Linux 3.18.129
[linux/fpc-iii.git] / fs / dcache.c
blob5977fc3f47053f185b503c54cbed1c2e0b5d9092
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
45 * Usage:
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_u.d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
58 * - d_count
59 * - d_unhashed()
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
62 * - d_u.d_alias, d_inode
64 * Ordering:
65 * dentry->d_inode->i_lock
66 * dentry->d_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
69 * s_anon lock
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
87 EXPORT_SYMBOL(rename_lock);
89 static struct kmem_cache *dentry_cache __read_mostly;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 unsigned int hash)
108 hash += (unsigned long) parent / L1_CACHE_BYTES;
109 return dentry_hashtable + hash_32(hash, d_hash_shift);
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat = {
114 .age_limit = 45,
117 static DEFINE_PER_CPU(long, nr_dentry);
118 static DEFINE_PER_CPU(long, nr_dentry_unused);
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 * Here we resort to our own counters instead of using generic per-cpu counters
124 * for consistency with what the vfs inode code does. We are expected to harvest
125 * better code and performance by having our own specialized counters.
127 * Please note that the loop is done over all possible CPUs, not over all online
128 * CPUs. The reason for this is that we don't want to play games with CPUs going
129 * on and off. If one of them goes off, we will just keep their counters.
131 * glommer: See cffbc8a for details, and if you ever intend to change this,
132 * please update all vfs counters to match.
134 static long get_nr_dentry(void)
136 int i;
137 long sum = 0;
138 for_each_possible_cpu(i)
139 sum += per_cpu(nr_dentry, i);
140 return sum < 0 ? 0 : sum;
143 static long get_nr_dentry_unused(void)
145 int i;
146 long sum = 0;
147 for_each_possible_cpu(i)
148 sum += per_cpu(nr_dentry_unused, i);
149 return sum < 0 ? 0 : sum;
152 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
153 size_t *lenp, loff_t *ppos)
155 dentry_stat.nr_dentry = get_nr_dentry();
156 dentry_stat.nr_unused = get_nr_dentry_unused();
157 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
159 #endif
162 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163 * The strings are both count bytes long, and count is non-zero.
165 #ifdef CONFIG_DCACHE_WORD_ACCESS
167 #include <asm/word-at-a-time.h>
169 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170 * aligned allocation for this particular component. We don't
171 * strictly need the load_unaligned_zeropad() safety, but it
172 * doesn't hurt either.
174 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175 * need the careful unaligned handling.
177 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
179 unsigned long a,b,mask;
181 for (;;) {
182 a = *(unsigned long *)cs;
183 b = load_unaligned_zeropad(ct);
184 if (tcount < sizeof(unsigned long))
185 break;
186 if (unlikely(a != b))
187 return 1;
188 cs += sizeof(unsigned long);
189 ct += sizeof(unsigned long);
190 tcount -= sizeof(unsigned long);
191 if (!tcount)
192 return 0;
194 mask = bytemask_from_count(tcount);
195 return unlikely(!!((a ^ b) & mask));
198 #else
200 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
202 do {
203 if (*cs != *ct)
204 return 1;
205 cs++;
206 ct++;
207 tcount--;
208 } while (tcount);
209 return 0;
212 #endif
214 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
216 const unsigned char *cs;
218 * Be careful about RCU walk racing with rename:
219 * use ACCESS_ONCE to fetch the name pointer.
221 * NOTE! Even if a rename will mean that the length
222 * was not loaded atomically, we don't care. The
223 * RCU walk will check the sequence count eventually,
224 * and catch it. And we won't overrun the buffer,
225 * because we're reading the name pointer atomically,
226 * and a dentry name is guaranteed to be properly
227 * terminated with a NUL byte.
229 * End result: even if 'len' is wrong, we'll exit
230 * early because the data cannot match (there can
231 * be no NUL in the ct/tcount data)
233 cs = ACCESS_ONCE(dentry->d_name.name);
234 smp_read_barrier_depends();
235 return dentry_string_cmp(cs, ct, tcount);
238 struct external_name {
239 union {
240 atomic_t count;
241 struct rcu_head head;
242 } u;
243 unsigned char name[];
246 static inline struct external_name *external_name(struct dentry *dentry)
248 return container_of(dentry->d_name.name, struct external_name, name[0]);
251 static void __d_free(struct rcu_head *head)
253 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
255 kmem_cache_free(dentry_cache, dentry);
258 static void __d_free_external(struct rcu_head *head)
260 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
261 kfree(external_name(dentry));
262 kmem_cache_free(dentry_cache, dentry);
265 static inline int dname_external(const struct dentry *dentry)
267 return dentry->d_name.name != dentry->d_iname;
270 static void dentry_free(struct dentry *dentry)
272 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
273 if (unlikely(dname_external(dentry))) {
274 struct external_name *p = external_name(dentry);
275 if (likely(atomic_dec_and_test(&p->u.count))) {
276 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
277 return;
280 /* if dentry was never visible to RCU, immediate free is OK */
281 if (!(dentry->d_flags & DCACHE_RCUACCESS))
282 __d_free(&dentry->d_u.d_rcu);
283 else
284 call_rcu(&dentry->d_u.d_rcu, __d_free);
288 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
289 * @dentry: the target dentry
290 * After this call, in-progress rcu-walk path lookup will fail. This
291 * should be called after unhashing, and after changing d_inode (if
292 * the dentry has not already been unhashed).
294 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
296 assert_spin_locked(&dentry->d_lock);
297 /* Go through a barrier */
298 write_seqcount_barrier(&dentry->d_seq);
302 * Release the dentry's inode, using the filesystem
303 * d_iput() operation if defined. Dentry has no refcount
304 * and is unhashed.
306 static void dentry_iput(struct dentry * dentry)
307 __releases(dentry->d_lock)
308 __releases(dentry->d_inode->i_lock)
310 struct inode *inode = dentry->d_inode;
311 if (inode) {
312 dentry->d_inode = NULL;
313 hlist_del_init(&dentry->d_u.d_alias);
314 spin_unlock(&dentry->d_lock);
315 spin_unlock(&inode->i_lock);
316 if (!inode->i_nlink)
317 fsnotify_inoderemove(inode);
318 if (dentry->d_op && dentry->d_op->d_iput)
319 dentry->d_op->d_iput(dentry, inode);
320 else
321 iput(inode);
322 } else {
323 spin_unlock(&dentry->d_lock);
328 * Release the dentry's inode, using the filesystem
329 * d_iput() operation if defined. dentry remains in-use.
331 static void dentry_unlink_inode(struct dentry * dentry)
332 __releases(dentry->d_lock)
333 __releases(dentry->d_inode->i_lock)
335 struct inode *inode = dentry->d_inode;
336 __d_clear_type(dentry);
337 dentry->d_inode = NULL;
338 hlist_del_init(&dentry->d_u.d_alias);
339 dentry_rcuwalk_barrier(dentry);
340 spin_unlock(&dentry->d_lock);
341 spin_unlock(&inode->i_lock);
342 if (!inode->i_nlink)
343 fsnotify_inoderemove(inode);
344 if (dentry->d_op && dentry->d_op->d_iput)
345 dentry->d_op->d_iput(dentry, inode);
346 else
347 iput(inode);
351 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
352 * is in use - which includes both the "real" per-superblock
353 * LRU list _and_ the DCACHE_SHRINK_LIST use.
355 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
356 * on the shrink list (ie not on the superblock LRU list).
358 * The per-cpu "nr_dentry_unused" counters are updated with
359 * the DCACHE_LRU_LIST bit.
361 * These helper functions make sure we always follow the
362 * rules. d_lock must be held by the caller.
364 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
365 static void d_lru_add(struct dentry *dentry)
367 D_FLAG_VERIFY(dentry, 0);
368 dentry->d_flags |= DCACHE_LRU_LIST;
369 this_cpu_inc(nr_dentry_unused);
370 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
373 static void d_lru_del(struct dentry *dentry)
375 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
376 dentry->d_flags &= ~DCACHE_LRU_LIST;
377 this_cpu_dec(nr_dentry_unused);
378 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
381 static void d_shrink_del(struct dentry *dentry)
383 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
384 list_del_init(&dentry->d_lru);
385 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
386 this_cpu_dec(nr_dentry_unused);
389 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
391 D_FLAG_VERIFY(dentry, 0);
392 list_add(&dentry->d_lru, list);
393 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
394 this_cpu_inc(nr_dentry_unused);
398 * These can only be called under the global LRU lock, ie during the
399 * callback for freeing the LRU list. "isolate" removes it from the
400 * LRU lists entirely, while shrink_move moves it to the indicated
401 * private list.
403 static void d_lru_isolate(struct dentry *dentry)
405 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
406 dentry->d_flags &= ~DCACHE_LRU_LIST;
407 this_cpu_dec(nr_dentry_unused);
408 list_del_init(&dentry->d_lru);
411 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
413 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
414 dentry->d_flags |= DCACHE_SHRINK_LIST;
415 list_move_tail(&dentry->d_lru, list);
419 * dentry_lru_(add|del)_list) must be called with d_lock held.
421 static void dentry_lru_add(struct dentry *dentry)
423 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
424 d_lru_add(dentry);
428 * d_drop - drop a dentry
429 * @dentry: dentry to drop
431 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
432 * be found through a VFS lookup any more. Note that this is different from
433 * deleting the dentry - d_delete will try to mark the dentry negative if
434 * possible, giving a successful _negative_ lookup, while d_drop will
435 * just make the cache lookup fail.
437 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
438 * reason (NFS timeouts or autofs deletes).
440 * __d_drop requires dentry->d_lock.
442 void __d_drop(struct dentry *dentry)
444 if (!d_unhashed(dentry)) {
445 struct hlist_bl_head *b;
447 * Hashed dentries are normally on the dentry hashtable,
448 * with the exception of those newly allocated by
449 * d_obtain_alias, which are always IS_ROOT:
451 if (unlikely(IS_ROOT(dentry)))
452 b = &dentry->d_sb->s_anon;
453 else
454 b = d_hash(dentry->d_parent, dentry->d_name.hash);
456 hlist_bl_lock(b);
457 __hlist_bl_del(&dentry->d_hash);
458 dentry->d_hash.pprev = NULL;
459 hlist_bl_unlock(b);
460 dentry_rcuwalk_barrier(dentry);
463 EXPORT_SYMBOL(__d_drop);
465 void d_drop(struct dentry *dentry)
467 spin_lock(&dentry->d_lock);
468 __d_drop(dentry);
469 spin_unlock(&dentry->d_lock);
471 EXPORT_SYMBOL(d_drop);
473 static void __dentry_kill(struct dentry *dentry)
475 struct dentry *parent = NULL;
476 bool can_free = true;
477 if (!IS_ROOT(dentry))
478 parent = dentry->d_parent;
481 * The dentry is now unrecoverably dead to the world.
483 lockref_mark_dead(&dentry->d_lockref);
486 * inform the fs via d_prune that this dentry is about to be
487 * unhashed and destroyed.
489 if (dentry->d_flags & DCACHE_OP_PRUNE)
490 dentry->d_op->d_prune(dentry);
492 if (dentry->d_flags & DCACHE_LRU_LIST) {
493 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
494 d_lru_del(dentry);
496 /* if it was on the hash then remove it */
497 __d_drop(dentry);
498 __list_del_entry(&dentry->d_child);
500 * Inform d_walk() that we are no longer attached to the
501 * dentry tree
503 dentry->d_flags |= DCACHE_DENTRY_KILLED;
504 if (parent)
505 spin_unlock(&parent->d_lock);
506 dentry_iput(dentry);
508 * dentry_iput drops the locks, at which point nobody (except
509 * transient RCU lookups) can reach this dentry.
511 BUG_ON(dentry->d_lockref.count > 0);
512 this_cpu_dec(nr_dentry);
513 if (dentry->d_op && dentry->d_op->d_release)
514 dentry->d_op->d_release(dentry);
516 spin_lock(&dentry->d_lock);
517 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
518 dentry->d_flags |= DCACHE_MAY_FREE;
519 can_free = false;
521 spin_unlock(&dentry->d_lock);
522 if (likely(can_free))
523 dentry_free(dentry);
527 * Finish off a dentry we've decided to kill.
528 * dentry->d_lock must be held, returns with it unlocked.
529 * If ref is non-zero, then decrement the refcount too.
530 * Returns dentry requiring refcount drop, or NULL if we're done.
532 static struct dentry *dentry_kill(struct dentry *dentry)
533 __releases(dentry->d_lock)
535 struct inode *inode = dentry->d_inode;
536 struct dentry *parent = NULL;
538 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
539 goto failed;
541 if (!IS_ROOT(dentry)) {
542 parent = dentry->d_parent;
543 if (unlikely(!spin_trylock(&parent->d_lock))) {
544 if (inode)
545 spin_unlock(&inode->i_lock);
546 goto failed;
550 __dentry_kill(dentry);
551 return parent;
553 failed:
554 spin_unlock(&dentry->d_lock);
555 return dentry; /* try again with same dentry */
558 static inline struct dentry *lock_parent(struct dentry *dentry)
560 struct dentry *parent = dentry->d_parent;
561 if (IS_ROOT(dentry))
562 return NULL;
563 if (unlikely(dentry->d_lockref.count < 0))
564 return NULL;
565 if (likely(spin_trylock(&parent->d_lock)))
566 return parent;
567 rcu_read_lock();
568 spin_unlock(&dentry->d_lock);
569 again:
570 parent = ACCESS_ONCE(dentry->d_parent);
571 spin_lock(&parent->d_lock);
573 * We can't blindly lock dentry until we are sure
574 * that we won't violate the locking order.
575 * Any changes of dentry->d_parent must have
576 * been done with parent->d_lock held, so
577 * spin_lock() above is enough of a barrier
578 * for checking if it's still our child.
580 if (unlikely(parent != dentry->d_parent)) {
581 spin_unlock(&parent->d_lock);
582 goto again;
584 if (parent != dentry) {
585 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
586 if (unlikely(dentry->d_lockref.count < 0)) {
587 spin_unlock(&parent->d_lock);
588 parent = NULL;
590 } else {
591 parent = NULL;
593 rcu_read_unlock();
594 return parent;
598 * Try to do a lockless dput(), and return whether that was successful.
600 * If unsuccessful, we return false, having already taken the dentry lock.
602 * The caller needs to hold the RCU read lock, so that the dentry is
603 * guaranteed to stay around even if the refcount goes down to zero!
605 static inline bool fast_dput(struct dentry *dentry)
607 int ret;
608 unsigned int d_flags;
611 * If we have a d_op->d_delete() operation, we sould not
612 * let the dentry count go to zero, so use "put__or_lock".
614 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
615 return lockref_put_or_lock(&dentry->d_lockref);
618 * .. otherwise, we can try to just decrement the
619 * lockref optimistically.
621 ret = lockref_put_return(&dentry->d_lockref);
624 * If the lockref_put_return() failed due to the lock being held
625 * by somebody else, the fast path has failed. We will need to
626 * get the lock, and then check the count again.
628 if (unlikely(ret < 0)) {
629 spin_lock(&dentry->d_lock);
630 if (dentry->d_lockref.count > 1) {
631 dentry->d_lockref.count--;
632 spin_unlock(&dentry->d_lock);
633 return 1;
635 return 0;
639 * If we weren't the last ref, we're done.
641 if (ret)
642 return 1;
645 * Careful, careful. The reference count went down
646 * to zero, but we don't hold the dentry lock, so
647 * somebody else could get it again, and do another
648 * dput(), and we need to not race with that.
650 * However, there is a very special and common case
651 * where we don't care, because there is nothing to
652 * do: the dentry is still hashed, it does not have
653 * a 'delete' op, and it's referenced and already on
654 * the LRU list.
656 * NOTE! Since we aren't locked, these values are
657 * not "stable". However, it is sufficient that at
658 * some point after we dropped the reference the
659 * dentry was hashed and the flags had the proper
660 * value. Other dentry users may have re-gotten
661 * a reference to the dentry and change that, but
662 * our work is done - we can leave the dentry
663 * around with a zero refcount.
665 smp_rmb();
666 d_flags = ACCESS_ONCE(dentry->d_flags);
667 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST;
669 /* Nothing to do? Dropping the reference was all we needed? */
670 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
671 return 1;
674 * Not the fast normal case? Get the lock. We've already decremented
675 * the refcount, but we'll need to re-check the situation after
676 * getting the lock.
678 spin_lock(&dentry->d_lock);
681 * Did somebody else grab a reference to it in the meantime, and
682 * we're no longer the last user after all? Alternatively, somebody
683 * else could have killed it and marked it dead. Either way, we
684 * don't need to do anything else.
686 if (dentry->d_lockref.count) {
687 spin_unlock(&dentry->d_lock);
688 return 1;
692 * Re-get the reference we optimistically dropped. We hold the
693 * lock, and we just tested that it was zero, so we can just
694 * set it to 1.
696 dentry->d_lockref.count = 1;
697 return 0;
702 * This is dput
704 * This is complicated by the fact that we do not want to put
705 * dentries that are no longer on any hash chain on the unused
706 * list: we'd much rather just get rid of them immediately.
708 * However, that implies that we have to traverse the dentry
709 * tree upwards to the parents which might _also_ now be
710 * scheduled for deletion (it may have been only waiting for
711 * its last child to go away).
713 * This tail recursion is done by hand as we don't want to depend
714 * on the compiler to always get this right (gcc generally doesn't).
715 * Real recursion would eat up our stack space.
719 * dput - release a dentry
720 * @dentry: dentry to release
722 * Release a dentry. This will drop the usage count and if appropriate
723 * call the dentry unlink method as well as removing it from the queues and
724 * releasing its resources. If the parent dentries were scheduled for release
725 * they too may now get deleted.
727 void dput(struct dentry *dentry)
729 if (unlikely(!dentry))
730 return;
732 repeat:
733 might_sleep();
735 rcu_read_lock();
736 if (likely(fast_dput(dentry))) {
737 rcu_read_unlock();
738 return;
741 /* Slow case: now with the dentry lock held */
742 rcu_read_unlock();
744 /* Unreachable? Get rid of it */
745 if (unlikely(d_unhashed(dentry)))
746 goto kill_it;
748 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
749 goto kill_it;
751 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
752 if (dentry->d_op->d_delete(dentry))
753 goto kill_it;
756 if (!(dentry->d_flags & DCACHE_REFERENCED))
757 dentry->d_flags |= DCACHE_REFERENCED;
758 dentry_lru_add(dentry);
760 dentry->d_lockref.count--;
761 spin_unlock(&dentry->d_lock);
762 return;
764 kill_it:
765 dentry = dentry_kill(dentry);
766 if (dentry) {
767 cond_resched();
768 goto repeat;
771 EXPORT_SYMBOL(dput);
774 /* This must be called with d_lock held */
775 static inline void __dget_dlock(struct dentry *dentry)
777 dentry->d_lockref.count++;
780 static inline void __dget(struct dentry *dentry)
782 lockref_get(&dentry->d_lockref);
785 struct dentry *dget_parent(struct dentry *dentry)
787 int gotref;
788 struct dentry *ret;
791 * Do optimistic parent lookup without any
792 * locking.
794 rcu_read_lock();
795 ret = ACCESS_ONCE(dentry->d_parent);
796 gotref = lockref_get_not_zero(&ret->d_lockref);
797 rcu_read_unlock();
798 if (likely(gotref)) {
799 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
800 return ret;
801 dput(ret);
804 repeat:
806 * Don't need rcu_dereference because we re-check it was correct under
807 * the lock.
809 rcu_read_lock();
810 ret = dentry->d_parent;
811 spin_lock(&ret->d_lock);
812 if (unlikely(ret != dentry->d_parent)) {
813 spin_unlock(&ret->d_lock);
814 rcu_read_unlock();
815 goto repeat;
817 rcu_read_unlock();
818 BUG_ON(!ret->d_lockref.count);
819 ret->d_lockref.count++;
820 spin_unlock(&ret->d_lock);
821 return ret;
823 EXPORT_SYMBOL(dget_parent);
826 * d_find_alias - grab a hashed alias of inode
827 * @inode: inode in question
829 * If inode has a hashed alias, or is a directory and has any alias,
830 * acquire the reference to alias and return it. Otherwise return NULL.
831 * Notice that if inode is a directory there can be only one alias and
832 * it can be unhashed only if it has no children, or if it is the root
833 * of a filesystem, or if the directory was renamed and d_revalidate
834 * was the first vfs operation to notice.
836 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
837 * any other hashed alias over that one.
839 static struct dentry *__d_find_alias(struct inode *inode)
841 struct dentry *alias, *discon_alias;
843 again:
844 discon_alias = NULL;
845 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
846 spin_lock(&alias->d_lock);
847 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
848 if (IS_ROOT(alias) &&
849 (alias->d_flags & DCACHE_DISCONNECTED)) {
850 discon_alias = alias;
851 } else {
852 __dget_dlock(alias);
853 spin_unlock(&alias->d_lock);
854 return alias;
857 spin_unlock(&alias->d_lock);
859 if (discon_alias) {
860 alias = discon_alias;
861 spin_lock(&alias->d_lock);
862 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
863 __dget_dlock(alias);
864 spin_unlock(&alias->d_lock);
865 return alias;
867 spin_unlock(&alias->d_lock);
868 goto again;
870 return NULL;
873 struct dentry *d_find_alias(struct inode *inode)
875 struct dentry *de = NULL;
877 if (!hlist_empty(&inode->i_dentry)) {
878 spin_lock(&inode->i_lock);
879 de = __d_find_alias(inode);
880 spin_unlock(&inode->i_lock);
882 return de;
884 EXPORT_SYMBOL(d_find_alias);
887 * Try to kill dentries associated with this inode.
888 * WARNING: you must own a reference to inode.
890 void d_prune_aliases(struct inode *inode)
892 struct dentry *dentry;
893 restart:
894 spin_lock(&inode->i_lock);
895 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
896 spin_lock(&dentry->d_lock);
897 if (!dentry->d_lockref.count) {
898 struct dentry *parent = lock_parent(dentry);
899 if (likely(!dentry->d_lockref.count)) {
900 __dentry_kill(dentry);
901 dput(parent);
902 goto restart;
904 if (parent)
905 spin_unlock(&parent->d_lock);
907 spin_unlock(&dentry->d_lock);
909 spin_unlock(&inode->i_lock);
911 EXPORT_SYMBOL(d_prune_aliases);
913 static void shrink_dentry_list(struct list_head *list)
915 struct dentry *dentry, *parent;
917 while (!list_empty(list)) {
918 struct inode *inode;
919 dentry = list_entry(list->prev, struct dentry, d_lru);
920 spin_lock(&dentry->d_lock);
921 parent = lock_parent(dentry);
924 * The dispose list is isolated and dentries are not accounted
925 * to the LRU here, so we can simply remove it from the list
926 * here regardless of whether it is referenced or not.
928 d_shrink_del(dentry);
931 * We found an inuse dentry which was not removed from
932 * the LRU because of laziness during lookup. Do not free it.
934 if (dentry->d_lockref.count > 0) {
935 spin_unlock(&dentry->d_lock);
936 if (parent)
937 spin_unlock(&parent->d_lock);
938 continue;
942 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
943 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
944 spin_unlock(&dentry->d_lock);
945 if (parent)
946 spin_unlock(&parent->d_lock);
947 if (can_free)
948 dentry_free(dentry);
949 continue;
952 inode = dentry->d_inode;
953 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
954 d_shrink_add(dentry, list);
955 spin_unlock(&dentry->d_lock);
956 if (parent)
957 spin_unlock(&parent->d_lock);
958 continue;
961 __dentry_kill(dentry);
964 * We need to prune ancestors too. This is necessary to prevent
965 * quadratic behavior of shrink_dcache_parent(), but is also
966 * expected to be beneficial in reducing dentry cache
967 * fragmentation.
969 dentry = parent;
970 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
971 parent = lock_parent(dentry);
972 if (dentry->d_lockref.count != 1) {
973 dentry->d_lockref.count--;
974 spin_unlock(&dentry->d_lock);
975 if (parent)
976 spin_unlock(&parent->d_lock);
977 break;
979 inode = dentry->d_inode; /* can't be NULL */
980 if (unlikely(!spin_trylock(&inode->i_lock))) {
981 spin_unlock(&dentry->d_lock);
982 if (parent)
983 spin_unlock(&parent->d_lock);
984 cpu_relax();
985 continue;
987 __dentry_kill(dentry);
988 dentry = parent;
993 static enum lru_status
994 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
996 struct list_head *freeable = arg;
997 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1001 * we are inverting the lru lock/dentry->d_lock here,
1002 * so use a trylock. If we fail to get the lock, just skip
1003 * it
1005 if (!spin_trylock(&dentry->d_lock))
1006 return LRU_SKIP;
1009 * Referenced dentries are still in use. If they have active
1010 * counts, just remove them from the LRU. Otherwise give them
1011 * another pass through the LRU.
1013 if (dentry->d_lockref.count) {
1014 d_lru_isolate(dentry);
1015 spin_unlock(&dentry->d_lock);
1016 return LRU_REMOVED;
1019 if (dentry->d_flags & DCACHE_REFERENCED) {
1020 dentry->d_flags &= ~DCACHE_REFERENCED;
1021 spin_unlock(&dentry->d_lock);
1024 * The list move itself will be made by the common LRU code. At
1025 * this point, we've dropped the dentry->d_lock but keep the
1026 * lru lock. This is safe to do, since every list movement is
1027 * protected by the lru lock even if both locks are held.
1029 * This is guaranteed by the fact that all LRU management
1030 * functions are intermediated by the LRU API calls like
1031 * list_lru_add and list_lru_del. List movement in this file
1032 * only ever occur through this functions or through callbacks
1033 * like this one, that are called from the LRU API.
1035 * The only exceptions to this are functions like
1036 * shrink_dentry_list, and code that first checks for the
1037 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1038 * operating only with stack provided lists after they are
1039 * properly isolated from the main list. It is thus, always a
1040 * local access.
1042 return LRU_ROTATE;
1045 d_lru_shrink_move(dentry, freeable);
1046 spin_unlock(&dentry->d_lock);
1048 return LRU_REMOVED;
1052 * prune_dcache_sb - shrink the dcache
1053 * @sb: superblock
1054 * @nr_to_scan : number of entries to try to free
1055 * @nid: which node to scan for freeable entities
1057 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
1058 * done when we need more memory an called from the superblock shrinker
1059 * function.
1061 * This function may fail to free any resources if all the dentries are in
1062 * use.
1064 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
1065 int nid)
1067 LIST_HEAD(dispose);
1068 long freed;
1070 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
1071 &dispose, &nr_to_scan);
1072 shrink_dentry_list(&dispose);
1073 return freed;
1076 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1077 spinlock_t *lru_lock, void *arg)
1079 struct list_head *freeable = arg;
1080 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1083 * we are inverting the lru lock/dentry->d_lock here,
1084 * so use a trylock. If we fail to get the lock, just skip
1085 * it
1087 if (!spin_trylock(&dentry->d_lock))
1088 return LRU_SKIP;
1090 d_lru_shrink_move(dentry, freeable);
1091 spin_unlock(&dentry->d_lock);
1093 return LRU_REMOVED;
1098 * shrink_dcache_sb - shrink dcache for a superblock
1099 * @sb: superblock
1101 * Shrink the dcache for the specified super block. This is used to free
1102 * the dcache before unmounting a file system.
1104 void shrink_dcache_sb(struct super_block *sb)
1106 long freed;
1108 do {
1109 LIST_HEAD(dispose);
1111 freed = list_lru_walk(&sb->s_dentry_lru,
1112 dentry_lru_isolate_shrink, &dispose, 1024);
1114 this_cpu_sub(nr_dentry_unused, freed);
1115 shrink_dentry_list(&dispose);
1116 cond_resched();
1117 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1119 EXPORT_SYMBOL(shrink_dcache_sb);
1122 * enum d_walk_ret - action to talke during tree walk
1123 * @D_WALK_CONTINUE: contrinue walk
1124 * @D_WALK_QUIT: quit walk
1125 * @D_WALK_NORETRY: quit when retry is needed
1126 * @D_WALK_SKIP: skip this dentry and its children
1128 enum d_walk_ret {
1129 D_WALK_CONTINUE,
1130 D_WALK_QUIT,
1131 D_WALK_NORETRY,
1132 D_WALK_SKIP,
1136 * d_walk - walk the dentry tree
1137 * @parent: start of walk
1138 * @data: data passed to @enter() and @finish()
1139 * @enter: callback when first entering the dentry
1140 * @finish: callback when successfully finished the walk
1142 * The @enter() and @finish() callbacks are called with d_lock held.
1144 static void d_walk(struct dentry *parent, void *data,
1145 enum d_walk_ret (*enter)(void *, struct dentry *),
1146 void (*finish)(void *))
1148 struct dentry *this_parent;
1149 struct list_head *next;
1150 unsigned seq = 0;
1151 enum d_walk_ret ret;
1152 bool retry = true;
1154 again:
1155 read_seqbegin_or_lock(&rename_lock, &seq);
1156 this_parent = parent;
1157 spin_lock(&this_parent->d_lock);
1159 ret = enter(data, this_parent);
1160 switch (ret) {
1161 case D_WALK_CONTINUE:
1162 break;
1163 case D_WALK_QUIT:
1164 case D_WALK_SKIP:
1165 goto out_unlock;
1166 case D_WALK_NORETRY:
1167 retry = false;
1168 break;
1170 repeat:
1171 next = this_parent->d_subdirs.next;
1172 resume:
1173 while (next != &this_parent->d_subdirs) {
1174 struct list_head *tmp = next;
1175 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1176 next = tmp->next;
1178 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1180 ret = enter(data, dentry);
1181 switch (ret) {
1182 case D_WALK_CONTINUE:
1183 break;
1184 case D_WALK_QUIT:
1185 spin_unlock(&dentry->d_lock);
1186 goto out_unlock;
1187 case D_WALK_NORETRY:
1188 retry = false;
1189 break;
1190 case D_WALK_SKIP:
1191 spin_unlock(&dentry->d_lock);
1192 continue;
1195 if (!list_empty(&dentry->d_subdirs)) {
1196 spin_unlock(&this_parent->d_lock);
1197 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1198 this_parent = dentry;
1199 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1200 goto repeat;
1202 spin_unlock(&dentry->d_lock);
1205 * All done at this level ... ascend and resume the search.
1207 rcu_read_lock();
1208 ascend:
1209 if (this_parent != parent) {
1210 struct dentry *child = this_parent;
1211 this_parent = child->d_parent;
1213 spin_unlock(&child->d_lock);
1214 spin_lock(&this_parent->d_lock);
1216 /* might go back up the wrong parent if we have had a rename. */
1217 if (need_seqretry(&rename_lock, seq))
1218 goto rename_retry;
1219 /* go into the first sibling still alive */
1220 do {
1221 next = child->d_child.next;
1222 if (next == &this_parent->d_subdirs)
1223 goto ascend;
1224 child = list_entry(next, struct dentry, d_child);
1225 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1226 rcu_read_unlock();
1227 goto resume;
1229 if (need_seqretry(&rename_lock, seq))
1230 goto rename_retry;
1231 rcu_read_unlock();
1232 if (finish)
1233 finish(data);
1235 out_unlock:
1236 spin_unlock(&this_parent->d_lock);
1237 done_seqretry(&rename_lock, seq);
1238 return;
1240 rename_retry:
1241 spin_unlock(&this_parent->d_lock);
1242 rcu_read_unlock();
1243 BUG_ON(seq & 1);
1244 if (!retry)
1245 return;
1246 seq = 1;
1247 goto again;
1251 * Search for at least 1 mount point in the dentry's subdirs.
1252 * We descend to the next level whenever the d_subdirs
1253 * list is non-empty and continue searching.
1256 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1258 int *ret = data;
1259 if (d_mountpoint(dentry)) {
1260 *ret = 1;
1261 return D_WALK_QUIT;
1263 return D_WALK_CONTINUE;
1267 * have_submounts - check for mounts over a dentry
1268 * @parent: dentry to check.
1270 * Return true if the parent or its subdirectories contain
1271 * a mount point
1273 int have_submounts(struct dentry *parent)
1275 int ret = 0;
1277 d_walk(parent, &ret, check_mount, NULL);
1279 return ret;
1281 EXPORT_SYMBOL(have_submounts);
1284 * Called by mount code to set a mountpoint and check if the mountpoint is
1285 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1286 * subtree can become unreachable).
1288 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1289 * this reason take rename_lock and d_lock on dentry and ancestors.
1291 int d_set_mounted(struct dentry *dentry)
1293 struct dentry *p;
1294 int ret = -ENOENT;
1295 write_seqlock(&rename_lock);
1296 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1297 /* Need exclusion wrt. d_invalidate() */
1298 spin_lock(&p->d_lock);
1299 if (unlikely(d_unhashed(p))) {
1300 spin_unlock(&p->d_lock);
1301 goto out;
1303 spin_unlock(&p->d_lock);
1305 spin_lock(&dentry->d_lock);
1306 if (!d_unlinked(dentry)) {
1307 dentry->d_flags |= DCACHE_MOUNTED;
1308 ret = 0;
1310 spin_unlock(&dentry->d_lock);
1311 out:
1312 write_sequnlock(&rename_lock);
1313 return ret;
1317 * Search the dentry child list of the specified parent,
1318 * and move any unused dentries to the end of the unused
1319 * list for prune_dcache(). We descend to the next level
1320 * whenever the d_subdirs list is non-empty and continue
1321 * searching.
1323 * It returns zero iff there are no unused children,
1324 * otherwise it returns the number of children moved to
1325 * the end of the unused list. This may not be the total
1326 * number of unused children, because select_parent can
1327 * drop the lock and return early due to latency
1328 * constraints.
1331 struct select_data {
1332 struct dentry *start;
1333 struct list_head dispose;
1334 int found;
1337 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1339 struct select_data *data = _data;
1340 enum d_walk_ret ret = D_WALK_CONTINUE;
1342 if (data->start == dentry)
1343 goto out;
1345 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1346 data->found++;
1347 } else {
1348 if (dentry->d_flags & DCACHE_LRU_LIST)
1349 d_lru_del(dentry);
1350 if (!dentry->d_lockref.count) {
1351 d_shrink_add(dentry, &data->dispose);
1352 data->found++;
1356 * We can return to the caller if we have found some (this
1357 * ensures forward progress). We'll be coming back to find
1358 * the rest.
1360 if (!list_empty(&data->dispose))
1361 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1362 out:
1363 return ret;
1367 * shrink_dcache_parent - prune dcache
1368 * @parent: parent of entries to prune
1370 * Prune the dcache to remove unused children of the parent dentry.
1372 void shrink_dcache_parent(struct dentry *parent)
1374 for (;;) {
1375 struct select_data data;
1377 INIT_LIST_HEAD(&data.dispose);
1378 data.start = parent;
1379 data.found = 0;
1381 d_walk(parent, &data, select_collect, NULL);
1382 if (!data.found)
1383 break;
1385 shrink_dentry_list(&data.dispose);
1386 cond_resched();
1389 EXPORT_SYMBOL(shrink_dcache_parent);
1391 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1393 /* it has busy descendents; complain about those instead */
1394 if (!list_empty(&dentry->d_subdirs))
1395 return D_WALK_CONTINUE;
1397 /* root with refcount 1 is fine */
1398 if (dentry == _data && dentry->d_lockref.count == 1)
1399 return D_WALK_CONTINUE;
1401 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1402 " still in use (%d) [unmount of %s %s]\n",
1403 dentry,
1404 dentry->d_inode ?
1405 dentry->d_inode->i_ino : 0UL,
1406 dentry,
1407 dentry->d_lockref.count,
1408 dentry->d_sb->s_type->name,
1409 dentry->d_sb->s_id);
1410 WARN_ON(1);
1411 return D_WALK_CONTINUE;
1414 static void do_one_tree(struct dentry *dentry)
1416 shrink_dcache_parent(dentry);
1417 d_walk(dentry, dentry, umount_check, NULL);
1418 d_drop(dentry);
1419 dput(dentry);
1423 * destroy the dentries attached to a superblock on unmounting
1425 void shrink_dcache_for_umount(struct super_block *sb)
1427 struct dentry *dentry;
1429 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1431 dentry = sb->s_root;
1432 sb->s_root = NULL;
1433 do_one_tree(dentry);
1435 while (!hlist_bl_empty(&sb->s_anon)) {
1436 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1437 do_one_tree(dentry);
1441 struct detach_data {
1442 struct select_data select;
1443 struct dentry *mountpoint;
1445 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1447 struct detach_data *data = _data;
1449 if (d_mountpoint(dentry)) {
1450 __dget_dlock(dentry);
1451 data->mountpoint = dentry;
1452 return D_WALK_QUIT;
1455 return select_collect(&data->select, dentry);
1458 static void check_and_drop(void *_data)
1460 struct detach_data *data = _data;
1462 if (!data->mountpoint && !data->select.found)
1463 __d_drop(data->select.start);
1467 * d_invalidate - detach submounts, prune dcache, and drop
1468 * @dentry: dentry to invalidate (aka detach, prune and drop)
1470 * no dcache lock.
1472 * The final d_drop is done as an atomic operation relative to
1473 * rename_lock ensuring there are no races with d_set_mounted. This
1474 * ensures there are no unhashed dentries on the path to a mountpoint.
1476 void d_invalidate(struct dentry *dentry)
1479 * If it's already been dropped, return OK.
1481 spin_lock(&dentry->d_lock);
1482 if (d_unhashed(dentry)) {
1483 spin_unlock(&dentry->d_lock);
1484 return;
1486 spin_unlock(&dentry->d_lock);
1488 /* Negative dentries can be dropped without further checks */
1489 if (!dentry->d_inode) {
1490 d_drop(dentry);
1491 return;
1494 for (;;) {
1495 struct detach_data data;
1497 data.mountpoint = NULL;
1498 INIT_LIST_HEAD(&data.select.dispose);
1499 data.select.start = dentry;
1500 data.select.found = 0;
1502 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1504 if (data.select.found)
1505 shrink_dentry_list(&data.select.dispose);
1507 if (data.mountpoint) {
1508 detach_mounts(data.mountpoint);
1509 dput(data.mountpoint);
1512 if (!data.mountpoint && !data.select.found)
1513 break;
1515 cond_resched();
1518 EXPORT_SYMBOL(d_invalidate);
1521 * __d_alloc - allocate a dcache entry
1522 * @sb: filesystem it will belong to
1523 * @name: qstr of the name
1525 * Allocates a dentry. It returns %NULL if there is insufficient memory
1526 * available. On a success the dentry is returned. The name passed in is
1527 * copied and the copy passed in may be reused after this call.
1530 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1532 struct dentry *dentry;
1533 char *dname;
1535 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1536 if (!dentry)
1537 return NULL;
1540 * We guarantee that the inline name is always NUL-terminated.
1541 * This way the memcpy() done by the name switching in rename
1542 * will still always have a NUL at the end, even if we might
1543 * be overwriting an internal NUL character
1545 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1546 if (name->len > DNAME_INLINE_LEN-1) {
1547 size_t size = offsetof(struct external_name, name[1]);
1548 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1549 if (!p) {
1550 kmem_cache_free(dentry_cache, dentry);
1551 return NULL;
1553 atomic_set(&p->u.count, 1);
1554 dname = p->name;
1555 } else {
1556 dname = dentry->d_iname;
1559 dentry->d_name.len = name->len;
1560 dentry->d_name.hash = name->hash;
1561 memcpy(dname, name->name, name->len);
1562 dname[name->len] = 0;
1564 /* Make sure we always see the terminating NUL character */
1565 smp_wmb();
1566 dentry->d_name.name = dname;
1568 dentry->d_lockref.count = 1;
1569 dentry->d_flags = 0;
1570 spin_lock_init(&dentry->d_lock);
1571 seqcount_init(&dentry->d_seq);
1572 dentry->d_inode = NULL;
1573 dentry->d_parent = dentry;
1574 dentry->d_sb = sb;
1575 dentry->d_op = NULL;
1576 dentry->d_fsdata = NULL;
1577 INIT_HLIST_BL_NODE(&dentry->d_hash);
1578 INIT_LIST_HEAD(&dentry->d_lru);
1579 INIT_LIST_HEAD(&dentry->d_subdirs);
1580 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1581 INIT_LIST_HEAD(&dentry->d_child);
1582 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1584 this_cpu_inc(nr_dentry);
1586 return dentry;
1590 * d_alloc - allocate a dcache entry
1591 * @parent: parent of entry to allocate
1592 * @name: qstr of the name
1594 * Allocates a dentry. It returns %NULL if there is insufficient memory
1595 * available. On a success the dentry is returned. The name passed in is
1596 * copied and the copy passed in may be reused after this call.
1598 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1600 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1601 if (!dentry)
1602 return NULL;
1603 dentry->d_flags |= DCACHE_RCUACCESS;
1604 spin_lock(&parent->d_lock);
1606 * don't need child lock because it is not subject
1607 * to concurrency here
1609 __dget_dlock(parent);
1610 dentry->d_parent = parent;
1611 list_add(&dentry->d_child, &parent->d_subdirs);
1612 spin_unlock(&parent->d_lock);
1614 return dentry;
1616 EXPORT_SYMBOL(d_alloc);
1619 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1620 * @sb: the superblock
1621 * @name: qstr of the name
1623 * For a filesystem that just pins its dentries in memory and never
1624 * performs lookups at all, return an unhashed IS_ROOT dentry.
1626 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1628 return __d_alloc(sb, name);
1630 EXPORT_SYMBOL(d_alloc_pseudo);
1632 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1634 struct qstr q;
1636 q.name = name;
1637 q.len = strlen(name);
1638 q.hash = full_name_hash(q.name, q.len);
1639 return d_alloc(parent, &q);
1641 EXPORT_SYMBOL(d_alloc_name);
1643 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1645 WARN_ON_ONCE(dentry->d_op);
1646 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1647 DCACHE_OP_COMPARE |
1648 DCACHE_OP_REVALIDATE |
1649 DCACHE_OP_WEAK_REVALIDATE |
1650 DCACHE_OP_DELETE |
1651 DCACHE_OP_SELECT_INODE));
1652 dentry->d_op = op;
1653 if (!op)
1654 return;
1655 if (op->d_hash)
1656 dentry->d_flags |= DCACHE_OP_HASH;
1657 if (op->d_compare)
1658 dentry->d_flags |= DCACHE_OP_COMPARE;
1659 if (op->d_revalidate)
1660 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1661 if (op->d_weak_revalidate)
1662 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1663 if (op->d_delete)
1664 dentry->d_flags |= DCACHE_OP_DELETE;
1665 if (op->d_prune)
1666 dentry->d_flags |= DCACHE_OP_PRUNE;
1667 if (op->d_select_inode)
1668 dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1671 EXPORT_SYMBOL(d_set_d_op);
1673 static unsigned d_flags_for_inode(struct inode *inode)
1675 unsigned add_flags = DCACHE_FILE_TYPE;
1677 if (!inode)
1678 return DCACHE_MISS_TYPE;
1680 if (S_ISDIR(inode->i_mode)) {
1681 add_flags = DCACHE_DIRECTORY_TYPE;
1682 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1683 if (unlikely(!inode->i_op->lookup))
1684 add_flags = DCACHE_AUTODIR_TYPE;
1685 else
1686 inode->i_opflags |= IOP_LOOKUP;
1688 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1689 if (unlikely(inode->i_op->follow_link))
1690 add_flags = DCACHE_SYMLINK_TYPE;
1691 else
1692 inode->i_opflags |= IOP_NOFOLLOW;
1695 if (unlikely(IS_AUTOMOUNT(inode)))
1696 add_flags |= DCACHE_NEED_AUTOMOUNT;
1697 return add_flags;
1700 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1702 unsigned add_flags = d_flags_for_inode(inode);
1704 spin_lock(&dentry->d_lock);
1705 __d_set_type(dentry, add_flags);
1706 if (inode)
1707 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1708 dentry->d_inode = inode;
1709 dentry_rcuwalk_barrier(dentry);
1710 spin_unlock(&dentry->d_lock);
1711 fsnotify_d_instantiate(dentry, inode);
1715 * d_instantiate - fill in inode information for a dentry
1716 * @entry: dentry to complete
1717 * @inode: inode to attach to this dentry
1719 * Fill in inode information in the entry.
1721 * This turns negative dentries into productive full members
1722 * of society.
1724 * NOTE! This assumes that the inode count has been incremented
1725 * (or otherwise set) by the caller to indicate that it is now
1726 * in use by the dcache.
1729 void d_instantiate(struct dentry *entry, struct inode * inode)
1731 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1732 if (inode)
1733 spin_lock(&inode->i_lock);
1734 __d_instantiate(entry, inode);
1735 if (inode)
1736 spin_unlock(&inode->i_lock);
1737 security_d_instantiate(entry, inode);
1739 EXPORT_SYMBOL(d_instantiate);
1742 * d_instantiate_unique - instantiate a non-aliased dentry
1743 * @entry: dentry to instantiate
1744 * @inode: inode to attach to this dentry
1746 * Fill in inode information in the entry. On success, it returns NULL.
1747 * If an unhashed alias of "entry" already exists, then we return the
1748 * aliased dentry instead and drop one reference to inode.
1750 * Note that in order to avoid conflicts with rename() etc, the caller
1751 * had better be holding the parent directory semaphore.
1753 * This also assumes that the inode count has been incremented
1754 * (or otherwise set) by the caller to indicate that it is now
1755 * in use by the dcache.
1757 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1758 struct inode *inode)
1760 struct dentry *alias;
1761 int len = entry->d_name.len;
1762 const char *name = entry->d_name.name;
1763 unsigned int hash = entry->d_name.hash;
1765 if (!inode) {
1766 __d_instantiate(entry, NULL);
1767 return NULL;
1770 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1772 * Don't need alias->d_lock here, because aliases with
1773 * d_parent == entry->d_parent are not subject to name or
1774 * parent changes, because the parent inode i_mutex is held.
1776 if (alias->d_name.hash != hash)
1777 continue;
1778 if (alias->d_parent != entry->d_parent)
1779 continue;
1780 if (alias->d_name.len != len)
1781 continue;
1782 if (dentry_cmp(alias, name, len))
1783 continue;
1784 __dget(alias);
1785 return alias;
1788 __d_instantiate(entry, inode);
1789 return NULL;
1792 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1794 struct dentry *result;
1796 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1798 if (inode)
1799 spin_lock(&inode->i_lock);
1800 result = __d_instantiate_unique(entry, inode);
1801 if (inode)
1802 spin_unlock(&inode->i_lock);
1804 if (!result) {
1805 security_d_instantiate(entry, inode);
1806 return NULL;
1809 BUG_ON(!d_unhashed(result));
1810 iput(inode);
1811 return result;
1814 EXPORT_SYMBOL(d_instantiate_unique);
1817 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1818 * @entry: dentry to complete
1819 * @inode: inode to attach to this dentry
1821 * Fill in inode information in the entry. If a directory alias is found, then
1822 * return an error (and drop inode). Together with d_materialise_unique() this
1823 * guarantees that a directory inode may never have more than one alias.
1825 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1827 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1829 spin_lock(&inode->i_lock);
1830 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1831 spin_unlock(&inode->i_lock);
1832 iput(inode);
1833 return -EBUSY;
1835 __d_instantiate(entry, inode);
1836 spin_unlock(&inode->i_lock);
1837 security_d_instantiate(entry, inode);
1839 return 0;
1841 EXPORT_SYMBOL(d_instantiate_no_diralias);
1843 struct dentry *d_make_root(struct inode *root_inode)
1845 struct dentry *res = NULL;
1847 if (root_inode) {
1848 static const struct qstr name = QSTR_INIT("/", 1);
1850 res = __d_alloc(root_inode->i_sb, &name);
1851 if (res) {
1852 res->d_flags |= DCACHE_RCUACCESS;
1853 d_instantiate(res, root_inode);
1854 } else {
1855 iput(root_inode);
1858 return res;
1860 EXPORT_SYMBOL(d_make_root);
1862 static struct dentry * __d_find_any_alias(struct inode *inode)
1864 struct dentry *alias;
1866 if (hlist_empty(&inode->i_dentry))
1867 return NULL;
1868 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1869 __dget(alias);
1870 return alias;
1874 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1875 * with lockdep-related part of unlock_new_inode() done before
1876 * anything else. Use that instead of open-coding d_instantiate()/
1877 * unlock_new_inode() combinations.
1879 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1881 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1882 BUG_ON(!inode);
1883 lockdep_annotate_inode_mutex_key(inode);
1884 security_d_instantiate(entry, inode);
1885 spin_lock(&inode->i_lock);
1886 __d_instantiate(entry, inode);
1887 WARN_ON(!(inode->i_state & I_NEW));
1888 inode->i_state &= ~I_NEW;
1889 smp_mb();
1890 wake_up_bit(&inode->i_state, __I_NEW);
1891 spin_unlock(&inode->i_lock);
1893 EXPORT_SYMBOL(d_instantiate_new);
1896 * d_find_any_alias - find any alias for a given inode
1897 * @inode: inode to find an alias for
1899 * If any aliases exist for the given inode, take and return a
1900 * reference for one of them. If no aliases exist, return %NULL.
1902 struct dentry *d_find_any_alias(struct inode *inode)
1904 struct dentry *de;
1906 spin_lock(&inode->i_lock);
1907 de = __d_find_any_alias(inode);
1908 spin_unlock(&inode->i_lock);
1909 return de;
1911 EXPORT_SYMBOL(d_find_any_alias);
1913 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1915 static const struct qstr anonstring = QSTR_INIT("/", 1);
1916 struct dentry *tmp;
1917 struct dentry *res;
1918 unsigned add_flags;
1920 if (!inode)
1921 return ERR_PTR(-ESTALE);
1922 if (IS_ERR(inode))
1923 return ERR_CAST(inode);
1925 res = d_find_any_alias(inode);
1926 if (res)
1927 goto out_iput;
1929 tmp = __d_alloc(inode->i_sb, &anonstring);
1930 if (!tmp) {
1931 res = ERR_PTR(-ENOMEM);
1932 goto out_iput;
1935 spin_lock(&inode->i_lock);
1936 res = __d_find_any_alias(inode);
1937 if (res) {
1938 spin_unlock(&inode->i_lock);
1939 dput(tmp);
1940 goto out_iput;
1943 /* attach a disconnected dentry */
1944 add_flags = d_flags_for_inode(inode);
1946 if (disconnected)
1947 add_flags |= DCACHE_DISCONNECTED;
1949 spin_lock(&tmp->d_lock);
1950 tmp->d_inode = inode;
1951 tmp->d_flags |= add_flags;
1952 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1953 hlist_bl_lock(&tmp->d_sb->s_anon);
1954 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1955 hlist_bl_unlock(&tmp->d_sb->s_anon);
1956 spin_unlock(&tmp->d_lock);
1957 spin_unlock(&inode->i_lock);
1958 security_d_instantiate(tmp, inode);
1960 return tmp;
1962 out_iput:
1963 if (res && !IS_ERR(res))
1964 security_d_instantiate(res, inode);
1965 iput(inode);
1966 return res;
1970 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1971 * @inode: inode to allocate the dentry for
1973 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1974 * similar open by handle operations. The returned dentry may be anonymous,
1975 * or may have a full name (if the inode was already in the cache).
1977 * When called on a directory inode, we must ensure that the inode only ever
1978 * has one dentry. If a dentry is found, that is returned instead of
1979 * allocating a new one.
1981 * On successful return, the reference to the inode has been transferred
1982 * to the dentry. In case of an error the reference on the inode is released.
1983 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1984 * be passed in and the error will be propagated to the return value,
1985 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1987 struct dentry *d_obtain_alias(struct inode *inode)
1989 return __d_obtain_alias(inode, 1);
1991 EXPORT_SYMBOL(d_obtain_alias);
1994 * d_obtain_root - find or allocate a dentry for a given inode
1995 * @inode: inode to allocate the dentry for
1997 * Obtain an IS_ROOT dentry for the root of a filesystem.
1999 * We must ensure that directory inodes only ever have one dentry. If a
2000 * dentry is found, that is returned instead of allocating a new one.
2002 * On successful return, the reference to the inode has been transferred
2003 * to the dentry. In case of an error the reference on the inode is
2004 * released. A %NULL or IS_ERR inode may be passed in and will be the
2005 * error will be propagate to the return value, with a %NULL @inode
2006 * replaced by ERR_PTR(-ESTALE).
2008 struct dentry *d_obtain_root(struct inode *inode)
2010 return __d_obtain_alias(inode, 0);
2012 EXPORT_SYMBOL(d_obtain_root);
2015 * d_add_ci - lookup or allocate new dentry with case-exact name
2016 * @inode: the inode case-insensitive lookup has found
2017 * @dentry: the negative dentry that was passed to the parent's lookup func
2018 * @name: the case-exact name to be associated with the returned dentry
2020 * This is to avoid filling the dcache with case-insensitive names to the
2021 * same inode, only the actual correct case is stored in the dcache for
2022 * case-insensitive filesystems.
2024 * For a case-insensitive lookup match and if the the case-exact dentry
2025 * already exists in in the dcache, use it and return it.
2027 * If no entry exists with the exact case name, allocate new dentry with
2028 * the exact case, and return the spliced entry.
2030 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2031 struct qstr *name)
2033 struct dentry *found;
2034 struct dentry *new;
2037 * First check if a dentry matching the name already exists,
2038 * if not go ahead and create it now.
2040 found = d_hash_and_lookup(dentry->d_parent, name);
2041 if (unlikely(IS_ERR(found)))
2042 goto err_out;
2043 if (!found) {
2044 new = d_alloc(dentry->d_parent, name);
2045 if (!new) {
2046 found = ERR_PTR(-ENOMEM);
2047 goto err_out;
2050 found = d_splice_alias(inode, new);
2051 if (found) {
2052 dput(new);
2053 return found;
2055 return new;
2059 * If a matching dentry exists, and it's not negative use it.
2061 * Decrement the reference count to balance the iget() done
2062 * earlier on.
2064 if (found->d_inode) {
2065 if (unlikely(found->d_inode != inode)) {
2066 /* This can't happen because bad inodes are unhashed. */
2067 BUG_ON(!is_bad_inode(inode));
2068 BUG_ON(!is_bad_inode(found->d_inode));
2070 iput(inode);
2071 return found;
2075 * Negative dentry: instantiate it unless the inode is a directory and
2076 * already has a dentry.
2078 new = d_splice_alias(inode, found);
2079 if (new) {
2080 dput(found);
2081 found = new;
2083 return found;
2085 err_out:
2086 iput(inode);
2087 return found;
2089 EXPORT_SYMBOL(d_add_ci);
2092 * Do the slow-case of the dentry name compare.
2094 * Unlike the dentry_cmp() function, we need to atomically
2095 * load the name and length information, so that the
2096 * filesystem can rely on them, and can use the 'name' and
2097 * 'len' information without worrying about walking off the
2098 * end of memory etc.
2100 * Thus the read_seqcount_retry() and the "duplicate" info
2101 * in arguments (the low-level filesystem should not look
2102 * at the dentry inode or name contents directly, since
2103 * rename can change them while we're in RCU mode).
2105 enum slow_d_compare {
2106 D_COMP_OK,
2107 D_COMP_NOMATCH,
2108 D_COMP_SEQRETRY,
2111 static noinline enum slow_d_compare slow_dentry_cmp(
2112 const struct dentry *parent,
2113 struct dentry *dentry,
2114 unsigned int seq,
2115 const struct qstr *name)
2117 int tlen = dentry->d_name.len;
2118 const char *tname = dentry->d_name.name;
2120 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2121 cpu_relax();
2122 return D_COMP_SEQRETRY;
2124 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2125 return D_COMP_NOMATCH;
2126 return D_COMP_OK;
2130 * __d_lookup_rcu - search for a dentry (racy, store-free)
2131 * @parent: parent dentry
2132 * @name: qstr of name we wish to find
2133 * @seqp: returns d_seq value at the point where the dentry was found
2134 * Returns: dentry, or NULL
2136 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2137 * resolution (store-free path walking) design described in
2138 * Documentation/filesystems/path-lookup.txt.
2140 * This is not to be used outside core vfs.
2142 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2143 * held, and rcu_read_lock held. The returned dentry must not be stored into
2144 * without taking d_lock and checking d_seq sequence count against @seq
2145 * returned here.
2147 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2148 * function.
2150 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2151 * the returned dentry, so long as its parent's seqlock is checked after the
2152 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2153 * is formed, giving integrity down the path walk.
2155 * NOTE! The caller *has* to check the resulting dentry against the sequence
2156 * number we've returned before using any of the resulting dentry state!
2158 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2159 const struct qstr *name,
2160 unsigned *seqp)
2162 u64 hashlen = name->hash_len;
2163 const unsigned char *str = name->name;
2164 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2165 struct hlist_bl_node *node;
2166 struct dentry *dentry;
2169 * Note: There is significant duplication with __d_lookup_rcu which is
2170 * required to prevent single threaded performance regressions
2171 * especially on architectures where smp_rmb (in seqcounts) are costly.
2172 * Keep the two functions in sync.
2176 * The hash list is protected using RCU.
2178 * Carefully use d_seq when comparing a candidate dentry, to avoid
2179 * races with d_move().
2181 * It is possible that concurrent renames can mess up our list
2182 * walk here and result in missing our dentry, resulting in the
2183 * false-negative result. d_lookup() protects against concurrent
2184 * renames using rename_lock seqlock.
2186 * See Documentation/filesystems/path-lookup.txt for more details.
2188 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2189 unsigned seq;
2191 seqretry:
2193 * The dentry sequence count protects us from concurrent
2194 * renames, and thus protects parent and name fields.
2196 * The caller must perform a seqcount check in order
2197 * to do anything useful with the returned dentry.
2199 * NOTE! We do a "raw" seqcount_begin here. That means that
2200 * we don't wait for the sequence count to stabilize if it
2201 * is in the middle of a sequence change. If we do the slow
2202 * dentry compare, we will do seqretries until it is stable,
2203 * and if we end up with a successful lookup, we actually
2204 * want to exit RCU lookup anyway.
2206 seq = raw_seqcount_begin(&dentry->d_seq);
2207 if (dentry->d_parent != parent)
2208 continue;
2209 if (d_unhashed(dentry))
2210 continue;
2212 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2213 if (dentry->d_name.hash != hashlen_hash(hashlen))
2214 continue;
2215 *seqp = seq;
2216 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2217 case D_COMP_OK:
2218 return dentry;
2219 case D_COMP_NOMATCH:
2220 continue;
2221 default:
2222 goto seqretry;
2226 if (dentry->d_name.hash_len != hashlen)
2227 continue;
2228 *seqp = seq;
2229 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2230 return dentry;
2232 return NULL;
2236 * d_lookup - search for a dentry
2237 * @parent: parent dentry
2238 * @name: qstr of name we wish to find
2239 * Returns: dentry, or NULL
2241 * d_lookup searches the children of the parent dentry for the name in
2242 * question. If the dentry is found its reference count is incremented and the
2243 * dentry is returned. The caller must use dput to free the entry when it has
2244 * finished using it. %NULL is returned if the dentry does not exist.
2246 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2248 struct dentry *dentry;
2249 unsigned seq;
2251 do {
2252 seq = read_seqbegin(&rename_lock);
2253 dentry = __d_lookup(parent, name);
2254 if (dentry)
2255 break;
2256 } while (read_seqretry(&rename_lock, seq));
2257 return dentry;
2259 EXPORT_SYMBOL(d_lookup);
2262 * __d_lookup - search for a dentry (racy)
2263 * @parent: parent dentry
2264 * @name: qstr of name we wish to find
2265 * Returns: dentry, or NULL
2267 * __d_lookup is like d_lookup, however it may (rarely) return a
2268 * false-negative result due to unrelated rename activity.
2270 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2271 * however it must be used carefully, eg. with a following d_lookup in
2272 * the case of failure.
2274 * __d_lookup callers must be commented.
2276 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2278 unsigned int len = name->len;
2279 unsigned int hash = name->hash;
2280 const unsigned char *str = name->name;
2281 struct hlist_bl_head *b = d_hash(parent, hash);
2282 struct hlist_bl_node *node;
2283 struct dentry *found = NULL;
2284 struct dentry *dentry;
2287 * Note: There is significant duplication with __d_lookup_rcu which is
2288 * required to prevent single threaded performance regressions
2289 * especially on architectures where smp_rmb (in seqcounts) are costly.
2290 * Keep the two functions in sync.
2294 * The hash list is protected using RCU.
2296 * Take d_lock when comparing a candidate dentry, to avoid races
2297 * with d_move().
2299 * It is possible that concurrent renames can mess up our list
2300 * walk here and result in missing our dentry, resulting in the
2301 * false-negative result. d_lookup() protects against concurrent
2302 * renames using rename_lock seqlock.
2304 * See Documentation/filesystems/path-lookup.txt for more details.
2306 rcu_read_lock();
2308 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2310 if (dentry->d_name.hash != hash)
2311 continue;
2313 spin_lock(&dentry->d_lock);
2314 if (dentry->d_parent != parent)
2315 goto next;
2316 if (d_unhashed(dentry))
2317 goto next;
2320 * It is safe to compare names since d_move() cannot
2321 * change the qstr (protected by d_lock).
2323 if (parent->d_flags & DCACHE_OP_COMPARE) {
2324 int tlen = dentry->d_name.len;
2325 const char *tname = dentry->d_name.name;
2326 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2327 goto next;
2328 } else {
2329 if (dentry->d_name.len != len)
2330 goto next;
2331 if (dentry_cmp(dentry, str, len))
2332 goto next;
2335 dentry->d_lockref.count++;
2336 found = dentry;
2337 spin_unlock(&dentry->d_lock);
2338 break;
2339 next:
2340 spin_unlock(&dentry->d_lock);
2342 rcu_read_unlock();
2344 return found;
2348 * d_hash_and_lookup - hash the qstr then search for a dentry
2349 * @dir: Directory to search in
2350 * @name: qstr of name we wish to find
2352 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2354 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2357 * Check for a fs-specific hash function. Note that we must
2358 * calculate the standard hash first, as the d_op->d_hash()
2359 * routine may choose to leave the hash value unchanged.
2361 name->hash = full_name_hash(name->name, name->len);
2362 if (dir->d_flags & DCACHE_OP_HASH) {
2363 int err = dir->d_op->d_hash(dir, name);
2364 if (unlikely(err < 0))
2365 return ERR_PTR(err);
2367 return d_lookup(dir, name);
2369 EXPORT_SYMBOL(d_hash_and_lookup);
2372 * d_validate - verify dentry provided from insecure source (deprecated)
2373 * @dentry: The dentry alleged to be valid child of @dparent
2374 * @dparent: The parent dentry (known to be valid)
2376 * An insecure source has sent us a dentry, here we verify it and dget() it.
2377 * This is used by ncpfs in its readdir implementation.
2378 * Zero is returned in the dentry is invalid.
2380 * This function is slow for big directories, and deprecated, do not use it.
2382 int d_validate(struct dentry *dentry, struct dentry *dparent)
2384 struct dentry *child;
2386 spin_lock(&dparent->d_lock);
2387 list_for_each_entry(child, &dparent->d_subdirs, d_child) {
2388 if (dentry == child) {
2389 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2390 __dget_dlock(dentry);
2391 spin_unlock(&dentry->d_lock);
2392 spin_unlock(&dparent->d_lock);
2393 return 1;
2396 spin_unlock(&dparent->d_lock);
2398 return 0;
2400 EXPORT_SYMBOL(d_validate);
2403 * When a file is deleted, we have two options:
2404 * - turn this dentry into a negative dentry
2405 * - unhash this dentry and free it.
2407 * Usually, we want to just turn this into
2408 * a negative dentry, but if anybody else is
2409 * currently using the dentry or the inode
2410 * we can't do that and we fall back on removing
2411 * it from the hash queues and waiting for
2412 * it to be deleted later when it has no users
2416 * d_delete - delete a dentry
2417 * @dentry: The dentry to delete
2419 * Turn the dentry into a negative dentry if possible, otherwise
2420 * remove it from the hash queues so it can be deleted later
2423 void d_delete(struct dentry * dentry)
2425 struct inode *inode;
2426 int isdir = 0;
2428 * Are we the only user?
2430 again:
2431 spin_lock(&dentry->d_lock);
2432 inode = dentry->d_inode;
2433 isdir = S_ISDIR(inode->i_mode);
2434 if (dentry->d_lockref.count == 1) {
2435 if (!spin_trylock(&inode->i_lock)) {
2436 spin_unlock(&dentry->d_lock);
2437 cpu_relax();
2438 goto again;
2440 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2441 dentry_unlink_inode(dentry);
2442 fsnotify_nameremove(dentry, isdir);
2443 return;
2446 if (!d_unhashed(dentry))
2447 __d_drop(dentry);
2449 spin_unlock(&dentry->d_lock);
2451 fsnotify_nameremove(dentry, isdir);
2453 EXPORT_SYMBOL(d_delete);
2455 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2457 BUG_ON(!d_unhashed(entry));
2458 hlist_bl_lock(b);
2459 hlist_bl_add_head_rcu(&entry->d_hash, b);
2460 hlist_bl_unlock(b);
2463 static void _d_rehash(struct dentry * entry)
2465 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2469 * d_rehash - add an entry back to the hash
2470 * @entry: dentry to add to the hash
2472 * Adds a dentry to the hash according to its name.
2475 void d_rehash(struct dentry * entry)
2477 spin_lock(&entry->d_lock);
2478 _d_rehash(entry);
2479 spin_unlock(&entry->d_lock);
2481 EXPORT_SYMBOL(d_rehash);
2484 * dentry_update_name_case - update case insensitive dentry with a new name
2485 * @dentry: dentry to be updated
2486 * @name: new name
2488 * Update a case insensitive dentry with new case of name.
2490 * dentry must have been returned by d_lookup with name @name. Old and new
2491 * name lengths must match (ie. no d_compare which allows mismatched name
2492 * lengths).
2494 * Parent inode i_mutex must be held over d_lookup and into this call (to
2495 * keep renames and concurrent inserts, and readdir(2) away).
2497 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2499 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2500 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2502 spin_lock(&dentry->d_lock);
2503 write_seqcount_begin(&dentry->d_seq);
2504 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2505 write_seqcount_end(&dentry->d_seq);
2506 spin_unlock(&dentry->d_lock);
2508 EXPORT_SYMBOL(dentry_update_name_case);
2510 static void swap_names(struct dentry *dentry, struct dentry *target)
2512 if (unlikely(dname_external(target))) {
2513 if (unlikely(dname_external(dentry))) {
2515 * Both external: swap the pointers
2517 swap(target->d_name.name, dentry->d_name.name);
2518 } else {
2520 * dentry:internal, target:external. Steal target's
2521 * storage and make target internal.
2523 memcpy(target->d_iname, dentry->d_name.name,
2524 dentry->d_name.len + 1);
2525 dentry->d_name.name = target->d_name.name;
2526 target->d_name.name = target->d_iname;
2528 } else {
2529 if (unlikely(dname_external(dentry))) {
2531 * dentry:external, target:internal. Give dentry's
2532 * storage to target and make dentry internal
2534 memcpy(dentry->d_iname, target->d_name.name,
2535 target->d_name.len + 1);
2536 target->d_name.name = dentry->d_name.name;
2537 dentry->d_name.name = dentry->d_iname;
2538 } else {
2540 * Both are internal.
2542 unsigned int i;
2543 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2544 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2545 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2546 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2547 swap(((long *) &dentry->d_iname)[i],
2548 ((long *) &target->d_iname)[i]);
2552 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2555 static void copy_name(struct dentry *dentry, struct dentry *target)
2557 struct external_name *old_name = NULL;
2558 if (unlikely(dname_external(dentry)))
2559 old_name = external_name(dentry);
2560 if (unlikely(dname_external(target))) {
2561 atomic_inc(&external_name(target)->u.count);
2562 dentry->d_name = target->d_name;
2563 } else {
2564 memcpy(dentry->d_iname, target->d_name.name,
2565 target->d_name.len + 1);
2566 dentry->d_name.name = dentry->d_iname;
2567 dentry->d_name.hash_len = target->d_name.hash_len;
2569 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2570 kfree_rcu(old_name, u.head);
2573 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2576 * XXXX: do we really need to take target->d_lock?
2578 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2579 spin_lock(&target->d_parent->d_lock);
2580 else {
2581 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2582 spin_lock(&dentry->d_parent->d_lock);
2583 spin_lock_nested(&target->d_parent->d_lock,
2584 DENTRY_D_LOCK_NESTED);
2585 } else {
2586 spin_lock(&target->d_parent->d_lock);
2587 spin_lock_nested(&dentry->d_parent->d_lock,
2588 DENTRY_D_LOCK_NESTED);
2591 if (target < dentry) {
2592 spin_lock_nested(&target->d_lock, 2);
2593 spin_lock_nested(&dentry->d_lock, 3);
2594 } else {
2595 spin_lock_nested(&dentry->d_lock, 2);
2596 spin_lock_nested(&target->d_lock, 3);
2600 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2602 if (target->d_parent != dentry->d_parent)
2603 spin_unlock(&dentry->d_parent->d_lock);
2604 if (target->d_parent != target)
2605 spin_unlock(&target->d_parent->d_lock);
2606 spin_unlock(&target->d_lock);
2607 spin_unlock(&dentry->d_lock);
2611 * When switching names, the actual string doesn't strictly have to
2612 * be preserved in the target - because we're dropping the target
2613 * anyway. As such, we can just do a simple memcpy() to copy over
2614 * the new name before we switch, unless we are going to rehash
2615 * it. Note that if we *do* unhash the target, we are not allowed
2616 * to rehash it without giving it a new name/hash key - whether
2617 * we swap or overwrite the names here, resulting name won't match
2618 * the reality in filesystem; it's only there for d_path() purposes.
2619 * Note that all of this is happening under rename_lock, so the
2620 * any hash lookup seeing it in the middle of manipulations will
2621 * be discarded anyway. So we do not care what happens to the hash
2622 * key in that case.
2625 * __d_move - move a dentry
2626 * @dentry: entry to move
2627 * @target: new dentry
2628 * @exchange: exchange the two dentries
2630 * Update the dcache to reflect the move of a file name. Negative
2631 * dcache entries should not be moved in this way. Caller must hold
2632 * rename_lock, the i_mutex of the source and target directories,
2633 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2635 static void __d_move(struct dentry *dentry, struct dentry *target,
2636 bool exchange)
2638 if (!dentry->d_inode)
2639 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2641 BUG_ON(d_ancestor(dentry, target));
2642 BUG_ON(d_ancestor(target, dentry));
2644 dentry_lock_for_move(dentry, target);
2646 write_seqcount_begin(&dentry->d_seq);
2647 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2649 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2652 * Move the dentry to the target hash queue. Don't bother checking
2653 * for the same hash queue because of how unlikely it is.
2655 __d_drop(dentry);
2656 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2659 * Unhash the target (d_delete() is not usable here). If exchanging
2660 * the two dentries, then rehash onto the other's hash queue.
2662 __d_drop(target);
2663 if (exchange) {
2664 __d_rehash(target,
2665 d_hash(dentry->d_parent, dentry->d_name.hash));
2668 /* Switch the names.. */
2669 if (exchange)
2670 swap_names(dentry, target);
2671 else
2672 copy_name(dentry, target);
2674 /* ... and switch them in the tree */
2675 if (IS_ROOT(dentry)) {
2676 /* splicing a tree */
2677 dentry->d_flags |= DCACHE_RCUACCESS;
2678 dentry->d_parent = target->d_parent;
2679 target->d_parent = target;
2680 list_del_init(&target->d_child);
2681 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2682 } else {
2683 /* swapping two dentries */
2684 swap(dentry->d_parent, target->d_parent);
2685 list_move(&target->d_child, &target->d_parent->d_subdirs);
2686 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2687 if (exchange)
2688 fsnotify_d_move(target);
2689 fsnotify_d_move(dentry);
2692 write_seqcount_end(&target->d_seq);
2693 write_seqcount_end(&dentry->d_seq);
2695 dentry_unlock_for_move(dentry, target);
2699 * d_move - move a dentry
2700 * @dentry: entry to move
2701 * @target: new dentry
2703 * Update the dcache to reflect the move of a file name. Negative
2704 * dcache entries should not be moved in this way. See the locking
2705 * requirements for __d_move.
2707 void d_move(struct dentry *dentry, struct dentry *target)
2709 write_seqlock(&rename_lock);
2710 __d_move(dentry, target, false);
2711 write_sequnlock(&rename_lock);
2713 EXPORT_SYMBOL(d_move);
2716 * d_exchange - exchange two dentries
2717 * @dentry1: first dentry
2718 * @dentry2: second dentry
2720 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2722 write_seqlock(&rename_lock);
2724 WARN_ON(!dentry1->d_inode);
2725 WARN_ON(!dentry2->d_inode);
2726 WARN_ON(IS_ROOT(dentry1));
2727 WARN_ON(IS_ROOT(dentry2));
2729 __d_move(dentry1, dentry2, true);
2731 write_sequnlock(&rename_lock);
2735 * d_ancestor - search for an ancestor
2736 * @p1: ancestor dentry
2737 * @p2: child dentry
2739 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2740 * an ancestor of p2, else NULL.
2742 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2744 struct dentry *p;
2746 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2747 if (p->d_parent == p1)
2748 return p;
2750 return NULL;
2754 * This helper attempts to cope with remotely renamed directories
2756 * It assumes that the caller is already holding
2757 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2759 * Note: If ever the locking in lock_rename() changes, then please
2760 * remember to update this too...
2762 static struct dentry *__d_unalias(struct inode *inode,
2763 struct dentry *dentry, struct dentry *alias)
2765 struct mutex *m1 = NULL, *m2 = NULL;
2766 struct dentry *ret = ERR_PTR(-EBUSY);
2768 /* If alias and dentry share a parent, then no extra locks required */
2769 if (alias->d_parent == dentry->d_parent)
2770 goto out_unalias;
2772 /* See lock_rename() */
2773 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2774 goto out_err;
2775 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2776 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2777 goto out_err;
2778 m2 = &alias->d_parent->d_inode->i_mutex;
2779 out_unalias:
2780 __d_move(alias, dentry, false);
2781 ret = alias;
2782 out_err:
2783 spin_unlock(&inode->i_lock);
2784 if (m2)
2785 mutex_unlock(m2);
2786 if (m1)
2787 mutex_unlock(m1);
2788 return ret;
2792 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2793 * @inode: the inode which may have a disconnected dentry
2794 * @dentry: a negative dentry which we want to point to the inode.
2796 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2797 * place of the given dentry and return it, else simply d_add the inode
2798 * to the dentry and return NULL.
2800 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2801 * we should error out: directories can't have multiple aliases.
2803 * This is needed in the lookup routine of any filesystem that is exportable
2804 * (via knfsd) so that we can build dcache paths to directories effectively.
2806 * If a dentry was found and moved, then it is returned. Otherwise NULL
2807 * is returned. This matches the expected return value of ->lookup.
2809 * Cluster filesystems may call this function with a negative, hashed dentry.
2810 * In that case, we know that the inode will be a regular file, and also this
2811 * will only occur during atomic_open. So we need to check for the dentry
2812 * being already hashed only in the final case.
2814 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2816 struct dentry *new = NULL;
2818 if (IS_ERR(inode))
2819 return ERR_CAST(inode);
2821 if (inode && S_ISDIR(inode->i_mode)) {
2822 spin_lock(&inode->i_lock);
2823 new = __d_find_any_alias(inode);
2824 if (new) {
2825 if (!IS_ROOT(new)) {
2826 spin_unlock(&inode->i_lock);
2827 dput(new);
2828 iput(inode);
2829 return ERR_PTR(-EIO);
2831 if (d_ancestor(new, dentry)) {
2832 spin_unlock(&inode->i_lock);
2833 dput(new);
2834 iput(inode);
2835 return ERR_PTR(-EIO);
2837 write_seqlock(&rename_lock);
2838 __d_move(new, dentry, false);
2839 write_sequnlock(&rename_lock);
2840 spin_unlock(&inode->i_lock);
2841 security_d_instantiate(new, inode);
2842 iput(inode);
2843 } else {
2844 /* already taking inode->i_lock, so d_add() by hand */
2845 __d_instantiate(dentry, inode);
2846 spin_unlock(&inode->i_lock);
2847 security_d_instantiate(dentry, inode);
2848 d_rehash(dentry);
2850 } else {
2851 d_instantiate(dentry, inode);
2852 if (d_unhashed(dentry))
2853 d_rehash(dentry);
2855 return new;
2857 EXPORT_SYMBOL(d_splice_alias);
2860 * d_materialise_unique - introduce an inode into the tree
2861 * @dentry: candidate dentry
2862 * @inode: inode to bind to the dentry, to which aliases may be attached
2864 * Introduces an dentry into the tree, substituting an extant disconnected
2865 * root directory alias in its place if there is one. Caller must hold the
2866 * i_mutex of the parent directory.
2868 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2870 struct dentry *actual;
2872 BUG_ON(!d_unhashed(dentry));
2874 if (!inode) {
2875 actual = dentry;
2876 __d_instantiate(dentry, NULL);
2877 d_rehash(actual);
2878 goto out_nolock;
2881 spin_lock(&inode->i_lock);
2883 if (S_ISDIR(inode->i_mode)) {
2884 struct dentry *alias;
2886 /* Does an aliased dentry already exist? */
2887 alias = __d_find_alias(inode);
2888 if (alias) {
2889 actual = alias;
2890 write_seqlock(&rename_lock);
2892 if (d_ancestor(alias, dentry)) {
2893 /* Check for loops */
2894 actual = ERR_PTR(-ELOOP);
2895 spin_unlock(&inode->i_lock);
2896 } else if (IS_ROOT(alias)) {
2897 /* Is this an anonymous mountpoint that we
2898 * could splice into our tree? */
2899 __d_move(alias, dentry, false);
2900 write_sequnlock(&rename_lock);
2901 goto found;
2902 } else {
2903 /* Nope, but we must(!) avoid directory
2904 * aliasing. This drops inode->i_lock */
2905 actual = __d_unalias(inode, dentry, alias);
2907 write_sequnlock(&rename_lock);
2908 if (IS_ERR(actual)) {
2909 if (PTR_ERR(actual) == -ELOOP)
2910 pr_warn_ratelimited(
2911 "VFS: Lookup of '%s' in %s %s"
2912 " would have caused loop\n",
2913 dentry->d_name.name,
2914 inode->i_sb->s_type->name,
2915 inode->i_sb->s_id);
2916 dput(alias);
2918 goto out_nolock;
2922 /* Add a unique reference */
2923 actual = __d_instantiate_unique(dentry, inode);
2924 if (!actual)
2925 actual = dentry;
2927 d_rehash(actual);
2928 found:
2929 spin_unlock(&inode->i_lock);
2930 out_nolock:
2931 if (actual == dentry) {
2932 security_d_instantiate(dentry, inode);
2933 return NULL;
2936 iput(inode);
2937 return actual;
2939 EXPORT_SYMBOL_GPL(d_materialise_unique);
2941 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2943 *buflen -= namelen;
2944 if (*buflen < 0)
2945 return -ENAMETOOLONG;
2946 *buffer -= namelen;
2947 memcpy(*buffer, str, namelen);
2948 return 0;
2952 * prepend_name - prepend a pathname in front of current buffer pointer
2953 * @buffer: buffer pointer
2954 * @buflen: allocated length of the buffer
2955 * @name: name string and length qstr structure
2957 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2958 * make sure that either the old or the new name pointer and length are
2959 * fetched. However, there may be mismatch between length and pointer.
2960 * The length cannot be trusted, we need to copy it byte-by-byte until
2961 * the length is reached or a null byte is found. It also prepends "/" at
2962 * the beginning of the name. The sequence number check at the caller will
2963 * retry it again when a d_move() does happen. So any garbage in the buffer
2964 * due to mismatched pointer and length will be discarded.
2966 * Data dependency barrier is needed to make sure that we see that terminating
2967 * NUL. Alpha strikes again, film at 11...
2969 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2971 const char *dname = ACCESS_ONCE(name->name);
2972 u32 dlen = ACCESS_ONCE(name->len);
2973 char *p;
2975 smp_read_barrier_depends();
2977 *buflen -= dlen + 1;
2978 if (*buflen < 0)
2979 return -ENAMETOOLONG;
2980 p = *buffer -= dlen + 1;
2981 *p++ = '/';
2982 while (dlen--) {
2983 char c = *dname++;
2984 if (!c)
2985 break;
2986 *p++ = c;
2988 return 0;
2992 * prepend_path - Prepend path string to a buffer
2993 * @path: the dentry/vfsmount to report
2994 * @root: root vfsmnt/dentry
2995 * @buffer: pointer to the end of the buffer
2996 * @buflen: pointer to buffer length
2998 * The function will first try to write out the pathname without taking any
2999 * lock other than the RCU read lock to make sure that dentries won't go away.
3000 * It only checks the sequence number of the global rename_lock as any change
3001 * in the dentry's d_seq will be preceded by changes in the rename_lock
3002 * sequence number. If the sequence number had been changed, it will restart
3003 * the whole pathname back-tracing sequence again by taking the rename_lock.
3004 * In this case, there is no need to take the RCU read lock as the recursive
3005 * parent pointer references will keep the dentry chain alive as long as no
3006 * rename operation is performed.
3008 static int prepend_path(const struct path *path,
3009 const struct path *root,
3010 char **buffer, int *buflen)
3012 struct dentry *dentry;
3013 struct vfsmount *vfsmnt;
3014 struct mount *mnt;
3015 int error = 0;
3016 unsigned seq, m_seq = 0;
3017 char *bptr;
3018 int blen;
3020 rcu_read_lock();
3021 restart_mnt:
3022 read_seqbegin_or_lock(&mount_lock, &m_seq);
3023 seq = 0;
3024 rcu_read_lock();
3025 restart:
3026 bptr = *buffer;
3027 blen = *buflen;
3028 error = 0;
3029 dentry = path->dentry;
3030 vfsmnt = path->mnt;
3031 mnt = real_mount(vfsmnt);
3032 read_seqbegin_or_lock(&rename_lock, &seq);
3033 while (dentry != root->dentry || vfsmnt != root->mnt) {
3034 struct dentry * parent;
3036 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3037 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3038 /* Escaped? */
3039 if (dentry != vfsmnt->mnt_root) {
3040 bptr = *buffer;
3041 blen = *buflen;
3042 error = 3;
3043 break;
3045 /* Global root? */
3046 if (mnt != parent) {
3047 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3048 mnt = parent;
3049 vfsmnt = &mnt->mnt;
3050 continue;
3052 if (!error)
3053 error = is_mounted(vfsmnt) ? 1 : 2;
3054 break;
3056 parent = dentry->d_parent;
3057 prefetch(parent);
3058 error = prepend_name(&bptr, &blen, &dentry->d_name);
3059 if (error)
3060 break;
3062 dentry = parent;
3064 if (!(seq & 1))
3065 rcu_read_unlock();
3066 if (need_seqretry(&rename_lock, seq)) {
3067 seq = 1;
3068 goto restart;
3070 done_seqretry(&rename_lock, seq);
3072 if (!(m_seq & 1))
3073 rcu_read_unlock();
3074 if (need_seqretry(&mount_lock, m_seq)) {
3075 m_seq = 1;
3076 goto restart_mnt;
3078 done_seqretry(&mount_lock, m_seq);
3080 if (error >= 0 && bptr == *buffer) {
3081 if (--blen < 0)
3082 error = -ENAMETOOLONG;
3083 else
3084 *--bptr = '/';
3086 *buffer = bptr;
3087 *buflen = blen;
3088 return error;
3092 * __d_path - return the path of a dentry
3093 * @path: the dentry/vfsmount to report
3094 * @root: root vfsmnt/dentry
3095 * @buf: buffer to return value in
3096 * @buflen: buffer length
3098 * Convert a dentry into an ASCII path name.
3100 * Returns a pointer into the buffer or an error code if the
3101 * path was too long.
3103 * "buflen" should be positive.
3105 * If the path is not reachable from the supplied root, return %NULL.
3107 char *__d_path(const struct path *path,
3108 const struct path *root,
3109 char *buf, int buflen)
3111 char *res = buf + buflen;
3112 int error;
3114 prepend(&res, &buflen, "\0", 1);
3115 error = prepend_path(path, root, &res, &buflen);
3117 if (error < 0)
3118 return ERR_PTR(error);
3119 if (error > 0)
3120 return NULL;
3121 return res;
3124 char *d_absolute_path(const struct path *path,
3125 char *buf, int buflen)
3127 struct path root = {};
3128 char *res = buf + buflen;
3129 int error;
3131 prepend(&res, &buflen, "\0", 1);
3132 error = prepend_path(path, &root, &res, &buflen);
3134 if (error > 1)
3135 error = -EINVAL;
3136 if (error < 0)
3137 return ERR_PTR(error);
3138 return res;
3142 * same as __d_path but appends "(deleted)" for unlinked files.
3144 static int path_with_deleted(const struct path *path,
3145 const struct path *root,
3146 char **buf, int *buflen)
3148 prepend(buf, buflen, "\0", 1);
3149 if (d_unlinked(path->dentry)) {
3150 int error = prepend(buf, buflen, " (deleted)", 10);
3151 if (error)
3152 return error;
3155 return prepend_path(path, root, buf, buflen);
3158 static int prepend_unreachable(char **buffer, int *buflen)
3160 return prepend(buffer, buflen, "(unreachable)", 13);
3163 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3165 unsigned seq;
3167 do {
3168 seq = read_seqcount_begin(&fs->seq);
3169 *root = fs->root;
3170 } while (read_seqcount_retry(&fs->seq, seq));
3174 * d_path - return the path of a dentry
3175 * @path: path to report
3176 * @buf: buffer to return value in
3177 * @buflen: buffer length
3179 * Convert a dentry into an ASCII path name. If the entry has been deleted
3180 * the string " (deleted)" is appended. Note that this is ambiguous.
3182 * Returns a pointer into the buffer or an error code if the path was
3183 * too long. Note: Callers should use the returned pointer, not the passed
3184 * in buffer, to use the name! The implementation often starts at an offset
3185 * into the buffer, and may leave 0 bytes at the start.
3187 * "buflen" should be positive.
3189 char *d_path(const struct path *path, char *buf, int buflen)
3191 char *res = buf + buflen;
3192 struct path root;
3193 int error;
3196 * We have various synthetic filesystems that never get mounted. On
3197 * these filesystems dentries are never used for lookup purposes, and
3198 * thus don't need to be hashed. They also don't need a name until a
3199 * user wants to identify the object in /proc/pid/fd/. The little hack
3200 * below allows us to generate a name for these objects on demand:
3202 * Some pseudo inodes are mountable. When they are mounted
3203 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3204 * and instead have d_path return the mounted path.
3206 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3207 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3208 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3210 rcu_read_lock();
3211 get_fs_root_rcu(current->fs, &root);
3212 error = path_with_deleted(path, &root, &res, &buflen);
3213 rcu_read_unlock();
3215 if (error < 0)
3216 res = ERR_PTR(error);
3217 return res;
3219 EXPORT_SYMBOL(d_path);
3222 * Helper function for dentry_operations.d_dname() members
3224 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3225 const char *fmt, ...)
3227 va_list args;
3228 char temp[64];
3229 int sz;
3231 va_start(args, fmt);
3232 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3233 va_end(args);
3235 if (sz > sizeof(temp) || sz > buflen)
3236 return ERR_PTR(-ENAMETOOLONG);
3238 buffer += buflen - sz;
3239 return memcpy(buffer, temp, sz);
3242 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3244 char *end = buffer + buflen;
3245 /* these dentries are never renamed, so d_lock is not needed */
3246 if (prepend(&end, &buflen, " (deleted)", 11) ||
3247 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3248 prepend(&end, &buflen, "/", 1))
3249 end = ERR_PTR(-ENAMETOOLONG);
3250 return end;
3252 EXPORT_SYMBOL(simple_dname);
3255 * Write full pathname from the root of the filesystem into the buffer.
3257 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3259 struct dentry *dentry;
3260 char *end, *retval;
3261 int len, seq = 0;
3262 int error = 0;
3264 if (buflen < 2)
3265 goto Elong;
3267 rcu_read_lock();
3268 restart:
3269 dentry = d;
3270 end = buf + buflen;
3271 len = buflen;
3272 prepend(&end, &len, "\0", 1);
3273 /* Get '/' right */
3274 retval = end-1;
3275 *retval = '/';
3276 read_seqbegin_or_lock(&rename_lock, &seq);
3277 while (!IS_ROOT(dentry)) {
3278 struct dentry *parent = dentry->d_parent;
3280 prefetch(parent);
3281 error = prepend_name(&end, &len, &dentry->d_name);
3282 if (error)
3283 break;
3285 retval = end;
3286 dentry = parent;
3288 if (!(seq & 1))
3289 rcu_read_unlock();
3290 if (need_seqretry(&rename_lock, seq)) {
3291 seq = 1;
3292 goto restart;
3294 done_seqretry(&rename_lock, seq);
3295 if (error)
3296 goto Elong;
3297 return retval;
3298 Elong:
3299 return ERR_PTR(-ENAMETOOLONG);
3302 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3304 return __dentry_path(dentry, buf, buflen);
3306 EXPORT_SYMBOL(dentry_path_raw);
3308 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3310 char *p = NULL;
3311 char *retval;
3313 if (d_unlinked(dentry)) {
3314 p = buf + buflen;
3315 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3316 goto Elong;
3317 buflen++;
3319 retval = __dentry_path(dentry, buf, buflen);
3320 if (!IS_ERR(retval) && p)
3321 *p = '/'; /* restore '/' overriden with '\0' */
3322 return retval;
3323 Elong:
3324 return ERR_PTR(-ENAMETOOLONG);
3327 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3328 struct path *pwd)
3330 unsigned seq;
3332 do {
3333 seq = read_seqcount_begin(&fs->seq);
3334 *root = fs->root;
3335 *pwd = fs->pwd;
3336 } while (read_seqcount_retry(&fs->seq, seq));
3340 * NOTE! The user-level library version returns a
3341 * character pointer. The kernel system call just
3342 * returns the length of the buffer filled (which
3343 * includes the ending '\0' character), or a negative
3344 * error value. So libc would do something like
3346 * char *getcwd(char * buf, size_t size)
3348 * int retval;
3350 * retval = sys_getcwd(buf, size);
3351 * if (retval >= 0)
3352 * return buf;
3353 * errno = -retval;
3354 * return NULL;
3357 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3359 int error;
3360 struct path pwd, root;
3361 char *page = __getname();
3363 if (!page)
3364 return -ENOMEM;
3366 rcu_read_lock();
3367 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3369 error = -ENOENT;
3370 if (!d_unlinked(pwd.dentry)) {
3371 unsigned long len;
3372 char *cwd = page + PATH_MAX;
3373 int buflen = PATH_MAX;
3375 prepend(&cwd, &buflen, "\0", 1);
3376 error = prepend_path(&pwd, &root, &cwd, &buflen);
3377 rcu_read_unlock();
3379 if (error < 0)
3380 goto out;
3382 /* Unreachable from current root */
3383 if (error > 0) {
3384 error = prepend_unreachable(&cwd, &buflen);
3385 if (error)
3386 goto out;
3389 error = -ERANGE;
3390 len = PATH_MAX + page - cwd;
3391 if (len <= size) {
3392 error = len;
3393 if (copy_to_user(buf, cwd, len))
3394 error = -EFAULT;
3396 } else {
3397 rcu_read_unlock();
3400 out:
3401 __putname(page);
3402 return error;
3406 * Test whether new_dentry is a subdirectory of old_dentry.
3408 * Trivially implemented using the dcache structure
3412 * is_subdir - is new dentry a subdirectory of old_dentry
3413 * @new_dentry: new dentry
3414 * @old_dentry: old dentry
3416 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3417 * Returns 0 otherwise.
3418 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3421 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3423 int result;
3424 unsigned seq;
3426 if (new_dentry == old_dentry)
3427 return 1;
3429 do {
3430 /* for restarting inner loop in case of seq retry */
3431 seq = read_seqbegin(&rename_lock);
3433 * Need rcu_readlock to protect against the d_parent trashing
3434 * due to d_move
3436 rcu_read_lock();
3437 if (d_ancestor(old_dentry, new_dentry))
3438 result = 1;
3439 else
3440 result = 0;
3441 rcu_read_unlock();
3442 } while (read_seqretry(&rename_lock, seq));
3444 return result;
3447 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3449 struct dentry *root = data;
3450 if (dentry != root) {
3451 if (d_unhashed(dentry) || !dentry->d_inode)
3452 return D_WALK_SKIP;
3454 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3455 dentry->d_flags |= DCACHE_GENOCIDE;
3456 dentry->d_lockref.count--;
3459 return D_WALK_CONTINUE;
3462 void d_genocide(struct dentry *parent)
3464 d_walk(parent, parent, d_genocide_kill, NULL);
3467 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3469 inode_dec_link_count(inode);
3470 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3471 !hlist_unhashed(&dentry->d_u.d_alias) ||
3472 !d_unlinked(dentry));
3473 spin_lock(&dentry->d_parent->d_lock);
3474 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3475 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3476 (unsigned long long)inode->i_ino);
3477 spin_unlock(&dentry->d_lock);
3478 spin_unlock(&dentry->d_parent->d_lock);
3479 d_instantiate(dentry, inode);
3481 EXPORT_SYMBOL(d_tmpfile);
3483 static __initdata unsigned long dhash_entries;
3484 static int __init set_dhash_entries(char *str)
3486 if (!str)
3487 return 0;
3488 dhash_entries = simple_strtoul(str, &str, 0);
3489 return 1;
3491 __setup("dhash_entries=", set_dhash_entries);
3493 static void __init dcache_init_early(void)
3495 unsigned int loop;
3497 /* If hashes are distributed across NUMA nodes, defer
3498 * hash allocation until vmalloc space is available.
3500 if (hashdist)
3501 return;
3503 dentry_hashtable =
3504 alloc_large_system_hash("Dentry cache",
3505 sizeof(struct hlist_bl_head),
3506 dhash_entries,
3508 HASH_EARLY,
3509 &d_hash_shift,
3510 &d_hash_mask,
3514 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3515 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3518 static void __init dcache_init(void)
3520 unsigned int loop;
3523 * A constructor could be added for stable state like the lists,
3524 * but it is probably not worth it because of the cache nature
3525 * of the dcache.
3527 dentry_cache = KMEM_CACHE(dentry,
3528 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3530 /* Hash may have been set up in dcache_init_early */
3531 if (!hashdist)
3532 return;
3534 dentry_hashtable =
3535 alloc_large_system_hash("Dentry cache",
3536 sizeof(struct hlist_bl_head),
3537 dhash_entries,
3540 &d_hash_shift,
3541 &d_hash_mask,
3545 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3546 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3549 /* SLAB cache for __getname() consumers */
3550 struct kmem_cache *names_cachep __read_mostly;
3551 EXPORT_SYMBOL(names_cachep);
3553 EXPORT_SYMBOL(d_genocide);
3555 void __init vfs_caches_init_early(void)
3557 dcache_init_early();
3558 inode_init_early();
3561 void __init vfs_caches_init(unsigned long mempages)
3563 unsigned long reserve;
3565 /* Base hash sizes on available memory, with a reserve equal to
3566 150% of current kernel size */
3568 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3569 mempages -= reserve;
3571 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3572 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3574 dcache_init();
3575 inode_init();
3576 files_init(mempages);
3577 mnt_init();
3578 bdev_cache_init();
3579 chrdev_init();
3582 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
3584 spin_lock(&dentry->d_lock);
3585 if (unlikely(dname_external(dentry))) {
3586 struct external_name *p = external_name(dentry);
3587 atomic_inc(&p->u.count);
3588 spin_unlock(&dentry->d_lock);
3589 name->name = p->name;
3590 } else {
3591 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
3592 spin_unlock(&dentry->d_lock);
3593 name->name = name->inline_name;
3596 EXPORT_SYMBOL(take_dentry_name_snapshot);
3598 void release_dentry_name_snapshot(struct name_snapshot *name)
3600 if (unlikely(name->name != name->inline_name)) {
3601 struct external_name *p;
3602 p = container_of(name->name, struct external_name, name[0]);
3603 if (unlikely(atomic_dec_and_test(&p->u.count)))
3604 kfree_rcu(p, u.head);
3607 EXPORT_SYMBOL(release_dentry_name_snapshot);