1 // SPDX-License-Identifier: GPL-2.0-only
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
33 static inline unsigned int pe_order(enum page_entry_size pe_size
)
35 if (pe_size
== PE_SIZE_PTE
)
36 return PAGE_SHIFT
- PAGE_SHIFT
;
37 if (pe_size
== PE_SIZE_PMD
)
38 return PMD_SHIFT
- PAGE_SHIFT
;
39 if (pe_size
== PE_SIZE_PUD
)
40 return PUD_SHIFT
- PAGE_SHIFT
;
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
48 /* The 'colour' (ie low bits) within a PMD of a page offset. */
49 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
52 /* The order of a PMD entry */
53 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
55 static wait_queue_head_t wait_table
[DAX_WAIT_TABLE_ENTRIES
];
57 static int __init
init_dax_wait_table(void)
61 for (i
= 0; i
< DAX_WAIT_TABLE_ENTRIES
; i
++)
62 init_waitqueue_head(wait_table
+ i
);
65 fs_initcall(init_dax_wait_table
);
68 * DAX pagecache entries use XArray value entries so they can't be mistaken
69 * for pages. We use one bit for locking, one bit for the entry size (PMD)
70 * and two more to tell us if the entry is a zero page or an empty entry that
71 * is just used for locking. In total four special bits.
73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
78 #define DAX_LOCKED (1UL << 0)
79 #define DAX_PMD (1UL << 1)
80 #define DAX_ZERO_PAGE (1UL << 2)
81 #define DAX_EMPTY (1UL << 3)
83 static unsigned long dax_to_pfn(void *entry
)
85 return xa_to_value(entry
) >> DAX_SHIFT
;
88 static void *dax_make_entry(pfn_t pfn
, unsigned long flags
)
90 return xa_mk_value(flags
| (pfn_t_to_pfn(pfn
) << DAX_SHIFT
));
93 static bool dax_is_locked(void *entry
)
95 return xa_to_value(entry
) & DAX_LOCKED
;
98 static unsigned int dax_entry_order(void *entry
)
100 if (xa_to_value(entry
) & DAX_PMD
)
105 static unsigned long dax_is_pmd_entry(void *entry
)
107 return xa_to_value(entry
) & DAX_PMD
;
110 static bool dax_is_pte_entry(void *entry
)
112 return !(xa_to_value(entry
) & DAX_PMD
);
115 static int dax_is_zero_entry(void *entry
)
117 return xa_to_value(entry
) & DAX_ZERO_PAGE
;
120 static int dax_is_empty_entry(void *entry
)
122 return xa_to_value(entry
) & DAX_EMPTY
;
126 * true if the entry that was found is of a smaller order than the entry
127 * we were looking for
129 static bool dax_is_conflict(void *entry
)
131 return entry
== XA_RETRY_ENTRY
;
135 * DAX page cache entry locking
137 struct exceptional_entry_key
{
142 struct wait_exceptional_entry_queue
{
143 wait_queue_entry_t wait
;
144 struct exceptional_entry_key key
;
147 static wait_queue_head_t
*dax_entry_waitqueue(struct xa_state
*xas
,
148 void *entry
, struct exceptional_entry_key
*key
)
151 unsigned long index
= xas
->xa_index
;
154 * If 'entry' is a PMD, align the 'index' that we use for the wait
155 * queue to the start of that PMD. This ensures that all offsets in
156 * the range covered by the PMD map to the same bit lock.
158 if (dax_is_pmd_entry(entry
))
159 index
&= ~PG_PMD_COLOUR
;
161 key
->entry_start
= index
;
163 hash
= hash_long((unsigned long)xas
->xa
^ index
, DAX_WAIT_TABLE_BITS
);
164 return wait_table
+ hash
;
167 static int wake_exceptional_entry_func(wait_queue_entry_t
*wait
,
168 unsigned int mode
, int sync
, void *keyp
)
170 struct exceptional_entry_key
*key
= keyp
;
171 struct wait_exceptional_entry_queue
*ewait
=
172 container_of(wait
, struct wait_exceptional_entry_queue
, wait
);
174 if (key
->xa
!= ewait
->key
.xa
||
175 key
->entry_start
!= ewait
->key
.entry_start
)
177 return autoremove_wake_function(wait
, mode
, sync
, NULL
);
181 * @entry may no longer be the entry at the index in the mapping.
182 * The important information it's conveying is whether the entry at
183 * this index used to be a PMD entry.
185 static void dax_wake_entry(struct xa_state
*xas
, void *entry
, bool wake_all
)
187 struct exceptional_entry_key key
;
188 wait_queue_head_t
*wq
;
190 wq
= dax_entry_waitqueue(xas
, entry
, &key
);
193 * Checking for locked entry and prepare_to_wait_exclusive() happens
194 * under the i_pages lock, ditto for entry handling in our callers.
195 * So at this point all tasks that could have seen our entry locked
196 * must be in the waitqueue and the following check will see them.
198 if (waitqueue_active(wq
))
199 __wake_up(wq
, TASK_NORMAL
, wake_all
? 0 : 1, &key
);
203 * Look up entry in page cache, wait for it to become unlocked if it
204 * is a DAX entry and return it. The caller must subsequently call
205 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
206 * if it did. The entry returned may have a larger order than @order.
207 * If @order is larger than the order of the entry found in i_pages, this
208 * function returns a dax_is_conflict entry.
210 * Must be called with the i_pages lock held.
212 static void *get_unlocked_entry(struct xa_state
*xas
, unsigned int order
)
215 struct wait_exceptional_entry_queue ewait
;
216 wait_queue_head_t
*wq
;
218 init_wait(&ewait
.wait
);
219 ewait
.wait
.func
= wake_exceptional_entry_func
;
222 entry
= xas_find_conflict(xas
);
223 if (dax_entry_order(entry
) < order
)
224 return XA_RETRY_ENTRY
;
225 if (!entry
|| WARN_ON_ONCE(!xa_is_value(entry
)) ||
226 !dax_is_locked(entry
))
229 wq
= dax_entry_waitqueue(xas
, entry
, &ewait
.key
);
230 prepare_to_wait_exclusive(wq
, &ewait
.wait
,
231 TASK_UNINTERRUPTIBLE
);
235 finish_wait(wq
, &ewait
.wait
);
241 * The only thing keeping the address space around is the i_pages lock
242 * (it's cycled in clear_inode() after removing the entries from i_pages)
243 * After we call xas_unlock_irq(), we cannot touch xas->xa.
245 static void wait_entry_unlocked(struct xa_state
*xas
, void *entry
)
247 struct wait_exceptional_entry_queue ewait
;
248 wait_queue_head_t
*wq
;
250 init_wait(&ewait
.wait
);
251 ewait
.wait
.func
= wake_exceptional_entry_func
;
253 wq
= dax_entry_waitqueue(xas
, entry
, &ewait
.key
);
255 * Unlike get_unlocked_entry() there is no guarantee that this
256 * path ever successfully retrieves an unlocked entry before an
257 * inode dies. Perform a non-exclusive wait in case this path
258 * never successfully performs its own wake up.
260 prepare_to_wait(wq
, &ewait
.wait
, TASK_UNINTERRUPTIBLE
);
263 finish_wait(wq
, &ewait
.wait
);
266 static void put_unlocked_entry(struct xa_state
*xas
, void *entry
)
268 /* If we were the only waiter woken, wake the next one */
269 if (entry
&& dax_is_conflict(entry
))
270 dax_wake_entry(xas
, entry
, false);
274 * We used the xa_state to get the entry, but then we locked the entry and
275 * dropped the xa_lock, so we know the xa_state is stale and must be reset
278 static void dax_unlock_entry(struct xa_state
*xas
, void *entry
)
282 BUG_ON(dax_is_locked(entry
));
285 old
= xas_store(xas
, entry
);
287 BUG_ON(!dax_is_locked(old
));
288 dax_wake_entry(xas
, entry
, false);
292 * Return: The entry stored at this location before it was locked.
294 static void *dax_lock_entry(struct xa_state
*xas
, void *entry
)
296 unsigned long v
= xa_to_value(entry
);
297 return xas_store(xas
, xa_mk_value(v
| DAX_LOCKED
));
300 static unsigned long dax_entry_size(void *entry
)
302 if (dax_is_zero_entry(entry
))
304 else if (dax_is_empty_entry(entry
))
306 else if (dax_is_pmd_entry(entry
))
312 static unsigned long dax_end_pfn(void *entry
)
314 return dax_to_pfn(entry
) + dax_entry_size(entry
) / PAGE_SIZE
;
318 * Iterate through all mapped pfns represented by an entry, i.e. skip
319 * 'empty' and 'zero' entries.
321 #define for_each_mapped_pfn(entry, pfn) \
322 for (pfn = dax_to_pfn(entry); \
323 pfn < dax_end_pfn(entry); pfn++)
326 * TODO: for reflink+dax we need a way to associate a single page with
327 * multiple address_space instances at different linear_page_index()
330 static void dax_associate_entry(void *entry
, struct address_space
*mapping
,
331 struct vm_area_struct
*vma
, unsigned long address
)
333 unsigned long size
= dax_entry_size(entry
), pfn
, index
;
336 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED
))
339 index
= linear_page_index(vma
, address
& ~(size
- 1));
340 for_each_mapped_pfn(entry
, pfn
) {
341 struct page
*page
= pfn_to_page(pfn
);
343 WARN_ON_ONCE(page
->mapping
);
344 page
->mapping
= mapping
;
345 page
->index
= index
+ i
++;
349 static void dax_disassociate_entry(void *entry
, struct address_space
*mapping
,
354 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED
))
357 for_each_mapped_pfn(entry
, pfn
) {
358 struct page
*page
= pfn_to_page(pfn
);
360 WARN_ON_ONCE(trunc
&& page_ref_count(page
) > 1);
361 WARN_ON_ONCE(page
->mapping
&& page
->mapping
!= mapping
);
362 page
->mapping
= NULL
;
367 static struct page
*dax_busy_page(void *entry
)
371 for_each_mapped_pfn(entry
, pfn
) {
372 struct page
*page
= pfn_to_page(pfn
);
374 if (page_ref_count(page
) > 1)
381 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
382 * @page: The page whose entry we want to lock
384 * Context: Process context.
385 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
388 dax_entry_t
dax_lock_page(struct page
*page
)
390 XA_STATE(xas
, NULL
, 0);
393 /* Ensure page->mapping isn't freed while we look at it */
396 struct address_space
*mapping
= READ_ONCE(page
->mapping
);
399 if (!mapping
|| !dax_mapping(mapping
))
403 * In the device-dax case there's no need to lock, a
404 * struct dev_pagemap pin is sufficient to keep the
405 * inode alive, and we assume we have dev_pagemap pin
406 * otherwise we would not have a valid pfn_to_page()
409 entry
= (void *)~0UL;
410 if (S_ISCHR(mapping
->host
->i_mode
))
413 xas
.xa
= &mapping
->i_pages
;
415 if (mapping
!= page
->mapping
) {
416 xas_unlock_irq(&xas
);
419 xas_set(&xas
, page
->index
);
420 entry
= xas_load(&xas
);
421 if (dax_is_locked(entry
)) {
423 wait_entry_unlocked(&xas
, entry
);
427 dax_lock_entry(&xas
, entry
);
428 xas_unlock_irq(&xas
);
432 return (dax_entry_t
)entry
;
435 void dax_unlock_page(struct page
*page
, dax_entry_t cookie
)
437 struct address_space
*mapping
= page
->mapping
;
438 XA_STATE(xas
, &mapping
->i_pages
, page
->index
);
440 if (S_ISCHR(mapping
->host
->i_mode
))
443 dax_unlock_entry(&xas
, (void *)cookie
);
447 * Find page cache entry at given index. If it is a DAX entry, return it
448 * with the entry locked. If the page cache doesn't contain an entry at
449 * that index, add a locked empty entry.
451 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
452 * either return that locked entry or will return VM_FAULT_FALLBACK.
453 * This will happen if there are any PTE entries within the PMD range
454 * that we are requesting.
456 * We always favor PTE entries over PMD entries. There isn't a flow where we
457 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
458 * insertion will fail if it finds any PTE entries already in the tree, and a
459 * PTE insertion will cause an existing PMD entry to be unmapped and
460 * downgraded to PTE entries. This happens for both PMD zero pages as
461 * well as PMD empty entries.
463 * The exception to this downgrade path is for PMD entries that have
464 * real storage backing them. We will leave these real PMD entries in
465 * the tree, and PTE writes will simply dirty the entire PMD entry.
467 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
468 * persistent memory the benefit is doubtful. We can add that later if we can
471 * On error, this function does not return an ERR_PTR. Instead it returns
472 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
473 * overlap with xarray value entries.
475 static void *grab_mapping_entry(struct xa_state
*xas
,
476 struct address_space
*mapping
, unsigned int order
)
478 unsigned long index
= xas
->xa_index
;
479 bool pmd_downgrade
= false; /* splitting PMD entry into PTE entries? */
484 entry
= get_unlocked_entry(xas
, order
);
487 if (dax_is_conflict(entry
))
489 if (!xa_is_value(entry
)) {
490 xas_set_err(xas
, EIO
);
495 if (dax_is_pmd_entry(entry
) &&
496 (dax_is_zero_entry(entry
) ||
497 dax_is_empty_entry(entry
))) {
498 pmd_downgrade
= true;
505 * Make sure 'entry' remains valid while we drop
508 dax_lock_entry(xas
, entry
);
511 * Besides huge zero pages the only other thing that gets
512 * downgraded are empty entries which don't need to be
515 if (dax_is_zero_entry(entry
)) {
517 unmap_mapping_pages(mapping
,
518 xas
->xa_index
& ~PG_PMD_COLOUR
,
524 dax_disassociate_entry(entry
, mapping
, false);
525 xas_store(xas
, NULL
); /* undo the PMD join */
526 dax_wake_entry(xas
, entry
, true);
527 mapping
->nrexceptional
--;
533 dax_lock_entry(xas
, entry
);
535 unsigned long flags
= DAX_EMPTY
;
539 entry
= dax_make_entry(pfn_to_pfn_t(0), flags
);
540 dax_lock_entry(xas
, entry
);
543 mapping
->nrexceptional
++;
548 if (xas_nomem(xas
, mapping_gfp_mask(mapping
) & ~__GFP_HIGHMEM
))
550 if (xas
->xa_node
== XA_ERROR(-ENOMEM
))
551 return xa_mk_internal(VM_FAULT_OOM
);
553 return xa_mk_internal(VM_FAULT_SIGBUS
);
557 return xa_mk_internal(VM_FAULT_FALLBACK
);
561 * dax_layout_busy_page - find first pinned page in @mapping
562 * @mapping: address space to scan for a page with ref count > 1
564 * DAX requires ZONE_DEVICE mapped pages. These pages are never
565 * 'onlined' to the page allocator so they are considered idle when
566 * page->count == 1. A filesystem uses this interface to determine if
567 * any page in the mapping is busy, i.e. for DMA, or other
568 * get_user_pages() usages.
570 * It is expected that the filesystem is holding locks to block the
571 * establishment of new mappings in this address_space. I.e. it expects
572 * to be able to run unmap_mapping_range() and subsequently not race
573 * mapping_mapped() becoming true.
575 struct page
*dax_layout_busy_page(struct address_space
*mapping
)
577 XA_STATE(xas
, &mapping
->i_pages
, 0);
579 unsigned int scanned
= 0;
580 struct page
*page
= NULL
;
583 * In the 'limited' case get_user_pages() for dax is disabled.
585 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED
))
588 if (!dax_mapping(mapping
) || !mapping_mapped(mapping
))
592 * If we race get_user_pages_fast() here either we'll see the
593 * elevated page count in the iteration and wait, or
594 * get_user_pages_fast() will see that the page it took a reference
595 * against is no longer mapped in the page tables and bail to the
596 * get_user_pages() slow path. The slow path is protected by
597 * pte_lock() and pmd_lock(). New references are not taken without
598 * holding those locks, and unmap_mapping_range() will not zero the
599 * pte or pmd without holding the respective lock, so we are
600 * guaranteed to either see new references or prevent new
601 * references from being established.
603 unmap_mapping_range(mapping
, 0, 0, 1);
606 xas_for_each(&xas
, entry
, ULONG_MAX
) {
607 if (WARN_ON_ONCE(!xa_is_value(entry
)))
609 if (unlikely(dax_is_locked(entry
)))
610 entry
= get_unlocked_entry(&xas
, 0);
612 page
= dax_busy_page(entry
);
613 put_unlocked_entry(&xas
, entry
);
616 if (++scanned
% XA_CHECK_SCHED
)
620 xas_unlock_irq(&xas
);
624 xas_unlock_irq(&xas
);
627 EXPORT_SYMBOL_GPL(dax_layout_busy_page
);
629 static int __dax_invalidate_entry(struct address_space
*mapping
,
630 pgoff_t index
, bool trunc
)
632 XA_STATE(xas
, &mapping
->i_pages
, index
);
637 entry
= get_unlocked_entry(&xas
, 0);
638 if (!entry
|| WARN_ON_ONCE(!xa_is_value(entry
)))
641 (xas_get_mark(&xas
, PAGECACHE_TAG_DIRTY
) ||
642 xas_get_mark(&xas
, PAGECACHE_TAG_TOWRITE
)))
644 dax_disassociate_entry(entry
, mapping
, trunc
);
645 xas_store(&xas
, NULL
);
646 mapping
->nrexceptional
--;
649 put_unlocked_entry(&xas
, entry
);
650 xas_unlock_irq(&xas
);
655 * Delete DAX entry at @index from @mapping. Wait for it
656 * to be unlocked before deleting it.
658 int dax_delete_mapping_entry(struct address_space
*mapping
, pgoff_t index
)
660 int ret
= __dax_invalidate_entry(mapping
, index
, true);
663 * This gets called from truncate / punch_hole path. As such, the caller
664 * must hold locks protecting against concurrent modifications of the
665 * page cache (usually fs-private i_mmap_sem for writing). Since the
666 * caller has seen a DAX entry for this index, we better find it
667 * at that index as well...
674 * Invalidate DAX entry if it is clean.
676 int dax_invalidate_mapping_entry_sync(struct address_space
*mapping
,
679 return __dax_invalidate_entry(mapping
, index
, false);
682 static int copy_user_dax(struct block_device
*bdev
, struct dax_device
*dax_dev
,
683 sector_t sector
, size_t size
, struct page
*to
,
691 rc
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
695 id
= dax_read_lock();
696 rc
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(size
), &kaddr
, NULL
);
701 vto
= kmap_atomic(to
);
702 copy_user_page(vto
, (void __force
*)kaddr
, vaddr
, to
);
709 * By this point grab_mapping_entry() has ensured that we have a locked entry
710 * of the appropriate size so we don't have to worry about downgrading PMDs to
711 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
712 * already in the tree, we will skip the insertion and just dirty the PMD as
715 static void *dax_insert_entry(struct xa_state
*xas
,
716 struct address_space
*mapping
, struct vm_fault
*vmf
,
717 void *entry
, pfn_t pfn
, unsigned long flags
, bool dirty
)
719 void *new_entry
= dax_make_entry(pfn
, flags
);
722 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
724 if (dax_is_zero_entry(entry
) && !(flags
& DAX_ZERO_PAGE
)) {
725 unsigned long index
= xas
->xa_index
;
726 /* we are replacing a zero page with block mapping */
727 if (dax_is_pmd_entry(entry
))
728 unmap_mapping_pages(mapping
, index
& ~PG_PMD_COLOUR
,
731 unmap_mapping_pages(mapping
, index
, 1, false);
736 if (dax_is_zero_entry(entry
) || dax_is_empty_entry(entry
)) {
739 dax_disassociate_entry(entry
, mapping
, false);
740 dax_associate_entry(new_entry
, mapping
, vmf
->vma
, vmf
->address
);
742 * Only swap our new entry into the page cache if the current
743 * entry is a zero page or an empty entry. If a normal PTE or
744 * PMD entry is already in the cache, we leave it alone. This
745 * means that if we are trying to insert a PTE and the
746 * existing entry is a PMD, we will just leave the PMD in the
747 * tree and dirty it if necessary.
749 old
= dax_lock_entry(xas
, new_entry
);
750 WARN_ON_ONCE(old
!= xa_mk_value(xa_to_value(entry
) |
754 xas_load(xas
); /* Walk the xa_state */
758 xas_set_mark(xas
, PAGECACHE_TAG_DIRTY
);
765 unsigned long pgoff_address(pgoff_t pgoff
, struct vm_area_struct
*vma
)
767 unsigned long address
;
769 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
770 VM_BUG_ON_VMA(address
< vma
->vm_start
|| address
>= vma
->vm_end
, vma
);
774 /* Walk all mappings of a given index of a file and writeprotect them */
775 static void dax_entry_mkclean(struct address_space
*mapping
, pgoff_t index
,
778 struct vm_area_struct
*vma
;
779 pte_t pte
, *ptep
= NULL
;
783 i_mmap_lock_read(mapping
);
784 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, index
, index
) {
785 struct mmu_notifier_range range
;
786 unsigned long address
;
790 if (!(vma
->vm_flags
& VM_SHARED
))
793 address
= pgoff_address(index
, vma
);
796 * Note because we provide range to follow_pte_pmd it will
797 * call mmu_notifier_invalidate_range_start() on our behalf
798 * before taking any lock.
800 if (follow_pte_pmd(vma
->vm_mm
, address
, &range
,
805 * No need to call mmu_notifier_invalidate_range() as we are
806 * downgrading page table protection not changing it to point
809 * See Documentation/vm/mmu_notifier.rst
812 #ifdef CONFIG_FS_DAX_PMD
815 if (pfn
!= pmd_pfn(*pmdp
))
817 if (!pmd_dirty(*pmdp
) && !pmd_write(*pmdp
))
820 flush_cache_page(vma
, address
, pfn
);
821 pmd
= pmdp_invalidate(vma
, address
, pmdp
);
822 pmd
= pmd_wrprotect(pmd
);
823 pmd
= pmd_mkclean(pmd
);
824 set_pmd_at(vma
->vm_mm
, address
, pmdp
, pmd
);
829 if (pfn
!= pte_pfn(*ptep
))
831 if (!pte_dirty(*ptep
) && !pte_write(*ptep
))
834 flush_cache_page(vma
, address
, pfn
);
835 pte
= ptep_clear_flush(vma
, address
, ptep
);
836 pte
= pte_wrprotect(pte
);
837 pte
= pte_mkclean(pte
);
838 set_pte_at(vma
->vm_mm
, address
, ptep
, pte
);
840 pte_unmap_unlock(ptep
, ptl
);
843 mmu_notifier_invalidate_range_end(&range
);
845 i_mmap_unlock_read(mapping
);
848 static int dax_writeback_one(struct xa_state
*xas
, struct dax_device
*dax_dev
,
849 struct address_space
*mapping
, void *entry
)
851 unsigned long pfn
, index
, count
;
855 * A page got tagged dirty in DAX mapping? Something is seriously
858 if (WARN_ON(!xa_is_value(entry
)))
861 if (unlikely(dax_is_locked(entry
))) {
862 void *old_entry
= entry
;
864 entry
= get_unlocked_entry(xas
, 0);
866 /* Entry got punched out / reallocated? */
867 if (!entry
|| WARN_ON_ONCE(!xa_is_value(entry
)))
870 * Entry got reallocated elsewhere? No need to writeback.
871 * We have to compare pfns as we must not bail out due to
872 * difference in lockbit or entry type.
874 if (dax_to_pfn(old_entry
) != dax_to_pfn(entry
))
876 if (WARN_ON_ONCE(dax_is_empty_entry(entry
) ||
877 dax_is_zero_entry(entry
))) {
882 /* Another fsync thread may have already done this entry */
883 if (!xas_get_mark(xas
, PAGECACHE_TAG_TOWRITE
))
887 /* Lock the entry to serialize with page faults */
888 dax_lock_entry(xas
, entry
);
891 * We can clear the tag now but we have to be careful so that concurrent
892 * dax_writeback_one() calls for the same index cannot finish before we
893 * actually flush the caches. This is achieved as the calls will look
894 * at the entry only under the i_pages lock and once they do that
895 * they will see the entry locked and wait for it to unlock.
897 xas_clear_mark(xas
, PAGECACHE_TAG_TOWRITE
);
901 * If dax_writeback_mapping_range() was given a wbc->range_start
902 * in the middle of a PMD, the 'index' we use needs to be
903 * aligned to the start of the PMD.
904 * This allows us to flush for PMD_SIZE and not have to worry about
905 * partial PMD writebacks.
907 pfn
= dax_to_pfn(entry
);
908 count
= 1UL << dax_entry_order(entry
);
909 index
= xas
->xa_index
& ~(count
- 1);
911 dax_entry_mkclean(mapping
, index
, pfn
);
912 dax_flush(dax_dev
, page_address(pfn_to_page(pfn
)), count
* PAGE_SIZE
);
914 * After we have flushed the cache, we can clear the dirty tag. There
915 * cannot be new dirty data in the pfn after the flush has completed as
916 * the pfn mappings are writeprotected and fault waits for mapping
921 xas_store(xas
, entry
);
922 xas_clear_mark(xas
, PAGECACHE_TAG_DIRTY
);
923 dax_wake_entry(xas
, entry
, false);
925 trace_dax_writeback_one(mapping
->host
, index
, count
);
929 put_unlocked_entry(xas
, entry
);
934 * Flush the mapping to the persistent domain within the byte range of [start,
935 * end]. This is required by data integrity operations to ensure file data is
936 * on persistent storage prior to completion of the operation.
938 int dax_writeback_mapping_range(struct address_space
*mapping
,
939 struct block_device
*bdev
, struct writeback_control
*wbc
)
941 XA_STATE(xas
, &mapping
->i_pages
, wbc
->range_start
>> PAGE_SHIFT
);
942 struct inode
*inode
= mapping
->host
;
943 pgoff_t end_index
= wbc
->range_end
>> PAGE_SHIFT
;
944 struct dax_device
*dax_dev
;
947 unsigned int scanned
= 0;
949 if (WARN_ON_ONCE(inode
->i_blkbits
!= PAGE_SHIFT
))
952 if (!mapping
->nrexceptional
|| wbc
->sync_mode
!= WB_SYNC_ALL
)
955 dax_dev
= dax_get_by_host(bdev
->bd_disk
->disk_name
);
959 trace_dax_writeback_range(inode
, xas
.xa_index
, end_index
);
961 tag_pages_for_writeback(mapping
, xas
.xa_index
, end_index
);
964 xas_for_each_marked(&xas
, entry
, end_index
, PAGECACHE_TAG_TOWRITE
) {
965 ret
= dax_writeback_one(&xas
, dax_dev
, mapping
, entry
);
967 mapping_set_error(mapping
, ret
);
970 if (++scanned
% XA_CHECK_SCHED
)
974 xas_unlock_irq(&xas
);
978 xas_unlock_irq(&xas
);
980 trace_dax_writeback_range_done(inode
, xas
.xa_index
, end_index
);
983 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range
);
985 static sector_t
dax_iomap_sector(struct iomap
*iomap
, loff_t pos
)
987 return (iomap
->addr
+ (pos
& PAGE_MASK
) - iomap
->offset
) >> 9;
990 static int dax_iomap_pfn(struct iomap
*iomap
, loff_t pos
, size_t size
,
993 const sector_t sector
= dax_iomap_sector(iomap
, pos
);
998 rc
= bdev_dax_pgoff(iomap
->bdev
, sector
, size
, &pgoff
);
1001 id
= dax_read_lock();
1002 length
= dax_direct_access(iomap
->dax_dev
, pgoff
, PHYS_PFN(size
),
1009 if (PFN_PHYS(length
) < size
)
1011 if (pfn_t_to_pfn(*pfnp
) & (PHYS_PFN(size
)-1))
1013 /* For larger pages we need devmap */
1014 if (length
> 1 && !pfn_t_devmap(*pfnp
))
1018 dax_read_unlock(id
);
1023 * The user has performed a load from a hole in the file. Allocating a new
1024 * page in the file would cause excessive storage usage for workloads with
1025 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1026 * If this page is ever written to we will re-fault and change the mapping to
1027 * point to real DAX storage instead.
1029 static vm_fault_t
dax_load_hole(struct xa_state
*xas
,
1030 struct address_space
*mapping
, void **entry
,
1031 struct vm_fault
*vmf
)
1033 struct inode
*inode
= mapping
->host
;
1034 unsigned long vaddr
= vmf
->address
;
1035 pfn_t pfn
= pfn_to_pfn_t(my_zero_pfn(vaddr
));
1038 *entry
= dax_insert_entry(xas
, mapping
, vmf
, *entry
, pfn
,
1039 DAX_ZERO_PAGE
, false);
1041 ret
= vmf_insert_mixed(vmf
->vma
, vaddr
, pfn
);
1042 trace_dax_load_hole(inode
, vmf
, ret
);
1046 static bool dax_range_is_aligned(struct block_device
*bdev
,
1047 unsigned int offset
, unsigned int length
)
1049 unsigned short sector_size
= bdev_logical_block_size(bdev
);
1051 if (!IS_ALIGNED(offset
, sector_size
))
1053 if (!IS_ALIGNED(length
, sector_size
))
1059 int __dax_zero_page_range(struct block_device
*bdev
,
1060 struct dax_device
*dax_dev
, sector_t sector
,
1061 unsigned int offset
, unsigned int size
)
1063 if (dax_range_is_aligned(bdev
, offset
, size
)) {
1064 sector_t start_sector
= sector
+ (offset
>> 9);
1066 return blkdev_issue_zeroout(bdev
, start_sector
,
1067 size
>> 9, GFP_NOFS
, 0);
1073 rc
= bdev_dax_pgoff(bdev
, sector
, PAGE_SIZE
, &pgoff
);
1077 id
= dax_read_lock();
1078 rc
= dax_direct_access(dax_dev
, pgoff
, 1, &kaddr
, NULL
);
1080 dax_read_unlock(id
);
1083 memset(kaddr
+ offset
, 0, size
);
1084 dax_flush(dax_dev
, kaddr
+ offset
, size
);
1085 dax_read_unlock(id
);
1089 EXPORT_SYMBOL_GPL(__dax_zero_page_range
);
1092 dax_iomap_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
1093 struct iomap
*iomap
)
1095 struct block_device
*bdev
= iomap
->bdev
;
1096 struct dax_device
*dax_dev
= iomap
->dax_dev
;
1097 struct iov_iter
*iter
= data
;
1098 loff_t end
= pos
+ length
, done
= 0;
1103 if (iov_iter_rw(iter
) == READ
) {
1104 end
= min(end
, i_size_read(inode
));
1108 if (iomap
->type
== IOMAP_HOLE
|| iomap
->type
== IOMAP_UNWRITTEN
)
1109 return iov_iter_zero(min(length
, end
- pos
), iter
);
1112 if (WARN_ON_ONCE(iomap
->type
!= IOMAP_MAPPED
))
1116 * Write can allocate block for an area which has a hole page mapped
1117 * into page tables. We have to tear down these mappings so that data
1118 * written by write(2) is visible in mmap.
1120 if (iomap
->flags
& IOMAP_F_NEW
) {
1121 invalidate_inode_pages2_range(inode
->i_mapping
,
1123 (end
- 1) >> PAGE_SHIFT
);
1126 id
= dax_read_lock();
1128 unsigned offset
= pos
& (PAGE_SIZE
- 1);
1129 const size_t size
= ALIGN(length
+ offset
, PAGE_SIZE
);
1130 const sector_t sector
= dax_iomap_sector(iomap
, pos
);
1135 if (fatal_signal_pending(current
)) {
1140 ret
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
1144 map_len
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(size
),
1151 map_len
= PFN_PHYS(map_len
);
1154 if (map_len
> end
- pos
)
1155 map_len
= end
- pos
;
1158 * The userspace address for the memory copy has already been
1159 * validated via access_ok() in either vfs_read() or
1160 * vfs_write(), depending on which operation we are doing.
1162 if (iov_iter_rw(iter
) == WRITE
)
1163 xfer
= dax_copy_from_iter(dax_dev
, pgoff
, kaddr
,
1166 xfer
= dax_copy_to_iter(dax_dev
, pgoff
, kaddr
,
1178 dax_read_unlock(id
);
1180 return done
? done
: ret
;
1184 * dax_iomap_rw - Perform I/O to a DAX file
1185 * @iocb: The control block for this I/O
1186 * @iter: The addresses to do I/O from or to
1187 * @ops: iomap ops passed from the file system
1189 * This function performs read and write operations to directly mapped
1190 * persistent memory. The callers needs to take care of read/write exclusion
1191 * and evicting any page cache pages in the region under I/O.
1194 dax_iomap_rw(struct kiocb
*iocb
, struct iov_iter
*iter
,
1195 const struct iomap_ops
*ops
)
1197 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
1198 struct inode
*inode
= mapping
->host
;
1199 loff_t pos
= iocb
->ki_pos
, ret
= 0, done
= 0;
1202 if (iov_iter_rw(iter
) == WRITE
) {
1203 lockdep_assert_held_write(&inode
->i_rwsem
);
1204 flags
|= IOMAP_WRITE
;
1206 lockdep_assert_held(&inode
->i_rwsem
);
1209 while (iov_iter_count(iter
)) {
1210 ret
= iomap_apply(inode
, pos
, iov_iter_count(iter
), flags
, ops
,
1211 iter
, dax_iomap_actor
);
1218 iocb
->ki_pos
+= done
;
1219 return done
? done
: ret
;
1221 EXPORT_SYMBOL_GPL(dax_iomap_rw
);
1223 static vm_fault_t
dax_fault_return(int error
)
1226 return VM_FAULT_NOPAGE
;
1227 return vmf_error(error
);
1231 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1232 * flushed on write-faults (non-cow), but not read-faults.
1234 static bool dax_fault_is_synchronous(unsigned long flags
,
1235 struct vm_area_struct
*vma
, struct iomap
*iomap
)
1237 return (flags
& IOMAP_WRITE
) && (vma
->vm_flags
& VM_SYNC
)
1238 && (iomap
->flags
& IOMAP_F_DIRTY
);
1241 static vm_fault_t
dax_iomap_pte_fault(struct vm_fault
*vmf
, pfn_t
*pfnp
,
1242 int *iomap_errp
, const struct iomap_ops
*ops
)
1244 struct vm_area_struct
*vma
= vmf
->vma
;
1245 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1246 XA_STATE(xas
, &mapping
->i_pages
, vmf
->pgoff
);
1247 struct inode
*inode
= mapping
->host
;
1248 unsigned long vaddr
= vmf
->address
;
1249 loff_t pos
= (loff_t
)vmf
->pgoff
<< PAGE_SHIFT
;
1250 struct iomap iomap
= { 0 };
1251 unsigned flags
= IOMAP_FAULT
;
1252 int error
, major
= 0;
1253 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1259 trace_dax_pte_fault(inode
, vmf
, ret
);
1261 * Check whether offset isn't beyond end of file now. Caller is supposed
1262 * to hold locks serializing us with truncate / punch hole so this is
1265 if (pos
>= i_size_read(inode
)) {
1266 ret
= VM_FAULT_SIGBUS
;
1270 if (write
&& !vmf
->cow_page
)
1271 flags
|= IOMAP_WRITE
;
1273 entry
= grab_mapping_entry(&xas
, mapping
, 0);
1274 if (xa_is_internal(entry
)) {
1275 ret
= xa_to_internal(entry
);
1280 * It is possible, particularly with mixed reads & writes to private
1281 * mappings, that we have raced with a PMD fault that overlaps with
1282 * the PTE we need to set up. If so just return and the fault will be
1285 if (pmd_trans_huge(*vmf
->pmd
) || pmd_devmap(*vmf
->pmd
)) {
1286 ret
= VM_FAULT_NOPAGE
;
1291 * Note that we don't bother to use iomap_apply here: DAX required
1292 * the file system block size to be equal the page size, which means
1293 * that we never have to deal with more than a single extent here.
1295 error
= ops
->iomap_begin(inode
, pos
, PAGE_SIZE
, flags
, &iomap
);
1297 *iomap_errp
= error
;
1299 ret
= dax_fault_return(error
);
1302 if (WARN_ON_ONCE(iomap
.offset
+ iomap
.length
< pos
+ PAGE_SIZE
)) {
1303 error
= -EIO
; /* fs corruption? */
1304 goto error_finish_iomap
;
1307 if (vmf
->cow_page
) {
1308 sector_t sector
= dax_iomap_sector(&iomap
, pos
);
1310 switch (iomap
.type
) {
1312 case IOMAP_UNWRITTEN
:
1313 clear_user_highpage(vmf
->cow_page
, vaddr
);
1316 error
= copy_user_dax(iomap
.bdev
, iomap
.dax_dev
,
1317 sector
, PAGE_SIZE
, vmf
->cow_page
, vaddr
);
1326 goto error_finish_iomap
;
1328 __SetPageUptodate(vmf
->cow_page
);
1329 ret
= finish_fault(vmf
);
1331 ret
= VM_FAULT_DONE_COW
;
1335 sync
= dax_fault_is_synchronous(flags
, vma
, &iomap
);
1337 switch (iomap
.type
) {
1339 if (iomap
.flags
& IOMAP_F_NEW
) {
1340 count_vm_event(PGMAJFAULT
);
1341 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
1342 major
= VM_FAULT_MAJOR
;
1344 error
= dax_iomap_pfn(&iomap
, pos
, PAGE_SIZE
, &pfn
);
1346 goto error_finish_iomap
;
1348 entry
= dax_insert_entry(&xas
, mapping
, vmf
, entry
, pfn
,
1352 * If we are doing synchronous page fault and inode needs fsync,
1353 * we can insert PTE into page tables only after that happens.
1354 * Skip insertion for now and return the pfn so that caller can
1355 * insert it after fsync is done.
1358 if (WARN_ON_ONCE(!pfnp
)) {
1360 goto error_finish_iomap
;
1363 ret
= VM_FAULT_NEEDDSYNC
| major
;
1366 trace_dax_insert_mapping(inode
, vmf
, entry
);
1368 ret
= vmf_insert_mixed_mkwrite(vma
, vaddr
, pfn
);
1370 ret
= vmf_insert_mixed(vma
, vaddr
, pfn
);
1373 case IOMAP_UNWRITTEN
:
1376 ret
= dax_load_hole(&xas
, mapping
, &entry
, vmf
);
1387 ret
= dax_fault_return(error
);
1389 if (ops
->iomap_end
) {
1390 int copied
= PAGE_SIZE
;
1392 if (ret
& VM_FAULT_ERROR
)
1395 * The fault is done by now and there's no way back (other
1396 * thread may be already happily using PTE we have installed).
1397 * Just ignore error from ->iomap_end since we cannot do much
1400 ops
->iomap_end(inode
, pos
, PAGE_SIZE
, copied
, flags
, &iomap
);
1403 dax_unlock_entry(&xas
, entry
);
1405 trace_dax_pte_fault_done(inode
, vmf
, ret
);
1409 #ifdef CONFIG_FS_DAX_PMD
1410 static vm_fault_t
dax_pmd_load_hole(struct xa_state
*xas
, struct vm_fault
*vmf
,
1411 struct iomap
*iomap
, void **entry
)
1413 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1414 unsigned long pmd_addr
= vmf
->address
& PMD_MASK
;
1415 struct vm_area_struct
*vma
= vmf
->vma
;
1416 struct inode
*inode
= mapping
->host
;
1417 pgtable_t pgtable
= NULL
;
1418 struct page
*zero_page
;
1423 zero_page
= mm_get_huge_zero_page(vmf
->vma
->vm_mm
);
1425 if (unlikely(!zero_page
))
1428 pfn
= page_to_pfn_t(zero_page
);
1429 *entry
= dax_insert_entry(xas
, mapping
, vmf
, *entry
, pfn
,
1430 DAX_PMD
| DAX_ZERO_PAGE
, false);
1432 if (arch_needs_pgtable_deposit()) {
1433 pgtable
= pte_alloc_one(vma
->vm_mm
);
1435 return VM_FAULT_OOM
;
1438 ptl
= pmd_lock(vmf
->vma
->vm_mm
, vmf
->pmd
);
1439 if (!pmd_none(*(vmf
->pmd
))) {
1445 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, pgtable
);
1446 mm_inc_nr_ptes(vma
->vm_mm
);
1448 pmd_entry
= mk_pmd(zero_page
, vmf
->vma
->vm_page_prot
);
1449 pmd_entry
= pmd_mkhuge(pmd_entry
);
1450 set_pmd_at(vmf
->vma
->vm_mm
, pmd_addr
, vmf
->pmd
, pmd_entry
);
1452 trace_dax_pmd_load_hole(inode
, vmf
, zero_page
, *entry
);
1453 return VM_FAULT_NOPAGE
;
1457 pte_free(vma
->vm_mm
, pgtable
);
1458 trace_dax_pmd_load_hole_fallback(inode
, vmf
, zero_page
, *entry
);
1459 return VM_FAULT_FALLBACK
;
1462 static vm_fault_t
dax_iomap_pmd_fault(struct vm_fault
*vmf
, pfn_t
*pfnp
,
1463 const struct iomap_ops
*ops
)
1465 struct vm_area_struct
*vma
= vmf
->vma
;
1466 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1467 XA_STATE_ORDER(xas
, &mapping
->i_pages
, vmf
->pgoff
, PMD_ORDER
);
1468 unsigned long pmd_addr
= vmf
->address
& PMD_MASK
;
1469 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1471 unsigned int iomap_flags
= (write
? IOMAP_WRITE
: 0) | IOMAP_FAULT
;
1472 struct inode
*inode
= mapping
->host
;
1473 vm_fault_t result
= VM_FAULT_FALLBACK
;
1474 struct iomap iomap
= { 0 };
1482 * Check whether offset isn't beyond end of file now. Caller is
1483 * supposed to hold locks serializing us with truncate / punch hole so
1484 * this is a reliable test.
1486 max_pgoff
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
1488 trace_dax_pmd_fault(inode
, vmf
, max_pgoff
, 0);
1491 * Make sure that the faulting address's PMD offset (color) matches
1492 * the PMD offset from the start of the file. This is necessary so
1493 * that a PMD range in the page table overlaps exactly with a PMD
1494 * range in the page cache.
1496 if ((vmf
->pgoff
& PG_PMD_COLOUR
) !=
1497 ((vmf
->address
>> PAGE_SHIFT
) & PG_PMD_COLOUR
))
1500 /* Fall back to PTEs if we're going to COW */
1501 if (write
&& !(vma
->vm_flags
& VM_SHARED
))
1504 /* If the PMD would extend outside the VMA */
1505 if (pmd_addr
< vma
->vm_start
)
1507 if ((pmd_addr
+ PMD_SIZE
) > vma
->vm_end
)
1510 if (xas
.xa_index
>= max_pgoff
) {
1511 result
= VM_FAULT_SIGBUS
;
1515 /* If the PMD would extend beyond the file size */
1516 if ((xas
.xa_index
| PG_PMD_COLOUR
) >= max_pgoff
)
1520 * grab_mapping_entry() will make sure we get an empty PMD entry,
1521 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1522 * entry is already in the array, for instance), it will return
1523 * VM_FAULT_FALLBACK.
1525 entry
= grab_mapping_entry(&xas
, mapping
, PMD_ORDER
);
1526 if (xa_is_internal(entry
)) {
1527 result
= xa_to_internal(entry
);
1532 * It is possible, particularly with mixed reads & writes to private
1533 * mappings, that we have raced with a PTE fault that overlaps with
1534 * the PMD we need to set up. If so just return and the fault will be
1537 if (!pmd_none(*vmf
->pmd
) && !pmd_trans_huge(*vmf
->pmd
) &&
1538 !pmd_devmap(*vmf
->pmd
)) {
1544 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1545 * setting up a mapping, so really we're using iomap_begin() as a way
1546 * to look up our filesystem block.
1548 pos
= (loff_t
)xas
.xa_index
<< PAGE_SHIFT
;
1549 error
= ops
->iomap_begin(inode
, pos
, PMD_SIZE
, iomap_flags
, &iomap
);
1553 if (iomap
.offset
+ iomap
.length
< pos
+ PMD_SIZE
)
1556 sync
= dax_fault_is_synchronous(iomap_flags
, vma
, &iomap
);
1558 switch (iomap
.type
) {
1560 error
= dax_iomap_pfn(&iomap
, pos
, PMD_SIZE
, &pfn
);
1564 entry
= dax_insert_entry(&xas
, mapping
, vmf
, entry
, pfn
,
1565 DAX_PMD
, write
&& !sync
);
1568 * If we are doing synchronous page fault and inode needs fsync,
1569 * we can insert PMD into page tables only after that happens.
1570 * Skip insertion for now and return the pfn so that caller can
1571 * insert it after fsync is done.
1574 if (WARN_ON_ONCE(!pfnp
))
1577 result
= VM_FAULT_NEEDDSYNC
;
1581 trace_dax_pmd_insert_mapping(inode
, vmf
, PMD_SIZE
, pfn
, entry
);
1582 result
= vmf_insert_pfn_pmd(vmf
, pfn
, write
);
1584 case IOMAP_UNWRITTEN
:
1586 if (WARN_ON_ONCE(write
))
1588 result
= dax_pmd_load_hole(&xas
, vmf
, &iomap
, &entry
);
1596 if (ops
->iomap_end
) {
1597 int copied
= PMD_SIZE
;
1599 if (result
== VM_FAULT_FALLBACK
)
1602 * The fault is done by now and there's no way back (other
1603 * thread may be already happily using PMD we have installed).
1604 * Just ignore error from ->iomap_end since we cannot do much
1607 ops
->iomap_end(inode
, pos
, PMD_SIZE
, copied
, iomap_flags
,
1611 dax_unlock_entry(&xas
, entry
);
1613 if (result
== VM_FAULT_FALLBACK
) {
1614 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1615 count_vm_event(THP_FAULT_FALLBACK
);
1618 trace_dax_pmd_fault_done(inode
, vmf
, max_pgoff
, result
);
1622 static vm_fault_t
dax_iomap_pmd_fault(struct vm_fault
*vmf
, pfn_t
*pfnp
,
1623 const struct iomap_ops
*ops
)
1625 return VM_FAULT_FALLBACK
;
1627 #endif /* CONFIG_FS_DAX_PMD */
1630 * dax_iomap_fault - handle a page fault on a DAX file
1631 * @vmf: The description of the fault
1632 * @pe_size: Size of the page to fault in
1633 * @pfnp: PFN to insert for synchronous faults if fsync is required
1634 * @iomap_errp: Storage for detailed error code in case of error
1635 * @ops: Iomap ops passed from the file system
1637 * When a page fault occurs, filesystems may call this helper in
1638 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1639 * has done all the necessary locking for page fault to proceed
1642 vm_fault_t
dax_iomap_fault(struct vm_fault
*vmf
, enum page_entry_size pe_size
,
1643 pfn_t
*pfnp
, int *iomap_errp
, const struct iomap_ops
*ops
)
1647 return dax_iomap_pte_fault(vmf
, pfnp
, iomap_errp
, ops
);
1649 return dax_iomap_pmd_fault(vmf
, pfnp
, ops
);
1651 return VM_FAULT_FALLBACK
;
1654 EXPORT_SYMBOL_GPL(dax_iomap_fault
);
1657 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1658 * @vmf: The description of the fault
1659 * @pfn: PFN to insert
1660 * @order: Order of entry to insert.
1662 * This function inserts a writeable PTE or PMD entry into the page tables
1663 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1666 dax_insert_pfn_mkwrite(struct vm_fault
*vmf
, pfn_t pfn
, unsigned int order
)
1668 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1669 XA_STATE_ORDER(xas
, &mapping
->i_pages
, vmf
->pgoff
, order
);
1674 entry
= get_unlocked_entry(&xas
, order
);
1675 /* Did we race with someone splitting entry or so? */
1676 if (!entry
|| dax_is_conflict(entry
) ||
1677 (order
== 0 && !dax_is_pte_entry(entry
))) {
1678 put_unlocked_entry(&xas
, entry
);
1679 xas_unlock_irq(&xas
);
1680 trace_dax_insert_pfn_mkwrite_no_entry(mapping
->host
, vmf
,
1682 return VM_FAULT_NOPAGE
;
1684 xas_set_mark(&xas
, PAGECACHE_TAG_DIRTY
);
1685 dax_lock_entry(&xas
, entry
);
1686 xas_unlock_irq(&xas
);
1688 ret
= vmf_insert_mixed_mkwrite(vmf
->vma
, vmf
->address
, pfn
);
1689 #ifdef CONFIG_FS_DAX_PMD
1690 else if (order
== PMD_ORDER
)
1691 ret
= vmf_insert_pfn_pmd(vmf
, pfn
, FAULT_FLAG_WRITE
);
1694 ret
= VM_FAULT_FALLBACK
;
1695 dax_unlock_entry(&xas
, entry
);
1696 trace_dax_insert_pfn_mkwrite(mapping
->host
, vmf
, ret
);
1701 * dax_finish_sync_fault - finish synchronous page fault
1702 * @vmf: The description of the fault
1703 * @pe_size: Size of entry to be inserted
1704 * @pfn: PFN to insert
1706 * This function ensures that the file range touched by the page fault is
1707 * stored persistently on the media and handles inserting of appropriate page
1710 vm_fault_t
dax_finish_sync_fault(struct vm_fault
*vmf
,
1711 enum page_entry_size pe_size
, pfn_t pfn
)
1714 loff_t start
= ((loff_t
)vmf
->pgoff
) << PAGE_SHIFT
;
1715 unsigned int order
= pe_order(pe_size
);
1716 size_t len
= PAGE_SIZE
<< order
;
1718 err
= vfs_fsync_range(vmf
->vma
->vm_file
, start
, start
+ len
- 1, 1);
1720 return VM_FAULT_SIGBUS
;
1721 return dax_insert_pfn_mkwrite(vmf
, pfn
, order
);
1723 EXPORT_SYMBOL_GPL(dax_finish_sync_fault
);