4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_u.d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
62 * - d_u.d_alias, d_inode
65 * dentry->d_inode->i_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
74 * dentry->d_parent->d_lock
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
82 int sysctl_vfs_cache_pressure __read_mostly
= 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
85 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
87 EXPORT_SYMBOL(rename_lock
);
89 static struct kmem_cache
*dentry_cache __read_mostly
;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
100 static unsigned int d_hash_mask __read_mostly
;
101 static unsigned int d_hash_shift __read_mostly
;
103 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
105 static inline struct hlist_bl_head
*d_hash(const struct dentry
*parent
,
108 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
109 return dentry_hashtable
+ hash_32(hash
, d_hash_shift
);
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat
= {
117 static DEFINE_PER_CPU(long, nr_dentry
);
118 static DEFINE_PER_CPU(long, nr_dentry_unused
);
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 * Here we resort to our own counters instead of using generic per-cpu counters
124 * for consistency with what the vfs inode code does. We are expected to harvest
125 * better code and performance by having our own specialized counters.
127 * Please note that the loop is done over all possible CPUs, not over all online
128 * CPUs. The reason for this is that we don't want to play games with CPUs going
129 * on and off. If one of them goes off, we will just keep their counters.
131 * glommer: See cffbc8a for details, and if you ever intend to change this,
132 * please update all vfs counters to match.
134 static long get_nr_dentry(void)
138 for_each_possible_cpu(i
)
139 sum
+= per_cpu(nr_dentry
, i
);
140 return sum
< 0 ? 0 : sum
;
143 static long get_nr_dentry_unused(void)
147 for_each_possible_cpu(i
)
148 sum
+= per_cpu(nr_dentry_unused
, i
);
149 return sum
< 0 ? 0 : sum
;
152 int proc_nr_dentry(struct ctl_table
*table
, int write
, void __user
*buffer
,
153 size_t *lenp
, loff_t
*ppos
)
155 dentry_stat
.nr_dentry
= get_nr_dentry();
156 dentry_stat
.nr_unused
= get_nr_dentry_unused();
157 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
162 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163 * The strings are both count bytes long, and count is non-zero.
165 #ifdef CONFIG_DCACHE_WORD_ACCESS
167 #include <asm/word-at-a-time.h>
169 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170 * aligned allocation for this particular component. We don't
171 * strictly need the load_unaligned_zeropad() safety, but it
172 * doesn't hurt either.
174 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175 * need the careful unaligned handling.
177 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
179 unsigned long a
,b
,mask
;
182 a
= *(unsigned long *)cs
;
183 b
= load_unaligned_zeropad(ct
);
184 if (tcount
< sizeof(unsigned long))
186 if (unlikely(a
!= b
))
188 cs
+= sizeof(unsigned long);
189 ct
+= sizeof(unsigned long);
190 tcount
-= sizeof(unsigned long);
194 mask
= bytemask_from_count(tcount
);
195 return unlikely(!!((a
^ b
) & mask
));
200 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
214 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
216 const unsigned char *cs
;
218 * Be careful about RCU walk racing with rename:
219 * use ACCESS_ONCE to fetch the name pointer.
221 * NOTE! Even if a rename will mean that the length
222 * was not loaded atomically, we don't care. The
223 * RCU walk will check the sequence count eventually,
224 * and catch it. And we won't overrun the buffer,
225 * because we're reading the name pointer atomically,
226 * and a dentry name is guaranteed to be properly
227 * terminated with a NUL byte.
229 * End result: even if 'len' is wrong, we'll exit
230 * early because the data cannot match (there can
231 * be no NUL in the ct/tcount data)
233 cs
= ACCESS_ONCE(dentry
->d_name
.name
);
234 smp_read_barrier_depends();
235 return dentry_string_cmp(cs
, ct
, tcount
);
238 struct external_name
{
241 struct rcu_head head
;
243 unsigned char name
[];
246 static inline struct external_name
*external_name(struct dentry
*dentry
)
248 return container_of(dentry
->d_name
.name
, struct external_name
, name
[0]);
251 static void __d_free(struct rcu_head
*head
)
253 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
255 kmem_cache_free(dentry_cache
, dentry
);
258 static void __d_free_external(struct rcu_head
*head
)
260 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
261 kfree(external_name(dentry
));
262 kmem_cache_free(dentry_cache
, dentry
);
265 static inline int dname_external(const struct dentry
*dentry
)
267 return dentry
->d_name
.name
!= dentry
->d_iname
;
270 static void dentry_free(struct dentry
*dentry
)
272 WARN_ON(!hlist_unhashed(&dentry
->d_u
.d_alias
));
273 if (unlikely(dname_external(dentry
))) {
274 struct external_name
*p
= external_name(dentry
);
275 if (likely(atomic_dec_and_test(&p
->u
.count
))) {
276 call_rcu(&dentry
->d_u
.d_rcu
, __d_free_external
);
280 /* if dentry was never visible to RCU, immediate free is OK */
281 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
282 __d_free(&dentry
->d_u
.d_rcu
);
284 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
288 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
289 * @dentry: the target dentry
290 * After this call, in-progress rcu-walk path lookup will fail. This
291 * should be called after unhashing, and after changing d_inode (if
292 * the dentry has not already been unhashed).
294 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
296 assert_spin_locked(&dentry
->d_lock
);
297 /* Go through a barrier */
298 write_seqcount_barrier(&dentry
->d_seq
);
302 * Release the dentry's inode, using the filesystem
303 * d_iput() operation if defined. Dentry has no refcount
306 static void dentry_iput(struct dentry
* dentry
)
307 __releases(dentry
->d_lock
)
308 __releases(dentry
->d_inode
->i_lock
)
310 struct inode
*inode
= dentry
->d_inode
;
312 dentry
->d_inode
= NULL
;
313 hlist_del_init(&dentry
->d_u
.d_alias
);
314 spin_unlock(&dentry
->d_lock
);
315 spin_unlock(&inode
->i_lock
);
317 fsnotify_inoderemove(inode
);
318 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
319 dentry
->d_op
->d_iput(dentry
, inode
);
323 spin_unlock(&dentry
->d_lock
);
328 * Release the dentry's inode, using the filesystem
329 * d_iput() operation if defined. dentry remains in-use.
331 static void dentry_unlink_inode(struct dentry
* dentry
)
332 __releases(dentry
->d_lock
)
333 __releases(dentry
->d_inode
->i_lock
)
335 struct inode
*inode
= dentry
->d_inode
;
336 __d_clear_type(dentry
);
337 dentry
->d_inode
= NULL
;
338 hlist_del_init(&dentry
->d_u
.d_alias
);
339 dentry_rcuwalk_barrier(dentry
);
340 spin_unlock(&dentry
->d_lock
);
341 spin_unlock(&inode
->i_lock
);
343 fsnotify_inoderemove(inode
);
344 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
345 dentry
->d_op
->d_iput(dentry
, inode
);
351 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
352 * is in use - which includes both the "real" per-superblock
353 * LRU list _and_ the DCACHE_SHRINK_LIST use.
355 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
356 * on the shrink list (ie not on the superblock LRU list).
358 * The per-cpu "nr_dentry_unused" counters are updated with
359 * the DCACHE_LRU_LIST bit.
361 * These helper functions make sure we always follow the
362 * rules. d_lock must be held by the caller.
364 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
365 static void d_lru_add(struct dentry
*dentry
)
367 D_FLAG_VERIFY(dentry
, 0);
368 dentry
->d_flags
|= DCACHE_LRU_LIST
;
369 this_cpu_inc(nr_dentry_unused
);
370 WARN_ON_ONCE(!list_lru_add(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
373 static void d_lru_del(struct dentry
*dentry
)
375 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
376 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
377 this_cpu_dec(nr_dentry_unused
);
378 WARN_ON_ONCE(!list_lru_del(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
381 static void d_shrink_del(struct dentry
*dentry
)
383 D_FLAG_VERIFY(dentry
, DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
384 list_del_init(&dentry
->d_lru
);
385 dentry
->d_flags
&= ~(DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
386 this_cpu_dec(nr_dentry_unused
);
389 static void d_shrink_add(struct dentry
*dentry
, struct list_head
*list
)
391 D_FLAG_VERIFY(dentry
, 0);
392 list_add(&dentry
->d_lru
, list
);
393 dentry
->d_flags
|= DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
;
394 this_cpu_inc(nr_dentry_unused
);
398 * These can only be called under the global LRU lock, ie during the
399 * callback for freeing the LRU list. "isolate" removes it from the
400 * LRU lists entirely, while shrink_move moves it to the indicated
403 static void d_lru_isolate(struct dentry
*dentry
)
405 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
406 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
407 this_cpu_dec(nr_dentry_unused
);
408 list_del_init(&dentry
->d_lru
);
411 static void d_lru_shrink_move(struct dentry
*dentry
, struct list_head
*list
)
413 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
414 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
415 list_move_tail(&dentry
->d_lru
, list
);
419 * dentry_lru_(add|del)_list) must be called with d_lock held.
421 static void dentry_lru_add(struct dentry
*dentry
)
423 if (unlikely(!(dentry
->d_flags
& DCACHE_LRU_LIST
)))
428 * d_drop - drop a dentry
429 * @dentry: dentry to drop
431 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
432 * be found through a VFS lookup any more. Note that this is different from
433 * deleting the dentry - d_delete will try to mark the dentry negative if
434 * possible, giving a successful _negative_ lookup, while d_drop will
435 * just make the cache lookup fail.
437 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
438 * reason (NFS timeouts or autofs deletes).
440 * __d_drop requires dentry->d_lock.
442 void __d_drop(struct dentry
*dentry
)
444 if (!d_unhashed(dentry
)) {
445 struct hlist_bl_head
*b
;
447 * Hashed dentries are normally on the dentry hashtable,
448 * with the exception of those newly allocated by
449 * d_obtain_alias, which are always IS_ROOT:
451 if (unlikely(IS_ROOT(dentry
)))
452 b
= &dentry
->d_sb
->s_anon
;
454 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
457 __hlist_bl_del(&dentry
->d_hash
);
458 dentry
->d_hash
.pprev
= NULL
;
460 dentry_rcuwalk_barrier(dentry
);
463 EXPORT_SYMBOL(__d_drop
);
465 void d_drop(struct dentry
*dentry
)
467 spin_lock(&dentry
->d_lock
);
469 spin_unlock(&dentry
->d_lock
);
471 EXPORT_SYMBOL(d_drop
);
473 static void __dentry_kill(struct dentry
*dentry
)
475 struct dentry
*parent
= NULL
;
476 bool can_free
= true;
477 if (!IS_ROOT(dentry
))
478 parent
= dentry
->d_parent
;
481 * The dentry is now unrecoverably dead to the world.
483 lockref_mark_dead(&dentry
->d_lockref
);
486 * inform the fs via d_prune that this dentry is about to be
487 * unhashed and destroyed.
489 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
490 dentry
->d_op
->d_prune(dentry
);
492 if (dentry
->d_flags
& DCACHE_LRU_LIST
) {
493 if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
))
496 /* if it was on the hash then remove it */
498 __list_del_entry(&dentry
->d_child
);
500 * Inform d_walk() that we are no longer attached to the
503 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
505 spin_unlock(&parent
->d_lock
);
508 * dentry_iput drops the locks, at which point nobody (except
509 * transient RCU lookups) can reach this dentry.
511 BUG_ON(dentry
->d_lockref
.count
> 0);
512 this_cpu_dec(nr_dentry
);
513 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
514 dentry
->d_op
->d_release(dentry
);
516 spin_lock(&dentry
->d_lock
);
517 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
518 dentry
->d_flags
|= DCACHE_MAY_FREE
;
521 spin_unlock(&dentry
->d_lock
);
522 if (likely(can_free
))
527 * Finish off a dentry we've decided to kill.
528 * dentry->d_lock must be held, returns with it unlocked.
529 * If ref is non-zero, then decrement the refcount too.
530 * Returns dentry requiring refcount drop, or NULL if we're done.
532 static struct dentry
*dentry_kill(struct dentry
*dentry
)
533 __releases(dentry
->d_lock
)
535 struct inode
*inode
= dentry
->d_inode
;
536 struct dentry
*parent
= NULL
;
538 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
)))
541 if (!IS_ROOT(dentry
)) {
542 parent
= dentry
->d_parent
;
543 if (unlikely(!spin_trylock(&parent
->d_lock
))) {
545 spin_unlock(&inode
->i_lock
);
550 __dentry_kill(dentry
);
554 spin_unlock(&dentry
->d_lock
);
555 return dentry
; /* try again with same dentry */
558 static inline struct dentry
*lock_parent(struct dentry
*dentry
)
560 struct dentry
*parent
= dentry
->d_parent
;
563 if (unlikely(dentry
->d_lockref
.count
< 0))
565 if (likely(spin_trylock(&parent
->d_lock
)))
568 spin_unlock(&dentry
->d_lock
);
570 parent
= ACCESS_ONCE(dentry
->d_parent
);
571 spin_lock(&parent
->d_lock
);
573 * We can't blindly lock dentry until we are sure
574 * that we won't violate the locking order.
575 * Any changes of dentry->d_parent must have
576 * been done with parent->d_lock held, so
577 * spin_lock() above is enough of a barrier
578 * for checking if it's still our child.
580 if (unlikely(parent
!= dentry
->d_parent
)) {
581 spin_unlock(&parent
->d_lock
);
584 if (parent
!= dentry
) {
585 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
586 if (unlikely(dentry
->d_lockref
.count
< 0)) {
587 spin_unlock(&parent
->d_lock
);
598 * Try to do a lockless dput(), and return whether that was successful.
600 * If unsuccessful, we return false, having already taken the dentry lock.
602 * The caller needs to hold the RCU read lock, so that the dentry is
603 * guaranteed to stay around even if the refcount goes down to zero!
605 static inline bool fast_dput(struct dentry
*dentry
)
608 unsigned int d_flags
;
611 * If we have a d_op->d_delete() operation, we sould not
612 * let the dentry count go to zero, so use "put__or_lock".
614 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
))
615 return lockref_put_or_lock(&dentry
->d_lockref
);
618 * .. otherwise, we can try to just decrement the
619 * lockref optimistically.
621 ret
= lockref_put_return(&dentry
->d_lockref
);
624 * If the lockref_put_return() failed due to the lock being held
625 * by somebody else, the fast path has failed. We will need to
626 * get the lock, and then check the count again.
628 if (unlikely(ret
< 0)) {
629 spin_lock(&dentry
->d_lock
);
630 if (dentry
->d_lockref
.count
> 1) {
631 dentry
->d_lockref
.count
--;
632 spin_unlock(&dentry
->d_lock
);
639 * If we weren't the last ref, we're done.
645 * Careful, careful. The reference count went down
646 * to zero, but we don't hold the dentry lock, so
647 * somebody else could get it again, and do another
648 * dput(), and we need to not race with that.
650 * However, there is a very special and common case
651 * where we don't care, because there is nothing to
652 * do: the dentry is still hashed, it does not have
653 * a 'delete' op, and it's referenced and already on
656 * NOTE! Since we aren't locked, these values are
657 * not "stable". However, it is sufficient that at
658 * some point after we dropped the reference the
659 * dentry was hashed and the flags had the proper
660 * value. Other dentry users may have re-gotten
661 * a reference to the dentry and change that, but
662 * our work is done - we can leave the dentry
663 * around with a zero refcount.
666 d_flags
= ACCESS_ONCE(dentry
->d_flags
);
667 d_flags
&= DCACHE_REFERENCED
| DCACHE_LRU_LIST
;
669 /* Nothing to do? Dropping the reference was all we needed? */
670 if (d_flags
== (DCACHE_REFERENCED
| DCACHE_LRU_LIST
) && !d_unhashed(dentry
))
674 * Not the fast normal case? Get the lock. We've already decremented
675 * the refcount, but we'll need to re-check the situation after
678 spin_lock(&dentry
->d_lock
);
681 * Did somebody else grab a reference to it in the meantime, and
682 * we're no longer the last user after all? Alternatively, somebody
683 * else could have killed it and marked it dead. Either way, we
684 * don't need to do anything else.
686 if (dentry
->d_lockref
.count
) {
687 spin_unlock(&dentry
->d_lock
);
692 * Re-get the reference we optimistically dropped. We hold the
693 * lock, and we just tested that it was zero, so we can just
696 dentry
->d_lockref
.count
= 1;
704 * This is complicated by the fact that we do not want to put
705 * dentries that are no longer on any hash chain on the unused
706 * list: we'd much rather just get rid of them immediately.
708 * However, that implies that we have to traverse the dentry
709 * tree upwards to the parents which might _also_ now be
710 * scheduled for deletion (it may have been only waiting for
711 * its last child to go away).
713 * This tail recursion is done by hand as we don't want to depend
714 * on the compiler to always get this right (gcc generally doesn't).
715 * Real recursion would eat up our stack space.
719 * dput - release a dentry
720 * @dentry: dentry to release
722 * Release a dentry. This will drop the usage count and if appropriate
723 * call the dentry unlink method as well as removing it from the queues and
724 * releasing its resources. If the parent dentries were scheduled for release
725 * they too may now get deleted.
727 void dput(struct dentry
*dentry
)
729 if (unlikely(!dentry
))
736 if (likely(fast_dput(dentry
))) {
741 /* Slow case: now with the dentry lock held */
744 /* Unreachable? Get rid of it */
745 if (unlikely(d_unhashed(dentry
)))
748 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
751 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
)) {
752 if (dentry
->d_op
->d_delete(dentry
))
756 if (!(dentry
->d_flags
& DCACHE_REFERENCED
))
757 dentry
->d_flags
|= DCACHE_REFERENCED
;
758 dentry_lru_add(dentry
);
760 dentry
->d_lockref
.count
--;
761 spin_unlock(&dentry
->d_lock
);
765 dentry
= dentry_kill(dentry
);
774 /* This must be called with d_lock held */
775 static inline void __dget_dlock(struct dentry
*dentry
)
777 dentry
->d_lockref
.count
++;
780 static inline void __dget(struct dentry
*dentry
)
782 lockref_get(&dentry
->d_lockref
);
785 struct dentry
*dget_parent(struct dentry
*dentry
)
791 * Do optimistic parent lookup without any
795 ret
= ACCESS_ONCE(dentry
->d_parent
);
796 gotref
= lockref_get_not_zero(&ret
->d_lockref
);
798 if (likely(gotref
)) {
799 if (likely(ret
== ACCESS_ONCE(dentry
->d_parent
)))
806 * Don't need rcu_dereference because we re-check it was correct under
810 ret
= dentry
->d_parent
;
811 spin_lock(&ret
->d_lock
);
812 if (unlikely(ret
!= dentry
->d_parent
)) {
813 spin_unlock(&ret
->d_lock
);
818 BUG_ON(!ret
->d_lockref
.count
);
819 ret
->d_lockref
.count
++;
820 spin_unlock(&ret
->d_lock
);
823 EXPORT_SYMBOL(dget_parent
);
826 * d_find_alias - grab a hashed alias of inode
827 * @inode: inode in question
829 * If inode has a hashed alias, or is a directory and has any alias,
830 * acquire the reference to alias and return it. Otherwise return NULL.
831 * Notice that if inode is a directory there can be only one alias and
832 * it can be unhashed only if it has no children, or if it is the root
833 * of a filesystem, or if the directory was renamed and d_revalidate
834 * was the first vfs operation to notice.
836 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
837 * any other hashed alias over that one.
839 static struct dentry
*__d_find_alias(struct inode
*inode
)
841 struct dentry
*alias
, *discon_alias
;
845 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
846 spin_lock(&alias
->d_lock
);
847 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
848 if (IS_ROOT(alias
) &&
849 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
850 discon_alias
= alias
;
853 spin_unlock(&alias
->d_lock
);
857 spin_unlock(&alias
->d_lock
);
860 alias
= discon_alias
;
861 spin_lock(&alias
->d_lock
);
862 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
864 spin_unlock(&alias
->d_lock
);
867 spin_unlock(&alias
->d_lock
);
873 struct dentry
*d_find_alias(struct inode
*inode
)
875 struct dentry
*de
= NULL
;
877 if (!hlist_empty(&inode
->i_dentry
)) {
878 spin_lock(&inode
->i_lock
);
879 de
= __d_find_alias(inode
);
880 spin_unlock(&inode
->i_lock
);
884 EXPORT_SYMBOL(d_find_alias
);
887 * Try to kill dentries associated with this inode.
888 * WARNING: you must own a reference to inode.
890 void d_prune_aliases(struct inode
*inode
)
892 struct dentry
*dentry
;
894 spin_lock(&inode
->i_lock
);
895 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_u
.d_alias
) {
896 spin_lock(&dentry
->d_lock
);
897 if (!dentry
->d_lockref
.count
) {
898 struct dentry
*parent
= lock_parent(dentry
);
899 if (likely(!dentry
->d_lockref
.count
)) {
900 __dentry_kill(dentry
);
905 spin_unlock(&parent
->d_lock
);
907 spin_unlock(&dentry
->d_lock
);
909 spin_unlock(&inode
->i_lock
);
911 EXPORT_SYMBOL(d_prune_aliases
);
913 static void shrink_dentry_list(struct list_head
*list
)
915 struct dentry
*dentry
, *parent
;
917 while (!list_empty(list
)) {
919 dentry
= list_entry(list
->prev
, struct dentry
, d_lru
);
920 spin_lock(&dentry
->d_lock
);
921 parent
= lock_parent(dentry
);
924 * The dispose list is isolated and dentries are not accounted
925 * to the LRU here, so we can simply remove it from the list
926 * here regardless of whether it is referenced or not.
928 d_shrink_del(dentry
);
931 * We found an inuse dentry which was not removed from
932 * the LRU because of laziness during lookup. Do not free it.
934 if (dentry
->d_lockref
.count
> 0) {
935 spin_unlock(&dentry
->d_lock
);
937 spin_unlock(&parent
->d_lock
);
942 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_KILLED
)) {
943 bool can_free
= dentry
->d_flags
& DCACHE_MAY_FREE
;
944 spin_unlock(&dentry
->d_lock
);
946 spin_unlock(&parent
->d_lock
);
952 inode
= dentry
->d_inode
;
953 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
))) {
954 d_shrink_add(dentry
, list
);
955 spin_unlock(&dentry
->d_lock
);
957 spin_unlock(&parent
->d_lock
);
961 __dentry_kill(dentry
);
964 * We need to prune ancestors too. This is necessary to prevent
965 * quadratic behavior of shrink_dcache_parent(), but is also
966 * expected to be beneficial in reducing dentry cache
970 while (dentry
&& !lockref_put_or_lock(&dentry
->d_lockref
)) {
971 parent
= lock_parent(dentry
);
972 if (dentry
->d_lockref
.count
!= 1) {
973 dentry
->d_lockref
.count
--;
974 spin_unlock(&dentry
->d_lock
);
976 spin_unlock(&parent
->d_lock
);
979 inode
= dentry
->d_inode
; /* can't be NULL */
980 if (unlikely(!spin_trylock(&inode
->i_lock
))) {
981 spin_unlock(&dentry
->d_lock
);
983 spin_unlock(&parent
->d_lock
);
987 __dentry_kill(dentry
);
993 static enum lru_status
994 dentry_lru_isolate(struct list_head
*item
, spinlock_t
*lru_lock
, void *arg
)
996 struct list_head
*freeable
= arg
;
997 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1001 * we are inverting the lru lock/dentry->d_lock here,
1002 * so use a trylock. If we fail to get the lock, just skip
1005 if (!spin_trylock(&dentry
->d_lock
))
1009 * Referenced dentries are still in use. If they have active
1010 * counts, just remove them from the LRU. Otherwise give them
1011 * another pass through the LRU.
1013 if (dentry
->d_lockref
.count
) {
1014 d_lru_isolate(dentry
);
1015 spin_unlock(&dentry
->d_lock
);
1019 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
1020 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
1021 spin_unlock(&dentry
->d_lock
);
1024 * The list move itself will be made by the common LRU code. At
1025 * this point, we've dropped the dentry->d_lock but keep the
1026 * lru lock. This is safe to do, since every list movement is
1027 * protected by the lru lock even if both locks are held.
1029 * This is guaranteed by the fact that all LRU management
1030 * functions are intermediated by the LRU API calls like
1031 * list_lru_add and list_lru_del. List movement in this file
1032 * only ever occur through this functions or through callbacks
1033 * like this one, that are called from the LRU API.
1035 * The only exceptions to this are functions like
1036 * shrink_dentry_list, and code that first checks for the
1037 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1038 * operating only with stack provided lists after they are
1039 * properly isolated from the main list. It is thus, always a
1045 d_lru_shrink_move(dentry
, freeable
);
1046 spin_unlock(&dentry
->d_lock
);
1052 * prune_dcache_sb - shrink the dcache
1054 * @nr_to_scan : number of entries to try to free
1055 * @nid: which node to scan for freeable entities
1057 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
1058 * done when we need more memory an called from the superblock shrinker
1061 * This function may fail to free any resources if all the dentries are in
1064 long prune_dcache_sb(struct super_block
*sb
, unsigned long nr_to_scan
,
1070 freed
= list_lru_walk_node(&sb
->s_dentry_lru
, nid
, dentry_lru_isolate
,
1071 &dispose
, &nr_to_scan
);
1072 shrink_dentry_list(&dispose
);
1076 static enum lru_status
dentry_lru_isolate_shrink(struct list_head
*item
,
1077 spinlock_t
*lru_lock
, void *arg
)
1079 struct list_head
*freeable
= arg
;
1080 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1083 * we are inverting the lru lock/dentry->d_lock here,
1084 * so use a trylock. If we fail to get the lock, just skip
1087 if (!spin_trylock(&dentry
->d_lock
))
1090 d_lru_shrink_move(dentry
, freeable
);
1091 spin_unlock(&dentry
->d_lock
);
1098 * shrink_dcache_sb - shrink dcache for a superblock
1101 * Shrink the dcache for the specified super block. This is used to free
1102 * the dcache before unmounting a file system.
1104 void shrink_dcache_sb(struct super_block
*sb
)
1111 freed
= list_lru_walk(&sb
->s_dentry_lru
,
1112 dentry_lru_isolate_shrink
, &dispose
, 1024);
1114 this_cpu_sub(nr_dentry_unused
, freed
);
1115 shrink_dentry_list(&dispose
);
1117 } while (list_lru_count(&sb
->s_dentry_lru
) > 0);
1119 EXPORT_SYMBOL(shrink_dcache_sb
);
1122 * enum d_walk_ret - action to talke during tree walk
1123 * @D_WALK_CONTINUE: contrinue walk
1124 * @D_WALK_QUIT: quit walk
1125 * @D_WALK_NORETRY: quit when retry is needed
1126 * @D_WALK_SKIP: skip this dentry and its children
1136 * d_walk - walk the dentry tree
1137 * @parent: start of walk
1138 * @data: data passed to @enter() and @finish()
1139 * @enter: callback when first entering the dentry
1140 * @finish: callback when successfully finished the walk
1142 * The @enter() and @finish() callbacks are called with d_lock held.
1144 static void d_walk(struct dentry
*parent
, void *data
,
1145 enum d_walk_ret (*enter
)(void *, struct dentry
*),
1146 void (*finish
)(void *))
1148 struct dentry
*this_parent
;
1149 struct list_head
*next
;
1151 enum d_walk_ret ret
;
1155 read_seqbegin_or_lock(&rename_lock
, &seq
);
1156 this_parent
= parent
;
1157 spin_lock(&this_parent
->d_lock
);
1159 ret
= enter(data
, this_parent
);
1161 case D_WALK_CONTINUE
:
1166 case D_WALK_NORETRY
:
1171 next
= this_parent
->d_subdirs
.next
;
1173 while (next
!= &this_parent
->d_subdirs
) {
1174 struct list_head
*tmp
= next
;
1175 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
1178 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1180 ret
= enter(data
, dentry
);
1182 case D_WALK_CONTINUE
:
1185 spin_unlock(&dentry
->d_lock
);
1187 case D_WALK_NORETRY
:
1191 spin_unlock(&dentry
->d_lock
);
1195 if (!list_empty(&dentry
->d_subdirs
)) {
1196 spin_unlock(&this_parent
->d_lock
);
1197 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1198 this_parent
= dentry
;
1199 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1202 spin_unlock(&dentry
->d_lock
);
1205 * All done at this level ... ascend and resume the search.
1209 if (this_parent
!= parent
) {
1210 struct dentry
*child
= this_parent
;
1211 this_parent
= child
->d_parent
;
1213 spin_unlock(&child
->d_lock
);
1214 spin_lock(&this_parent
->d_lock
);
1216 /* might go back up the wrong parent if we have had a rename. */
1217 if (need_seqretry(&rename_lock
, seq
))
1219 /* go into the first sibling still alive */
1221 next
= child
->d_child
.next
;
1222 if (next
== &this_parent
->d_subdirs
)
1224 child
= list_entry(next
, struct dentry
, d_child
);
1225 } while (unlikely(child
->d_flags
& DCACHE_DENTRY_KILLED
));
1229 if (need_seqretry(&rename_lock
, seq
))
1236 spin_unlock(&this_parent
->d_lock
);
1237 done_seqretry(&rename_lock
, seq
);
1241 spin_unlock(&this_parent
->d_lock
);
1251 * Search for at least 1 mount point in the dentry's subdirs.
1252 * We descend to the next level whenever the d_subdirs
1253 * list is non-empty and continue searching.
1256 static enum d_walk_ret
check_mount(void *data
, struct dentry
*dentry
)
1259 if (d_mountpoint(dentry
)) {
1263 return D_WALK_CONTINUE
;
1267 * have_submounts - check for mounts over a dentry
1268 * @parent: dentry to check.
1270 * Return true if the parent or its subdirectories contain
1273 int have_submounts(struct dentry
*parent
)
1277 d_walk(parent
, &ret
, check_mount
, NULL
);
1281 EXPORT_SYMBOL(have_submounts
);
1284 * Called by mount code to set a mountpoint and check if the mountpoint is
1285 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1286 * subtree can become unreachable).
1288 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1289 * this reason take rename_lock and d_lock on dentry and ancestors.
1291 int d_set_mounted(struct dentry
*dentry
)
1295 write_seqlock(&rename_lock
);
1296 for (p
= dentry
->d_parent
; !IS_ROOT(p
); p
= p
->d_parent
) {
1297 /* Need exclusion wrt. d_invalidate() */
1298 spin_lock(&p
->d_lock
);
1299 if (unlikely(d_unhashed(p
))) {
1300 spin_unlock(&p
->d_lock
);
1303 spin_unlock(&p
->d_lock
);
1305 spin_lock(&dentry
->d_lock
);
1306 if (!d_unlinked(dentry
)) {
1307 dentry
->d_flags
|= DCACHE_MOUNTED
;
1310 spin_unlock(&dentry
->d_lock
);
1312 write_sequnlock(&rename_lock
);
1317 * Search the dentry child list of the specified parent,
1318 * and move any unused dentries to the end of the unused
1319 * list for prune_dcache(). We descend to the next level
1320 * whenever the d_subdirs list is non-empty and continue
1323 * It returns zero iff there are no unused children,
1324 * otherwise it returns the number of children moved to
1325 * the end of the unused list. This may not be the total
1326 * number of unused children, because select_parent can
1327 * drop the lock and return early due to latency
1331 struct select_data
{
1332 struct dentry
*start
;
1333 struct list_head dispose
;
1337 static enum d_walk_ret
select_collect(void *_data
, struct dentry
*dentry
)
1339 struct select_data
*data
= _data
;
1340 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1342 if (data
->start
== dentry
)
1345 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
1348 if (dentry
->d_flags
& DCACHE_LRU_LIST
)
1350 if (!dentry
->d_lockref
.count
) {
1351 d_shrink_add(dentry
, &data
->dispose
);
1356 * We can return to the caller if we have found some (this
1357 * ensures forward progress). We'll be coming back to find
1360 if (!list_empty(&data
->dispose
))
1361 ret
= need_resched() ? D_WALK_QUIT
: D_WALK_NORETRY
;
1367 * shrink_dcache_parent - prune dcache
1368 * @parent: parent of entries to prune
1370 * Prune the dcache to remove unused children of the parent dentry.
1372 void shrink_dcache_parent(struct dentry
*parent
)
1375 struct select_data data
;
1377 INIT_LIST_HEAD(&data
.dispose
);
1378 data
.start
= parent
;
1381 d_walk(parent
, &data
, select_collect
, NULL
);
1385 shrink_dentry_list(&data
.dispose
);
1389 EXPORT_SYMBOL(shrink_dcache_parent
);
1391 static enum d_walk_ret
umount_check(void *_data
, struct dentry
*dentry
)
1393 /* it has busy descendents; complain about those instead */
1394 if (!list_empty(&dentry
->d_subdirs
))
1395 return D_WALK_CONTINUE
;
1397 /* root with refcount 1 is fine */
1398 if (dentry
== _data
&& dentry
->d_lockref
.count
== 1)
1399 return D_WALK_CONTINUE
;
1401 printk(KERN_ERR
"BUG: Dentry %p{i=%lx,n=%pd} "
1402 " still in use (%d) [unmount of %s %s]\n",
1405 dentry
->d_inode
->i_ino
: 0UL,
1407 dentry
->d_lockref
.count
,
1408 dentry
->d_sb
->s_type
->name
,
1409 dentry
->d_sb
->s_id
);
1411 return D_WALK_CONTINUE
;
1414 static void do_one_tree(struct dentry
*dentry
)
1416 shrink_dcache_parent(dentry
);
1417 d_walk(dentry
, dentry
, umount_check
, NULL
);
1423 * destroy the dentries attached to a superblock on unmounting
1425 void shrink_dcache_for_umount(struct super_block
*sb
)
1427 struct dentry
*dentry
;
1429 WARN(down_read_trylock(&sb
->s_umount
), "s_umount should've been locked");
1431 dentry
= sb
->s_root
;
1433 do_one_tree(dentry
);
1435 while (!hlist_bl_empty(&sb
->s_anon
)) {
1436 dentry
= dget(hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
));
1437 do_one_tree(dentry
);
1441 struct detach_data
{
1442 struct select_data select
;
1443 struct dentry
*mountpoint
;
1445 static enum d_walk_ret
detach_and_collect(void *_data
, struct dentry
*dentry
)
1447 struct detach_data
*data
= _data
;
1449 if (d_mountpoint(dentry
)) {
1450 __dget_dlock(dentry
);
1451 data
->mountpoint
= dentry
;
1455 return select_collect(&data
->select
, dentry
);
1458 static void check_and_drop(void *_data
)
1460 struct detach_data
*data
= _data
;
1462 if (!data
->mountpoint
&& !data
->select
.found
)
1463 __d_drop(data
->select
.start
);
1467 * d_invalidate - detach submounts, prune dcache, and drop
1468 * @dentry: dentry to invalidate (aka detach, prune and drop)
1472 * The final d_drop is done as an atomic operation relative to
1473 * rename_lock ensuring there are no races with d_set_mounted. This
1474 * ensures there are no unhashed dentries on the path to a mountpoint.
1476 void d_invalidate(struct dentry
*dentry
)
1479 * If it's already been dropped, return OK.
1481 spin_lock(&dentry
->d_lock
);
1482 if (d_unhashed(dentry
)) {
1483 spin_unlock(&dentry
->d_lock
);
1486 spin_unlock(&dentry
->d_lock
);
1488 /* Negative dentries can be dropped without further checks */
1489 if (!dentry
->d_inode
) {
1495 struct detach_data data
;
1497 data
.mountpoint
= NULL
;
1498 INIT_LIST_HEAD(&data
.select
.dispose
);
1499 data
.select
.start
= dentry
;
1500 data
.select
.found
= 0;
1502 d_walk(dentry
, &data
, detach_and_collect
, check_and_drop
);
1504 if (data
.select
.found
)
1505 shrink_dentry_list(&data
.select
.dispose
);
1507 if (data
.mountpoint
) {
1508 detach_mounts(data
.mountpoint
);
1509 dput(data
.mountpoint
);
1512 if (!data
.mountpoint
&& !data
.select
.found
)
1518 EXPORT_SYMBOL(d_invalidate
);
1521 * __d_alloc - allocate a dcache entry
1522 * @sb: filesystem it will belong to
1523 * @name: qstr of the name
1525 * Allocates a dentry. It returns %NULL if there is insufficient memory
1526 * available. On a success the dentry is returned. The name passed in is
1527 * copied and the copy passed in may be reused after this call.
1530 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1532 struct dentry
*dentry
;
1535 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1540 * We guarantee that the inline name is always NUL-terminated.
1541 * This way the memcpy() done by the name switching in rename
1542 * will still always have a NUL at the end, even if we might
1543 * be overwriting an internal NUL character
1545 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1546 if (name
->len
> DNAME_INLINE_LEN
-1) {
1547 size_t size
= offsetof(struct external_name
, name
[1]);
1548 struct external_name
*p
= kmalloc(size
+ name
->len
, GFP_KERNEL
);
1550 kmem_cache_free(dentry_cache
, dentry
);
1553 atomic_set(&p
->u
.count
, 1);
1556 dname
= dentry
->d_iname
;
1559 dentry
->d_name
.len
= name
->len
;
1560 dentry
->d_name
.hash
= name
->hash
;
1561 memcpy(dname
, name
->name
, name
->len
);
1562 dname
[name
->len
] = 0;
1564 /* Make sure we always see the terminating NUL character */
1566 dentry
->d_name
.name
= dname
;
1568 dentry
->d_lockref
.count
= 1;
1569 dentry
->d_flags
= 0;
1570 spin_lock_init(&dentry
->d_lock
);
1571 seqcount_init(&dentry
->d_seq
);
1572 dentry
->d_inode
= NULL
;
1573 dentry
->d_parent
= dentry
;
1575 dentry
->d_op
= NULL
;
1576 dentry
->d_fsdata
= NULL
;
1577 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1578 INIT_LIST_HEAD(&dentry
->d_lru
);
1579 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1580 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
1581 INIT_LIST_HEAD(&dentry
->d_child
);
1582 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1584 this_cpu_inc(nr_dentry
);
1590 * d_alloc - allocate a dcache entry
1591 * @parent: parent of entry to allocate
1592 * @name: qstr of the name
1594 * Allocates a dentry. It returns %NULL if there is insufficient memory
1595 * available. On a success the dentry is returned. The name passed in is
1596 * copied and the copy passed in may be reused after this call.
1598 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1600 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1603 dentry
->d_flags
|= DCACHE_RCUACCESS
;
1604 spin_lock(&parent
->d_lock
);
1606 * don't need child lock because it is not subject
1607 * to concurrency here
1609 __dget_dlock(parent
);
1610 dentry
->d_parent
= parent
;
1611 list_add(&dentry
->d_child
, &parent
->d_subdirs
);
1612 spin_unlock(&parent
->d_lock
);
1616 EXPORT_SYMBOL(d_alloc
);
1619 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1620 * @sb: the superblock
1621 * @name: qstr of the name
1623 * For a filesystem that just pins its dentries in memory and never
1624 * performs lookups at all, return an unhashed IS_ROOT dentry.
1626 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1628 return __d_alloc(sb
, name
);
1630 EXPORT_SYMBOL(d_alloc_pseudo
);
1632 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1637 q
.len
= strlen(name
);
1638 q
.hash
= full_name_hash(q
.name
, q
.len
);
1639 return d_alloc(parent
, &q
);
1641 EXPORT_SYMBOL(d_alloc_name
);
1643 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1645 WARN_ON_ONCE(dentry
->d_op
);
1646 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1648 DCACHE_OP_REVALIDATE
|
1649 DCACHE_OP_WEAK_REVALIDATE
|
1651 DCACHE_OP_SELECT_INODE
));
1656 dentry
->d_flags
|= DCACHE_OP_HASH
;
1658 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1659 if (op
->d_revalidate
)
1660 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1661 if (op
->d_weak_revalidate
)
1662 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1664 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1666 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1667 if (op
->d_select_inode
)
1668 dentry
->d_flags
|= DCACHE_OP_SELECT_INODE
;
1671 EXPORT_SYMBOL(d_set_d_op
);
1673 static unsigned d_flags_for_inode(struct inode
*inode
)
1675 unsigned add_flags
= DCACHE_FILE_TYPE
;
1678 return DCACHE_MISS_TYPE
;
1680 if (S_ISDIR(inode
->i_mode
)) {
1681 add_flags
= DCACHE_DIRECTORY_TYPE
;
1682 if (unlikely(!(inode
->i_opflags
& IOP_LOOKUP
))) {
1683 if (unlikely(!inode
->i_op
->lookup
))
1684 add_flags
= DCACHE_AUTODIR_TYPE
;
1686 inode
->i_opflags
|= IOP_LOOKUP
;
1688 } else if (unlikely(!(inode
->i_opflags
& IOP_NOFOLLOW
))) {
1689 if (unlikely(inode
->i_op
->follow_link
))
1690 add_flags
= DCACHE_SYMLINK_TYPE
;
1692 inode
->i_opflags
|= IOP_NOFOLLOW
;
1695 if (unlikely(IS_AUTOMOUNT(inode
)))
1696 add_flags
|= DCACHE_NEED_AUTOMOUNT
;
1700 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1702 unsigned add_flags
= d_flags_for_inode(inode
);
1704 spin_lock(&dentry
->d_lock
);
1705 __d_set_type(dentry
, add_flags
);
1707 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1708 dentry
->d_inode
= inode
;
1709 dentry_rcuwalk_barrier(dentry
);
1710 spin_unlock(&dentry
->d_lock
);
1711 fsnotify_d_instantiate(dentry
, inode
);
1715 * d_instantiate - fill in inode information for a dentry
1716 * @entry: dentry to complete
1717 * @inode: inode to attach to this dentry
1719 * Fill in inode information in the entry.
1721 * This turns negative dentries into productive full members
1724 * NOTE! This assumes that the inode count has been incremented
1725 * (or otherwise set) by the caller to indicate that it is now
1726 * in use by the dcache.
1729 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1731 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1733 spin_lock(&inode
->i_lock
);
1734 __d_instantiate(entry
, inode
);
1736 spin_unlock(&inode
->i_lock
);
1737 security_d_instantiate(entry
, inode
);
1739 EXPORT_SYMBOL(d_instantiate
);
1742 * d_instantiate_unique - instantiate a non-aliased dentry
1743 * @entry: dentry to instantiate
1744 * @inode: inode to attach to this dentry
1746 * Fill in inode information in the entry. On success, it returns NULL.
1747 * If an unhashed alias of "entry" already exists, then we return the
1748 * aliased dentry instead and drop one reference to inode.
1750 * Note that in order to avoid conflicts with rename() etc, the caller
1751 * had better be holding the parent directory semaphore.
1753 * This also assumes that the inode count has been incremented
1754 * (or otherwise set) by the caller to indicate that it is now
1755 * in use by the dcache.
1757 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1758 struct inode
*inode
)
1760 struct dentry
*alias
;
1761 int len
= entry
->d_name
.len
;
1762 const char *name
= entry
->d_name
.name
;
1763 unsigned int hash
= entry
->d_name
.hash
;
1766 __d_instantiate(entry
, NULL
);
1770 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
1772 * Don't need alias->d_lock here, because aliases with
1773 * d_parent == entry->d_parent are not subject to name or
1774 * parent changes, because the parent inode i_mutex is held.
1776 if (alias
->d_name
.hash
!= hash
)
1778 if (alias
->d_parent
!= entry
->d_parent
)
1780 if (alias
->d_name
.len
!= len
)
1782 if (dentry_cmp(alias
, name
, len
))
1788 __d_instantiate(entry
, inode
);
1792 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1794 struct dentry
*result
;
1796 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1799 spin_lock(&inode
->i_lock
);
1800 result
= __d_instantiate_unique(entry
, inode
);
1802 spin_unlock(&inode
->i_lock
);
1805 security_d_instantiate(entry
, inode
);
1809 BUG_ON(!d_unhashed(result
));
1814 EXPORT_SYMBOL(d_instantiate_unique
);
1817 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1818 * @entry: dentry to complete
1819 * @inode: inode to attach to this dentry
1821 * Fill in inode information in the entry. If a directory alias is found, then
1822 * return an error (and drop inode). Together with d_materialise_unique() this
1823 * guarantees that a directory inode may never have more than one alias.
1825 int d_instantiate_no_diralias(struct dentry
*entry
, struct inode
*inode
)
1827 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1829 spin_lock(&inode
->i_lock
);
1830 if (S_ISDIR(inode
->i_mode
) && !hlist_empty(&inode
->i_dentry
)) {
1831 spin_unlock(&inode
->i_lock
);
1835 __d_instantiate(entry
, inode
);
1836 spin_unlock(&inode
->i_lock
);
1837 security_d_instantiate(entry
, inode
);
1841 EXPORT_SYMBOL(d_instantiate_no_diralias
);
1843 struct dentry
*d_make_root(struct inode
*root_inode
)
1845 struct dentry
*res
= NULL
;
1848 static const struct qstr name
= QSTR_INIT("/", 1);
1850 res
= __d_alloc(root_inode
->i_sb
, &name
);
1852 res
->d_flags
|= DCACHE_RCUACCESS
;
1853 d_instantiate(res
, root_inode
);
1860 EXPORT_SYMBOL(d_make_root
);
1862 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1864 struct dentry
*alias
;
1866 if (hlist_empty(&inode
->i_dentry
))
1868 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_u
.d_alias
);
1874 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1875 * with lockdep-related part of unlock_new_inode() done before
1876 * anything else. Use that instead of open-coding d_instantiate()/
1877 * unlock_new_inode() combinations.
1879 void d_instantiate_new(struct dentry
*entry
, struct inode
*inode
)
1881 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1883 lockdep_annotate_inode_mutex_key(inode
);
1884 security_d_instantiate(entry
, inode
);
1885 spin_lock(&inode
->i_lock
);
1886 __d_instantiate(entry
, inode
);
1887 WARN_ON(!(inode
->i_state
& I_NEW
));
1888 inode
->i_state
&= ~I_NEW
;
1890 wake_up_bit(&inode
->i_state
, __I_NEW
);
1891 spin_unlock(&inode
->i_lock
);
1893 EXPORT_SYMBOL(d_instantiate_new
);
1896 * d_find_any_alias - find any alias for a given inode
1897 * @inode: inode to find an alias for
1899 * If any aliases exist for the given inode, take and return a
1900 * reference for one of them. If no aliases exist, return %NULL.
1902 struct dentry
*d_find_any_alias(struct inode
*inode
)
1906 spin_lock(&inode
->i_lock
);
1907 de
= __d_find_any_alias(inode
);
1908 spin_unlock(&inode
->i_lock
);
1911 EXPORT_SYMBOL(d_find_any_alias
);
1913 static struct dentry
*__d_obtain_alias(struct inode
*inode
, int disconnected
)
1915 static const struct qstr anonstring
= QSTR_INIT("/", 1);
1921 return ERR_PTR(-ESTALE
);
1923 return ERR_CAST(inode
);
1925 res
= d_find_any_alias(inode
);
1929 tmp
= __d_alloc(inode
->i_sb
, &anonstring
);
1931 res
= ERR_PTR(-ENOMEM
);
1935 spin_lock(&inode
->i_lock
);
1936 res
= __d_find_any_alias(inode
);
1938 spin_unlock(&inode
->i_lock
);
1943 /* attach a disconnected dentry */
1944 add_flags
= d_flags_for_inode(inode
);
1947 add_flags
|= DCACHE_DISCONNECTED
;
1949 spin_lock(&tmp
->d_lock
);
1950 tmp
->d_inode
= inode
;
1951 tmp
->d_flags
|= add_flags
;
1952 hlist_add_head(&tmp
->d_u
.d_alias
, &inode
->i_dentry
);
1953 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1954 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1955 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1956 spin_unlock(&tmp
->d_lock
);
1957 spin_unlock(&inode
->i_lock
);
1958 security_d_instantiate(tmp
, inode
);
1963 if (res
&& !IS_ERR(res
))
1964 security_d_instantiate(res
, inode
);
1970 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1971 * @inode: inode to allocate the dentry for
1973 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1974 * similar open by handle operations. The returned dentry may be anonymous,
1975 * or may have a full name (if the inode was already in the cache).
1977 * When called on a directory inode, we must ensure that the inode only ever
1978 * has one dentry. If a dentry is found, that is returned instead of
1979 * allocating a new one.
1981 * On successful return, the reference to the inode has been transferred
1982 * to the dentry. In case of an error the reference on the inode is released.
1983 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1984 * be passed in and the error will be propagated to the return value,
1985 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1987 struct dentry
*d_obtain_alias(struct inode
*inode
)
1989 return __d_obtain_alias(inode
, 1);
1991 EXPORT_SYMBOL(d_obtain_alias
);
1994 * d_obtain_root - find or allocate a dentry for a given inode
1995 * @inode: inode to allocate the dentry for
1997 * Obtain an IS_ROOT dentry for the root of a filesystem.
1999 * We must ensure that directory inodes only ever have one dentry. If a
2000 * dentry is found, that is returned instead of allocating a new one.
2002 * On successful return, the reference to the inode has been transferred
2003 * to the dentry. In case of an error the reference on the inode is
2004 * released. A %NULL or IS_ERR inode may be passed in and will be the
2005 * error will be propagate to the return value, with a %NULL @inode
2006 * replaced by ERR_PTR(-ESTALE).
2008 struct dentry
*d_obtain_root(struct inode
*inode
)
2010 return __d_obtain_alias(inode
, 0);
2012 EXPORT_SYMBOL(d_obtain_root
);
2015 * d_add_ci - lookup or allocate new dentry with case-exact name
2016 * @inode: the inode case-insensitive lookup has found
2017 * @dentry: the negative dentry that was passed to the parent's lookup func
2018 * @name: the case-exact name to be associated with the returned dentry
2020 * This is to avoid filling the dcache with case-insensitive names to the
2021 * same inode, only the actual correct case is stored in the dcache for
2022 * case-insensitive filesystems.
2024 * For a case-insensitive lookup match and if the the case-exact dentry
2025 * already exists in in the dcache, use it and return it.
2027 * If no entry exists with the exact case name, allocate new dentry with
2028 * the exact case, and return the spliced entry.
2030 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
2033 struct dentry
*found
;
2037 * First check if a dentry matching the name already exists,
2038 * if not go ahead and create it now.
2040 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
2041 if (unlikely(IS_ERR(found
)))
2044 new = d_alloc(dentry
->d_parent
, name
);
2046 found
= ERR_PTR(-ENOMEM
);
2050 found
= d_splice_alias(inode
, new);
2059 * If a matching dentry exists, and it's not negative use it.
2061 * Decrement the reference count to balance the iget() done
2064 if (found
->d_inode
) {
2065 if (unlikely(found
->d_inode
!= inode
)) {
2066 /* This can't happen because bad inodes are unhashed. */
2067 BUG_ON(!is_bad_inode(inode
));
2068 BUG_ON(!is_bad_inode(found
->d_inode
));
2075 * Negative dentry: instantiate it unless the inode is a directory and
2076 * already has a dentry.
2078 new = d_splice_alias(inode
, found
);
2089 EXPORT_SYMBOL(d_add_ci
);
2092 * Do the slow-case of the dentry name compare.
2094 * Unlike the dentry_cmp() function, we need to atomically
2095 * load the name and length information, so that the
2096 * filesystem can rely on them, and can use the 'name' and
2097 * 'len' information without worrying about walking off the
2098 * end of memory etc.
2100 * Thus the read_seqcount_retry() and the "duplicate" info
2101 * in arguments (the low-level filesystem should not look
2102 * at the dentry inode or name contents directly, since
2103 * rename can change them while we're in RCU mode).
2105 enum slow_d_compare
{
2111 static noinline
enum slow_d_compare
slow_dentry_cmp(
2112 const struct dentry
*parent
,
2113 struct dentry
*dentry
,
2115 const struct qstr
*name
)
2117 int tlen
= dentry
->d_name
.len
;
2118 const char *tname
= dentry
->d_name
.name
;
2120 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
2122 return D_COMP_SEQRETRY
;
2124 if (parent
->d_op
->d_compare(parent
, dentry
, tlen
, tname
, name
))
2125 return D_COMP_NOMATCH
;
2130 * __d_lookup_rcu - search for a dentry (racy, store-free)
2131 * @parent: parent dentry
2132 * @name: qstr of name we wish to find
2133 * @seqp: returns d_seq value at the point where the dentry was found
2134 * Returns: dentry, or NULL
2136 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2137 * resolution (store-free path walking) design described in
2138 * Documentation/filesystems/path-lookup.txt.
2140 * This is not to be used outside core vfs.
2142 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2143 * held, and rcu_read_lock held. The returned dentry must not be stored into
2144 * without taking d_lock and checking d_seq sequence count against @seq
2147 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2150 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2151 * the returned dentry, so long as its parent's seqlock is checked after the
2152 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2153 * is formed, giving integrity down the path walk.
2155 * NOTE! The caller *has* to check the resulting dentry against the sequence
2156 * number we've returned before using any of the resulting dentry state!
2158 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
2159 const struct qstr
*name
,
2162 u64 hashlen
= name
->hash_len
;
2163 const unsigned char *str
= name
->name
;
2164 struct hlist_bl_head
*b
= d_hash(parent
, hashlen_hash(hashlen
));
2165 struct hlist_bl_node
*node
;
2166 struct dentry
*dentry
;
2169 * Note: There is significant duplication with __d_lookup_rcu which is
2170 * required to prevent single threaded performance regressions
2171 * especially on architectures where smp_rmb (in seqcounts) are costly.
2172 * Keep the two functions in sync.
2176 * The hash list is protected using RCU.
2178 * Carefully use d_seq when comparing a candidate dentry, to avoid
2179 * races with d_move().
2181 * It is possible that concurrent renames can mess up our list
2182 * walk here and result in missing our dentry, resulting in the
2183 * false-negative result. d_lookup() protects against concurrent
2184 * renames using rename_lock seqlock.
2186 * See Documentation/filesystems/path-lookup.txt for more details.
2188 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2193 * The dentry sequence count protects us from concurrent
2194 * renames, and thus protects parent and name fields.
2196 * The caller must perform a seqcount check in order
2197 * to do anything useful with the returned dentry.
2199 * NOTE! We do a "raw" seqcount_begin here. That means that
2200 * we don't wait for the sequence count to stabilize if it
2201 * is in the middle of a sequence change. If we do the slow
2202 * dentry compare, we will do seqretries until it is stable,
2203 * and if we end up with a successful lookup, we actually
2204 * want to exit RCU lookup anyway.
2206 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2207 if (dentry
->d_parent
!= parent
)
2209 if (d_unhashed(dentry
))
2212 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
2213 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
2216 switch (slow_dentry_cmp(parent
, dentry
, seq
, name
)) {
2219 case D_COMP_NOMATCH
:
2226 if (dentry
->d_name
.hash_len
!= hashlen
)
2229 if (!dentry_cmp(dentry
, str
, hashlen_len(hashlen
)))
2236 * d_lookup - search for a dentry
2237 * @parent: parent dentry
2238 * @name: qstr of name we wish to find
2239 * Returns: dentry, or NULL
2241 * d_lookup searches the children of the parent dentry for the name in
2242 * question. If the dentry is found its reference count is incremented and the
2243 * dentry is returned. The caller must use dput to free the entry when it has
2244 * finished using it. %NULL is returned if the dentry does not exist.
2246 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2248 struct dentry
*dentry
;
2252 seq
= read_seqbegin(&rename_lock
);
2253 dentry
= __d_lookup(parent
, name
);
2256 } while (read_seqretry(&rename_lock
, seq
));
2259 EXPORT_SYMBOL(d_lookup
);
2262 * __d_lookup - search for a dentry (racy)
2263 * @parent: parent dentry
2264 * @name: qstr of name we wish to find
2265 * Returns: dentry, or NULL
2267 * __d_lookup is like d_lookup, however it may (rarely) return a
2268 * false-negative result due to unrelated rename activity.
2270 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2271 * however it must be used carefully, eg. with a following d_lookup in
2272 * the case of failure.
2274 * __d_lookup callers must be commented.
2276 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2278 unsigned int len
= name
->len
;
2279 unsigned int hash
= name
->hash
;
2280 const unsigned char *str
= name
->name
;
2281 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
2282 struct hlist_bl_node
*node
;
2283 struct dentry
*found
= NULL
;
2284 struct dentry
*dentry
;
2287 * Note: There is significant duplication with __d_lookup_rcu which is
2288 * required to prevent single threaded performance regressions
2289 * especially on architectures where smp_rmb (in seqcounts) are costly.
2290 * Keep the two functions in sync.
2294 * The hash list is protected using RCU.
2296 * Take d_lock when comparing a candidate dentry, to avoid races
2299 * It is possible that concurrent renames can mess up our list
2300 * walk here and result in missing our dentry, resulting in the
2301 * false-negative result. d_lookup() protects against concurrent
2302 * renames using rename_lock seqlock.
2304 * See Documentation/filesystems/path-lookup.txt for more details.
2308 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2310 if (dentry
->d_name
.hash
!= hash
)
2313 spin_lock(&dentry
->d_lock
);
2314 if (dentry
->d_parent
!= parent
)
2316 if (d_unhashed(dentry
))
2320 * It is safe to compare names since d_move() cannot
2321 * change the qstr (protected by d_lock).
2323 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
2324 int tlen
= dentry
->d_name
.len
;
2325 const char *tname
= dentry
->d_name
.name
;
2326 if (parent
->d_op
->d_compare(parent
, dentry
, tlen
, tname
, name
))
2329 if (dentry
->d_name
.len
!= len
)
2331 if (dentry_cmp(dentry
, str
, len
))
2335 dentry
->d_lockref
.count
++;
2337 spin_unlock(&dentry
->d_lock
);
2340 spin_unlock(&dentry
->d_lock
);
2348 * d_hash_and_lookup - hash the qstr then search for a dentry
2349 * @dir: Directory to search in
2350 * @name: qstr of name we wish to find
2352 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2354 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2357 * Check for a fs-specific hash function. Note that we must
2358 * calculate the standard hash first, as the d_op->d_hash()
2359 * routine may choose to leave the hash value unchanged.
2361 name
->hash
= full_name_hash(name
->name
, name
->len
);
2362 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2363 int err
= dir
->d_op
->d_hash(dir
, name
);
2364 if (unlikely(err
< 0))
2365 return ERR_PTR(err
);
2367 return d_lookup(dir
, name
);
2369 EXPORT_SYMBOL(d_hash_and_lookup
);
2372 * d_validate - verify dentry provided from insecure source (deprecated)
2373 * @dentry: The dentry alleged to be valid child of @dparent
2374 * @dparent: The parent dentry (known to be valid)
2376 * An insecure source has sent us a dentry, here we verify it and dget() it.
2377 * This is used by ncpfs in its readdir implementation.
2378 * Zero is returned in the dentry is invalid.
2380 * This function is slow for big directories, and deprecated, do not use it.
2382 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
2384 struct dentry
*child
;
2386 spin_lock(&dparent
->d_lock
);
2387 list_for_each_entry(child
, &dparent
->d_subdirs
, d_child
) {
2388 if (dentry
== child
) {
2389 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2390 __dget_dlock(dentry
);
2391 spin_unlock(&dentry
->d_lock
);
2392 spin_unlock(&dparent
->d_lock
);
2396 spin_unlock(&dparent
->d_lock
);
2400 EXPORT_SYMBOL(d_validate
);
2403 * When a file is deleted, we have two options:
2404 * - turn this dentry into a negative dentry
2405 * - unhash this dentry and free it.
2407 * Usually, we want to just turn this into
2408 * a negative dentry, but if anybody else is
2409 * currently using the dentry or the inode
2410 * we can't do that and we fall back on removing
2411 * it from the hash queues and waiting for
2412 * it to be deleted later when it has no users
2416 * d_delete - delete a dentry
2417 * @dentry: The dentry to delete
2419 * Turn the dentry into a negative dentry if possible, otherwise
2420 * remove it from the hash queues so it can be deleted later
2423 void d_delete(struct dentry
* dentry
)
2425 struct inode
*inode
;
2428 * Are we the only user?
2431 spin_lock(&dentry
->d_lock
);
2432 inode
= dentry
->d_inode
;
2433 isdir
= S_ISDIR(inode
->i_mode
);
2434 if (dentry
->d_lockref
.count
== 1) {
2435 if (!spin_trylock(&inode
->i_lock
)) {
2436 spin_unlock(&dentry
->d_lock
);
2440 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2441 dentry_unlink_inode(dentry
);
2442 fsnotify_nameremove(dentry
, isdir
);
2446 if (!d_unhashed(dentry
))
2449 spin_unlock(&dentry
->d_lock
);
2451 fsnotify_nameremove(dentry
, isdir
);
2453 EXPORT_SYMBOL(d_delete
);
2455 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2457 BUG_ON(!d_unhashed(entry
));
2459 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2463 static void _d_rehash(struct dentry
* entry
)
2465 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2469 * d_rehash - add an entry back to the hash
2470 * @entry: dentry to add to the hash
2472 * Adds a dentry to the hash according to its name.
2475 void d_rehash(struct dentry
* entry
)
2477 spin_lock(&entry
->d_lock
);
2479 spin_unlock(&entry
->d_lock
);
2481 EXPORT_SYMBOL(d_rehash
);
2484 * dentry_update_name_case - update case insensitive dentry with a new name
2485 * @dentry: dentry to be updated
2488 * Update a case insensitive dentry with new case of name.
2490 * dentry must have been returned by d_lookup with name @name. Old and new
2491 * name lengths must match (ie. no d_compare which allows mismatched name
2494 * Parent inode i_mutex must be held over d_lookup and into this call (to
2495 * keep renames and concurrent inserts, and readdir(2) away).
2497 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2499 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2500 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2502 spin_lock(&dentry
->d_lock
);
2503 write_seqcount_begin(&dentry
->d_seq
);
2504 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2505 write_seqcount_end(&dentry
->d_seq
);
2506 spin_unlock(&dentry
->d_lock
);
2508 EXPORT_SYMBOL(dentry_update_name_case
);
2510 static void swap_names(struct dentry
*dentry
, struct dentry
*target
)
2512 if (unlikely(dname_external(target
))) {
2513 if (unlikely(dname_external(dentry
))) {
2515 * Both external: swap the pointers
2517 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2520 * dentry:internal, target:external. Steal target's
2521 * storage and make target internal.
2523 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2524 dentry
->d_name
.len
+ 1);
2525 dentry
->d_name
.name
= target
->d_name
.name
;
2526 target
->d_name
.name
= target
->d_iname
;
2529 if (unlikely(dname_external(dentry
))) {
2531 * dentry:external, target:internal. Give dentry's
2532 * storage to target and make dentry internal
2534 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2535 target
->d_name
.len
+ 1);
2536 target
->d_name
.name
= dentry
->d_name
.name
;
2537 dentry
->d_name
.name
= dentry
->d_iname
;
2540 * Both are internal.
2543 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN
, sizeof(long)));
2544 kmemcheck_mark_initialized(dentry
->d_iname
, DNAME_INLINE_LEN
);
2545 kmemcheck_mark_initialized(target
->d_iname
, DNAME_INLINE_LEN
);
2546 for (i
= 0; i
< DNAME_INLINE_LEN
/ sizeof(long); i
++) {
2547 swap(((long *) &dentry
->d_iname
)[i
],
2548 ((long *) &target
->d_iname
)[i
]);
2552 swap(dentry
->d_name
.hash_len
, target
->d_name
.hash_len
);
2555 static void copy_name(struct dentry
*dentry
, struct dentry
*target
)
2557 struct external_name
*old_name
= NULL
;
2558 if (unlikely(dname_external(dentry
)))
2559 old_name
= external_name(dentry
);
2560 if (unlikely(dname_external(target
))) {
2561 atomic_inc(&external_name(target
)->u
.count
);
2562 dentry
->d_name
= target
->d_name
;
2564 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2565 target
->d_name
.len
+ 1);
2566 dentry
->d_name
.name
= dentry
->d_iname
;
2567 dentry
->d_name
.hash_len
= target
->d_name
.hash_len
;
2569 if (old_name
&& likely(atomic_dec_and_test(&old_name
->u
.count
)))
2570 kfree_rcu(old_name
, u
.head
);
2573 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2576 * XXXX: do we really need to take target->d_lock?
2578 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2579 spin_lock(&target
->d_parent
->d_lock
);
2581 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2582 spin_lock(&dentry
->d_parent
->d_lock
);
2583 spin_lock_nested(&target
->d_parent
->d_lock
,
2584 DENTRY_D_LOCK_NESTED
);
2586 spin_lock(&target
->d_parent
->d_lock
);
2587 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2588 DENTRY_D_LOCK_NESTED
);
2591 if (target
< dentry
) {
2592 spin_lock_nested(&target
->d_lock
, 2);
2593 spin_lock_nested(&dentry
->d_lock
, 3);
2595 spin_lock_nested(&dentry
->d_lock
, 2);
2596 spin_lock_nested(&target
->d_lock
, 3);
2600 static void dentry_unlock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2602 if (target
->d_parent
!= dentry
->d_parent
)
2603 spin_unlock(&dentry
->d_parent
->d_lock
);
2604 if (target
->d_parent
!= target
)
2605 spin_unlock(&target
->d_parent
->d_lock
);
2606 spin_unlock(&target
->d_lock
);
2607 spin_unlock(&dentry
->d_lock
);
2611 * When switching names, the actual string doesn't strictly have to
2612 * be preserved in the target - because we're dropping the target
2613 * anyway. As such, we can just do a simple memcpy() to copy over
2614 * the new name before we switch, unless we are going to rehash
2615 * it. Note that if we *do* unhash the target, we are not allowed
2616 * to rehash it without giving it a new name/hash key - whether
2617 * we swap or overwrite the names here, resulting name won't match
2618 * the reality in filesystem; it's only there for d_path() purposes.
2619 * Note that all of this is happening under rename_lock, so the
2620 * any hash lookup seeing it in the middle of manipulations will
2621 * be discarded anyway. So we do not care what happens to the hash
2625 * __d_move - move a dentry
2626 * @dentry: entry to move
2627 * @target: new dentry
2628 * @exchange: exchange the two dentries
2630 * Update the dcache to reflect the move of a file name. Negative
2631 * dcache entries should not be moved in this way. Caller must hold
2632 * rename_lock, the i_mutex of the source and target directories,
2633 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2635 static void __d_move(struct dentry
*dentry
, struct dentry
*target
,
2638 if (!dentry
->d_inode
)
2639 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2641 BUG_ON(d_ancestor(dentry
, target
));
2642 BUG_ON(d_ancestor(target
, dentry
));
2644 dentry_lock_for_move(dentry
, target
);
2646 write_seqcount_begin(&dentry
->d_seq
);
2647 write_seqcount_begin_nested(&target
->d_seq
, DENTRY_D_LOCK_NESTED
);
2649 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2652 * Move the dentry to the target hash queue. Don't bother checking
2653 * for the same hash queue because of how unlikely it is.
2656 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2659 * Unhash the target (d_delete() is not usable here). If exchanging
2660 * the two dentries, then rehash onto the other's hash queue.
2665 d_hash(dentry
->d_parent
, dentry
->d_name
.hash
));
2668 /* Switch the names.. */
2670 swap_names(dentry
, target
);
2672 copy_name(dentry
, target
);
2674 /* ... and switch them in the tree */
2675 if (IS_ROOT(dentry
)) {
2676 /* splicing a tree */
2677 dentry
->d_flags
|= DCACHE_RCUACCESS
;
2678 dentry
->d_parent
= target
->d_parent
;
2679 target
->d_parent
= target
;
2680 list_del_init(&target
->d_child
);
2681 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2683 /* swapping two dentries */
2684 swap(dentry
->d_parent
, target
->d_parent
);
2685 list_move(&target
->d_child
, &target
->d_parent
->d_subdirs
);
2686 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2688 fsnotify_d_move(target
);
2689 fsnotify_d_move(dentry
);
2692 write_seqcount_end(&target
->d_seq
);
2693 write_seqcount_end(&dentry
->d_seq
);
2695 dentry_unlock_for_move(dentry
, target
);
2699 * d_move - move a dentry
2700 * @dentry: entry to move
2701 * @target: new dentry
2703 * Update the dcache to reflect the move of a file name. Negative
2704 * dcache entries should not be moved in this way. See the locking
2705 * requirements for __d_move.
2707 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2709 write_seqlock(&rename_lock
);
2710 __d_move(dentry
, target
, false);
2711 write_sequnlock(&rename_lock
);
2713 EXPORT_SYMBOL(d_move
);
2716 * d_exchange - exchange two dentries
2717 * @dentry1: first dentry
2718 * @dentry2: second dentry
2720 void d_exchange(struct dentry
*dentry1
, struct dentry
*dentry2
)
2722 write_seqlock(&rename_lock
);
2724 WARN_ON(!dentry1
->d_inode
);
2725 WARN_ON(!dentry2
->d_inode
);
2726 WARN_ON(IS_ROOT(dentry1
));
2727 WARN_ON(IS_ROOT(dentry2
));
2729 __d_move(dentry1
, dentry2
, true);
2731 write_sequnlock(&rename_lock
);
2735 * d_ancestor - search for an ancestor
2736 * @p1: ancestor dentry
2739 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2740 * an ancestor of p2, else NULL.
2742 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2746 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2747 if (p
->d_parent
== p1
)
2754 * This helper attempts to cope with remotely renamed directories
2756 * It assumes that the caller is already holding
2757 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2759 * Note: If ever the locking in lock_rename() changes, then please
2760 * remember to update this too...
2762 static struct dentry
*__d_unalias(struct inode
*inode
,
2763 struct dentry
*dentry
, struct dentry
*alias
)
2765 struct mutex
*m1
= NULL
, *m2
= NULL
;
2766 struct dentry
*ret
= ERR_PTR(-EBUSY
);
2768 /* If alias and dentry share a parent, then no extra locks required */
2769 if (alias
->d_parent
== dentry
->d_parent
)
2772 /* See lock_rename() */
2773 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2775 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2776 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2778 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2780 __d_move(alias
, dentry
, false);
2783 spin_unlock(&inode
->i_lock
);
2792 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2793 * @inode: the inode which may have a disconnected dentry
2794 * @dentry: a negative dentry which we want to point to the inode.
2796 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2797 * place of the given dentry and return it, else simply d_add the inode
2798 * to the dentry and return NULL.
2800 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2801 * we should error out: directories can't have multiple aliases.
2803 * This is needed in the lookup routine of any filesystem that is exportable
2804 * (via knfsd) so that we can build dcache paths to directories effectively.
2806 * If a dentry was found and moved, then it is returned. Otherwise NULL
2807 * is returned. This matches the expected return value of ->lookup.
2809 * Cluster filesystems may call this function with a negative, hashed dentry.
2810 * In that case, we know that the inode will be a regular file, and also this
2811 * will only occur during atomic_open. So we need to check for the dentry
2812 * being already hashed only in the final case.
2814 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
2816 struct dentry
*new = NULL
;
2819 return ERR_CAST(inode
);
2821 if (inode
&& S_ISDIR(inode
->i_mode
)) {
2822 spin_lock(&inode
->i_lock
);
2823 new = __d_find_any_alias(inode
);
2825 if (!IS_ROOT(new)) {
2826 spin_unlock(&inode
->i_lock
);
2829 return ERR_PTR(-EIO
);
2831 if (d_ancestor(new, dentry
)) {
2832 spin_unlock(&inode
->i_lock
);
2835 return ERR_PTR(-EIO
);
2837 write_seqlock(&rename_lock
);
2838 __d_move(new, dentry
, false);
2839 write_sequnlock(&rename_lock
);
2840 spin_unlock(&inode
->i_lock
);
2841 security_d_instantiate(new, inode
);
2844 /* already taking inode->i_lock, so d_add() by hand */
2845 __d_instantiate(dentry
, inode
);
2846 spin_unlock(&inode
->i_lock
);
2847 security_d_instantiate(dentry
, inode
);
2851 d_instantiate(dentry
, inode
);
2852 if (d_unhashed(dentry
))
2857 EXPORT_SYMBOL(d_splice_alias
);
2860 * d_materialise_unique - introduce an inode into the tree
2861 * @dentry: candidate dentry
2862 * @inode: inode to bind to the dentry, to which aliases may be attached
2864 * Introduces an dentry into the tree, substituting an extant disconnected
2865 * root directory alias in its place if there is one. Caller must hold the
2866 * i_mutex of the parent directory.
2868 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2870 struct dentry
*actual
;
2872 BUG_ON(!d_unhashed(dentry
));
2876 __d_instantiate(dentry
, NULL
);
2881 spin_lock(&inode
->i_lock
);
2883 if (S_ISDIR(inode
->i_mode
)) {
2884 struct dentry
*alias
;
2886 /* Does an aliased dentry already exist? */
2887 alias
= __d_find_alias(inode
);
2890 write_seqlock(&rename_lock
);
2892 if (d_ancestor(alias
, dentry
)) {
2893 /* Check for loops */
2894 actual
= ERR_PTR(-ELOOP
);
2895 spin_unlock(&inode
->i_lock
);
2896 } else if (IS_ROOT(alias
)) {
2897 /* Is this an anonymous mountpoint that we
2898 * could splice into our tree? */
2899 __d_move(alias
, dentry
, false);
2900 write_sequnlock(&rename_lock
);
2903 /* Nope, but we must(!) avoid directory
2904 * aliasing. This drops inode->i_lock */
2905 actual
= __d_unalias(inode
, dentry
, alias
);
2907 write_sequnlock(&rename_lock
);
2908 if (IS_ERR(actual
)) {
2909 if (PTR_ERR(actual
) == -ELOOP
)
2910 pr_warn_ratelimited(
2911 "VFS: Lookup of '%s' in %s %s"
2912 " would have caused loop\n",
2913 dentry
->d_name
.name
,
2914 inode
->i_sb
->s_type
->name
,
2922 /* Add a unique reference */
2923 actual
= __d_instantiate_unique(dentry
, inode
);
2929 spin_unlock(&inode
->i_lock
);
2931 if (actual
== dentry
) {
2932 security_d_instantiate(dentry
, inode
);
2939 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2941 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2945 return -ENAMETOOLONG
;
2947 memcpy(*buffer
, str
, namelen
);
2952 * prepend_name - prepend a pathname in front of current buffer pointer
2953 * @buffer: buffer pointer
2954 * @buflen: allocated length of the buffer
2955 * @name: name string and length qstr structure
2957 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2958 * make sure that either the old or the new name pointer and length are
2959 * fetched. However, there may be mismatch between length and pointer.
2960 * The length cannot be trusted, we need to copy it byte-by-byte until
2961 * the length is reached or a null byte is found. It also prepends "/" at
2962 * the beginning of the name. The sequence number check at the caller will
2963 * retry it again when a d_move() does happen. So any garbage in the buffer
2964 * due to mismatched pointer and length will be discarded.
2966 * Data dependency barrier is needed to make sure that we see that terminating
2967 * NUL. Alpha strikes again, film at 11...
2969 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2971 const char *dname
= ACCESS_ONCE(name
->name
);
2972 u32 dlen
= ACCESS_ONCE(name
->len
);
2975 smp_read_barrier_depends();
2977 *buflen
-= dlen
+ 1;
2979 return -ENAMETOOLONG
;
2980 p
= *buffer
-= dlen
+ 1;
2992 * prepend_path - Prepend path string to a buffer
2993 * @path: the dentry/vfsmount to report
2994 * @root: root vfsmnt/dentry
2995 * @buffer: pointer to the end of the buffer
2996 * @buflen: pointer to buffer length
2998 * The function will first try to write out the pathname without taking any
2999 * lock other than the RCU read lock to make sure that dentries won't go away.
3000 * It only checks the sequence number of the global rename_lock as any change
3001 * in the dentry's d_seq will be preceded by changes in the rename_lock
3002 * sequence number. If the sequence number had been changed, it will restart
3003 * the whole pathname back-tracing sequence again by taking the rename_lock.
3004 * In this case, there is no need to take the RCU read lock as the recursive
3005 * parent pointer references will keep the dentry chain alive as long as no
3006 * rename operation is performed.
3008 static int prepend_path(const struct path
*path
,
3009 const struct path
*root
,
3010 char **buffer
, int *buflen
)
3012 struct dentry
*dentry
;
3013 struct vfsmount
*vfsmnt
;
3016 unsigned seq
, m_seq
= 0;
3022 read_seqbegin_or_lock(&mount_lock
, &m_seq
);
3029 dentry
= path
->dentry
;
3031 mnt
= real_mount(vfsmnt
);
3032 read_seqbegin_or_lock(&rename_lock
, &seq
);
3033 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
3034 struct dentry
* parent
;
3036 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
3037 struct mount
*parent
= ACCESS_ONCE(mnt
->mnt_parent
);
3039 if (dentry
!= vfsmnt
->mnt_root
) {
3046 if (mnt
!= parent
) {
3047 dentry
= ACCESS_ONCE(mnt
->mnt_mountpoint
);
3053 error
= is_mounted(vfsmnt
) ? 1 : 2;
3056 parent
= dentry
->d_parent
;
3058 error
= prepend_name(&bptr
, &blen
, &dentry
->d_name
);
3066 if (need_seqretry(&rename_lock
, seq
)) {
3070 done_seqretry(&rename_lock
, seq
);
3074 if (need_seqretry(&mount_lock
, m_seq
)) {
3078 done_seqretry(&mount_lock
, m_seq
);
3080 if (error
>= 0 && bptr
== *buffer
) {
3082 error
= -ENAMETOOLONG
;
3092 * __d_path - return the path of a dentry
3093 * @path: the dentry/vfsmount to report
3094 * @root: root vfsmnt/dentry
3095 * @buf: buffer to return value in
3096 * @buflen: buffer length
3098 * Convert a dentry into an ASCII path name.
3100 * Returns a pointer into the buffer or an error code if the
3101 * path was too long.
3103 * "buflen" should be positive.
3105 * If the path is not reachable from the supplied root, return %NULL.
3107 char *__d_path(const struct path
*path
,
3108 const struct path
*root
,
3109 char *buf
, int buflen
)
3111 char *res
= buf
+ buflen
;
3114 prepend(&res
, &buflen
, "\0", 1);
3115 error
= prepend_path(path
, root
, &res
, &buflen
);
3118 return ERR_PTR(error
);
3124 char *d_absolute_path(const struct path
*path
,
3125 char *buf
, int buflen
)
3127 struct path root
= {};
3128 char *res
= buf
+ buflen
;
3131 prepend(&res
, &buflen
, "\0", 1);
3132 error
= prepend_path(path
, &root
, &res
, &buflen
);
3137 return ERR_PTR(error
);
3142 * same as __d_path but appends "(deleted)" for unlinked files.
3144 static int path_with_deleted(const struct path
*path
,
3145 const struct path
*root
,
3146 char **buf
, int *buflen
)
3148 prepend(buf
, buflen
, "\0", 1);
3149 if (d_unlinked(path
->dentry
)) {
3150 int error
= prepend(buf
, buflen
, " (deleted)", 10);
3155 return prepend_path(path
, root
, buf
, buflen
);
3158 static int prepend_unreachable(char **buffer
, int *buflen
)
3160 return prepend(buffer
, buflen
, "(unreachable)", 13);
3163 static void get_fs_root_rcu(struct fs_struct
*fs
, struct path
*root
)
3168 seq
= read_seqcount_begin(&fs
->seq
);
3170 } while (read_seqcount_retry(&fs
->seq
, seq
));
3174 * d_path - return the path of a dentry
3175 * @path: path to report
3176 * @buf: buffer to return value in
3177 * @buflen: buffer length
3179 * Convert a dentry into an ASCII path name. If the entry has been deleted
3180 * the string " (deleted)" is appended. Note that this is ambiguous.
3182 * Returns a pointer into the buffer or an error code if the path was
3183 * too long. Note: Callers should use the returned pointer, not the passed
3184 * in buffer, to use the name! The implementation often starts at an offset
3185 * into the buffer, and may leave 0 bytes at the start.
3187 * "buflen" should be positive.
3189 char *d_path(const struct path
*path
, char *buf
, int buflen
)
3191 char *res
= buf
+ buflen
;
3196 * We have various synthetic filesystems that never get mounted. On
3197 * these filesystems dentries are never used for lookup purposes, and
3198 * thus don't need to be hashed. They also don't need a name until a
3199 * user wants to identify the object in /proc/pid/fd/. The little hack
3200 * below allows us to generate a name for these objects on demand:
3202 * Some pseudo inodes are mountable. When they are mounted
3203 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3204 * and instead have d_path return the mounted path.
3206 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
&&
3207 (!IS_ROOT(path
->dentry
) || path
->dentry
!= path
->mnt
->mnt_root
))
3208 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
3211 get_fs_root_rcu(current
->fs
, &root
);
3212 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
3216 res
= ERR_PTR(error
);
3219 EXPORT_SYMBOL(d_path
);
3222 * Helper function for dentry_operations.d_dname() members
3224 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
3225 const char *fmt
, ...)
3231 va_start(args
, fmt
);
3232 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
3235 if (sz
> sizeof(temp
) || sz
> buflen
)
3236 return ERR_PTR(-ENAMETOOLONG
);
3238 buffer
+= buflen
- sz
;
3239 return memcpy(buffer
, temp
, sz
);
3242 char *simple_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
3244 char *end
= buffer
+ buflen
;
3245 /* these dentries are never renamed, so d_lock is not needed */
3246 if (prepend(&end
, &buflen
, " (deleted)", 11) ||
3247 prepend(&end
, &buflen
, dentry
->d_name
.name
, dentry
->d_name
.len
) ||
3248 prepend(&end
, &buflen
, "/", 1))
3249 end
= ERR_PTR(-ENAMETOOLONG
);
3252 EXPORT_SYMBOL(simple_dname
);
3255 * Write full pathname from the root of the filesystem into the buffer.
3257 static char *__dentry_path(struct dentry
*d
, char *buf
, int buflen
)
3259 struct dentry
*dentry
;
3272 prepend(&end
, &len
, "\0", 1);
3276 read_seqbegin_or_lock(&rename_lock
, &seq
);
3277 while (!IS_ROOT(dentry
)) {
3278 struct dentry
*parent
= dentry
->d_parent
;
3281 error
= prepend_name(&end
, &len
, &dentry
->d_name
);
3290 if (need_seqretry(&rename_lock
, seq
)) {
3294 done_seqretry(&rename_lock
, seq
);
3299 return ERR_PTR(-ENAMETOOLONG
);
3302 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
3304 return __dentry_path(dentry
, buf
, buflen
);
3306 EXPORT_SYMBOL(dentry_path_raw
);
3308 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
3313 if (d_unlinked(dentry
)) {
3315 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
3319 retval
= __dentry_path(dentry
, buf
, buflen
);
3320 if (!IS_ERR(retval
) && p
)
3321 *p
= '/'; /* restore '/' overriden with '\0' */
3324 return ERR_PTR(-ENAMETOOLONG
);
3327 static void get_fs_root_and_pwd_rcu(struct fs_struct
*fs
, struct path
*root
,
3333 seq
= read_seqcount_begin(&fs
->seq
);
3336 } while (read_seqcount_retry(&fs
->seq
, seq
));
3340 * NOTE! The user-level library version returns a
3341 * character pointer. The kernel system call just
3342 * returns the length of the buffer filled (which
3343 * includes the ending '\0' character), or a negative
3344 * error value. So libc would do something like
3346 * char *getcwd(char * buf, size_t size)
3350 * retval = sys_getcwd(buf, size);
3357 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
3360 struct path pwd
, root
;
3361 char *page
= __getname();
3367 get_fs_root_and_pwd_rcu(current
->fs
, &root
, &pwd
);
3370 if (!d_unlinked(pwd
.dentry
)) {
3372 char *cwd
= page
+ PATH_MAX
;
3373 int buflen
= PATH_MAX
;
3375 prepend(&cwd
, &buflen
, "\0", 1);
3376 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
3382 /* Unreachable from current root */
3384 error
= prepend_unreachable(&cwd
, &buflen
);
3390 len
= PATH_MAX
+ page
- cwd
;
3393 if (copy_to_user(buf
, cwd
, len
))
3406 * Test whether new_dentry is a subdirectory of old_dentry.
3408 * Trivially implemented using the dcache structure
3412 * is_subdir - is new dentry a subdirectory of old_dentry
3413 * @new_dentry: new dentry
3414 * @old_dentry: old dentry
3416 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3417 * Returns 0 otherwise.
3418 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3421 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
3426 if (new_dentry
== old_dentry
)
3430 /* for restarting inner loop in case of seq retry */
3431 seq
= read_seqbegin(&rename_lock
);
3433 * Need rcu_readlock to protect against the d_parent trashing
3437 if (d_ancestor(old_dentry
, new_dentry
))
3442 } while (read_seqretry(&rename_lock
, seq
));
3447 static enum d_walk_ret
d_genocide_kill(void *data
, struct dentry
*dentry
)
3449 struct dentry
*root
= data
;
3450 if (dentry
!= root
) {
3451 if (d_unhashed(dentry
) || !dentry
->d_inode
)
3454 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
3455 dentry
->d_flags
|= DCACHE_GENOCIDE
;
3456 dentry
->d_lockref
.count
--;
3459 return D_WALK_CONTINUE
;
3462 void d_genocide(struct dentry
*parent
)
3464 d_walk(parent
, parent
, d_genocide_kill
, NULL
);
3467 void d_tmpfile(struct dentry
*dentry
, struct inode
*inode
)
3469 inode_dec_link_count(inode
);
3470 BUG_ON(dentry
->d_name
.name
!= dentry
->d_iname
||
3471 !hlist_unhashed(&dentry
->d_u
.d_alias
) ||
3472 !d_unlinked(dentry
));
3473 spin_lock(&dentry
->d_parent
->d_lock
);
3474 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3475 dentry
->d_name
.len
= sprintf(dentry
->d_iname
, "#%llu",
3476 (unsigned long long)inode
->i_ino
);
3477 spin_unlock(&dentry
->d_lock
);
3478 spin_unlock(&dentry
->d_parent
->d_lock
);
3479 d_instantiate(dentry
, inode
);
3481 EXPORT_SYMBOL(d_tmpfile
);
3483 static __initdata
unsigned long dhash_entries
;
3484 static int __init
set_dhash_entries(char *str
)
3488 dhash_entries
= simple_strtoul(str
, &str
, 0);
3491 __setup("dhash_entries=", set_dhash_entries
);
3493 static void __init
dcache_init_early(void)
3497 /* If hashes are distributed across NUMA nodes, defer
3498 * hash allocation until vmalloc space is available.
3504 alloc_large_system_hash("Dentry cache",
3505 sizeof(struct hlist_bl_head
),
3514 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3515 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3518 static void __init
dcache_init(void)
3523 * A constructor could be added for stable state like the lists,
3524 * but it is probably not worth it because of the cache nature
3527 dentry_cache
= KMEM_CACHE(dentry
,
3528 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3530 /* Hash may have been set up in dcache_init_early */
3535 alloc_large_system_hash("Dentry cache",
3536 sizeof(struct hlist_bl_head
),
3545 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3546 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3549 /* SLAB cache for __getname() consumers */
3550 struct kmem_cache
*names_cachep __read_mostly
;
3551 EXPORT_SYMBOL(names_cachep
);
3553 EXPORT_SYMBOL(d_genocide
);
3555 void __init
vfs_caches_init_early(void)
3557 dcache_init_early();
3561 void __init
vfs_caches_init(unsigned long mempages
)
3563 unsigned long reserve
;
3565 /* Base hash sizes on available memory, with a reserve equal to
3566 150% of current kernel size */
3568 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3569 mempages
-= reserve
;
3571 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3572 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3576 files_init(mempages
);
3582 void take_dentry_name_snapshot(struct name_snapshot
*name
, struct dentry
*dentry
)
3584 spin_lock(&dentry
->d_lock
);
3585 if (unlikely(dname_external(dentry
))) {
3586 struct external_name
*p
= external_name(dentry
);
3587 atomic_inc(&p
->u
.count
);
3588 spin_unlock(&dentry
->d_lock
);
3589 name
->name
= p
->name
;
3591 memcpy(name
->inline_name
, dentry
->d_iname
, DNAME_INLINE_LEN
);
3592 spin_unlock(&dentry
->d_lock
);
3593 name
->name
= name
->inline_name
;
3596 EXPORT_SYMBOL(take_dentry_name_snapshot
);
3598 void release_dentry_name_snapshot(struct name_snapshot
*name
)
3600 if (unlikely(name
->name
!= name
->inline_name
)) {
3601 struct external_name
*p
;
3602 p
= container_of(name
->name
, struct external_name
, name
[0]);
3603 if (unlikely(atomic_dec_and_test(&p
->u
.count
)))
3604 kfree_rcu(p
, u
.head
);
3607 EXPORT_SYMBOL(release_dentry_name_snapshot
);