4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
64 #include <trace/events/task.h>
67 #include <trace/events/sched.h>
69 int suid_dumpable
= 0;
71 static LIST_HEAD(formats
);
72 static DEFINE_RWLOCK(binfmt_lock
);
74 void __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
77 if (WARN_ON(!fmt
->load_binary
))
79 write_lock(&binfmt_lock
);
80 insert
? list_add(&fmt
->lh
, &formats
) :
81 list_add_tail(&fmt
->lh
, &formats
);
82 write_unlock(&binfmt_lock
);
85 EXPORT_SYMBOL(__register_binfmt
);
87 void unregister_binfmt(struct linux_binfmt
* fmt
)
89 write_lock(&binfmt_lock
);
91 write_unlock(&binfmt_lock
);
94 EXPORT_SYMBOL(unregister_binfmt
);
96 static inline void put_binfmt(struct linux_binfmt
* fmt
)
98 module_put(fmt
->module
);
103 * Note that a shared library must be both readable and executable due to
106 * Also note that we take the address to load from from the file itself.
108 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
110 struct linux_binfmt
*fmt
;
112 struct filename
*tmp
= getname(library
);
113 int error
= PTR_ERR(tmp
);
114 static const struct open_flags uselib_flags
= {
115 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
116 .acc_mode
= MAY_READ
| MAY_EXEC
| MAY_OPEN
,
117 .intent
= LOOKUP_OPEN
,
118 .lookup_flags
= LOOKUP_FOLLOW
,
124 file
= do_filp_open(AT_FDCWD
, tmp
, &uselib_flags
);
126 error
= PTR_ERR(file
);
131 if (!S_ISREG(file_inode(file
)->i_mode
))
135 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
142 read_lock(&binfmt_lock
);
143 list_for_each_entry(fmt
, &formats
, lh
) {
144 if (!fmt
->load_shlib
)
146 if (!try_module_get(fmt
->module
))
148 read_unlock(&binfmt_lock
);
149 error
= fmt
->load_shlib(file
);
150 read_lock(&binfmt_lock
);
152 if (error
!= -ENOEXEC
)
155 read_unlock(&binfmt_lock
);
161 #endif /* #ifdef CONFIG_USELIB */
165 * The nascent bprm->mm is not visible until exec_mmap() but it can
166 * use a lot of memory, account these pages in current->mm temporary
167 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
168 * change the counter back via acct_arg_size(0).
170 static void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
172 struct mm_struct
*mm
= current
->mm
;
173 long diff
= (long)(pages
- bprm
->vma_pages
);
178 bprm
->vma_pages
= pages
;
179 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
182 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
188 #ifdef CONFIG_STACK_GROWSUP
190 ret
= expand_downwards(bprm
->vma
, pos
);
195 ret
= get_user_pages(current
, bprm
->mm
, pos
,
196 1, write
, 1, &page
, NULL
);
201 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
202 unsigned long ptr_size
, limit
;
205 * Since the stack will hold pointers to the strings, we
206 * must account for them as well.
208 * The size calculation is the entire vma while each arg page is
209 * built, so each time we get here it's calculating how far it
210 * is currently (rather than each call being just the newly
211 * added size from the arg page). As a result, we need to
212 * always add the entire size of the pointers, so that on the
213 * last call to get_arg_page() we'll actually have the entire
216 ptr_size
= (bprm
->argc
+ bprm
->envc
) * sizeof(void *);
217 if (ptr_size
> ULONG_MAX
- size
)
221 acct_arg_size(bprm
, size
/ PAGE_SIZE
);
224 * We've historically supported up to 32 pages (ARG_MAX)
225 * of argument strings even with small stacks
231 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
232 * (whichever is smaller) for the argv+env strings.
234 * - the remaining binfmt code will not run out of stack space,
235 * - the program will have a reasonable amount of stack left
238 limit
= _STK_LIM
/ 4 * 3;
239 limit
= min(limit
, rlimit(RLIMIT_STACK
) / 4);
251 static void put_arg_page(struct page
*page
)
256 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
260 static void free_arg_pages(struct linux_binprm
*bprm
)
264 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
267 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
270 static int __bprm_mm_init(struct linux_binprm
*bprm
)
273 struct vm_area_struct
*vma
= NULL
;
274 struct mm_struct
*mm
= bprm
->mm
;
276 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
280 down_write(&mm
->mmap_sem
);
284 * Place the stack at the largest stack address the architecture
285 * supports. Later, we'll move this to an appropriate place. We don't
286 * use STACK_TOP because that can depend on attributes which aren't
289 BUILD_BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
290 vma
->vm_end
= STACK_TOP_MAX
;
291 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
292 vma
->vm_flags
= VM_SOFTDIRTY
| VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
293 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
294 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
296 err
= insert_vm_struct(mm
, vma
);
300 mm
->stack_vm
= mm
->total_vm
= 1;
301 up_write(&mm
->mmap_sem
);
302 bprm
->p
= vma
->vm_end
- sizeof(void *);
305 up_write(&mm
->mmap_sem
);
307 kmem_cache_free(vm_area_cachep
, vma
);
311 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
313 return len
<= MAX_ARG_STRLEN
;
318 static inline void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
322 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
327 page
= bprm
->page
[pos
/ PAGE_SIZE
];
328 if (!page
&& write
) {
329 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
332 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
338 static void put_arg_page(struct page
*page
)
342 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
345 __free_page(bprm
->page
[i
]);
346 bprm
->page
[i
] = NULL
;
350 static void free_arg_pages(struct linux_binprm
*bprm
)
354 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
355 free_arg_page(bprm
, i
);
358 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
363 static int __bprm_mm_init(struct linux_binprm
*bprm
)
365 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
369 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
371 return len
<= bprm
->p
;
374 #endif /* CONFIG_MMU */
377 * Create a new mm_struct and populate it with a temporary stack
378 * vm_area_struct. We don't have enough context at this point to set the stack
379 * flags, permissions, and offset, so we use temporary values. We'll update
380 * them later in setup_arg_pages().
382 static int bprm_mm_init(struct linux_binprm
*bprm
)
385 struct mm_struct
*mm
= NULL
;
387 bprm
->mm
= mm
= mm_alloc();
392 err
= __bprm_mm_init(bprm
);
407 struct user_arg_ptr
{
412 const char __user
*const __user
*native
;
414 const compat_uptr_t __user
*compat
;
419 static const char __user
*get_user_arg_ptr(struct user_arg_ptr argv
, int nr
)
421 const char __user
*native
;
424 if (unlikely(argv
.is_compat
)) {
425 compat_uptr_t compat
;
427 if (get_user(compat
, argv
.ptr
.compat
+ nr
))
428 return ERR_PTR(-EFAULT
);
430 return compat_ptr(compat
);
434 if (get_user(native
, argv
.ptr
.native
+ nr
))
435 return ERR_PTR(-EFAULT
);
441 * count() counts the number of strings in array ARGV.
443 static int count(struct user_arg_ptr argv
, int max
)
447 if (argv
.ptr
.native
!= NULL
) {
449 const char __user
*p
= get_user_arg_ptr(argv
, i
);
461 if (fatal_signal_pending(current
))
462 return -ERESTARTNOHAND
;
470 * 'copy_strings()' copies argument/environment strings from the old
471 * processes's memory to the new process's stack. The call to get_user_pages()
472 * ensures the destination page is created and not swapped out.
474 static int copy_strings(int argc
, struct user_arg_ptr argv
,
475 struct linux_binprm
*bprm
)
477 struct page
*kmapped_page
= NULL
;
479 unsigned long kpos
= 0;
483 const char __user
*str
;
488 str
= get_user_arg_ptr(argv
, argc
);
492 len
= strnlen_user(str
, MAX_ARG_STRLEN
);
497 if (!valid_arg_len(bprm
, len
))
500 /* We're going to work our way backwords. */
506 int offset
, bytes_to_copy
;
508 if (fatal_signal_pending(current
)) {
509 ret
= -ERESTARTNOHAND
;
514 offset
= pos
% PAGE_SIZE
;
518 bytes_to_copy
= offset
;
519 if (bytes_to_copy
> len
)
522 offset
-= bytes_to_copy
;
523 pos
-= bytes_to_copy
;
524 str
-= bytes_to_copy
;
525 len
-= bytes_to_copy
;
527 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
530 page
= get_arg_page(bprm
, pos
, 1);
537 flush_kernel_dcache_page(kmapped_page
);
538 kunmap(kmapped_page
);
539 put_arg_page(kmapped_page
);
542 kaddr
= kmap(kmapped_page
);
543 kpos
= pos
& PAGE_MASK
;
544 flush_arg_page(bprm
, kpos
, kmapped_page
);
546 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
555 flush_kernel_dcache_page(kmapped_page
);
556 kunmap(kmapped_page
);
557 put_arg_page(kmapped_page
);
563 * Like copy_strings, but get argv and its values from kernel memory.
565 int copy_strings_kernel(int argc
, const char *const *__argv
,
566 struct linux_binprm
*bprm
)
569 mm_segment_t oldfs
= get_fs();
570 struct user_arg_ptr argv
= {
571 .ptr
.native
= (const char __user
*const __user
*)__argv
,
575 r
= copy_strings(argc
, argv
, bprm
);
580 EXPORT_SYMBOL(copy_strings_kernel
);
585 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
586 * the binfmt code determines where the new stack should reside, we shift it to
587 * its final location. The process proceeds as follows:
589 * 1) Use shift to calculate the new vma endpoints.
590 * 2) Extend vma to cover both the old and new ranges. This ensures the
591 * arguments passed to subsequent functions are consistent.
592 * 3) Move vma's page tables to the new range.
593 * 4) Free up any cleared pgd range.
594 * 5) Shrink the vma to cover only the new range.
596 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
598 struct mm_struct
*mm
= vma
->vm_mm
;
599 unsigned long old_start
= vma
->vm_start
;
600 unsigned long old_end
= vma
->vm_end
;
601 unsigned long length
= old_end
- old_start
;
602 unsigned long new_start
= old_start
- shift
;
603 unsigned long new_end
= old_end
- shift
;
604 struct mmu_gather tlb
;
606 BUG_ON(new_start
> new_end
);
609 * ensure there are no vmas between where we want to go
612 if (vma
!= find_vma(mm
, new_start
))
616 * cover the whole range: [new_start, old_end)
618 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
622 * move the page tables downwards, on failure we rely on
623 * process cleanup to remove whatever mess we made.
625 if (length
!= move_page_tables(vma
, old_start
,
626 vma
, new_start
, length
, false))
630 tlb_gather_mmu(&tlb
, mm
, old_start
, old_end
);
631 if (new_end
> old_start
) {
633 * when the old and new regions overlap clear from new_end.
635 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
636 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
639 * otherwise, clean from old_start; this is done to not touch
640 * the address space in [new_end, old_start) some architectures
641 * have constraints on va-space that make this illegal (IA64) -
642 * for the others its just a little faster.
644 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
645 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
647 tlb_finish_mmu(&tlb
, old_start
, old_end
);
650 * Shrink the vma to just the new range. Always succeeds.
652 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
658 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
659 * the stack is optionally relocated, and some extra space is added.
661 int setup_arg_pages(struct linux_binprm
*bprm
,
662 unsigned long stack_top
,
663 int executable_stack
)
666 unsigned long stack_shift
;
667 struct mm_struct
*mm
= current
->mm
;
668 struct vm_area_struct
*vma
= bprm
->vma
;
669 struct vm_area_struct
*prev
= NULL
;
670 unsigned long vm_flags
;
671 unsigned long stack_base
;
672 unsigned long stack_size
;
673 unsigned long stack_expand
;
674 unsigned long rlim_stack
;
676 #ifdef CONFIG_STACK_GROWSUP
677 /* Limit stack size */
678 stack_base
= rlimit_max(RLIMIT_STACK
);
679 if (stack_base
> STACK_SIZE_MAX
)
680 stack_base
= STACK_SIZE_MAX
;
682 /* Add space for stack randomization. */
683 stack_base
+= (STACK_RND_MASK
<< PAGE_SHIFT
);
685 /* Make sure we didn't let the argument array grow too large. */
686 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
689 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
691 stack_shift
= vma
->vm_start
- stack_base
;
692 mm
->arg_start
= bprm
->p
- stack_shift
;
693 bprm
->p
= vma
->vm_end
- stack_shift
;
695 stack_top
= arch_align_stack(stack_top
);
696 stack_top
= PAGE_ALIGN(stack_top
);
698 if (unlikely(stack_top
< mmap_min_addr
) ||
699 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
702 stack_shift
= vma
->vm_end
- stack_top
;
704 bprm
->p
-= stack_shift
;
705 mm
->arg_start
= bprm
->p
;
709 bprm
->loader
-= stack_shift
;
710 bprm
->exec
-= stack_shift
;
712 down_write(&mm
->mmap_sem
);
713 vm_flags
= VM_STACK_FLAGS
;
716 * Adjust stack execute permissions; explicitly enable for
717 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
718 * (arch default) otherwise.
720 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
722 else if (executable_stack
== EXSTACK_DISABLE_X
)
723 vm_flags
&= ~VM_EXEC
;
724 vm_flags
|= mm
->def_flags
;
725 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
727 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
733 /* Move stack pages down in memory. */
735 ret
= shift_arg_pages(vma
, stack_shift
);
740 /* mprotect_fixup is overkill to remove the temporary stack flags */
741 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
743 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
744 stack_size
= vma
->vm_end
- vma
->vm_start
;
746 * Align this down to a page boundary as expand_stack
749 rlim_stack
= rlimit(RLIMIT_STACK
) & PAGE_MASK
;
750 #ifdef CONFIG_STACK_GROWSUP
751 if (stack_size
+ stack_expand
> rlim_stack
)
752 stack_base
= vma
->vm_start
+ rlim_stack
;
754 stack_base
= vma
->vm_end
+ stack_expand
;
756 if (stack_size
+ stack_expand
> rlim_stack
)
757 stack_base
= vma
->vm_end
- rlim_stack
;
759 stack_base
= vma
->vm_start
- stack_expand
;
761 current
->mm
->start_stack
= bprm
->p
;
762 ret
= expand_stack(vma
, stack_base
);
767 up_write(&mm
->mmap_sem
);
770 EXPORT_SYMBOL(setup_arg_pages
);
772 #endif /* CONFIG_MMU */
774 static struct file
*do_open_exec(struct filename
*name
)
778 static const struct open_flags open_exec_flags
= {
779 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
780 .acc_mode
= MAY_EXEC
| MAY_OPEN
,
781 .intent
= LOOKUP_OPEN
,
782 .lookup_flags
= LOOKUP_FOLLOW
,
785 file
= do_filp_open(AT_FDCWD
, name
, &open_exec_flags
);
790 if (!S_ISREG(file_inode(file
)->i_mode
))
793 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
798 err
= deny_write_access(file
);
810 struct file
*open_exec(const char *name
)
812 struct filename tmp
= { .name
= name
};
813 return do_open_exec(&tmp
);
815 EXPORT_SYMBOL(open_exec
);
817 int kernel_read(struct file
*file
, loff_t offset
,
818 char *addr
, unsigned long count
)
826 /* The cast to a user pointer is valid due to the set_fs() */
827 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
832 EXPORT_SYMBOL(kernel_read
);
834 ssize_t
read_code(struct file
*file
, unsigned long addr
, loff_t pos
, size_t len
)
836 ssize_t res
= vfs_read(file
, (void __user
*)addr
, len
, &pos
);
838 flush_icache_range(addr
, addr
+ len
);
841 EXPORT_SYMBOL(read_code
);
843 static int exec_mmap(struct mm_struct
*mm
)
845 struct task_struct
*tsk
;
846 struct mm_struct
*old_mm
, *active_mm
;
848 /* Notify parent that we're no longer interested in the old VM */
850 old_mm
= current
->mm
;
851 mm_release(tsk
, old_mm
);
856 * Make sure that if there is a core dump in progress
857 * for the old mm, we get out and die instead of going
858 * through with the exec. We must hold mmap_sem around
859 * checking core_state and changing tsk->mm.
861 down_read(&old_mm
->mmap_sem
);
862 if (unlikely(old_mm
->core_state
)) {
863 up_read(&old_mm
->mmap_sem
);
868 active_mm
= tsk
->active_mm
;
871 activate_mm(active_mm
, mm
);
872 tsk
->mm
->vmacache_seqnum
= 0;
876 up_read(&old_mm
->mmap_sem
);
877 BUG_ON(active_mm
!= old_mm
);
878 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, old_mm
);
879 mm_update_next_owner(old_mm
);
888 * This function makes sure the current process has its own signal table,
889 * so that flush_signal_handlers can later reset the handlers without
890 * disturbing other processes. (Other processes might share the signal
891 * table via the CLONE_SIGHAND option to clone().)
893 static int de_thread(struct task_struct
*tsk
)
895 struct signal_struct
*sig
= tsk
->signal
;
896 struct sighand_struct
*oldsighand
= tsk
->sighand
;
897 spinlock_t
*lock
= &oldsighand
->siglock
;
899 if (thread_group_empty(tsk
))
900 goto no_thread_group
;
903 * Kill all other threads in the thread group.
906 if (signal_group_exit(sig
)) {
908 * Another group action in progress, just
909 * return so that the signal is processed.
911 spin_unlock_irq(lock
);
915 sig
->group_exit_task
= tsk
;
916 sig
->notify_count
= zap_other_threads(tsk
);
917 if (!thread_group_leader(tsk
))
920 while (sig
->notify_count
) {
921 __set_current_state(TASK_KILLABLE
);
922 spin_unlock_irq(lock
);
924 if (unlikely(__fatal_signal_pending(tsk
)))
928 spin_unlock_irq(lock
);
931 * At this point all other threads have exited, all we have to
932 * do is to wait for the thread group leader to become inactive,
933 * and to assume its PID:
935 if (!thread_group_leader(tsk
)) {
936 struct task_struct
*leader
= tsk
->group_leader
;
938 sig
->notify_count
= -1; /* for exit_notify() */
940 threadgroup_change_begin(tsk
);
941 write_lock_irq(&tasklist_lock
);
942 if (likely(leader
->exit_state
))
944 __set_current_state(TASK_KILLABLE
);
945 write_unlock_irq(&tasklist_lock
);
946 threadgroup_change_end(tsk
);
948 if (unlikely(__fatal_signal_pending(tsk
)))
953 * The only record we have of the real-time age of a
954 * process, regardless of execs it's done, is start_time.
955 * All the past CPU time is accumulated in signal_struct
956 * from sister threads now dead. But in this non-leader
957 * exec, nothing survives from the original leader thread,
958 * whose birth marks the true age of this process now.
959 * When we take on its identity by switching to its PID, we
960 * also take its birthdate (always earlier than our own).
962 tsk
->start_time
= leader
->start_time
;
963 tsk
->real_start_time
= leader
->real_start_time
;
965 BUG_ON(!same_thread_group(leader
, tsk
));
966 BUG_ON(has_group_leader_pid(tsk
));
968 * An exec() starts a new thread group with the
969 * TGID of the previous thread group. Rehash the
970 * two threads with a switched PID, and release
971 * the former thread group leader:
974 /* Become a process group leader with the old leader's pid.
975 * The old leader becomes a thread of the this thread group.
976 * Note: The old leader also uses this pid until release_task
977 * is called. Odd but simple and correct.
979 tsk
->pid
= leader
->pid
;
980 change_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
981 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
982 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
984 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
985 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
987 tsk
->group_leader
= tsk
;
988 leader
->group_leader
= tsk
;
990 tsk
->exit_signal
= SIGCHLD
;
991 leader
->exit_signal
= -1;
993 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
994 leader
->exit_state
= EXIT_DEAD
;
997 * We are going to release_task()->ptrace_unlink() silently,
998 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
999 * the tracer wont't block again waiting for this thread.
1001 if (unlikely(leader
->ptrace
))
1002 __wake_up_parent(leader
, leader
->parent
);
1003 write_unlock_irq(&tasklist_lock
);
1004 threadgroup_change_end(tsk
);
1006 release_task(leader
);
1009 sig
->group_exit_task
= NULL
;
1010 sig
->notify_count
= 0;
1013 /* we have changed execution domain */
1014 tsk
->exit_signal
= SIGCHLD
;
1017 flush_itimer_signals();
1019 if (atomic_read(&oldsighand
->count
) != 1) {
1020 struct sighand_struct
*newsighand
;
1022 * This ->sighand is shared with the CLONE_SIGHAND
1023 * but not CLONE_THREAD task, switch to the new one.
1025 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1029 atomic_set(&newsighand
->count
, 1);
1030 memcpy(newsighand
->action
, oldsighand
->action
,
1031 sizeof(newsighand
->action
));
1033 write_lock_irq(&tasklist_lock
);
1034 spin_lock(&oldsighand
->siglock
);
1035 rcu_assign_pointer(tsk
->sighand
, newsighand
);
1036 spin_unlock(&oldsighand
->siglock
);
1037 write_unlock_irq(&tasklist_lock
);
1039 __cleanup_sighand(oldsighand
);
1042 BUG_ON(!thread_group_leader(tsk
));
1046 /* protects against exit_notify() and __exit_signal() */
1047 read_lock(&tasklist_lock
);
1048 sig
->group_exit_task
= NULL
;
1049 sig
->notify_count
= 0;
1050 read_unlock(&tasklist_lock
);
1054 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
1056 /* buf must be at least sizeof(tsk->comm) in size */
1058 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
1062 EXPORT_SYMBOL_GPL(get_task_comm
);
1065 * These functions flushes out all traces of the currently running executable
1066 * so that a new one can be started
1069 void __set_task_comm(struct task_struct
*tsk
, const char *buf
, bool exec
)
1072 trace_task_rename(tsk
, buf
);
1073 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1075 perf_event_comm(tsk
, exec
);
1078 int flush_old_exec(struct linux_binprm
* bprm
)
1083 * Make sure we have a private signal table and that
1084 * we are unassociated from the previous thread group.
1086 retval
= de_thread(current
);
1090 set_mm_exe_file(bprm
->mm
, bprm
->file
);
1092 * Release all of the old mmap stuff
1094 acct_arg_size(bprm
, 0);
1095 retval
= exec_mmap(bprm
->mm
);
1099 bprm
->mm
= NULL
; /* We're using it now */
1102 current
->flags
&= ~(PF_RANDOMIZE
| PF_FORKNOEXEC
| PF_KTHREAD
|
1103 PF_NOFREEZE
| PF_NO_SETAFFINITY
);
1105 current
->personality
&= ~bprm
->per_clear
;
1108 * We have to apply CLOEXEC before we change whether the process is
1109 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1110 * trying to access the should-be-closed file descriptors of a process
1111 * undergoing exec(2).
1113 do_close_on_exec(current
->files
);
1119 EXPORT_SYMBOL(flush_old_exec
);
1121 void would_dump(struct linux_binprm
*bprm
, struct file
*file
)
1123 if (inode_permission(file_inode(file
), MAY_READ
) < 0)
1124 bprm
->interp_flags
|= BINPRM_FLAGS_ENFORCE_NONDUMP
;
1126 EXPORT_SYMBOL(would_dump
);
1128 void setup_new_exec(struct linux_binprm
* bprm
)
1130 arch_pick_mmap_layout(current
->mm
);
1132 /* This is the point of no return */
1133 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1135 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1136 set_dumpable(current
->mm
, SUID_DUMP_USER
);
1138 set_dumpable(current
->mm
, suid_dumpable
);
1141 __set_task_comm(current
, kbasename(bprm
->filename
), true);
1143 /* Set the new mm task size. We have to do that late because it may
1144 * depend on TIF_32BIT which is only updated in flush_thread() on
1145 * some architectures like powerpc
1147 current
->mm
->task_size
= TASK_SIZE
;
1149 /* install the new credentials */
1150 if (!uid_eq(bprm
->cred
->uid
, current_euid()) ||
1151 !gid_eq(bprm
->cred
->gid
, current_egid())) {
1152 current
->pdeath_signal
= 0;
1154 would_dump(bprm
, bprm
->file
);
1155 if (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)
1156 set_dumpable(current
->mm
, suid_dumpable
);
1159 /* An exec changes our domain. We are no longer part of the thread
1161 current
->self_exec_id
++;
1162 flush_signal_handlers(current
, 0);
1164 EXPORT_SYMBOL(setup_new_exec
);
1167 * Prepare credentials and lock ->cred_guard_mutex.
1168 * install_exec_creds() commits the new creds and drops the lock.
1169 * Or, if exec fails before, free_bprm() should release ->cred and
1172 int prepare_bprm_creds(struct linux_binprm
*bprm
)
1174 if (mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
))
1175 return -ERESTARTNOINTR
;
1177 bprm
->cred
= prepare_exec_creds();
1178 if (likely(bprm
->cred
))
1181 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1185 static void free_bprm(struct linux_binprm
*bprm
)
1187 free_arg_pages(bprm
);
1189 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1190 abort_creds(bprm
->cred
);
1193 allow_write_access(bprm
->file
);
1196 /* If a binfmt changed the interp, free it. */
1197 if (bprm
->interp
!= bprm
->filename
)
1198 kfree(bprm
->interp
);
1202 int bprm_change_interp(char *interp
, struct linux_binprm
*bprm
)
1204 /* If a binfmt changed the interp, free it first. */
1205 if (bprm
->interp
!= bprm
->filename
)
1206 kfree(bprm
->interp
);
1207 bprm
->interp
= kstrdup(interp
, GFP_KERNEL
);
1212 EXPORT_SYMBOL(bprm_change_interp
);
1215 * install the new credentials for this executable
1217 void install_exec_creds(struct linux_binprm
*bprm
)
1219 security_bprm_committing_creds(bprm
);
1221 commit_creds(bprm
->cred
);
1225 * Disable monitoring for regular users
1226 * when executing setuid binaries. Must
1227 * wait until new credentials are committed
1228 * by commit_creds() above
1230 if (get_dumpable(current
->mm
) != SUID_DUMP_USER
)
1231 perf_event_exit_task(current
);
1233 * cred_guard_mutex must be held at least to this point to prevent
1234 * ptrace_attach() from altering our determination of the task's
1235 * credentials; any time after this it may be unlocked.
1237 security_bprm_committed_creds(bprm
);
1238 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1240 EXPORT_SYMBOL(install_exec_creds
);
1243 * determine how safe it is to execute the proposed program
1244 * - the caller must hold ->cred_guard_mutex to protect against
1245 * PTRACE_ATTACH or seccomp thread-sync
1247 static void check_unsafe_exec(struct linux_binprm
*bprm
)
1249 struct task_struct
*p
= current
, *t
;
1253 if (p
->ptrace
& PT_PTRACE_CAP
)
1254 bprm
->unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
1256 bprm
->unsafe
|= LSM_UNSAFE_PTRACE
;
1260 * This isn't strictly necessary, but it makes it harder for LSMs to
1263 if (task_no_new_privs(current
))
1264 bprm
->unsafe
|= LSM_UNSAFE_NO_NEW_PRIVS
;
1268 spin_lock(&p
->fs
->lock
);
1270 while_each_thread(p
, t
) {
1276 if (p
->fs
->users
> n_fs
)
1277 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1280 spin_unlock(&p
->fs
->lock
);
1283 static void bprm_fill_uid(struct linux_binprm
*bprm
)
1285 struct inode
*inode
;
1290 /* clear any previous set[ug]id data from a previous binary */
1291 bprm
->cred
->euid
= current_euid();
1292 bprm
->cred
->egid
= current_egid();
1294 if (bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)
1297 if (task_no_new_privs(current
))
1300 inode
= file_inode(bprm
->file
);
1301 mode
= READ_ONCE(inode
->i_mode
);
1302 if (!(mode
& (S_ISUID
|S_ISGID
)))
1305 /* Be careful if suid/sgid is set */
1306 mutex_lock(&inode
->i_mutex
);
1308 /* reload atomically mode/uid/gid now that lock held */
1309 mode
= inode
->i_mode
;
1312 mutex_unlock(&inode
->i_mutex
);
1314 /* We ignore suid/sgid if there are no mappings for them in the ns */
1315 if (!kuid_has_mapping(bprm
->cred
->user_ns
, uid
) ||
1316 !kgid_has_mapping(bprm
->cred
->user_ns
, gid
))
1319 if (mode
& S_ISUID
) {
1320 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1321 bprm
->cred
->euid
= uid
;
1324 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1325 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1326 bprm
->cred
->egid
= gid
;
1331 * Fill the binprm structure from the inode.
1332 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1334 * This may be called multiple times for binary chains (scripts for example).
1336 int prepare_binprm(struct linux_binprm
*bprm
)
1340 bprm_fill_uid(bprm
);
1342 /* fill in binprm security blob */
1343 retval
= security_bprm_set_creds(bprm
);
1346 bprm
->cred_prepared
= 1;
1348 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1349 return kernel_read(bprm
->file
, 0, bprm
->buf
, BINPRM_BUF_SIZE
);
1352 EXPORT_SYMBOL(prepare_binprm
);
1355 * Arguments are '\0' separated strings found at the location bprm->p
1356 * points to; chop off the first by relocating brpm->p to right after
1357 * the first '\0' encountered.
1359 int remove_arg_zero(struct linux_binprm
*bprm
)
1362 unsigned long offset
;
1370 offset
= bprm
->p
& ~PAGE_MASK
;
1371 page
= get_arg_page(bprm
, bprm
->p
, 0);
1376 kaddr
= kmap_atomic(page
);
1378 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1379 offset
++, bprm
->p
++)
1382 kunmap_atomic(kaddr
);
1385 if (offset
== PAGE_SIZE
)
1386 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1387 } while (offset
== PAGE_SIZE
);
1396 EXPORT_SYMBOL(remove_arg_zero
);
1398 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1400 * cycle the list of binary formats handler, until one recognizes the image
1402 int search_binary_handler(struct linux_binprm
*bprm
)
1404 bool need_retry
= IS_ENABLED(CONFIG_MODULES
);
1405 struct linux_binfmt
*fmt
;
1408 /* This allows 4 levels of binfmt rewrites before failing hard. */
1409 if (bprm
->recursion_depth
> 5)
1412 retval
= security_bprm_check(bprm
);
1418 read_lock(&binfmt_lock
);
1419 list_for_each_entry(fmt
, &formats
, lh
) {
1420 if (!try_module_get(fmt
->module
))
1422 read_unlock(&binfmt_lock
);
1423 bprm
->recursion_depth
++;
1424 retval
= fmt
->load_binary(bprm
);
1425 read_lock(&binfmt_lock
);
1427 bprm
->recursion_depth
--;
1428 if (retval
< 0 && !bprm
->mm
) {
1429 /* we got to flush_old_exec() and failed after it */
1430 read_unlock(&binfmt_lock
);
1431 force_sigsegv(SIGSEGV
, current
);
1434 if (retval
!= -ENOEXEC
|| !bprm
->file
) {
1435 read_unlock(&binfmt_lock
);
1439 read_unlock(&binfmt_lock
);
1442 if (printable(bprm
->buf
[0]) && printable(bprm
->buf
[1]) &&
1443 printable(bprm
->buf
[2]) && printable(bprm
->buf
[3]))
1445 if (request_module("binfmt-%04x", *(ushort
*)(bprm
->buf
+ 2)) < 0)
1453 EXPORT_SYMBOL(search_binary_handler
);
1455 static int exec_binprm(struct linux_binprm
*bprm
)
1457 pid_t old_pid
, old_vpid
;
1460 /* Need to fetch pid before load_binary changes it */
1461 old_pid
= current
->pid
;
1463 old_vpid
= task_pid_nr_ns(current
, task_active_pid_ns(current
->parent
));
1466 ret
= search_binary_handler(bprm
);
1469 trace_sched_process_exec(current
, old_pid
, bprm
);
1470 ptrace_event(PTRACE_EVENT_EXEC
, old_vpid
);
1471 proc_exec_connector(current
);
1478 * sys_execve() executes a new program.
1480 static int do_execve_common(struct filename
*filename
,
1481 struct user_arg_ptr argv
,
1482 struct user_arg_ptr envp
)
1484 struct linux_binprm
*bprm
;
1486 struct files_struct
*displaced
;
1489 if (IS_ERR(filename
))
1490 return PTR_ERR(filename
);
1493 * We move the actual failure in case of RLIMIT_NPROC excess from
1494 * set*uid() to execve() because too many poorly written programs
1495 * don't check setuid() return code. Here we additionally recheck
1496 * whether NPROC limit is still exceeded.
1498 if ((current
->flags
& PF_NPROC_EXCEEDED
) &&
1499 atomic_read(¤t_user()->processes
) > rlimit(RLIMIT_NPROC
)) {
1504 /* We're below the limit (still or again), so we don't want to make
1505 * further execve() calls fail. */
1506 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1508 retval
= unshare_files(&displaced
);
1513 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1517 retval
= prepare_bprm_creds(bprm
);
1521 check_unsafe_exec(bprm
);
1522 current
->in_execve
= 1;
1524 file
= do_open_exec(filename
);
1525 retval
= PTR_ERR(file
);
1532 bprm
->filename
= bprm
->interp
= filename
->name
;
1534 retval
= bprm_mm_init(bprm
);
1538 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1539 if ((retval
= bprm
->argc
) < 0)
1542 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1543 if ((retval
= bprm
->envc
) < 0)
1546 retval
= prepare_binprm(bprm
);
1550 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1554 bprm
->exec
= bprm
->p
;
1555 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1559 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1563 retval
= exec_binprm(bprm
);
1567 /* execve succeeded */
1568 current
->fs
->in_exec
= 0;
1569 current
->in_execve
= 0;
1570 acct_update_integrals(current
);
1571 task_numa_free(current
);
1575 put_files_struct(displaced
);
1580 acct_arg_size(bprm
, 0);
1585 current
->fs
->in_exec
= 0;
1586 current
->in_execve
= 0;
1593 reset_files_struct(displaced
);
1599 int do_execve(struct filename
*filename
,
1600 const char __user
*const __user
*__argv
,
1601 const char __user
*const __user
*__envp
)
1603 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1604 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1605 return do_execve_common(filename
, argv
, envp
);
1608 #ifdef CONFIG_COMPAT
1609 static int compat_do_execve(struct filename
*filename
,
1610 const compat_uptr_t __user
*__argv
,
1611 const compat_uptr_t __user
*__envp
)
1613 struct user_arg_ptr argv
= {
1615 .ptr
.compat
= __argv
,
1617 struct user_arg_ptr envp
= {
1619 .ptr
.compat
= __envp
,
1621 return do_execve_common(filename
, argv
, envp
);
1625 void set_binfmt(struct linux_binfmt
*new)
1627 struct mm_struct
*mm
= current
->mm
;
1630 module_put(mm
->binfmt
->module
);
1634 __module_get(new->module
);
1636 EXPORT_SYMBOL(set_binfmt
);
1639 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1641 void set_dumpable(struct mm_struct
*mm
, int value
)
1643 unsigned long old
, new;
1645 if (WARN_ON((unsigned)value
> SUID_DUMP_ROOT
))
1649 old
= ACCESS_ONCE(mm
->flags
);
1650 new = (old
& ~MMF_DUMPABLE_MASK
) | value
;
1651 } while (cmpxchg(&mm
->flags
, old
, new) != old
);
1654 SYSCALL_DEFINE3(execve
,
1655 const char __user
*, filename
,
1656 const char __user
*const __user
*, argv
,
1657 const char __user
*const __user
*, envp
)
1659 return do_execve(getname(filename
), argv
, envp
);
1661 #ifdef CONFIG_COMPAT
1662 COMPAT_SYSCALL_DEFINE3(execve
, const char __user
*, filename
,
1663 const compat_uptr_t __user
*, argv
,
1664 const compat_uptr_t __user
*, envp
)
1666 return compat_do_execve(getname(filename
), argv
, envp
);