int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
818 size_t size
, int flags
)
821 struct sock_iocb siocb
;
824 init_sync_kiocb(&iocb
, NULL
);
825 iocb
.private = &siocb
;
826 ret
= __sock_recvmsg_nosec(&iocb
, sock
, msg
, size
, flags
);
827 if (-EIOCBQUEUED
== ret
)
828 ret
= wait_on_sync_kiocb(&iocb
);
833 * kernel_recvmsg - Receive a message from a socket (kernel space)
834 * @sock: The socket to receive the message from
835 * @msg: Received message
836 * @vec: Input s/g array for message data
837 * @num: Size of input s/g array
838 * @size: Number of bytes to read
839 * @flags: Message flags (MSG_DONTWAIT, etc...)
841 * On return the msg structure contains the scatter/gather array passed in the
842 * vec argument. The array is modified so that it consists of the unfilled
843 * portion of the original array.
845 * The returned value is the total number of bytes received, or an error.
847 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
848 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
850 mm_segment_t oldfs
= get_fs();
855 * the following is safe, since for compiler definitions of kvec and
856 * iovec are identical, yielding the same in-core layout and alignment
858 msg
->msg_iov
= (struct iovec
*)vec
, msg
->msg_iovlen
= num
;
859 result
= sock_recvmsg(sock
, msg
, size
, flags
);
863 EXPORT_SYMBOL(kernel_recvmsg
);
865 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
866 int offset
, size_t size
, loff_t
*ppos
, int more
)
871 sock
= file
->private_data
;
873 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
874 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
877 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
880 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
881 struct pipe_inode_info
*pipe
, size_t len
,
884 struct socket
*sock
= file
->private_data
;
886 if (unlikely(!sock
->ops
->splice_read
))
889 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
892 static struct sock_iocb
*alloc_sock_iocb(struct kiocb
*iocb
,
893 struct sock_iocb
*siocb
)
895 if (!is_sync_kiocb(iocb
))
899 iocb
->private = siocb
;
903 static ssize_t
do_sock_read(struct msghdr
*msg
, struct kiocb
*iocb
,
904 struct file
*file
, const struct iovec
*iov
,
905 unsigned long nr_segs
)
907 struct socket
*sock
= file
->private_data
;
911 for (i
= 0; i
< nr_segs
; i
++)
912 size
+= iov
[i
].iov_len
;
914 msg
->msg_name
= NULL
;
915 msg
->msg_namelen
= 0;
916 msg
->msg_control
= NULL
;
917 msg
->msg_controllen
= 0;
918 msg
->msg_iov
= (struct iovec
*)iov
;
919 msg
->msg_iovlen
= nr_segs
;
920 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
922 return __sock_recvmsg(iocb
, sock
, msg
, size
, msg
->msg_flags
);
925 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
926 unsigned long nr_segs
, loff_t pos
)
928 struct sock_iocb siocb
, *x
;
933 if (iocb
->ki_nbytes
== 0) /* Match SYS5 behaviour */
937 x
= alloc_sock_iocb(iocb
, &siocb
);
940 return do_sock_read(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
943 static ssize_t
do_sock_write(struct msghdr
*msg
, struct kiocb
*iocb
,
944 struct file
*file
, const struct iovec
*iov
,
945 unsigned long nr_segs
)
947 struct socket
*sock
= file
->private_data
;
951 for (i
= 0; i
< nr_segs
; i
++)
952 size
+= iov
[i
].iov_len
;
954 msg
->msg_name
= NULL
;
955 msg
->msg_namelen
= 0;
956 msg
->msg_control
= NULL
;
957 msg
->msg_controllen
= 0;
958 msg
->msg_iov
= (struct iovec
*)iov
;
959 msg
->msg_iovlen
= nr_segs
;
960 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
961 if (sock
->type
== SOCK_SEQPACKET
)
962 msg
->msg_flags
|= MSG_EOR
;
964 return __sock_sendmsg(iocb
, sock
, msg
, size
);
967 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
968 unsigned long nr_segs
, loff_t pos
)
970 struct sock_iocb siocb
, *x
;
975 x
= alloc_sock_iocb(iocb
, &siocb
);
979 return do_sock_write(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
983 * Atomic setting of ioctl hooks to avoid race
984 * with module unload.
987 static DEFINE_MUTEX(br_ioctl_mutex
);
988 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
990 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
992 mutex_lock(&br_ioctl_mutex
);
993 br_ioctl_hook
= hook
;
994 mutex_unlock(&br_ioctl_mutex
);
996 EXPORT_SYMBOL(brioctl_set
);
998 static DEFINE_MUTEX(vlan_ioctl_mutex
);
999 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
1001 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
1003 mutex_lock(&vlan_ioctl_mutex
);
1004 vlan_ioctl_hook
= hook
;
1005 mutex_unlock(&vlan_ioctl_mutex
);
1007 EXPORT_SYMBOL(vlan_ioctl_set
);
1009 static DEFINE_MUTEX(dlci_ioctl_mutex
);
1010 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
1012 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
1014 mutex_lock(&dlci_ioctl_mutex
);
1015 dlci_ioctl_hook
= hook
;
1016 mutex_unlock(&dlci_ioctl_mutex
);
1018 EXPORT_SYMBOL(dlci_ioctl_set
);
1020 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
1021 unsigned int cmd
, unsigned long arg
)
1024 void __user
*argp
= (void __user
*)arg
;
1026 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
1029 * If this ioctl is unknown try to hand it down
1030 * to the NIC driver.
1032 if (err
== -ENOIOCTLCMD
)
1033 err
= dev_ioctl(net
, cmd
, argp
);
1039 * With an ioctl, arg may well be a user mode pointer, but we don't know
1040 * what to do with it - that's up to the protocol still.
1043 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
1045 struct socket
*sock
;
1047 void __user
*argp
= (void __user
*)arg
;
1051 sock
= file
->private_data
;
1054 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
1055 err
= dev_ioctl(net
, cmd
, argp
);
1057 #ifdef CONFIG_WEXT_CORE
1058 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
1059 err
= dev_ioctl(net
, cmd
, argp
);
1066 if (get_user(pid
, (int __user
*)argp
))
1068 f_setown(sock
->file
, pid
, 1);
1073 err
= put_user(f_getown(sock
->file
),
1074 (int __user
*)argp
);
1082 request_module("bridge");
1084 mutex_lock(&br_ioctl_mutex
);
1086 err
= br_ioctl_hook(net
, cmd
, argp
);
1087 mutex_unlock(&br_ioctl_mutex
);
1092 if (!vlan_ioctl_hook
)
1093 request_module("8021q");
1095 mutex_lock(&vlan_ioctl_mutex
);
1096 if (vlan_ioctl_hook
)
1097 err
= vlan_ioctl_hook(net
, argp
);
1098 mutex_unlock(&vlan_ioctl_mutex
);
1103 if (!dlci_ioctl_hook
)
1104 request_module("dlci");
1106 mutex_lock(&dlci_ioctl_mutex
);
1107 if (dlci_ioctl_hook
)
1108 err
= dlci_ioctl_hook(cmd
, argp
);
1109 mutex_unlock(&dlci_ioctl_mutex
);
1112 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1118 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1121 struct socket
*sock
= NULL
;
1123 err
= security_socket_create(family
, type
, protocol
, 1);
1127 sock
= sock_alloc();
1134 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1146 EXPORT_SYMBOL(sock_create_lite
);
1148 /* No kernel lock held - perfect */
1149 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
1151 unsigned int busy_flag
= 0;
1152 struct socket
*sock
;
1155 * We can't return errors to poll, so it's either yes or no.
1157 sock
= file
->private_data
;
1159 if (sk_can_busy_loop(sock
->sk
)) {
1160 /* this socket can poll_ll so tell the system call */
1161 busy_flag
= POLL_BUSY_LOOP
;
1163 /* once, only if requested by syscall */
1164 if (wait
&& (wait
->_key
& POLL_BUSY_LOOP
))
1165 sk_busy_loop(sock
->sk
, 1);
1168 return busy_flag
| sock
->ops
->poll(file
, sock
, wait
);
1171 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1173 struct socket
*sock
= file
->private_data
;
1175 return sock
->ops
->mmap(file
, sock
, vma
);
1178 static int sock_close(struct inode
*inode
, struct file
*filp
)
1180 sock_release(SOCKET_I(inode
));
1185 * Update the socket async list
1187 * Fasync_list locking strategy.
1189 * 1. fasync_list is modified only under process context socket lock
1190 * i.e. under semaphore.
1191 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1192 * or under socket lock
1195 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1197 struct socket
*sock
= filp
->private_data
;
1198 struct sock
*sk
= sock
->sk
;
1199 struct socket_wq
*wq
;
1205 wq
= rcu_dereference_protected(sock
->wq
, sock_owned_by_user(sk
));
1206 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1208 if (!wq
->fasync_list
)
1209 sock_reset_flag(sk
, SOCK_FASYNC
);
1211 sock_set_flag(sk
, SOCK_FASYNC
);
1217 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1219 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1221 struct socket_wq
*wq
;
1226 wq
= rcu_dereference(sock
->wq
);
1227 if (!wq
|| !wq
->fasync_list
) {
1232 case SOCK_WAKE_WAITD
:
1233 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1236 case SOCK_WAKE_SPACE
:
1237 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1242 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1245 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1250 EXPORT_SYMBOL(sock_wake_async
);
1252 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1253 struct socket
**res
, int kern
)
1256 struct socket
*sock
;
1257 const struct net_proto_family
*pf
;
1260 * Check protocol is in range
1262 if (family
< 0 || family
>= NPROTO
)
1263 return -EAFNOSUPPORT
;
1264 if (type
< 0 || type
>= SOCK_MAX
)
1269 This uglymoron is moved from INET layer to here to avoid
1270 deadlock in module load.
1272 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1276 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1282 err
= security_socket_create(family
, type
, protocol
, kern
);
1287 * Allocate the socket and allow the family to set things up. if
1288 * the protocol is 0, the family is instructed to select an appropriate
1291 sock
= sock_alloc();
1293 net_warn_ratelimited("socket: no more sockets\n");
1294 return -ENFILE
; /* Not exactly a match, but its the
1295 closest posix thing */
1300 #ifdef CONFIG_MODULES
1301 /* Attempt to load a protocol module if the find failed.
1303 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1304 * requested real, full-featured networking support upon configuration.
1305 * Otherwise module support will break!
1307 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1308 request_module("net-pf-%d", family
);
1312 pf
= rcu_dereference(net_families
[family
]);
1313 err
= -EAFNOSUPPORT
;
1318 * We will call the ->create function, that possibly is in a loadable
1319 * module, so we have to bump that loadable module refcnt first.
1321 if (!try_module_get(pf
->owner
))
1324 /* Now protected by module ref count */
1327 err
= pf
->create(net
, sock
, protocol
, kern
);
1329 goto out_module_put
;
1332 * Now to bump the refcnt of the [loadable] module that owns this
1333 * socket at sock_release time we decrement its refcnt.
1335 if (!try_module_get(sock
->ops
->owner
))
1336 goto out_module_busy
;
1339 * Now that we're done with the ->create function, the [loadable]
1340 * module can have its refcnt decremented
1342 module_put(pf
->owner
);
1343 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1345 goto out_sock_release
;
1351 err
= -EAFNOSUPPORT
;
1354 module_put(pf
->owner
);
1361 goto out_sock_release
;
1363 EXPORT_SYMBOL(__sock_create
);
1365 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1367 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1369 EXPORT_SYMBOL(sock_create
);
1371 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1373 return __sock_create(&init_net
, family
, type
, protocol
, res
, 1);
1375 EXPORT_SYMBOL(sock_create_kern
);
1377 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1380 struct socket
*sock
;
1383 /* Check the SOCK_* constants for consistency. */
1384 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1385 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1386 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1387 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1389 flags
= type
& ~SOCK_TYPE_MASK
;
1390 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1392 type
&= SOCK_TYPE_MASK
;
1394 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1395 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1397 retval
= sock_create(family
, type
, protocol
, &sock
);
1401 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1406 /* It may be already another descriptor 8) Not kernel problem. */
1415 * Create a pair of connected sockets.
1418 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1419 int __user
*, usockvec
)
1421 struct socket
*sock1
, *sock2
;
1423 struct file
*newfile1
, *newfile2
;
1426 flags
= type
& ~SOCK_TYPE_MASK
;
1427 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1429 type
&= SOCK_TYPE_MASK
;
1431 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1432 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1435 * Obtain the first socket and check if the underlying protocol
1436 * supports the socketpair call.
1439 err
= sock_create(family
, type
, protocol
, &sock1
);
1443 err
= sock_create(family
, type
, protocol
, &sock2
);
1447 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1449 goto out_release_both
;
1451 fd1
= get_unused_fd_flags(flags
);
1452 if (unlikely(fd1
< 0)) {
1454 goto out_release_both
;
1457 fd2
= get_unused_fd_flags(flags
);
1458 if (unlikely(fd2
< 0)) {
1460 goto out_put_unused_1
;
1463 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1464 if (unlikely(IS_ERR(newfile1
))) {
1465 err
= PTR_ERR(newfile1
);
1466 goto out_put_unused_both
;
1469 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1470 if (IS_ERR(newfile2
)) {
1471 err
= PTR_ERR(newfile2
);
1475 err
= put_user(fd1
, &usockvec
[0]);
1479 err
= put_user(fd2
, &usockvec
[1]);
1483 audit_fd_pair(fd1
, fd2
);
1485 fd_install(fd1
, newfile1
);
1486 fd_install(fd2
, newfile2
);
1487 /* fd1 and fd2 may be already another descriptors.
1488 * Not kernel problem.
1504 sock_release(sock2
);
1507 out_put_unused_both
:
1512 sock_release(sock2
);
1514 sock_release(sock1
);
1520 * Bind a name to a socket. Nothing much to do here since it's
1521 * the protocol's responsibility to handle the local address.
1523 * We move the socket address to kernel space before we call
1524 * the protocol layer (having also checked the address is ok).
1527 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1529 struct socket
*sock
;
1530 struct sockaddr_storage address
;
1531 int err
, fput_needed
;
1533 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1535 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1537 err
= security_socket_bind(sock
,
1538 (struct sockaddr
*)&address
,
1541 err
= sock
->ops
->bind(sock
,
1545 fput_light(sock
->file
, fput_needed
);
1551 * Perform a listen. Basically, we allow the protocol to do anything
1552 * necessary for a listen, and if that works, we mark the socket as
1553 * ready for listening.
1556 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1558 struct socket
*sock
;
1559 int err
, fput_needed
;
1562 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1564 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1565 if ((unsigned int)backlog
> somaxconn
)
1566 backlog
= somaxconn
;
1568 err
= security_socket_listen(sock
, backlog
);
1570 err
= sock
->ops
->listen(sock
, backlog
);
1572 fput_light(sock
->file
, fput_needed
);
1578 * For accept, we attempt to create a new socket, set up the link
1579 * with the client, wake up the client, then return the new
1580 * connected fd. We collect the address of the connector in kernel
1581 * space and move it to user at the very end. This is unclean because
1582 * we open the socket then return an error.
1584 * 1003.1g adds the ability to recvmsg() to query connection pending
1585 * status to recvmsg. We need to add that support in a way thats
1586 * clean when we restucture accept also.
1589 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1590 int __user
*, upeer_addrlen
, int, flags
)
1592 struct socket
*sock
, *newsock
;
1593 struct file
*newfile
;
1594 int err
, len
, newfd
, fput_needed
;
1595 struct sockaddr_storage address
;
1597 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1600 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1601 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1603 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1608 newsock
= sock_alloc();
1612 newsock
->type
= sock
->type
;
1613 newsock
->ops
= sock
->ops
;
1616 * We don't need try_module_get here, as the listening socket (sock)
1617 * has the protocol module (sock->ops->owner) held.
1619 __module_get(newsock
->ops
->owner
);
1621 newfd
= get_unused_fd_flags(flags
);
1622 if (unlikely(newfd
< 0)) {
1624 sock_release(newsock
);
1627 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1628 if (unlikely(IS_ERR(newfile
))) {
1629 err
= PTR_ERR(newfile
);
1630 put_unused_fd(newfd
);
1631 sock_release(newsock
);
1635 err
= security_socket_accept(sock
, newsock
);
1639 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1643 if (upeer_sockaddr
) {
1644 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1646 err
= -ECONNABORTED
;
1649 err
= move_addr_to_user(&address
,
1650 len
, upeer_sockaddr
, upeer_addrlen
);
1655 /* File flags are not inherited via accept() unlike another OSes. */
1657 fd_install(newfd
, newfile
);
1661 fput_light(sock
->file
, fput_needed
);
1666 put_unused_fd(newfd
);
1670 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1671 int __user
*, upeer_addrlen
)
1673 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1677 * Attempt to connect to a socket with the server address. The address
1678 * is in user space so we verify it is OK and move it to kernel space.
1680 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1683 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1684 * other SEQPACKET protocols that take time to connect() as it doesn't
1685 * include the -EINPROGRESS status for such sockets.
1688 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1691 struct socket
*sock
;
1692 struct sockaddr_storage address
;
1693 int err
, fput_needed
;
1695 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1698 err
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1703 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1707 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1708 sock
->file
->f_flags
);
1710 fput_light(sock
->file
, fput_needed
);
1716 * Get the local address ('name') of a socket object. Move the obtained
1717 * name to user space.
1720 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1721 int __user
*, usockaddr_len
)
1723 struct socket
*sock
;
1724 struct sockaddr_storage address
;
1725 int len
, err
, fput_needed
;
1727 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1731 err
= security_socket_getsockname(sock
);
1735 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1738 err
= move_addr_to_user(&address
, len
, usockaddr
, usockaddr_len
);
1741 fput_light(sock
->file
, fput_needed
);
1747 * Get the remote address ('name') of a socket object. Move the obtained
1748 * name to user space.
1751 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1752 int __user
*, usockaddr_len
)
1754 struct socket
*sock
;
1755 struct sockaddr_storage address
;
1756 int len
, err
, fput_needed
;
1758 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1760 err
= security_socket_getpeername(sock
);
1762 fput_light(sock
->file
, fput_needed
);
1767 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1770 err
= move_addr_to_user(&address
, len
, usockaddr
,
1772 fput_light(sock
->file
, fput_needed
);
1778 * Send a datagram to a given address. We move the address into kernel
1779 * space and check the user space data area is readable before invoking
1783 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1784 unsigned int, flags
, struct sockaddr __user
*, addr
,
1787 struct socket
*sock
;
1788 struct sockaddr_storage address
;
1796 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1800 iov
.iov_base
= buff
;
1802 msg
.msg_name
= NULL
;
1805 msg
.msg_control
= NULL
;
1806 msg
.msg_controllen
= 0;
1807 msg
.msg_namelen
= 0;
1809 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1812 msg
.msg_name
= (struct sockaddr
*)&address
;
1813 msg
.msg_namelen
= addr_len
;
1815 if (sock
->file
->f_flags
& O_NONBLOCK
)
1816 flags
|= MSG_DONTWAIT
;
1817 msg
.msg_flags
= flags
;
1818 err
= sock_sendmsg(sock
, &msg
, len
);
1821 fput_light(sock
->file
, fput_needed
);
1827 * Send a datagram down a socket.
1830 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1831 unsigned int, flags
)
1833 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1837 * Receive a frame from the socket and optionally record the address of the
1838 * sender. We verify the buffers are writable and if needed move the
1839 * sender address from kernel to user space.
1842 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1843 unsigned int, flags
, struct sockaddr __user
*, addr
,
1844 int __user
*, addr_len
)
1846 struct socket
*sock
;
1849 struct sockaddr_storage address
;
1855 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1859 msg
.msg_control
= NULL
;
1860 msg
.msg_controllen
= 0;
1864 iov
.iov_base
= ubuf
;
1865 /* Save some cycles and don't copy the address if not needed */
1866 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
1867 /* We assume all kernel code knows the size of sockaddr_storage */
1868 msg
.msg_namelen
= 0;
1869 if (sock
->file
->f_flags
& O_NONBLOCK
)
1870 flags
|= MSG_DONTWAIT
;
1871 err
= sock_recvmsg(sock
, &msg
, size
, flags
);
1873 if (err
>= 0 && addr
!= NULL
) {
1874 err2
= move_addr_to_user(&address
,
1875 msg
.msg_namelen
, addr
, addr_len
);
1880 fput_light(sock
->file
, fput_needed
);
1886 * Receive a datagram from a socket.
1889 SYSCALL_DEFINE4(recv
, int, fd
, void __user
*, ubuf
, size_t, size
,
1890 unsigned int, flags
)
1892 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1896 * Set a socket option. Because we don't know the option lengths we have
1897 * to pass the user mode parameter for the protocols to sort out.
1900 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1901 char __user
*, optval
, int, optlen
)
1903 int err
, fput_needed
;
1904 struct socket
*sock
;
1909 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1911 err
= security_socket_setsockopt(sock
, level
, optname
);
1915 if (level
== SOL_SOCKET
)
1917 sock_setsockopt(sock
, level
, optname
, optval
,
1921 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1924 fput_light(sock
->file
, fput_needed
);
1930 * Get a socket option. Because we don't know the option lengths we have
1931 * to pass a user mode parameter for the protocols to sort out.
1934 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1935 char __user
*, optval
, int __user
*, optlen
)
1937 int err
, fput_needed
;
1938 struct socket
*sock
;
1940 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1942 err
= security_socket_getsockopt(sock
, level
, optname
);
1946 if (level
== SOL_SOCKET
)
1948 sock_getsockopt(sock
, level
, optname
, optval
,
1952 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1955 fput_light(sock
->file
, fput_needed
);
1961 * Shutdown a socket.
1964 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1966 int err
, fput_needed
;
1967 struct socket
*sock
;
1969 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1971 err
= security_socket_shutdown(sock
, how
);
1973 err
= sock
->ops
->shutdown(sock
, how
);
1974 fput_light(sock
->file
, fput_needed
);
1979 /* A couple of helpful macros for getting the address of the 32/64 bit
1980 * fields which are the same type (int / unsigned) on our platforms.
1982 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1983 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1984 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1986 struct used_address
{
1987 struct sockaddr_storage name
;
1988 unsigned int name_len
;
1991 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
1992 struct msghdr __user
*umsg
)
1994 if (copy_from_user(kmsg
, umsg
, sizeof(struct msghdr
)))
1997 if (kmsg
->msg_name
== NULL
)
1998 kmsg
->msg_namelen
= 0;
2000 if (kmsg
->msg_namelen
< 0)
2003 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
2004 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
2008 static int ___sys_sendmsg(struct socket
*sock
, struct msghdr __user
*msg
,
2009 struct msghdr
*msg_sys
, unsigned int flags
,
2010 struct used_address
*used_address
)
2012 struct compat_msghdr __user
*msg_compat
=
2013 (struct compat_msghdr __user
*)msg
;
2014 struct sockaddr_storage address
;
2015 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
2016 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
2017 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
2018 /* 20 is size of ipv6_pktinfo */
2019 unsigned char *ctl_buf
= ctl
;
2020 int err
, ctl_len
, total_len
;
2023 if (MSG_CMSG_COMPAT
& flags
) {
2024 if (get_compat_msghdr(msg_sys
, msg_compat
))
2027 err
= copy_msghdr_from_user(msg_sys
, msg
);
2032 if (msg_sys
->msg_iovlen
> UIO_FASTIOV
) {
2034 if (msg_sys
->msg_iovlen
> UIO_MAXIOV
)
2037 iov
= kmalloc(msg_sys
->msg_iovlen
* sizeof(struct iovec
),
2043 /* This will also move the address data into kernel space */
2044 if (MSG_CMSG_COMPAT
& flags
) {
2045 err
= verify_compat_iovec(msg_sys
, iov
, &address
, VERIFY_READ
);
2047 err
= verify_iovec(msg_sys
, iov
, &address
, VERIFY_READ
);
2054 if (msg_sys
->msg_controllen
> INT_MAX
)
2056 ctl_len
= msg_sys
->msg_controllen
;
2057 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
2059 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
2063 ctl_buf
= msg_sys
->msg_control
;
2064 ctl_len
= msg_sys
->msg_controllen
;
2065 } else if (ctl_len
) {
2066 if (ctl_len
> sizeof(ctl
)) {
2067 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
2068 if (ctl_buf
== NULL
)
2073 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2074 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2075 * checking falls down on this.
2077 if (copy_from_user(ctl_buf
,
2078 (void __user __force
*)msg_sys
->msg_control
,
2081 msg_sys
->msg_control
= ctl_buf
;
2083 msg_sys
->msg_flags
= flags
;
2085 if (sock
->file
->f_flags
& O_NONBLOCK
)
2086 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
2088 * If this is sendmmsg() and current destination address is same as
2089 * previously succeeded address, omit asking LSM's decision.
2090 * used_address->name_len is initialized to UINT_MAX so that the first
2091 * destination address never matches.
2093 if (used_address
&& msg_sys
->msg_name
&&
2094 used_address
->name_len
== msg_sys
->msg_namelen
&&
2095 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
2096 used_address
->name_len
)) {
2097 err
= sock_sendmsg_nosec(sock
, msg_sys
, total_len
);
2100 err
= sock_sendmsg(sock
, msg_sys
, total_len
);
2102 * If this is sendmmsg() and sending to current destination address was
2103 * successful, remember it.
2105 if (used_address
&& err
>= 0) {
2106 used_address
->name_len
= msg_sys
->msg_namelen
;
2107 if (msg_sys
->msg_name
)
2108 memcpy(&used_address
->name
, msg_sys
->msg_name
,
2109 used_address
->name_len
);
2114 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
2116 if (iov
!= iovstack
)
2123 * BSD sendmsg interface
2126 long __sys_sendmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
2128 int fput_needed
, err
;
2129 struct msghdr msg_sys
;
2130 struct socket
*sock
;
2132 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2136 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
);
2138 fput_light(sock
->file
, fput_needed
);
2143 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct msghdr __user
*, msg
, unsigned int, flags
)
2145 if (flags
& MSG_CMSG_COMPAT
)
2147 return __sys_sendmsg(fd
, msg
, flags
);
2151 * Linux sendmmsg interface
2154 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2157 int fput_needed
, err
, datagrams
;
2158 struct socket
*sock
;
2159 struct mmsghdr __user
*entry
;
2160 struct compat_mmsghdr __user
*compat_entry
;
2161 struct msghdr msg_sys
;
2162 struct used_address used_address
;
2164 if (vlen
> UIO_MAXIOV
)
2169 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2173 used_address
.name_len
= UINT_MAX
;
2175 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2178 while (datagrams
< vlen
) {
2179 if (MSG_CMSG_COMPAT
& flags
) {
2180 err
= ___sys_sendmsg(sock
, (struct msghdr __user
*)compat_entry
,
2181 &msg_sys
, flags
, &used_address
);
2184 err
= __put_user(err
, &compat_entry
->msg_len
);
2187 err
= ___sys_sendmsg(sock
,
2188 (struct msghdr __user
*)entry
,
2189 &msg_sys
, flags
, &used_address
);
2192 err
= put_user(err
, &entry
->msg_len
);
2201 fput_light(sock
->file
, fput_needed
);
2203 /* We only return an error if no datagrams were able to be sent */
2210 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2211 unsigned int, vlen
, unsigned int, flags
)
2213 if (flags
& MSG_CMSG_COMPAT
)
2215 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
);
2218 static int ___sys_recvmsg(struct socket
*sock
, struct msghdr __user
*msg
,
2219 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2221 struct compat_msghdr __user
*msg_compat
=
2222 (struct compat_msghdr __user
*)msg
;
2223 struct iovec iovstack
[UIO_FASTIOV
];
2224 struct iovec
*iov
= iovstack
;
2225 unsigned long cmsg_ptr
;
2226 int err
, total_len
, len
;
2228 /* kernel mode address */
2229 struct sockaddr_storage addr
;
2231 /* user mode address pointers */
2232 struct sockaddr __user
*uaddr
;
2233 int __user
*uaddr_len
;
2235 if (MSG_CMSG_COMPAT
& flags
) {
2236 if (get_compat_msghdr(msg_sys
, msg_compat
))
2239 err
= copy_msghdr_from_user(msg_sys
, msg
);
2244 if (msg_sys
->msg_iovlen
> UIO_FASTIOV
) {
2246 if (msg_sys
->msg_iovlen
> UIO_MAXIOV
)
2249 iov
= kmalloc(msg_sys
->msg_iovlen
* sizeof(struct iovec
),
2255 /* Save the user-mode address (verify_iovec will change the
2256 * kernel msghdr to use the kernel address space)
2258 uaddr
= (__force
void __user
*)msg_sys
->msg_name
;
2259 uaddr_len
= COMPAT_NAMELEN(msg
);
2260 if (MSG_CMSG_COMPAT
& flags
)
2261 err
= verify_compat_iovec(msg_sys
, iov
, &addr
, VERIFY_WRITE
);
2263 err
= verify_iovec(msg_sys
, iov
, &addr
, VERIFY_WRITE
);
2268 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2269 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2271 /* We assume all kernel code knows the size of sockaddr_storage */
2272 msg_sys
->msg_namelen
= 0;
2274 if (sock
->file
->f_flags
& O_NONBLOCK
)
2275 flags
|= MSG_DONTWAIT
;
2276 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
,
2282 if (uaddr
!= NULL
) {
2283 err
= move_addr_to_user(&addr
,
2284 msg_sys
->msg_namelen
, uaddr
,
2289 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2293 if (MSG_CMSG_COMPAT
& flags
)
2294 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2295 &msg_compat
->msg_controllen
);
2297 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2298 &msg
->msg_controllen
);
2304 if (iov
!= iovstack
)
2311 * BSD recvmsg interface
2314 long __sys_recvmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
2316 int fput_needed
, err
;
2317 struct msghdr msg_sys
;
2318 struct socket
*sock
;
2320 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2324 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2326 fput_light(sock
->file
, fput_needed
);
2331 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct msghdr __user
*, msg
,
2332 unsigned int, flags
)
2334 if (flags
& MSG_CMSG_COMPAT
)
2336 return __sys_recvmsg(fd
, msg
, flags
);
2340 * Linux recvmmsg interface
2343 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2344 unsigned int flags
, struct timespec
*timeout
)
2346 int fput_needed
, err
, datagrams
;
2347 struct socket
*sock
;
2348 struct mmsghdr __user
*entry
;
2349 struct compat_mmsghdr __user
*compat_entry
;
2350 struct msghdr msg_sys
;
2351 struct timespec end_time
;
2354 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2360 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2364 err
= sock_error(sock
->sk
);
2369 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2371 while (datagrams
< vlen
) {
2373 * No need to ask LSM for more than the first datagram.
2375 if (MSG_CMSG_COMPAT
& flags
) {
2376 err
= ___sys_recvmsg(sock
, (struct msghdr __user
*)compat_entry
,
2377 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2381 err
= __put_user(err
, &compat_entry
->msg_len
);
2384 err
= ___sys_recvmsg(sock
,
2385 (struct msghdr __user
*)entry
,
2386 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2390 err
= put_user(err
, &entry
->msg_len
);
2398 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2399 if (flags
& MSG_WAITFORONE
)
2400 flags
|= MSG_DONTWAIT
;
2403 ktime_get_ts(timeout
);
2404 *timeout
= timespec_sub(end_time
, *timeout
);
2405 if (timeout
->tv_sec
< 0) {
2406 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2410 /* Timeout, return less than vlen datagrams */
2411 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2415 /* Out of band data, return right away */
2416 if (msg_sys
.msg_flags
& MSG_OOB
)
2421 fput_light(sock
->file
, fput_needed
);
2426 if (datagrams
!= 0) {
2428 * We may return less entries than requested (vlen) if the
2429 * sock is non block and there aren't enough datagrams...
2431 if (err
!= -EAGAIN
) {
2433 * ... or if recvmsg returns an error after we
2434 * received some datagrams, where we record the
2435 * error to return on the next call or if the
2436 * app asks about it using getsockopt(SO_ERROR).
2438 sock
->sk
->sk_err
= -err
;
2447 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2448 unsigned int, vlen
, unsigned int, flags
,
2449 struct timespec __user
*, timeout
)
2452 struct timespec timeout_sys
;
2454 if (flags
& MSG_CMSG_COMPAT
)
2458 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2460 if (copy_from_user(&timeout_sys
, timeout
, sizeof(timeout_sys
)))
2463 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2465 if (datagrams
> 0 &&
2466 copy_to_user(timeout
, &timeout_sys
, sizeof(timeout_sys
)))
2467 datagrams
= -EFAULT
;
2472 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2473 /* Argument list sizes for sys_socketcall */
2474 #define AL(x) ((x) * sizeof(unsigned long))
2475 static const unsigned char nargs
[21] = {
2476 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2477 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2478 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2485 * System call vectors.
2487 * Argument checking cleaned up. Saved 20% in size.
2488 * This function doesn't need to set the kernel lock because
2489 * it is set by the callees.
2492 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2494 unsigned long a
[AUDITSC_ARGS
];
2495 unsigned long a0
, a1
;
2499 if (call
< 1 || call
> SYS_SENDMMSG
)
2503 if (len
> sizeof(a
))
2506 /* copy_from_user should be SMP safe. */
2507 if (copy_from_user(a
, args
, len
))
2510 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2519 err
= sys_socket(a0
, a1
, a
[2]);
2522 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2525 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2528 err
= sys_listen(a0
, a1
);
2531 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2532 (int __user
*)a
[2], 0);
2534 case SYS_GETSOCKNAME
:
2536 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2537 (int __user
*)a
[2]);
2539 case SYS_GETPEERNAME
:
2541 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2542 (int __user
*)a
[2]);
2544 case SYS_SOCKETPAIR
:
2545 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2548 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2551 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2552 (struct sockaddr __user
*)a
[4], a
[5]);
2555 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2558 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2559 (struct sockaddr __user
*)a
[4],
2560 (int __user
*)a
[5]);
2563 err
= sys_shutdown(a0
, a1
);
2565 case SYS_SETSOCKOPT
:
2566 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2568 case SYS_GETSOCKOPT
:
2570 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2571 (int __user
*)a
[4]);
2574 err
= sys_sendmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2577 err
= sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3]);
2580 err
= sys_recvmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2583 err
= sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3],
2584 (struct timespec __user
*)a
[4]);
2587 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2588 (int __user
*)a
[2], a
[3]);
2597 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2600 * sock_register - add a socket protocol handler
2601 * @ops: description of protocol
2603 * This function is called by a protocol handler that wants to
2604 * advertise its address family, and have it linked into the
2605 * socket interface. The value ops->family corresponds to the
2606 * socket system call protocol family.
2608 int sock_register(const struct net_proto_family
*ops
)
2612 if (ops
->family
>= NPROTO
) {
2613 pr_crit("protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2617 spin_lock(&net_family_lock
);
2618 if (rcu_dereference_protected(net_families
[ops
->family
],
2619 lockdep_is_held(&net_family_lock
)))
2622 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2625 spin_unlock(&net_family_lock
);
2627 pr_info("NET: Registered protocol family %d\n", ops
->family
);
2630 EXPORT_SYMBOL(sock_register
);
2633 * sock_unregister - remove a protocol handler
2634 * @family: protocol family to remove
2636 * This function is called by a protocol handler that wants to
2637 * remove its address family, and have it unlinked from the
2638 * new socket creation.
2640 * If protocol handler is a module, then it can use module reference
2641 * counts to protect against new references. If protocol handler is not
2642 * a module then it needs to provide its own protection in
2643 * the ops->create routine.
2645 void sock_unregister(int family
)
2647 BUG_ON(family
< 0 || family
>= NPROTO
);
2649 spin_lock(&net_family_lock
);
2650 RCU_INIT_POINTER(net_families
[family
], NULL
);
2651 spin_unlock(&net_family_lock
);
2655 pr_info("NET: Unregistered protocol family %d\n", family
);
2657 EXPORT_SYMBOL(sock_unregister
);
2659 static int __init
sock_init(void)
2663 * Initialize the network sysctl infrastructure.
2665 err
= net_sysctl_init();
2670 * Initialize skbuff SLAB cache
2675 * Initialize the protocols module.
2680 err
= register_filesystem(&sock_fs_type
);
2683 sock_mnt
= kern_mount(&sock_fs_type
);
2684 if (IS_ERR(sock_mnt
)) {
2685 err
= PTR_ERR(sock_mnt
);
2689 /* The real protocol initialization is performed in later initcalls.
2692 #ifdef CONFIG_NETFILTER
2693 err
= netfilter_init();
2698 ptp_classifier_init();
2704 unregister_filesystem(&sock_fs_type
);
2709 core_initcall(sock_init
); /* early initcall */
2711 #ifdef CONFIG_PROC_FS
2712 void socket_seq_show(struct seq_file
*seq
)
2717 for_each_possible_cpu(cpu
)
2718 counter
+= per_cpu(sockets_in_use
, cpu
);
2720 /* It can be negative, by the way. 8) */
2724 seq_printf(seq
, "sockets: used %d\n", counter
);
2726 #endif /* CONFIG_PROC_FS */
2728 #ifdef CONFIG_COMPAT
2729 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2730 unsigned int cmd
, void __user
*up
)
2732 mm_segment_t old_fs
= get_fs();
2737 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2740 err
= compat_put_timeval(&ktv
, up
);
2745 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2746 unsigned int cmd
, void __user
*up
)
2748 mm_segment_t old_fs
= get_fs();
2749 struct timespec kts
;
2753 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2756 err
= compat_put_timespec(&kts
, up
);
2761 static int dev_ifname32(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2763 struct ifreq __user
*uifr
;
2766 uifr
= compat_alloc_user_space(sizeof(struct ifreq
));
2767 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2770 err
= dev_ioctl(net
, SIOCGIFNAME
, uifr
);
2774 if (copy_in_user(uifr32
, uifr
, sizeof(struct compat_ifreq
)))
2780 static int dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2782 struct compat_ifconf ifc32
;
2784 struct ifconf __user
*uifc
;
2785 struct compat_ifreq __user
*ifr32
;
2786 struct ifreq __user
*ifr
;
2790 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2793 memset(&ifc
, 0, sizeof(ifc
));
2794 if (ifc32
.ifcbuf
== 0) {
2798 uifc
= compat_alloc_user_space(sizeof(struct ifconf
));
2800 size_t len
= ((ifc32
.ifc_len
/ sizeof(struct compat_ifreq
)) + 1) *
2801 sizeof(struct ifreq
);
2802 uifc
= compat_alloc_user_space(sizeof(struct ifconf
) + len
);
2804 ifr
= ifc
.ifc_req
= (void __user
*)(uifc
+ 1);
2805 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2806 for (i
= 0; i
< ifc32
.ifc_len
; i
+= sizeof(struct compat_ifreq
)) {
2807 if (copy_in_user(ifr
, ifr32
, sizeof(struct compat_ifreq
)))
2813 if (copy_to_user(uifc
, &ifc
, sizeof(struct ifconf
)))
2816 err
= dev_ioctl(net
, SIOCGIFCONF
, uifc
);
2820 if (copy_from_user(&ifc
, uifc
, sizeof(struct ifconf
)))
2824 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2826 i
+ sizeof(struct compat_ifreq
) <= ifc32
.ifc_len
&& j
< ifc
.ifc_len
;
2827 i
+= sizeof(struct compat_ifreq
), j
+= sizeof(struct ifreq
)) {
2828 if (copy_in_user(ifr32
, ifr
, sizeof(struct compat_ifreq
)))
2834 if (ifc32
.ifcbuf
== 0) {
2835 /* Translate from 64-bit structure multiple to
2839 i
= ((i
/ sizeof(struct ifreq
)) * sizeof(struct compat_ifreq
));
2844 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2850 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2852 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2853 bool convert_in
= false, convert_out
= false;
2854 size_t buf_size
= ALIGN(sizeof(struct ifreq
), 8);
2855 struct ethtool_rxnfc __user
*rxnfc
;
2856 struct ifreq __user
*ifr
;
2857 u32 rule_cnt
= 0, actual_rule_cnt
;
2862 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2865 compat_rxnfc
= compat_ptr(data
);
2867 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2870 /* Most ethtool structures are defined without padding.
2871 * Unfortunately struct ethtool_rxnfc is an exception.
2876 case ETHTOOL_GRXCLSRLALL
:
2877 /* Buffer size is variable */
2878 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2880 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2882 buf_size
+= rule_cnt
* sizeof(u32
);
2884 case ETHTOOL_GRXRINGS
:
2885 case ETHTOOL_GRXCLSRLCNT
:
2886 case ETHTOOL_GRXCLSRULE
:
2887 case ETHTOOL_SRXCLSRLINS
:
2890 case ETHTOOL_SRXCLSRLDEL
:
2891 buf_size
+= sizeof(struct ethtool_rxnfc
);
2896 ifr
= compat_alloc_user_space(buf_size
);
2897 rxnfc
= (void __user
*)ifr
+ ALIGN(sizeof(struct ifreq
), 8);
2899 if (copy_in_user(&ifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2902 if (put_user(convert_in
? rxnfc
: compat_ptr(data
),
2903 &ifr
->ifr_ifru
.ifru_data
))
2907 /* We expect there to be holes between fs.m_ext and
2908 * fs.ring_cookie and at the end of fs, but nowhere else.
2910 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2911 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2912 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2913 sizeof(rxnfc
->fs
.m_ext
));
2915 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2916 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2917 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2918 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2920 if (copy_in_user(rxnfc
, compat_rxnfc
,
2921 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2922 (void __user
*)rxnfc
) ||
2923 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2924 &compat_rxnfc
->fs
.ring_cookie
,
2925 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
2926 (void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2927 copy_in_user(&rxnfc
->rule_cnt
, &compat_rxnfc
->rule_cnt
,
2928 sizeof(rxnfc
->rule_cnt
)))
2932 ret
= dev_ioctl(net
, SIOCETHTOOL
, ifr
);
2937 if (copy_in_user(compat_rxnfc
, rxnfc
,
2938 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2939 (const void __user
*)rxnfc
) ||
2940 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2941 &rxnfc
->fs
.ring_cookie
,
2942 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
2943 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2944 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2945 sizeof(rxnfc
->rule_cnt
)))
2948 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2949 /* As an optimisation, we only copy the actual
2950 * number of rules that the underlying
2951 * function returned. Since Mallory might
2952 * change the rule count in user memory, we
2953 * check that it is less than the rule count
2954 * originally given (as the user buffer size),
2955 * which has been range-checked.
2957 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2959 if (actual_rule_cnt
< rule_cnt
)
2960 rule_cnt
= actual_rule_cnt
;
2961 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2962 &rxnfc
->rule_locs
[0],
2963 rule_cnt
* sizeof(u32
)))
2971 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2974 compat_uptr_t uptr32
;
2975 struct ifreq __user
*uifr
;
2977 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2978 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2981 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2984 uptr
= compat_ptr(uptr32
);
2986 if (put_user(uptr
, &uifr
->ifr_settings
.ifs_ifsu
.raw_hdlc
))
2989 return dev_ioctl(net
, SIOCWANDEV
, uifr
);
2992 static int bond_ioctl(struct net
*net
, unsigned int cmd
,
2993 struct compat_ifreq __user
*ifr32
)
2996 mm_segment_t old_fs
;
3000 case SIOCBONDENSLAVE
:
3001 case SIOCBONDRELEASE
:
3002 case SIOCBONDSETHWADDR
:
3003 case SIOCBONDCHANGEACTIVE
:
3004 if (copy_from_user(&kifr
, ifr32
, sizeof(struct compat_ifreq
)))
3009 err
= dev_ioctl(net
, cmd
,
3010 (struct ifreq __user __force
*) &kifr
);
3015 return -ENOIOCTLCMD
;
3019 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3020 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
3021 struct compat_ifreq __user
*u_ifreq32
)
3023 struct ifreq __user
*u_ifreq64
;
3024 char tmp_buf
[IFNAMSIZ
];
3025 void __user
*data64
;
3028 if (copy_from_user(&tmp_buf
[0], &(u_ifreq32
->ifr_ifrn
.ifrn_name
[0]),
3031 if (get_user(data32
, &u_ifreq32
->ifr_ifru
.ifru_data
))
3033 data64
= compat_ptr(data32
);
3035 u_ifreq64
= compat_alloc_user_space(sizeof(*u_ifreq64
));
3037 if (copy_to_user(&u_ifreq64
->ifr_ifrn
.ifrn_name
[0], &tmp_buf
[0],
3040 if (put_user(data64
, &u_ifreq64
->ifr_ifru
.ifru_data
))
3043 return dev_ioctl(net
, cmd
, u_ifreq64
);
3046 static int dev_ifsioc(struct net
*net
, struct socket
*sock
,
3047 unsigned int cmd
, struct compat_ifreq __user
*uifr32
)
3049 struct ifreq __user
*uifr
;
3052 uifr
= compat_alloc_user_space(sizeof(*uifr
));
3053 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
3056 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
3067 case SIOCGIFBRDADDR
:
3068 case SIOCGIFDSTADDR
:
3069 case SIOCGIFNETMASK
:
3074 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
3082 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
3083 struct compat_ifreq __user
*uifr32
)
3086 struct compat_ifmap __user
*uifmap32
;
3087 mm_segment_t old_fs
;
3090 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
3091 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
3092 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3093 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3094 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3095 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3096 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3097 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3103 err
= dev_ioctl(net
, cmd
, (void __user __force
*)&ifr
);
3106 if (cmd
== SIOCGIFMAP
&& !err
) {
3107 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
3108 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3109 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3110 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3111 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3112 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3113 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3122 struct sockaddr rt_dst
; /* target address */
3123 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
3124 struct sockaddr rt_genmask
; /* target network mask (IP) */
3125 unsigned short rt_flags
;
3128 unsigned char rt_tos
;
3129 unsigned char rt_class
;
3131 short rt_metric
; /* +1 for binary compatibility! */
3132 /* char * */ u32 rt_dev
; /* forcing the device at add */
3133 u32 rt_mtu
; /* per route MTU/Window */
3134 u32 rt_window
; /* Window clamping */
3135 unsigned short rt_irtt
; /* Initial RTT */
3138 struct in6_rtmsg32
{
3139 struct in6_addr rtmsg_dst
;
3140 struct in6_addr rtmsg_src
;
3141 struct in6_addr rtmsg_gateway
;
3151 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3152 unsigned int cmd
, void __user
*argp
)
3156 struct in6_rtmsg r6
;
3160 mm_segment_t old_fs
= get_fs();
3162 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3163 struct in6_rtmsg32 __user
*ur6
= argp
;
3164 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3165 3 * sizeof(struct in6_addr
));
3166 ret
|= get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3167 ret
|= get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3168 ret
|= get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3169 ret
|= get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3170 ret
|= get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3171 ret
|= get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3172 ret
|= get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3176 struct rtentry32 __user
*ur4
= argp
;
3177 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3178 3 * sizeof(struct sockaddr
));
3179 ret
|= get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3180 ret
|= get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3181 ret
|= get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3182 ret
|= get_user(r4
.rt_window
, &(ur4
->rt_window
));
3183 ret
|= get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3184 ret
|= get_user(rtdev
, &(ur4
->rt_dev
));
3186 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3187 r4
.rt_dev
= (char __user __force
*)devname
;
3201 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3208 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3209 * for some operations; this forces use of the newer bridge-utils that
3210 * use compatible ioctls
3212 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3216 if (get_user(tmp
, argp
))
3218 if (tmp
== BRCTL_GET_VERSION
)
3219 return BRCTL_VERSION
+ 1;
3223 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3224 unsigned int cmd
, unsigned long arg
)
3226 void __user
*argp
= compat_ptr(arg
);
3227 struct sock
*sk
= sock
->sk
;
3228 struct net
*net
= sock_net(sk
);
3230 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3231 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3236 return old_bridge_ioctl(argp
);
3238 return dev_ifname32(net
, argp
);
3240 return dev_ifconf(net
, argp
);
3242 return ethtool_ioctl(net
, argp
);
3244 return compat_siocwandev(net
, argp
);
3247 return compat_sioc_ifmap(net
, cmd
, argp
);
3248 case SIOCBONDENSLAVE
:
3249 case SIOCBONDRELEASE
:
3250 case SIOCBONDSETHWADDR
:
3251 case SIOCBONDCHANGEACTIVE
:
3252 return bond_ioctl(net
, cmd
, argp
);
3255 return routing_ioctl(net
, sock
, cmd
, argp
);
3257 return do_siocgstamp(net
, sock
, cmd
, argp
);
3259 return do_siocgstampns(net
, sock
, cmd
, argp
);
3260 case SIOCBONDSLAVEINFOQUERY
:
3261 case SIOCBONDINFOQUERY
:
3264 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3276 return sock_ioctl(file
, cmd
, arg
);
3293 case SIOCSIFHWBROADCAST
:
3295 case SIOCGIFBRDADDR
:
3296 case SIOCSIFBRDADDR
:
3297 case SIOCGIFDSTADDR
:
3298 case SIOCSIFDSTADDR
:
3299 case SIOCGIFNETMASK
:
3300 case SIOCSIFNETMASK
:
3311 return dev_ifsioc(net
, sock
, cmd
, argp
);
3317 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3320 return -ENOIOCTLCMD
;
3323 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3326 struct socket
*sock
= file
->private_data
;
3327 int ret
= -ENOIOCTLCMD
;
3334 if (sock
->ops
->compat_ioctl
)
3335 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3337 if (ret
== -ENOIOCTLCMD
&&
3338 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3339 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3341 if (ret
== -ENOIOCTLCMD
)
3342 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3348 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3350 return sock
->ops
->bind(sock
, addr
, addrlen
);
3352 EXPORT_SYMBOL(kernel_bind
);
3354 int kernel_listen(struct socket
*sock
, int backlog
)
3356 return sock
->ops
->listen(sock
, backlog
);
3358 EXPORT_SYMBOL(kernel_listen
);
3360 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3362 struct sock
*sk
= sock
->sk
;
3365 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3370 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
3372 sock_release(*newsock
);
3377 (*newsock
)->ops
= sock
->ops
;
3378 __module_get((*newsock
)->ops
->owner
);
3383 EXPORT_SYMBOL(kernel_accept
);
3385 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3388 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3390 EXPORT_SYMBOL(kernel_connect
);
3392 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
3395 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
3397 EXPORT_SYMBOL(kernel_getsockname
);
3399 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
3402 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
3404 EXPORT_SYMBOL(kernel_getpeername
);
3406 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3407 char *optval
, int *optlen
)
3409 mm_segment_t oldfs
= get_fs();
3410 char __user
*uoptval
;
3411 int __user
*uoptlen
;
3414 uoptval
= (char __user __force
*) optval
;
3415 uoptlen
= (int __user __force
*) optlen
;
3418 if (level
== SOL_SOCKET
)
3419 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3421 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3426 EXPORT_SYMBOL(kernel_getsockopt
);
3428 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3429 char *optval
, unsigned int optlen
)
3431 mm_segment_t oldfs
= get_fs();
3432 char __user
*uoptval
;
3435 uoptval
= (char __user __force
*) optval
;
3438 if (level
== SOL_SOCKET
)
3439 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3441 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3446 EXPORT_SYMBOL(kernel_setsockopt
);
3448 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3449 size_t size
, int flags
)
3451 if (sock
->ops
->sendpage
)
3452 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3454 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3456 EXPORT_SYMBOL(kernel_sendpage
);
3458 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
3460 mm_segment_t oldfs
= get_fs();
3464 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
3469 EXPORT_SYMBOL(kernel_sock_ioctl
);
3471 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3473 return sock
->ops
->shutdown(sock
, how
);
3475 EXPORT_SYMBOL(kernel_sock_shutdown
);