2 * random.c -- A strong random number generator
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
43 * (now, with legal B.S. out of the way.....)
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
98 * Exported interfaces ---- output
99 * ===============================
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
104 * void get_random_bytes(void *buf, int nbytes);
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
122 * Exported interfaces ---- input
123 * ==============================
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
128 * void add_device_randomness(const void *buf, unsigned int size);
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
131 * void add_interrupt_randomness(int irq, int irq_flags);
132 * void add_disk_randomness(struct gendisk *disk);
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
159 * Ensuring unpredictability at system startup
160 * ============================================
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
238 #include <linux/utsname.h>
239 #include <linux/module.h>
240 #include <linux/kernel.h>
241 #include <linux/major.h>
242 #include <linux/string.h>
243 #include <linux/fcntl.h>
244 #include <linux/slab.h>
245 #include <linux/random.h>
246 #include <linux/poll.h>
247 #include <linux/init.h>
248 #include <linux/fs.h>
249 #include <linux/genhd.h>
250 #include <linux/interrupt.h>
251 #include <linux/mm.h>
252 #include <linux/spinlock.h>
253 #include <linux/kthread.h>
254 #include <linux/percpu.h>
255 #include <linux/cryptohash.h>
256 #include <linux/fips.h>
257 #include <linux/ptrace.h>
258 #include <linux/kmemcheck.h>
259 #include <linux/workqueue.h>
260 #include <linux/irq.h>
261 #include <linux/syscalls.h>
262 #include <linux/completion.h>
264 #include <asm/processor.h>
265 #include <asm/uaccess.h>
267 #include <asm/irq_regs.h>
270 #define CREATE_TRACE_POINTS
271 #include <trace/events/random.h>
273 /* #define ADD_INTERRUPT_BENCH */
276 * Configuration information
278 #define INPUT_POOL_SHIFT 12
279 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
280 #define OUTPUT_POOL_SHIFT 10
281 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
282 #define SEC_XFER_SIZE 512
283 #define EXTRACT_SIZE 10
285 #define DEBUG_RANDOM_BOOT 0
287 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
290 * To allow fractional bits to be tracked, the entropy_count field is
291 * denominated in units of 1/8th bits.
293 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
294 * credit_entropy_bits() needs to be 64 bits wide.
296 #define ENTROPY_SHIFT 3
297 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
300 * The minimum number of bits of entropy before we wake up a read on
301 * /dev/random. Should be enough to do a significant reseed.
303 static int random_read_wakeup_bits
= 64;
306 * If the entropy count falls under this number of bits, then we
307 * should wake up processes which are selecting or polling on write
308 * access to /dev/random.
310 static int random_write_wakeup_bits
= 28 * OUTPUT_POOL_WORDS
;
313 * The minimum number of seconds between urandom pool reseeding. We
314 * do this to limit the amount of entropy that can be drained from the
315 * input pool even if there are heavy demands on /dev/urandom.
317 static int random_min_urandom_seed
= 60;
320 * Originally, we used a primitive polynomial of degree .poolwords
321 * over GF(2). The taps for various sizes are defined below. They
322 * were chosen to be evenly spaced except for the last tap, which is 1
323 * to get the twisting happening as fast as possible.
325 * For the purposes of better mixing, we use the CRC-32 polynomial as
326 * well to make a (modified) twisted Generalized Feedback Shift
327 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
328 * generators. ACM Transactions on Modeling and Computer Simulation
329 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
330 * GFSR generators II. ACM Transactions on Modeling and Computer
331 * Simulation 4:254-266)
333 * Thanks to Colin Plumb for suggesting this.
335 * The mixing operation is much less sensitive than the output hash,
336 * where we use SHA-1. All that we want of mixing operation is that
337 * it be a good non-cryptographic hash; i.e. it not produce collisions
338 * when fed "random" data of the sort we expect to see. As long as
339 * the pool state differs for different inputs, we have preserved the
340 * input entropy and done a good job. The fact that an intelligent
341 * attacker can construct inputs that will produce controlled
342 * alterations to the pool's state is not important because we don't
343 * consider such inputs to contribute any randomness. The only
344 * property we need with respect to them is that the attacker can't
345 * increase his/her knowledge of the pool's state. Since all
346 * additions are reversible (knowing the final state and the input,
347 * you can reconstruct the initial state), if an attacker has any
348 * uncertainty about the initial state, he/she can only shuffle that
349 * uncertainty about, but never cause any collisions (which would
350 * decrease the uncertainty).
352 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
353 * Videau in their paper, "The Linux Pseudorandom Number Generator
354 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
355 * paper, they point out that we are not using a true Twisted GFSR,
356 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
357 * is, with only three taps, instead of the six that we are using).
358 * As a result, the resulting polynomial is neither primitive nor
359 * irreducible, and hence does not have a maximal period over
360 * GF(2**32). They suggest a slight change to the generator
361 * polynomial which improves the resulting TGFSR polynomial to be
362 * irreducible, which we have made here.
364 static struct poolinfo
{
365 int poolbitshift
, poolwords
, poolbytes
, poolbits
, poolfracbits
;
366 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
367 int tap1
, tap2
, tap3
, tap4
, tap5
;
368 } poolinfo_table
[] = {
369 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
370 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
371 { S(128), 104, 76, 51, 25, 1 },
372 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
373 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
374 { S(32), 26, 19, 14, 7, 1 },
376 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
377 { S(2048), 1638, 1231, 819, 411, 1 },
379 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
380 { S(1024), 817, 615, 412, 204, 1 },
382 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
383 { S(1024), 819, 616, 410, 207, 2 },
385 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
386 { S(512), 411, 308, 208, 104, 1 },
388 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
389 { S(512), 409, 307, 206, 102, 2 },
390 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
391 { S(512), 409, 309, 205, 103, 2 },
393 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
394 { S(256), 205, 155, 101, 52, 1 },
396 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
397 { S(128), 103, 78, 51, 27, 2 },
399 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
400 { S(64), 52, 39, 26, 14, 1 },
405 * Static global variables
407 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait
);
408 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait
);
409 static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait
);
410 static struct fasync_struct
*fasync
;
412 /**********************************************************************
414 * OS independent entropy store. Here are the functions which handle
415 * storing entropy in an entropy pool.
417 **********************************************************************/
419 struct entropy_store
;
420 struct entropy_store
{
421 /* read-only data: */
422 const struct poolinfo
*poolinfo
;
425 struct entropy_store
*pull
;
426 struct work_struct push_work
;
428 /* read-write data: */
429 unsigned long last_pulled
;
431 unsigned short add_ptr
;
432 unsigned short input_rotate
;
435 unsigned int initialized
:1;
436 unsigned int limit
:1;
437 unsigned int last_data_init
:1;
438 __u8 last_data
[EXTRACT_SIZE
];
441 static void push_to_pool(struct work_struct
*work
);
442 static __u32 input_pool_data
[INPUT_POOL_WORDS
];
443 static __u32 blocking_pool_data
[OUTPUT_POOL_WORDS
];
444 static __u32 nonblocking_pool_data
[OUTPUT_POOL_WORDS
];
446 static struct entropy_store input_pool
= {
447 .poolinfo
= &poolinfo_table
[0],
450 .lock
= __SPIN_LOCK_UNLOCKED(input_pool
.lock
),
451 .pool
= input_pool_data
454 static struct entropy_store blocking_pool
= {
455 .poolinfo
= &poolinfo_table
[1],
459 .lock
= __SPIN_LOCK_UNLOCKED(blocking_pool
.lock
),
460 .pool
= blocking_pool_data
,
461 .push_work
= __WORK_INITIALIZER(blocking_pool
.push_work
,
465 static struct entropy_store nonblocking_pool
= {
466 .poolinfo
= &poolinfo_table
[1],
467 .name
= "nonblocking",
469 .lock
= __SPIN_LOCK_UNLOCKED(nonblocking_pool
.lock
),
470 .pool
= nonblocking_pool_data
,
471 .push_work
= __WORK_INITIALIZER(nonblocking_pool
.push_work
,
475 static __u32
const twist_table
[8] = {
476 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
477 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
480 * This function adds bytes into the entropy "pool". It does not
481 * update the entropy estimate. The caller should call
482 * credit_entropy_bits if this is appropriate.
484 * The pool is stirred with a primitive polynomial of the appropriate
485 * degree, and then twisted. We twist by three bits at a time because
486 * it's cheap to do so and helps slightly in the expected case where
487 * the entropy is concentrated in the low-order bits.
489 static void _mix_pool_bytes(struct entropy_store
*r
, const void *in
,
492 unsigned long i
, tap1
, tap2
, tap3
, tap4
, tap5
;
494 int wordmask
= r
->poolinfo
->poolwords
- 1;
495 const char *bytes
= in
;
498 tap1
= r
->poolinfo
->tap1
;
499 tap2
= r
->poolinfo
->tap2
;
500 tap3
= r
->poolinfo
->tap3
;
501 tap4
= r
->poolinfo
->tap4
;
502 tap5
= r
->poolinfo
->tap5
;
504 input_rotate
= r
->input_rotate
;
507 /* mix one byte at a time to simplify size handling and churn faster */
509 w
= rol32(*bytes
++, input_rotate
);
510 i
= (i
- 1) & wordmask
;
512 /* XOR in the various taps */
514 w
^= r
->pool
[(i
+ tap1
) & wordmask
];
515 w
^= r
->pool
[(i
+ tap2
) & wordmask
];
516 w
^= r
->pool
[(i
+ tap3
) & wordmask
];
517 w
^= r
->pool
[(i
+ tap4
) & wordmask
];
518 w
^= r
->pool
[(i
+ tap5
) & wordmask
];
520 /* Mix the result back in with a twist */
521 r
->pool
[i
] = (w
>> 3) ^ twist_table
[w
& 7];
524 * Normally, we add 7 bits of rotation to the pool.
525 * At the beginning of the pool, add an extra 7 bits
526 * rotation, so that successive passes spread the
527 * input bits across the pool evenly.
529 input_rotate
= (input_rotate
+ (i
? 7 : 14)) & 31;
532 r
->input_rotate
= input_rotate
;
536 static void __mix_pool_bytes(struct entropy_store
*r
, const void *in
,
539 trace_mix_pool_bytes_nolock(r
->name
, nbytes
, _RET_IP_
);
540 _mix_pool_bytes(r
, in
, nbytes
);
543 static void mix_pool_bytes(struct entropy_store
*r
, const void *in
,
548 trace_mix_pool_bytes(r
->name
, nbytes
, _RET_IP_
);
549 spin_lock_irqsave(&r
->lock
, flags
);
550 _mix_pool_bytes(r
, in
, nbytes
);
551 spin_unlock_irqrestore(&r
->lock
, flags
);
557 unsigned short reg_idx
;
562 * This is a fast mixing routine used by the interrupt randomness
563 * collector. It's hardcoded for an 128 bit pool and assumes that any
564 * locks that might be needed are taken by the caller.
566 static void fast_mix(struct fast_pool
*f
)
568 __u32 a
= f
->pool
[0], b
= f
->pool
[1];
569 __u32 c
= f
->pool
[2], d
= f
->pool
[3];
572 b
= rol32(a
, 6); d
= rol32(c
, 27);
576 b
= rol32(a
, 16); d
= rol32(c
, 14);
580 b
= rol32(a
, 6); d
= rol32(c
, 27);
584 b
= rol32(a
, 16); d
= rol32(c
, 14);
587 f
->pool
[0] = a
; f
->pool
[1] = b
;
588 f
->pool
[2] = c
; f
->pool
[3] = d
;
593 * Credit (or debit) the entropy store with n bits of entropy.
594 * Use credit_entropy_bits_safe() if the value comes from userspace
595 * or otherwise should be checked for extreme values.
597 static void credit_entropy_bits(struct entropy_store
*r
, int nbits
)
599 int entropy_count
, orig
;
600 const int pool_size
= r
->poolinfo
->poolfracbits
;
601 int nfrac
= nbits
<< ENTROPY_SHIFT
;
607 entropy_count
= orig
= ACCESS_ONCE(r
->entropy_count
);
610 entropy_count
+= nfrac
;
613 * Credit: we have to account for the possibility of
614 * overwriting already present entropy. Even in the
615 * ideal case of pure Shannon entropy, new contributions
616 * approach the full value asymptotically:
618 * entropy <- entropy + (pool_size - entropy) *
619 * (1 - exp(-add_entropy/pool_size))
621 * For add_entropy <= pool_size/2 then
622 * (1 - exp(-add_entropy/pool_size)) >=
623 * (add_entropy/pool_size)*0.7869...
624 * so we can approximate the exponential with
625 * 3/4*add_entropy/pool_size and still be on the
626 * safe side by adding at most pool_size/2 at a time.
628 * The use of pool_size-2 in the while statement is to
629 * prevent rounding artifacts from making the loop
630 * arbitrarily long; this limits the loop to log2(pool_size)*2
631 * turns no matter how large nbits is.
634 const int s
= r
->poolinfo
->poolbitshift
+ ENTROPY_SHIFT
+ 2;
635 /* The +2 corresponds to the /4 in the denominator */
638 unsigned int anfrac
= min(pnfrac
, pool_size
/2);
640 ((pool_size
- entropy_count
)*anfrac
*3) >> s
;
642 entropy_count
+= add
;
644 } while (unlikely(entropy_count
< pool_size
-2 && pnfrac
));
647 if (unlikely(entropy_count
< 0)) {
648 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
649 r
->name
, entropy_count
);
652 } else if (entropy_count
> pool_size
)
653 entropy_count
= pool_size
;
654 if (cmpxchg(&r
->entropy_count
, orig
, entropy_count
) != orig
)
657 r
->entropy_total
+= nbits
;
658 if (!r
->initialized
&& r
->entropy_total
> 128) {
660 r
->entropy_total
= 0;
661 if (r
== &nonblocking_pool
) {
662 prandom_reseed_late();
663 wake_up_interruptible(&urandom_init_wait
);
664 pr_notice("random: %s pool is initialized\n", r
->name
);
668 trace_credit_entropy_bits(r
->name
, nbits
,
669 entropy_count
>> ENTROPY_SHIFT
,
670 r
->entropy_total
, _RET_IP_
);
672 if (r
== &input_pool
) {
673 int entropy_bits
= entropy_count
>> ENTROPY_SHIFT
;
675 /* should we wake readers? */
676 if (entropy_bits
>= random_read_wakeup_bits
) {
677 wake_up_interruptible(&random_read_wait
);
678 kill_fasync(&fasync
, SIGIO
, POLL_IN
);
680 /* If the input pool is getting full, send some
681 * entropy to the two output pools, flipping back and
682 * forth between them, until the output pools are 75%
685 if (entropy_bits
> random_write_wakeup_bits
&&
687 r
->entropy_total
>= 2*random_read_wakeup_bits
) {
688 static struct entropy_store
*last
= &blocking_pool
;
689 struct entropy_store
*other
= &blocking_pool
;
691 if (last
== &blocking_pool
)
692 other
= &nonblocking_pool
;
693 if (other
->entropy_count
<=
694 3 * other
->poolinfo
->poolfracbits
/ 4)
696 if (last
->entropy_count
<=
697 3 * last
->poolinfo
->poolfracbits
/ 4) {
698 schedule_work(&last
->push_work
);
699 r
->entropy_total
= 0;
705 static void credit_entropy_bits_safe(struct entropy_store
*r
, int nbits
)
707 const int nbits_max
= (int)(~0U >> (ENTROPY_SHIFT
+ 1));
709 /* Cap the value to avoid overflows */
710 nbits
= min(nbits
, nbits_max
);
711 nbits
= max(nbits
, -nbits_max
);
713 credit_entropy_bits(r
, nbits
);
716 /*********************************************************************
718 * Entropy input management
720 *********************************************************************/
722 /* There is one of these per entropy source */
723 struct timer_rand_state
{
725 long last_delta
, last_delta2
;
726 unsigned dont_count_entropy
:1;
729 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
732 * Add device- or boot-specific data to the input and nonblocking
733 * pools to help initialize them to unique values.
735 * None of this adds any entropy, it is meant to avoid the
736 * problem of the nonblocking pool having similar initial state
737 * across largely identical devices.
739 void add_device_randomness(const void *buf
, unsigned int size
)
741 unsigned long time
= random_get_entropy() ^ jiffies
;
744 trace_add_device_randomness(size
, _RET_IP_
);
745 spin_lock_irqsave(&input_pool
.lock
, flags
);
746 _mix_pool_bytes(&input_pool
, buf
, size
);
747 _mix_pool_bytes(&input_pool
, &time
, sizeof(time
));
748 spin_unlock_irqrestore(&input_pool
.lock
, flags
);
750 spin_lock_irqsave(&nonblocking_pool
.lock
, flags
);
751 _mix_pool_bytes(&nonblocking_pool
, buf
, size
);
752 _mix_pool_bytes(&nonblocking_pool
, &time
, sizeof(time
));
753 spin_unlock_irqrestore(&nonblocking_pool
.lock
, flags
);
755 EXPORT_SYMBOL(add_device_randomness
);
757 static struct timer_rand_state input_timer_state
= INIT_TIMER_RAND_STATE
;
760 * This function adds entropy to the entropy "pool" by using timing
761 * delays. It uses the timer_rand_state structure to make an estimate
762 * of how many bits of entropy this call has added to the pool.
764 * The number "num" is also added to the pool - it should somehow describe
765 * the type of event which just happened. This is currently 0-255 for
766 * keyboard scan codes, and 256 upwards for interrupts.
769 static void add_timer_randomness(struct timer_rand_state
*state
, unsigned num
)
771 struct entropy_store
*r
;
777 long delta
, delta2
, delta3
;
781 sample
.jiffies
= jiffies
;
782 sample
.cycles
= random_get_entropy();
784 r
= nonblocking_pool
.initialized
? &input_pool
: &nonblocking_pool
;
785 mix_pool_bytes(r
, &sample
, sizeof(sample
));
788 * Calculate number of bits of randomness we probably added.
789 * We take into account the first, second and third-order deltas
790 * in order to make our estimate.
793 if (!state
->dont_count_entropy
) {
794 delta
= sample
.jiffies
- state
->last_time
;
795 state
->last_time
= sample
.jiffies
;
797 delta2
= delta
- state
->last_delta
;
798 state
->last_delta
= delta
;
800 delta3
= delta2
- state
->last_delta2
;
801 state
->last_delta2
= delta2
;
815 * delta is now minimum absolute delta.
816 * Round down by 1 bit on general principles,
817 * and limit entropy entimate to 12 bits.
819 credit_entropy_bits(r
, min_t(int, fls(delta
>>1), 11));
824 void add_input_randomness(unsigned int type
, unsigned int code
,
827 static unsigned char last_value
;
829 /* ignore autorepeat and the like */
830 if (value
== last_value
)
834 add_timer_randomness(&input_timer_state
,
835 (type
<< 4) ^ code
^ (code
>> 4) ^ value
);
836 trace_add_input_randomness(ENTROPY_BITS(&input_pool
));
838 EXPORT_SYMBOL_GPL(add_input_randomness
);
840 static DEFINE_PER_CPU(struct fast_pool
, irq_randomness
);
842 #ifdef ADD_INTERRUPT_BENCH
843 static unsigned long avg_cycles
, avg_deviation
;
845 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
846 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
848 static void add_interrupt_bench(cycles_t start
)
850 long delta
= random_get_entropy() - start
;
852 /* Use a weighted moving average */
853 delta
= delta
- ((avg_cycles
+ FIXED_1_2
) >> AVG_SHIFT
);
855 /* And average deviation */
856 delta
= abs(delta
) - ((avg_deviation
+ FIXED_1_2
) >> AVG_SHIFT
);
857 avg_deviation
+= delta
;
860 #define add_interrupt_bench(x)
863 static __u32
get_reg(struct fast_pool
*f
, struct pt_regs
*regs
)
865 __u32
*ptr
= (__u32
*) regs
;
869 if (f
->reg_idx
>= sizeof(struct pt_regs
) / sizeof(__u32
))
871 return *(ptr
+ f
->reg_idx
++);
874 void add_interrupt_randomness(int irq
, int irq_flags
)
876 struct entropy_store
*r
;
877 struct fast_pool
*fast_pool
= this_cpu_ptr(&irq_randomness
);
878 struct pt_regs
*regs
= get_irq_regs();
879 unsigned long now
= jiffies
;
880 cycles_t cycles
= random_get_entropy();
881 __u32 c_high
, j_high
;
887 cycles
= get_reg(fast_pool
, regs
);
888 c_high
= (sizeof(cycles
) > 4) ? cycles
>> 32 : 0;
889 j_high
= (sizeof(now
) > 4) ? now
>> 32 : 0;
890 fast_pool
->pool
[0] ^= cycles
^ j_high
^ irq
;
891 fast_pool
->pool
[1] ^= now
^ c_high
;
892 ip
= regs
? instruction_pointer(regs
) : _RET_IP_
;
893 fast_pool
->pool
[2] ^= ip
;
894 fast_pool
->pool
[3] ^= (sizeof(ip
) > 4) ? ip
>> 32 :
895 get_reg(fast_pool
, regs
);
898 add_interrupt_bench(cycles
);
900 if ((fast_pool
->count
< 64) &&
901 !time_after(now
, fast_pool
->last
+ HZ
))
904 r
= nonblocking_pool
.initialized
? &input_pool
: &nonblocking_pool
;
905 if (!spin_trylock(&r
->lock
))
908 fast_pool
->last
= now
;
909 __mix_pool_bytes(r
, &fast_pool
->pool
, sizeof(fast_pool
->pool
));
912 * If we have architectural seed generator, produce a seed and
913 * add it to the pool. For the sake of paranoia don't let the
914 * architectural seed generator dominate the input from the
917 if (arch_get_random_seed_long(&seed
)) {
918 __mix_pool_bytes(r
, &seed
, sizeof(seed
));
921 spin_unlock(&r
->lock
);
923 fast_pool
->count
= 0;
925 /* award one bit for the contents of the fast pool */
926 credit_entropy_bits(r
, credit
+ 1);
930 void add_disk_randomness(struct gendisk
*disk
)
932 if (!disk
|| !disk
->random
)
934 /* first major is 1, so we get >= 0x200 here */
935 add_timer_randomness(disk
->random
, 0x100 + disk_devt(disk
));
936 trace_add_disk_randomness(disk_devt(disk
), ENTROPY_BITS(&input_pool
));
938 EXPORT_SYMBOL_GPL(add_disk_randomness
);
941 /*********************************************************************
943 * Entropy extraction routines
945 *********************************************************************/
947 static ssize_t
extract_entropy(struct entropy_store
*r
, void *buf
,
948 size_t nbytes
, int min
, int rsvd
);
951 * This utility inline function is responsible for transferring entropy
952 * from the primary pool to the secondary extraction pool. We make
953 * sure we pull enough for a 'catastrophic reseed'.
955 static void _xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
);
956 static void xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
)
959 r
->entropy_count
>= (nbytes
<< (ENTROPY_SHIFT
+ 3)) ||
960 r
->entropy_count
> r
->poolinfo
->poolfracbits
)
963 if (r
->limit
== 0 && random_min_urandom_seed
) {
964 unsigned long now
= jiffies
;
967 r
->last_pulled
+ random_min_urandom_seed
* HZ
))
969 r
->last_pulled
= now
;
972 _xfer_secondary_pool(r
, nbytes
);
975 static void _xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
)
977 __u32 tmp
[OUTPUT_POOL_WORDS
];
979 /* For /dev/random's pool, always leave two wakeups' worth */
980 int rsvd_bytes
= r
->limit
? 0 : random_read_wakeup_bits
/ 4;
983 /* pull at least as much as a wakeup */
984 bytes
= max_t(int, bytes
, random_read_wakeup_bits
/ 8);
985 /* but never more than the buffer size */
986 bytes
= min_t(int, bytes
, sizeof(tmp
));
988 trace_xfer_secondary_pool(r
->name
, bytes
* 8, nbytes
* 8,
989 ENTROPY_BITS(r
), ENTROPY_BITS(r
->pull
));
990 bytes
= extract_entropy(r
->pull
, tmp
, bytes
,
991 random_read_wakeup_bits
/ 8, rsvd_bytes
);
992 mix_pool_bytes(r
, tmp
, bytes
);
993 credit_entropy_bits(r
, bytes
*8);
997 * Used as a workqueue function so that when the input pool is getting
998 * full, we can "spill over" some entropy to the output pools. That
999 * way the output pools can store some of the excess entropy instead
1000 * of letting it go to waste.
1002 static void push_to_pool(struct work_struct
*work
)
1004 struct entropy_store
*r
= container_of(work
, struct entropy_store
,
1007 _xfer_secondary_pool(r
, random_read_wakeup_bits
/8);
1008 trace_push_to_pool(r
->name
, r
->entropy_count
>> ENTROPY_SHIFT
,
1009 r
->pull
->entropy_count
>> ENTROPY_SHIFT
);
1013 * This function decides how many bytes to actually take from the
1014 * given pool, and also debits the entropy count accordingly.
1016 static size_t account(struct entropy_store
*r
, size_t nbytes
, int min
,
1019 int entropy_count
, orig
;
1020 size_t ibytes
, nfrac
;
1022 BUG_ON(r
->entropy_count
> r
->poolinfo
->poolfracbits
);
1024 /* Can we pull enough? */
1026 entropy_count
= orig
= ACCESS_ONCE(r
->entropy_count
);
1028 /* If limited, never pull more than available */
1030 int have_bytes
= entropy_count
>> (ENTROPY_SHIFT
+ 3);
1032 if ((have_bytes
-= reserved
) < 0)
1034 ibytes
= min_t(size_t, ibytes
, have_bytes
);
1039 if (unlikely(entropy_count
< 0)) {
1040 pr_warn("random: negative entropy count: pool %s count %d\n",
1041 r
->name
, entropy_count
);
1045 nfrac
= ibytes
<< (ENTROPY_SHIFT
+ 3);
1046 if ((size_t) entropy_count
> nfrac
)
1047 entropy_count
-= nfrac
;
1051 if (cmpxchg(&r
->entropy_count
, orig
, entropy_count
) != orig
)
1054 trace_debit_entropy(r
->name
, 8 * ibytes
);
1056 (r
->entropy_count
>> ENTROPY_SHIFT
) < random_write_wakeup_bits
) {
1057 wake_up_interruptible(&random_write_wait
);
1058 kill_fasync(&fasync
, SIGIO
, POLL_OUT
);
1065 * This function does the actual extraction for extract_entropy and
1066 * extract_entropy_user.
1068 * Note: we assume that .poolwords is a multiple of 16 words.
1070 static void extract_buf(struct entropy_store
*r
, __u8
*out
)
1075 unsigned long l
[LONGS(20)];
1077 __u32 workspace
[SHA_WORKSPACE_WORDS
];
1078 unsigned long flags
;
1081 * If we have an architectural hardware random number
1082 * generator, use it for SHA's initial vector
1085 for (i
= 0; i
< LONGS(20); i
++) {
1087 if (!arch_get_random_long(&v
))
1092 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1093 spin_lock_irqsave(&r
->lock
, flags
);
1094 for (i
= 0; i
< r
->poolinfo
->poolwords
; i
+= 16)
1095 sha_transform(hash
.w
, (__u8
*)(r
->pool
+ i
), workspace
);
1098 * We mix the hash back into the pool to prevent backtracking
1099 * attacks (where the attacker knows the state of the pool
1100 * plus the current outputs, and attempts to find previous
1101 * ouputs), unless the hash function can be inverted. By
1102 * mixing at least a SHA1 worth of hash data back, we make
1103 * brute-forcing the feedback as hard as brute-forcing the
1106 __mix_pool_bytes(r
, hash
.w
, sizeof(hash
.w
));
1107 spin_unlock_irqrestore(&r
->lock
, flags
);
1109 memzero_explicit(workspace
, sizeof(workspace
));
1112 * In case the hash function has some recognizable output
1113 * pattern, we fold it in half. Thus, we always feed back
1114 * twice as much data as we output.
1116 hash
.w
[0] ^= hash
.w
[3];
1117 hash
.w
[1] ^= hash
.w
[4];
1118 hash
.w
[2] ^= rol32(hash
.w
[2], 16);
1120 memcpy(out
, &hash
, EXTRACT_SIZE
);
1121 memzero_explicit(&hash
, sizeof(hash
));
1125 * This function extracts randomness from the "entropy pool", and
1126 * returns it in a buffer.
1128 * The min parameter specifies the minimum amount we can pull before
1129 * failing to avoid races that defeat catastrophic reseeding while the
1130 * reserved parameter indicates how much entropy we must leave in the
1131 * pool after each pull to avoid starving other readers.
1133 static ssize_t
extract_entropy(struct entropy_store
*r
, void *buf
,
1134 size_t nbytes
, int min
, int reserved
)
1137 __u8 tmp
[EXTRACT_SIZE
];
1138 unsigned long flags
;
1140 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1142 spin_lock_irqsave(&r
->lock
, flags
);
1143 if (!r
->last_data_init
) {
1144 r
->last_data_init
= 1;
1145 spin_unlock_irqrestore(&r
->lock
, flags
);
1146 trace_extract_entropy(r
->name
, EXTRACT_SIZE
,
1147 ENTROPY_BITS(r
), _RET_IP_
);
1148 xfer_secondary_pool(r
, EXTRACT_SIZE
);
1149 extract_buf(r
, tmp
);
1150 spin_lock_irqsave(&r
->lock
, flags
);
1151 memcpy(r
->last_data
, tmp
, EXTRACT_SIZE
);
1153 spin_unlock_irqrestore(&r
->lock
, flags
);
1156 trace_extract_entropy(r
->name
, nbytes
, ENTROPY_BITS(r
), _RET_IP_
);
1157 xfer_secondary_pool(r
, nbytes
);
1158 nbytes
= account(r
, nbytes
, min
, reserved
);
1161 extract_buf(r
, tmp
);
1164 spin_lock_irqsave(&r
->lock
, flags
);
1165 if (!memcmp(tmp
, r
->last_data
, EXTRACT_SIZE
))
1166 panic("Hardware RNG duplicated output!\n");
1167 memcpy(r
->last_data
, tmp
, EXTRACT_SIZE
);
1168 spin_unlock_irqrestore(&r
->lock
, flags
);
1170 i
= min_t(int, nbytes
, EXTRACT_SIZE
);
1171 memcpy(buf
, tmp
, i
);
1177 /* Wipe data just returned from memory */
1178 memzero_explicit(tmp
, sizeof(tmp
));
1184 * This function extracts randomness from the "entropy pool", and
1185 * returns it in a userspace buffer.
1187 static ssize_t
extract_entropy_user(struct entropy_store
*r
, void __user
*buf
,
1191 __u8 tmp
[EXTRACT_SIZE
];
1192 int large_request
= (nbytes
> 256);
1194 trace_extract_entropy_user(r
->name
, nbytes
, ENTROPY_BITS(r
), _RET_IP_
);
1195 xfer_secondary_pool(r
, nbytes
);
1196 nbytes
= account(r
, nbytes
, 0, 0);
1199 if (large_request
&& need_resched()) {
1200 if (signal_pending(current
)) {
1208 extract_buf(r
, tmp
);
1209 i
= min_t(int, nbytes
, EXTRACT_SIZE
);
1210 if (copy_to_user(buf
, tmp
, i
)) {
1220 /* Wipe data just returned from memory */
1221 memzero_explicit(tmp
, sizeof(tmp
));
1227 * This function is the exported kernel interface. It returns some
1228 * number of good random numbers, suitable for key generation, seeding
1229 * TCP sequence numbers, etc. It does not rely on the hardware random
1230 * number generator. For random bytes direct from the hardware RNG
1231 * (when available), use get_random_bytes_arch().
1233 void get_random_bytes(void *buf
, int nbytes
)
1235 #if DEBUG_RANDOM_BOOT > 0
1236 if (unlikely(nonblocking_pool
.initialized
== 0))
1237 printk(KERN_NOTICE
"random: %pF get_random_bytes called "
1238 "with %d bits of entropy available\n",
1240 nonblocking_pool
.entropy_total
);
1242 trace_get_random_bytes(nbytes
, _RET_IP_
);
1243 extract_entropy(&nonblocking_pool
, buf
, nbytes
, 0, 0);
1245 EXPORT_SYMBOL(get_random_bytes
);
1248 * This function will use the architecture-specific hardware random
1249 * number generator if it is available. The arch-specific hw RNG will
1250 * almost certainly be faster than what we can do in software, but it
1251 * is impossible to verify that it is implemented securely (as
1252 * opposed, to, say, the AES encryption of a sequence number using a
1253 * key known by the NSA). So it's useful if we need the speed, but
1254 * only if we're willing to trust the hardware manufacturer not to
1255 * have put in a back door.
1257 void get_random_bytes_arch(void *buf
, int nbytes
)
1261 trace_get_random_bytes_arch(nbytes
, _RET_IP_
);
1264 int chunk
= min(nbytes
, (int)sizeof(unsigned long));
1266 if (!arch_get_random_long(&v
))
1269 memcpy(p
, &v
, chunk
);
1275 extract_entropy(&nonblocking_pool
, p
, nbytes
, 0, 0);
1277 EXPORT_SYMBOL(get_random_bytes_arch
);
1281 * init_std_data - initialize pool with system data
1283 * @r: pool to initialize
1285 * This function clears the pool's entropy count and mixes some system
1286 * data into the pool to prepare it for use. The pool is not cleared
1287 * as that can only decrease the entropy in the pool.
1289 static void init_std_data(struct entropy_store
*r
)
1292 ktime_t now
= ktime_get_real();
1295 r
->last_pulled
= jiffies
;
1296 mix_pool_bytes(r
, &now
, sizeof(now
));
1297 for (i
= r
->poolinfo
->poolbytes
; i
> 0; i
-= sizeof(rv
)) {
1298 if (!arch_get_random_seed_long(&rv
) &&
1299 !arch_get_random_long(&rv
))
1300 rv
= random_get_entropy();
1301 mix_pool_bytes(r
, &rv
, sizeof(rv
));
1303 mix_pool_bytes(r
, utsname(), sizeof(*(utsname())));
1307 * Note that setup_arch() may call add_device_randomness()
1308 * long before we get here. This allows seeding of the pools
1309 * with some platform dependent data very early in the boot
1310 * process. But it limits our options here. We must use
1311 * statically allocated structures that already have all
1312 * initializations complete at compile time. We should also
1313 * take care not to overwrite the precious per platform data
1316 static int rand_initialize(void)
1318 init_std_data(&input_pool
);
1319 init_std_data(&blocking_pool
);
1320 init_std_data(&nonblocking_pool
);
1323 early_initcall(rand_initialize
);
1326 void rand_initialize_disk(struct gendisk
*disk
)
1328 struct timer_rand_state
*state
;
1331 * If kzalloc returns null, we just won't use that entropy
1334 state
= kzalloc(sizeof(struct timer_rand_state
), GFP_KERNEL
);
1336 state
->last_time
= INITIAL_JIFFIES
;
1337 disk
->random
= state
;
1343 _random_read(int nonblock
, char __user
*buf
, size_t nbytes
)
1350 nbytes
= min_t(size_t, nbytes
, SEC_XFER_SIZE
);
1352 n
= extract_entropy_user(&blocking_pool
, buf
, nbytes
);
1355 trace_random_read(n
*8, (nbytes
-n
)*8,
1356 ENTROPY_BITS(&blocking_pool
),
1357 ENTROPY_BITS(&input_pool
));
1361 /* Pool is (near) empty. Maybe wait and retry. */
1365 wait_event_interruptible(random_read_wait
,
1366 ENTROPY_BITS(&input_pool
) >=
1367 random_read_wakeup_bits
);
1368 if (signal_pending(current
))
1369 return -ERESTARTSYS
;
1374 random_read(struct file
*file
, char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
1376 return _random_read(file
->f_flags
& O_NONBLOCK
, buf
, nbytes
);
1380 urandom_read(struct file
*file
, char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
1384 if (unlikely(nonblocking_pool
.initialized
== 0))
1385 printk_once(KERN_NOTICE
"random: %s urandom read "
1386 "with %d bits of entropy available\n",
1387 current
->comm
, nonblocking_pool
.entropy_total
);
1389 nbytes
= min_t(size_t, nbytes
, INT_MAX
>> (ENTROPY_SHIFT
+ 3));
1390 ret
= extract_entropy_user(&nonblocking_pool
, buf
, nbytes
);
1392 trace_urandom_read(8 * nbytes
, ENTROPY_BITS(&nonblocking_pool
),
1393 ENTROPY_BITS(&input_pool
));
1398 random_poll(struct file
*file
, poll_table
* wait
)
1402 poll_wait(file
, &random_read_wait
, wait
);
1403 poll_wait(file
, &random_write_wait
, wait
);
1405 if (ENTROPY_BITS(&input_pool
) >= random_read_wakeup_bits
)
1406 mask
|= POLLIN
| POLLRDNORM
;
1407 if (ENTROPY_BITS(&input_pool
) < random_write_wakeup_bits
)
1408 mask
|= POLLOUT
| POLLWRNORM
;
1413 write_pool(struct entropy_store
*r
, const char __user
*buffer
, size_t count
)
1417 const char __user
*p
= buffer
;
1420 bytes
= min(count
, sizeof(buf
));
1421 if (copy_from_user(&buf
, p
, bytes
))
1427 mix_pool_bytes(r
, buf
, bytes
);
1434 static ssize_t
random_write(struct file
*file
, const char __user
*buffer
,
1435 size_t count
, loff_t
*ppos
)
1439 ret
= write_pool(&blocking_pool
, buffer
, count
);
1442 ret
= write_pool(&nonblocking_pool
, buffer
, count
);
1446 return (ssize_t
)count
;
1449 static long random_ioctl(struct file
*f
, unsigned int cmd
, unsigned long arg
)
1451 int size
, ent_count
;
1452 int __user
*p
= (int __user
*)arg
;
1457 /* inherently racy, no point locking */
1458 ent_count
= ENTROPY_BITS(&input_pool
);
1459 if (put_user(ent_count
, p
))
1462 case RNDADDTOENTCNT
:
1463 if (!capable(CAP_SYS_ADMIN
))
1465 if (get_user(ent_count
, p
))
1467 credit_entropy_bits_safe(&input_pool
, ent_count
);
1470 if (!capable(CAP_SYS_ADMIN
))
1472 if (get_user(ent_count
, p
++))
1476 if (get_user(size
, p
++))
1478 retval
= write_pool(&input_pool
, (const char __user
*)p
,
1482 credit_entropy_bits_safe(&input_pool
, ent_count
);
1487 * Clear the entropy pool counters. We no longer clear
1488 * the entropy pool, as that's silly.
1490 if (!capable(CAP_SYS_ADMIN
))
1492 input_pool
.entropy_count
= 0;
1493 nonblocking_pool
.entropy_count
= 0;
1494 blocking_pool
.entropy_count
= 0;
1501 static int random_fasync(int fd
, struct file
*filp
, int on
)
1503 return fasync_helper(fd
, filp
, on
, &fasync
);
1506 const struct file_operations random_fops
= {
1507 .read
= random_read
,
1508 .write
= random_write
,
1509 .poll
= random_poll
,
1510 .unlocked_ioctl
= random_ioctl
,
1511 .fasync
= random_fasync
,
1512 .llseek
= noop_llseek
,
1515 const struct file_operations urandom_fops
= {
1516 .read
= urandom_read
,
1517 .write
= random_write
,
1518 .unlocked_ioctl
= random_ioctl
,
1519 .fasync
= random_fasync
,
1520 .llseek
= noop_llseek
,
1523 SYSCALL_DEFINE3(getrandom
, char __user
*, buf
, size_t, count
,
1524 unsigned int, flags
)
1526 if (flags
& ~(GRND_NONBLOCK
|GRND_RANDOM
))
1529 if (count
> INT_MAX
)
1532 if (flags
& GRND_RANDOM
)
1533 return _random_read(flags
& GRND_NONBLOCK
, buf
, count
);
1535 if (unlikely(nonblocking_pool
.initialized
== 0)) {
1536 if (flags
& GRND_NONBLOCK
)
1538 wait_event_interruptible(urandom_init_wait
,
1539 nonblocking_pool
.initialized
);
1540 if (signal_pending(current
))
1541 return -ERESTARTSYS
;
1543 return urandom_read(NULL
, buf
, count
, NULL
);
1546 /***************************************************************
1547 * Random UUID interface
1549 * Used here for a Boot ID, but can be useful for other kernel
1551 ***************************************************************/
1554 * Generate random UUID
1556 void generate_random_uuid(unsigned char uuid_out
[16])
1558 get_random_bytes(uuid_out
, 16);
1559 /* Set UUID version to 4 --- truly random generation */
1560 uuid_out
[6] = (uuid_out
[6] & 0x0F) | 0x40;
1561 /* Set the UUID variant to DCE */
1562 uuid_out
[8] = (uuid_out
[8] & 0x3F) | 0x80;
1564 EXPORT_SYMBOL(generate_random_uuid
);
1566 /********************************************************************
1570 ********************************************************************/
1572 #ifdef CONFIG_SYSCTL
1574 #include <linux/sysctl.h>
1576 static int min_read_thresh
= 8, min_write_thresh
;
1577 static int max_read_thresh
= OUTPUT_POOL_WORDS
* 32;
1578 static int max_write_thresh
= INPUT_POOL_WORDS
* 32;
1579 static char sysctl_bootid
[16];
1582 * This function is used to return both the bootid UUID, and random
1583 * UUID. The difference is in whether table->data is NULL; if it is,
1584 * then a new UUID is generated and returned to the user.
1586 * If the user accesses this via the proc interface, the UUID will be
1587 * returned as an ASCII string in the standard UUID format; if via the
1588 * sysctl system call, as 16 bytes of binary data.
1590 static int proc_do_uuid(struct ctl_table
*table
, int write
,
1591 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
1593 struct ctl_table fake_table
;
1594 unsigned char buf
[64], tmp_uuid
[16], *uuid
;
1599 generate_random_uuid(uuid
);
1601 static DEFINE_SPINLOCK(bootid_spinlock
);
1603 spin_lock(&bootid_spinlock
);
1605 generate_random_uuid(uuid
);
1606 spin_unlock(&bootid_spinlock
);
1609 sprintf(buf
, "%pU", uuid
);
1611 fake_table
.data
= buf
;
1612 fake_table
.maxlen
= sizeof(buf
);
1614 return proc_dostring(&fake_table
, write
, buffer
, lenp
, ppos
);
1618 * Return entropy available scaled to integral bits
1620 static int proc_do_entropy(struct ctl_table
*table
, int write
,
1621 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
1623 struct ctl_table fake_table
;
1626 entropy_count
= *(int *)table
->data
>> ENTROPY_SHIFT
;
1628 fake_table
.data
= &entropy_count
;
1629 fake_table
.maxlen
= sizeof(entropy_count
);
1631 return proc_dointvec(&fake_table
, write
, buffer
, lenp
, ppos
);
1634 static int sysctl_poolsize
= INPUT_POOL_WORDS
* 32;
1635 extern struct ctl_table random_table
[];
1636 struct ctl_table random_table
[] = {
1638 .procname
= "poolsize",
1639 .data
= &sysctl_poolsize
,
1640 .maxlen
= sizeof(int),
1642 .proc_handler
= proc_dointvec
,
1645 .procname
= "entropy_avail",
1646 .maxlen
= sizeof(int),
1648 .proc_handler
= proc_do_entropy
,
1649 .data
= &input_pool
.entropy_count
,
1652 .procname
= "read_wakeup_threshold",
1653 .data
= &random_read_wakeup_bits
,
1654 .maxlen
= sizeof(int),
1656 .proc_handler
= proc_dointvec_minmax
,
1657 .extra1
= &min_read_thresh
,
1658 .extra2
= &max_read_thresh
,
1661 .procname
= "write_wakeup_threshold",
1662 .data
= &random_write_wakeup_bits
,
1663 .maxlen
= sizeof(int),
1665 .proc_handler
= proc_dointvec_minmax
,
1666 .extra1
= &min_write_thresh
,
1667 .extra2
= &max_write_thresh
,
1670 .procname
= "urandom_min_reseed_secs",
1671 .data
= &random_min_urandom_seed
,
1672 .maxlen
= sizeof(int),
1674 .proc_handler
= proc_dointvec
,
1677 .procname
= "boot_id",
1678 .data
= &sysctl_bootid
,
1681 .proc_handler
= proc_do_uuid
,
1687 .proc_handler
= proc_do_uuid
,
1689 #ifdef ADD_INTERRUPT_BENCH
1691 .procname
= "add_interrupt_avg_cycles",
1692 .data
= &avg_cycles
,
1693 .maxlen
= sizeof(avg_cycles
),
1695 .proc_handler
= proc_doulongvec_minmax
,
1698 .procname
= "add_interrupt_avg_deviation",
1699 .data
= &avg_deviation
,
1700 .maxlen
= sizeof(avg_deviation
),
1702 .proc_handler
= proc_doulongvec_minmax
,
1707 #endif /* CONFIG_SYSCTL */
1709 static u32 random_int_secret
[MD5_MESSAGE_BYTES
/ 4] ____cacheline_aligned
;
1711 int random_int_secret_init(void)
1713 get_random_bytes(random_int_secret
, sizeof(random_int_secret
));
1718 * Get a random word for internal kernel use only. Similar to urandom but
1719 * with the goal of minimal entropy pool depletion. As a result, the random
1720 * value is not cryptographically secure but for several uses the cost of
1721 * depleting entropy is too high
1723 static DEFINE_PER_CPU(__u32
[MD5_DIGEST_WORDS
], get_random_int_hash
);
1724 unsigned int get_random_int(void)
1729 if (arch_get_random_int(&ret
))
1732 hash
= get_cpu_var(get_random_int_hash
);
1734 hash
[0] += current
->pid
+ jiffies
+ random_get_entropy();
1735 md5_transform(hash
, random_int_secret
);
1737 put_cpu_var(get_random_int_hash
);
1741 EXPORT_SYMBOL(get_random_int
);
1744 * randomize_range() returns a start address such that
1746 * [...... <range> .....]
1749 * a <range> with size "len" starting at the return value is inside in the
1750 * area defined by [start, end], but is otherwise randomized.
1753 randomize_range(unsigned long start
, unsigned long end
, unsigned long len
)
1755 unsigned long range
= end
- len
- start
;
1757 if (end
<= start
+ len
)
1759 return PAGE_ALIGN(get_random_int() % range
+ start
);
1762 /* Interface for in-kernel drivers of true hardware RNGs.
1763 * Those devices may produce endless random bits and will be throttled
1764 * when our pool is full.
1766 void add_hwgenerator_randomness(const char *buffer
, size_t count
,
1769 struct entropy_store
*poolp
= &input_pool
;
1771 /* Suspend writing if we're above the trickle threshold.
1772 * We'll be woken up again once below random_write_wakeup_thresh,
1773 * or when the calling thread is about to terminate.
1775 wait_event_interruptible(random_write_wait
, kthread_should_stop() ||
1776 ENTROPY_BITS(&input_pool
) <= random_write_wakeup_bits
);
1777 mix_pool_bytes(poolp
, buffer
, count
);
1778 credit_entropy_bits(poolp
, entropy
);
1780 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness
);