6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
37 #include <asm/mmu_context.h>
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags) (0)
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len) (addr)
49 static void unmap_region(struct mm_struct
*mm
,
50 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
51 unsigned long start
, unsigned long end
);
54 * WARNING: the debugging will use recursive algorithms so never enable this
55 * unless you know what you are doing.
59 /* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
74 pgprot_t protection_map
[16] = {
75 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
76 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
79 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
81 return __pgprot(pgprot_val(protection_map
[vm_flags
&
82 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
85 EXPORT_SYMBOL(vm_get_page_prot
);
87 int sysctl_overcommit_memory __read_mostly
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly
= 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
91 * Make sure vm_committed_as in one cacheline and not cacheline shared with
92 * other variables. It can be updated by several CPUs frequently.
94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp
;
97 * Check that a process has enough memory to allocate a new virtual
98 * mapping. 0 means there is enough memory for the allocation to
99 * succeed and -ENOMEM implies there is not.
101 * We currently support three overcommit policies, which are set via the
102 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
104 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105 * Additional code 2002 Jul 20 by Robert Love.
107 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109 * Note this is a helper function intended to be used by LSMs which
110 * wish to use this logic.
112 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
114 unsigned long free
, allowed
;
116 vm_acct_memory(pages
);
119 * Sometimes we want to use more memory than we have
121 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
124 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
125 free
= global_page_state(NR_FREE_PAGES
);
126 free
+= global_page_state(NR_FILE_PAGES
);
129 * shmem pages shouldn't be counted as free in this
130 * case, they can't be purged, only swapped out, and
131 * that won't affect the overall amount of available
132 * memory in the system.
134 free
-= global_page_state(NR_SHMEM
);
136 free
+= nr_swap_pages
;
139 * Any slabs which are created with the
140 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
141 * which are reclaimable, under pressure. The dentry
142 * cache and most inode caches should fall into this
144 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
147 * Leave reserved pages. The pages are not for anonymous pages.
149 if (free
<= totalreserve_pages
)
152 free
-= totalreserve_pages
;
155 * Leave the last 3% for root
166 allowed
= (totalram_pages
- hugetlb_total_pages())
167 * sysctl_overcommit_ratio
/ 100;
169 * Leave the last 3% for root
172 allowed
-= allowed
/ 32;
173 allowed
+= total_swap_pages
;
175 /* Don't let a single process grow too big:
176 leave 3% of the size of this process for other processes */
178 allowed
-= mm
->total_vm
/ 32;
180 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
183 vm_unacct_memory(pages
);
189 * Requires inode->i_mapping->i_mmap_mutex
191 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
192 struct file
*file
, struct address_space
*mapping
)
194 if (vma
->vm_flags
& VM_DENYWRITE
)
195 atomic_inc(&file
->f_path
.dentry
->d_inode
->i_writecount
);
196 if (vma
->vm_flags
& VM_SHARED
)
197 mapping
->i_mmap_writable
--;
199 flush_dcache_mmap_lock(mapping
);
200 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
201 list_del_init(&vma
->shared
.vm_set
.list
);
203 vma_prio_tree_remove(vma
, &mapping
->i_mmap
);
204 flush_dcache_mmap_unlock(mapping
);
208 * Unlink a file-based vm structure from its prio_tree, to hide
209 * vma from rmap and vmtruncate before freeing its page tables.
211 void unlink_file_vma(struct vm_area_struct
*vma
)
213 struct file
*file
= vma
->vm_file
;
216 struct address_space
*mapping
= file
->f_mapping
;
217 mutex_lock(&mapping
->i_mmap_mutex
);
218 __remove_shared_vm_struct(vma
, file
, mapping
);
219 mutex_unlock(&mapping
->i_mmap_mutex
);
224 * Close a vm structure and free it, returning the next.
226 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
228 struct vm_area_struct
*next
= vma
->vm_next
;
231 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
232 vma
->vm_ops
->close(vma
);
235 if (vma
->vm_flags
& VM_EXECUTABLE
)
236 removed_exe_file_vma(vma
->vm_mm
);
238 mpol_put(vma_policy(vma
));
239 kmem_cache_free(vm_area_cachep
, vma
);
243 static unsigned long do_brk(unsigned long addr
, unsigned long len
);
245 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
247 unsigned long rlim
, retval
;
248 unsigned long newbrk
, oldbrk
;
249 struct mm_struct
*mm
= current
->mm
;
250 unsigned long min_brk
;
252 down_write(&mm
->mmap_sem
);
254 #ifdef CONFIG_COMPAT_BRK
256 * CONFIG_COMPAT_BRK can still be overridden by setting
257 * randomize_va_space to 2, which will still cause mm->start_brk
258 * to be arbitrarily shifted
260 if (current
->brk_randomized
)
261 min_brk
= mm
->start_brk
;
263 min_brk
= mm
->end_data
;
265 min_brk
= mm
->start_brk
;
271 * Check against rlimit here. If this check is done later after the test
272 * of oldbrk with newbrk then it can escape the test and let the data
273 * segment grow beyond its set limit the in case where the limit is
274 * not page aligned -Ram Gupta
276 rlim
= rlimit(RLIMIT_DATA
);
277 if (rlim
< RLIM_INFINITY
&& (brk
- mm
->start_brk
) +
278 (mm
->end_data
- mm
->start_data
) > rlim
)
281 newbrk
= PAGE_ALIGN(brk
);
282 oldbrk
= PAGE_ALIGN(mm
->brk
);
283 if (oldbrk
== newbrk
)
286 /* Always allow shrinking brk. */
287 if (brk
<= mm
->brk
) {
288 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
293 /* Check against existing mmap mappings. */
294 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
297 /* Ok, looks good - let it rip. */
298 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
304 up_write(&mm
->mmap_sem
);
309 static int browse_rb(struct rb_root
*root
)
312 struct rb_node
*nd
, *pn
= NULL
;
313 unsigned long prev
= 0, pend
= 0;
315 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
316 struct vm_area_struct
*vma
;
317 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
318 if (vma
->vm_start
< prev
)
319 printk("vm_start %lx prev %lx\n", vma
->vm_start
, prev
), i
= -1;
320 if (vma
->vm_start
< pend
)
321 printk("vm_start %lx pend %lx\n", vma
->vm_start
, pend
);
322 if (vma
->vm_start
> vma
->vm_end
)
323 printk("vm_end %lx < vm_start %lx\n", vma
->vm_end
, vma
->vm_start
);
326 prev
= vma
->vm_start
;
330 for (nd
= pn
; nd
; nd
= rb_prev(nd
)) {
334 printk("backwards %d, forwards %d\n", j
, i
), i
= 0;
338 void validate_mm(struct mm_struct
*mm
)
342 struct vm_area_struct
*tmp
= mm
->mmap
;
347 if (i
!= mm
->map_count
)
348 printk("map_count %d vm_next %d\n", mm
->map_count
, i
), bug
= 1;
349 i
= browse_rb(&mm
->mm_rb
);
350 if (i
!= mm
->map_count
)
351 printk("map_count %d rb %d\n", mm
->map_count
, i
), bug
= 1;
355 #define validate_mm(mm) do { } while (0)
358 static struct vm_area_struct
*
359 find_vma_prepare(struct mm_struct
*mm
, unsigned long addr
,
360 struct vm_area_struct
**pprev
, struct rb_node
***rb_link
,
361 struct rb_node
** rb_parent
)
363 struct vm_area_struct
* vma
;
364 struct rb_node
** __rb_link
, * __rb_parent
, * rb_prev
;
366 __rb_link
= &mm
->mm_rb
.rb_node
;
367 rb_prev
= __rb_parent
= NULL
;
371 struct vm_area_struct
*vma_tmp
;
373 __rb_parent
= *__rb_link
;
374 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
376 if (vma_tmp
->vm_end
> addr
) {
378 if (vma_tmp
->vm_start
<= addr
)
380 __rb_link
= &__rb_parent
->rb_left
;
382 rb_prev
= __rb_parent
;
383 __rb_link
= &__rb_parent
->rb_right
;
389 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
390 *rb_link
= __rb_link
;
391 *rb_parent
= __rb_parent
;
395 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
396 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
398 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
399 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
402 static void __vma_link_file(struct vm_area_struct
*vma
)
408 struct address_space
*mapping
= file
->f_mapping
;
410 if (vma
->vm_flags
& VM_DENYWRITE
)
411 atomic_dec(&file
->f_path
.dentry
->d_inode
->i_writecount
);
412 if (vma
->vm_flags
& VM_SHARED
)
413 mapping
->i_mmap_writable
++;
415 flush_dcache_mmap_lock(mapping
);
416 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
417 vma_nonlinear_insert(vma
, &mapping
->i_mmap_nonlinear
);
419 vma_prio_tree_insert(vma
, &mapping
->i_mmap
);
420 flush_dcache_mmap_unlock(mapping
);
425 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
426 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
427 struct rb_node
*rb_parent
)
429 __vma_link_list(mm
, vma
, prev
, rb_parent
);
430 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
433 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
434 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
435 struct rb_node
*rb_parent
)
437 struct address_space
*mapping
= NULL
;
440 mapping
= vma
->vm_file
->f_mapping
;
443 mutex_lock(&mapping
->i_mmap_mutex
);
445 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
446 __vma_link_file(vma
);
449 mutex_unlock(&mapping
->i_mmap_mutex
);
456 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
457 * mm's list and rbtree. It has already been inserted into the prio_tree.
459 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
461 struct vm_area_struct
*__vma
, *prev
;
462 struct rb_node
**rb_link
, *rb_parent
;
464 __vma
= find_vma_prepare(mm
, vma
->vm_start
,&prev
, &rb_link
, &rb_parent
);
465 BUG_ON(__vma
&& __vma
->vm_start
< vma
->vm_end
);
466 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
471 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
472 struct vm_area_struct
*prev
)
474 struct vm_area_struct
*next
= vma
->vm_next
;
476 prev
->vm_next
= next
;
478 next
->vm_prev
= prev
;
479 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
480 if (mm
->mmap_cache
== vma
)
481 mm
->mmap_cache
= prev
;
485 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
486 * is already present in an i_mmap tree without adjusting the tree.
487 * The following helper function should be used when such adjustments
488 * are necessary. The "insert" vma (if any) is to be inserted
489 * before we drop the necessary locks.
491 int vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
492 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
494 struct mm_struct
*mm
= vma
->vm_mm
;
495 struct vm_area_struct
*next
= vma
->vm_next
;
496 struct vm_area_struct
*importer
= NULL
;
497 struct address_space
*mapping
= NULL
;
498 struct prio_tree_root
*root
= NULL
;
499 struct anon_vma
*anon_vma
= NULL
;
500 struct file
*file
= vma
->vm_file
;
501 long adjust_next
= 0;
504 if (next
&& !insert
) {
505 struct vm_area_struct
*exporter
= NULL
;
507 if (end
>= next
->vm_end
) {
509 * vma expands, overlapping all the next, and
510 * perhaps the one after too (mprotect case 6).
512 again
: remove_next
= 1 + (end
> next
->vm_end
);
516 } else if (end
> next
->vm_start
) {
518 * vma expands, overlapping part of the next:
519 * mprotect case 5 shifting the boundary up.
521 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
524 } else if (end
< vma
->vm_end
) {
526 * vma shrinks, and !insert tells it's not
527 * split_vma inserting another: so it must be
528 * mprotect case 4 shifting the boundary down.
530 adjust_next
= - ((vma
->vm_end
- end
) >> PAGE_SHIFT
);
536 * Easily overlooked: when mprotect shifts the boundary,
537 * make sure the expanding vma has anon_vma set if the
538 * shrinking vma had, to cover any anon pages imported.
540 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
541 if (anon_vma_clone(importer
, exporter
))
543 importer
->anon_vma
= exporter
->anon_vma
;
548 mapping
= file
->f_mapping
;
549 if (!(vma
->vm_flags
& VM_NONLINEAR
))
550 root
= &mapping
->i_mmap
;
551 mutex_lock(&mapping
->i_mmap_mutex
);
554 * Put into prio_tree now, so instantiated pages
555 * are visible to arm/parisc __flush_dcache_page
556 * throughout; but we cannot insert into address
557 * space until vma start or end is updated.
559 __vma_link_file(insert
);
563 vma_adjust_trans_huge(vma
, start
, end
, adjust_next
);
566 * When changing only vma->vm_end, we don't really need anon_vma
567 * lock. This is a fairly rare case by itself, but the anon_vma
568 * lock may be shared between many sibling processes. Skipping
569 * the lock for brk adjustments makes a difference sometimes.
571 if (vma
->anon_vma
&& (importer
|| start
!= vma
->vm_start
)) {
572 anon_vma
= vma
->anon_vma
;
573 anon_vma_lock(anon_vma
);
577 flush_dcache_mmap_lock(mapping
);
578 vma_prio_tree_remove(vma
, root
);
580 vma_prio_tree_remove(next
, root
);
583 vma
->vm_start
= start
;
585 vma
->vm_pgoff
= pgoff
;
587 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
588 next
->vm_pgoff
+= adjust_next
;
593 vma_prio_tree_insert(next
, root
);
594 vma_prio_tree_insert(vma
, root
);
595 flush_dcache_mmap_unlock(mapping
);
600 * vma_merge has merged next into vma, and needs
601 * us to remove next before dropping the locks.
603 __vma_unlink(mm
, next
, vma
);
605 __remove_shared_vm_struct(next
, file
, mapping
);
608 * split_vma has split insert from vma, and needs
609 * us to insert it before dropping the locks
610 * (it may either follow vma or precede it).
612 __insert_vm_struct(mm
, insert
);
616 anon_vma_unlock(anon_vma
);
618 mutex_unlock(&mapping
->i_mmap_mutex
);
623 if (next
->vm_flags
& VM_EXECUTABLE
)
624 removed_exe_file_vma(mm
);
627 anon_vma_merge(vma
, next
);
629 mpol_put(vma_policy(next
));
630 kmem_cache_free(vm_area_cachep
, next
);
632 * In mprotect's case 6 (see comments on vma_merge),
633 * we must remove another next too. It would clutter
634 * up the code too much to do both in one go.
636 if (remove_next
== 2) {
648 * If the vma has a ->close operation then the driver probably needs to release
649 * per-vma resources, so we don't attempt to merge those.
651 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
652 struct file
*file
, unsigned long vm_flags
)
654 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
655 if ((vma
->vm_flags
^ vm_flags
) & ~VM_CAN_NONLINEAR
)
657 if (vma
->vm_file
!= file
)
659 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
664 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
665 struct anon_vma
*anon_vma2
,
666 struct vm_area_struct
*vma
)
669 * The list_is_singular() test is to avoid merging VMA cloned from
670 * parents. This can improve scalability caused by anon_vma lock.
672 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
673 list_is_singular(&vma
->anon_vma_chain
)))
675 return anon_vma1
== anon_vma2
;
679 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
680 * in front of (at a lower virtual address and file offset than) the vma.
682 * We cannot merge two vmas if they have differently assigned (non-NULL)
683 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
685 * We don't check here for the merged mmap wrapping around the end of pagecache
686 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
687 * wrap, nor mmaps which cover the final page at index -1UL.
690 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
691 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
693 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
694 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
695 if (vma
->vm_pgoff
== vm_pgoff
)
702 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
703 * beyond (at a higher virtual address and file offset than) the vma.
705 * We cannot merge two vmas if they have differently assigned (non-NULL)
706 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
709 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
710 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
712 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
713 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
715 vm_pglen
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
716 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
723 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
724 * whether that can be merged with its predecessor or its successor.
725 * Or both (it neatly fills a hole).
727 * In most cases - when called for mmap, brk or mremap - [addr,end) is
728 * certain not to be mapped by the time vma_merge is called; but when
729 * called for mprotect, it is certain to be already mapped (either at
730 * an offset within prev, or at the start of next), and the flags of
731 * this area are about to be changed to vm_flags - and the no-change
732 * case has already been eliminated.
734 * The following mprotect cases have to be considered, where AAAA is
735 * the area passed down from mprotect_fixup, never extending beyond one
736 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
738 * AAAA AAAA AAAA AAAA
739 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
740 * cannot merge might become might become might become
741 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
742 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
743 * mremap move: PPPPNNNNNNNN 8
745 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
746 * might become case 1 below case 2 below case 3 below
748 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
749 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
751 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
752 struct vm_area_struct
*prev
, unsigned long addr
,
753 unsigned long end
, unsigned long vm_flags
,
754 struct anon_vma
*anon_vma
, struct file
*file
,
755 pgoff_t pgoff
, struct mempolicy
*policy
)
757 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
758 struct vm_area_struct
*area
, *next
;
762 * We later require that vma->vm_flags == vm_flags,
763 * so this tests vma->vm_flags & VM_SPECIAL, too.
765 if (vm_flags
& VM_SPECIAL
)
769 next
= prev
->vm_next
;
773 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
774 next
= next
->vm_next
;
777 * Can it merge with the predecessor?
779 if (prev
&& prev
->vm_end
== addr
&&
780 mpol_equal(vma_policy(prev
), policy
) &&
781 can_vma_merge_after(prev
, vm_flags
,
782 anon_vma
, file
, pgoff
)) {
784 * OK, it can. Can we now merge in the successor as well?
786 if (next
&& end
== next
->vm_start
&&
787 mpol_equal(policy
, vma_policy(next
)) &&
788 can_vma_merge_before(next
, vm_flags
,
789 anon_vma
, file
, pgoff
+pglen
) &&
790 is_mergeable_anon_vma(prev
->anon_vma
,
791 next
->anon_vma
, NULL
)) {
793 err
= vma_adjust(prev
, prev
->vm_start
,
794 next
->vm_end
, prev
->vm_pgoff
, NULL
);
795 } else /* cases 2, 5, 7 */
796 err
= vma_adjust(prev
, prev
->vm_start
,
797 end
, prev
->vm_pgoff
, NULL
);
800 khugepaged_enter_vma_merge(prev
);
805 * Can this new request be merged in front of next?
807 if (next
&& end
== next
->vm_start
&&
808 mpol_equal(policy
, vma_policy(next
)) &&
809 can_vma_merge_before(next
, vm_flags
,
810 anon_vma
, file
, pgoff
+pglen
)) {
811 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
812 err
= vma_adjust(prev
, prev
->vm_start
,
813 addr
, prev
->vm_pgoff
, NULL
);
814 else /* cases 3, 8 */
815 err
= vma_adjust(area
, addr
, next
->vm_end
,
816 next
->vm_pgoff
- pglen
, NULL
);
819 khugepaged_enter_vma_merge(area
);
827 * Rough compatbility check to quickly see if it's even worth looking
828 * at sharing an anon_vma.
830 * They need to have the same vm_file, and the flags can only differ
831 * in things that mprotect may change.
833 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
834 * we can merge the two vma's. For example, we refuse to merge a vma if
835 * there is a vm_ops->close() function, because that indicates that the
836 * driver is doing some kind of reference counting. But that doesn't
837 * really matter for the anon_vma sharing case.
839 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
841 return a
->vm_end
== b
->vm_start
&&
842 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
843 a
->vm_file
== b
->vm_file
&&
844 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
)) &&
845 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
849 * Do some basic sanity checking to see if we can re-use the anon_vma
850 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
851 * the same as 'old', the other will be the new one that is trying
852 * to share the anon_vma.
854 * NOTE! This runs with mm_sem held for reading, so it is possible that
855 * the anon_vma of 'old' is concurrently in the process of being set up
856 * by another page fault trying to merge _that_. But that's ok: if it
857 * is being set up, that automatically means that it will be a singleton
858 * acceptable for merging, so we can do all of this optimistically. But
859 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
861 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
862 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
863 * is to return an anon_vma that is "complex" due to having gone through
866 * We also make sure that the two vma's are compatible (adjacent,
867 * and with the same memory policies). That's all stable, even with just
868 * a read lock on the mm_sem.
870 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
872 if (anon_vma_compatible(a
, b
)) {
873 struct anon_vma
*anon_vma
= ACCESS_ONCE(old
->anon_vma
);
875 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
882 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
883 * neighbouring vmas for a suitable anon_vma, before it goes off
884 * to allocate a new anon_vma. It checks because a repetitive
885 * sequence of mprotects and faults may otherwise lead to distinct
886 * anon_vmas being allocated, preventing vma merge in subsequent
889 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
891 struct anon_vma
*anon_vma
;
892 struct vm_area_struct
*near
;
898 anon_vma
= reusable_anon_vma(near
, vma
, near
);
906 anon_vma
= reusable_anon_vma(near
, near
, vma
);
911 * There's no absolute need to look only at touching neighbours:
912 * we could search further afield for "compatible" anon_vmas.
913 * But it would probably just be a waste of time searching,
914 * or lead to too many vmas hanging off the same anon_vma.
915 * We're trying to allow mprotect remerging later on,
916 * not trying to minimize memory used for anon_vmas.
921 #ifdef CONFIG_PROC_FS
922 void vm_stat_account(struct mm_struct
*mm
, unsigned long flags
,
923 struct file
*file
, long pages
)
925 const unsigned long stack_flags
926 = VM_STACK_FLAGS
& (VM_GROWSUP
|VM_GROWSDOWN
);
929 mm
->shared_vm
+= pages
;
930 if ((flags
& (VM_EXEC
|VM_WRITE
)) == VM_EXEC
)
931 mm
->exec_vm
+= pages
;
932 } else if (flags
& stack_flags
)
933 mm
->stack_vm
+= pages
;
934 if (flags
& (VM_RESERVED
|VM_IO
))
935 mm
->reserved_vm
+= pages
;
937 #endif /* CONFIG_PROC_FS */
940 * If a hint addr is less than mmap_min_addr change hint to be as
941 * low as possible but still greater than mmap_min_addr
943 static inline unsigned long round_hint_to_min(unsigned long hint
)
946 if (((void *)hint
!= NULL
) &&
947 (hint
< mmap_min_addr
))
948 return PAGE_ALIGN(mmap_min_addr
);
953 * The caller must hold down_write(¤t->mm->mmap_sem).
956 static unsigned long do_mmap_pgoff(struct file
*file
, unsigned long addr
,
957 unsigned long len
, unsigned long prot
,
958 unsigned long flags
, unsigned long pgoff
)
960 struct mm_struct
* mm
= current
->mm
;
964 unsigned long reqprot
= prot
;
967 * Does the application expect PROT_READ to imply PROT_EXEC?
969 * (the exception is when the underlying filesystem is noexec
970 * mounted, in which case we dont add PROT_EXEC.)
972 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
973 if (!(file
&& (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)))
979 if (!(flags
& MAP_FIXED
))
980 addr
= round_hint_to_min(addr
);
982 /* Careful about overflows.. */
983 len
= PAGE_ALIGN(len
);
987 /* offset overflow? */
988 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
991 /* Too many mappings? */
992 if (mm
->map_count
> sysctl_max_map_count
)
995 /* Obtain the address to map to. we verify (or select) it and ensure
996 * that it represents a valid section of the address space.
998 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
999 if (addr
& ~PAGE_MASK
)
1002 /* Do simple checking here so the lower-level routines won't have
1003 * to. we assume access permissions have been handled by the open
1004 * of the memory object, so we don't do any here.
1006 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
1007 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1009 if (flags
& MAP_LOCKED
)
1010 if (!can_do_mlock())
1013 /* mlock MCL_FUTURE? */
1014 if (vm_flags
& VM_LOCKED
) {
1015 unsigned long locked
, lock_limit
;
1016 locked
= len
>> PAGE_SHIFT
;
1017 locked
+= mm
->locked_vm
;
1018 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1019 lock_limit
>>= PAGE_SHIFT
;
1020 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1024 inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
1027 switch (flags
& MAP_TYPE
) {
1029 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1033 * Make sure we don't allow writing to an append-only
1036 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1040 * Make sure there are no mandatory locks on the file.
1042 if (locks_verify_locked(inode
))
1045 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1046 if (!(file
->f_mode
& FMODE_WRITE
))
1047 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1051 if (!(file
->f_mode
& FMODE_READ
))
1053 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1054 if (vm_flags
& VM_EXEC
)
1056 vm_flags
&= ~VM_MAYEXEC
;
1059 if (!file
->f_op
|| !file
->f_op
->mmap
)
1067 switch (flags
& MAP_TYPE
) {
1073 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1077 * Set pgoff according to addr for anon_vma.
1079 pgoff
= addr
>> PAGE_SHIFT
;
1086 error
= security_file_mmap(file
, reqprot
, prot
, flags
, addr
, 0);
1090 return mmap_region(file
, addr
, len
, flags
, vm_flags
, pgoff
);
1093 unsigned long do_mmap(struct file
*file
, unsigned long addr
,
1094 unsigned long len
, unsigned long prot
,
1095 unsigned long flag
, unsigned long offset
)
1097 if (unlikely(offset
+ PAGE_ALIGN(len
) < offset
))
1099 if (unlikely(offset
& ~PAGE_MASK
))
1101 return do_mmap_pgoff(file
, addr
, len
, prot
, flag
, offset
>> PAGE_SHIFT
);
1103 EXPORT_SYMBOL(do_mmap
);
1105 unsigned long vm_mmap(struct file
*file
, unsigned long addr
,
1106 unsigned long len
, unsigned long prot
,
1107 unsigned long flag
, unsigned long offset
)
1110 struct mm_struct
*mm
= current
->mm
;
1112 down_write(&mm
->mmap_sem
);
1113 ret
= do_mmap(file
, addr
, len
, prot
, flag
, offset
);
1114 up_write(&mm
->mmap_sem
);
1117 EXPORT_SYMBOL(vm_mmap
);
1119 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1120 unsigned long, prot
, unsigned long, flags
,
1121 unsigned long, fd
, unsigned long, pgoff
)
1123 struct file
*file
= NULL
;
1124 unsigned long retval
= -EBADF
;
1126 if (!(flags
& MAP_ANONYMOUS
)) {
1127 audit_mmap_fd(fd
, flags
);
1128 if (unlikely(flags
& MAP_HUGETLB
))
1133 } else if (flags
& MAP_HUGETLB
) {
1134 struct user_struct
*user
= NULL
;
1136 * VM_NORESERVE is used because the reservations will be
1137 * taken when vm_ops->mmap() is called
1138 * A dummy user value is used because we are not locking
1139 * memory so no accounting is necessary
1141 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, addr
, len
,
1142 VM_NORESERVE
, &user
,
1143 HUGETLB_ANONHUGE_INODE
);
1145 return PTR_ERR(file
);
1148 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1150 down_write(¤t
->mm
->mmap_sem
);
1151 retval
= do_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1152 up_write(¤t
->mm
->mmap_sem
);
1160 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1161 struct mmap_arg_struct
{
1165 unsigned long flags
;
1167 unsigned long offset
;
1170 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1172 struct mmap_arg_struct a
;
1174 if (copy_from_user(&a
, arg
, sizeof(a
)))
1176 if (a
.offset
& ~PAGE_MASK
)
1179 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1180 a
.offset
>> PAGE_SHIFT
);
1182 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1185 * Some shared mappigns will want the pages marked read-only
1186 * to track write events. If so, we'll downgrade vm_page_prot
1187 * to the private version (using protection_map[] without the
1190 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1192 vm_flags_t vm_flags
= vma
->vm_flags
;
1194 /* If it was private or non-writable, the write bit is already clear */
1195 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1198 /* The backer wishes to know when pages are first written to? */
1199 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
)
1202 /* The open routine did something to the protections already? */
1203 if (pgprot_val(vma
->vm_page_prot
) !=
1204 pgprot_val(vm_get_page_prot(vm_flags
)))
1207 /* Specialty mapping? */
1208 if (vm_flags
& (VM_PFNMAP
|VM_INSERTPAGE
))
1211 /* Can the mapping track the dirty pages? */
1212 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1213 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1217 * We account for memory if it's a private writeable mapping,
1218 * not hugepages and VM_NORESERVE wasn't set.
1220 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1223 * hugetlb has its own accounting separate from the core VM
1224 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1226 if (file
&& is_file_hugepages(file
))
1229 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1232 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1233 unsigned long len
, unsigned long flags
,
1234 vm_flags_t vm_flags
, unsigned long pgoff
)
1236 struct mm_struct
*mm
= current
->mm
;
1237 struct vm_area_struct
*vma
, *prev
;
1238 int correct_wcount
= 0;
1240 struct rb_node
**rb_link
, *rb_parent
;
1241 unsigned long charged
= 0;
1242 struct inode
*inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
1244 /* Clear old maps */
1247 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
1248 if (vma
&& vma
->vm_start
< addr
+ len
) {
1249 if (do_munmap(mm
, addr
, len
))
1254 /* Check against address space limit. */
1255 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
1259 * Set 'VM_NORESERVE' if we should not account for the
1260 * memory use of this mapping.
1262 if ((flags
& MAP_NORESERVE
)) {
1263 /* We honor MAP_NORESERVE if allowed to overcommit */
1264 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1265 vm_flags
|= VM_NORESERVE
;
1267 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1268 if (file
&& is_file_hugepages(file
))
1269 vm_flags
|= VM_NORESERVE
;
1273 * Private writable mapping: check memory availability
1275 if (accountable_mapping(file
, vm_flags
)) {
1276 charged
= len
>> PAGE_SHIFT
;
1277 if (security_vm_enough_memory_mm(mm
, charged
))
1279 vm_flags
|= VM_ACCOUNT
;
1283 * Can we just expand an old mapping?
1285 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
, NULL
, file
, pgoff
, NULL
);
1290 * Determine the object being mapped and call the appropriate
1291 * specific mapper. the address has already been validated, but
1292 * not unmapped, but the maps are removed from the list.
1294 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1301 vma
->vm_start
= addr
;
1302 vma
->vm_end
= addr
+ len
;
1303 vma
->vm_flags
= vm_flags
;
1304 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1305 vma
->vm_pgoff
= pgoff
;
1306 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1308 error
= -EINVAL
; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1311 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1313 if (vm_flags
& VM_DENYWRITE
) {
1314 error
= deny_write_access(file
);
1319 vma
->vm_file
= file
;
1321 error
= file
->f_op
->mmap(file
, vma
);
1323 goto unmap_and_free_vma
;
1324 if (vm_flags
& VM_EXECUTABLE
)
1325 added_exe_file_vma(mm
);
1327 /* Can addr have changed??
1329 * Answer: Yes, several device drivers can do it in their
1330 * f_op->mmap method. -DaveM
1332 addr
= vma
->vm_start
;
1333 pgoff
= vma
->vm_pgoff
;
1334 vm_flags
= vma
->vm_flags
;
1335 } else if (vm_flags
& VM_SHARED
) {
1336 if (unlikely(vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
)))
1338 error
= shmem_zero_setup(vma
);
1343 if (vma_wants_writenotify(vma
)) {
1344 pgprot_t pprot
= vma
->vm_page_prot
;
1346 /* Can vma->vm_page_prot have changed??
1348 * Answer: Yes, drivers may have changed it in their
1349 * f_op->mmap method.
1351 * Ensures that vmas marked as uncached stay that way.
1353 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
& ~VM_SHARED
);
1354 if (pgprot_val(pprot
) == pgprot_val(pgprot_noncached(pprot
)))
1355 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1358 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1359 file
= vma
->vm_file
;
1361 /* Once vma denies write, undo our temporary denial count */
1363 atomic_inc(&inode
->i_writecount
);
1365 perf_event_mmap(vma
);
1367 mm
->total_vm
+= len
>> PAGE_SHIFT
;
1368 vm_stat_account(mm
, vm_flags
, file
, len
>> PAGE_SHIFT
);
1369 if (vm_flags
& VM_LOCKED
) {
1370 if (!mlock_vma_pages_range(vma
, addr
, addr
+ len
))
1371 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1372 } else if ((flags
& MAP_POPULATE
) && !(flags
& MAP_NONBLOCK
))
1373 make_pages_present(addr
, addr
+ len
);
1378 atomic_inc(&inode
->i_writecount
);
1379 vma
->vm_file
= NULL
;
1382 /* Undo any partial mapping done by a device driver. */
1383 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1386 kmem_cache_free(vm_area_cachep
, vma
);
1389 vm_unacct_memory(charged
);
1393 /* Get an address range which is currently unmapped.
1394 * For shmat() with addr=0.
1396 * Ugly calling convention alert:
1397 * Return value with the low bits set means error value,
1399 * if (ret & ~PAGE_MASK)
1402 * This function "knows" that -ENOMEM has the bits set.
1404 #ifndef HAVE_ARCH_UNMAPPED_AREA
1406 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1407 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1409 struct mm_struct
*mm
= current
->mm
;
1410 struct vm_area_struct
*vma
;
1411 unsigned long start_addr
;
1413 if (len
> TASK_SIZE
)
1416 if (flags
& MAP_FIXED
)
1420 addr
= PAGE_ALIGN(addr
);
1421 vma
= find_vma(mm
, addr
);
1422 if (TASK_SIZE
- len
>= addr
&&
1423 (!vma
|| addr
+ len
<= vma
->vm_start
))
1426 if (len
> mm
->cached_hole_size
) {
1427 start_addr
= addr
= mm
->free_area_cache
;
1429 start_addr
= addr
= TASK_UNMAPPED_BASE
;
1430 mm
->cached_hole_size
= 0;
1434 for (vma
= find_vma(mm
, addr
); ; vma
= vma
->vm_next
) {
1435 /* At this point: (!vma || addr < vma->vm_end). */
1436 if (TASK_SIZE
- len
< addr
) {
1438 * Start a new search - just in case we missed
1441 if (start_addr
!= TASK_UNMAPPED_BASE
) {
1442 addr
= TASK_UNMAPPED_BASE
;
1444 mm
->cached_hole_size
= 0;
1449 if (!vma
|| addr
+ len
<= vma
->vm_start
) {
1451 * Remember the place where we stopped the search:
1453 mm
->free_area_cache
= addr
+ len
;
1456 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1457 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1463 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1466 * Is this a new hole at the lowest possible address?
1468 if (addr
>= TASK_UNMAPPED_BASE
&& addr
< mm
->free_area_cache
)
1469 mm
->free_area_cache
= addr
;
1473 * This mmap-allocator allocates new areas top-down from below the
1474 * stack's low limit (the base):
1476 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1478 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1479 const unsigned long len
, const unsigned long pgoff
,
1480 const unsigned long flags
)
1482 struct vm_area_struct
*vma
;
1483 struct mm_struct
*mm
= current
->mm
;
1484 unsigned long addr
= addr0
, start_addr
;
1486 /* requested length too big for entire address space */
1487 if (len
> TASK_SIZE
)
1490 if (flags
& MAP_FIXED
)
1493 /* requesting a specific address */
1495 addr
= PAGE_ALIGN(addr
);
1496 vma
= find_vma(mm
, addr
);
1497 if (TASK_SIZE
- len
>= addr
&&
1498 (!vma
|| addr
+ len
<= vma
->vm_start
))
1502 /* check if free_area_cache is useful for us */
1503 if (len
<= mm
->cached_hole_size
) {
1504 mm
->cached_hole_size
= 0;
1505 mm
->free_area_cache
= mm
->mmap_base
;
1509 /* either no address requested or can't fit in requested address hole */
1510 start_addr
= addr
= mm
->free_area_cache
;
1518 * Lookup failure means no vma is above this address,
1519 * else if new region fits below vma->vm_start,
1520 * return with success:
1522 vma
= find_vma(mm
, addr
);
1523 if (!vma
|| addr
+len
<= vma
->vm_start
)
1524 /* remember the address as a hint for next time */
1525 return (mm
->free_area_cache
= addr
);
1527 /* remember the largest hole we saw so far */
1528 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1529 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1531 /* try just below the current vma->vm_start */
1532 addr
= vma
->vm_start
-len
;
1533 } while (len
< vma
->vm_start
);
1537 * if hint left us with no space for the requested
1538 * mapping then try again:
1540 * Note: this is different with the case of bottomup
1541 * which does the fully line-search, but we use find_vma
1542 * here that causes some holes skipped.
1544 if (start_addr
!= mm
->mmap_base
) {
1545 mm
->free_area_cache
= mm
->mmap_base
;
1546 mm
->cached_hole_size
= 0;
1551 * A failed mmap() very likely causes application failure,
1552 * so fall back to the bottom-up function here. This scenario
1553 * can happen with large stack limits and large mmap()
1556 mm
->cached_hole_size
= ~0UL;
1557 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
1558 addr
= arch_get_unmapped_area(filp
, addr0
, len
, pgoff
, flags
);
1560 * Restore the topdown base:
1562 mm
->free_area_cache
= mm
->mmap_base
;
1563 mm
->cached_hole_size
= ~0UL;
1569 void arch_unmap_area_topdown(struct mm_struct
*mm
, unsigned long addr
)
1572 * Is this a new hole at the highest possible address?
1574 if (addr
> mm
->free_area_cache
)
1575 mm
->free_area_cache
= addr
;
1577 /* dont allow allocations above current base */
1578 if (mm
->free_area_cache
> mm
->mmap_base
)
1579 mm
->free_area_cache
= mm
->mmap_base
;
1583 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1584 unsigned long pgoff
, unsigned long flags
)
1586 unsigned long (*get_area
)(struct file
*, unsigned long,
1587 unsigned long, unsigned long, unsigned long);
1589 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
1593 /* Careful about overflows.. */
1594 if (len
> TASK_SIZE
)
1597 get_area
= current
->mm
->get_unmapped_area
;
1598 if (file
&& file
->f_op
&& file
->f_op
->get_unmapped_area
)
1599 get_area
= file
->f_op
->get_unmapped_area
;
1600 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
1601 if (IS_ERR_VALUE(addr
))
1604 if (addr
> TASK_SIZE
- len
)
1606 if (addr
& ~PAGE_MASK
)
1609 return arch_rebalance_pgtables(addr
, len
);
1612 EXPORT_SYMBOL(get_unmapped_area
);
1614 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1615 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
1617 struct vm_area_struct
*vma
= NULL
;
1620 /* Check the cache first. */
1621 /* (Cache hit rate is typically around 35%.) */
1622 vma
= mm
->mmap_cache
;
1623 if (!(vma
&& vma
->vm_end
> addr
&& vma
->vm_start
<= addr
)) {
1624 struct rb_node
* rb_node
;
1626 rb_node
= mm
->mm_rb
.rb_node
;
1630 struct vm_area_struct
* vma_tmp
;
1632 vma_tmp
= rb_entry(rb_node
,
1633 struct vm_area_struct
, vm_rb
);
1635 if (vma_tmp
->vm_end
> addr
) {
1637 if (vma_tmp
->vm_start
<= addr
)
1639 rb_node
= rb_node
->rb_left
;
1641 rb_node
= rb_node
->rb_right
;
1644 mm
->mmap_cache
= vma
;
1650 EXPORT_SYMBOL(find_vma
);
1653 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1655 struct vm_area_struct
*
1656 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
1657 struct vm_area_struct
**pprev
)
1659 struct vm_area_struct
*vma
;
1661 vma
= find_vma(mm
, addr
);
1663 *pprev
= vma
->vm_prev
;
1665 struct rb_node
*rb_node
= mm
->mm_rb
.rb_node
;
1668 *pprev
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1669 rb_node
= rb_node
->rb_right
;
1676 * Verify that the stack growth is acceptable and
1677 * update accounting. This is shared with both the
1678 * grow-up and grow-down cases.
1680 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
1682 struct mm_struct
*mm
= vma
->vm_mm
;
1683 struct rlimit
*rlim
= current
->signal
->rlim
;
1684 unsigned long new_start
;
1686 /* address space limit tests */
1687 if (!may_expand_vm(mm
, grow
))
1690 /* Stack limit test */
1691 if (size
> ACCESS_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
))
1694 /* mlock limit tests */
1695 if (vma
->vm_flags
& VM_LOCKED
) {
1696 unsigned long locked
;
1697 unsigned long limit
;
1698 locked
= mm
->locked_vm
+ grow
;
1699 limit
= ACCESS_ONCE(rlim
[RLIMIT_MEMLOCK
].rlim_cur
);
1700 limit
>>= PAGE_SHIFT
;
1701 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
1705 /* Check to ensure the stack will not grow into a hugetlb-only region */
1706 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
1708 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
1712 * Overcommit.. This must be the final test, as it will
1713 * update security statistics.
1715 if (security_vm_enough_memory_mm(mm
, grow
))
1718 /* Ok, everything looks good - let it rip */
1719 mm
->total_vm
+= grow
;
1720 if (vma
->vm_flags
& VM_LOCKED
)
1721 mm
->locked_vm
+= grow
;
1722 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, grow
);
1726 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1728 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1729 * vma is the last one with address > vma->vm_end. Have to extend vma.
1731 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
1735 if (!(vma
->vm_flags
& VM_GROWSUP
))
1739 * We must make sure the anon_vma is allocated
1740 * so that the anon_vma locking is not a noop.
1742 if (unlikely(anon_vma_prepare(vma
)))
1744 vma_lock_anon_vma(vma
);
1747 * vma->vm_start/vm_end cannot change under us because the caller
1748 * is required to hold the mmap_sem in read mode. We need the
1749 * anon_vma lock to serialize against concurrent expand_stacks.
1750 * Also guard against wrapping around to address 0.
1752 if (address
< PAGE_ALIGN(address
+4))
1753 address
= PAGE_ALIGN(address
+4);
1755 vma_unlock_anon_vma(vma
);
1760 /* Somebody else might have raced and expanded it already */
1761 if (address
> vma
->vm_end
) {
1762 unsigned long size
, grow
;
1764 size
= address
- vma
->vm_start
;
1765 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
1768 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
1769 error
= acct_stack_growth(vma
, size
, grow
);
1771 vma
->vm_end
= address
;
1772 perf_event_mmap(vma
);
1776 vma_unlock_anon_vma(vma
);
1777 khugepaged_enter_vma_merge(vma
);
1780 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1783 * vma is the first one with address < vma->vm_start. Have to extend vma.
1785 int expand_downwards(struct vm_area_struct
*vma
,
1786 unsigned long address
)
1791 * We must make sure the anon_vma is allocated
1792 * so that the anon_vma locking is not a noop.
1794 if (unlikely(anon_vma_prepare(vma
)))
1797 address
&= PAGE_MASK
;
1798 error
= security_file_mmap(NULL
, 0, 0, 0, address
, 1);
1802 vma_lock_anon_vma(vma
);
1805 * vma->vm_start/vm_end cannot change under us because the caller
1806 * is required to hold the mmap_sem in read mode. We need the
1807 * anon_vma lock to serialize against concurrent expand_stacks.
1810 /* Somebody else might have raced and expanded it already */
1811 if (address
< vma
->vm_start
) {
1812 unsigned long size
, grow
;
1814 size
= vma
->vm_end
- address
;
1815 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
1818 if (grow
<= vma
->vm_pgoff
) {
1819 error
= acct_stack_growth(vma
, size
, grow
);
1821 vma
->vm_start
= address
;
1822 vma
->vm_pgoff
-= grow
;
1823 perf_event_mmap(vma
);
1827 vma_unlock_anon_vma(vma
);
1828 khugepaged_enter_vma_merge(vma
);
1832 #ifdef CONFIG_STACK_GROWSUP
1833 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1835 return expand_upwards(vma
, address
);
1838 struct vm_area_struct
*
1839 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
1841 struct vm_area_struct
*vma
, *prev
;
1844 vma
= find_vma_prev(mm
, addr
, &prev
);
1845 if (vma
&& (vma
->vm_start
<= addr
))
1847 if (!prev
|| expand_stack(prev
, addr
))
1849 if (prev
->vm_flags
& VM_LOCKED
) {
1850 mlock_vma_pages_range(prev
, addr
, prev
->vm_end
);
1855 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1857 return expand_downwards(vma
, address
);
1860 struct vm_area_struct
*
1861 find_extend_vma(struct mm_struct
* mm
, unsigned long addr
)
1863 struct vm_area_struct
* vma
;
1864 unsigned long start
;
1867 vma
= find_vma(mm
,addr
);
1870 if (vma
->vm_start
<= addr
)
1872 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
1874 start
= vma
->vm_start
;
1875 if (expand_stack(vma
, addr
))
1877 if (vma
->vm_flags
& VM_LOCKED
) {
1878 mlock_vma_pages_range(vma
, addr
, start
);
1885 * Ok - we have the memory areas we should free on the vma list,
1886 * so release them, and do the vma updates.
1888 * Called with the mm semaphore held.
1890 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
1892 /* Update high watermark before we lower total_vm */
1893 update_hiwater_vm(mm
);
1895 long nrpages
= vma_pages(vma
);
1897 mm
->total_vm
-= nrpages
;
1898 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, -nrpages
);
1899 vma
= remove_vma(vma
);
1905 * Get rid of page table information in the indicated region.
1907 * Called with the mm semaphore held.
1909 static void unmap_region(struct mm_struct
*mm
,
1910 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
1911 unsigned long start
, unsigned long end
)
1913 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
1914 struct mmu_gather tlb
;
1915 unsigned long nr_accounted
= 0;
1918 tlb_gather_mmu(&tlb
, mm
, 0);
1919 update_hiwater_rss(mm
);
1920 unmap_vmas(&tlb
, vma
, start
, end
, &nr_accounted
, NULL
);
1921 vm_unacct_memory(nr_accounted
);
1922 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
1923 next
? next
->vm_start
: 0);
1924 tlb_finish_mmu(&tlb
, start
, end
);
1928 * Create a list of vma's touched by the unmap, removing them from the mm's
1929 * vma list as we go..
1932 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1933 struct vm_area_struct
*prev
, unsigned long end
)
1935 struct vm_area_struct
**insertion_point
;
1936 struct vm_area_struct
*tail_vma
= NULL
;
1939 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
1940 vma
->vm_prev
= NULL
;
1942 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
1946 } while (vma
&& vma
->vm_start
< end
);
1947 *insertion_point
= vma
;
1949 vma
->vm_prev
= prev
;
1950 tail_vma
->vm_next
= NULL
;
1951 if (mm
->unmap_area
== arch_unmap_area
)
1952 addr
= prev
? prev
->vm_end
: mm
->mmap_base
;
1954 addr
= vma
? vma
->vm_start
: mm
->mmap_base
;
1955 mm
->unmap_area(mm
, addr
);
1956 mm
->mmap_cache
= NULL
; /* Kill the cache. */
1960 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1961 * munmap path where it doesn't make sense to fail.
1963 static int __split_vma(struct mm_struct
* mm
, struct vm_area_struct
* vma
,
1964 unsigned long addr
, int new_below
)
1966 struct mempolicy
*pol
;
1967 struct vm_area_struct
*new;
1970 if (is_vm_hugetlb_page(vma
) && (addr
&
1971 ~(huge_page_mask(hstate_vma(vma
)))))
1974 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1978 /* most fields are the same, copy all, and then fixup */
1981 INIT_LIST_HEAD(&new->anon_vma_chain
);
1986 new->vm_start
= addr
;
1987 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
1990 pol
= mpol_dup(vma_policy(vma
));
1995 vma_set_policy(new, pol
);
1997 if (anon_vma_clone(new, vma
))
2001 get_file(new->vm_file
);
2002 if (vma
->vm_flags
& VM_EXECUTABLE
)
2003 added_exe_file_vma(mm
);
2006 if (new->vm_ops
&& new->vm_ops
->open
)
2007 new->vm_ops
->open(new);
2010 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
2011 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
2013 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2019 /* Clean everything up if vma_adjust failed. */
2020 if (new->vm_ops
&& new->vm_ops
->close
)
2021 new->vm_ops
->close(new);
2023 if (vma
->vm_flags
& VM_EXECUTABLE
)
2024 removed_exe_file_vma(mm
);
2027 unlink_anon_vmas(new);
2031 kmem_cache_free(vm_area_cachep
, new);
2037 * Split a vma into two pieces at address 'addr', a new vma is allocated
2038 * either for the first part or the tail.
2040 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2041 unsigned long addr
, int new_below
)
2043 if (mm
->map_count
>= sysctl_max_map_count
)
2046 return __split_vma(mm
, vma
, addr
, new_below
);
2049 /* Munmap is split into 2 main parts -- this part which finds
2050 * what needs doing, and the areas themselves, which do the
2051 * work. This now handles partial unmappings.
2052 * Jeremy Fitzhardinge <jeremy@goop.org>
2054 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
2057 struct vm_area_struct
*vma
, *prev
, *last
;
2059 if ((start
& ~PAGE_MASK
) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2062 if ((len
= PAGE_ALIGN(len
)) == 0)
2065 /* Find the first overlapping VMA */
2066 vma
= find_vma(mm
, start
);
2069 prev
= vma
->vm_prev
;
2070 /* we have start < vma->vm_end */
2072 /* if it doesn't overlap, we have nothing.. */
2074 if (vma
->vm_start
>= end
)
2078 * If we need to split any vma, do it now to save pain later.
2080 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2081 * unmapped vm_area_struct will remain in use: so lower split_vma
2082 * places tmp vma above, and higher split_vma places tmp vma below.
2084 if (start
> vma
->vm_start
) {
2088 * Make sure that map_count on return from munmap() will
2089 * not exceed its limit; but let map_count go just above
2090 * its limit temporarily, to help free resources as expected.
2092 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2095 error
= __split_vma(mm
, vma
, start
, 0);
2101 /* Does it split the last one? */
2102 last
= find_vma(mm
, end
);
2103 if (last
&& end
> last
->vm_start
) {
2104 int error
= __split_vma(mm
, last
, end
, 1);
2108 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2111 * unlock any mlock()ed ranges before detaching vmas
2113 if (mm
->locked_vm
) {
2114 struct vm_area_struct
*tmp
= vma
;
2115 while (tmp
&& tmp
->vm_start
< end
) {
2116 if (tmp
->vm_flags
& VM_LOCKED
) {
2117 mm
->locked_vm
-= vma_pages(tmp
);
2118 munlock_vma_pages_all(tmp
);
2125 * Remove the vma's, and unmap the actual pages
2127 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2128 unmap_region(mm
, vma
, prev
, start
, end
);
2130 /* Fix up all other VM information */
2131 remove_vma_list(mm
, vma
);
2135 EXPORT_SYMBOL(do_munmap
);
2137 int vm_munmap(unsigned long start
, size_t len
)
2140 struct mm_struct
*mm
= current
->mm
;
2142 down_write(&mm
->mmap_sem
);
2143 ret
= do_munmap(mm
, start
, len
);
2144 up_write(&mm
->mmap_sem
);
2147 EXPORT_SYMBOL(vm_munmap
);
2149 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2151 profile_munmap(addr
);
2152 return vm_munmap(addr
, len
);
2155 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2157 #ifdef CONFIG_DEBUG_VM
2158 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2160 up_read(&mm
->mmap_sem
);
2166 * this is really a simplified "do_mmap". it only handles
2167 * anonymous maps. eventually we may be able to do some
2168 * brk-specific accounting here.
2170 static unsigned long do_brk(unsigned long addr
, unsigned long len
)
2172 struct mm_struct
* mm
= current
->mm
;
2173 struct vm_area_struct
* vma
, * prev
;
2174 unsigned long flags
;
2175 struct rb_node
** rb_link
, * rb_parent
;
2176 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2179 len
= PAGE_ALIGN(len
);
2183 error
= security_file_mmap(NULL
, 0, 0, 0, addr
, 1);
2187 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2189 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2190 if (error
& ~PAGE_MASK
)
2196 if (mm
->def_flags
& VM_LOCKED
) {
2197 unsigned long locked
, lock_limit
;
2198 locked
= len
>> PAGE_SHIFT
;
2199 locked
+= mm
->locked_vm
;
2200 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
2201 lock_limit
>>= PAGE_SHIFT
;
2202 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
2207 * mm->mmap_sem is required to protect against another thread
2208 * changing the mappings in case we sleep.
2210 verify_mm_writelocked(mm
);
2213 * Clear old maps. this also does some error checking for us
2216 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2217 if (vma
&& vma
->vm_start
< addr
+ len
) {
2218 if (do_munmap(mm
, addr
, len
))
2223 /* Check against address space limits *after* clearing old maps... */
2224 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
2227 if (mm
->map_count
> sysctl_max_map_count
)
2230 if (security_vm_enough_memory_mm(mm
, len
>> PAGE_SHIFT
))
2233 /* Can we just expand an old private anonymous mapping? */
2234 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2235 NULL
, NULL
, pgoff
, NULL
);
2240 * create a vma struct for an anonymous mapping
2242 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2244 vm_unacct_memory(len
>> PAGE_SHIFT
);
2248 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2250 vma
->vm_start
= addr
;
2251 vma
->vm_end
= addr
+ len
;
2252 vma
->vm_pgoff
= pgoff
;
2253 vma
->vm_flags
= flags
;
2254 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2255 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2257 perf_event_mmap(vma
);
2258 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2259 if (flags
& VM_LOCKED
) {
2260 if (!mlock_vma_pages_range(vma
, addr
, addr
+ len
))
2261 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2266 unsigned long vm_brk(unsigned long addr
, unsigned long len
)
2268 struct mm_struct
*mm
= current
->mm
;
2271 down_write(&mm
->mmap_sem
);
2272 ret
= do_brk(addr
, len
);
2273 up_write(&mm
->mmap_sem
);
2276 EXPORT_SYMBOL(vm_brk
);
2278 /* Release all mmaps. */
2279 void exit_mmap(struct mm_struct
*mm
)
2281 struct mmu_gather tlb
;
2282 struct vm_area_struct
*vma
;
2283 unsigned long nr_accounted
= 0;
2285 /* mm's last user has gone, and its about to be pulled down */
2286 mmu_notifier_release(mm
);
2288 if (mm
->locked_vm
) {
2291 if (vma
->vm_flags
& VM_LOCKED
)
2292 munlock_vma_pages_all(vma
);
2300 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2305 tlb_gather_mmu(&tlb
, mm
, 1);
2306 /* update_hiwater_rss(mm) here? but nobody should be looking */
2307 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2308 unmap_vmas(&tlb
, vma
, 0, -1, &nr_accounted
, NULL
);
2309 vm_unacct_memory(nr_accounted
);
2311 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, 0);
2312 tlb_finish_mmu(&tlb
, 0, -1);
2315 * Walk the list again, actually closing and freeing it,
2316 * with preemption enabled, without holding any MM locks.
2319 vma
= remove_vma(vma
);
2321 BUG_ON(mm
->nr_ptes
> (FIRST_USER_ADDRESS
+PMD_SIZE
-1)>>PMD_SHIFT
);
2324 /* Insert vm structure into process list sorted by address
2325 * and into the inode's i_mmap tree. If vm_file is non-NULL
2326 * then i_mmap_mutex is taken here.
2328 int insert_vm_struct(struct mm_struct
* mm
, struct vm_area_struct
* vma
)
2330 struct vm_area_struct
* __vma
, * prev
;
2331 struct rb_node
** rb_link
, * rb_parent
;
2334 * The vm_pgoff of a purely anonymous vma should be irrelevant
2335 * until its first write fault, when page's anon_vma and index
2336 * are set. But now set the vm_pgoff it will almost certainly
2337 * end up with (unless mremap moves it elsewhere before that
2338 * first wfault), so /proc/pid/maps tells a consistent story.
2340 * By setting it to reflect the virtual start address of the
2341 * vma, merges and splits can happen in a seamless way, just
2342 * using the existing file pgoff checks and manipulations.
2343 * Similarly in do_mmap_pgoff and in do_brk.
2345 if (!vma
->vm_file
) {
2346 BUG_ON(vma
->anon_vma
);
2347 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2349 __vma
= find_vma_prepare(mm
,vma
->vm_start
,&prev
,&rb_link
,&rb_parent
);
2350 if (__vma
&& __vma
->vm_start
< vma
->vm_end
)
2352 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2353 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2355 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2360 * Copy the vma structure to a new location in the same mm,
2361 * prior to moving page table entries, to effect an mremap move.
2363 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2364 unsigned long addr
, unsigned long len
, pgoff_t pgoff
)
2366 struct vm_area_struct
*vma
= *vmap
;
2367 unsigned long vma_start
= vma
->vm_start
;
2368 struct mm_struct
*mm
= vma
->vm_mm
;
2369 struct vm_area_struct
*new_vma
, *prev
;
2370 struct rb_node
**rb_link
, *rb_parent
;
2371 struct mempolicy
*pol
;
2372 bool faulted_in_anon_vma
= true;
2375 * If anonymous vma has not yet been faulted, update new pgoff
2376 * to match new location, to increase its chance of merging.
2378 if (unlikely(!vma
->vm_file
&& !vma
->anon_vma
)) {
2379 pgoff
= addr
>> PAGE_SHIFT
;
2380 faulted_in_anon_vma
= false;
2383 find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2384 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2385 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
));
2388 * Source vma may have been merged into new_vma
2390 if (unlikely(vma_start
>= new_vma
->vm_start
&&
2391 vma_start
< new_vma
->vm_end
)) {
2393 * The only way we can get a vma_merge with
2394 * self during an mremap is if the vma hasn't
2395 * been faulted in yet and we were allowed to
2396 * reset the dst vma->vm_pgoff to the
2397 * destination address of the mremap to allow
2398 * the merge to happen. mremap must change the
2399 * vm_pgoff linearity between src and dst vmas
2400 * (in turn preventing a vma_merge) to be
2401 * safe. It is only safe to keep the vm_pgoff
2402 * linear if there are no pages mapped yet.
2404 VM_BUG_ON(faulted_in_anon_vma
);
2407 anon_vma_moveto_tail(new_vma
);
2409 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2412 pol
= mpol_dup(vma_policy(vma
));
2415 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
2416 if (anon_vma_clone(new_vma
, vma
))
2417 goto out_free_mempol
;
2418 vma_set_policy(new_vma
, pol
);
2419 new_vma
->vm_start
= addr
;
2420 new_vma
->vm_end
= addr
+ len
;
2421 new_vma
->vm_pgoff
= pgoff
;
2422 if (new_vma
->vm_file
) {
2423 get_file(new_vma
->vm_file
);
2424 if (vma
->vm_flags
& VM_EXECUTABLE
)
2425 added_exe_file_vma(mm
);
2427 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2428 new_vma
->vm_ops
->open(new_vma
);
2429 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2437 kmem_cache_free(vm_area_cachep
, new_vma
);
2442 * Return true if the calling process may expand its vm space by the passed
2445 int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
)
2447 unsigned long cur
= mm
->total_vm
; /* pages */
2450 lim
= rlimit(RLIMIT_AS
) >> PAGE_SHIFT
;
2452 if (cur
+ npages
> lim
)
2458 static int special_mapping_fault(struct vm_area_struct
*vma
,
2459 struct vm_fault
*vmf
)
2462 struct page
**pages
;
2465 * special mappings have no vm_file, and in that case, the mm
2466 * uses vm_pgoff internally. So we have to subtract it from here.
2467 * We are allowed to do this because we are the mm; do not copy
2468 * this code into drivers!
2470 pgoff
= vmf
->pgoff
- vma
->vm_pgoff
;
2472 for (pages
= vma
->vm_private_data
; pgoff
&& *pages
; ++pages
)
2476 struct page
*page
= *pages
;
2482 return VM_FAULT_SIGBUS
;
2486 * Having a close hook prevents vma merging regardless of flags.
2488 static void special_mapping_close(struct vm_area_struct
*vma
)
2492 static const struct vm_operations_struct special_mapping_vmops
= {
2493 .close
= special_mapping_close
,
2494 .fault
= special_mapping_fault
,
2498 * Called with mm->mmap_sem held for writing.
2499 * Insert a new vma covering the given region, with the given flags.
2500 * Its pages are supplied by the given array of struct page *.
2501 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2502 * The region past the last page supplied will always produce SIGBUS.
2503 * The array pointer and the pages it points to are assumed to stay alive
2504 * for as long as this mapping might exist.
2506 int install_special_mapping(struct mm_struct
*mm
,
2507 unsigned long addr
, unsigned long len
,
2508 unsigned long vm_flags
, struct page
**pages
)
2511 struct vm_area_struct
*vma
;
2513 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2514 if (unlikely(vma
== NULL
))
2517 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2519 vma
->vm_start
= addr
;
2520 vma
->vm_end
= addr
+ len
;
2522 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
;
2523 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
2525 vma
->vm_ops
= &special_mapping_vmops
;
2526 vma
->vm_private_data
= pages
;
2528 ret
= security_file_mmap(NULL
, 0, 0, 0, vma
->vm_start
, 1);
2532 ret
= insert_vm_struct(mm
, vma
);
2536 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2538 perf_event_mmap(vma
);
2543 kmem_cache_free(vm_area_cachep
, vma
);
2547 static DEFINE_MUTEX(mm_all_locks_mutex
);
2549 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
2551 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->head
.next
)) {
2553 * The LSB of head.next can't change from under us
2554 * because we hold the mm_all_locks_mutex.
2556 mutex_lock_nest_lock(&anon_vma
->root
->mutex
, &mm
->mmap_sem
);
2558 * We can safely modify head.next after taking the
2559 * anon_vma->root->mutex. If some other vma in this mm shares
2560 * the same anon_vma we won't take it again.
2562 * No need of atomic instructions here, head.next
2563 * can't change from under us thanks to the
2564 * anon_vma->root->mutex.
2566 if (__test_and_set_bit(0, (unsigned long *)
2567 &anon_vma
->root
->head
.next
))
2572 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
2574 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2576 * AS_MM_ALL_LOCKS can't change from under us because
2577 * we hold the mm_all_locks_mutex.
2579 * Operations on ->flags have to be atomic because
2580 * even if AS_MM_ALL_LOCKS is stable thanks to the
2581 * mm_all_locks_mutex, there may be other cpus
2582 * changing other bitflags in parallel to us.
2584 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
2586 mutex_lock_nest_lock(&mapping
->i_mmap_mutex
, &mm
->mmap_sem
);
2591 * This operation locks against the VM for all pte/vma/mm related
2592 * operations that could ever happen on a certain mm. This includes
2593 * vmtruncate, try_to_unmap, and all page faults.
2595 * The caller must take the mmap_sem in write mode before calling
2596 * mm_take_all_locks(). The caller isn't allowed to release the
2597 * mmap_sem until mm_drop_all_locks() returns.
2599 * mmap_sem in write mode is required in order to block all operations
2600 * that could modify pagetables and free pages without need of
2601 * altering the vma layout (for example populate_range() with
2602 * nonlinear vmas). It's also needed in write mode to avoid new
2603 * anon_vmas to be associated with existing vmas.
2605 * A single task can't take more than one mm_take_all_locks() in a row
2606 * or it would deadlock.
2608 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2609 * mapping->flags avoid to take the same lock twice, if more than one
2610 * vma in this mm is backed by the same anon_vma or address_space.
2612 * We can take all the locks in random order because the VM code
2613 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2614 * takes more than one of them in a row. Secondly we're protected
2615 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2617 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2618 * that may have to take thousand of locks.
2620 * mm_take_all_locks() can fail if it's interrupted by signals.
2622 int mm_take_all_locks(struct mm_struct
*mm
)
2624 struct vm_area_struct
*vma
;
2625 struct anon_vma_chain
*avc
;
2627 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2629 mutex_lock(&mm_all_locks_mutex
);
2631 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2632 if (signal_pending(current
))
2634 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2635 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
2638 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2639 if (signal_pending(current
))
2642 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
2643 vm_lock_anon_vma(mm
, avc
->anon_vma
);
2649 mm_drop_all_locks(mm
);
2653 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
2655 if (test_bit(0, (unsigned long *) &anon_vma
->root
->head
.next
)) {
2657 * The LSB of head.next can't change to 0 from under
2658 * us because we hold the mm_all_locks_mutex.
2660 * We must however clear the bitflag before unlocking
2661 * the vma so the users using the anon_vma->head will
2662 * never see our bitflag.
2664 * No need of atomic instructions here, head.next
2665 * can't change from under us until we release the
2666 * anon_vma->root->mutex.
2668 if (!__test_and_clear_bit(0, (unsigned long *)
2669 &anon_vma
->root
->head
.next
))
2671 anon_vma_unlock(anon_vma
);
2675 static void vm_unlock_mapping(struct address_space
*mapping
)
2677 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2679 * AS_MM_ALL_LOCKS can't change to 0 from under us
2680 * because we hold the mm_all_locks_mutex.
2682 mutex_unlock(&mapping
->i_mmap_mutex
);
2683 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
2690 * The mmap_sem cannot be released by the caller until
2691 * mm_drop_all_locks() returns.
2693 void mm_drop_all_locks(struct mm_struct
*mm
)
2695 struct vm_area_struct
*vma
;
2696 struct anon_vma_chain
*avc
;
2698 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2699 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
2701 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2703 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
2704 vm_unlock_anon_vma(avc
->anon_vma
);
2705 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2706 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
2709 mutex_unlock(&mm_all_locks_mutex
);
2713 * initialise the VMA slab
2715 void __init
mmap_init(void)
2719 ret
= percpu_counter_init(&vm_committed_as
, 0);