i2c: designware-master: use core to detect 'no zero length' quirk
[linux/fpc-iii.git] / net / core / skbuff.c
blob8e51f8555e11b95bc48ab334f50571048f705101
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <linux/udp.h>
51 #include <linux/sctp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
80 struct kmem_cache *skbuff_head_cache __ro_after_init;
81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
85 /**
86 * skb_panic - private function for out-of-line support
87 * @skb: buffer
88 * @sz: size
89 * @addr: address
90 * @msg: skb_over_panic or skb_under_panic
92 * Out-of-line support for skb_put() and skb_push().
93 * Called via the wrapper skb_over_panic() or skb_under_panic().
94 * Keep out of line to prevent kernel bloat.
95 * __builtin_return_address is not used because it is not always reliable.
97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 const char msg[])
100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 msg, addr, skb->len, sz, skb->head, skb->data,
102 (unsigned long)skb->tail, (unsigned long)skb->end,
103 skb->dev ? skb->dev->name : "<NULL>");
104 BUG();
107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 skb_panic(skb, sz, addr, __func__);
112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 skb_panic(skb, sz, addr, __func__);
118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119 * the caller if emergency pfmemalloc reserves are being used. If it is and
120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121 * may be used. Otherwise, the packet data may be discarded until enough
122 * memory is free
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 unsigned long ip, bool *pfmemalloc)
130 void *obj;
131 bool ret_pfmemalloc = false;
134 * Try a regular allocation, when that fails and we're not entitled
135 * to the reserves, fail.
137 obj = kmalloc_node_track_caller(size,
138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 node);
140 if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 goto out;
143 /* Try again but now we are using pfmemalloc reserves */
144 ret_pfmemalloc = true;
145 obj = kmalloc_node_track_caller(size, flags, node);
147 out:
148 if (pfmemalloc)
149 *pfmemalloc = ret_pfmemalloc;
151 return obj;
154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
155 * 'private' fields and also do memory statistics to find all the
156 * [BEEP] leaks.
161 * __alloc_skb - allocate a network buffer
162 * @size: size to allocate
163 * @gfp_mask: allocation mask
164 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
165 * instead of head cache and allocate a cloned (child) skb.
166 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
167 * allocations in case the data is required for writeback
168 * @node: numa node to allocate memory on
170 * Allocate a new &sk_buff. The returned buffer has no headroom and a
171 * tail room of at least size bytes. The object has a reference count
172 * of one. The return is the buffer. On a failure the return is %NULL.
174 * Buffers may only be allocated from interrupts using a @gfp_mask of
175 * %GFP_ATOMIC.
177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
178 int flags, int node)
180 struct kmem_cache *cache;
181 struct skb_shared_info *shinfo;
182 struct sk_buff *skb;
183 u8 *data;
184 bool pfmemalloc;
186 cache = (flags & SKB_ALLOC_FCLONE)
187 ? skbuff_fclone_cache : skbuff_head_cache;
189 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
190 gfp_mask |= __GFP_MEMALLOC;
192 /* Get the HEAD */
193 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
194 if (!skb)
195 goto out;
196 prefetchw(skb);
198 /* We do our best to align skb_shared_info on a separate cache
199 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
200 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
201 * Both skb->head and skb_shared_info are cache line aligned.
203 size = SKB_DATA_ALIGN(size);
204 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
206 if (!data)
207 goto nodata;
208 /* kmalloc(size) might give us more room than requested.
209 * Put skb_shared_info exactly at the end of allocated zone,
210 * to allow max possible filling before reallocation.
212 size = SKB_WITH_OVERHEAD(ksize(data));
213 prefetchw(data + size);
216 * Only clear those fields we need to clear, not those that we will
217 * actually initialise below. Hence, don't put any more fields after
218 * the tail pointer in struct sk_buff!
220 memset(skb, 0, offsetof(struct sk_buff, tail));
221 /* Account for allocated memory : skb + skb->head */
222 skb->truesize = SKB_TRUESIZE(size);
223 skb->pfmemalloc = pfmemalloc;
224 refcount_set(&skb->users, 1);
225 skb->head = data;
226 skb->data = data;
227 skb_reset_tail_pointer(skb);
228 skb->end = skb->tail + size;
229 skb->mac_header = (typeof(skb->mac_header))~0U;
230 skb->transport_header = (typeof(skb->transport_header))~0U;
232 /* make sure we initialize shinfo sequentially */
233 shinfo = skb_shinfo(skb);
234 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
235 atomic_set(&shinfo->dataref, 1);
237 if (flags & SKB_ALLOC_FCLONE) {
238 struct sk_buff_fclones *fclones;
240 fclones = container_of(skb, struct sk_buff_fclones, skb1);
242 skb->fclone = SKB_FCLONE_ORIG;
243 refcount_set(&fclones->fclone_ref, 1);
245 fclones->skb2.fclone = SKB_FCLONE_CLONE;
247 out:
248 return skb;
249 nodata:
250 kmem_cache_free(cache, skb);
251 skb = NULL;
252 goto out;
254 EXPORT_SYMBOL(__alloc_skb);
257 * __build_skb - build a network buffer
258 * @data: data buffer provided by caller
259 * @frag_size: size of data, or 0 if head was kmalloced
261 * Allocate a new &sk_buff. Caller provides space holding head and
262 * skb_shared_info. @data must have been allocated by kmalloc() only if
263 * @frag_size is 0, otherwise data should come from the page allocator
264 * or vmalloc()
265 * The return is the new skb buffer.
266 * On a failure the return is %NULL, and @data is not freed.
267 * Notes :
268 * Before IO, driver allocates only data buffer where NIC put incoming frame
269 * Driver should add room at head (NET_SKB_PAD) and
270 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
271 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
272 * before giving packet to stack.
273 * RX rings only contains data buffers, not full skbs.
275 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
277 struct skb_shared_info *shinfo;
278 struct sk_buff *skb;
279 unsigned int size = frag_size ? : ksize(data);
281 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
282 if (!skb)
283 return NULL;
285 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
287 memset(skb, 0, offsetof(struct sk_buff, tail));
288 skb->truesize = SKB_TRUESIZE(size);
289 refcount_set(&skb->users, 1);
290 skb->head = data;
291 skb->data = data;
292 skb_reset_tail_pointer(skb);
293 skb->end = skb->tail + size;
294 skb->mac_header = (typeof(skb->mac_header))~0U;
295 skb->transport_header = (typeof(skb->transport_header))~0U;
297 /* make sure we initialize shinfo sequentially */
298 shinfo = skb_shinfo(skb);
299 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
300 atomic_set(&shinfo->dataref, 1);
302 return skb;
305 /* build_skb() is wrapper over __build_skb(), that specifically
306 * takes care of skb->head and skb->pfmemalloc
307 * This means that if @frag_size is not zero, then @data must be backed
308 * by a page fragment, not kmalloc() or vmalloc()
310 struct sk_buff *build_skb(void *data, unsigned int frag_size)
312 struct sk_buff *skb = __build_skb(data, frag_size);
314 if (skb && frag_size) {
315 skb->head_frag = 1;
316 if (page_is_pfmemalloc(virt_to_head_page(data)))
317 skb->pfmemalloc = 1;
319 return skb;
321 EXPORT_SYMBOL(build_skb);
323 #define NAPI_SKB_CACHE_SIZE 64
325 struct napi_alloc_cache {
326 struct page_frag_cache page;
327 unsigned int skb_count;
328 void *skb_cache[NAPI_SKB_CACHE_SIZE];
331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
336 struct page_frag_cache *nc;
337 unsigned long flags;
338 void *data;
340 local_irq_save(flags);
341 nc = this_cpu_ptr(&netdev_alloc_cache);
342 data = page_frag_alloc(nc, fragsz, gfp_mask);
343 local_irq_restore(flags);
344 return data;
348 * netdev_alloc_frag - allocate a page fragment
349 * @fragsz: fragment size
351 * Allocates a frag from a page for receive buffer.
352 * Uses GFP_ATOMIC allocations.
354 void *netdev_alloc_frag(unsigned int fragsz)
356 return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
358 EXPORT_SYMBOL(netdev_alloc_frag);
360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
362 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
364 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
367 void *napi_alloc_frag(unsigned int fragsz)
369 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
371 EXPORT_SYMBOL(napi_alloc_frag);
374 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
375 * @dev: network device to receive on
376 * @len: length to allocate
377 * @gfp_mask: get_free_pages mask, passed to alloc_skb
379 * Allocate a new &sk_buff and assign it a usage count of one. The
380 * buffer has NET_SKB_PAD headroom built in. Users should allocate
381 * the headroom they think they need without accounting for the
382 * built in space. The built in space is used for optimisations.
384 * %NULL is returned if there is no free memory.
386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
387 gfp_t gfp_mask)
389 struct page_frag_cache *nc;
390 unsigned long flags;
391 struct sk_buff *skb;
392 bool pfmemalloc;
393 void *data;
395 len += NET_SKB_PAD;
397 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
398 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
399 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
400 if (!skb)
401 goto skb_fail;
402 goto skb_success;
405 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
406 len = SKB_DATA_ALIGN(len);
408 if (sk_memalloc_socks())
409 gfp_mask |= __GFP_MEMALLOC;
411 local_irq_save(flags);
413 nc = this_cpu_ptr(&netdev_alloc_cache);
414 data = page_frag_alloc(nc, len, gfp_mask);
415 pfmemalloc = nc->pfmemalloc;
417 local_irq_restore(flags);
419 if (unlikely(!data))
420 return NULL;
422 skb = __build_skb(data, len);
423 if (unlikely(!skb)) {
424 skb_free_frag(data);
425 return NULL;
428 /* use OR instead of assignment to avoid clearing of bits in mask */
429 if (pfmemalloc)
430 skb->pfmemalloc = 1;
431 skb->head_frag = 1;
433 skb_success:
434 skb_reserve(skb, NET_SKB_PAD);
435 skb->dev = dev;
437 skb_fail:
438 return skb;
440 EXPORT_SYMBOL(__netdev_alloc_skb);
443 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
444 * @napi: napi instance this buffer was allocated for
445 * @len: length to allocate
446 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
448 * Allocate a new sk_buff for use in NAPI receive. This buffer will
449 * attempt to allocate the head from a special reserved region used
450 * only for NAPI Rx allocation. By doing this we can save several
451 * CPU cycles by avoiding having to disable and re-enable IRQs.
453 * %NULL is returned if there is no free memory.
455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
456 gfp_t gfp_mask)
458 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
459 struct sk_buff *skb;
460 void *data;
462 len += NET_SKB_PAD + NET_IP_ALIGN;
464 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
465 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
466 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
467 if (!skb)
468 goto skb_fail;
469 goto skb_success;
472 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
473 len = SKB_DATA_ALIGN(len);
475 if (sk_memalloc_socks())
476 gfp_mask |= __GFP_MEMALLOC;
478 data = page_frag_alloc(&nc->page, len, gfp_mask);
479 if (unlikely(!data))
480 return NULL;
482 skb = __build_skb(data, len);
483 if (unlikely(!skb)) {
484 skb_free_frag(data);
485 return NULL;
488 /* use OR instead of assignment to avoid clearing of bits in mask */
489 if (nc->page.pfmemalloc)
490 skb->pfmemalloc = 1;
491 skb->head_frag = 1;
493 skb_success:
494 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
495 skb->dev = napi->dev;
497 skb_fail:
498 return skb;
500 EXPORT_SYMBOL(__napi_alloc_skb);
502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
503 int size, unsigned int truesize)
505 skb_fill_page_desc(skb, i, page, off, size);
506 skb->len += size;
507 skb->data_len += size;
508 skb->truesize += truesize;
510 EXPORT_SYMBOL(skb_add_rx_frag);
512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
513 unsigned int truesize)
515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
517 skb_frag_size_add(frag, size);
518 skb->len += size;
519 skb->data_len += size;
520 skb->truesize += truesize;
522 EXPORT_SYMBOL(skb_coalesce_rx_frag);
524 static void skb_drop_list(struct sk_buff **listp)
526 kfree_skb_list(*listp);
527 *listp = NULL;
530 static inline void skb_drop_fraglist(struct sk_buff *skb)
532 skb_drop_list(&skb_shinfo(skb)->frag_list);
535 static void skb_clone_fraglist(struct sk_buff *skb)
537 struct sk_buff *list;
539 skb_walk_frags(skb, list)
540 skb_get(list);
543 static void skb_free_head(struct sk_buff *skb)
545 unsigned char *head = skb->head;
547 if (skb->head_frag)
548 skb_free_frag(head);
549 else
550 kfree(head);
553 static void skb_release_data(struct sk_buff *skb)
555 struct skb_shared_info *shinfo = skb_shinfo(skb);
556 int i;
558 if (skb->cloned &&
559 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
560 &shinfo->dataref))
561 return;
563 for (i = 0; i < shinfo->nr_frags; i++)
564 __skb_frag_unref(&shinfo->frags[i]);
566 if (shinfo->frag_list)
567 kfree_skb_list(shinfo->frag_list);
569 skb_zcopy_clear(skb, true);
570 skb_free_head(skb);
574 * Free an skbuff by memory without cleaning the state.
576 static void kfree_skbmem(struct sk_buff *skb)
578 struct sk_buff_fclones *fclones;
580 switch (skb->fclone) {
581 case SKB_FCLONE_UNAVAILABLE:
582 kmem_cache_free(skbuff_head_cache, skb);
583 return;
585 case SKB_FCLONE_ORIG:
586 fclones = container_of(skb, struct sk_buff_fclones, skb1);
588 /* We usually free the clone (TX completion) before original skb
589 * This test would have no chance to be true for the clone,
590 * while here, branch prediction will be good.
592 if (refcount_read(&fclones->fclone_ref) == 1)
593 goto fastpath;
594 break;
596 default: /* SKB_FCLONE_CLONE */
597 fclones = container_of(skb, struct sk_buff_fclones, skb2);
598 break;
600 if (!refcount_dec_and_test(&fclones->fclone_ref))
601 return;
602 fastpath:
603 kmem_cache_free(skbuff_fclone_cache, fclones);
606 void skb_release_head_state(struct sk_buff *skb)
608 skb_dst_drop(skb);
609 secpath_reset(skb);
610 if (skb->destructor) {
611 WARN_ON(in_irq());
612 skb->destructor(skb);
614 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
615 nf_conntrack_put(skb_nfct(skb));
616 #endif
617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
618 nf_bridge_put(skb->nf_bridge);
619 #endif
622 /* Free everything but the sk_buff shell. */
623 static void skb_release_all(struct sk_buff *skb)
625 skb_release_head_state(skb);
626 if (likely(skb->head))
627 skb_release_data(skb);
631 * __kfree_skb - private function
632 * @skb: buffer
634 * Free an sk_buff. Release anything attached to the buffer.
635 * Clean the state. This is an internal helper function. Users should
636 * always call kfree_skb
639 void __kfree_skb(struct sk_buff *skb)
641 skb_release_all(skb);
642 kfree_skbmem(skb);
644 EXPORT_SYMBOL(__kfree_skb);
647 * kfree_skb - free an sk_buff
648 * @skb: buffer to free
650 * Drop a reference to the buffer and free it if the usage count has
651 * hit zero.
653 void kfree_skb(struct sk_buff *skb)
655 if (!skb_unref(skb))
656 return;
658 trace_kfree_skb(skb, __builtin_return_address(0));
659 __kfree_skb(skb);
661 EXPORT_SYMBOL(kfree_skb);
663 void kfree_skb_list(struct sk_buff *segs)
665 while (segs) {
666 struct sk_buff *next = segs->next;
668 kfree_skb(segs);
669 segs = next;
672 EXPORT_SYMBOL(kfree_skb_list);
675 * skb_tx_error - report an sk_buff xmit error
676 * @skb: buffer that triggered an error
678 * Report xmit error if a device callback is tracking this skb.
679 * skb must be freed afterwards.
681 void skb_tx_error(struct sk_buff *skb)
683 skb_zcopy_clear(skb, true);
685 EXPORT_SYMBOL(skb_tx_error);
688 * consume_skb - free an skbuff
689 * @skb: buffer to free
691 * Drop a ref to the buffer and free it if the usage count has hit zero
692 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
693 * is being dropped after a failure and notes that
695 void consume_skb(struct sk_buff *skb)
697 if (!skb_unref(skb))
698 return;
700 trace_consume_skb(skb);
701 __kfree_skb(skb);
703 EXPORT_SYMBOL(consume_skb);
706 * consume_stateless_skb - free an skbuff, assuming it is stateless
707 * @skb: buffer to free
709 * Alike consume_skb(), but this variant assumes that this is the last
710 * skb reference and all the head states have been already dropped
712 void __consume_stateless_skb(struct sk_buff *skb)
714 trace_consume_skb(skb);
715 skb_release_data(skb);
716 kfree_skbmem(skb);
719 void __kfree_skb_flush(void)
721 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
723 /* flush skb_cache if containing objects */
724 if (nc->skb_count) {
725 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
726 nc->skb_cache);
727 nc->skb_count = 0;
731 static inline void _kfree_skb_defer(struct sk_buff *skb)
733 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
735 /* drop skb->head and call any destructors for packet */
736 skb_release_all(skb);
738 /* record skb to CPU local list */
739 nc->skb_cache[nc->skb_count++] = skb;
741 #ifdef CONFIG_SLUB
742 /* SLUB writes into objects when freeing */
743 prefetchw(skb);
744 #endif
746 /* flush skb_cache if it is filled */
747 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
748 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
749 nc->skb_cache);
750 nc->skb_count = 0;
753 void __kfree_skb_defer(struct sk_buff *skb)
755 _kfree_skb_defer(skb);
758 void napi_consume_skb(struct sk_buff *skb, int budget)
760 if (unlikely(!skb))
761 return;
763 /* Zero budget indicate non-NAPI context called us, like netpoll */
764 if (unlikely(!budget)) {
765 dev_consume_skb_any(skb);
766 return;
769 if (!skb_unref(skb))
770 return;
772 /* if reaching here SKB is ready to free */
773 trace_consume_skb(skb);
775 /* if SKB is a clone, don't handle this case */
776 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
777 __kfree_skb(skb);
778 return;
781 _kfree_skb_defer(skb);
783 EXPORT_SYMBOL(napi_consume_skb);
785 /* Make sure a field is enclosed inside headers_start/headers_end section */
786 #define CHECK_SKB_FIELD(field) \
787 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
788 offsetof(struct sk_buff, headers_start)); \
789 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
790 offsetof(struct sk_buff, headers_end)); \
792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
794 new->tstamp = old->tstamp;
795 /* We do not copy old->sk */
796 new->dev = old->dev;
797 memcpy(new->cb, old->cb, sizeof(old->cb));
798 skb_dst_copy(new, old);
799 #ifdef CONFIG_XFRM
800 new->sp = secpath_get(old->sp);
801 #endif
802 __nf_copy(new, old, false);
804 /* Note : this field could be in headers_start/headers_end section
805 * It is not yet because we do not want to have a 16 bit hole
807 new->queue_mapping = old->queue_mapping;
809 memcpy(&new->headers_start, &old->headers_start,
810 offsetof(struct sk_buff, headers_end) -
811 offsetof(struct sk_buff, headers_start));
812 CHECK_SKB_FIELD(protocol);
813 CHECK_SKB_FIELD(csum);
814 CHECK_SKB_FIELD(hash);
815 CHECK_SKB_FIELD(priority);
816 CHECK_SKB_FIELD(skb_iif);
817 CHECK_SKB_FIELD(vlan_proto);
818 CHECK_SKB_FIELD(vlan_tci);
819 CHECK_SKB_FIELD(transport_header);
820 CHECK_SKB_FIELD(network_header);
821 CHECK_SKB_FIELD(mac_header);
822 CHECK_SKB_FIELD(inner_protocol);
823 CHECK_SKB_FIELD(inner_transport_header);
824 CHECK_SKB_FIELD(inner_network_header);
825 CHECK_SKB_FIELD(inner_mac_header);
826 CHECK_SKB_FIELD(mark);
827 #ifdef CONFIG_NETWORK_SECMARK
828 CHECK_SKB_FIELD(secmark);
829 #endif
830 #ifdef CONFIG_NET_RX_BUSY_POLL
831 CHECK_SKB_FIELD(napi_id);
832 #endif
833 #ifdef CONFIG_XPS
834 CHECK_SKB_FIELD(sender_cpu);
835 #endif
836 #ifdef CONFIG_NET_SCHED
837 CHECK_SKB_FIELD(tc_index);
838 #endif
843 * You should not add any new code to this function. Add it to
844 * __copy_skb_header above instead.
846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
848 #define C(x) n->x = skb->x
850 n->next = n->prev = NULL;
851 n->sk = NULL;
852 __copy_skb_header(n, skb);
854 C(len);
855 C(data_len);
856 C(mac_len);
857 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
858 n->cloned = 1;
859 n->nohdr = 0;
860 n->peeked = 0;
861 C(pfmemalloc);
862 n->destructor = NULL;
863 C(tail);
864 C(end);
865 C(head);
866 C(head_frag);
867 C(data);
868 C(truesize);
869 refcount_set(&n->users, 1);
871 atomic_inc(&(skb_shinfo(skb)->dataref));
872 skb->cloned = 1;
874 return n;
875 #undef C
879 * skb_morph - morph one skb into another
880 * @dst: the skb to receive the contents
881 * @src: the skb to supply the contents
883 * This is identical to skb_clone except that the target skb is
884 * supplied by the user.
886 * The target skb is returned upon exit.
888 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
890 skb_release_all(dst);
891 return __skb_clone(dst, src);
893 EXPORT_SYMBOL_GPL(skb_morph);
895 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
897 unsigned long max_pg, num_pg, new_pg, old_pg;
898 struct user_struct *user;
900 if (capable(CAP_IPC_LOCK) || !size)
901 return 0;
903 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
904 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
905 user = mmp->user ? : current_user();
907 do {
908 old_pg = atomic_long_read(&user->locked_vm);
909 new_pg = old_pg + num_pg;
910 if (new_pg > max_pg)
911 return -ENOBUFS;
912 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
913 old_pg);
915 if (!mmp->user) {
916 mmp->user = get_uid(user);
917 mmp->num_pg = num_pg;
918 } else {
919 mmp->num_pg += num_pg;
922 return 0;
924 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
926 void mm_unaccount_pinned_pages(struct mmpin *mmp)
928 if (mmp->user) {
929 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
930 free_uid(mmp->user);
933 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
935 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
937 struct ubuf_info *uarg;
938 struct sk_buff *skb;
940 WARN_ON_ONCE(!in_task());
942 if (!sock_flag(sk, SOCK_ZEROCOPY))
943 return NULL;
945 skb = sock_omalloc(sk, 0, GFP_KERNEL);
946 if (!skb)
947 return NULL;
949 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
950 uarg = (void *)skb->cb;
951 uarg->mmp.user = NULL;
953 if (mm_account_pinned_pages(&uarg->mmp, size)) {
954 kfree_skb(skb);
955 return NULL;
958 uarg->callback = sock_zerocopy_callback;
959 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
960 uarg->len = 1;
961 uarg->bytelen = size;
962 uarg->zerocopy = 1;
963 refcount_set(&uarg->refcnt, 1);
964 sock_hold(sk);
966 return uarg;
968 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
970 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
972 return container_of((void *)uarg, struct sk_buff, cb);
975 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
976 struct ubuf_info *uarg)
978 if (uarg) {
979 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
980 u32 bytelen, next;
982 /* realloc only when socket is locked (TCP, UDP cork),
983 * so uarg->len and sk_zckey access is serialized
985 if (!sock_owned_by_user(sk)) {
986 WARN_ON_ONCE(1);
987 return NULL;
990 bytelen = uarg->bytelen + size;
991 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
992 /* TCP can create new skb to attach new uarg */
993 if (sk->sk_type == SOCK_STREAM)
994 goto new_alloc;
995 return NULL;
998 next = (u32)atomic_read(&sk->sk_zckey);
999 if ((u32)(uarg->id + uarg->len) == next) {
1000 if (mm_account_pinned_pages(&uarg->mmp, size))
1001 return NULL;
1002 uarg->len++;
1003 uarg->bytelen = bytelen;
1004 atomic_set(&sk->sk_zckey, ++next);
1005 sock_zerocopy_get(uarg);
1006 return uarg;
1010 new_alloc:
1011 return sock_zerocopy_alloc(sk, size);
1013 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1015 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1017 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1018 u32 old_lo, old_hi;
1019 u64 sum_len;
1021 old_lo = serr->ee.ee_info;
1022 old_hi = serr->ee.ee_data;
1023 sum_len = old_hi - old_lo + 1ULL + len;
1025 if (sum_len >= (1ULL << 32))
1026 return false;
1028 if (lo != old_hi + 1)
1029 return false;
1031 serr->ee.ee_data += len;
1032 return true;
1035 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1037 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1038 struct sock_exterr_skb *serr;
1039 struct sock *sk = skb->sk;
1040 struct sk_buff_head *q;
1041 unsigned long flags;
1042 u32 lo, hi;
1043 u16 len;
1045 mm_unaccount_pinned_pages(&uarg->mmp);
1047 /* if !len, there was only 1 call, and it was aborted
1048 * so do not queue a completion notification
1050 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1051 goto release;
1053 len = uarg->len;
1054 lo = uarg->id;
1055 hi = uarg->id + len - 1;
1057 serr = SKB_EXT_ERR(skb);
1058 memset(serr, 0, sizeof(*serr));
1059 serr->ee.ee_errno = 0;
1060 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1061 serr->ee.ee_data = hi;
1062 serr->ee.ee_info = lo;
1063 if (!success)
1064 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1066 q = &sk->sk_error_queue;
1067 spin_lock_irqsave(&q->lock, flags);
1068 tail = skb_peek_tail(q);
1069 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1070 !skb_zerocopy_notify_extend(tail, lo, len)) {
1071 __skb_queue_tail(q, skb);
1072 skb = NULL;
1074 spin_unlock_irqrestore(&q->lock, flags);
1076 sk->sk_error_report(sk);
1078 release:
1079 consume_skb(skb);
1080 sock_put(sk);
1082 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1084 void sock_zerocopy_put(struct ubuf_info *uarg)
1086 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1087 if (uarg->callback)
1088 uarg->callback(uarg, uarg->zerocopy);
1089 else
1090 consume_skb(skb_from_uarg(uarg));
1093 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1095 void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1097 if (uarg) {
1098 struct sock *sk = skb_from_uarg(uarg)->sk;
1100 atomic_dec(&sk->sk_zckey);
1101 uarg->len--;
1103 sock_zerocopy_put(uarg);
1106 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1108 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1109 struct iov_iter *from, size_t length);
1111 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1112 struct msghdr *msg, int len,
1113 struct ubuf_info *uarg)
1115 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1116 struct iov_iter orig_iter = msg->msg_iter;
1117 int err, orig_len = skb->len;
1119 /* An skb can only point to one uarg. This edge case happens when
1120 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1122 if (orig_uarg && uarg != orig_uarg)
1123 return -EEXIST;
1125 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1126 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1127 struct sock *save_sk = skb->sk;
1129 /* Streams do not free skb on error. Reset to prev state. */
1130 msg->msg_iter = orig_iter;
1131 skb->sk = sk;
1132 ___pskb_trim(skb, orig_len);
1133 skb->sk = save_sk;
1134 return err;
1137 skb_zcopy_set(skb, uarg);
1138 return skb->len - orig_len;
1140 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1142 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1143 gfp_t gfp_mask)
1145 if (skb_zcopy(orig)) {
1146 if (skb_zcopy(nskb)) {
1147 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1148 if (!gfp_mask) {
1149 WARN_ON_ONCE(1);
1150 return -ENOMEM;
1152 if (skb_uarg(nskb) == skb_uarg(orig))
1153 return 0;
1154 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1155 return -EIO;
1157 skb_zcopy_set(nskb, skb_uarg(orig));
1159 return 0;
1163 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1164 * @skb: the skb to modify
1165 * @gfp_mask: allocation priority
1167 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1168 * It will copy all frags into kernel and drop the reference
1169 * to userspace pages.
1171 * If this function is called from an interrupt gfp_mask() must be
1172 * %GFP_ATOMIC.
1174 * Returns 0 on success or a negative error code on failure
1175 * to allocate kernel memory to copy to.
1177 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1179 int num_frags = skb_shinfo(skb)->nr_frags;
1180 struct page *page, *head = NULL;
1181 int i, new_frags;
1182 u32 d_off;
1184 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1185 return -EINVAL;
1187 if (!num_frags)
1188 goto release;
1190 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1191 for (i = 0; i < new_frags; i++) {
1192 page = alloc_page(gfp_mask);
1193 if (!page) {
1194 while (head) {
1195 struct page *next = (struct page *)page_private(head);
1196 put_page(head);
1197 head = next;
1199 return -ENOMEM;
1201 set_page_private(page, (unsigned long)head);
1202 head = page;
1205 page = head;
1206 d_off = 0;
1207 for (i = 0; i < num_frags; i++) {
1208 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1209 u32 p_off, p_len, copied;
1210 struct page *p;
1211 u8 *vaddr;
1213 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1214 p, p_off, p_len, copied) {
1215 u32 copy, done = 0;
1216 vaddr = kmap_atomic(p);
1218 while (done < p_len) {
1219 if (d_off == PAGE_SIZE) {
1220 d_off = 0;
1221 page = (struct page *)page_private(page);
1223 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1224 memcpy(page_address(page) + d_off,
1225 vaddr + p_off + done, copy);
1226 done += copy;
1227 d_off += copy;
1229 kunmap_atomic(vaddr);
1233 /* skb frags release userspace buffers */
1234 for (i = 0; i < num_frags; i++)
1235 skb_frag_unref(skb, i);
1237 /* skb frags point to kernel buffers */
1238 for (i = 0; i < new_frags - 1; i++) {
1239 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1240 head = (struct page *)page_private(head);
1242 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1243 skb_shinfo(skb)->nr_frags = new_frags;
1245 release:
1246 skb_zcopy_clear(skb, false);
1247 return 0;
1249 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1252 * skb_clone - duplicate an sk_buff
1253 * @skb: buffer to clone
1254 * @gfp_mask: allocation priority
1256 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1257 * copies share the same packet data but not structure. The new
1258 * buffer has a reference count of 1. If the allocation fails the
1259 * function returns %NULL otherwise the new buffer is returned.
1261 * If this function is called from an interrupt gfp_mask() must be
1262 * %GFP_ATOMIC.
1265 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1267 struct sk_buff_fclones *fclones = container_of(skb,
1268 struct sk_buff_fclones,
1269 skb1);
1270 struct sk_buff *n;
1272 if (skb_orphan_frags(skb, gfp_mask))
1273 return NULL;
1275 if (skb->fclone == SKB_FCLONE_ORIG &&
1276 refcount_read(&fclones->fclone_ref) == 1) {
1277 n = &fclones->skb2;
1278 refcount_set(&fclones->fclone_ref, 2);
1279 } else {
1280 if (skb_pfmemalloc(skb))
1281 gfp_mask |= __GFP_MEMALLOC;
1283 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1284 if (!n)
1285 return NULL;
1287 n->fclone = SKB_FCLONE_UNAVAILABLE;
1290 return __skb_clone(n, skb);
1292 EXPORT_SYMBOL(skb_clone);
1294 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1296 /* Only adjust this if it actually is csum_start rather than csum */
1297 if (skb->ip_summed == CHECKSUM_PARTIAL)
1298 skb->csum_start += off;
1299 /* {transport,network,mac}_header and tail are relative to skb->head */
1300 skb->transport_header += off;
1301 skb->network_header += off;
1302 if (skb_mac_header_was_set(skb))
1303 skb->mac_header += off;
1304 skb->inner_transport_header += off;
1305 skb->inner_network_header += off;
1306 skb->inner_mac_header += off;
1309 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1311 __copy_skb_header(new, old);
1313 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1314 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1315 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1317 EXPORT_SYMBOL(skb_copy_header);
1319 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1321 if (skb_pfmemalloc(skb))
1322 return SKB_ALLOC_RX;
1323 return 0;
1327 * skb_copy - create private copy of an sk_buff
1328 * @skb: buffer to copy
1329 * @gfp_mask: allocation priority
1331 * Make a copy of both an &sk_buff and its data. This is used when the
1332 * caller wishes to modify the data and needs a private copy of the
1333 * data to alter. Returns %NULL on failure or the pointer to the buffer
1334 * on success. The returned buffer has a reference count of 1.
1336 * As by-product this function converts non-linear &sk_buff to linear
1337 * one, so that &sk_buff becomes completely private and caller is allowed
1338 * to modify all the data of returned buffer. This means that this
1339 * function is not recommended for use in circumstances when only
1340 * header is going to be modified. Use pskb_copy() instead.
1343 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1345 int headerlen = skb_headroom(skb);
1346 unsigned int size = skb_end_offset(skb) + skb->data_len;
1347 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1348 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1350 if (!n)
1351 return NULL;
1353 /* Set the data pointer */
1354 skb_reserve(n, headerlen);
1355 /* Set the tail pointer and length */
1356 skb_put(n, skb->len);
1358 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1360 skb_copy_header(n, skb);
1361 return n;
1363 EXPORT_SYMBOL(skb_copy);
1366 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1367 * @skb: buffer to copy
1368 * @headroom: headroom of new skb
1369 * @gfp_mask: allocation priority
1370 * @fclone: if true allocate the copy of the skb from the fclone
1371 * cache instead of the head cache; it is recommended to set this
1372 * to true for the cases where the copy will likely be cloned
1374 * Make a copy of both an &sk_buff and part of its data, located
1375 * in header. Fragmented data remain shared. This is used when
1376 * the caller wishes to modify only header of &sk_buff and needs
1377 * private copy of the header to alter. Returns %NULL on failure
1378 * or the pointer to the buffer on success.
1379 * The returned buffer has a reference count of 1.
1382 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1383 gfp_t gfp_mask, bool fclone)
1385 unsigned int size = skb_headlen(skb) + headroom;
1386 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1387 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1389 if (!n)
1390 goto out;
1392 /* Set the data pointer */
1393 skb_reserve(n, headroom);
1394 /* Set the tail pointer and length */
1395 skb_put(n, skb_headlen(skb));
1396 /* Copy the bytes */
1397 skb_copy_from_linear_data(skb, n->data, n->len);
1399 n->truesize += skb->data_len;
1400 n->data_len = skb->data_len;
1401 n->len = skb->len;
1403 if (skb_shinfo(skb)->nr_frags) {
1404 int i;
1406 if (skb_orphan_frags(skb, gfp_mask) ||
1407 skb_zerocopy_clone(n, skb, gfp_mask)) {
1408 kfree_skb(n);
1409 n = NULL;
1410 goto out;
1412 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1413 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1414 skb_frag_ref(skb, i);
1416 skb_shinfo(n)->nr_frags = i;
1419 if (skb_has_frag_list(skb)) {
1420 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1421 skb_clone_fraglist(n);
1424 skb_copy_header(n, skb);
1425 out:
1426 return n;
1428 EXPORT_SYMBOL(__pskb_copy_fclone);
1431 * pskb_expand_head - reallocate header of &sk_buff
1432 * @skb: buffer to reallocate
1433 * @nhead: room to add at head
1434 * @ntail: room to add at tail
1435 * @gfp_mask: allocation priority
1437 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1438 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1439 * reference count of 1. Returns zero in the case of success or error,
1440 * if expansion failed. In the last case, &sk_buff is not changed.
1442 * All the pointers pointing into skb header may change and must be
1443 * reloaded after call to this function.
1446 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1447 gfp_t gfp_mask)
1449 int i, osize = skb_end_offset(skb);
1450 int size = osize + nhead + ntail;
1451 long off;
1452 u8 *data;
1454 BUG_ON(nhead < 0);
1456 BUG_ON(skb_shared(skb));
1458 size = SKB_DATA_ALIGN(size);
1460 if (skb_pfmemalloc(skb))
1461 gfp_mask |= __GFP_MEMALLOC;
1462 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1463 gfp_mask, NUMA_NO_NODE, NULL);
1464 if (!data)
1465 goto nodata;
1466 size = SKB_WITH_OVERHEAD(ksize(data));
1468 /* Copy only real data... and, alas, header. This should be
1469 * optimized for the cases when header is void.
1471 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1473 memcpy((struct skb_shared_info *)(data + size),
1474 skb_shinfo(skb),
1475 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1478 * if shinfo is shared we must drop the old head gracefully, but if it
1479 * is not we can just drop the old head and let the existing refcount
1480 * be since all we did is relocate the values
1482 if (skb_cloned(skb)) {
1483 if (skb_orphan_frags(skb, gfp_mask))
1484 goto nofrags;
1485 if (skb_zcopy(skb))
1486 refcount_inc(&skb_uarg(skb)->refcnt);
1487 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1488 skb_frag_ref(skb, i);
1490 if (skb_has_frag_list(skb))
1491 skb_clone_fraglist(skb);
1493 skb_release_data(skb);
1494 } else {
1495 skb_free_head(skb);
1497 off = (data + nhead) - skb->head;
1499 skb->head = data;
1500 skb->head_frag = 0;
1501 skb->data += off;
1502 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1503 skb->end = size;
1504 off = nhead;
1505 #else
1506 skb->end = skb->head + size;
1507 #endif
1508 skb->tail += off;
1509 skb_headers_offset_update(skb, nhead);
1510 skb->cloned = 0;
1511 skb->hdr_len = 0;
1512 skb->nohdr = 0;
1513 atomic_set(&skb_shinfo(skb)->dataref, 1);
1515 skb_metadata_clear(skb);
1517 /* It is not generally safe to change skb->truesize.
1518 * For the moment, we really care of rx path, or
1519 * when skb is orphaned (not attached to a socket).
1521 if (!skb->sk || skb->destructor == sock_edemux)
1522 skb->truesize += size - osize;
1524 return 0;
1526 nofrags:
1527 kfree(data);
1528 nodata:
1529 return -ENOMEM;
1531 EXPORT_SYMBOL(pskb_expand_head);
1533 /* Make private copy of skb with writable head and some headroom */
1535 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1537 struct sk_buff *skb2;
1538 int delta = headroom - skb_headroom(skb);
1540 if (delta <= 0)
1541 skb2 = pskb_copy(skb, GFP_ATOMIC);
1542 else {
1543 skb2 = skb_clone(skb, GFP_ATOMIC);
1544 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1545 GFP_ATOMIC)) {
1546 kfree_skb(skb2);
1547 skb2 = NULL;
1550 return skb2;
1552 EXPORT_SYMBOL(skb_realloc_headroom);
1555 * skb_copy_expand - copy and expand sk_buff
1556 * @skb: buffer to copy
1557 * @newheadroom: new free bytes at head
1558 * @newtailroom: new free bytes at tail
1559 * @gfp_mask: allocation priority
1561 * Make a copy of both an &sk_buff and its data and while doing so
1562 * allocate additional space.
1564 * This is used when the caller wishes to modify the data and needs a
1565 * private copy of the data to alter as well as more space for new fields.
1566 * Returns %NULL on failure or the pointer to the buffer
1567 * on success. The returned buffer has a reference count of 1.
1569 * You must pass %GFP_ATOMIC as the allocation priority if this function
1570 * is called from an interrupt.
1572 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1573 int newheadroom, int newtailroom,
1574 gfp_t gfp_mask)
1577 * Allocate the copy buffer
1579 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1580 gfp_mask, skb_alloc_rx_flag(skb),
1581 NUMA_NO_NODE);
1582 int oldheadroom = skb_headroom(skb);
1583 int head_copy_len, head_copy_off;
1585 if (!n)
1586 return NULL;
1588 skb_reserve(n, newheadroom);
1590 /* Set the tail pointer and length */
1591 skb_put(n, skb->len);
1593 head_copy_len = oldheadroom;
1594 head_copy_off = 0;
1595 if (newheadroom <= head_copy_len)
1596 head_copy_len = newheadroom;
1597 else
1598 head_copy_off = newheadroom - head_copy_len;
1600 /* Copy the linear header and data. */
1601 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1602 skb->len + head_copy_len));
1604 skb_copy_header(n, skb);
1606 skb_headers_offset_update(n, newheadroom - oldheadroom);
1608 return n;
1610 EXPORT_SYMBOL(skb_copy_expand);
1613 * __skb_pad - zero pad the tail of an skb
1614 * @skb: buffer to pad
1615 * @pad: space to pad
1616 * @free_on_error: free buffer on error
1618 * Ensure that a buffer is followed by a padding area that is zero
1619 * filled. Used by network drivers which may DMA or transfer data
1620 * beyond the buffer end onto the wire.
1622 * May return error in out of memory cases. The skb is freed on error
1623 * if @free_on_error is true.
1626 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1628 int err;
1629 int ntail;
1631 /* If the skbuff is non linear tailroom is always zero.. */
1632 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1633 memset(skb->data+skb->len, 0, pad);
1634 return 0;
1637 ntail = skb->data_len + pad - (skb->end - skb->tail);
1638 if (likely(skb_cloned(skb) || ntail > 0)) {
1639 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1640 if (unlikely(err))
1641 goto free_skb;
1644 /* FIXME: The use of this function with non-linear skb's really needs
1645 * to be audited.
1647 err = skb_linearize(skb);
1648 if (unlikely(err))
1649 goto free_skb;
1651 memset(skb->data + skb->len, 0, pad);
1652 return 0;
1654 free_skb:
1655 if (free_on_error)
1656 kfree_skb(skb);
1657 return err;
1659 EXPORT_SYMBOL(__skb_pad);
1662 * pskb_put - add data to the tail of a potentially fragmented buffer
1663 * @skb: start of the buffer to use
1664 * @tail: tail fragment of the buffer to use
1665 * @len: amount of data to add
1667 * This function extends the used data area of the potentially
1668 * fragmented buffer. @tail must be the last fragment of @skb -- or
1669 * @skb itself. If this would exceed the total buffer size the kernel
1670 * will panic. A pointer to the first byte of the extra data is
1671 * returned.
1674 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1676 if (tail != skb) {
1677 skb->data_len += len;
1678 skb->len += len;
1680 return skb_put(tail, len);
1682 EXPORT_SYMBOL_GPL(pskb_put);
1685 * skb_put - add data to a buffer
1686 * @skb: buffer to use
1687 * @len: amount of data to add
1689 * This function extends the used data area of the buffer. If this would
1690 * exceed the total buffer size the kernel will panic. A pointer to the
1691 * first byte of the extra data is returned.
1693 void *skb_put(struct sk_buff *skb, unsigned int len)
1695 void *tmp = skb_tail_pointer(skb);
1696 SKB_LINEAR_ASSERT(skb);
1697 skb->tail += len;
1698 skb->len += len;
1699 if (unlikely(skb->tail > skb->end))
1700 skb_over_panic(skb, len, __builtin_return_address(0));
1701 return tmp;
1703 EXPORT_SYMBOL(skb_put);
1706 * skb_push - add data to the start of a buffer
1707 * @skb: buffer to use
1708 * @len: amount of data to add
1710 * This function extends the used data area of the buffer at the buffer
1711 * start. If this would exceed the total buffer headroom the kernel will
1712 * panic. A pointer to the first byte of the extra data is returned.
1714 void *skb_push(struct sk_buff *skb, unsigned int len)
1716 skb->data -= len;
1717 skb->len += len;
1718 if (unlikely(skb->data<skb->head))
1719 skb_under_panic(skb, len, __builtin_return_address(0));
1720 return skb->data;
1722 EXPORT_SYMBOL(skb_push);
1725 * skb_pull - remove data from the start of a buffer
1726 * @skb: buffer to use
1727 * @len: amount of data to remove
1729 * This function removes data from the start of a buffer, returning
1730 * the memory to the headroom. A pointer to the next data in the buffer
1731 * is returned. Once the data has been pulled future pushes will overwrite
1732 * the old data.
1734 void *skb_pull(struct sk_buff *skb, unsigned int len)
1736 return skb_pull_inline(skb, len);
1738 EXPORT_SYMBOL(skb_pull);
1741 * skb_trim - remove end from a buffer
1742 * @skb: buffer to alter
1743 * @len: new length
1745 * Cut the length of a buffer down by removing data from the tail. If
1746 * the buffer is already under the length specified it is not modified.
1747 * The skb must be linear.
1749 void skb_trim(struct sk_buff *skb, unsigned int len)
1751 if (skb->len > len)
1752 __skb_trim(skb, len);
1754 EXPORT_SYMBOL(skb_trim);
1756 /* Trims skb to length len. It can change skb pointers.
1759 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1761 struct sk_buff **fragp;
1762 struct sk_buff *frag;
1763 int offset = skb_headlen(skb);
1764 int nfrags = skb_shinfo(skb)->nr_frags;
1765 int i;
1766 int err;
1768 if (skb_cloned(skb) &&
1769 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1770 return err;
1772 i = 0;
1773 if (offset >= len)
1774 goto drop_pages;
1776 for (; i < nfrags; i++) {
1777 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1779 if (end < len) {
1780 offset = end;
1781 continue;
1784 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1786 drop_pages:
1787 skb_shinfo(skb)->nr_frags = i;
1789 for (; i < nfrags; i++)
1790 skb_frag_unref(skb, i);
1792 if (skb_has_frag_list(skb))
1793 skb_drop_fraglist(skb);
1794 goto done;
1797 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1798 fragp = &frag->next) {
1799 int end = offset + frag->len;
1801 if (skb_shared(frag)) {
1802 struct sk_buff *nfrag;
1804 nfrag = skb_clone(frag, GFP_ATOMIC);
1805 if (unlikely(!nfrag))
1806 return -ENOMEM;
1808 nfrag->next = frag->next;
1809 consume_skb(frag);
1810 frag = nfrag;
1811 *fragp = frag;
1814 if (end < len) {
1815 offset = end;
1816 continue;
1819 if (end > len &&
1820 unlikely((err = pskb_trim(frag, len - offset))))
1821 return err;
1823 if (frag->next)
1824 skb_drop_list(&frag->next);
1825 break;
1828 done:
1829 if (len > skb_headlen(skb)) {
1830 skb->data_len -= skb->len - len;
1831 skb->len = len;
1832 } else {
1833 skb->len = len;
1834 skb->data_len = 0;
1835 skb_set_tail_pointer(skb, len);
1838 if (!skb->sk || skb->destructor == sock_edemux)
1839 skb_condense(skb);
1840 return 0;
1842 EXPORT_SYMBOL(___pskb_trim);
1844 /* Note : use pskb_trim_rcsum() instead of calling this directly
1846 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
1848 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1849 int delta = skb->len - len;
1851 skb->csum = csum_sub(skb->csum,
1852 skb_checksum(skb, len, delta, 0));
1854 return __pskb_trim(skb, len);
1856 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
1859 * __pskb_pull_tail - advance tail of skb header
1860 * @skb: buffer to reallocate
1861 * @delta: number of bytes to advance tail
1863 * The function makes a sense only on a fragmented &sk_buff,
1864 * it expands header moving its tail forward and copying necessary
1865 * data from fragmented part.
1867 * &sk_buff MUST have reference count of 1.
1869 * Returns %NULL (and &sk_buff does not change) if pull failed
1870 * or value of new tail of skb in the case of success.
1872 * All the pointers pointing into skb header may change and must be
1873 * reloaded after call to this function.
1876 /* Moves tail of skb head forward, copying data from fragmented part,
1877 * when it is necessary.
1878 * 1. It may fail due to malloc failure.
1879 * 2. It may change skb pointers.
1881 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1883 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1885 /* If skb has not enough free space at tail, get new one
1886 * plus 128 bytes for future expansions. If we have enough
1887 * room at tail, reallocate without expansion only if skb is cloned.
1889 int i, k, eat = (skb->tail + delta) - skb->end;
1891 if (eat > 0 || skb_cloned(skb)) {
1892 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1893 GFP_ATOMIC))
1894 return NULL;
1897 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1898 skb_tail_pointer(skb), delta));
1900 /* Optimization: no fragments, no reasons to preestimate
1901 * size of pulled pages. Superb.
1903 if (!skb_has_frag_list(skb))
1904 goto pull_pages;
1906 /* Estimate size of pulled pages. */
1907 eat = delta;
1908 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1909 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1911 if (size >= eat)
1912 goto pull_pages;
1913 eat -= size;
1916 /* If we need update frag list, we are in troubles.
1917 * Certainly, it is possible to add an offset to skb data,
1918 * but taking into account that pulling is expected to
1919 * be very rare operation, it is worth to fight against
1920 * further bloating skb head and crucify ourselves here instead.
1921 * Pure masohism, indeed. 8)8)
1923 if (eat) {
1924 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1925 struct sk_buff *clone = NULL;
1926 struct sk_buff *insp = NULL;
1928 do {
1929 BUG_ON(!list);
1931 if (list->len <= eat) {
1932 /* Eaten as whole. */
1933 eat -= list->len;
1934 list = list->next;
1935 insp = list;
1936 } else {
1937 /* Eaten partially. */
1939 if (skb_shared(list)) {
1940 /* Sucks! We need to fork list. :-( */
1941 clone = skb_clone(list, GFP_ATOMIC);
1942 if (!clone)
1943 return NULL;
1944 insp = list->next;
1945 list = clone;
1946 } else {
1947 /* This may be pulled without
1948 * problems. */
1949 insp = list;
1951 if (!pskb_pull(list, eat)) {
1952 kfree_skb(clone);
1953 return NULL;
1955 break;
1957 } while (eat);
1959 /* Free pulled out fragments. */
1960 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1961 skb_shinfo(skb)->frag_list = list->next;
1962 kfree_skb(list);
1964 /* And insert new clone at head. */
1965 if (clone) {
1966 clone->next = list;
1967 skb_shinfo(skb)->frag_list = clone;
1970 /* Success! Now we may commit changes to skb data. */
1972 pull_pages:
1973 eat = delta;
1974 k = 0;
1975 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1976 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1978 if (size <= eat) {
1979 skb_frag_unref(skb, i);
1980 eat -= size;
1981 } else {
1982 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1983 if (eat) {
1984 skb_shinfo(skb)->frags[k].page_offset += eat;
1985 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1986 if (!i)
1987 goto end;
1988 eat = 0;
1990 k++;
1993 skb_shinfo(skb)->nr_frags = k;
1995 end:
1996 skb->tail += delta;
1997 skb->data_len -= delta;
1999 if (!skb->data_len)
2000 skb_zcopy_clear(skb, false);
2002 return skb_tail_pointer(skb);
2004 EXPORT_SYMBOL(__pskb_pull_tail);
2007 * skb_copy_bits - copy bits from skb to kernel buffer
2008 * @skb: source skb
2009 * @offset: offset in source
2010 * @to: destination buffer
2011 * @len: number of bytes to copy
2013 * Copy the specified number of bytes from the source skb to the
2014 * destination buffer.
2016 * CAUTION ! :
2017 * If its prototype is ever changed,
2018 * check arch/{*}/net/{*}.S files,
2019 * since it is called from BPF assembly code.
2021 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2023 int start = skb_headlen(skb);
2024 struct sk_buff *frag_iter;
2025 int i, copy;
2027 if (offset > (int)skb->len - len)
2028 goto fault;
2030 /* Copy header. */
2031 if ((copy = start - offset) > 0) {
2032 if (copy > len)
2033 copy = len;
2034 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2035 if ((len -= copy) == 0)
2036 return 0;
2037 offset += copy;
2038 to += copy;
2041 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2042 int end;
2043 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2045 WARN_ON(start > offset + len);
2047 end = start + skb_frag_size(f);
2048 if ((copy = end - offset) > 0) {
2049 u32 p_off, p_len, copied;
2050 struct page *p;
2051 u8 *vaddr;
2053 if (copy > len)
2054 copy = len;
2056 skb_frag_foreach_page(f,
2057 f->page_offset + offset - start,
2058 copy, p, p_off, p_len, copied) {
2059 vaddr = kmap_atomic(p);
2060 memcpy(to + copied, vaddr + p_off, p_len);
2061 kunmap_atomic(vaddr);
2064 if ((len -= copy) == 0)
2065 return 0;
2066 offset += copy;
2067 to += copy;
2069 start = end;
2072 skb_walk_frags(skb, frag_iter) {
2073 int end;
2075 WARN_ON(start > offset + len);
2077 end = start + frag_iter->len;
2078 if ((copy = end - offset) > 0) {
2079 if (copy > len)
2080 copy = len;
2081 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2082 goto fault;
2083 if ((len -= copy) == 0)
2084 return 0;
2085 offset += copy;
2086 to += copy;
2088 start = end;
2091 if (!len)
2092 return 0;
2094 fault:
2095 return -EFAULT;
2097 EXPORT_SYMBOL(skb_copy_bits);
2100 * Callback from splice_to_pipe(), if we need to release some pages
2101 * at the end of the spd in case we error'ed out in filling the pipe.
2103 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2105 put_page(spd->pages[i]);
2108 static struct page *linear_to_page(struct page *page, unsigned int *len,
2109 unsigned int *offset,
2110 struct sock *sk)
2112 struct page_frag *pfrag = sk_page_frag(sk);
2114 if (!sk_page_frag_refill(sk, pfrag))
2115 return NULL;
2117 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2119 memcpy(page_address(pfrag->page) + pfrag->offset,
2120 page_address(page) + *offset, *len);
2121 *offset = pfrag->offset;
2122 pfrag->offset += *len;
2124 return pfrag->page;
2127 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2128 struct page *page,
2129 unsigned int offset)
2131 return spd->nr_pages &&
2132 spd->pages[spd->nr_pages - 1] == page &&
2133 (spd->partial[spd->nr_pages - 1].offset +
2134 spd->partial[spd->nr_pages - 1].len == offset);
2138 * Fill page/offset/length into spd, if it can hold more pages.
2140 static bool spd_fill_page(struct splice_pipe_desc *spd,
2141 struct pipe_inode_info *pipe, struct page *page,
2142 unsigned int *len, unsigned int offset,
2143 bool linear,
2144 struct sock *sk)
2146 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2147 return true;
2149 if (linear) {
2150 page = linear_to_page(page, len, &offset, sk);
2151 if (!page)
2152 return true;
2154 if (spd_can_coalesce(spd, page, offset)) {
2155 spd->partial[spd->nr_pages - 1].len += *len;
2156 return false;
2158 get_page(page);
2159 spd->pages[spd->nr_pages] = page;
2160 spd->partial[spd->nr_pages].len = *len;
2161 spd->partial[spd->nr_pages].offset = offset;
2162 spd->nr_pages++;
2164 return false;
2167 static bool __splice_segment(struct page *page, unsigned int poff,
2168 unsigned int plen, unsigned int *off,
2169 unsigned int *len,
2170 struct splice_pipe_desc *spd, bool linear,
2171 struct sock *sk,
2172 struct pipe_inode_info *pipe)
2174 if (!*len)
2175 return true;
2177 /* skip this segment if already processed */
2178 if (*off >= plen) {
2179 *off -= plen;
2180 return false;
2183 /* ignore any bits we already processed */
2184 poff += *off;
2185 plen -= *off;
2186 *off = 0;
2188 do {
2189 unsigned int flen = min(*len, plen);
2191 if (spd_fill_page(spd, pipe, page, &flen, poff,
2192 linear, sk))
2193 return true;
2194 poff += flen;
2195 plen -= flen;
2196 *len -= flen;
2197 } while (*len && plen);
2199 return false;
2203 * Map linear and fragment data from the skb to spd. It reports true if the
2204 * pipe is full or if we already spliced the requested length.
2206 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2207 unsigned int *offset, unsigned int *len,
2208 struct splice_pipe_desc *spd, struct sock *sk)
2210 int seg;
2211 struct sk_buff *iter;
2213 /* map the linear part :
2214 * If skb->head_frag is set, this 'linear' part is backed by a
2215 * fragment, and if the head is not shared with any clones then
2216 * we can avoid a copy since we own the head portion of this page.
2218 if (__splice_segment(virt_to_page(skb->data),
2219 (unsigned long) skb->data & (PAGE_SIZE - 1),
2220 skb_headlen(skb),
2221 offset, len, spd,
2222 skb_head_is_locked(skb),
2223 sk, pipe))
2224 return true;
2227 * then map the fragments
2229 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2230 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2232 if (__splice_segment(skb_frag_page(f),
2233 f->page_offset, skb_frag_size(f),
2234 offset, len, spd, false, sk, pipe))
2235 return true;
2238 skb_walk_frags(skb, iter) {
2239 if (*offset >= iter->len) {
2240 *offset -= iter->len;
2241 continue;
2243 /* __skb_splice_bits() only fails if the output has no room
2244 * left, so no point in going over the frag_list for the error
2245 * case.
2247 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2248 return true;
2251 return false;
2255 * Map data from the skb to a pipe. Should handle both the linear part,
2256 * the fragments, and the frag list.
2258 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2259 struct pipe_inode_info *pipe, unsigned int tlen,
2260 unsigned int flags)
2262 struct partial_page partial[MAX_SKB_FRAGS];
2263 struct page *pages[MAX_SKB_FRAGS];
2264 struct splice_pipe_desc spd = {
2265 .pages = pages,
2266 .partial = partial,
2267 .nr_pages_max = MAX_SKB_FRAGS,
2268 .ops = &nosteal_pipe_buf_ops,
2269 .spd_release = sock_spd_release,
2271 int ret = 0;
2273 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2275 if (spd.nr_pages)
2276 ret = splice_to_pipe(pipe, &spd);
2278 return ret;
2280 EXPORT_SYMBOL_GPL(skb_splice_bits);
2282 /* Send skb data on a socket. Socket must be locked. */
2283 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2284 int len)
2286 unsigned int orig_len = len;
2287 struct sk_buff *head = skb;
2288 unsigned short fragidx;
2289 int slen, ret;
2291 do_frag_list:
2293 /* Deal with head data */
2294 while (offset < skb_headlen(skb) && len) {
2295 struct kvec kv;
2296 struct msghdr msg;
2298 slen = min_t(int, len, skb_headlen(skb) - offset);
2299 kv.iov_base = skb->data + offset;
2300 kv.iov_len = slen;
2301 memset(&msg, 0, sizeof(msg));
2303 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2304 if (ret <= 0)
2305 goto error;
2307 offset += ret;
2308 len -= ret;
2311 /* All the data was skb head? */
2312 if (!len)
2313 goto out;
2315 /* Make offset relative to start of frags */
2316 offset -= skb_headlen(skb);
2318 /* Find where we are in frag list */
2319 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2320 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2322 if (offset < frag->size)
2323 break;
2325 offset -= frag->size;
2328 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2329 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2331 slen = min_t(size_t, len, frag->size - offset);
2333 while (slen) {
2334 ret = kernel_sendpage_locked(sk, frag->page.p,
2335 frag->page_offset + offset,
2336 slen, MSG_DONTWAIT);
2337 if (ret <= 0)
2338 goto error;
2340 len -= ret;
2341 offset += ret;
2342 slen -= ret;
2345 offset = 0;
2348 if (len) {
2349 /* Process any frag lists */
2351 if (skb == head) {
2352 if (skb_has_frag_list(skb)) {
2353 skb = skb_shinfo(skb)->frag_list;
2354 goto do_frag_list;
2356 } else if (skb->next) {
2357 skb = skb->next;
2358 goto do_frag_list;
2362 out:
2363 return orig_len - len;
2365 error:
2366 return orig_len == len ? ret : orig_len - len;
2368 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2370 /* Send skb data on a socket. */
2371 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2373 int ret = 0;
2375 lock_sock(sk);
2376 ret = skb_send_sock_locked(sk, skb, offset, len);
2377 release_sock(sk);
2379 return ret;
2381 EXPORT_SYMBOL_GPL(skb_send_sock);
2384 * skb_store_bits - store bits from kernel buffer to skb
2385 * @skb: destination buffer
2386 * @offset: offset in destination
2387 * @from: source buffer
2388 * @len: number of bytes to copy
2390 * Copy the specified number of bytes from the source buffer to the
2391 * destination skb. This function handles all the messy bits of
2392 * traversing fragment lists and such.
2395 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2397 int start = skb_headlen(skb);
2398 struct sk_buff *frag_iter;
2399 int i, copy;
2401 if (offset > (int)skb->len - len)
2402 goto fault;
2404 if ((copy = start - offset) > 0) {
2405 if (copy > len)
2406 copy = len;
2407 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2408 if ((len -= copy) == 0)
2409 return 0;
2410 offset += copy;
2411 from += copy;
2414 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2415 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2416 int end;
2418 WARN_ON(start > offset + len);
2420 end = start + skb_frag_size(frag);
2421 if ((copy = end - offset) > 0) {
2422 u32 p_off, p_len, copied;
2423 struct page *p;
2424 u8 *vaddr;
2426 if (copy > len)
2427 copy = len;
2429 skb_frag_foreach_page(frag,
2430 frag->page_offset + offset - start,
2431 copy, p, p_off, p_len, copied) {
2432 vaddr = kmap_atomic(p);
2433 memcpy(vaddr + p_off, from + copied, p_len);
2434 kunmap_atomic(vaddr);
2437 if ((len -= copy) == 0)
2438 return 0;
2439 offset += copy;
2440 from += copy;
2442 start = end;
2445 skb_walk_frags(skb, frag_iter) {
2446 int end;
2448 WARN_ON(start > offset + len);
2450 end = start + frag_iter->len;
2451 if ((copy = end - offset) > 0) {
2452 if (copy > len)
2453 copy = len;
2454 if (skb_store_bits(frag_iter, offset - start,
2455 from, copy))
2456 goto fault;
2457 if ((len -= copy) == 0)
2458 return 0;
2459 offset += copy;
2460 from += copy;
2462 start = end;
2464 if (!len)
2465 return 0;
2467 fault:
2468 return -EFAULT;
2470 EXPORT_SYMBOL(skb_store_bits);
2472 /* Checksum skb data. */
2473 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2474 __wsum csum, const struct skb_checksum_ops *ops)
2476 int start = skb_headlen(skb);
2477 int i, copy = start - offset;
2478 struct sk_buff *frag_iter;
2479 int pos = 0;
2481 /* Checksum header. */
2482 if (copy > 0) {
2483 if (copy > len)
2484 copy = len;
2485 csum = ops->update(skb->data + offset, copy, csum);
2486 if ((len -= copy) == 0)
2487 return csum;
2488 offset += copy;
2489 pos = copy;
2492 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2493 int end;
2494 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2496 WARN_ON(start > offset + len);
2498 end = start + skb_frag_size(frag);
2499 if ((copy = end - offset) > 0) {
2500 u32 p_off, p_len, copied;
2501 struct page *p;
2502 __wsum csum2;
2503 u8 *vaddr;
2505 if (copy > len)
2506 copy = len;
2508 skb_frag_foreach_page(frag,
2509 frag->page_offset + offset - start,
2510 copy, p, p_off, p_len, copied) {
2511 vaddr = kmap_atomic(p);
2512 csum2 = ops->update(vaddr + p_off, p_len, 0);
2513 kunmap_atomic(vaddr);
2514 csum = ops->combine(csum, csum2, pos, p_len);
2515 pos += p_len;
2518 if (!(len -= copy))
2519 return csum;
2520 offset += copy;
2522 start = end;
2525 skb_walk_frags(skb, frag_iter) {
2526 int end;
2528 WARN_ON(start > offset + len);
2530 end = start + frag_iter->len;
2531 if ((copy = end - offset) > 0) {
2532 __wsum csum2;
2533 if (copy > len)
2534 copy = len;
2535 csum2 = __skb_checksum(frag_iter, offset - start,
2536 copy, 0, ops);
2537 csum = ops->combine(csum, csum2, pos, copy);
2538 if ((len -= copy) == 0)
2539 return csum;
2540 offset += copy;
2541 pos += copy;
2543 start = end;
2545 BUG_ON(len);
2547 return csum;
2549 EXPORT_SYMBOL(__skb_checksum);
2551 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2552 int len, __wsum csum)
2554 const struct skb_checksum_ops ops = {
2555 .update = csum_partial_ext,
2556 .combine = csum_block_add_ext,
2559 return __skb_checksum(skb, offset, len, csum, &ops);
2561 EXPORT_SYMBOL(skb_checksum);
2563 /* Both of above in one bottle. */
2565 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2566 u8 *to, int len, __wsum csum)
2568 int start = skb_headlen(skb);
2569 int i, copy = start - offset;
2570 struct sk_buff *frag_iter;
2571 int pos = 0;
2573 /* Copy header. */
2574 if (copy > 0) {
2575 if (copy > len)
2576 copy = len;
2577 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2578 copy, csum);
2579 if ((len -= copy) == 0)
2580 return csum;
2581 offset += copy;
2582 to += copy;
2583 pos = copy;
2586 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2587 int end;
2589 WARN_ON(start > offset + len);
2591 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2592 if ((copy = end - offset) > 0) {
2593 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2594 u32 p_off, p_len, copied;
2595 struct page *p;
2596 __wsum csum2;
2597 u8 *vaddr;
2599 if (copy > len)
2600 copy = len;
2602 skb_frag_foreach_page(frag,
2603 frag->page_offset + offset - start,
2604 copy, p, p_off, p_len, copied) {
2605 vaddr = kmap_atomic(p);
2606 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2607 to + copied,
2608 p_len, 0);
2609 kunmap_atomic(vaddr);
2610 csum = csum_block_add(csum, csum2, pos);
2611 pos += p_len;
2614 if (!(len -= copy))
2615 return csum;
2616 offset += copy;
2617 to += copy;
2619 start = end;
2622 skb_walk_frags(skb, frag_iter) {
2623 __wsum csum2;
2624 int end;
2626 WARN_ON(start > offset + len);
2628 end = start + frag_iter->len;
2629 if ((copy = end - offset) > 0) {
2630 if (copy > len)
2631 copy = len;
2632 csum2 = skb_copy_and_csum_bits(frag_iter,
2633 offset - start,
2634 to, copy, 0);
2635 csum = csum_block_add(csum, csum2, pos);
2636 if ((len -= copy) == 0)
2637 return csum;
2638 offset += copy;
2639 to += copy;
2640 pos += copy;
2642 start = end;
2644 BUG_ON(len);
2645 return csum;
2647 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2649 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2651 net_warn_ratelimited(
2652 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2653 __func__);
2654 return 0;
2657 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2658 int offset, int len)
2660 net_warn_ratelimited(
2661 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2662 __func__);
2663 return 0;
2666 static const struct skb_checksum_ops default_crc32c_ops = {
2667 .update = warn_crc32c_csum_update,
2668 .combine = warn_crc32c_csum_combine,
2671 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2672 &default_crc32c_ops;
2673 EXPORT_SYMBOL(crc32c_csum_stub);
2676 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2677 * @from: source buffer
2679 * Calculates the amount of linear headroom needed in the 'to' skb passed
2680 * into skb_zerocopy().
2682 unsigned int
2683 skb_zerocopy_headlen(const struct sk_buff *from)
2685 unsigned int hlen = 0;
2687 if (!from->head_frag ||
2688 skb_headlen(from) < L1_CACHE_BYTES ||
2689 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2690 hlen = skb_headlen(from);
2692 if (skb_has_frag_list(from))
2693 hlen = from->len;
2695 return hlen;
2697 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2700 * skb_zerocopy - Zero copy skb to skb
2701 * @to: destination buffer
2702 * @from: source buffer
2703 * @len: number of bytes to copy from source buffer
2704 * @hlen: size of linear headroom in destination buffer
2706 * Copies up to `len` bytes from `from` to `to` by creating references
2707 * to the frags in the source buffer.
2709 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2710 * headroom in the `to` buffer.
2712 * Return value:
2713 * 0: everything is OK
2714 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2715 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2718 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2720 int i, j = 0;
2721 int plen = 0; /* length of skb->head fragment */
2722 int ret;
2723 struct page *page;
2724 unsigned int offset;
2726 BUG_ON(!from->head_frag && !hlen);
2728 /* dont bother with small payloads */
2729 if (len <= skb_tailroom(to))
2730 return skb_copy_bits(from, 0, skb_put(to, len), len);
2732 if (hlen) {
2733 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2734 if (unlikely(ret))
2735 return ret;
2736 len -= hlen;
2737 } else {
2738 plen = min_t(int, skb_headlen(from), len);
2739 if (plen) {
2740 page = virt_to_head_page(from->head);
2741 offset = from->data - (unsigned char *)page_address(page);
2742 __skb_fill_page_desc(to, 0, page, offset, plen);
2743 get_page(page);
2744 j = 1;
2745 len -= plen;
2749 to->truesize += len + plen;
2750 to->len += len + plen;
2751 to->data_len += len + plen;
2753 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2754 skb_tx_error(from);
2755 return -ENOMEM;
2757 skb_zerocopy_clone(to, from, GFP_ATOMIC);
2759 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2760 if (!len)
2761 break;
2762 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2763 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2764 len -= skb_shinfo(to)->frags[j].size;
2765 skb_frag_ref(to, j);
2766 j++;
2768 skb_shinfo(to)->nr_frags = j;
2770 return 0;
2772 EXPORT_SYMBOL_GPL(skb_zerocopy);
2774 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2776 __wsum csum;
2777 long csstart;
2779 if (skb->ip_summed == CHECKSUM_PARTIAL)
2780 csstart = skb_checksum_start_offset(skb);
2781 else
2782 csstart = skb_headlen(skb);
2784 BUG_ON(csstart > skb_headlen(skb));
2786 skb_copy_from_linear_data(skb, to, csstart);
2788 csum = 0;
2789 if (csstart != skb->len)
2790 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2791 skb->len - csstart, 0);
2793 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2794 long csstuff = csstart + skb->csum_offset;
2796 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2799 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2802 * skb_dequeue - remove from the head of the queue
2803 * @list: list to dequeue from
2805 * Remove the head of the list. The list lock is taken so the function
2806 * may be used safely with other locking list functions. The head item is
2807 * returned or %NULL if the list is empty.
2810 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2812 unsigned long flags;
2813 struct sk_buff *result;
2815 spin_lock_irqsave(&list->lock, flags);
2816 result = __skb_dequeue(list);
2817 spin_unlock_irqrestore(&list->lock, flags);
2818 return result;
2820 EXPORT_SYMBOL(skb_dequeue);
2823 * skb_dequeue_tail - remove from the tail of the queue
2824 * @list: list to dequeue from
2826 * Remove the tail of the list. The list lock is taken so the function
2827 * may be used safely with other locking list functions. The tail item is
2828 * returned or %NULL if the list is empty.
2830 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2832 unsigned long flags;
2833 struct sk_buff *result;
2835 spin_lock_irqsave(&list->lock, flags);
2836 result = __skb_dequeue_tail(list);
2837 spin_unlock_irqrestore(&list->lock, flags);
2838 return result;
2840 EXPORT_SYMBOL(skb_dequeue_tail);
2843 * skb_queue_purge - empty a list
2844 * @list: list to empty
2846 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2847 * the list and one reference dropped. This function takes the list
2848 * lock and is atomic with respect to other list locking functions.
2850 void skb_queue_purge(struct sk_buff_head *list)
2852 struct sk_buff *skb;
2853 while ((skb = skb_dequeue(list)) != NULL)
2854 kfree_skb(skb);
2856 EXPORT_SYMBOL(skb_queue_purge);
2859 * skb_rbtree_purge - empty a skb rbtree
2860 * @root: root of the rbtree to empty
2862 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2863 * the list and one reference dropped. This function does not take
2864 * any lock. Synchronization should be handled by the caller (e.g., TCP
2865 * out-of-order queue is protected by the socket lock).
2867 void skb_rbtree_purge(struct rb_root *root)
2869 struct rb_node *p = rb_first(root);
2871 while (p) {
2872 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2874 p = rb_next(p);
2875 rb_erase(&skb->rbnode, root);
2876 kfree_skb(skb);
2881 * skb_queue_head - queue a buffer at the list head
2882 * @list: list to use
2883 * @newsk: buffer to queue
2885 * Queue a buffer at the start of the list. This function takes the
2886 * list lock and can be used safely with other locking &sk_buff functions
2887 * safely.
2889 * A buffer cannot be placed on two lists at the same time.
2891 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2893 unsigned long flags;
2895 spin_lock_irqsave(&list->lock, flags);
2896 __skb_queue_head(list, newsk);
2897 spin_unlock_irqrestore(&list->lock, flags);
2899 EXPORT_SYMBOL(skb_queue_head);
2902 * skb_queue_tail - queue a buffer at the list tail
2903 * @list: list to use
2904 * @newsk: buffer to queue
2906 * Queue a buffer at the tail of the list. This function takes the
2907 * list lock and can be used safely with other locking &sk_buff functions
2908 * safely.
2910 * A buffer cannot be placed on two lists at the same time.
2912 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2914 unsigned long flags;
2916 spin_lock_irqsave(&list->lock, flags);
2917 __skb_queue_tail(list, newsk);
2918 spin_unlock_irqrestore(&list->lock, flags);
2920 EXPORT_SYMBOL(skb_queue_tail);
2923 * skb_unlink - remove a buffer from a list
2924 * @skb: buffer to remove
2925 * @list: list to use
2927 * Remove a packet from a list. The list locks are taken and this
2928 * function is atomic with respect to other list locked calls
2930 * You must know what list the SKB is on.
2932 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2934 unsigned long flags;
2936 spin_lock_irqsave(&list->lock, flags);
2937 __skb_unlink(skb, list);
2938 spin_unlock_irqrestore(&list->lock, flags);
2940 EXPORT_SYMBOL(skb_unlink);
2943 * skb_append - append a buffer
2944 * @old: buffer to insert after
2945 * @newsk: buffer to insert
2946 * @list: list to use
2948 * Place a packet after a given packet in a list. The list locks are taken
2949 * and this function is atomic with respect to other list locked calls.
2950 * A buffer cannot be placed on two lists at the same time.
2952 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2954 unsigned long flags;
2956 spin_lock_irqsave(&list->lock, flags);
2957 __skb_queue_after(list, old, newsk);
2958 spin_unlock_irqrestore(&list->lock, flags);
2960 EXPORT_SYMBOL(skb_append);
2963 * skb_insert - insert a buffer
2964 * @old: buffer to insert before
2965 * @newsk: buffer to insert
2966 * @list: list to use
2968 * Place a packet before a given packet in a list. The list locks are
2969 * taken and this function is atomic with respect to other list locked
2970 * calls.
2972 * A buffer cannot be placed on two lists at the same time.
2974 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2976 unsigned long flags;
2978 spin_lock_irqsave(&list->lock, flags);
2979 __skb_insert(newsk, old->prev, old, list);
2980 spin_unlock_irqrestore(&list->lock, flags);
2982 EXPORT_SYMBOL(skb_insert);
2984 static inline void skb_split_inside_header(struct sk_buff *skb,
2985 struct sk_buff* skb1,
2986 const u32 len, const int pos)
2988 int i;
2990 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2991 pos - len);
2992 /* And move data appendix as is. */
2993 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2994 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2996 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2997 skb_shinfo(skb)->nr_frags = 0;
2998 skb1->data_len = skb->data_len;
2999 skb1->len += skb1->data_len;
3000 skb->data_len = 0;
3001 skb->len = len;
3002 skb_set_tail_pointer(skb, len);
3005 static inline void skb_split_no_header(struct sk_buff *skb,
3006 struct sk_buff* skb1,
3007 const u32 len, int pos)
3009 int i, k = 0;
3010 const int nfrags = skb_shinfo(skb)->nr_frags;
3012 skb_shinfo(skb)->nr_frags = 0;
3013 skb1->len = skb1->data_len = skb->len - len;
3014 skb->len = len;
3015 skb->data_len = len - pos;
3017 for (i = 0; i < nfrags; i++) {
3018 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3020 if (pos + size > len) {
3021 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3023 if (pos < len) {
3024 /* Split frag.
3025 * We have two variants in this case:
3026 * 1. Move all the frag to the second
3027 * part, if it is possible. F.e.
3028 * this approach is mandatory for TUX,
3029 * where splitting is expensive.
3030 * 2. Split is accurately. We make this.
3032 skb_frag_ref(skb, i);
3033 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3034 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3035 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3036 skb_shinfo(skb)->nr_frags++;
3038 k++;
3039 } else
3040 skb_shinfo(skb)->nr_frags++;
3041 pos += size;
3043 skb_shinfo(skb1)->nr_frags = k;
3047 * skb_split - Split fragmented skb to two parts at length len.
3048 * @skb: the buffer to split
3049 * @skb1: the buffer to receive the second part
3050 * @len: new length for skb
3052 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3054 int pos = skb_headlen(skb);
3056 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3057 SKBTX_SHARED_FRAG;
3058 skb_zerocopy_clone(skb1, skb, 0);
3059 if (len < pos) /* Split line is inside header. */
3060 skb_split_inside_header(skb, skb1, len, pos);
3061 else /* Second chunk has no header, nothing to copy. */
3062 skb_split_no_header(skb, skb1, len, pos);
3064 EXPORT_SYMBOL(skb_split);
3066 /* Shifting from/to a cloned skb is a no-go.
3068 * Caller cannot keep skb_shinfo related pointers past calling here!
3070 static int skb_prepare_for_shift(struct sk_buff *skb)
3072 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3076 * skb_shift - Shifts paged data partially from skb to another
3077 * @tgt: buffer into which tail data gets added
3078 * @skb: buffer from which the paged data comes from
3079 * @shiftlen: shift up to this many bytes
3081 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3082 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3083 * It's up to caller to free skb if everything was shifted.
3085 * If @tgt runs out of frags, the whole operation is aborted.
3087 * Skb cannot include anything else but paged data while tgt is allowed
3088 * to have non-paged data as well.
3090 * TODO: full sized shift could be optimized but that would need
3091 * specialized skb free'er to handle frags without up-to-date nr_frags.
3093 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3095 int from, to, merge, todo;
3096 struct skb_frag_struct *fragfrom, *fragto;
3098 BUG_ON(shiftlen > skb->len);
3100 if (skb_headlen(skb))
3101 return 0;
3102 if (skb_zcopy(tgt) || skb_zcopy(skb))
3103 return 0;
3105 todo = shiftlen;
3106 from = 0;
3107 to = skb_shinfo(tgt)->nr_frags;
3108 fragfrom = &skb_shinfo(skb)->frags[from];
3110 /* Actual merge is delayed until the point when we know we can
3111 * commit all, so that we don't have to undo partial changes
3113 if (!to ||
3114 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3115 fragfrom->page_offset)) {
3116 merge = -1;
3117 } else {
3118 merge = to - 1;
3120 todo -= skb_frag_size(fragfrom);
3121 if (todo < 0) {
3122 if (skb_prepare_for_shift(skb) ||
3123 skb_prepare_for_shift(tgt))
3124 return 0;
3126 /* All previous frag pointers might be stale! */
3127 fragfrom = &skb_shinfo(skb)->frags[from];
3128 fragto = &skb_shinfo(tgt)->frags[merge];
3130 skb_frag_size_add(fragto, shiftlen);
3131 skb_frag_size_sub(fragfrom, shiftlen);
3132 fragfrom->page_offset += shiftlen;
3134 goto onlymerged;
3137 from++;
3140 /* Skip full, not-fitting skb to avoid expensive operations */
3141 if ((shiftlen == skb->len) &&
3142 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3143 return 0;
3145 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3146 return 0;
3148 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3149 if (to == MAX_SKB_FRAGS)
3150 return 0;
3152 fragfrom = &skb_shinfo(skb)->frags[from];
3153 fragto = &skb_shinfo(tgt)->frags[to];
3155 if (todo >= skb_frag_size(fragfrom)) {
3156 *fragto = *fragfrom;
3157 todo -= skb_frag_size(fragfrom);
3158 from++;
3159 to++;
3161 } else {
3162 __skb_frag_ref(fragfrom);
3163 fragto->page = fragfrom->page;
3164 fragto->page_offset = fragfrom->page_offset;
3165 skb_frag_size_set(fragto, todo);
3167 fragfrom->page_offset += todo;
3168 skb_frag_size_sub(fragfrom, todo);
3169 todo = 0;
3171 to++;
3172 break;
3176 /* Ready to "commit" this state change to tgt */
3177 skb_shinfo(tgt)->nr_frags = to;
3179 if (merge >= 0) {
3180 fragfrom = &skb_shinfo(skb)->frags[0];
3181 fragto = &skb_shinfo(tgt)->frags[merge];
3183 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3184 __skb_frag_unref(fragfrom);
3187 /* Reposition in the original skb */
3188 to = 0;
3189 while (from < skb_shinfo(skb)->nr_frags)
3190 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3191 skb_shinfo(skb)->nr_frags = to;
3193 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3195 onlymerged:
3196 /* Most likely the tgt won't ever need its checksum anymore, skb on
3197 * the other hand might need it if it needs to be resent
3199 tgt->ip_summed = CHECKSUM_PARTIAL;
3200 skb->ip_summed = CHECKSUM_PARTIAL;
3202 /* Yak, is it really working this way? Some helper please? */
3203 skb->len -= shiftlen;
3204 skb->data_len -= shiftlen;
3205 skb->truesize -= shiftlen;
3206 tgt->len += shiftlen;
3207 tgt->data_len += shiftlen;
3208 tgt->truesize += shiftlen;
3210 return shiftlen;
3214 * skb_prepare_seq_read - Prepare a sequential read of skb data
3215 * @skb: the buffer to read
3216 * @from: lower offset of data to be read
3217 * @to: upper offset of data to be read
3218 * @st: state variable
3220 * Initializes the specified state variable. Must be called before
3221 * invoking skb_seq_read() for the first time.
3223 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3224 unsigned int to, struct skb_seq_state *st)
3226 st->lower_offset = from;
3227 st->upper_offset = to;
3228 st->root_skb = st->cur_skb = skb;
3229 st->frag_idx = st->stepped_offset = 0;
3230 st->frag_data = NULL;
3232 EXPORT_SYMBOL(skb_prepare_seq_read);
3235 * skb_seq_read - Sequentially read skb data
3236 * @consumed: number of bytes consumed by the caller so far
3237 * @data: destination pointer for data to be returned
3238 * @st: state variable
3240 * Reads a block of skb data at @consumed relative to the
3241 * lower offset specified to skb_prepare_seq_read(). Assigns
3242 * the head of the data block to @data and returns the length
3243 * of the block or 0 if the end of the skb data or the upper
3244 * offset has been reached.
3246 * The caller is not required to consume all of the data
3247 * returned, i.e. @consumed is typically set to the number
3248 * of bytes already consumed and the next call to
3249 * skb_seq_read() will return the remaining part of the block.
3251 * Note 1: The size of each block of data returned can be arbitrary,
3252 * this limitation is the cost for zerocopy sequential
3253 * reads of potentially non linear data.
3255 * Note 2: Fragment lists within fragments are not implemented
3256 * at the moment, state->root_skb could be replaced with
3257 * a stack for this purpose.
3259 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3260 struct skb_seq_state *st)
3262 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3263 skb_frag_t *frag;
3265 if (unlikely(abs_offset >= st->upper_offset)) {
3266 if (st->frag_data) {
3267 kunmap_atomic(st->frag_data);
3268 st->frag_data = NULL;
3270 return 0;
3273 next_skb:
3274 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3276 if (abs_offset < block_limit && !st->frag_data) {
3277 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3278 return block_limit - abs_offset;
3281 if (st->frag_idx == 0 && !st->frag_data)
3282 st->stepped_offset += skb_headlen(st->cur_skb);
3284 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3285 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3286 block_limit = skb_frag_size(frag) + st->stepped_offset;
3288 if (abs_offset < block_limit) {
3289 if (!st->frag_data)
3290 st->frag_data = kmap_atomic(skb_frag_page(frag));
3292 *data = (u8 *) st->frag_data + frag->page_offset +
3293 (abs_offset - st->stepped_offset);
3295 return block_limit - abs_offset;
3298 if (st->frag_data) {
3299 kunmap_atomic(st->frag_data);
3300 st->frag_data = NULL;
3303 st->frag_idx++;
3304 st->stepped_offset += skb_frag_size(frag);
3307 if (st->frag_data) {
3308 kunmap_atomic(st->frag_data);
3309 st->frag_data = NULL;
3312 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3313 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3314 st->frag_idx = 0;
3315 goto next_skb;
3316 } else if (st->cur_skb->next) {
3317 st->cur_skb = st->cur_skb->next;
3318 st->frag_idx = 0;
3319 goto next_skb;
3322 return 0;
3324 EXPORT_SYMBOL(skb_seq_read);
3327 * skb_abort_seq_read - Abort a sequential read of skb data
3328 * @st: state variable
3330 * Must be called if skb_seq_read() was not called until it
3331 * returned 0.
3333 void skb_abort_seq_read(struct skb_seq_state *st)
3335 if (st->frag_data)
3336 kunmap_atomic(st->frag_data);
3338 EXPORT_SYMBOL(skb_abort_seq_read);
3340 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3342 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3343 struct ts_config *conf,
3344 struct ts_state *state)
3346 return skb_seq_read(offset, text, TS_SKB_CB(state));
3349 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3351 skb_abort_seq_read(TS_SKB_CB(state));
3355 * skb_find_text - Find a text pattern in skb data
3356 * @skb: the buffer to look in
3357 * @from: search offset
3358 * @to: search limit
3359 * @config: textsearch configuration
3361 * Finds a pattern in the skb data according to the specified
3362 * textsearch configuration. Use textsearch_next() to retrieve
3363 * subsequent occurrences of the pattern. Returns the offset
3364 * to the first occurrence or UINT_MAX if no match was found.
3366 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3367 unsigned int to, struct ts_config *config)
3369 struct ts_state state;
3370 unsigned int ret;
3372 config->get_next_block = skb_ts_get_next_block;
3373 config->finish = skb_ts_finish;
3375 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3377 ret = textsearch_find(config, &state);
3378 return (ret <= to - from ? ret : UINT_MAX);
3380 EXPORT_SYMBOL(skb_find_text);
3383 * skb_append_datato_frags - append the user data to a skb
3384 * @sk: sock structure
3385 * @skb: skb structure to be appended with user data.
3386 * @getfrag: call back function to be used for getting the user data
3387 * @from: pointer to user message iov
3388 * @length: length of the iov message
3390 * Description: This procedure append the user data in the fragment part
3391 * of the skb if any page alloc fails user this procedure returns -ENOMEM
3393 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3394 int (*getfrag)(void *from, char *to, int offset,
3395 int len, int odd, struct sk_buff *skb),
3396 void *from, int length)
3398 int frg_cnt = skb_shinfo(skb)->nr_frags;
3399 int copy;
3400 int offset = 0;
3401 int ret;
3402 struct page_frag *pfrag = &current->task_frag;
3404 do {
3405 /* Return error if we don't have space for new frag */
3406 if (frg_cnt >= MAX_SKB_FRAGS)
3407 return -EMSGSIZE;
3409 if (!sk_page_frag_refill(sk, pfrag))
3410 return -ENOMEM;
3412 /* copy the user data to page */
3413 copy = min_t(int, length, pfrag->size - pfrag->offset);
3415 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3416 offset, copy, 0, skb);
3417 if (ret < 0)
3418 return -EFAULT;
3420 /* copy was successful so update the size parameters */
3421 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3422 copy);
3423 frg_cnt++;
3424 pfrag->offset += copy;
3425 get_page(pfrag->page);
3427 skb->truesize += copy;
3428 refcount_add(copy, &sk->sk_wmem_alloc);
3429 skb->len += copy;
3430 skb->data_len += copy;
3431 offset += copy;
3432 length -= copy;
3434 } while (length > 0);
3436 return 0;
3438 EXPORT_SYMBOL(skb_append_datato_frags);
3440 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3441 int offset, size_t size)
3443 int i = skb_shinfo(skb)->nr_frags;
3445 if (skb_can_coalesce(skb, i, page, offset)) {
3446 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3447 } else if (i < MAX_SKB_FRAGS) {
3448 get_page(page);
3449 skb_fill_page_desc(skb, i, page, offset, size);
3450 } else {
3451 return -EMSGSIZE;
3454 return 0;
3456 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3459 * skb_pull_rcsum - pull skb and update receive checksum
3460 * @skb: buffer to update
3461 * @len: length of data pulled
3463 * This function performs an skb_pull on the packet and updates
3464 * the CHECKSUM_COMPLETE checksum. It should be used on
3465 * receive path processing instead of skb_pull unless you know
3466 * that the checksum difference is zero (e.g., a valid IP header)
3467 * or you are setting ip_summed to CHECKSUM_NONE.
3469 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3471 unsigned char *data = skb->data;
3473 BUG_ON(len > skb->len);
3474 __skb_pull(skb, len);
3475 skb_postpull_rcsum(skb, data, len);
3476 return skb->data;
3478 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3480 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3482 skb_frag_t head_frag;
3483 struct page *page;
3485 page = virt_to_head_page(frag_skb->head);
3486 head_frag.page.p = page;
3487 head_frag.page_offset = frag_skb->data -
3488 (unsigned char *)page_address(page);
3489 head_frag.size = skb_headlen(frag_skb);
3490 return head_frag;
3494 * skb_segment - Perform protocol segmentation on skb.
3495 * @head_skb: buffer to segment
3496 * @features: features for the output path (see dev->features)
3498 * This function performs segmentation on the given skb. It returns
3499 * a pointer to the first in a list of new skbs for the segments.
3500 * In case of error it returns ERR_PTR(err).
3502 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3503 netdev_features_t features)
3505 struct sk_buff *segs = NULL;
3506 struct sk_buff *tail = NULL;
3507 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3508 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3509 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3510 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3511 struct sk_buff *frag_skb = head_skb;
3512 unsigned int offset = doffset;
3513 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3514 unsigned int partial_segs = 0;
3515 unsigned int headroom;
3516 unsigned int len = head_skb->len;
3517 __be16 proto;
3518 bool csum, sg;
3519 int nfrags = skb_shinfo(head_skb)->nr_frags;
3520 int err = -ENOMEM;
3521 int i = 0;
3522 int pos;
3523 int dummy;
3525 __skb_push(head_skb, doffset);
3526 proto = skb_network_protocol(head_skb, &dummy);
3527 if (unlikely(!proto))
3528 return ERR_PTR(-EINVAL);
3530 sg = !!(features & NETIF_F_SG);
3531 csum = !!can_checksum_protocol(features, proto);
3533 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3534 if (!(features & NETIF_F_GSO_PARTIAL)) {
3535 struct sk_buff *iter;
3536 unsigned int frag_len;
3538 if (!list_skb ||
3539 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3540 goto normal;
3542 /* If we get here then all the required
3543 * GSO features except frag_list are supported.
3544 * Try to split the SKB to multiple GSO SKBs
3545 * with no frag_list.
3546 * Currently we can do that only when the buffers don't
3547 * have a linear part and all the buffers except
3548 * the last are of the same length.
3550 frag_len = list_skb->len;
3551 skb_walk_frags(head_skb, iter) {
3552 if (frag_len != iter->len && iter->next)
3553 goto normal;
3554 if (skb_headlen(iter) && !iter->head_frag)
3555 goto normal;
3557 len -= iter->len;
3560 if (len != frag_len)
3561 goto normal;
3564 /* GSO partial only requires that we trim off any excess that
3565 * doesn't fit into an MSS sized block, so take care of that
3566 * now.
3568 partial_segs = len / mss;
3569 if (partial_segs > 1)
3570 mss *= partial_segs;
3571 else
3572 partial_segs = 0;
3575 normal:
3576 headroom = skb_headroom(head_skb);
3577 pos = skb_headlen(head_skb);
3579 do {
3580 struct sk_buff *nskb;
3581 skb_frag_t *nskb_frag;
3582 int hsize;
3583 int size;
3585 if (unlikely(mss == GSO_BY_FRAGS)) {
3586 len = list_skb->len;
3587 } else {
3588 len = head_skb->len - offset;
3589 if (len > mss)
3590 len = mss;
3593 hsize = skb_headlen(head_skb) - offset;
3594 if (hsize < 0)
3595 hsize = 0;
3596 if (hsize > len || !sg)
3597 hsize = len;
3599 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3600 (skb_headlen(list_skb) == len || sg)) {
3601 BUG_ON(skb_headlen(list_skb) > len);
3603 i = 0;
3604 nfrags = skb_shinfo(list_skb)->nr_frags;
3605 frag = skb_shinfo(list_skb)->frags;
3606 frag_skb = list_skb;
3607 pos += skb_headlen(list_skb);
3609 while (pos < offset + len) {
3610 BUG_ON(i >= nfrags);
3612 size = skb_frag_size(frag);
3613 if (pos + size > offset + len)
3614 break;
3616 i++;
3617 pos += size;
3618 frag++;
3621 nskb = skb_clone(list_skb, GFP_ATOMIC);
3622 list_skb = list_skb->next;
3624 if (unlikely(!nskb))
3625 goto err;
3627 if (unlikely(pskb_trim(nskb, len))) {
3628 kfree_skb(nskb);
3629 goto err;
3632 hsize = skb_end_offset(nskb);
3633 if (skb_cow_head(nskb, doffset + headroom)) {
3634 kfree_skb(nskb);
3635 goto err;
3638 nskb->truesize += skb_end_offset(nskb) - hsize;
3639 skb_release_head_state(nskb);
3640 __skb_push(nskb, doffset);
3641 } else {
3642 nskb = __alloc_skb(hsize + doffset + headroom,
3643 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3644 NUMA_NO_NODE);
3646 if (unlikely(!nskb))
3647 goto err;
3649 skb_reserve(nskb, headroom);
3650 __skb_put(nskb, doffset);
3653 if (segs)
3654 tail->next = nskb;
3655 else
3656 segs = nskb;
3657 tail = nskb;
3659 __copy_skb_header(nskb, head_skb);
3661 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3662 skb_reset_mac_len(nskb);
3664 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3665 nskb->data - tnl_hlen,
3666 doffset + tnl_hlen);
3668 if (nskb->len == len + doffset)
3669 goto perform_csum_check;
3671 if (!sg) {
3672 if (!nskb->remcsum_offload)
3673 nskb->ip_summed = CHECKSUM_NONE;
3674 SKB_GSO_CB(nskb)->csum =
3675 skb_copy_and_csum_bits(head_skb, offset,
3676 skb_put(nskb, len),
3677 len, 0);
3678 SKB_GSO_CB(nskb)->csum_start =
3679 skb_headroom(nskb) + doffset;
3680 continue;
3683 nskb_frag = skb_shinfo(nskb)->frags;
3685 skb_copy_from_linear_data_offset(head_skb, offset,
3686 skb_put(nskb, hsize), hsize);
3688 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3689 SKBTX_SHARED_FRAG;
3691 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3692 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3693 goto err;
3695 while (pos < offset + len) {
3696 if (i >= nfrags) {
3697 i = 0;
3698 nfrags = skb_shinfo(list_skb)->nr_frags;
3699 frag = skb_shinfo(list_skb)->frags;
3700 frag_skb = list_skb;
3701 if (!skb_headlen(list_skb)) {
3702 BUG_ON(!nfrags);
3703 } else {
3704 BUG_ON(!list_skb->head_frag);
3706 /* to make room for head_frag. */
3707 i--;
3708 frag--;
3710 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3711 skb_zerocopy_clone(nskb, frag_skb,
3712 GFP_ATOMIC))
3713 goto err;
3715 list_skb = list_skb->next;
3718 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3719 MAX_SKB_FRAGS)) {
3720 net_warn_ratelimited(
3721 "skb_segment: too many frags: %u %u\n",
3722 pos, mss);
3723 goto err;
3726 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3727 __skb_frag_ref(nskb_frag);
3728 size = skb_frag_size(nskb_frag);
3730 if (pos < offset) {
3731 nskb_frag->page_offset += offset - pos;
3732 skb_frag_size_sub(nskb_frag, offset - pos);
3735 skb_shinfo(nskb)->nr_frags++;
3737 if (pos + size <= offset + len) {
3738 i++;
3739 frag++;
3740 pos += size;
3741 } else {
3742 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3743 goto skip_fraglist;
3746 nskb_frag++;
3749 skip_fraglist:
3750 nskb->data_len = len - hsize;
3751 nskb->len += nskb->data_len;
3752 nskb->truesize += nskb->data_len;
3754 perform_csum_check:
3755 if (!csum) {
3756 if (skb_has_shared_frag(nskb)) {
3757 err = __skb_linearize(nskb);
3758 if (err)
3759 goto err;
3761 if (!nskb->remcsum_offload)
3762 nskb->ip_summed = CHECKSUM_NONE;
3763 SKB_GSO_CB(nskb)->csum =
3764 skb_checksum(nskb, doffset,
3765 nskb->len - doffset, 0);
3766 SKB_GSO_CB(nskb)->csum_start =
3767 skb_headroom(nskb) + doffset;
3769 } while ((offset += len) < head_skb->len);
3771 /* Some callers want to get the end of the list.
3772 * Put it in segs->prev to avoid walking the list.
3773 * (see validate_xmit_skb_list() for example)
3775 segs->prev = tail;
3777 if (partial_segs) {
3778 struct sk_buff *iter;
3779 int type = skb_shinfo(head_skb)->gso_type;
3780 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3782 /* Update type to add partial and then remove dodgy if set */
3783 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3784 type &= ~SKB_GSO_DODGY;
3786 /* Update GSO info and prepare to start updating headers on
3787 * our way back down the stack of protocols.
3789 for (iter = segs; iter; iter = iter->next) {
3790 skb_shinfo(iter)->gso_size = gso_size;
3791 skb_shinfo(iter)->gso_segs = partial_segs;
3792 skb_shinfo(iter)->gso_type = type;
3793 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3796 if (tail->len - doffset <= gso_size)
3797 skb_shinfo(tail)->gso_size = 0;
3798 else if (tail != segs)
3799 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3802 /* Following permits correct backpressure, for protocols
3803 * using skb_set_owner_w().
3804 * Idea is to tranfert ownership from head_skb to last segment.
3806 if (head_skb->destructor == sock_wfree) {
3807 swap(tail->truesize, head_skb->truesize);
3808 swap(tail->destructor, head_skb->destructor);
3809 swap(tail->sk, head_skb->sk);
3811 return segs;
3813 err:
3814 kfree_skb_list(segs);
3815 return ERR_PTR(err);
3817 EXPORT_SYMBOL_GPL(skb_segment);
3819 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3821 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3822 unsigned int offset = skb_gro_offset(skb);
3823 unsigned int headlen = skb_headlen(skb);
3824 unsigned int len = skb_gro_len(skb);
3825 struct sk_buff *lp, *p = *head;
3826 unsigned int delta_truesize;
3828 if (unlikely(p->len + len >= 65536))
3829 return -E2BIG;
3831 lp = NAPI_GRO_CB(p)->last;
3832 pinfo = skb_shinfo(lp);
3834 if (headlen <= offset) {
3835 skb_frag_t *frag;
3836 skb_frag_t *frag2;
3837 int i = skbinfo->nr_frags;
3838 int nr_frags = pinfo->nr_frags + i;
3840 if (nr_frags > MAX_SKB_FRAGS)
3841 goto merge;
3843 offset -= headlen;
3844 pinfo->nr_frags = nr_frags;
3845 skbinfo->nr_frags = 0;
3847 frag = pinfo->frags + nr_frags;
3848 frag2 = skbinfo->frags + i;
3849 do {
3850 *--frag = *--frag2;
3851 } while (--i);
3853 frag->page_offset += offset;
3854 skb_frag_size_sub(frag, offset);
3856 /* all fragments truesize : remove (head size + sk_buff) */
3857 delta_truesize = skb->truesize -
3858 SKB_TRUESIZE(skb_end_offset(skb));
3860 skb->truesize -= skb->data_len;
3861 skb->len -= skb->data_len;
3862 skb->data_len = 0;
3864 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3865 goto done;
3866 } else if (skb->head_frag) {
3867 int nr_frags = pinfo->nr_frags;
3868 skb_frag_t *frag = pinfo->frags + nr_frags;
3869 struct page *page = virt_to_head_page(skb->head);
3870 unsigned int first_size = headlen - offset;
3871 unsigned int first_offset;
3873 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3874 goto merge;
3876 first_offset = skb->data -
3877 (unsigned char *)page_address(page) +
3878 offset;
3880 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3882 frag->page.p = page;
3883 frag->page_offset = first_offset;
3884 skb_frag_size_set(frag, first_size);
3886 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3887 /* We dont need to clear skbinfo->nr_frags here */
3889 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3890 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3891 goto done;
3894 merge:
3895 delta_truesize = skb->truesize;
3896 if (offset > headlen) {
3897 unsigned int eat = offset - headlen;
3899 skbinfo->frags[0].page_offset += eat;
3900 skb_frag_size_sub(&skbinfo->frags[0], eat);
3901 skb->data_len -= eat;
3902 skb->len -= eat;
3903 offset = headlen;
3906 __skb_pull(skb, offset);
3908 if (NAPI_GRO_CB(p)->last == p)
3909 skb_shinfo(p)->frag_list = skb;
3910 else
3911 NAPI_GRO_CB(p)->last->next = skb;
3912 NAPI_GRO_CB(p)->last = skb;
3913 __skb_header_release(skb);
3914 lp = p;
3916 done:
3917 NAPI_GRO_CB(p)->count++;
3918 p->data_len += len;
3919 p->truesize += delta_truesize;
3920 p->len += len;
3921 if (lp != p) {
3922 lp->data_len += len;
3923 lp->truesize += delta_truesize;
3924 lp->len += len;
3926 NAPI_GRO_CB(skb)->same_flow = 1;
3927 return 0;
3929 EXPORT_SYMBOL_GPL(skb_gro_receive);
3931 void __init skb_init(void)
3933 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3934 sizeof(struct sk_buff),
3936 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3937 offsetof(struct sk_buff, cb),
3938 sizeof_field(struct sk_buff, cb),
3939 NULL);
3940 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3941 sizeof(struct sk_buff_fclones),
3943 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3944 NULL);
3947 static int
3948 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3949 unsigned int recursion_level)
3951 int start = skb_headlen(skb);
3952 int i, copy = start - offset;
3953 struct sk_buff *frag_iter;
3954 int elt = 0;
3956 if (unlikely(recursion_level >= 24))
3957 return -EMSGSIZE;
3959 if (copy > 0) {
3960 if (copy > len)
3961 copy = len;
3962 sg_set_buf(sg, skb->data + offset, copy);
3963 elt++;
3964 if ((len -= copy) == 0)
3965 return elt;
3966 offset += copy;
3969 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3970 int end;
3972 WARN_ON(start > offset + len);
3974 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3975 if ((copy = end - offset) > 0) {
3976 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3977 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3978 return -EMSGSIZE;
3980 if (copy > len)
3981 copy = len;
3982 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3983 frag->page_offset+offset-start);
3984 elt++;
3985 if (!(len -= copy))
3986 return elt;
3987 offset += copy;
3989 start = end;
3992 skb_walk_frags(skb, frag_iter) {
3993 int end, ret;
3995 WARN_ON(start > offset + len);
3997 end = start + frag_iter->len;
3998 if ((copy = end - offset) > 0) {
3999 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4000 return -EMSGSIZE;
4002 if (copy > len)
4003 copy = len;
4004 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4005 copy, recursion_level + 1);
4006 if (unlikely(ret < 0))
4007 return ret;
4008 elt += ret;
4009 if ((len -= copy) == 0)
4010 return elt;
4011 offset += copy;
4013 start = end;
4015 BUG_ON(len);
4016 return elt;
4020 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4021 * @skb: Socket buffer containing the buffers to be mapped
4022 * @sg: The scatter-gather list to map into
4023 * @offset: The offset into the buffer's contents to start mapping
4024 * @len: Length of buffer space to be mapped
4026 * Fill the specified scatter-gather list with mappings/pointers into a
4027 * region of the buffer space attached to a socket buffer. Returns either
4028 * the number of scatterlist items used, or -EMSGSIZE if the contents
4029 * could not fit.
4031 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4033 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4035 if (nsg <= 0)
4036 return nsg;
4038 sg_mark_end(&sg[nsg - 1]);
4040 return nsg;
4042 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4044 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4045 * sglist without mark the sg which contain last skb data as the end.
4046 * So the caller can mannipulate sg list as will when padding new data after
4047 * the first call without calling sg_unmark_end to expend sg list.
4049 * Scenario to use skb_to_sgvec_nomark:
4050 * 1. sg_init_table
4051 * 2. skb_to_sgvec_nomark(payload1)
4052 * 3. skb_to_sgvec_nomark(payload2)
4054 * This is equivalent to:
4055 * 1. sg_init_table
4056 * 2. skb_to_sgvec(payload1)
4057 * 3. sg_unmark_end
4058 * 4. skb_to_sgvec(payload2)
4060 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4061 * is more preferable.
4063 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4064 int offset, int len)
4066 return __skb_to_sgvec(skb, sg, offset, len, 0);
4068 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4073 * skb_cow_data - Check that a socket buffer's data buffers are writable
4074 * @skb: The socket buffer to check.
4075 * @tailbits: Amount of trailing space to be added
4076 * @trailer: Returned pointer to the skb where the @tailbits space begins
4078 * Make sure that the data buffers attached to a socket buffer are
4079 * writable. If they are not, private copies are made of the data buffers
4080 * and the socket buffer is set to use these instead.
4082 * If @tailbits is given, make sure that there is space to write @tailbits
4083 * bytes of data beyond current end of socket buffer. @trailer will be
4084 * set to point to the skb in which this space begins.
4086 * The number of scatterlist elements required to completely map the
4087 * COW'd and extended socket buffer will be returned.
4089 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4091 int copyflag;
4092 int elt;
4093 struct sk_buff *skb1, **skb_p;
4095 /* If skb is cloned or its head is paged, reallocate
4096 * head pulling out all the pages (pages are considered not writable
4097 * at the moment even if they are anonymous).
4099 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4100 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4101 return -ENOMEM;
4103 /* Easy case. Most of packets will go this way. */
4104 if (!skb_has_frag_list(skb)) {
4105 /* A little of trouble, not enough of space for trailer.
4106 * This should not happen, when stack is tuned to generate
4107 * good frames. OK, on miss we reallocate and reserve even more
4108 * space, 128 bytes is fair. */
4110 if (skb_tailroom(skb) < tailbits &&
4111 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4112 return -ENOMEM;
4114 /* Voila! */
4115 *trailer = skb;
4116 return 1;
4119 /* Misery. We are in troubles, going to mincer fragments... */
4121 elt = 1;
4122 skb_p = &skb_shinfo(skb)->frag_list;
4123 copyflag = 0;
4125 while ((skb1 = *skb_p) != NULL) {
4126 int ntail = 0;
4128 /* The fragment is partially pulled by someone,
4129 * this can happen on input. Copy it and everything
4130 * after it. */
4132 if (skb_shared(skb1))
4133 copyflag = 1;
4135 /* If the skb is the last, worry about trailer. */
4137 if (skb1->next == NULL && tailbits) {
4138 if (skb_shinfo(skb1)->nr_frags ||
4139 skb_has_frag_list(skb1) ||
4140 skb_tailroom(skb1) < tailbits)
4141 ntail = tailbits + 128;
4144 if (copyflag ||
4145 skb_cloned(skb1) ||
4146 ntail ||
4147 skb_shinfo(skb1)->nr_frags ||
4148 skb_has_frag_list(skb1)) {
4149 struct sk_buff *skb2;
4151 /* Fuck, we are miserable poor guys... */
4152 if (ntail == 0)
4153 skb2 = skb_copy(skb1, GFP_ATOMIC);
4154 else
4155 skb2 = skb_copy_expand(skb1,
4156 skb_headroom(skb1),
4157 ntail,
4158 GFP_ATOMIC);
4159 if (unlikely(skb2 == NULL))
4160 return -ENOMEM;
4162 if (skb1->sk)
4163 skb_set_owner_w(skb2, skb1->sk);
4165 /* Looking around. Are we still alive?
4166 * OK, link new skb, drop old one */
4168 skb2->next = skb1->next;
4169 *skb_p = skb2;
4170 kfree_skb(skb1);
4171 skb1 = skb2;
4173 elt++;
4174 *trailer = skb1;
4175 skb_p = &skb1->next;
4178 return elt;
4180 EXPORT_SYMBOL_GPL(skb_cow_data);
4182 static void sock_rmem_free(struct sk_buff *skb)
4184 struct sock *sk = skb->sk;
4186 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4189 static void skb_set_err_queue(struct sk_buff *skb)
4191 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4192 * So, it is safe to (mis)use it to mark skbs on the error queue.
4194 skb->pkt_type = PACKET_OUTGOING;
4195 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4199 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4201 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4203 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4204 (unsigned int)sk->sk_rcvbuf)
4205 return -ENOMEM;
4207 skb_orphan(skb);
4208 skb->sk = sk;
4209 skb->destructor = sock_rmem_free;
4210 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4211 skb_set_err_queue(skb);
4213 /* before exiting rcu section, make sure dst is refcounted */
4214 skb_dst_force(skb);
4216 skb_queue_tail(&sk->sk_error_queue, skb);
4217 if (!sock_flag(sk, SOCK_DEAD))
4218 sk->sk_error_report(sk);
4219 return 0;
4221 EXPORT_SYMBOL(sock_queue_err_skb);
4223 static bool is_icmp_err_skb(const struct sk_buff *skb)
4225 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4226 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4229 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4231 struct sk_buff_head *q = &sk->sk_error_queue;
4232 struct sk_buff *skb, *skb_next = NULL;
4233 bool icmp_next = false;
4234 unsigned long flags;
4236 spin_lock_irqsave(&q->lock, flags);
4237 skb = __skb_dequeue(q);
4238 if (skb && (skb_next = skb_peek(q))) {
4239 icmp_next = is_icmp_err_skb(skb_next);
4240 if (icmp_next)
4241 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4243 spin_unlock_irqrestore(&q->lock, flags);
4245 if (is_icmp_err_skb(skb) && !icmp_next)
4246 sk->sk_err = 0;
4248 if (skb_next)
4249 sk->sk_error_report(sk);
4251 return skb;
4253 EXPORT_SYMBOL(sock_dequeue_err_skb);
4256 * skb_clone_sk - create clone of skb, and take reference to socket
4257 * @skb: the skb to clone
4259 * This function creates a clone of a buffer that holds a reference on
4260 * sk_refcnt. Buffers created via this function are meant to be
4261 * returned using sock_queue_err_skb, or free via kfree_skb.
4263 * When passing buffers allocated with this function to sock_queue_err_skb
4264 * it is necessary to wrap the call with sock_hold/sock_put in order to
4265 * prevent the socket from being released prior to being enqueued on
4266 * the sk_error_queue.
4268 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4270 struct sock *sk = skb->sk;
4271 struct sk_buff *clone;
4273 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4274 return NULL;
4276 clone = skb_clone(skb, GFP_ATOMIC);
4277 if (!clone) {
4278 sock_put(sk);
4279 return NULL;
4282 clone->sk = sk;
4283 clone->destructor = sock_efree;
4285 return clone;
4287 EXPORT_SYMBOL(skb_clone_sk);
4289 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4290 struct sock *sk,
4291 int tstype,
4292 bool opt_stats)
4294 struct sock_exterr_skb *serr;
4295 int err;
4297 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4299 serr = SKB_EXT_ERR(skb);
4300 memset(serr, 0, sizeof(*serr));
4301 serr->ee.ee_errno = ENOMSG;
4302 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4303 serr->ee.ee_info = tstype;
4304 serr->opt_stats = opt_stats;
4305 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4306 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4307 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4308 if (sk->sk_protocol == IPPROTO_TCP &&
4309 sk->sk_type == SOCK_STREAM)
4310 serr->ee.ee_data -= sk->sk_tskey;
4313 err = sock_queue_err_skb(sk, skb);
4315 if (err)
4316 kfree_skb(skb);
4319 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4321 bool ret;
4323 if (likely(sysctl_tstamp_allow_data || tsonly))
4324 return true;
4326 read_lock_bh(&sk->sk_callback_lock);
4327 ret = sk->sk_socket && sk->sk_socket->file &&
4328 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4329 read_unlock_bh(&sk->sk_callback_lock);
4330 return ret;
4333 void skb_complete_tx_timestamp(struct sk_buff *skb,
4334 struct skb_shared_hwtstamps *hwtstamps)
4336 struct sock *sk = skb->sk;
4338 if (!skb_may_tx_timestamp(sk, false))
4339 goto err;
4341 /* Take a reference to prevent skb_orphan() from freeing the socket,
4342 * but only if the socket refcount is not zero.
4344 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4345 *skb_hwtstamps(skb) = *hwtstamps;
4346 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4347 sock_put(sk);
4348 return;
4351 err:
4352 kfree_skb(skb);
4354 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4356 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4357 struct skb_shared_hwtstamps *hwtstamps,
4358 struct sock *sk, int tstype)
4360 struct sk_buff *skb;
4361 bool tsonly, opt_stats = false;
4363 if (!sk)
4364 return;
4366 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4367 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4368 return;
4370 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4371 if (!skb_may_tx_timestamp(sk, tsonly))
4372 return;
4374 if (tsonly) {
4375 #ifdef CONFIG_INET
4376 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4377 sk->sk_protocol == IPPROTO_TCP &&
4378 sk->sk_type == SOCK_STREAM) {
4379 skb = tcp_get_timestamping_opt_stats(sk);
4380 opt_stats = true;
4381 } else
4382 #endif
4383 skb = alloc_skb(0, GFP_ATOMIC);
4384 } else {
4385 skb = skb_clone(orig_skb, GFP_ATOMIC);
4387 if (!skb)
4388 return;
4390 if (tsonly) {
4391 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4392 SKBTX_ANY_TSTAMP;
4393 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4396 if (hwtstamps)
4397 *skb_hwtstamps(skb) = *hwtstamps;
4398 else
4399 skb->tstamp = ktime_get_real();
4401 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4403 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4405 void skb_tstamp_tx(struct sk_buff *orig_skb,
4406 struct skb_shared_hwtstamps *hwtstamps)
4408 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4409 SCM_TSTAMP_SND);
4411 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4413 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4415 struct sock *sk = skb->sk;
4416 struct sock_exterr_skb *serr;
4417 int err = 1;
4419 skb->wifi_acked_valid = 1;
4420 skb->wifi_acked = acked;
4422 serr = SKB_EXT_ERR(skb);
4423 memset(serr, 0, sizeof(*serr));
4424 serr->ee.ee_errno = ENOMSG;
4425 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4427 /* Take a reference to prevent skb_orphan() from freeing the socket,
4428 * but only if the socket refcount is not zero.
4430 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4431 err = sock_queue_err_skb(sk, skb);
4432 sock_put(sk);
4434 if (err)
4435 kfree_skb(skb);
4437 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4440 * skb_partial_csum_set - set up and verify partial csum values for packet
4441 * @skb: the skb to set
4442 * @start: the number of bytes after skb->data to start checksumming.
4443 * @off: the offset from start to place the checksum.
4445 * For untrusted partially-checksummed packets, we need to make sure the values
4446 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4448 * This function checks and sets those values and skb->ip_summed: if this
4449 * returns false you should drop the packet.
4451 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4453 if (unlikely(start > skb_headlen(skb)) ||
4454 unlikely((int)start + off > skb_headlen(skb) - 2)) {
4455 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4456 start, off, skb_headlen(skb));
4457 return false;
4459 skb->ip_summed = CHECKSUM_PARTIAL;
4460 skb->csum_start = skb_headroom(skb) + start;
4461 skb->csum_offset = off;
4462 skb_set_transport_header(skb, start);
4463 return true;
4465 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4467 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4468 unsigned int max)
4470 if (skb_headlen(skb) >= len)
4471 return 0;
4473 /* If we need to pullup then pullup to the max, so we
4474 * won't need to do it again.
4476 if (max > skb->len)
4477 max = skb->len;
4479 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4480 return -ENOMEM;
4482 if (skb_headlen(skb) < len)
4483 return -EPROTO;
4485 return 0;
4488 #define MAX_TCP_HDR_LEN (15 * 4)
4490 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4491 typeof(IPPROTO_IP) proto,
4492 unsigned int off)
4494 switch (proto) {
4495 int err;
4497 case IPPROTO_TCP:
4498 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4499 off + MAX_TCP_HDR_LEN);
4500 if (!err && !skb_partial_csum_set(skb, off,
4501 offsetof(struct tcphdr,
4502 check)))
4503 err = -EPROTO;
4504 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4506 case IPPROTO_UDP:
4507 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4508 off + sizeof(struct udphdr));
4509 if (!err && !skb_partial_csum_set(skb, off,
4510 offsetof(struct udphdr,
4511 check)))
4512 err = -EPROTO;
4513 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4516 return ERR_PTR(-EPROTO);
4519 /* This value should be large enough to cover a tagged ethernet header plus
4520 * maximally sized IP and TCP or UDP headers.
4522 #define MAX_IP_HDR_LEN 128
4524 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4526 unsigned int off;
4527 bool fragment;
4528 __sum16 *csum;
4529 int err;
4531 fragment = false;
4533 err = skb_maybe_pull_tail(skb,
4534 sizeof(struct iphdr),
4535 MAX_IP_HDR_LEN);
4536 if (err < 0)
4537 goto out;
4539 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4540 fragment = true;
4542 off = ip_hdrlen(skb);
4544 err = -EPROTO;
4546 if (fragment)
4547 goto out;
4549 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4550 if (IS_ERR(csum))
4551 return PTR_ERR(csum);
4553 if (recalculate)
4554 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4555 ip_hdr(skb)->daddr,
4556 skb->len - off,
4557 ip_hdr(skb)->protocol, 0);
4558 err = 0;
4560 out:
4561 return err;
4564 /* This value should be large enough to cover a tagged ethernet header plus
4565 * an IPv6 header, all options, and a maximal TCP or UDP header.
4567 #define MAX_IPV6_HDR_LEN 256
4569 #define OPT_HDR(type, skb, off) \
4570 (type *)(skb_network_header(skb) + (off))
4572 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4574 int err;
4575 u8 nexthdr;
4576 unsigned int off;
4577 unsigned int len;
4578 bool fragment;
4579 bool done;
4580 __sum16 *csum;
4582 fragment = false;
4583 done = false;
4585 off = sizeof(struct ipv6hdr);
4587 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4588 if (err < 0)
4589 goto out;
4591 nexthdr = ipv6_hdr(skb)->nexthdr;
4593 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4594 while (off <= len && !done) {
4595 switch (nexthdr) {
4596 case IPPROTO_DSTOPTS:
4597 case IPPROTO_HOPOPTS:
4598 case IPPROTO_ROUTING: {
4599 struct ipv6_opt_hdr *hp;
4601 err = skb_maybe_pull_tail(skb,
4602 off +
4603 sizeof(struct ipv6_opt_hdr),
4604 MAX_IPV6_HDR_LEN);
4605 if (err < 0)
4606 goto out;
4608 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4609 nexthdr = hp->nexthdr;
4610 off += ipv6_optlen(hp);
4611 break;
4613 case IPPROTO_AH: {
4614 struct ip_auth_hdr *hp;
4616 err = skb_maybe_pull_tail(skb,
4617 off +
4618 sizeof(struct ip_auth_hdr),
4619 MAX_IPV6_HDR_LEN);
4620 if (err < 0)
4621 goto out;
4623 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4624 nexthdr = hp->nexthdr;
4625 off += ipv6_authlen(hp);
4626 break;
4628 case IPPROTO_FRAGMENT: {
4629 struct frag_hdr *hp;
4631 err = skb_maybe_pull_tail(skb,
4632 off +
4633 sizeof(struct frag_hdr),
4634 MAX_IPV6_HDR_LEN);
4635 if (err < 0)
4636 goto out;
4638 hp = OPT_HDR(struct frag_hdr, skb, off);
4640 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4641 fragment = true;
4643 nexthdr = hp->nexthdr;
4644 off += sizeof(struct frag_hdr);
4645 break;
4647 default:
4648 done = true;
4649 break;
4653 err = -EPROTO;
4655 if (!done || fragment)
4656 goto out;
4658 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4659 if (IS_ERR(csum))
4660 return PTR_ERR(csum);
4662 if (recalculate)
4663 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4664 &ipv6_hdr(skb)->daddr,
4665 skb->len - off, nexthdr, 0);
4666 err = 0;
4668 out:
4669 return err;
4673 * skb_checksum_setup - set up partial checksum offset
4674 * @skb: the skb to set up
4675 * @recalculate: if true the pseudo-header checksum will be recalculated
4677 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4679 int err;
4681 switch (skb->protocol) {
4682 case htons(ETH_P_IP):
4683 err = skb_checksum_setup_ipv4(skb, recalculate);
4684 break;
4686 case htons(ETH_P_IPV6):
4687 err = skb_checksum_setup_ipv6(skb, recalculate);
4688 break;
4690 default:
4691 err = -EPROTO;
4692 break;
4695 return err;
4697 EXPORT_SYMBOL(skb_checksum_setup);
4700 * skb_checksum_maybe_trim - maybe trims the given skb
4701 * @skb: the skb to check
4702 * @transport_len: the data length beyond the network header
4704 * Checks whether the given skb has data beyond the given transport length.
4705 * If so, returns a cloned skb trimmed to this transport length.
4706 * Otherwise returns the provided skb. Returns NULL in error cases
4707 * (e.g. transport_len exceeds skb length or out-of-memory).
4709 * Caller needs to set the skb transport header and free any returned skb if it
4710 * differs from the provided skb.
4712 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4713 unsigned int transport_len)
4715 struct sk_buff *skb_chk;
4716 unsigned int len = skb_transport_offset(skb) + transport_len;
4717 int ret;
4719 if (skb->len < len)
4720 return NULL;
4721 else if (skb->len == len)
4722 return skb;
4724 skb_chk = skb_clone(skb, GFP_ATOMIC);
4725 if (!skb_chk)
4726 return NULL;
4728 ret = pskb_trim_rcsum(skb_chk, len);
4729 if (ret) {
4730 kfree_skb(skb_chk);
4731 return NULL;
4734 return skb_chk;
4738 * skb_checksum_trimmed - validate checksum of an skb
4739 * @skb: the skb to check
4740 * @transport_len: the data length beyond the network header
4741 * @skb_chkf: checksum function to use
4743 * Applies the given checksum function skb_chkf to the provided skb.
4744 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4746 * If the skb has data beyond the given transport length, then a
4747 * trimmed & cloned skb is checked and returned.
4749 * Caller needs to set the skb transport header and free any returned skb if it
4750 * differs from the provided skb.
4752 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4753 unsigned int transport_len,
4754 __sum16(*skb_chkf)(struct sk_buff *skb))
4756 struct sk_buff *skb_chk;
4757 unsigned int offset = skb_transport_offset(skb);
4758 __sum16 ret;
4760 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4761 if (!skb_chk)
4762 goto err;
4764 if (!pskb_may_pull(skb_chk, offset))
4765 goto err;
4767 skb_pull_rcsum(skb_chk, offset);
4768 ret = skb_chkf(skb_chk);
4769 skb_push_rcsum(skb_chk, offset);
4771 if (ret)
4772 goto err;
4774 return skb_chk;
4776 err:
4777 if (skb_chk && skb_chk != skb)
4778 kfree_skb(skb_chk);
4780 return NULL;
4783 EXPORT_SYMBOL(skb_checksum_trimmed);
4785 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4787 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4788 skb->dev->name);
4790 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4792 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4794 if (head_stolen) {
4795 skb_release_head_state(skb);
4796 kmem_cache_free(skbuff_head_cache, skb);
4797 } else {
4798 __kfree_skb(skb);
4801 EXPORT_SYMBOL(kfree_skb_partial);
4804 * skb_try_coalesce - try to merge skb to prior one
4805 * @to: prior buffer
4806 * @from: buffer to add
4807 * @fragstolen: pointer to boolean
4808 * @delta_truesize: how much more was allocated than was requested
4810 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4811 bool *fragstolen, int *delta_truesize)
4813 struct skb_shared_info *to_shinfo, *from_shinfo;
4814 int i, delta, len = from->len;
4816 *fragstolen = false;
4818 if (skb_cloned(to))
4819 return false;
4821 if (len <= skb_tailroom(to)) {
4822 if (len)
4823 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4824 *delta_truesize = 0;
4825 return true;
4828 to_shinfo = skb_shinfo(to);
4829 from_shinfo = skb_shinfo(from);
4830 if (to_shinfo->frag_list || from_shinfo->frag_list)
4831 return false;
4832 if (skb_zcopy(to) || skb_zcopy(from))
4833 return false;
4835 if (skb_headlen(from) != 0) {
4836 struct page *page;
4837 unsigned int offset;
4839 if (to_shinfo->nr_frags +
4840 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4841 return false;
4843 if (skb_head_is_locked(from))
4844 return false;
4846 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4848 page = virt_to_head_page(from->head);
4849 offset = from->data - (unsigned char *)page_address(page);
4851 skb_fill_page_desc(to, to_shinfo->nr_frags,
4852 page, offset, skb_headlen(from));
4853 *fragstolen = true;
4854 } else {
4855 if (to_shinfo->nr_frags +
4856 from_shinfo->nr_frags > MAX_SKB_FRAGS)
4857 return false;
4859 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4862 WARN_ON_ONCE(delta < len);
4864 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4865 from_shinfo->frags,
4866 from_shinfo->nr_frags * sizeof(skb_frag_t));
4867 to_shinfo->nr_frags += from_shinfo->nr_frags;
4869 if (!skb_cloned(from))
4870 from_shinfo->nr_frags = 0;
4872 /* if the skb is not cloned this does nothing
4873 * since we set nr_frags to 0.
4875 for (i = 0; i < from_shinfo->nr_frags; i++)
4876 __skb_frag_ref(&from_shinfo->frags[i]);
4878 to->truesize += delta;
4879 to->len += len;
4880 to->data_len += len;
4882 *delta_truesize = delta;
4883 return true;
4885 EXPORT_SYMBOL(skb_try_coalesce);
4888 * skb_scrub_packet - scrub an skb
4890 * @skb: buffer to clean
4891 * @xnet: packet is crossing netns
4893 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4894 * into/from a tunnel. Some information have to be cleared during these
4895 * operations.
4896 * skb_scrub_packet can also be used to clean a skb before injecting it in
4897 * another namespace (@xnet == true). We have to clear all information in the
4898 * skb that could impact namespace isolation.
4900 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4902 skb->tstamp = 0;
4903 skb->pkt_type = PACKET_HOST;
4904 skb->skb_iif = 0;
4905 skb->ignore_df = 0;
4906 skb_dst_drop(skb);
4907 secpath_reset(skb);
4908 nf_reset(skb);
4909 nf_reset_trace(skb);
4911 if (!xnet)
4912 return;
4914 ipvs_reset(skb);
4915 skb_orphan(skb);
4916 skb->mark = 0;
4918 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4921 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4923 * @skb: GSO skb
4925 * skb_gso_transport_seglen is used to determine the real size of the
4926 * individual segments, including Layer4 headers (TCP/UDP).
4928 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4930 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4932 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4933 unsigned int thlen = 0;
4935 if (skb->encapsulation) {
4936 thlen = skb_inner_transport_header(skb) -
4937 skb_transport_header(skb);
4939 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4940 thlen += inner_tcp_hdrlen(skb);
4941 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4942 thlen = tcp_hdrlen(skb);
4943 } else if (unlikely(skb_is_gso_sctp(skb))) {
4944 thlen = sizeof(struct sctphdr);
4945 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4946 thlen = sizeof(struct udphdr);
4948 /* UFO sets gso_size to the size of the fragmentation
4949 * payload, i.e. the size of the L4 (UDP) header is already
4950 * accounted for.
4952 return thlen + shinfo->gso_size;
4956 * skb_gso_network_seglen - Return length of individual segments of a gso packet
4958 * @skb: GSO skb
4960 * skb_gso_network_seglen is used to determine the real size of the
4961 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4963 * The MAC/L2 header is not accounted for.
4965 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4967 unsigned int hdr_len = skb_transport_header(skb) -
4968 skb_network_header(skb);
4970 return hdr_len + skb_gso_transport_seglen(skb);
4974 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4976 * @skb: GSO skb
4978 * skb_gso_mac_seglen is used to determine the real size of the
4979 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4980 * headers (TCP/UDP).
4982 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4984 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4986 return hdr_len + skb_gso_transport_seglen(skb);
4990 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
4992 * There are a couple of instances where we have a GSO skb, and we
4993 * want to determine what size it would be after it is segmented.
4995 * We might want to check:
4996 * - L3+L4+payload size (e.g. IP forwarding)
4997 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
4999 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5001 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5002 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5004 * @max_len: The maximum permissible length.
5006 * Returns true if the segmented length <= max length.
5008 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5009 unsigned int seg_len,
5010 unsigned int max_len) {
5011 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5012 const struct sk_buff *iter;
5014 if (shinfo->gso_size != GSO_BY_FRAGS)
5015 return seg_len <= max_len;
5017 /* Undo this so we can re-use header sizes */
5018 seg_len -= GSO_BY_FRAGS;
5020 skb_walk_frags(skb, iter) {
5021 if (seg_len + skb_headlen(iter) > max_len)
5022 return false;
5025 return true;
5029 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5031 * @skb: GSO skb
5032 * @mtu: MTU to validate against
5034 * skb_gso_validate_network_len validates if a given skb will fit a
5035 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5036 * payload.
5038 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5040 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5042 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5045 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5047 * @skb: GSO skb
5048 * @len: length to validate against
5050 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5051 * length once split, including L2, L3 and L4 headers and the payload.
5053 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5055 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5057 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5059 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5061 int mac_len;
5063 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5064 kfree_skb(skb);
5065 return NULL;
5068 mac_len = skb->data - skb_mac_header(skb);
5069 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5070 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5071 mac_len - VLAN_HLEN - ETH_TLEN);
5073 skb->mac_header += VLAN_HLEN;
5074 return skb;
5077 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5079 struct vlan_hdr *vhdr;
5080 u16 vlan_tci;
5082 if (unlikely(skb_vlan_tag_present(skb))) {
5083 /* vlan_tci is already set-up so leave this for another time */
5084 return skb;
5087 skb = skb_share_check(skb, GFP_ATOMIC);
5088 if (unlikely(!skb))
5089 goto err_free;
5091 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5092 goto err_free;
5094 vhdr = (struct vlan_hdr *)skb->data;
5095 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5096 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5098 skb_pull_rcsum(skb, VLAN_HLEN);
5099 vlan_set_encap_proto(skb, vhdr);
5101 skb = skb_reorder_vlan_header(skb);
5102 if (unlikely(!skb))
5103 goto err_free;
5105 skb_reset_network_header(skb);
5106 skb_reset_transport_header(skb);
5107 skb_reset_mac_len(skb);
5109 return skb;
5111 err_free:
5112 kfree_skb(skb);
5113 return NULL;
5115 EXPORT_SYMBOL(skb_vlan_untag);
5117 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5119 if (!pskb_may_pull(skb, write_len))
5120 return -ENOMEM;
5122 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5123 return 0;
5125 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5127 EXPORT_SYMBOL(skb_ensure_writable);
5129 /* remove VLAN header from packet and update csum accordingly.
5130 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5132 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5134 struct vlan_hdr *vhdr;
5135 int offset = skb->data - skb_mac_header(skb);
5136 int err;
5138 if (WARN_ONCE(offset,
5139 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5140 offset)) {
5141 return -EINVAL;
5144 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5145 if (unlikely(err))
5146 return err;
5148 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5150 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5151 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5153 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5154 __skb_pull(skb, VLAN_HLEN);
5156 vlan_set_encap_proto(skb, vhdr);
5157 skb->mac_header += VLAN_HLEN;
5159 if (skb_network_offset(skb) < ETH_HLEN)
5160 skb_set_network_header(skb, ETH_HLEN);
5162 skb_reset_mac_len(skb);
5164 return err;
5166 EXPORT_SYMBOL(__skb_vlan_pop);
5168 /* Pop a vlan tag either from hwaccel or from payload.
5169 * Expects skb->data at mac header.
5171 int skb_vlan_pop(struct sk_buff *skb)
5173 u16 vlan_tci;
5174 __be16 vlan_proto;
5175 int err;
5177 if (likely(skb_vlan_tag_present(skb))) {
5178 skb->vlan_tci = 0;
5179 } else {
5180 if (unlikely(!eth_type_vlan(skb->protocol)))
5181 return 0;
5183 err = __skb_vlan_pop(skb, &vlan_tci);
5184 if (err)
5185 return err;
5187 /* move next vlan tag to hw accel tag */
5188 if (likely(!eth_type_vlan(skb->protocol)))
5189 return 0;
5191 vlan_proto = skb->protocol;
5192 err = __skb_vlan_pop(skb, &vlan_tci);
5193 if (unlikely(err))
5194 return err;
5196 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5197 return 0;
5199 EXPORT_SYMBOL(skb_vlan_pop);
5201 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5202 * Expects skb->data at mac header.
5204 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5206 if (skb_vlan_tag_present(skb)) {
5207 int offset = skb->data - skb_mac_header(skb);
5208 int err;
5210 if (WARN_ONCE(offset,
5211 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5212 offset)) {
5213 return -EINVAL;
5216 err = __vlan_insert_tag(skb, skb->vlan_proto,
5217 skb_vlan_tag_get(skb));
5218 if (err)
5219 return err;
5221 skb->protocol = skb->vlan_proto;
5222 skb->mac_len += VLAN_HLEN;
5224 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5226 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5227 return 0;
5229 EXPORT_SYMBOL(skb_vlan_push);
5232 * alloc_skb_with_frags - allocate skb with page frags
5234 * @header_len: size of linear part
5235 * @data_len: needed length in frags
5236 * @max_page_order: max page order desired.
5237 * @errcode: pointer to error code if any
5238 * @gfp_mask: allocation mask
5240 * This can be used to allocate a paged skb, given a maximal order for frags.
5242 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5243 unsigned long data_len,
5244 int max_page_order,
5245 int *errcode,
5246 gfp_t gfp_mask)
5248 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5249 unsigned long chunk;
5250 struct sk_buff *skb;
5251 struct page *page;
5252 gfp_t gfp_head;
5253 int i;
5255 *errcode = -EMSGSIZE;
5256 /* Note this test could be relaxed, if we succeed to allocate
5257 * high order pages...
5259 if (npages > MAX_SKB_FRAGS)
5260 return NULL;
5262 gfp_head = gfp_mask;
5263 if (gfp_head & __GFP_DIRECT_RECLAIM)
5264 gfp_head |= __GFP_RETRY_MAYFAIL;
5266 *errcode = -ENOBUFS;
5267 skb = alloc_skb(header_len, gfp_head);
5268 if (!skb)
5269 return NULL;
5271 skb->truesize += npages << PAGE_SHIFT;
5273 for (i = 0; npages > 0; i++) {
5274 int order = max_page_order;
5276 while (order) {
5277 if (npages >= 1 << order) {
5278 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5279 __GFP_COMP |
5280 __GFP_NOWARN,
5281 order);
5282 if (page)
5283 goto fill_page;
5284 /* Do not retry other high order allocations */
5285 order = 1;
5286 max_page_order = 0;
5288 order--;
5290 page = alloc_page(gfp_mask);
5291 if (!page)
5292 goto failure;
5293 fill_page:
5294 chunk = min_t(unsigned long, data_len,
5295 PAGE_SIZE << order);
5296 skb_fill_page_desc(skb, i, page, 0, chunk);
5297 data_len -= chunk;
5298 npages -= 1 << order;
5300 return skb;
5302 failure:
5303 kfree_skb(skb);
5304 return NULL;
5306 EXPORT_SYMBOL(alloc_skb_with_frags);
5308 /* carve out the first off bytes from skb when off < headlen */
5309 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5310 const int headlen, gfp_t gfp_mask)
5312 int i;
5313 int size = skb_end_offset(skb);
5314 int new_hlen = headlen - off;
5315 u8 *data;
5317 size = SKB_DATA_ALIGN(size);
5319 if (skb_pfmemalloc(skb))
5320 gfp_mask |= __GFP_MEMALLOC;
5321 data = kmalloc_reserve(size +
5322 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5323 gfp_mask, NUMA_NO_NODE, NULL);
5324 if (!data)
5325 return -ENOMEM;
5327 size = SKB_WITH_OVERHEAD(ksize(data));
5329 /* Copy real data, and all frags */
5330 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5331 skb->len -= off;
5333 memcpy((struct skb_shared_info *)(data + size),
5334 skb_shinfo(skb),
5335 offsetof(struct skb_shared_info,
5336 frags[skb_shinfo(skb)->nr_frags]));
5337 if (skb_cloned(skb)) {
5338 /* drop the old head gracefully */
5339 if (skb_orphan_frags(skb, gfp_mask)) {
5340 kfree(data);
5341 return -ENOMEM;
5343 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5344 skb_frag_ref(skb, i);
5345 if (skb_has_frag_list(skb))
5346 skb_clone_fraglist(skb);
5347 skb_release_data(skb);
5348 } else {
5349 /* we can reuse existing recount- all we did was
5350 * relocate values
5352 skb_free_head(skb);
5355 skb->head = data;
5356 skb->data = data;
5357 skb->head_frag = 0;
5358 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5359 skb->end = size;
5360 #else
5361 skb->end = skb->head + size;
5362 #endif
5363 skb_set_tail_pointer(skb, skb_headlen(skb));
5364 skb_headers_offset_update(skb, 0);
5365 skb->cloned = 0;
5366 skb->hdr_len = 0;
5367 skb->nohdr = 0;
5368 atomic_set(&skb_shinfo(skb)->dataref, 1);
5370 return 0;
5373 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5375 /* carve out the first eat bytes from skb's frag_list. May recurse into
5376 * pskb_carve()
5378 static int pskb_carve_frag_list(struct sk_buff *skb,
5379 struct skb_shared_info *shinfo, int eat,
5380 gfp_t gfp_mask)
5382 struct sk_buff *list = shinfo->frag_list;
5383 struct sk_buff *clone = NULL;
5384 struct sk_buff *insp = NULL;
5386 do {
5387 if (!list) {
5388 pr_err("Not enough bytes to eat. Want %d\n", eat);
5389 return -EFAULT;
5391 if (list->len <= eat) {
5392 /* Eaten as whole. */
5393 eat -= list->len;
5394 list = list->next;
5395 insp = list;
5396 } else {
5397 /* Eaten partially. */
5398 if (skb_shared(list)) {
5399 clone = skb_clone(list, gfp_mask);
5400 if (!clone)
5401 return -ENOMEM;
5402 insp = list->next;
5403 list = clone;
5404 } else {
5405 /* This may be pulled without problems. */
5406 insp = list;
5408 if (pskb_carve(list, eat, gfp_mask) < 0) {
5409 kfree_skb(clone);
5410 return -ENOMEM;
5412 break;
5414 } while (eat);
5416 /* Free pulled out fragments. */
5417 while ((list = shinfo->frag_list) != insp) {
5418 shinfo->frag_list = list->next;
5419 kfree_skb(list);
5421 /* And insert new clone at head. */
5422 if (clone) {
5423 clone->next = list;
5424 shinfo->frag_list = clone;
5426 return 0;
5429 /* carve off first len bytes from skb. Split line (off) is in the
5430 * non-linear part of skb
5432 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5433 int pos, gfp_t gfp_mask)
5435 int i, k = 0;
5436 int size = skb_end_offset(skb);
5437 u8 *data;
5438 const int nfrags = skb_shinfo(skb)->nr_frags;
5439 struct skb_shared_info *shinfo;
5441 size = SKB_DATA_ALIGN(size);
5443 if (skb_pfmemalloc(skb))
5444 gfp_mask |= __GFP_MEMALLOC;
5445 data = kmalloc_reserve(size +
5446 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5447 gfp_mask, NUMA_NO_NODE, NULL);
5448 if (!data)
5449 return -ENOMEM;
5451 size = SKB_WITH_OVERHEAD(ksize(data));
5453 memcpy((struct skb_shared_info *)(data + size),
5454 skb_shinfo(skb), offsetof(struct skb_shared_info,
5455 frags[skb_shinfo(skb)->nr_frags]));
5456 if (skb_orphan_frags(skb, gfp_mask)) {
5457 kfree(data);
5458 return -ENOMEM;
5460 shinfo = (struct skb_shared_info *)(data + size);
5461 for (i = 0; i < nfrags; i++) {
5462 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5464 if (pos + fsize > off) {
5465 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5467 if (pos < off) {
5468 /* Split frag.
5469 * We have two variants in this case:
5470 * 1. Move all the frag to the second
5471 * part, if it is possible. F.e.
5472 * this approach is mandatory for TUX,
5473 * where splitting is expensive.
5474 * 2. Split is accurately. We make this.
5476 shinfo->frags[0].page_offset += off - pos;
5477 skb_frag_size_sub(&shinfo->frags[0], off - pos);
5479 skb_frag_ref(skb, i);
5480 k++;
5482 pos += fsize;
5484 shinfo->nr_frags = k;
5485 if (skb_has_frag_list(skb))
5486 skb_clone_fraglist(skb);
5488 if (k == 0) {
5489 /* split line is in frag list */
5490 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5492 skb_release_data(skb);
5494 skb->head = data;
5495 skb->head_frag = 0;
5496 skb->data = data;
5497 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5498 skb->end = size;
5499 #else
5500 skb->end = skb->head + size;
5501 #endif
5502 skb_reset_tail_pointer(skb);
5503 skb_headers_offset_update(skb, 0);
5504 skb->cloned = 0;
5505 skb->hdr_len = 0;
5506 skb->nohdr = 0;
5507 skb->len -= off;
5508 skb->data_len = skb->len;
5509 atomic_set(&skb_shinfo(skb)->dataref, 1);
5510 return 0;
5513 /* remove len bytes from the beginning of the skb */
5514 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5516 int headlen = skb_headlen(skb);
5518 if (len < headlen)
5519 return pskb_carve_inside_header(skb, len, headlen, gfp);
5520 else
5521 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5524 /* Extract to_copy bytes starting at off from skb, and return this in
5525 * a new skb
5527 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5528 int to_copy, gfp_t gfp)
5530 struct sk_buff *clone = skb_clone(skb, gfp);
5532 if (!clone)
5533 return NULL;
5535 if (pskb_carve(clone, off, gfp) < 0 ||
5536 pskb_trim(clone, to_copy)) {
5537 kfree_skb(clone);
5538 return NULL;
5540 return clone;
5542 EXPORT_SYMBOL(pskb_extract);
5545 * skb_condense - try to get rid of fragments/frag_list if possible
5546 * @skb: buffer
5548 * Can be used to save memory before skb is added to a busy queue.
5549 * If packet has bytes in frags and enough tail room in skb->head,
5550 * pull all of them, so that we can free the frags right now and adjust
5551 * truesize.
5552 * Notes:
5553 * We do not reallocate skb->head thus can not fail.
5554 * Caller must re-evaluate skb->truesize if needed.
5556 void skb_condense(struct sk_buff *skb)
5558 if (skb->data_len) {
5559 if (skb->data_len > skb->end - skb->tail ||
5560 skb_cloned(skb))
5561 return;
5563 /* Nice, we can free page frag(s) right now */
5564 __pskb_pull_tail(skb, skb->data_len);
5566 /* At this point, skb->truesize might be over estimated,
5567 * because skb had a fragment, and fragments do not tell
5568 * their truesize.
5569 * When we pulled its content into skb->head, fragment
5570 * was freed, but __pskb_pull_tail() could not possibly
5571 * adjust skb->truesize, not knowing the frag truesize.
5573 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));