6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/notifier.h>
41 #include <linux/memory.h>
42 #include <linux/printk.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/moduleparam.h>
45 #include <linux/pkeys.h>
47 #include <asm/uaccess.h>
48 #include <asm/cacheflush.h>
50 #include <asm/mmu_context.h>
54 #ifndef arch_mmap_check
55 #define arch_mmap_check(addr, len, flags) (0)
58 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
59 const int mmap_rnd_bits_min
= CONFIG_ARCH_MMAP_RND_BITS_MIN
;
60 const int mmap_rnd_bits_max
= CONFIG_ARCH_MMAP_RND_BITS_MAX
;
61 int mmap_rnd_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_BITS
;
63 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
64 const int mmap_rnd_compat_bits_min
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN
;
65 const int mmap_rnd_compat_bits_max
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX
;
66 int mmap_rnd_compat_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS
;
69 static bool ignore_rlimit_data
;
70 core_param(ignore_rlimit_data
, ignore_rlimit_data
, bool, 0644);
72 static void unmap_region(struct mm_struct
*mm
,
73 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
74 unsigned long start
, unsigned long end
);
76 /* description of effects of mapping type and prot in current implementation.
77 * this is due to the limited x86 page protection hardware. The expected
78 * behavior is in parens:
81 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
82 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
83 * w: (no) no w: (no) no w: (yes) yes w: (no) no
84 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
86 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
87 * w: (no) no w: (no) no w: (copy) copy w: (no) no
88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
91 pgprot_t protection_map
[16] = {
92 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
93 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
96 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
98 return __pgprot(pgprot_val(protection_map
[vm_flags
&
99 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
100 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
102 EXPORT_SYMBOL(vm_get_page_prot
);
104 static pgprot_t
vm_pgprot_modify(pgprot_t oldprot
, unsigned long vm_flags
)
106 return pgprot_modify(oldprot
, vm_get_page_prot(vm_flags
));
109 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
110 void vma_set_page_prot(struct vm_area_struct
*vma
)
112 unsigned long vm_flags
= vma
->vm_flags
;
114 vma
->vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
);
115 if (vma_wants_writenotify(vma
)) {
116 vm_flags
&= ~VM_SHARED
;
117 vma
->vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
,
123 * Requires inode->i_mapping->i_mmap_rwsem
125 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
126 struct file
*file
, struct address_space
*mapping
)
128 if (vma
->vm_flags
& VM_DENYWRITE
)
129 atomic_inc(&file_inode(file
)->i_writecount
);
130 if (vma
->vm_flags
& VM_SHARED
)
131 mapping_unmap_writable(mapping
);
133 flush_dcache_mmap_lock(mapping
);
134 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
135 flush_dcache_mmap_unlock(mapping
);
139 * Unlink a file-based vm structure from its interval tree, to hide
140 * vma from rmap and vmtruncate before freeing its page tables.
142 void unlink_file_vma(struct vm_area_struct
*vma
)
144 struct file
*file
= vma
->vm_file
;
147 struct address_space
*mapping
= file
->f_mapping
;
148 i_mmap_lock_write(mapping
);
149 __remove_shared_vm_struct(vma
, file
, mapping
);
150 i_mmap_unlock_write(mapping
);
155 * Close a vm structure and free it, returning the next.
157 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
159 struct vm_area_struct
*next
= vma
->vm_next
;
162 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
163 vma
->vm_ops
->close(vma
);
166 mpol_put(vma_policy(vma
));
167 kmem_cache_free(vm_area_cachep
, vma
);
171 static int do_brk(unsigned long addr
, unsigned long len
);
173 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
175 unsigned long retval
;
176 unsigned long newbrk
, oldbrk
;
177 struct mm_struct
*mm
= current
->mm
;
178 unsigned long min_brk
;
181 if (down_write_killable(&mm
->mmap_sem
))
184 #ifdef CONFIG_COMPAT_BRK
186 * CONFIG_COMPAT_BRK can still be overridden by setting
187 * randomize_va_space to 2, which will still cause mm->start_brk
188 * to be arbitrarily shifted
190 if (current
->brk_randomized
)
191 min_brk
= mm
->start_brk
;
193 min_brk
= mm
->end_data
;
195 min_brk
= mm
->start_brk
;
201 * Check against rlimit here. If this check is done later after the test
202 * of oldbrk with newbrk then it can escape the test and let the data
203 * segment grow beyond its set limit the in case where the limit is
204 * not page aligned -Ram Gupta
206 if (check_data_rlimit(rlimit(RLIMIT_DATA
), brk
, mm
->start_brk
,
207 mm
->end_data
, mm
->start_data
))
210 newbrk
= PAGE_ALIGN(brk
);
211 oldbrk
= PAGE_ALIGN(mm
->brk
);
212 if (oldbrk
== newbrk
)
215 /* Always allow shrinking brk. */
216 if (brk
<= mm
->brk
) {
217 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
222 /* Check against existing mmap mappings. */
223 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
226 /* Ok, looks good - let it rip. */
227 if (do_brk(oldbrk
, newbrk
-oldbrk
) < 0)
232 populate
= newbrk
> oldbrk
&& (mm
->def_flags
& VM_LOCKED
) != 0;
233 up_write(&mm
->mmap_sem
);
235 mm_populate(oldbrk
, newbrk
- oldbrk
);
240 up_write(&mm
->mmap_sem
);
244 static long vma_compute_subtree_gap(struct vm_area_struct
*vma
)
246 unsigned long max
, subtree_gap
;
249 max
-= vma
->vm_prev
->vm_end
;
250 if (vma
->vm_rb
.rb_left
) {
251 subtree_gap
= rb_entry(vma
->vm_rb
.rb_left
,
252 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
253 if (subtree_gap
> max
)
256 if (vma
->vm_rb
.rb_right
) {
257 subtree_gap
= rb_entry(vma
->vm_rb
.rb_right
,
258 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
259 if (subtree_gap
> max
)
265 #ifdef CONFIG_DEBUG_VM_RB
266 static int browse_rb(struct mm_struct
*mm
)
268 struct rb_root
*root
= &mm
->mm_rb
;
269 int i
= 0, j
, bug
= 0;
270 struct rb_node
*nd
, *pn
= NULL
;
271 unsigned long prev
= 0, pend
= 0;
273 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
274 struct vm_area_struct
*vma
;
275 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
276 if (vma
->vm_start
< prev
) {
277 pr_emerg("vm_start %lx < prev %lx\n",
278 vma
->vm_start
, prev
);
281 if (vma
->vm_start
< pend
) {
282 pr_emerg("vm_start %lx < pend %lx\n",
283 vma
->vm_start
, pend
);
286 if (vma
->vm_start
> vma
->vm_end
) {
287 pr_emerg("vm_start %lx > vm_end %lx\n",
288 vma
->vm_start
, vma
->vm_end
);
291 spin_lock(&mm
->page_table_lock
);
292 if (vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
)) {
293 pr_emerg("free gap %lx, correct %lx\n",
295 vma_compute_subtree_gap(vma
));
298 spin_unlock(&mm
->page_table_lock
);
301 prev
= vma
->vm_start
;
305 for (nd
= pn
; nd
; nd
= rb_prev(nd
))
308 pr_emerg("backwards %d, forwards %d\n", j
, i
);
314 static void validate_mm_rb(struct rb_root
*root
, struct vm_area_struct
*ignore
)
318 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
319 struct vm_area_struct
*vma
;
320 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
321 VM_BUG_ON_VMA(vma
!= ignore
&&
322 vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
),
327 static void validate_mm(struct mm_struct
*mm
)
331 unsigned long highest_address
= 0;
332 struct vm_area_struct
*vma
= mm
->mmap
;
335 struct anon_vma
*anon_vma
= vma
->anon_vma
;
336 struct anon_vma_chain
*avc
;
339 anon_vma_lock_read(anon_vma
);
340 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
341 anon_vma_interval_tree_verify(avc
);
342 anon_vma_unlock_read(anon_vma
);
345 highest_address
= vma
->vm_end
;
349 if (i
!= mm
->map_count
) {
350 pr_emerg("map_count %d vm_next %d\n", mm
->map_count
, i
);
353 if (highest_address
!= mm
->highest_vm_end
) {
354 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
355 mm
->highest_vm_end
, highest_address
);
359 if (i
!= mm
->map_count
) {
361 pr_emerg("map_count %d rb %d\n", mm
->map_count
, i
);
364 VM_BUG_ON_MM(bug
, mm
);
367 #define validate_mm_rb(root, ignore) do { } while (0)
368 #define validate_mm(mm) do { } while (0)
371 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks
, struct vm_area_struct
, vm_rb
,
372 unsigned long, rb_subtree_gap
, vma_compute_subtree_gap
)
375 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
376 * vma->vm_prev->vm_end values changed, without modifying the vma's position
379 static void vma_gap_update(struct vm_area_struct
*vma
)
382 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
383 * function that does exacltly what we want.
385 vma_gap_callbacks_propagate(&vma
->vm_rb
, NULL
);
388 static inline void vma_rb_insert(struct vm_area_struct
*vma
,
389 struct rb_root
*root
)
391 /* All rb_subtree_gap values must be consistent prior to insertion */
392 validate_mm_rb(root
, NULL
);
394 rb_insert_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
397 static void vma_rb_erase(struct vm_area_struct
*vma
, struct rb_root
*root
)
400 * All rb_subtree_gap values must be consistent prior to erase,
401 * with the possible exception of the vma being erased.
403 validate_mm_rb(root
, vma
);
406 * Note rb_erase_augmented is a fairly large inline function,
407 * so make sure we instantiate it only once with our desired
408 * augmented rbtree callbacks.
410 rb_erase_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
414 * vma has some anon_vma assigned, and is already inserted on that
415 * anon_vma's interval trees.
417 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
418 * vma must be removed from the anon_vma's interval trees using
419 * anon_vma_interval_tree_pre_update_vma().
421 * After the update, the vma will be reinserted using
422 * anon_vma_interval_tree_post_update_vma().
424 * The entire update must be protected by exclusive mmap_sem and by
425 * the root anon_vma's mutex.
428 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct
*vma
)
430 struct anon_vma_chain
*avc
;
432 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
433 anon_vma_interval_tree_remove(avc
, &avc
->anon_vma
->rb_root
);
437 anon_vma_interval_tree_post_update_vma(struct vm_area_struct
*vma
)
439 struct anon_vma_chain
*avc
;
441 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
442 anon_vma_interval_tree_insert(avc
, &avc
->anon_vma
->rb_root
);
445 static int find_vma_links(struct mm_struct
*mm
, unsigned long addr
,
446 unsigned long end
, struct vm_area_struct
**pprev
,
447 struct rb_node
***rb_link
, struct rb_node
**rb_parent
)
449 struct rb_node
**__rb_link
, *__rb_parent
, *rb_prev
;
451 __rb_link
= &mm
->mm_rb
.rb_node
;
452 rb_prev
= __rb_parent
= NULL
;
455 struct vm_area_struct
*vma_tmp
;
457 __rb_parent
= *__rb_link
;
458 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
460 if (vma_tmp
->vm_end
> addr
) {
461 /* Fail if an existing vma overlaps the area */
462 if (vma_tmp
->vm_start
< end
)
464 __rb_link
= &__rb_parent
->rb_left
;
466 rb_prev
= __rb_parent
;
467 __rb_link
= &__rb_parent
->rb_right
;
473 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
474 *rb_link
= __rb_link
;
475 *rb_parent
= __rb_parent
;
479 static unsigned long count_vma_pages_range(struct mm_struct
*mm
,
480 unsigned long addr
, unsigned long end
)
482 unsigned long nr_pages
= 0;
483 struct vm_area_struct
*vma
;
485 /* Find first overlaping mapping */
486 vma
= find_vma_intersection(mm
, addr
, end
);
490 nr_pages
= (min(end
, vma
->vm_end
) -
491 max(addr
, vma
->vm_start
)) >> PAGE_SHIFT
;
493 /* Iterate over the rest of the overlaps */
494 for (vma
= vma
->vm_next
; vma
; vma
= vma
->vm_next
) {
495 unsigned long overlap_len
;
497 if (vma
->vm_start
> end
)
500 overlap_len
= min(end
, vma
->vm_end
) - vma
->vm_start
;
501 nr_pages
+= overlap_len
>> PAGE_SHIFT
;
507 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
508 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
510 /* Update tracking information for the gap following the new vma. */
512 vma_gap_update(vma
->vm_next
);
514 mm
->highest_vm_end
= vma
->vm_end
;
517 * vma->vm_prev wasn't known when we followed the rbtree to find the
518 * correct insertion point for that vma. As a result, we could not
519 * update the vma vm_rb parents rb_subtree_gap values on the way down.
520 * So, we first insert the vma with a zero rb_subtree_gap value
521 * (to be consistent with what we did on the way down), and then
522 * immediately update the gap to the correct value. Finally we
523 * rebalance the rbtree after all augmented values have been set.
525 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
526 vma
->rb_subtree_gap
= 0;
528 vma_rb_insert(vma
, &mm
->mm_rb
);
531 static void __vma_link_file(struct vm_area_struct
*vma
)
537 struct address_space
*mapping
= file
->f_mapping
;
539 if (vma
->vm_flags
& VM_DENYWRITE
)
540 atomic_dec(&file_inode(file
)->i_writecount
);
541 if (vma
->vm_flags
& VM_SHARED
)
542 atomic_inc(&mapping
->i_mmap_writable
);
544 flush_dcache_mmap_lock(mapping
);
545 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
546 flush_dcache_mmap_unlock(mapping
);
551 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
552 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
553 struct rb_node
*rb_parent
)
555 __vma_link_list(mm
, vma
, prev
, rb_parent
);
556 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
559 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
560 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
561 struct rb_node
*rb_parent
)
563 struct address_space
*mapping
= NULL
;
566 mapping
= vma
->vm_file
->f_mapping
;
567 i_mmap_lock_write(mapping
);
570 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
571 __vma_link_file(vma
);
574 i_mmap_unlock_write(mapping
);
581 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
582 * mm's list and rbtree. It has already been inserted into the interval tree.
584 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
586 struct vm_area_struct
*prev
;
587 struct rb_node
**rb_link
, *rb_parent
;
589 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
590 &prev
, &rb_link
, &rb_parent
))
592 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
597 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
598 struct vm_area_struct
*prev
)
600 struct vm_area_struct
*next
;
602 vma_rb_erase(vma
, &mm
->mm_rb
);
603 prev
->vm_next
= next
= vma
->vm_next
;
605 next
->vm_prev
= prev
;
608 vmacache_invalidate(mm
);
612 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
613 * is already present in an i_mmap tree without adjusting the tree.
614 * The following helper function should be used when such adjustments
615 * are necessary. The "insert" vma (if any) is to be inserted
616 * before we drop the necessary locks.
618 int vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
619 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
621 struct mm_struct
*mm
= vma
->vm_mm
;
622 struct vm_area_struct
*next
= vma
->vm_next
;
623 struct vm_area_struct
*importer
= NULL
;
624 struct address_space
*mapping
= NULL
;
625 struct rb_root
*root
= NULL
;
626 struct anon_vma
*anon_vma
= NULL
;
627 struct file
*file
= vma
->vm_file
;
628 bool start_changed
= false, end_changed
= false;
629 long adjust_next
= 0;
632 if (next
&& !insert
) {
633 struct vm_area_struct
*exporter
= NULL
;
635 if (end
>= next
->vm_end
) {
637 * vma expands, overlapping all the next, and
638 * perhaps the one after too (mprotect case 6).
640 again
: remove_next
= 1 + (end
> next
->vm_end
);
644 } else if (end
> next
->vm_start
) {
646 * vma expands, overlapping part of the next:
647 * mprotect case 5 shifting the boundary up.
649 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
652 } else if (end
< vma
->vm_end
) {
654 * vma shrinks, and !insert tells it's not
655 * split_vma inserting another: so it must be
656 * mprotect case 4 shifting the boundary down.
658 adjust_next
= -((vma
->vm_end
- end
) >> PAGE_SHIFT
);
664 * Easily overlooked: when mprotect shifts the boundary,
665 * make sure the expanding vma has anon_vma set if the
666 * shrinking vma had, to cover any anon pages imported.
668 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
671 importer
->anon_vma
= exporter
->anon_vma
;
672 error
= anon_vma_clone(importer
, exporter
);
679 mapping
= file
->f_mapping
;
680 root
= &mapping
->i_mmap
;
681 uprobe_munmap(vma
, vma
->vm_start
, vma
->vm_end
);
684 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
686 i_mmap_lock_write(mapping
);
689 * Put into interval tree now, so instantiated pages
690 * are visible to arm/parisc __flush_dcache_page
691 * throughout; but we cannot insert into address
692 * space until vma start or end is updated.
694 __vma_link_file(insert
);
698 vma_adjust_trans_huge(vma
, start
, end
, adjust_next
);
700 anon_vma
= vma
->anon_vma
;
701 if (!anon_vma
&& adjust_next
)
702 anon_vma
= next
->anon_vma
;
704 VM_BUG_ON_VMA(adjust_next
&& next
->anon_vma
&&
705 anon_vma
!= next
->anon_vma
, next
);
706 anon_vma_lock_write(anon_vma
);
707 anon_vma_interval_tree_pre_update_vma(vma
);
709 anon_vma_interval_tree_pre_update_vma(next
);
713 flush_dcache_mmap_lock(mapping
);
714 vma_interval_tree_remove(vma
, root
);
716 vma_interval_tree_remove(next
, root
);
719 if (start
!= vma
->vm_start
) {
720 vma
->vm_start
= start
;
721 start_changed
= true;
723 if (end
!= vma
->vm_end
) {
727 vma
->vm_pgoff
= pgoff
;
729 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
730 next
->vm_pgoff
+= adjust_next
;
735 vma_interval_tree_insert(next
, root
);
736 vma_interval_tree_insert(vma
, root
);
737 flush_dcache_mmap_unlock(mapping
);
742 * vma_merge has merged next into vma, and needs
743 * us to remove next before dropping the locks.
745 __vma_unlink(mm
, next
, vma
);
747 __remove_shared_vm_struct(next
, file
, mapping
);
750 * split_vma has split insert from vma, and needs
751 * us to insert it before dropping the locks
752 * (it may either follow vma or precede it).
754 __insert_vm_struct(mm
, insert
);
760 mm
->highest_vm_end
= end
;
761 else if (!adjust_next
)
762 vma_gap_update(next
);
767 anon_vma_interval_tree_post_update_vma(vma
);
769 anon_vma_interval_tree_post_update_vma(next
);
770 anon_vma_unlock_write(anon_vma
);
773 i_mmap_unlock_write(mapping
);
784 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
788 anon_vma_merge(vma
, next
);
790 mpol_put(vma_policy(next
));
791 kmem_cache_free(vm_area_cachep
, next
);
793 * In mprotect's case 6 (see comments on vma_merge),
794 * we must remove another next too. It would clutter
795 * up the code too much to do both in one go.
798 if (remove_next
== 2)
801 vma_gap_update(next
);
803 mm
->highest_vm_end
= end
;
814 * If the vma has a ->close operation then the driver probably needs to release
815 * per-vma resources, so we don't attempt to merge those.
817 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
818 struct file
*file
, unsigned long vm_flags
,
819 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
822 * VM_SOFTDIRTY should not prevent from VMA merging, if we
823 * match the flags but dirty bit -- the caller should mark
824 * merged VMA as dirty. If dirty bit won't be excluded from
825 * comparison, we increase pressue on the memory system forcing
826 * the kernel to generate new VMAs when old one could be
829 if ((vma
->vm_flags
^ vm_flags
) & ~VM_SOFTDIRTY
)
831 if (vma
->vm_file
!= file
)
833 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
835 if (!is_mergeable_vm_userfaultfd_ctx(vma
, vm_userfaultfd_ctx
))
840 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
841 struct anon_vma
*anon_vma2
,
842 struct vm_area_struct
*vma
)
845 * The list_is_singular() test is to avoid merging VMA cloned from
846 * parents. This can improve scalability caused by anon_vma lock.
848 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
849 list_is_singular(&vma
->anon_vma_chain
)))
851 return anon_vma1
== anon_vma2
;
855 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
856 * in front of (at a lower virtual address and file offset than) the vma.
858 * We cannot merge two vmas if they have differently assigned (non-NULL)
859 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
861 * We don't check here for the merged mmap wrapping around the end of pagecache
862 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
863 * wrap, nor mmaps which cover the final page at index -1UL.
866 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
867 struct anon_vma
*anon_vma
, struct file
*file
,
869 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
871 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
872 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
873 if (vma
->vm_pgoff
== vm_pgoff
)
880 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
881 * beyond (at a higher virtual address and file offset than) the vma.
883 * We cannot merge two vmas if they have differently assigned (non-NULL)
884 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
887 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
888 struct anon_vma
*anon_vma
, struct file
*file
,
890 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
892 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
893 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
895 vm_pglen
= vma_pages(vma
);
896 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
903 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
904 * whether that can be merged with its predecessor or its successor.
905 * Or both (it neatly fills a hole).
907 * In most cases - when called for mmap, brk or mremap - [addr,end) is
908 * certain not to be mapped by the time vma_merge is called; but when
909 * called for mprotect, it is certain to be already mapped (either at
910 * an offset within prev, or at the start of next), and the flags of
911 * this area are about to be changed to vm_flags - and the no-change
912 * case has already been eliminated.
914 * The following mprotect cases have to be considered, where AAAA is
915 * the area passed down from mprotect_fixup, never extending beyond one
916 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
918 * AAAA AAAA AAAA AAAA
919 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
920 * cannot merge might become might become might become
921 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
922 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
923 * mremap move: PPPPNNNNNNNN 8
925 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
926 * might become case 1 below case 2 below case 3 below
928 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
929 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
931 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
932 struct vm_area_struct
*prev
, unsigned long addr
,
933 unsigned long end
, unsigned long vm_flags
,
934 struct anon_vma
*anon_vma
, struct file
*file
,
935 pgoff_t pgoff
, struct mempolicy
*policy
,
936 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
938 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
939 struct vm_area_struct
*area
, *next
;
943 * We later require that vma->vm_flags == vm_flags,
944 * so this tests vma->vm_flags & VM_SPECIAL, too.
946 if (vm_flags
& VM_SPECIAL
)
950 next
= prev
->vm_next
;
954 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
955 next
= next
->vm_next
;
958 * Can it merge with the predecessor?
960 if (prev
&& prev
->vm_end
== addr
&&
961 mpol_equal(vma_policy(prev
), policy
) &&
962 can_vma_merge_after(prev
, vm_flags
,
963 anon_vma
, file
, pgoff
,
964 vm_userfaultfd_ctx
)) {
966 * OK, it can. Can we now merge in the successor as well?
968 if (next
&& end
== next
->vm_start
&&
969 mpol_equal(policy
, vma_policy(next
)) &&
970 can_vma_merge_before(next
, vm_flags
,
973 vm_userfaultfd_ctx
) &&
974 is_mergeable_anon_vma(prev
->anon_vma
,
975 next
->anon_vma
, NULL
)) {
977 err
= vma_adjust(prev
, prev
->vm_start
,
978 next
->vm_end
, prev
->vm_pgoff
, NULL
);
979 } else /* cases 2, 5, 7 */
980 err
= vma_adjust(prev
, prev
->vm_start
,
981 end
, prev
->vm_pgoff
, NULL
);
984 khugepaged_enter_vma_merge(prev
, vm_flags
);
989 * Can this new request be merged in front of next?
991 if (next
&& end
== next
->vm_start
&&
992 mpol_equal(policy
, vma_policy(next
)) &&
993 can_vma_merge_before(next
, vm_flags
,
994 anon_vma
, file
, pgoff
+pglen
,
995 vm_userfaultfd_ctx
)) {
996 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
997 err
= vma_adjust(prev
, prev
->vm_start
,
998 addr
, prev
->vm_pgoff
, NULL
);
999 else /* cases 3, 8 */
1000 err
= vma_adjust(area
, addr
, next
->vm_end
,
1001 next
->vm_pgoff
- pglen
, NULL
);
1004 khugepaged_enter_vma_merge(area
, vm_flags
);
1012 * Rough compatbility check to quickly see if it's even worth looking
1013 * at sharing an anon_vma.
1015 * They need to have the same vm_file, and the flags can only differ
1016 * in things that mprotect may change.
1018 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1019 * we can merge the two vma's. For example, we refuse to merge a vma if
1020 * there is a vm_ops->close() function, because that indicates that the
1021 * driver is doing some kind of reference counting. But that doesn't
1022 * really matter for the anon_vma sharing case.
1024 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1026 return a
->vm_end
== b
->vm_start
&&
1027 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
1028 a
->vm_file
== b
->vm_file
&&
1029 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
|VM_SOFTDIRTY
)) &&
1030 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
1034 * Do some basic sanity checking to see if we can re-use the anon_vma
1035 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1036 * the same as 'old', the other will be the new one that is trying
1037 * to share the anon_vma.
1039 * NOTE! This runs with mm_sem held for reading, so it is possible that
1040 * the anon_vma of 'old' is concurrently in the process of being set up
1041 * by another page fault trying to merge _that_. But that's ok: if it
1042 * is being set up, that automatically means that it will be a singleton
1043 * acceptable for merging, so we can do all of this optimistically. But
1044 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1046 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1047 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1048 * is to return an anon_vma that is "complex" due to having gone through
1051 * We also make sure that the two vma's are compatible (adjacent,
1052 * and with the same memory policies). That's all stable, even with just
1053 * a read lock on the mm_sem.
1055 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1057 if (anon_vma_compatible(a
, b
)) {
1058 struct anon_vma
*anon_vma
= READ_ONCE(old
->anon_vma
);
1060 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
1067 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1068 * neighbouring vmas for a suitable anon_vma, before it goes off
1069 * to allocate a new anon_vma. It checks because a repetitive
1070 * sequence of mprotects and faults may otherwise lead to distinct
1071 * anon_vmas being allocated, preventing vma merge in subsequent
1074 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
1076 struct anon_vma
*anon_vma
;
1077 struct vm_area_struct
*near
;
1079 near
= vma
->vm_next
;
1083 anon_vma
= reusable_anon_vma(near
, vma
, near
);
1087 near
= vma
->vm_prev
;
1091 anon_vma
= reusable_anon_vma(near
, near
, vma
);
1096 * There's no absolute need to look only at touching neighbours:
1097 * we could search further afield for "compatible" anon_vmas.
1098 * But it would probably just be a waste of time searching,
1099 * or lead to too many vmas hanging off the same anon_vma.
1100 * We're trying to allow mprotect remerging later on,
1101 * not trying to minimize memory used for anon_vmas.
1107 * If a hint addr is less than mmap_min_addr change hint to be as
1108 * low as possible but still greater than mmap_min_addr
1110 static inline unsigned long round_hint_to_min(unsigned long hint
)
1113 if (((void *)hint
!= NULL
) &&
1114 (hint
< mmap_min_addr
))
1115 return PAGE_ALIGN(mmap_min_addr
);
1119 static inline int mlock_future_check(struct mm_struct
*mm
,
1120 unsigned long flags
,
1123 unsigned long locked
, lock_limit
;
1125 /* mlock MCL_FUTURE? */
1126 if (flags
& VM_LOCKED
) {
1127 locked
= len
>> PAGE_SHIFT
;
1128 locked
+= mm
->locked_vm
;
1129 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1130 lock_limit
>>= PAGE_SHIFT
;
1131 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1138 * The caller must hold down_write(¤t->mm->mmap_sem).
1140 unsigned long do_mmap(struct file
*file
, unsigned long addr
,
1141 unsigned long len
, unsigned long prot
,
1142 unsigned long flags
, vm_flags_t vm_flags
,
1143 unsigned long pgoff
, unsigned long *populate
)
1145 struct mm_struct
*mm
= current
->mm
;
1154 * Does the application expect PROT_READ to imply PROT_EXEC?
1156 * (the exception is when the underlying filesystem is noexec
1157 * mounted, in which case we dont add PROT_EXEC.)
1159 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
1160 if (!(file
&& path_noexec(&file
->f_path
)))
1163 if (!(flags
& MAP_FIXED
))
1164 addr
= round_hint_to_min(addr
);
1166 /* Careful about overflows.. */
1167 len
= PAGE_ALIGN(len
);
1171 /* offset overflow? */
1172 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
1175 /* Too many mappings? */
1176 if (mm
->map_count
> sysctl_max_map_count
)
1179 /* Obtain the address to map to. we verify (or select) it and ensure
1180 * that it represents a valid section of the address space.
1182 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1183 if (offset_in_page(addr
))
1186 if (prot
== PROT_EXEC
) {
1187 pkey
= execute_only_pkey(mm
);
1192 /* Do simple checking here so the lower-level routines won't have
1193 * to. we assume access permissions have been handled by the open
1194 * of the memory object, so we don't do any here.
1196 vm_flags
|= calc_vm_prot_bits(prot
, pkey
) | calc_vm_flag_bits(flags
) |
1197 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1199 if (flags
& MAP_LOCKED
)
1200 if (!can_do_mlock())
1203 if (mlock_future_check(mm
, vm_flags
, len
))
1207 struct inode
*inode
= file_inode(file
);
1209 switch (flags
& MAP_TYPE
) {
1211 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1215 * Make sure we don't allow writing to an append-only
1218 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1222 * Make sure there are no mandatory locks on the file.
1224 if (locks_verify_locked(file
))
1227 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1228 if (!(file
->f_mode
& FMODE_WRITE
))
1229 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1233 if (!(file
->f_mode
& FMODE_READ
))
1235 if (path_noexec(&file
->f_path
)) {
1236 if (vm_flags
& VM_EXEC
)
1238 vm_flags
&= ~VM_MAYEXEC
;
1241 if (!file
->f_op
->mmap
)
1243 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1251 switch (flags
& MAP_TYPE
) {
1253 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1259 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1263 * Set pgoff according to addr for anon_vma.
1265 pgoff
= addr
>> PAGE_SHIFT
;
1273 * Set 'VM_NORESERVE' if we should not account for the
1274 * memory use of this mapping.
1276 if (flags
& MAP_NORESERVE
) {
1277 /* We honor MAP_NORESERVE if allowed to overcommit */
1278 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1279 vm_flags
|= VM_NORESERVE
;
1281 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1282 if (file
&& is_file_hugepages(file
))
1283 vm_flags
|= VM_NORESERVE
;
1286 addr
= mmap_region(file
, addr
, len
, vm_flags
, pgoff
);
1287 if (!IS_ERR_VALUE(addr
) &&
1288 ((vm_flags
& VM_LOCKED
) ||
1289 (flags
& (MAP_POPULATE
| MAP_NONBLOCK
)) == MAP_POPULATE
))
1294 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1295 unsigned long, prot
, unsigned long, flags
,
1296 unsigned long, fd
, unsigned long, pgoff
)
1298 struct file
*file
= NULL
;
1299 unsigned long retval
;
1301 if (!(flags
& MAP_ANONYMOUS
)) {
1302 audit_mmap_fd(fd
, flags
);
1306 if (is_file_hugepages(file
))
1307 len
= ALIGN(len
, huge_page_size(hstate_file(file
)));
1309 if (unlikely(flags
& MAP_HUGETLB
&& !is_file_hugepages(file
)))
1311 } else if (flags
& MAP_HUGETLB
) {
1312 struct user_struct
*user
= NULL
;
1315 hs
= hstate_sizelog((flags
>> MAP_HUGE_SHIFT
) & SHM_HUGE_MASK
);
1319 len
= ALIGN(len
, huge_page_size(hs
));
1321 * VM_NORESERVE is used because the reservations will be
1322 * taken when vm_ops->mmap() is called
1323 * A dummy user value is used because we are not locking
1324 * memory so no accounting is necessary
1326 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
,
1328 &user
, HUGETLB_ANONHUGE_INODE
,
1329 (flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1331 return PTR_ERR(file
);
1334 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1336 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1343 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1344 struct mmap_arg_struct
{
1348 unsigned long flags
;
1350 unsigned long offset
;
1353 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1355 struct mmap_arg_struct a
;
1357 if (copy_from_user(&a
, arg
, sizeof(a
)))
1359 if (offset_in_page(a
.offset
))
1362 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1363 a
.offset
>> PAGE_SHIFT
);
1365 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1368 * Some shared mappigns will want the pages marked read-only
1369 * to track write events. If so, we'll downgrade vm_page_prot
1370 * to the private version (using protection_map[] without the
1373 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1375 vm_flags_t vm_flags
= vma
->vm_flags
;
1376 const struct vm_operations_struct
*vm_ops
= vma
->vm_ops
;
1378 /* If it was private or non-writable, the write bit is already clear */
1379 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1382 /* The backer wishes to know when pages are first written to? */
1383 if (vm_ops
&& (vm_ops
->page_mkwrite
|| vm_ops
->pfn_mkwrite
))
1386 /* The open routine did something to the protections that pgprot_modify
1387 * won't preserve? */
1388 if (pgprot_val(vma
->vm_page_prot
) !=
1389 pgprot_val(vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
)))
1392 /* Do we need to track softdirty? */
1393 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY
) && !(vm_flags
& VM_SOFTDIRTY
))
1396 /* Specialty mapping? */
1397 if (vm_flags
& VM_PFNMAP
)
1400 /* Can the mapping track the dirty pages? */
1401 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1402 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1406 * We account for memory if it's a private writeable mapping,
1407 * not hugepages and VM_NORESERVE wasn't set.
1409 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1412 * hugetlb has its own accounting separate from the core VM
1413 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1415 if (file
&& is_file_hugepages(file
))
1418 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1421 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1422 unsigned long len
, vm_flags_t vm_flags
, unsigned long pgoff
)
1424 struct mm_struct
*mm
= current
->mm
;
1425 struct vm_area_struct
*vma
, *prev
;
1427 struct rb_node
**rb_link
, *rb_parent
;
1428 unsigned long charged
= 0;
1430 /* Check against address space limit. */
1431 if (!may_expand_vm(mm
, vm_flags
, len
>> PAGE_SHIFT
)) {
1432 unsigned long nr_pages
;
1435 * MAP_FIXED may remove pages of mappings that intersects with
1436 * requested mapping. Account for the pages it would unmap.
1438 nr_pages
= count_vma_pages_range(mm
, addr
, addr
+ len
);
1440 if (!may_expand_vm(mm
, vm_flags
,
1441 (len
>> PAGE_SHIFT
) - nr_pages
))
1445 /* Clear old maps */
1446 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
1448 if (do_munmap(mm
, addr
, len
))
1453 * Private writable mapping: check memory availability
1455 if (accountable_mapping(file
, vm_flags
)) {
1456 charged
= len
>> PAGE_SHIFT
;
1457 if (security_vm_enough_memory_mm(mm
, charged
))
1459 vm_flags
|= VM_ACCOUNT
;
1463 * Can we just expand an old mapping?
1465 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
,
1466 NULL
, file
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
1471 * Determine the object being mapped and call the appropriate
1472 * specific mapper. the address has already been validated, but
1473 * not unmapped, but the maps are removed from the list.
1475 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1482 vma
->vm_start
= addr
;
1483 vma
->vm_end
= addr
+ len
;
1484 vma
->vm_flags
= vm_flags
;
1485 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1486 vma
->vm_pgoff
= pgoff
;
1487 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1490 if (vm_flags
& VM_DENYWRITE
) {
1491 error
= deny_write_access(file
);
1495 if (vm_flags
& VM_SHARED
) {
1496 error
= mapping_map_writable(file
->f_mapping
);
1498 goto allow_write_and_free_vma
;
1501 /* ->mmap() can change vma->vm_file, but must guarantee that
1502 * vma_link() below can deny write-access if VM_DENYWRITE is set
1503 * and map writably if VM_SHARED is set. This usually means the
1504 * new file must not have been exposed to user-space, yet.
1506 vma
->vm_file
= get_file(file
);
1507 error
= file
->f_op
->mmap(file
, vma
);
1509 goto unmap_and_free_vma
;
1511 /* Can addr have changed??
1513 * Answer: Yes, several device drivers can do it in their
1514 * f_op->mmap method. -DaveM
1515 * Bug: If addr is changed, prev, rb_link, rb_parent should
1516 * be updated for vma_link()
1518 WARN_ON_ONCE(addr
!= vma
->vm_start
);
1520 addr
= vma
->vm_start
;
1521 vm_flags
= vma
->vm_flags
;
1522 } else if (vm_flags
& VM_SHARED
) {
1523 error
= shmem_zero_setup(vma
);
1528 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1529 /* Once vma denies write, undo our temporary denial count */
1531 if (vm_flags
& VM_SHARED
)
1532 mapping_unmap_writable(file
->f_mapping
);
1533 if (vm_flags
& VM_DENYWRITE
)
1534 allow_write_access(file
);
1536 file
= vma
->vm_file
;
1538 perf_event_mmap(vma
);
1540 vm_stat_account(mm
, vm_flags
, len
>> PAGE_SHIFT
);
1541 if (vm_flags
& VM_LOCKED
) {
1542 if (!((vm_flags
& VM_SPECIAL
) || is_vm_hugetlb_page(vma
) ||
1543 vma
== get_gate_vma(current
->mm
)))
1544 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1546 vma
->vm_flags
&= VM_LOCKED_CLEAR_MASK
;
1553 * New (or expanded) vma always get soft dirty status.
1554 * Otherwise user-space soft-dirty page tracker won't
1555 * be able to distinguish situation when vma area unmapped,
1556 * then new mapped in-place (which must be aimed as
1557 * a completely new data area).
1559 vma
->vm_flags
|= VM_SOFTDIRTY
;
1561 vma_set_page_prot(vma
);
1566 vma
->vm_file
= NULL
;
1569 /* Undo any partial mapping done by a device driver. */
1570 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1572 if (vm_flags
& VM_SHARED
)
1573 mapping_unmap_writable(file
->f_mapping
);
1574 allow_write_and_free_vma
:
1575 if (vm_flags
& VM_DENYWRITE
)
1576 allow_write_access(file
);
1578 kmem_cache_free(vm_area_cachep
, vma
);
1581 vm_unacct_memory(charged
);
1585 unsigned long unmapped_area(struct vm_unmapped_area_info
*info
)
1588 * We implement the search by looking for an rbtree node that
1589 * immediately follows a suitable gap. That is,
1590 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1591 * - gap_end = vma->vm_start >= info->low_limit + length;
1592 * - gap_end - gap_start >= length
1595 struct mm_struct
*mm
= current
->mm
;
1596 struct vm_area_struct
*vma
;
1597 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1599 /* Adjust search length to account for worst case alignment overhead */
1600 length
= info
->length
+ info
->align_mask
;
1601 if (length
< info
->length
)
1604 /* Adjust search limits by the desired length */
1605 if (info
->high_limit
< length
)
1607 high_limit
= info
->high_limit
- length
;
1609 if (info
->low_limit
> high_limit
)
1611 low_limit
= info
->low_limit
+ length
;
1613 /* Check if rbtree root looks promising */
1614 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1616 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1617 if (vma
->rb_subtree_gap
< length
)
1621 /* Visit left subtree if it looks promising */
1622 gap_end
= vma
->vm_start
;
1623 if (gap_end
>= low_limit
&& vma
->vm_rb
.rb_left
) {
1624 struct vm_area_struct
*left
=
1625 rb_entry(vma
->vm_rb
.rb_left
,
1626 struct vm_area_struct
, vm_rb
);
1627 if (left
->rb_subtree_gap
>= length
) {
1633 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1635 /* Check if current node has a suitable gap */
1636 if (gap_start
> high_limit
)
1638 if (gap_end
>= low_limit
&& gap_end
- gap_start
>= length
)
1641 /* Visit right subtree if it looks promising */
1642 if (vma
->vm_rb
.rb_right
) {
1643 struct vm_area_struct
*right
=
1644 rb_entry(vma
->vm_rb
.rb_right
,
1645 struct vm_area_struct
, vm_rb
);
1646 if (right
->rb_subtree_gap
>= length
) {
1652 /* Go back up the rbtree to find next candidate node */
1654 struct rb_node
*prev
= &vma
->vm_rb
;
1655 if (!rb_parent(prev
))
1657 vma
= rb_entry(rb_parent(prev
),
1658 struct vm_area_struct
, vm_rb
);
1659 if (prev
== vma
->vm_rb
.rb_left
) {
1660 gap_start
= vma
->vm_prev
->vm_end
;
1661 gap_end
= vma
->vm_start
;
1668 /* Check highest gap, which does not precede any rbtree node */
1669 gap_start
= mm
->highest_vm_end
;
1670 gap_end
= ULONG_MAX
; /* Only for VM_BUG_ON below */
1671 if (gap_start
> high_limit
)
1675 /* We found a suitable gap. Clip it with the original low_limit. */
1676 if (gap_start
< info
->low_limit
)
1677 gap_start
= info
->low_limit
;
1679 /* Adjust gap address to the desired alignment */
1680 gap_start
+= (info
->align_offset
- gap_start
) & info
->align_mask
;
1682 VM_BUG_ON(gap_start
+ info
->length
> info
->high_limit
);
1683 VM_BUG_ON(gap_start
+ info
->length
> gap_end
);
1687 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info
*info
)
1689 struct mm_struct
*mm
= current
->mm
;
1690 struct vm_area_struct
*vma
;
1691 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1693 /* Adjust search length to account for worst case alignment overhead */
1694 length
= info
->length
+ info
->align_mask
;
1695 if (length
< info
->length
)
1699 * Adjust search limits by the desired length.
1700 * See implementation comment at top of unmapped_area().
1702 gap_end
= info
->high_limit
;
1703 if (gap_end
< length
)
1705 high_limit
= gap_end
- length
;
1707 if (info
->low_limit
> high_limit
)
1709 low_limit
= info
->low_limit
+ length
;
1711 /* Check highest gap, which does not precede any rbtree node */
1712 gap_start
= mm
->highest_vm_end
;
1713 if (gap_start
<= high_limit
)
1716 /* Check if rbtree root looks promising */
1717 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1719 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1720 if (vma
->rb_subtree_gap
< length
)
1724 /* Visit right subtree if it looks promising */
1725 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1726 if (gap_start
<= high_limit
&& vma
->vm_rb
.rb_right
) {
1727 struct vm_area_struct
*right
=
1728 rb_entry(vma
->vm_rb
.rb_right
,
1729 struct vm_area_struct
, vm_rb
);
1730 if (right
->rb_subtree_gap
>= length
) {
1737 /* Check if current node has a suitable gap */
1738 gap_end
= vma
->vm_start
;
1739 if (gap_end
< low_limit
)
1741 if (gap_start
<= high_limit
&& gap_end
- gap_start
>= length
)
1744 /* Visit left subtree if it looks promising */
1745 if (vma
->vm_rb
.rb_left
) {
1746 struct vm_area_struct
*left
=
1747 rb_entry(vma
->vm_rb
.rb_left
,
1748 struct vm_area_struct
, vm_rb
);
1749 if (left
->rb_subtree_gap
>= length
) {
1755 /* Go back up the rbtree to find next candidate node */
1757 struct rb_node
*prev
= &vma
->vm_rb
;
1758 if (!rb_parent(prev
))
1760 vma
= rb_entry(rb_parent(prev
),
1761 struct vm_area_struct
, vm_rb
);
1762 if (prev
== vma
->vm_rb
.rb_right
) {
1763 gap_start
= vma
->vm_prev
?
1764 vma
->vm_prev
->vm_end
: 0;
1771 /* We found a suitable gap. Clip it with the original high_limit. */
1772 if (gap_end
> info
->high_limit
)
1773 gap_end
= info
->high_limit
;
1776 /* Compute highest gap address at the desired alignment */
1777 gap_end
-= info
->length
;
1778 gap_end
-= (gap_end
- info
->align_offset
) & info
->align_mask
;
1780 VM_BUG_ON(gap_end
< info
->low_limit
);
1781 VM_BUG_ON(gap_end
< gap_start
);
1785 /* Get an address range which is currently unmapped.
1786 * For shmat() with addr=0.
1788 * Ugly calling convention alert:
1789 * Return value with the low bits set means error value,
1791 * if (ret & ~PAGE_MASK)
1794 * This function "knows" that -ENOMEM has the bits set.
1796 #ifndef HAVE_ARCH_UNMAPPED_AREA
1798 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1799 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1801 struct mm_struct
*mm
= current
->mm
;
1802 struct vm_area_struct
*vma
;
1803 struct vm_unmapped_area_info info
;
1805 if (len
> TASK_SIZE
- mmap_min_addr
)
1808 if (flags
& MAP_FIXED
)
1812 addr
= PAGE_ALIGN(addr
);
1813 vma
= find_vma(mm
, addr
);
1814 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1815 (!vma
|| addr
+ len
<= vma
->vm_start
))
1821 info
.low_limit
= mm
->mmap_base
;
1822 info
.high_limit
= TASK_SIZE
;
1823 info
.align_mask
= 0;
1824 return vm_unmapped_area(&info
);
1829 * This mmap-allocator allocates new areas top-down from below the
1830 * stack's low limit (the base):
1832 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1834 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1835 const unsigned long len
, const unsigned long pgoff
,
1836 const unsigned long flags
)
1838 struct vm_area_struct
*vma
;
1839 struct mm_struct
*mm
= current
->mm
;
1840 unsigned long addr
= addr0
;
1841 struct vm_unmapped_area_info info
;
1843 /* requested length too big for entire address space */
1844 if (len
> TASK_SIZE
- mmap_min_addr
)
1847 if (flags
& MAP_FIXED
)
1850 /* requesting a specific address */
1852 addr
= PAGE_ALIGN(addr
);
1853 vma
= find_vma(mm
, addr
);
1854 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1855 (!vma
|| addr
+ len
<= vma
->vm_start
))
1859 info
.flags
= VM_UNMAPPED_AREA_TOPDOWN
;
1861 info
.low_limit
= max(PAGE_SIZE
, mmap_min_addr
);
1862 info
.high_limit
= mm
->mmap_base
;
1863 info
.align_mask
= 0;
1864 addr
= vm_unmapped_area(&info
);
1867 * A failed mmap() very likely causes application failure,
1868 * so fall back to the bottom-up function here. This scenario
1869 * can happen with large stack limits and large mmap()
1872 if (offset_in_page(addr
)) {
1873 VM_BUG_ON(addr
!= -ENOMEM
);
1875 info
.low_limit
= TASK_UNMAPPED_BASE
;
1876 info
.high_limit
= TASK_SIZE
;
1877 addr
= vm_unmapped_area(&info
);
1885 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1886 unsigned long pgoff
, unsigned long flags
)
1888 unsigned long (*get_area
)(struct file
*, unsigned long,
1889 unsigned long, unsigned long, unsigned long);
1891 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
1895 /* Careful about overflows.. */
1896 if (len
> TASK_SIZE
)
1899 get_area
= current
->mm
->get_unmapped_area
;
1900 if (file
&& file
->f_op
->get_unmapped_area
)
1901 get_area
= file
->f_op
->get_unmapped_area
;
1902 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
1903 if (IS_ERR_VALUE(addr
))
1906 if (addr
> TASK_SIZE
- len
)
1908 if (offset_in_page(addr
))
1911 error
= security_mmap_addr(addr
);
1912 return error
? error
: addr
;
1915 EXPORT_SYMBOL(get_unmapped_area
);
1917 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1918 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
1920 struct rb_node
*rb_node
;
1921 struct vm_area_struct
*vma
;
1923 /* Check the cache first. */
1924 vma
= vmacache_find(mm
, addr
);
1928 rb_node
= mm
->mm_rb
.rb_node
;
1931 struct vm_area_struct
*tmp
;
1933 tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1935 if (tmp
->vm_end
> addr
) {
1937 if (tmp
->vm_start
<= addr
)
1939 rb_node
= rb_node
->rb_left
;
1941 rb_node
= rb_node
->rb_right
;
1945 vmacache_update(addr
, vma
);
1949 EXPORT_SYMBOL(find_vma
);
1952 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1954 struct vm_area_struct
*
1955 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
1956 struct vm_area_struct
**pprev
)
1958 struct vm_area_struct
*vma
;
1960 vma
= find_vma(mm
, addr
);
1962 *pprev
= vma
->vm_prev
;
1964 struct rb_node
*rb_node
= mm
->mm_rb
.rb_node
;
1967 *pprev
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1968 rb_node
= rb_node
->rb_right
;
1975 * Verify that the stack growth is acceptable and
1976 * update accounting. This is shared with both the
1977 * grow-up and grow-down cases.
1979 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
1981 struct mm_struct
*mm
= vma
->vm_mm
;
1982 struct rlimit
*rlim
= current
->signal
->rlim
;
1983 unsigned long new_start
, actual_size
;
1985 /* address space limit tests */
1986 if (!may_expand_vm(mm
, vma
->vm_flags
, grow
))
1989 /* Stack limit test */
1991 if (size
&& (vma
->vm_flags
& (VM_GROWSUP
| VM_GROWSDOWN
)))
1992 actual_size
-= PAGE_SIZE
;
1993 if (actual_size
> READ_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
))
1996 /* mlock limit tests */
1997 if (vma
->vm_flags
& VM_LOCKED
) {
1998 unsigned long locked
;
1999 unsigned long limit
;
2000 locked
= mm
->locked_vm
+ grow
;
2001 limit
= READ_ONCE(rlim
[RLIMIT_MEMLOCK
].rlim_cur
);
2002 limit
>>= PAGE_SHIFT
;
2003 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
2007 /* Check to ensure the stack will not grow into a hugetlb-only region */
2008 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
2010 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
2014 * Overcommit.. This must be the final test, as it will
2015 * update security statistics.
2017 if (security_vm_enough_memory_mm(mm
, grow
))
2023 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2025 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2026 * vma is the last one with address > vma->vm_end. Have to extend vma.
2028 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
2030 struct mm_struct
*mm
= vma
->vm_mm
;
2033 if (!(vma
->vm_flags
& VM_GROWSUP
))
2036 /* Guard against wrapping around to address 0. */
2037 if (address
< PAGE_ALIGN(address
+4))
2038 address
= PAGE_ALIGN(address
+4);
2042 /* We must make sure the anon_vma is allocated. */
2043 if (unlikely(anon_vma_prepare(vma
)))
2047 * vma->vm_start/vm_end cannot change under us because the caller
2048 * is required to hold the mmap_sem in read mode. We need the
2049 * anon_vma lock to serialize against concurrent expand_stacks.
2051 anon_vma_lock_write(vma
->anon_vma
);
2053 /* Somebody else might have raced and expanded it already */
2054 if (address
> vma
->vm_end
) {
2055 unsigned long size
, grow
;
2057 size
= address
- vma
->vm_start
;
2058 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
2061 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
2062 error
= acct_stack_growth(vma
, size
, grow
);
2065 * vma_gap_update() doesn't support concurrent
2066 * updates, but we only hold a shared mmap_sem
2067 * lock here, so we need to protect against
2068 * concurrent vma expansions.
2069 * anon_vma_lock_write() doesn't help here, as
2070 * we don't guarantee that all growable vmas
2071 * in a mm share the same root anon vma.
2072 * So, we reuse mm->page_table_lock to guard
2073 * against concurrent vma expansions.
2075 spin_lock(&mm
->page_table_lock
);
2076 if (vma
->vm_flags
& VM_LOCKED
)
2077 mm
->locked_vm
+= grow
;
2078 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2079 anon_vma_interval_tree_pre_update_vma(vma
);
2080 vma
->vm_end
= address
;
2081 anon_vma_interval_tree_post_update_vma(vma
);
2083 vma_gap_update(vma
->vm_next
);
2085 mm
->highest_vm_end
= address
;
2086 spin_unlock(&mm
->page_table_lock
);
2088 perf_event_mmap(vma
);
2092 anon_vma_unlock_write(vma
->anon_vma
);
2093 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2097 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2100 * vma is the first one with address < vma->vm_start. Have to extend vma.
2102 int expand_downwards(struct vm_area_struct
*vma
,
2103 unsigned long address
)
2105 struct mm_struct
*mm
= vma
->vm_mm
;
2108 address
&= PAGE_MASK
;
2109 error
= security_mmap_addr(address
);
2113 /* We must make sure the anon_vma is allocated. */
2114 if (unlikely(anon_vma_prepare(vma
)))
2118 * vma->vm_start/vm_end cannot change under us because the caller
2119 * is required to hold the mmap_sem in read mode. We need the
2120 * anon_vma lock to serialize against concurrent expand_stacks.
2122 anon_vma_lock_write(vma
->anon_vma
);
2124 /* Somebody else might have raced and expanded it already */
2125 if (address
< vma
->vm_start
) {
2126 unsigned long size
, grow
;
2128 size
= vma
->vm_end
- address
;
2129 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
2132 if (grow
<= vma
->vm_pgoff
) {
2133 error
= acct_stack_growth(vma
, size
, grow
);
2136 * vma_gap_update() doesn't support concurrent
2137 * updates, but we only hold a shared mmap_sem
2138 * lock here, so we need to protect against
2139 * concurrent vma expansions.
2140 * anon_vma_lock_write() doesn't help here, as
2141 * we don't guarantee that all growable vmas
2142 * in a mm share the same root anon vma.
2143 * So, we reuse mm->page_table_lock to guard
2144 * against concurrent vma expansions.
2146 spin_lock(&mm
->page_table_lock
);
2147 if (vma
->vm_flags
& VM_LOCKED
)
2148 mm
->locked_vm
+= grow
;
2149 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2150 anon_vma_interval_tree_pre_update_vma(vma
);
2151 vma
->vm_start
= address
;
2152 vma
->vm_pgoff
-= grow
;
2153 anon_vma_interval_tree_post_update_vma(vma
);
2154 vma_gap_update(vma
);
2155 spin_unlock(&mm
->page_table_lock
);
2157 perf_event_mmap(vma
);
2161 anon_vma_unlock_write(vma
->anon_vma
);
2162 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2168 * Note how expand_stack() refuses to expand the stack all the way to
2169 * abut the next virtual mapping, *unless* that mapping itself is also
2170 * a stack mapping. We want to leave room for a guard page, after all
2171 * (the guard page itself is not added here, that is done by the
2172 * actual page faulting logic)
2174 * This matches the behavior of the guard page logic (see mm/memory.c:
2175 * check_stack_guard_page()), which only allows the guard page to be
2176 * removed under these circumstances.
2178 #ifdef CONFIG_STACK_GROWSUP
2179 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2181 struct vm_area_struct
*next
;
2183 address
&= PAGE_MASK
;
2184 next
= vma
->vm_next
;
2185 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
) {
2186 if (!(next
->vm_flags
& VM_GROWSUP
))
2189 return expand_upwards(vma
, address
);
2192 struct vm_area_struct
*
2193 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2195 struct vm_area_struct
*vma
, *prev
;
2198 vma
= find_vma_prev(mm
, addr
, &prev
);
2199 if (vma
&& (vma
->vm_start
<= addr
))
2201 if (!prev
|| expand_stack(prev
, addr
))
2203 if (prev
->vm_flags
& VM_LOCKED
)
2204 populate_vma_page_range(prev
, addr
, prev
->vm_end
, NULL
);
2208 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2210 struct vm_area_struct
*prev
;
2212 address
&= PAGE_MASK
;
2213 prev
= vma
->vm_prev
;
2214 if (prev
&& prev
->vm_end
== address
) {
2215 if (!(prev
->vm_flags
& VM_GROWSDOWN
))
2218 return expand_downwards(vma
, address
);
2221 struct vm_area_struct
*
2222 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2224 struct vm_area_struct
*vma
;
2225 unsigned long start
;
2228 vma
= find_vma(mm
, addr
);
2231 if (vma
->vm_start
<= addr
)
2233 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
2235 start
= vma
->vm_start
;
2236 if (expand_stack(vma
, addr
))
2238 if (vma
->vm_flags
& VM_LOCKED
)
2239 populate_vma_page_range(vma
, addr
, start
, NULL
);
2244 EXPORT_SYMBOL_GPL(find_extend_vma
);
2247 * Ok - we have the memory areas we should free on the vma list,
2248 * so release them, and do the vma updates.
2250 * Called with the mm semaphore held.
2252 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2254 unsigned long nr_accounted
= 0;
2256 /* Update high watermark before we lower total_vm */
2257 update_hiwater_vm(mm
);
2259 long nrpages
= vma_pages(vma
);
2261 if (vma
->vm_flags
& VM_ACCOUNT
)
2262 nr_accounted
+= nrpages
;
2263 vm_stat_account(mm
, vma
->vm_flags
, -nrpages
);
2264 vma
= remove_vma(vma
);
2266 vm_unacct_memory(nr_accounted
);
2271 * Get rid of page table information in the indicated region.
2273 * Called with the mm semaphore held.
2275 static void unmap_region(struct mm_struct
*mm
,
2276 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
2277 unsigned long start
, unsigned long end
)
2279 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
2280 struct mmu_gather tlb
;
2283 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2284 update_hiwater_rss(mm
);
2285 unmap_vmas(&tlb
, vma
, start
, end
);
2286 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
2287 next
? next
->vm_start
: USER_PGTABLES_CEILING
);
2288 tlb_finish_mmu(&tlb
, start
, end
);
2292 * Create a list of vma's touched by the unmap, removing them from the mm's
2293 * vma list as we go..
2296 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2297 struct vm_area_struct
*prev
, unsigned long end
)
2299 struct vm_area_struct
**insertion_point
;
2300 struct vm_area_struct
*tail_vma
= NULL
;
2302 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
2303 vma
->vm_prev
= NULL
;
2305 vma_rb_erase(vma
, &mm
->mm_rb
);
2309 } while (vma
&& vma
->vm_start
< end
);
2310 *insertion_point
= vma
;
2312 vma
->vm_prev
= prev
;
2313 vma_gap_update(vma
);
2315 mm
->highest_vm_end
= prev
? prev
->vm_end
: 0;
2316 tail_vma
->vm_next
= NULL
;
2318 /* Kill the cache */
2319 vmacache_invalidate(mm
);
2323 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2324 * munmap path where it doesn't make sense to fail.
2326 static int __split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2327 unsigned long addr
, int new_below
)
2329 struct vm_area_struct
*new;
2332 if (is_vm_hugetlb_page(vma
) && (addr
&
2333 ~(huge_page_mask(hstate_vma(vma
)))))
2336 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2340 /* most fields are the same, copy all, and then fixup */
2343 INIT_LIST_HEAD(&new->anon_vma_chain
);
2348 new->vm_start
= addr
;
2349 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
2352 err
= vma_dup_policy(vma
, new);
2356 err
= anon_vma_clone(new, vma
);
2361 get_file(new->vm_file
);
2363 if (new->vm_ops
&& new->vm_ops
->open
)
2364 new->vm_ops
->open(new);
2367 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
2368 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
2370 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2376 /* Clean everything up if vma_adjust failed. */
2377 if (new->vm_ops
&& new->vm_ops
->close
)
2378 new->vm_ops
->close(new);
2381 unlink_anon_vmas(new);
2383 mpol_put(vma_policy(new));
2385 kmem_cache_free(vm_area_cachep
, new);
2390 * Split a vma into two pieces at address 'addr', a new vma is allocated
2391 * either for the first part or the tail.
2393 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2394 unsigned long addr
, int new_below
)
2396 if (mm
->map_count
>= sysctl_max_map_count
)
2399 return __split_vma(mm
, vma
, addr
, new_below
);
2402 /* Munmap is split into 2 main parts -- this part which finds
2403 * what needs doing, and the areas themselves, which do the
2404 * work. This now handles partial unmappings.
2405 * Jeremy Fitzhardinge <jeremy@goop.org>
2407 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
2410 struct vm_area_struct
*vma
, *prev
, *last
;
2412 if ((offset_in_page(start
)) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2415 len
= PAGE_ALIGN(len
);
2419 /* Find the first overlapping VMA */
2420 vma
= find_vma(mm
, start
);
2423 prev
= vma
->vm_prev
;
2424 /* we have start < vma->vm_end */
2426 /* if it doesn't overlap, we have nothing.. */
2428 if (vma
->vm_start
>= end
)
2432 * If we need to split any vma, do it now to save pain later.
2434 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2435 * unmapped vm_area_struct will remain in use: so lower split_vma
2436 * places tmp vma above, and higher split_vma places tmp vma below.
2438 if (start
> vma
->vm_start
) {
2442 * Make sure that map_count on return from munmap() will
2443 * not exceed its limit; but let map_count go just above
2444 * its limit temporarily, to help free resources as expected.
2446 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2449 error
= __split_vma(mm
, vma
, start
, 0);
2455 /* Does it split the last one? */
2456 last
= find_vma(mm
, end
);
2457 if (last
&& end
> last
->vm_start
) {
2458 int error
= __split_vma(mm
, last
, end
, 1);
2462 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2465 * unlock any mlock()ed ranges before detaching vmas
2467 if (mm
->locked_vm
) {
2468 struct vm_area_struct
*tmp
= vma
;
2469 while (tmp
&& tmp
->vm_start
< end
) {
2470 if (tmp
->vm_flags
& VM_LOCKED
) {
2471 mm
->locked_vm
-= vma_pages(tmp
);
2472 munlock_vma_pages_all(tmp
);
2479 * Remove the vma's, and unmap the actual pages
2481 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2482 unmap_region(mm
, vma
, prev
, start
, end
);
2484 arch_unmap(mm
, vma
, start
, end
);
2486 /* Fix up all other VM information */
2487 remove_vma_list(mm
, vma
);
2492 int vm_munmap(unsigned long start
, size_t len
)
2495 struct mm_struct
*mm
= current
->mm
;
2497 if (down_write_killable(&mm
->mmap_sem
))
2500 ret
= do_munmap(mm
, start
, len
);
2501 up_write(&mm
->mmap_sem
);
2504 EXPORT_SYMBOL(vm_munmap
);
2506 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2509 struct mm_struct
*mm
= current
->mm
;
2511 profile_munmap(addr
);
2512 if (down_write_killable(&mm
->mmap_sem
))
2514 ret
= do_munmap(mm
, addr
, len
);
2515 up_write(&mm
->mmap_sem
);
2521 * Emulation of deprecated remap_file_pages() syscall.
2523 SYSCALL_DEFINE5(remap_file_pages
, unsigned long, start
, unsigned long, size
,
2524 unsigned long, prot
, unsigned long, pgoff
, unsigned long, flags
)
2527 struct mm_struct
*mm
= current
->mm
;
2528 struct vm_area_struct
*vma
;
2529 unsigned long populate
= 0;
2530 unsigned long ret
= -EINVAL
;
2533 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2534 current
->comm
, current
->pid
);
2538 start
= start
& PAGE_MASK
;
2539 size
= size
& PAGE_MASK
;
2541 if (start
+ size
<= start
)
2544 /* Does pgoff wrap? */
2545 if (pgoff
+ (size
>> PAGE_SHIFT
) < pgoff
)
2548 if (down_write_killable(&mm
->mmap_sem
))
2551 vma
= find_vma(mm
, start
);
2553 if (!vma
|| !(vma
->vm_flags
& VM_SHARED
))
2556 if (start
< vma
->vm_start
)
2559 if (start
+ size
> vma
->vm_end
) {
2560 struct vm_area_struct
*next
;
2562 for (next
= vma
->vm_next
; next
; next
= next
->vm_next
) {
2563 /* hole between vmas ? */
2564 if (next
->vm_start
!= next
->vm_prev
->vm_end
)
2567 if (next
->vm_file
!= vma
->vm_file
)
2570 if (next
->vm_flags
!= vma
->vm_flags
)
2573 if (start
+ size
<= next
->vm_end
)
2581 prot
|= vma
->vm_flags
& VM_READ
? PROT_READ
: 0;
2582 prot
|= vma
->vm_flags
& VM_WRITE
? PROT_WRITE
: 0;
2583 prot
|= vma
->vm_flags
& VM_EXEC
? PROT_EXEC
: 0;
2585 flags
&= MAP_NONBLOCK
;
2586 flags
|= MAP_SHARED
| MAP_FIXED
| MAP_POPULATE
;
2587 if (vma
->vm_flags
& VM_LOCKED
) {
2588 struct vm_area_struct
*tmp
;
2589 flags
|= MAP_LOCKED
;
2591 /* drop PG_Mlocked flag for over-mapped range */
2592 for (tmp
= vma
; tmp
->vm_start
>= start
+ size
;
2593 tmp
= tmp
->vm_next
) {
2594 munlock_vma_pages_range(tmp
,
2595 max(tmp
->vm_start
, start
),
2596 min(tmp
->vm_end
, start
+ size
));
2600 file
= get_file(vma
->vm_file
);
2601 ret
= do_mmap_pgoff(vma
->vm_file
, start
, size
,
2602 prot
, flags
, pgoff
, &populate
);
2605 up_write(&mm
->mmap_sem
);
2607 mm_populate(ret
, populate
);
2608 if (!IS_ERR_VALUE(ret
))
2613 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2615 #ifdef CONFIG_DEBUG_VM
2616 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2618 up_read(&mm
->mmap_sem
);
2624 * this is really a simplified "do_mmap". it only handles
2625 * anonymous maps. eventually we may be able to do some
2626 * brk-specific accounting here.
2628 static int do_brk(unsigned long addr
, unsigned long len
)
2630 struct mm_struct
*mm
= current
->mm
;
2631 struct vm_area_struct
*vma
, *prev
;
2632 unsigned long flags
;
2633 struct rb_node
**rb_link
, *rb_parent
;
2634 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2637 len
= PAGE_ALIGN(len
);
2641 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2643 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2644 if (offset_in_page(error
))
2647 error
= mlock_future_check(mm
, mm
->def_flags
, len
);
2652 * mm->mmap_sem is required to protect against another thread
2653 * changing the mappings in case we sleep.
2655 verify_mm_writelocked(mm
);
2658 * Clear old maps. this also does some error checking for us
2660 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
2662 if (do_munmap(mm
, addr
, len
))
2666 /* Check against address space limits *after* clearing old maps... */
2667 if (!may_expand_vm(mm
, flags
, len
>> PAGE_SHIFT
))
2670 if (mm
->map_count
> sysctl_max_map_count
)
2673 if (security_vm_enough_memory_mm(mm
, len
>> PAGE_SHIFT
))
2676 /* Can we just expand an old private anonymous mapping? */
2677 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2678 NULL
, NULL
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
2683 * create a vma struct for an anonymous mapping
2685 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2687 vm_unacct_memory(len
>> PAGE_SHIFT
);
2691 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2693 vma
->vm_start
= addr
;
2694 vma
->vm_end
= addr
+ len
;
2695 vma
->vm_pgoff
= pgoff
;
2696 vma
->vm_flags
= flags
;
2697 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2698 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2700 perf_event_mmap(vma
);
2701 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2702 mm
->data_vm
+= len
>> PAGE_SHIFT
;
2703 if (flags
& VM_LOCKED
)
2704 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2705 vma
->vm_flags
|= VM_SOFTDIRTY
;
2709 int vm_brk(unsigned long addr
, unsigned long len
)
2711 struct mm_struct
*mm
= current
->mm
;
2715 if (down_write_killable(&mm
->mmap_sem
))
2718 ret
= do_brk(addr
, len
);
2719 populate
= ((mm
->def_flags
& VM_LOCKED
) != 0);
2720 up_write(&mm
->mmap_sem
);
2721 if (populate
&& !ret
)
2722 mm_populate(addr
, len
);
2725 EXPORT_SYMBOL(vm_brk
);
2727 /* Release all mmaps. */
2728 void exit_mmap(struct mm_struct
*mm
)
2730 struct mmu_gather tlb
;
2731 struct vm_area_struct
*vma
;
2732 unsigned long nr_accounted
= 0;
2734 /* mm's last user has gone, and its about to be pulled down */
2735 mmu_notifier_release(mm
);
2737 if (mm
->locked_vm
) {
2740 if (vma
->vm_flags
& VM_LOCKED
)
2741 munlock_vma_pages_all(vma
);
2749 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2754 tlb_gather_mmu(&tlb
, mm
, 0, -1);
2755 /* update_hiwater_rss(mm) here? but nobody should be looking */
2756 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2757 unmap_vmas(&tlb
, vma
, 0, -1);
2759 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, USER_PGTABLES_CEILING
);
2760 tlb_finish_mmu(&tlb
, 0, -1);
2763 * Walk the list again, actually closing and freeing it,
2764 * with preemption enabled, without holding any MM locks.
2767 if (vma
->vm_flags
& VM_ACCOUNT
)
2768 nr_accounted
+= vma_pages(vma
);
2769 vma
= remove_vma(vma
);
2771 vm_unacct_memory(nr_accounted
);
2774 /* Insert vm structure into process list sorted by address
2775 * and into the inode's i_mmap tree. If vm_file is non-NULL
2776 * then i_mmap_rwsem is taken here.
2778 int insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2780 struct vm_area_struct
*prev
;
2781 struct rb_node
**rb_link
, *rb_parent
;
2783 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
2784 &prev
, &rb_link
, &rb_parent
))
2786 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2787 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2791 * The vm_pgoff of a purely anonymous vma should be irrelevant
2792 * until its first write fault, when page's anon_vma and index
2793 * are set. But now set the vm_pgoff it will almost certainly
2794 * end up with (unless mremap moves it elsewhere before that
2795 * first wfault), so /proc/pid/maps tells a consistent story.
2797 * By setting it to reflect the virtual start address of the
2798 * vma, merges and splits can happen in a seamless way, just
2799 * using the existing file pgoff checks and manipulations.
2800 * Similarly in do_mmap_pgoff and in do_brk.
2802 if (vma_is_anonymous(vma
)) {
2803 BUG_ON(vma
->anon_vma
);
2804 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2807 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2812 * Copy the vma structure to a new location in the same mm,
2813 * prior to moving page table entries, to effect an mremap move.
2815 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2816 unsigned long addr
, unsigned long len
, pgoff_t pgoff
,
2817 bool *need_rmap_locks
)
2819 struct vm_area_struct
*vma
= *vmap
;
2820 unsigned long vma_start
= vma
->vm_start
;
2821 struct mm_struct
*mm
= vma
->vm_mm
;
2822 struct vm_area_struct
*new_vma
, *prev
;
2823 struct rb_node
**rb_link
, *rb_parent
;
2824 bool faulted_in_anon_vma
= true;
2827 * If anonymous vma has not yet been faulted, update new pgoff
2828 * to match new location, to increase its chance of merging.
2830 if (unlikely(vma_is_anonymous(vma
) && !vma
->anon_vma
)) {
2831 pgoff
= addr
>> PAGE_SHIFT
;
2832 faulted_in_anon_vma
= false;
2835 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
))
2836 return NULL
; /* should never get here */
2837 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2838 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
),
2839 vma
->vm_userfaultfd_ctx
);
2842 * Source vma may have been merged into new_vma
2844 if (unlikely(vma_start
>= new_vma
->vm_start
&&
2845 vma_start
< new_vma
->vm_end
)) {
2847 * The only way we can get a vma_merge with
2848 * self during an mremap is if the vma hasn't
2849 * been faulted in yet and we were allowed to
2850 * reset the dst vma->vm_pgoff to the
2851 * destination address of the mremap to allow
2852 * the merge to happen. mremap must change the
2853 * vm_pgoff linearity between src and dst vmas
2854 * (in turn preventing a vma_merge) to be
2855 * safe. It is only safe to keep the vm_pgoff
2856 * linear if there are no pages mapped yet.
2858 VM_BUG_ON_VMA(faulted_in_anon_vma
, new_vma
);
2859 *vmap
= vma
= new_vma
;
2861 *need_rmap_locks
= (new_vma
->vm_pgoff
<= vma
->vm_pgoff
);
2863 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2867 new_vma
->vm_start
= addr
;
2868 new_vma
->vm_end
= addr
+ len
;
2869 new_vma
->vm_pgoff
= pgoff
;
2870 if (vma_dup_policy(vma
, new_vma
))
2872 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
2873 if (anon_vma_clone(new_vma
, vma
))
2874 goto out_free_mempol
;
2875 if (new_vma
->vm_file
)
2876 get_file(new_vma
->vm_file
);
2877 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2878 new_vma
->vm_ops
->open(new_vma
);
2879 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2880 *need_rmap_locks
= false;
2885 mpol_put(vma_policy(new_vma
));
2887 kmem_cache_free(vm_area_cachep
, new_vma
);
2893 * Return true if the calling process may expand its vm space by the passed
2896 bool may_expand_vm(struct mm_struct
*mm
, vm_flags_t flags
, unsigned long npages
)
2898 if (mm
->total_vm
+ npages
> rlimit(RLIMIT_AS
) >> PAGE_SHIFT
)
2901 if (is_data_mapping(flags
) &&
2902 mm
->data_vm
+ npages
> rlimit(RLIMIT_DATA
) >> PAGE_SHIFT
) {
2903 /* Workaround for Valgrind */
2904 if (rlimit(RLIMIT_DATA
) == 0 &&
2905 mm
->data_vm
+ npages
<= rlimit_max(RLIMIT_DATA
) >> PAGE_SHIFT
)
2907 if (!ignore_rlimit_data
) {
2908 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
2909 current
->comm
, current
->pid
,
2910 (mm
->data_vm
+ npages
) << PAGE_SHIFT
,
2911 rlimit(RLIMIT_DATA
));
2919 void vm_stat_account(struct mm_struct
*mm
, vm_flags_t flags
, long npages
)
2921 mm
->total_vm
+= npages
;
2923 if (is_exec_mapping(flags
))
2924 mm
->exec_vm
+= npages
;
2925 else if (is_stack_mapping(flags
))
2926 mm
->stack_vm
+= npages
;
2927 else if (is_data_mapping(flags
))
2928 mm
->data_vm
+= npages
;
2931 static int special_mapping_fault(struct vm_area_struct
*vma
,
2932 struct vm_fault
*vmf
);
2935 * Having a close hook prevents vma merging regardless of flags.
2937 static void special_mapping_close(struct vm_area_struct
*vma
)
2941 static const char *special_mapping_name(struct vm_area_struct
*vma
)
2943 return ((struct vm_special_mapping
*)vma
->vm_private_data
)->name
;
2946 static const struct vm_operations_struct special_mapping_vmops
= {
2947 .close
= special_mapping_close
,
2948 .fault
= special_mapping_fault
,
2949 .name
= special_mapping_name
,
2952 static const struct vm_operations_struct legacy_special_mapping_vmops
= {
2953 .close
= special_mapping_close
,
2954 .fault
= special_mapping_fault
,
2957 static int special_mapping_fault(struct vm_area_struct
*vma
,
2958 struct vm_fault
*vmf
)
2961 struct page
**pages
;
2963 if (vma
->vm_ops
== &legacy_special_mapping_vmops
) {
2964 pages
= vma
->vm_private_data
;
2966 struct vm_special_mapping
*sm
= vma
->vm_private_data
;
2969 return sm
->fault(sm
, vma
, vmf
);
2974 for (pgoff
= vmf
->pgoff
; pgoff
&& *pages
; ++pages
)
2978 struct page
*page
= *pages
;
2984 return VM_FAULT_SIGBUS
;
2987 static struct vm_area_struct
*__install_special_mapping(
2988 struct mm_struct
*mm
,
2989 unsigned long addr
, unsigned long len
,
2990 unsigned long vm_flags
, void *priv
,
2991 const struct vm_operations_struct
*ops
)
2994 struct vm_area_struct
*vma
;
2996 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2997 if (unlikely(vma
== NULL
))
2998 return ERR_PTR(-ENOMEM
);
3000 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
3002 vma
->vm_start
= addr
;
3003 vma
->vm_end
= addr
+ len
;
3005 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
| VM_SOFTDIRTY
;
3006 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
3009 vma
->vm_private_data
= priv
;
3011 ret
= insert_vm_struct(mm
, vma
);
3015 vm_stat_account(mm
, vma
->vm_flags
, len
>> PAGE_SHIFT
);
3017 perf_event_mmap(vma
);
3022 kmem_cache_free(vm_area_cachep
, vma
);
3023 return ERR_PTR(ret
);
3027 * Called with mm->mmap_sem held for writing.
3028 * Insert a new vma covering the given region, with the given flags.
3029 * Its pages are supplied by the given array of struct page *.
3030 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3031 * The region past the last page supplied will always produce SIGBUS.
3032 * The array pointer and the pages it points to are assumed to stay alive
3033 * for as long as this mapping might exist.
3035 struct vm_area_struct
*_install_special_mapping(
3036 struct mm_struct
*mm
,
3037 unsigned long addr
, unsigned long len
,
3038 unsigned long vm_flags
, const struct vm_special_mapping
*spec
)
3040 return __install_special_mapping(mm
, addr
, len
, vm_flags
, (void *)spec
,
3041 &special_mapping_vmops
);
3044 int install_special_mapping(struct mm_struct
*mm
,
3045 unsigned long addr
, unsigned long len
,
3046 unsigned long vm_flags
, struct page
**pages
)
3048 struct vm_area_struct
*vma
= __install_special_mapping(
3049 mm
, addr
, len
, vm_flags
, (void *)pages
,
3050 &legacy_special_mapping_vmops
);
3052 return PTR_ERR_OR_ZERO(vma
);
3055 static DEFINE_MUTEX(mm_all_locks_mutex
);
3057 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
3059 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3061 * The LSB of head.next can't change from under us
3062 * because we hold the mm_all_locks_mutex.
3064 down_write_nest_lock(&anon_vma
->root
->rwsem
, &mm
->mmap_sem
);
3066 * We can safely modify head.next after taking the
3067 * anon_vma->root->rwsem. If some other vma in this mm shares
3068 * the same anon_vma we won't take it again.
3070 * No need of atomic instructions here, head.next
3071 * can't change from under us thanks to the
3072 * anon_vma->root->rwsem.
3074 if (__test_and_set_bit(0, (unsigned long *)
3075 &anon_vma
->root
->rb_root
.rb_node
))
3080 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
3082 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3084 * AS_MM_ALL_LOCKS can't change from under us because
3085 * we hold the mm_all_locks_mutex.
3087 * Operations on ->flags have to be atomic because
3088 * even if AS_MM_ALL_LOCKS is stable thanks to the
3089 * mm_all_locks_mutex, there may be other cpus
3090 * changing other bitflags in parallel to us.
3092 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
3094 down_write_nest_lock(&mapping
->i_mmap_rwsem
, &mm
->mmap_sem
);
3099 * This operation locks against the VM for all pte/vma/mm related
3100 * operations that could ever happen on a certain mm. This includes
3101 * vmtruncate, try_to_unmap, and all page faults.
3103 * The caller must take the mmap_sem in write mode before calling
3104 * mm_take_all_locks(). The caller isn't allowed to release the
3105 * mmap_sem until mm_drop_all_locks() returns.
3107 * mmap_sem in write mode is required in order to block all operations
3108 * that could modify pagetables and free pages without need of
3109 * altering the vma layout. It's also needed in write mode to avoid new
3110 * anon_vmas to be associated with existing vmas.
3112 * A single task can't take more than one mm_take_all_locks() in a row
3113 * or it would deadlock.
3115 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3116 * mapping->flags avoid to take the same lock twice, if more than one
3117 * vma in this mm is backed by the same anon_vma or address_space.
3119 * We take locks in following order, accordingly to comment at beginning
3121 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3123 * - all i_mmap_rwsem locks;
3124 * - all anon_vma->rwseml
3126 * We can take all locks within these types randomly because the VM code
3127 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3128 * mm_all_locks_mutex.
3130 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3131 * that may have to take thousand of locks.
3133 * mm_take_all_locks() can fail if it's interrupted by signals.
3135 int mm_take_all_locks(struct mm_struct
*mm
)
3137 struct vm_area_struct
*vma
;
3138 struct anon_vma_chain
*avc
;
3140 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3142 mutex_lock(&mm_all_locks_mutex
);
3144 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3145 if (signal_pending(current
))
3147 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3148 is_vm_hugetlb_page(vma
))
3149 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3152 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3153 if (signal_pending(current
))
3155 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3156 !is_vm_hugetlb_page(vma
))
3157 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3160 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3161 if (signal_pending(current
))
3164 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3165 vm_lock_anon_vma(mm
, avc
->anon_vma
);
3171 mm_drop_all_locks(mm
);
3175 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
3177 if (test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3179 * The LSB of head.next can't change to 0 from under
3180 * us because we hold the mm_all_locks_mutex.
3182 * We must however clear the bitflag before unlocking
3183 * the vma so the users using the anon_vma->rb_root will
3184 * never see our bitflag.
3186 * No need of atomic instructions here, head.next
3187 * can't change from under us until we release the
3188 * anon_vma->root->rwsem.
3190 if (!__test_and_clear_bit(0, (unsigned long *)
3191 &anon_vma
->root
->rb_root
.rb_node
))
3193 anon_vma_unlock_write(anon_vma
);
3197 static void vm_unlock_mapping(struct address_space
*mapping
)
3199 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3201 * AS_MM_ALL_LOCKS can't change to 0 from under us
3202 * because we hold the mm_all_locks_mutex.
3204 i_mmap_unlock_write(mapping
);
3205 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
3212 * The mmap_sem cannot be released by the caller until
3213 * mm_drop_all_locks() returns.
3215 void mm_drop_all_locks(struct mm_struct
*mm
)
3217 struct vm_area_struct
*vma
;
3218 struct anon_vma_chain
*avc
;
3220 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3221 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
3223 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3225 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3226 vm_unlock_anon_vma(avc
->anon_vma
);
3227 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3228 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
3231 mutex_unlock(&mm_all_locks_mutex
);
3235 * initialise the VMA slab
3237 void __init
mmap_init(void)
3241 ret
= percpu_counter_init(&vm_committed_as
, 0, GFP_KERNEL
);
3246 * Initialise sysctl_user_reserve_kbytes.
3248 * This is intended to prevent a user from starting a single memory hogging
3249 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3252 * The default value is min(3% of free memory, 128MB)
3253 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3255 static int init_user_reserve(void)
3257 unsigned long free_kbytes
;
3259 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3261 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
3264 subsys_initcall(init_user_reserve
);
3267 * Initialise sysctl_admin_reserve_kbytes.
3269 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3270 * to log in and kill a memory hogging process.
3272 * Systems with more than 256MB will reserve 8MB, enough to recover
3273 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3274 * only reserve 3% of free pages by default.
3276 static int init_admin_reserve(void)
3278 unsigned long free_kbytes
;
3280 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3282 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
3285 subsys_initcall(init_admin_reserve
);
3288 * Reinititalise user and admin reserves if memory is added or removed.
3290 * The default user reserve max is 128MB, and the default max for the
3291 * admin reserve is 8MB. These are usually, but not always, enough to
3292 * enable recovery from a memory hogging process using login/sshd, a shell,
3293 * and tools like top. It may make sense to increase or even disable the
3294 * reserve depending on the existence of swap or variations in the recovery
3295 * tools. So, the admin may have changed them.
3297 * If memory is added and the reserves have been eliminated or increased above
3298 * the default max, then we'll trust the admin.
3300 * If memory is removed and there isn't enough free memory, then we
3301 * need to reset the reserves.
3303 * Otherwise keep the reserve set by the admin.
3305 static int reserve_mem_notifier(struct notifier_block
*nb
,
3306 unsigned long action
, void *data
)
3308 unsigned long tmp
, free_kbytes
;
3312 /* Default max is 128MB. Leave alone if modified by operator. */
3313 tmp
= sysctl_user_reserve_kbytes
;
3314 if (0 < tmp
&& tmp
< (1UL << 17))
3315 init_user_reserve();
3317 /* Default max is 8MB. Leave alone if modified by operator. */
3318 tmp
= sysctl_admin_reserve_kbytes
;
3319 if (0 < tmp
&& tmp
< (1UL << 13))
3320 init_admin_reserve();
3324 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3326 if (sysctl_user_reserve_kbytes
> free_kbytes
) {
3327 init_user_reserve();
3328 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3329 sysctl_user_reserve_kbytes
);
3332 if (sysctl_admin_reserve_kbytes
> free_kbytes
) {
3333 init_admin_reserve();
3334 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3335 sysctl_admin_reserve_kbytes
);
3344 static struct notifier_block reserve_mem_nb
= {
3345 .notifier_call
= reserve_mem_notifier
,
3348 static int __meminit
init_reserve_notifier(void)
3350 if (register_hotmemory_notifier(&reserve_mem_nb
))
3351 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3355 subsys_initcall(init_reserve_notifier
);