4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/rmap.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
60 #include <linux/kmod.h>
64 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
65 int suid_dumpable
= 0;
67 /* The maximal length of core_pattern is also specified in sysctl.c */
69 static LIST_HEAD(formats
);
70 static DEFINE_RWLOCK(binfmt_lock
);
72 int register_binfmt(struct linux_binfmt
* fmt
)
76 write_lock(&binfmt_lock
);
77 list_add(&fmt
->lh
, &formats
);
78 write_unlock(&binfmt_lock
);
82 EXPORT_SYMBOL(register_binfmt
);
84 void unregister_binfmt(struct linux_binfmt
* fmt
)
86 write_lock(&binfmt_lock
);
88 write_unlock(&binfmt_lock
);
91 EXPORT_SYMBOL(unregister_binfmt
);
93 static inline void put_binfmt(struct linux_binfmt
* fmt
)
95 module_put(fmt
->module
);
99 * Note that a shared library must be both readable and executable due to
102 * Also note that we take the address to load from from the file itself.
104 asmlinkage
long sys_uselib(const char __user
* library
)
110 error
= __user_path_lookup_open(library
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
115 if (!S_ISREG(nd
.path
.dentry
->d_inode
->i_mode
))
118 error
= vfs_permission(&nd
, MAY_READ
| MAY_EXEC
);
122 file
= nameidata_to_filp(&nd
, O_RDONLY
|O_LARGEFILE
);
123 error
= PTR_ERR(file
);
129 struct linux_binfmt
* fmt
;
131 read_lock(&binfmt_lock
);
132 list_for_each_entry(fmt
, &formats
, lh
) {
133 if (!fmt
->load_shlib
)
135 if (!try_module_get(fmt
->module
))
137 read_unlock(&binfmt_lock
);
138 error
= fmt
->load_shlib(file
);
139 read_lock(&binfmt_lock
);
141 if (error
!= -ENOEXEC
)
144 read_unlock(&binfmt_lock
);
150 release_open_intent(&nd
);
157 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
163 #ifdef CONFIG_STACK_GROWSUP
165 ret
= expand_stack_downwards(bprm
->vma
, pos
);
170 ret
= get_user_pages(current
, bprm
->mm
, pos
,
171 1, write
, 1, &page
, NULL
);
176 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
180 * We've historically supported up to 32 pages (ARG_MAX)
181 * of argument strings even with small stacks
187 * Limit to 1/4-th the stack size for the argv+env strings.
189 * - the remaining binfmt code will not run out of stack space,
190 * - the program will have a reasonable amount of stack left
193 rlim
= current
->signal
->rlim
;
194 if (size
> rlim
[RLIMIT_STACK
].rlim_cur
/ 4) {
203 static void put_arg_page(struct page
*page
)
208 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
212 static void free_arg_pages(struct linux_binprm
*bprm
)
216 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
219 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
222 static int __bprm_mm_init(struct linux_binprm
*bprm
)
225 struct vm_area_struct
*vma
= NULL
;
226 struct mm_struct
*mm
= bprm
->mm
;
228 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
232 down_write(&mm
->mmap_sem
);
236 * Place the stack at the largest stack address the architecture
237 * supports. Later, we'll move this to an appropriate place. We don't
238 * use STACK_TOP because that can depend on attributes which aren't
241 vma
->vm_end
= STACK_TOP_MAX
;
242 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
244 vma
->vm_flags
= VM_STACK_FLAGS
;
245 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
246 err
= insert_vm_struct(mm
, vma
);
248 up_write(&mm
->mmap_sem
);
252 mm
->stack_vm
= mm
->total_vm
= 1;
253 up_write(&mm
->mmap_sem
);
255 bprm
->p
= vma
->vm_end
- sizeof(void *);
262 kmem_cache_free(vm_area_cachep
, vma
);
268 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
270 return len
<= MAX_ARG_STRLEN
;
275 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
280 page
= bprm
->page
[pos
/ PAGE_SIZE
];
281 if (!page
&& write
) {
282 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
285 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
291 static void put_arg_page(struct page
*page
)
295 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
298 __free_page(bprm
->page
[i
]);
299 bprm
->page
[i
] = NULL
;
303 static void free_arg_pages(struct linux_binprm
*bprm
)
307 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
308 free_arg_page(bprm
, i
);
311 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
316 static int __bprm_mm_init(struct linux_binprm
*bprm
)
318 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
322 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
324 return len
<= bprm
->p
;
327 #endif /* CONFIG_MMU */
330 * Create a new mm_struct and populate it with a temporary stack
331 * vm_area_struct. We don't have enough context at this point to set the stack
332 * flags, permissions, and offset, so we use temporary values. We'll update
333 * them later in setup_arg_pages().
335 int bprm_mm_init(struct linux_binprm
*bprm
)
338 struct mm_struct
*mm
= NULL
;
340 bprm
->mm
= mm
= mm_alloc();
345 err
= init_new_context(current
, mm
);
349 err
= __bprm_mm_init(bprm
);
365 * count() counts the number of strings in array ARGV.
367 static int count(char __user
* __user
* argv
, int max
)
375 if (get_user(p
, argv
))
389 * 'copy_strings()' copies argument/environment strings from the old
390 * processes's memory to the new process's stack. The call to get_user_pages()
391 * ensures the destination page is created and not swapped out.
393 static int copy_strings(int argc
, char __user
* __user
* argv
,
394 struct linux_binprm
*bprm
)
396 struct page
*kmapped_page
= NULL
;
398 unsigned long kpos
= 0;
406 if (get_user(str
, argv
+argc
) ||
407 !(len
= strnlen_user(str
, MAX_ARG_STRLEN
))) {
412 if (!valid_arg_len(bprm
, len
)) {
417 /* We're going to work our way backwords. */
423 int offset
, bytes_to_copy
;
425 offset
= pos
% PAGE_SIZE
;
429 bytes_to_copy
= offset
;
430 if (bytes_to_copy
> len
)
433 offset
-= bytes_to_copy
;
434 pos
-= bytes_to_copy
;
435 str
-= bytes_to_copy
;
436 len
-= bytes_to_copy
;
438 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
441 page
= get_arg_page(bprm
, pos
, 1);
448 flush_kernel_dcache_page(kmapped_page
);
449 kunmap(kmapped_page
);
450 put_arg_page(kmapped_page
);
453 kaddr
= kmap(kmapped_page
);
454 kpos
= pos
& PAGE_MASK
;
455 flush_arg_page(bprm
, kpos
, kmapped_page
);
457 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
466 flush_kernel_dcache_page(kmapped_page
);
467 kunmap(kmapped_page
);
468 put_arg_page(kmapped_page
);
474 * Like copy_strings, but get argv and its values from kernel memory.
476 int copy_strings_kernel(int argc
,char ** argv
, struct linux_binprm
*bprm
)
479 mm_segment_t oldfs
= get_fs();
481 r
= copy_strings(argc
, (char __user
* __user
*)argv
, bprm
);
485 EXPORT_SYMBOL(copy_strings_kernel
);
490 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
491 * the binfmt code determines where the new stack should reside, we shift it to
492 * its final location. The process proceeds as follows:
494 * 1) Use shift to calculate the new vma endpoints.
495 * 2) Extend vma to cover both the old and new ranges. This ensures the
496 * arguments passed to subsequent functions are consistent.
497 * 3) Move vma's page tables to the new range.
498 * 4) Free up any cleared pgd range.
499 * 5) Shrink the vma to cover only the new range.
501 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
503 struct mm_struct
*mm
= vma
->vm_mm
;
504 unsigned long old_start
= vma
->vm_start
;
505 unsigned long old_end
= vma
->vm_end
;
506 unsigned long length
= old_end
- old_start
;
507 unsigned long new_start
= old_start
- shift
;
508 unsigned long new_end
= old_end
- shift
;
509 struct mmu_gather
*tlb
;
511 BUG_ON(new_start
> new_end
);
514 * ensure there are no vmas between where we want to go
517 if (vma
!= find_vma(mm
, new_start
))
521 * cover the whole range: [new_start, old_end)
523 vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
);
526 * move the page tables downwards, on failure we rely on
527 * process cleanup to remove whatever mess we made.
529 if (length
!= move_page_tables(vma
, old_start
,
530 vma
, new_start
, length
))
534 tlb
= tlb_gather_mmu(mm
, 0);
535 if (new_end
> old_start
) {
537 * when the old and new regions overlap clear from new_end.
539 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
540 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
543 * otherwise, clean from old_start; this is done to not touch
544 * the address space in [new_end, old_start) some architectures
545 * have constraints on va-space that make this illegal (IA64) -
546 * for the others its just a little faster.
548 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
549 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
551 tlb_finish_mmu(tlb
, new_end
, old_end
);
554 * shrink the vma to just the new range.
556 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
561 #define EXTRA_STACK_VM_PAGES 20 /* random */
564 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
565 * the stack is optionally relocated, and some extra space is added.
567 int setup_arg_pages(struct linux_binprm
*bprm
,
568 unsigned long stack_top
,
569 int executable_stack
)
572 unsigned long stack_shift
;
573 struct mm_struct
*mm
= current
->mm
;
574 struct vm_area_struct
*vma
= bprm
->vma
;
575 struct vm_area_struct
*prev
= NULL
;
576 unsigned long vm_flags
;
577 unsigned long stack_base
;
579 #ifdef CONFIG_STACK_GROWSUP
580 /* Limit stack size to 1GB */
581 stack_base
= current
->signal
->rlim
[RLIMIT_STACK
].rlim_max
;
582 if (stack_base
> (1 << 30))
583 stack_base
= 1 << 30;
585 /* Make sure we didn't let the argument array grow too large. */
586 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
589 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
591 stack_shift
= vma
->vm_start
- stack_base
;
592 mm
->arg_start
= bprm
->p
- stack_shift
;
593 bprm
->p
= vma
->vm_end
- stack_shift
;
595 stack_top
= arch_align_stack(stack_top
);
596 stack_top
= PAGE_ALIGN(stack_top
);
597 stack_shift
= vma
->vm_end
- stack_top
;
599 bprm
->p
-= stack_shift
;
600 mm
->arg_start
= bprm
->p
;
604 bprm
->loader
-= stack_shift
;
605 bprm
->exec
-= stack_shift
;
607 down_write(&mm
->mmap_sem
);
608 vm_flags
= vma
->vm_flags
;
611 * Adjust stack execute permissions; explicitly enable for
612 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
613 * (arch default) otherwise.
615 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
617 else if (executable_stack
== EXSTACK_DISABLE_X
)
618 vm_flags
&= ~VM_EXEC
;
619 vm_flags
|= mm
->def_flags
;
621 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
627 /* Move stack pages down in memory. */
629 ret
= shift_arg_pages(vma
, stack_shift
);
631 up_write(&mm
->mmap_sem
);
636 #ifdef CONFIG_STACK_GROWSUP
637 stack_base
= vma
->vm_end
+ EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
639 stack_base
= vma
->vm_start
- EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
641 ret
= expand_stack(vma
, stack_base
);
646 up_write(&mm
->mmap_sem
);
649 EXPORT_SYMBOL(setup_arg_pages
);
651 #endif /* CONFIG_MMU */
653 struct file
*open_exec(const char *name
)
659 err
= path_lookup_open(AT_FDCWD
, name
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
663 struct inode
*inode
= nd
.path
.dentry
->d_inode
;
664 file
= ERR_PTR(-EACCES
);
665 if (S_ISREG(inode
->i_mode
)) {
666 int err
= vfs_permission(&nd
, MAY_EXEC
);
669 file
= nameidata_to_filp(&nd
,
670 O_RDONLY
|O_LARGEFILE
);
672 err
= deny_write_access(file
);
682 release_open_intent(&nd
);
688 EXPORT_SYMBOL(open_exec
);
690 int kernel_read(struct file
*file
, unsigned long offset
,
691 char *addr
, unsigned long count
)
699 /* The cast to a user pointer is valid due to the set_fs() */
700 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
705 EXPORT_SYMBOL(kernel_read
);
707 static int exec_mmap(struct mm_struct
*mm
)
709 struct task_struct
*tsk
;
710 struct mm_struct
* old_mm
, *active_mm
;
712 /* Notify parent that we're no longer interested in the old VM */
714 old_mm
= current
->mm
;
715 mm_release(tsk
, old_mm
);
719 * Make sure that if there is a core dump in progress
720 * for the old mm, we get out and die instead of going
721 * through with the exec. We must hold mmap_sem around
722 * checking core_waiters and changing tsk->mm. The
723 * core-inducing thread will increment core_waiters for
724 * each thread whose ->mm == old_mm.
726 down_read(&old_mm
->mmap_sem
);
727 if (unlikely(old_mm
->core_waiters
)) {
728 up_read(&old_mm
->mmap_sem
);
733 active_mm
= tsk
->active_mm
;
736 activate_mm(active_mm
, mm
);
738 mm_update_next_owner(mm
);
739 arch_pick_mmap_layout(mm
);
741 up_read(&old_mm
->mmap_sem
);
742 BUG_ON(active_mm
!= old_mm
);
751 * This function makes sure the current process has its own signal table,
752 * so that flush_signal_handlers can later reset the handlers without
753 * disturbing other processes. (Other processes might share the signal
754 * table via the CLONE_SIGHAND option to clone().)
756 static int de_thread(struct task_struct
*tsk
)
758 struct signal_struct
*sig
= tsk
->signal
;
759 struct sighand_struct
*oldsighand
= tsk
->sighand
;
760 spinlock_t
*lock
= &oldsighand
->siglock
;
761 struct task_struct
*leader
= NULL
;
764 if (thread_group_empty(tsk
))
765 goto no_thread_group
;
768 * Kill all other threads in the thread group.
769 * We must hold tasklist_lock to call zap_other_threads.
771 read_lock(&tasklist_lock
);
773 if (signal_group_exit(sig
)) {
775 * Another group action in progress, just
776 * return so that the signal is processed.
778 spin_unlock_irq(lock
);
779 read_unlock(&tasklist_lock
);
784 * child_reaper ignores SIGKILL, change it now.
785 * Reparenting needs write_lock on tasklist_lock,
786 * so it is safe to do it under read_lock.
788 if (unlikely(tsk
->group_leader
== task_child_reaper(tsk
)))
789 task_active_pid_ns(tsk
)->child_reaper
= tsk
;
791 sig
->group_exit_task
= tsk
;
792 zap_other_threads(tsk
);
793 read_unlock(&tasklist_lock
);
795 /* Account for the thread group leader hanging around: */
796 count
= thread_group_leader(tsk
) ? 1 : 2;
797 sig
->notify_count
= count
;
798 while (atomic_read(&sig
->count
) > count
) {
799 __set_current_state(TASK_UNINTERRUPTIBLE
);
800 spin_unlock_irq(lock
);
804 spin_unlock_irq(lock
);
807 * At this point all other threads have exited, all we have to
808 * do is to wait for the thread group leader to become inactive,
809 * and to assume its PID:
811 if (!thread_group_leader(tsk
)) {
812 leader
= tsk
->group_leader
;
814 sig
->notify_count
= -1;
816 write_lock_irq(&tasklist_lock
);
817 if (likely(leader
->exit_state
))
819 __set_current_state(TASK_UNINTERRUPTIBLE
);
820 write_unlock_irq(&tasklist_lock
);
825 * The only record we have of the real-time age of a
826 * process, regardless of execs it's done, is start_time.
827 * All the past CPU time is accumulated in signal_struct
828 * from sister threads now dead. But in this non-leader
829 * exec, nothing survives from the original leader thread,
830 * whose birth marks the true age of this process now.
831 * When we take on its identity by switching to its PID, we
832 * also take its birthdate (always earlier than our own).
834 tsk
->start_time
= leader
->start_time
;
836 BUG_ON(!same_thread_group(leader
, tsk
));
837 BUG_ON(has_group_leader_pid(tsk
));
839 * An exec() starts a new thread group with the
840 * TGID of the previous thread group. Rehash the
841 * two threads with a switched PID, and release
842 * the former thread group leader:
845 /* Become a process group leader with the old leader's pid.
846 * The old leader becomes a thread of the this thread group.
847 * Note: The old leader also uses this pid until release_task
848 * is called. Odd but simple and correct.
850 detach_pid(tsk
, PIDTYPE_PID
);
851 tsk
->pid
= leader
->pid
;
852 attach_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
853 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
854 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
855 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
857 tsk
->group_leader
= tsk
;
858 leader
->group_leader
= tsk
;
860 tsk
->exit_signal
= SIGCHLD
;
862 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
863 leader
->exit_state
= EXIT_DEAD
;
865 write_unlock_irq(&tasklist_lock
);
868 sig
->group_exit_task
= NULL
;
869 sig
->notify_count
= 0;
874 release_task(leader
);
876 if (atomic_read(&oldsighand
->count
) != 1) {
877 struct sighand_struct
*newsighand
;
879 * This ->sighand is shared with the CLONE_SIGHAND
880 * but not CLONE_THREAD task, switch to the new one.
882 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
886 atomic_set(&newsighand
->count
, 1);
887 memcpy(newsighand
->action
, oldsighand
->action
,
888 sizeof(newsighand
->action
));
890 write_lock_irq(&tasklist_lock
);
891 spin_lock(&oldsighand
->siglock
);
892 rcu_assign_pointer(tsk
->sighand
, newsighand
);
893 spin_unlock(&oldsighand
->siglock
);
894 write_unlock_irq(&tasklist_lock
);
896 __cleanup_sighand(oldsighand
);
899 BUG_ON(!thread_group_leader(tsk
));
904 * These functions flushes out all traces of the currently running executable
905 * so that a new one can be started
907 static void flush_old_files(struct files_struct
* files
)
912 spin_lock(&files
->file_lock
);
914 unsigned long set
, i
;
918 fdt
= files_fdtable(files
);
919 if (i
>= fdt
->max_fds
)
921 set
= fdt
->close_on_exec
->fds_bits
[j
];
924 fdt
->close_on_exec
->fds_bits
[j
] = 0;
925 spin_unlock(&files
->file_lock
);
926 for ( ; set
; i
++,set
>>= 1) {
931 spin_lock(&files
->file_lock
);
934 spin_unlock(&files
->file_lock
);
937 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
939 /* buf must be at least sizeof(tsk->comm) in size */
941 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
946 void set_task_comm(struct task_struct
*tsk
, char *buf
)
949 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
953 int flush_old_exec(struct linux_binprm
* bprm
)
957 char tcomm
[sizeof(current
->comm
)];
960 * Make sure we have a private signal table and that
961 * we are unassociated from the previous thread group.
963 retval
= de_thread(current
);
967 set_mm_exe_file(bprm
->mm
, bprm
->file
);
970 * Release all of the old mmap stuff
972 retval
= exec_mmap(bprm
->mm
);
976 bprm
->mm
= NULL
; /* We're using it now */
978 /* This is the point of no return */
979 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
981 if (current
->euid
== current
->uid
&& current
->egid
== current
->gid
)
982 set_dumpable(current
->mm
, 1);
984 set_dumpable(current
->mm
, suid_dumpable
);
986 name
= bprm
->filename
;
988 /* Copies the binary name from after last slash */
989 for (i
=0; (ch
= *(name
++)) != '\0';) {
991 i
= 0; /* overwrite what we wrote */
993 if (i
< (sizeof(tcomm
) - 1))
997 set_task_comm(current
, tcomm
);
999 current
->flags
&= ~PF_RANDOMIZE
;
1002 /* Set the new mm task size. We have to do that late because it may
1003 * depend on TIF_32BIT which is only updated in flush_thread() on
1004 * some architectures like powerpc
1006 current
->mm
->task_size
= TASK_SIZE
;
1008 if (bprm
->e_uid
!= current
->euid
|| bprm
->e_gid
!= current
->egid
) {
1010 set_dumpable(current
->mm
, suid_dumpable
);
1011 current
->pdeath_signal
= 0;
1012 } else if (file_permission(bprm
->file
, MAY_READ
) ||
1013 (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)) {
1015 set_dumpable(current
->mm
, suid_dumpable
);
1018 /* An exec changes our domain. We are no longer part of the thread
1021 current
->self_exec_id
++;
1023 flush_signal_handlers(current
, 0);
1024 flush_old_files(current
->files
);
1032 EXPORT_SYMBOL(flush_old_exec
);
1035 * Fill the binprm structure from the inode.
1036 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1038 int prepare_binprm(struct linux_binprm
*bprm
)
1041 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1044 mode
= inode
->i_mode
;
1045 if (bprm
->file
->f_op
== NULL
)
1048 bprm
->e_uid
= current
->euid
;
1049 bprm
->e_gid
= current
->egid
;
1051 if(!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1053 if (mode
& S_ISUID
) {
1054 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1055 bprm
->e_uid
= inode
->i_uid
;
1060 * If setgid is set but no group execute bit then this
1061 * is a candidate for mandatory locking, not a setgid
1064 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1065 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1066 bprm
->e_gid
= inode
->i_gid
;
1070 /* fill in binprm security blob */
1071 retval
= security_bprm_set(bprm
);
1075 memset(bprm
->buf
,0,BINPRM_BUF_SIZE
);
1076 return kernel_read(bprm
->file
,0,bprm
->buf
,BINPRM_BUF_SIZE
);
1079 EXPORT_SYMBOL(prepare_binprm
);
1081 static int unsafe_exec(struct task_struct
*p
)
1084 if (p
->ptrace
& PT_PTRACED
) {
1085 if (p
->ptrace
& PT_PTRACE_CAP
)
1086 unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
1088 unsafe
|= LSM_UNSAFE_PTRACE
;
1090 if (atomic_read(&p
->fs
->count
) > 1 ||
1091 atomic_read(&p
->files
->count
) > 1 ||
1092 atomic_read(&p
->sighand
->count
) > 1)
1093 unsafe
|= LSM_UNSAFE_SHARE
;
1098 void compute_creds(struct linux_binprm
*bprm
)
1102 if (bprm
->e_uid
!= current
->uid
) {
1104 current
->pdeath_signal
= 0;
1109 unsafe
= unsafe_exec(current
);
1110 security_bprm_apply_creds(bprm
, unsafe
);
1111 task_unlock(current
);
1112 security_bprm_post_apply_creds(bprm
);
1114 EXPORT_SYMBOL(compute_creds
);
1117 * Arguments are '\0' separated strings found at the location bprm->p
1118 * points to; chop off the first by relocating brpm->p to right after
1119 * the first '\0' encountered.
1121 int remove_arg_zero(struct linux_binprm
*bprm
)
1124 unsigned long offset
;
1132 offset
= bprm
->p
& ~PAGE_MASK
;
1133 page
= get_arg_page(bprm
, bprm
->p
, 0);
1138 kaddr
= kmap_atomic(page
, KM_USER0
);
1140 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1141 offset
++, bprm
->p
++)
1144 kunmap_atomic(kaddr
, KM_USER0
);
1147 if (offset
== PAGE_SIZE
)
1148 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1149 } while (offset
== PAGE_SIZE
);
1158 EXPORT_SYMBOL(remove_arg_zero
);
1161 * cycle the list of binary formats handler, until one recognizes the image
1163 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1166 struct linux_binfmt
*fmt
;
1167 #if defined(__alpha__) && defined(CONFIG_ARCH_SUPPORTS_AOUT)
1168 /* handle /sbin/loader.. */
1170 struct exec
* eh
= (struct exec
*) bprm
->buf
;
1172 if (!bprm
->loader
&& eh
->fh
.f_magic
== 0x183 &&
1173 (eh
->fh
.f_flags
& 0x3000) == 0x3000)
1176 unsigned long loader
;
1178 allow_write_access(bprm
->file
);
1182 loader
= bprm
->vma
->vm_end
- sizeof(void *);
1184 file
= open_exec("/sbin/loader");
1185 retval
= PTR_ERR(file
);
1189 /* Remember if the application is TASO. */
1190 bprm
->sh_bang
= eh
->ah
.entry
< 0x100000000UL
;
1193 bprm
->loader
= loader
;
1194 retval
= prepare_binprm(bprm
);
1197 /* should call search_binary_handler recursively here,
1198 but it does not matter */
1202 retval
= security_bprm_check(bprm
);
1206 /* kernel module loader fixup */
1207 /* so we don't try to load run modprobe in kernel space. */
1210 retval
= audit_bprm(bprm
);
1215 for (try=0; try<2; try++) {
1216 read_lock(&binfmt_lock
);
1217 list_for_each_entry(fmt
, &formats
, lh
) {
1218 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1221 if (!try_module_get(fmt
->module
))
1223 read_unlock(&binfmt_lock
);
1224 retval
= fn(bprm
, regs
);
1227 allow_write_access(bprm
->file
);
1231 current
->did_exec
= 1;
1232 proc_exec_connector(current
);
1235 read_lock(&binfmt_lock
);
1237 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1240 read_unlock(&binfmt_lock
);
1244 read_unlock(&binfmt_lock
);
1245 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1249 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1250 if (printable(bprm
->buf
[0]) &&
1251 printable(bprm
->buf
[1]) &&
1252 printable(bprm
->buf
[2]) &&
1253 printable(bprm
->buf
[3]))
1254 break; /* -ENOEXEC */
1255 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1262 EXPORT_SYMBOL(search_binary_handler
);
1265 * sys_execve() executes a new program.
1267 int do_execve(char * filename
,
1268 char __user
*__user
*argv
,
1269 char __user
*__user
*envp
,
1270 struct pt_regs
* regs
)
1272 struct linux_binprm
*bprm
;
1274 struct files_struct
*displaced
;
1277 retval
= unshare_files(&displaced
);
1282 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1286 file
= open_exec(filename
);
1287 retval
= PTR_ERR(file
);
1294 bprm
->filename
= filename
;
1295 bprm
->interp
= filename
;
1297 retval
= bprm_mm_init(bprm
);
1301 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1302 if ((retval
= bprm
->argc
) < 0)
1305 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1306 if ((retval
= bprm
->envc
) < 0)
1309 retval
= security_bprm_alloc(bprm
);
1313 retval
= prepare_binprm(bprm
);
1317 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1321 bprm
->exec
= bprm
->p
;
1322 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1326 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1330 retval
= search_binary_handler(bprm
,regs
);
1332 /* execve success */
1333 free_arg_pages(bprm
);
1334 security_bprm_free(bprm
);
1335 acct_update_integrals(current
);
1338 put_files_struct(displaced
);
1343 free_arg_pages(bprm
);
1345 security_bprm_free(bprm
);
1353 allow_write_access(bprm
->file
);
1361 reset_files_struct(displaced
);
1366 int set_binfmt(struct linux_binfmt
*new)
1368 struct linux_binfmt
*old
= current
->binfmt
;
1371 if (!try_module_get(new->module
))
1374 current
->binfmt
= new;
1376 module_put(old
->module
);
1380 EXPORT_SYMBOL(set_binfmt
);
1382 /* format_corename will inspect the pattern parameter, and output a
1383 * name into corename, which must have space for at least
1384 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1386 static int format_corename(char *corename
, const char *pattern
, long signr
)
1388 const char *pat_ptr
= pattern
;
1389 char *out_ptr
= corename
;
1390 char *const out_end
= corename
+ CORENAME_MAX_SIZE
;
1392 int pid_in_pattern
= 0;
1395 if (*pattern
== '|')
1398 /* Repeat as long as we have more pattern to process and more output
1401 if (*pat_ptr
!= '%') {
1402 if (out_ptr
== out_end
)
1404 *out_ptr
++ = *pat_ptr
++;
1406 switch (*++pat_ptr
) {
1409 /* Double percent, output one percent */
1411 if (out_ptr
== out_end
)
1418 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1419 "%d", task_tgid_vnr(current
));
1420 if (rc
> out_end
- out_ptr
)
1426 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1427 "%d", current
->uid
);
1428 if (rc
> out_end
- out_ptr
)
1434 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1435 "%d", current
->gid
);
1436 if (rc
> out_end
- out_ptr
)
1440 /* signal that caused the coredump */
1442 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1444 if (rc
> out_end
- out_ptr
)
1448 /* UNIX time of coredump */
1451 do_gettimeofday(&tv
);
1452 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1454 if (rc
> out_end
- out_ptr
)
1461 down_read(&uts_sem
);
1462 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1463 "%s", utsname()->nodename
);
1465 if (rc
> out_end
- out_ptr
)
1471 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1472 "%s", current
->comm
);
1473 if (rc
> out_end
- out_ptr
)
1477 /* core limit size */
1479 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1480 "%lu", current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
);
1481 if (rc
> out_end
- out_ptr
)
1491 /* Backward compatibility with core_uses_pid:
1493 * If core_pattern does not include a %p (as is the default)
1494 * and core_uses_pid is set, then .%pid will be appended to
1495 * the filename. Do not do this for piped commands. */
1496 if (!ispipe
&& !pid_in_pattern
1497 && (core_uses_pid
|| atomic_read(¤t
->mm
->mm_users
) != 1)) {
1498 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1499 ".%d", task_tgid_vnr(current
));
1500 if (rc
> out_end
- out_ptr
)
1509 static void zap_process(struct task_struct
*start
)
1511 struct task_struct
*t
;
1513 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1514 start
->signal
->group_stop_count
= 0;
1518 if (t
!= current
&& t
->mm
) {
1519 t
->mm
->core_waiters
++;
1520 sigaddset(&t
->pending
.signal
, SIGKILL
);
1521 signal_wake_up(t
, 1);
1523 } while ((t
= next_thread(t
)) != start
);
1526 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1529 struct task_struct
*g
, *p
;
1530 unsigned long flags
;
1533 spin_lock_irq(&tsk
->sighand
->siglock
);
1534 if (!signal_group_exit(tsk
->signal
)) {
1535 tsk
->signal
->group_exit_code
= exit_code
;
1539 spin_unlock_irq(&tsk
->sighand
->siglock
);
1543 if (atomic_read(&mm
->mm_users
) == mm
->core_waiters
+ 1)
1547 for_each_process(g
) {
1548 if (g
== tsk
->group_leader
)
1556 * p->sighand can't disappear, but
1557 * may be changed by de_thread()
1559 lock_task_sighand(p
, &flags
);
1561 unlock_task_sighand(p
, &flags
);
1565 } while ((p
= next_thread(p
)) != g
);
1569 return mm
->core_waiters
;
1572 static int coredump_wait(int exit_code
)
1574 struct task_struct
*tsk
= current
;
1575 struct mm_struct
*mm
= tsk
->mm
;
1576 struct completion startup_done
;
1577 struct completion
*vfork_done
;
1580 init_completion(&mm
->core_done
);
1581 init_completion(&startup_done
);
1582 mm
->core_startup_done
= &startup_done
;
1584 core_waiters
= zap_threads(tsk
, mm
, exit_code
);
1585 up_write(&mm
->mmap_sem
);
1587 if (unlikely(core_waiters
< 0))
1591 * Make sure nobody is waiting for us to release the VM,
1592 * otherwise we can deadlock when we wait on each other
1594 vfork_done
= tsk
->vfork_done
;
1596 tsk
->vfork_done
= NULL
;
1597 complete(vfork_done
);
1601 wait_for_completion(&startup_done
);
1603 BUG_ON(mm
->core_waiters
);
1604 return core_waiters
;
1608 * set_dumpable converts traditional three-value dumpable to two flags and
1609 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1610 * these bits are not changed atomically. So get_dumpable can observe the
1611 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1612 * return either old dumpable or new one by paying attention to the order of
1613 * modifying the bits.
1615 * dumpable | mm->flags (binary)
1616 * old new | initial interim final
1617 * ---------+-----------------------
1625 * (*) get_dumpable regards interim value of 10 as 11.
1627 void set_dumpable(struct mm_struct
*mm
, int value
)
1631 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1633 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1636 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1638 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1641 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1643 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1648 int get_dumpable(struct mm_struct
*mm
)
1652 ret
= mm
->flags
& 0x3;
1653 return (ret
>= 2) ? 2 : ret
;
1656 int do_coredump(long signr
, int exit_code
, struct pt_regs
* regs
)
1658 char corename
[CORENAME_MAX_SIZE
+ 1];
1659 struct mm_struct
*mm
= current
->mm
;
1660 struct linux_binfmt
* binfmt
;
1661 struct inode
* inode
;
1664 int fsuid
= current
->fsuid
;
1667 unsigned long core_limit
= current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
;
1668 char **helper_argv
= NULL
;
1669 int helper_argc
= 0;
1672 audit_core_dumps(signr
);
1674 binfmt
= current
->binfmt
;
1675 if (!binfmt
|| !binfmt
->core_dump
)
1677 down_write(&mm
->mmap_sem
);
1679 * If another thread got here first, or we are not dumpable, bail out.
1681 if (mm
->core_waiters
|| !get_dumpable(mm
)) {
1682 up_write(&mm
->mmap_sem
);
1687 * We cannot trust fsuid as being the "true" uid of the
1688 * process nor do we know its entire history. We only know it
1689 * was tainted so we dump it as root in mode 2.
1691 if (get_dumpable(mm
) == 2) { /* Setuid core dump mode */
1692 flag
= O_EXCL
; /* Stop rewrite attacks */
1693 current
->fsuid
= 0; /* Dump root private */
1696 retval
= coredump_wait(exit_code
);
1701 * Clear any false indication of pending signals that might
1702 * be seen by the filesystem code called to write the core file.
1704 clear_thread_flag(TIF_SIGPENDING
);
1707 * lock_kernel() because format_corename() is controlled by sysctl, which
1708 * uses lock_kernel()
1711 ispipe
= format_corename(corename
, core_pattern
, signr
);
1714 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1715 * to a pipe. Since we're not writing directly to the filesystem
1716 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1717 * created unless the pipe reader choses to write out the core file
1718 * at which point file size limits and permissions will be imposed
1719 * as it does with any other process
1721 if ((!ispipe
) && (core_limit
< binfmt
->min_coredump
))
1725 helper_argv
= argv_split(GFP_KERNEL
, corename
+1, &helper_argc
);
1726 /* Terminate the string before the first option */
1727 delimit
= strchr(corename
, ' ');
1730 delimit
= strrchr(helper_argv
[0], '/');
1734 delimit
= helper_argv
[0];
1735 if (!strcmp(delimit
, current
->comm
)) {
1736 printk(KERN_NOTICE
"Recursive core dump detected, "
1741 core_limit
= RLIM_INFINITY
;
1743 /* SIGPIPE can happen, but it's just never processed */
1744 if (call_usermodehelper_pipe(corename
+1, helper_argv
, NULL
,
1746 printk(KERN_INFO
"Core dump to %s pipe failed\n",
1751 file
= filp_open(corename
,
1752 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
1756 inode
= file
->f_path
.dentry
->d_inode
;
1757 if (inode
->i_nlink
> 1)
1758 goto close_fail
; /* multiple links - don't dump */
1759 if (!ispipe
&& d_unhashed(file
->f_path
.dentry
))
1762 /* AK: actually i see no reason to not allow this for named pipes etc.,
1763 but keep the previous behaviour for now. */
1764 if (!ispipe
&& !S_ISREG(inode
->i_mode
))
1767 * Dont allow local users get cute and trick others to coredump
1768 * into their pre-created files:
1770 if (inode
->i_uid
!= current
->fsuid
)
1774 if (!file
->f_op
->write
)
1776 if (!ispipe
&& do_truncate(file
->f_path
.dentry
, 0, 0, file
) != 0)
1779 retval
= binfmt
->core_dump(signr
, regs
, file
, core_limit
);
1782 current
->signal
->group_exit_code
|= 0x80;
1784 filp_close(file
, NULL
);
1787 argv_free(helper_argv
);
1789 current
->fsuid
= fsuid
;
1790 complete_all(&mm
->core_done
);