2 * IP multicast routing support for mrouted 3.6/3.8
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
29 #include <asm/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
69 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
70 #define CONFIG_IP_PIMSM 1
74 struct list_head list
;
79 struct sock __rcu
*mroute_sk
;
80 struct timer_list ipmr_expire_timer
;
81 struct list_head mfc_unres_queue
;
82 struct list_head mfc_cache_array
[MFC_LINES
];
83 struct vif_device vif_table
[MAXVIFS
];
85 atomic_t cache_resolve_queue_len
;
88 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
89 int mroute_reg_vif_num
;
94 struct fib_rule common
;
101 /* Big lock, protecting vif table, mrt cache and mroute socket state.
102 * Note that the changes are semaphored via rtnl_lock.
105 static DEFINE_RWLOCK(mrt_lock
);
108 * Multicast router control variables
111 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
113 /* Special spinlock for queue of unresolved entries */
114 static DEFINE_SPINLOCK(mfc_unres_lock
);
116 /* We return to original Alan's scheme. Hash table of resolved
117 * entries is changed only in process context and protected
118 * with weak lock mrt_lock. Queue of unresolved entries is protected
119 * with strong spinlock mfc_unres_lock.
121 * In this case data path is free of exclusive locks at all.
124 static struct kmem_cache
*mrt_cachep __read_mostly
;
126 static struct mr_table
*ipmr_new_table(struct net
*net
, u32 id
);
127 static int ip_mr_forward(struct net
*net
, struct mr_table
*mrt
,
128 struct sk_buff
*skb
, struct mfc_cache
*cache
,
130 static int ipmr_cache_report(struct mr_table
*mrt
,
131 struct sk_buff
*pkt
, vifi_t vifi
, int assert);
132 static int __ipmr_fill_mroute(struct mr_table
*mrt
, struct sk_buff
*skb
,
133 struct mfc_cache
*c
, struct rtmsg
*rtm
);
134 static void ipmr_expire_process(unsigned long arg
);
136 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
137 #define ipmr_for_each_table(mrt, net) \
138 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
140 static struct mr_table
*ipmr_get_table(struct net
*net
, u32 id
)
142 struct mr_table
*mrt
;
144 ipmr_for_each_table(mrt
, net
) {
151 static int ipmr_fib_lookup(struct net
*net
, struct flowi4
*flp4
,
152 struct mr_table
**mrt
)
154 struct ipmr_result res
;
155 struct fib_lookup_arg arg
= { .result
= &res
, };
158 err
= fib_rules_lookup(net
->ipv4
.mr_rules_ops
,
159 flowi4_to_flowi(flp4
), 0, &arg
);
166 static int ipmr_rule_action(struct fib_rule
*rule
, struct flowi
*flp
,
167 int flags
, struct fib_lookup_arg
*arg
)
169 struct ipmr_result
*res
= arg
->result
;
170 struct mr_table
*mrt
;
172 switch (rule
->action
) {
175 case FR_ACT_UNREACHABLE
:
177 case FR_ACT_PROHIBIT
:
179 case FR_ACT_BLACKHOLE
:
184 mrt
= ipmr_get_table(rule
->fr_net
, rule
->table
);
191 static int ipmr_rule_match(struct fib_rule
*rule
, struct flowi
*fl
, int flags
)
196 static const struct nla_policy ipmr_rule_policy
[FRA_MAX
+ 1] = {
200 static int ipmr_rule_configure(struct fib_rule
*rule
, struct sk_buff
*skb
,
201 struct fib_rule_hdr
*frh
, struct nlattr
**tb
)
206 static int ipmr_rule_compare(struct fib_rule
*rule
, struct fib_rule_hdr
*frh
,
212 static int ipmr_rule_fill(struct fib_rule
*rule
, struct sk_buff
*skb
,
213 struct fib_rule_hdr
*frh
)
221 static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template
= {
222 .family
= RTNL_FAMILY_IPMR
,
223 .rule_size
= sizeof(struct ipmr_rule
),
224 .addr_size
= sizeof(u32
),
225 .action
= ipmr_rule_action
,
226 .match
= ipmr_rule_match
,
227 .configure
= ipmr_rule_configure
,
228 .compare
= ipmr_rule_compare
,
229 .default_pref
= fib_default_rule_pref
,
230 .fill
= ipmr_rule_fill
,
231 .nlgroup
= RTNLGRP_IPV4_RULE
,
232 .policy
= ipmr_rule_policy
,
233 .owner
= THIS_MODULE
,
236 static int __net_init
ipmr_rules_init(struct net
*net
)
238 struct fib_rules_ops
*ops
;
239 struct mr_table
*mrt
;
242 ops
= fib_rules_register(&ipmr_rules_ops_template
, net
);
246 INIT_LIST_HEAD(&net
->ipv4
.mr_tables
);
248 mrt
= ipmr_new_table(net
, RT_TABLE_DEFAULT
);
254 err
= fib_default_rule_add(ops
, 0x7fff, RT_TABLE_DEFAULT
, 0);
258 net
->ipv4
.mr_rules_ops
= ops
;
264 fib_rules_unregister(ops
);
268 static void __net_exit
ipmr_rules_exit(struct net
*net
)
270 struct mr_table
*mrt
, *next
;
272 list_for_each_entry_safe(mrt
, next
, &net
->ipv4
.mr_tables
, list
) {
273 list_del(&mrt
->list
);
276 fib_rules_unregister(net
->ipv4
.mr_rules_ops
);
279 #define ipmr_for_each_table(mrt, net) \
280 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
282 static struct mr_table
*ipmr_get_table(struct net
*net
, u32 id
)
284 return net
->ipv4
.mrt
;
287 static int ipmr_fib_lookup(struct net
*net
, struct flowi4
*flp4
,
288 struct mr_table
**mrt
)
290 *mrt
= net
->ipv4
.mrt
;
294 static int __net_init
ipmr_rules_init(struct net
*net
)
296 net
->ipv4
.mrt
= ipmr_new_table(net
, RT_TABLE_DEFAULT
);
297 return net
->ipv4
.mrt
? 0 : -ENOMEM
;
300 static void __net_exit
ipmr_rules_exit(struct net
*net
)
302 kfree(net
->ipv4
.mrt
);
306 static struct mr_table
*ipmr_new_table(struct net
*net
, u32 id
)
308 struct mr_table
*mrt
;
311 mrt
= ipmr_get_table(net
, id
);
315 mrt
= kzalloc(sizeof(*mrt
), GFP_KERNEL
);
318 write_pnet(&mrt
->net
, net
);
321 /* Forwarding cache */
322 for (i
= 0; i
< MFC_LINES
; i
++)
323 INIT_LIST_HEAD(&mrt
->mfc_cache_array
[i
]);
325 INIT_LIST_HEAD(&mrt
->mfc_unres_queue
);
327 setup_timer(&mrt
->ipmr_expire_timer
, ipmr_expire_process
,
330 #ifdef CONFIG_IP_PIMSM
331 mrt
->mroute_reg_vif_num
= -1;
333 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
334 list_add_tail_rcu(&mrt
->list
, &net
->ipv4
.mr_tables
);
339 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
341 static void ipmr_del_tunnel(struct net_device
*dev
, struct vifctl
*v
)
343 struct net
*net
= dev_net(dev
);
347 dev
= __dev_get_by_name(net
, "tunl0");
349 const struct net_device_ops
*ops
= dev
->netdev_ops
;
351 struct ip_tunnel_parm p
;
353 memset(&p
, 0, sizeof(p
));
354 p
.iph
.daddr
= v
->vifc_rmt_addr
.s_addr
;
355 p
.iph
.saddr
= v
->vifc_lcl_addr
.s_addr
;
358 p
.iph
.protocol
= IPPROTO_IPIP
;
359 sprintf(p
.name
, "dvmrp%d", v
->vifc_vifi
);
360 ifr
.ifr_ifru
.ifru_data
= (__force
void __user
*)&p
;
362 if (ops
->ndo_do_ioctl
) {
363 mm_segment_t oldfs
= get_fs();
366 ops
->ndo_do_ioctl(dev
, &ifr
, SIOCDELTUNNEL
);
373 struct net_device
*ipmr_new_tunnel(struct net
*net
, struct vifctl
*v
)
375 struct net_device
*dev
;
377 dev
= __dev_get_by_name(net
, "tunl0");
380 const struct net_device_ops
*ops
= dev
->netdev_ops
;
383 struct ip_tunnel_parm p
;
384 struct in_device
*in_dev
;
386 memset(&p
, 0, sizeof(p
));
387 p
.iph
.daddr
= v
->vifc_rmt_addr
.s_addr
;
388 p
.iph
.saddr
= v
->vifc_lcl_addr
.s_addr
;
391 p
.iph
.protocol
= IPPROTO_IPIP
;
392 sprintf(p
.name
, "dvmrp%d", v
->vifc_vifi
);
393 ifr
.ifr_ifru
.ifru_data
= (__force
void __user
*)&p
;
395 if (ops
->ndo_do_ioctl
) {
396 mm_segment_t oldfs
= get_fs();
399 err
= ops
->ndo_do_ioctl(dev
, &ifr
, SIOCADDTUNNEL
);
407 (dev
= __dev_get_by_name(net
, p
.name
)) != NULL
) {
408 dev
->flags
|= IFF_MULTICAST
;
410 in_dev
= __in_dev_get_rtnl(dev
);
414 ipv4_devconf_setall(in_dev
);
415 IPV4_DEVCONF(in_dev
->cnf
, RP_FILTER
) = 0;
425 /* allow the register to be completed before unregistering. */
429 unregister_netdevice(dev
);
433 #ifdef CONFIG_IP_PIMSM
435 static netdev_tx_t
reg_vif_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
437 struct net
*net
= dev_net(dev
);
438 struct mr_table
*mrt
;
439 struct flowi4 fl4
= {
440 .flowi4_oif
= dev
->ifindex
,
441 .flowi4_iif
= skb
->skb_iif
,
442 .flowi4_mark
= skb
->mark
,
446 err
= ipmr_fib_lookup(net
, &fl4
, &mrt
);
452 read_lock(&mrt_lock
);
453 dev
->stats
.tx_bytes
+= skb
->len
;
454 dev
->stats
.tx_packets
++;
455 ipmr_cache_report(mrt
, skb
, mrt
->mroute_reg_vif_num
, IGMPMSG_WHOLEPKT
);
456 read_unlock(&mrt_lock
);
461 static const struct net_device_ops reg_vif_netdev_ops
= {
462 .ndo_start_xmit
= reg_vif_xmit
,
465 static void reg_vif_setup(struct net_device
*dev
)
467 dev
->type
= ARPHRD_PIMREG
;
468 dev
->mtu
= ETH_DATA_LEN
- sizeof(struct iphdr
) - 8;
469 dev
->flags
= IFF_NOARP
;
470 dev
->netdev_ops
= ®_vif_netdev_ops
,
471 dev
->destructor
= free_netdev
;
472 dev
->features
|= NETIF_F_NETNS_LOCAL
;
475 static struct net_device
*ipmr_reg_vif(struct net
*net
, struct mr_table
*mrt
)
477 struct net_device
*dev
;
478 struct in_device
*in_dev
;
481 if (mrt
->id
== RT_TABLE_DEFAULT
)
482 sprintf(name
, "pimreg");
484 sprintf(name
, "pimreg%u", mrt
->id
);
486 dev
= alloc_netdev(0, name
, reg_vif_setup
);
491 dev_net_set(dev
, net
);
493 if (register_netdevice(dev
)) {
500 in_dev
= __in_dev_get_rcu(dev
);
506 ipv4_devconf_setall(in_dev
);
507 IPV4_DEVCONF(in_dev
->cnf
, RP_FILTER
) = 0;
518 /* allow the register to be completed before unregistering. */
522 unregister_netdevice(dev
);
529 * @notify: Set to 1, if the caller is a notifier_call
532 static int vif_delete(struct mr_table
*mrt
, int vifi
, int notify
,
533 struct list_head
*head
)
535 struct vif_device
*v
;
536 struct net_device
*dev
;
537 struct in_device
*in_dev
;
539 if (vifi
< 0 || vifi
>= mrt
->maxvif
)
540 return -EADDRNOTAVAIL
;
542 v
= &mrt
->vif_table
[vifi
];
544 write_lock_bh(&mrt_lock
);
549 write_unlock_bh(&mrt_lock
);
550 return -EADDRNOTAVAIL
;
553 #ifdef CONFIG_IP_PIMSM
554 if (vifi
== mrt
->mroute_reg_vif_num
)
555 mrt
->mroute_reg_vif_num
= -1;
558 if (vifi
+ 1 == mrt
->maxvif
) {
561 for (tmp
= vifi
- 1; tmp
>= 0; tmp
--) {
562 if (VIF_EXISTS(mrt
, tmp
))
568 write_unlock_bh(&mrt_lock
);
570 dev_set_allmulti(dev
, -1);
572 in_dev
= __in_dev_get_rtnl(dev
);
574 IPV4_DEVCONF(in_dev
->cnf
, MC_FORWARDING
)--;
575 ip_rt_multicast_event(in_dev
);
578 if (v
->flags
& (VIFF_TUNNEL
| VIFF_REGISTER
) && !notify
)
579 unregister_netdevice_queue(dev
, head
);
585 static void ipmr_cache_free_rcu(struct rcu_head
*head
)
587 struct mfc_cache
*c
= container_of(head
, struct mfc_cache
, rcu
);
589 kmem_cache_free(mrt_cachep
, c
);
592 static inline void ipmr_cache_free(struct mfc_cache
*c
)
594 call_rcu(&c
->rcu
, ipmr_cache_free_rcu
);
597 /* Destroy an unresolved cache entry, killing queued skbs
598 * and reporting error to netlink readers.
601 static void ipmr_destroy_unres(struct mr_table
*mrt
, struct mfc_cache
*c
)
603 struct net
*net
= read_pnet(&mrt
->net
);
607 atomic_dec(&mrt
->cache_resolve_queue_len
);
609 while ((skb
= skb_dequeue(&c
->mfc_un
.unres
.unresolved
))) {
610 if (ip_hdr(skb
)->version
== 0) {
611 struct nlmsghdr
*nlh
= (struct nlmsghdr
*)skb_pull(skb
, sizeof(struct iphdr
));
612 nlh
->nlmsg_type
= NLMSG_ERROR
;
613 nlh
->nlmsg_len
= NLMSG_LENGTH(sizeof(struct nlmsgerr
));
614 skb_trim(skb
, nlh
->nlmsg_len
);
616 e
->error
= -ETIMEDOUT
;
617 memset(&e
->msg
, 0, sizeof(e
->msg
));
619 rtnl_unicast(skb
, net
, NETLINK_CB(skb
).pid
);
629 /* Timer process for the unresolved queue. */
631 static void ipmr_expire_process(unsigned long arg
)
633 struct mr_table
*mrt
= (struct mr_table
*)arg
;
635 unsigned long expires
;
636 struct mfc_cache
*c
, *next
;
638 if (!spin_trylock(&mfc_unres_lock
)) {
639 mod_timer(&mrt
->ipmr_expire_timer
, jiffies
+HZ
/10);
643 if (list_empty(&mrt
->mfc_unres_queue
))
649 list_for_each_entry_safe(c
, next
, &mrt
->mfc_unres_queue
, list
) {
650 if (time_after(c
->mfc_un
.unres
.expires
, now
)) {
651 unsigned long interval
= c
->mfc_un
.unres
.expires
- now
;
652 if (interval
< expires
)
658 ipmr_destroy_unres(mrt
, c
);
661 if (!list_empty(&mrt
->mfc_unres_queue
))
662 mod_timer(&mrt
->ipmr_expire_timer
, jiffies
+ expires
);
665 spin_unlock(&mfc_unres_lock
);
668 /* Fill oifs list. It is called under write locked mrt_lock. */
670 static void ipmr_update_thresholds(struct mr_table
*mrt
, struct mfc_cache
*cache
,
675 cache
->mfc_un
.res
.minvif
= MAXVIFS
;
676 cache
->mfc_un
.res
.maxvif
= 0;
677 memset(cache
->mfc_un
.res
.ttls
, 255, MAXVIFS
);
679 for (vifi
= 0; vifi
< mrt
->maxvif
; vifi
++) {
680 if (VIF_EXISTS(mrt
, vifi
) &&
681 ttls
[vifi
] && ttls
[vifi
] < 255) {
682 cache
->mfc_un
.res
.ttls
[vifi
] = ttls
[vifi
];
683 if (cache
->mfc_un
.res
.minvif
> vifi
)
684 cache
->mfc_un
.res
.minvif
= vifi
;
685 if (cache
->mfc_un
.res
.maxvif
<= vifi
)
686 cache
->mfc_un
.res
.maxvif
= vifi
+ 1;
691 static int vif_add(struct net
*net
, struct mr_table
*mrt
,
692 struct vifctl
*vifc
, int mrtsock
)
694 int vifi
= vifc
->vifc_vifi
;
695 struct vif_device
*v
= &mrt
->vif_table
[vifi
];
696 struct net_device
*dev
;
697 struct in_device
*in_dev
;
701 if (VIF_EXISTS(mrt
, vifi
))
704 switch (vifc
->vifc_flags
) {
705 #ifdef CONFIG_IP_PIMSM
708 * Special Purpose VIF in PIM
709 * All the packets will be sent to the daemon
711 if (mrt
->mroute_reg_vif_num
>= 0)
713 dev
= ipmr_reg_vif(net
, mrt
);
716 err
= dev_set_allmulti(dev
, 1);
718 unregister_netdevice(dev
);
725 dev
= ipmr_new_tunnel(net
, vifc
);
728 err
= dev_set_allmulti(dev
, 1);
730 ipmr_del_tunnel(dev
, vifc
);
736 case VIFF_USE_IFINDEX
:
738 if (vifc
->vifc_flags
== VIFF_USE_IFINDEX
) {
739 dev
= dev_get_by_index(net
, vifc
->vifc_lcl_ifindex
);
740 if (dev
&& __in_dev_get_rtnl(dev
) == NULL
) {
742 return -EADDRNOTAVAIL
;
745 dev
= ip_dev_find(net
, vifc
->vifc_lcl_addr
.s_addr
);
748 return -EADDRNOTAVAIL
;
749 err
= dev_set_allmulti(dev
, 1);
759 in_dev
= __in_dev_get_rtnl(dev
);
762 return -EADDRNOTAVAIL
;
764 IPV4_DEVCONF(in_dev
->cnf
, MC_FORWARDING
)++;
765 ip_rt_multicast_event(in_dev
);
767 /* Fill in the VIF structures */
769 v
->rate_limit
= vifc
->vifc_rate_limit
;
770 v
->local
= vifc
->vifc_lcl_addr
.s_addr
;
771 v
->remote
= vifc
->vifc_rmt_addr
.s_addr
;
772 v
->flags
= vifc
->vifc_flags
;
774 v
->flags
|= VIFF_STATIC
;
775 v
->threshold
= vifc
->vifc_threshold
;
780 v
->link
= dev
->ifindex
;
781 if (v
->flags
& (VIFF_TUNNEL
| VIFF_REGISTER
))
782 v
->link
= dev
->iflink
;
784 /* And finish update writing critical data */
785 write_lock_bh(&mrt_lock
);
787 #ifdef CONFIG_IP_PIMSM
788 if (v
->flags
& VIFF_REGISTER
)
789 mrt
->mroute_reg_vif_num
= vifi
;
791 if (vifi
+1 > mrt
->maxvif
)
792 mrt
->maxvif
= vifi
+1;
793 write_unlock_bh(&mrt_lock
);
797 /* called with rcu_read_lock() */
798 static struct mfc_cache
*ipmr_cache_find(struct mr_table
*mrt
,
802 int line
= MFC_HASH(mcastgrp
, origin
);
805 list_for_each_entry_rcu(c
, &mrt
->mfc_cache_array
[line
], list
) {
806 if (c
->mfc_origin
== origin
&& c
->mfc_mcastgrp
== mcastgrp
)
813 * Allocate a multicast cache entry
815 static struct mfc_cache
*ipmr_cache_alloc(void)
817 struct mfc_cache
*c
= kmem_cache_zalloc(mrt_cachep
, GFP_KERNEL
);
820 c
->mfc_un
.res
.minvif
= MAXVIFS
;
824 static struct mfc_cache
*ipmr_cache_alloc_unres(void)
826 struct mfc_cache
*c
= kmem_cache_zalloc(mrt_cachep
, GFP_ATOMIC
);
829 skb_queue_head_init(&c
->mfc_un
.unres
.unresolved
);
830 c
->mfc_un
.unres
.expires
= jiffies
+ 10*HZ
;
836 * A cache entry has gone into a resolved state from queued
839 static void ipmr_cache_resolve(struct net
*net
, struct mr_table
*mrt
,
840 struct mfc_cache
*uc
, struct mfc_cache
*c
)
845 /* Play the pending entries through our router */
847 while ((skb
= __skb_dequeue(&uc
->mfc_un
.unres
.unresolved
))) {
848 if (ip_hdr(skb
)->version
== 0) {
849 struct nlmsghdr
*nlh
= (struct nlmsghdr
*)skb_pull(skb
, sizeof(struct iphdr
));
851 if (__ipmr_fill_mroute(mrt
, skb
, c
, NLMSG_DATA(nlh
)) > 0) {
852 nlh
->nlmsg_len
= skb_tail_pointer(skb
) -
855 nlh
->nlmsg_type
= NLMSG_ERROR
;
856 nlh
->nlmsg_len
= NLMSG_LENGTH(sizeof(struct nlmsgerr
));
857 skb_trim(skb
, nlh
->nlmsg_len
);
859 e
->error
= -EMSGSIZE
;
860 memset(&e
->msg
, 0, sizeof(e
->msg
));
863 rtnl_unicast(skb
, net
, NETLINK_CB(skb
).pid
);
865 ip_mr_forward(net
, mrt
, skb
, c
, 0);
871 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
872 * expects the following bizarre scheme.
874 * Called under mrt_lock.
877 static int ipmr_cache_report(struct mr_table
*mrt
,
878 struct sk_buff
*pkt
, vifi_t vifi
, int assert)
881 const int ihl
= ip_hdrlen(pkt
);
882 struct igmphdr
*igmp
;
884 struct sock
*mroute_sk
;
887 #ifdef CONFIG_IP_PIMSM
888 if (assert == IGMPMSG_WHOLEPKT
)
889 skb
= skb_realloc_headroom(pkt
, sizeof(struct iphdr
));
892 skb
= alloc_skb(128, GFP_ATOMIC
);
897 #ifdef CONFIG_IP_PIMSM
898 if (assert == IGMPMSG_WHOLEPKT
) {
899 /* Ugly, but we have no choice with this interface.
900 * Duplicate old header, fix ihl, length etc.
901 * And all this only to mangle msg->im_msgtype and
902 * to set msg->im_mbz to "mbz" :-)
904 skb_push(skb
, sizeof(struct iphdr
));
905 skb_reset_network_header(skb
);
906 skb_reset_transport_header(skb
);
907 msg
= (struct igmpmsg
*)skb_network_header(skb
);
908 memcpy(msg
, skb_network_header(pkt
), sizeof(struct iphdr
));
909 msg
->im_msgtype
= IGMPMSG_WHOLEPKT
;
911 msg
->im_vif
= mrt
->mroute_reg_vif_num
;
912 ip_hdr(skb
)->ihl
= sizeof(struct iphdr
) >> 2;
913 ip_hdr(skb
)->tot_len
= htons(ntohs(ip_hdr(pkt
)->tot_len
) +
914 sizeof(struct iphdr
));
919 /* Copy the IP header */
921 skb
->network_header
= skb
->tail
;
923 skb_copy_to_linear_data(skb
, pkt
->data
, ihl
);
924 ip_hdr(skb
)->protocol
= 0; /* Flag to the kernel this is a route add */
925 msg
= (struct igmpmsg
*)skb_network_header(skb
);
927 skb_dst_set(skb
, dst_clone(skb_dst(pkt
)));
931 igmp
= (struct igmphdr
*)skb_put(skb
, sizeof(struct igmphdr
));
933 msg
->im_msgtype
= assert;
935 ip_hdr(skb
)->tot_len
= htons(skb
->len
); /* Fix the length */
936 skb
->transport_header
= skb
->network_header
;
940 mroute_sk
= rcu_dereference(mrt
->mroute_sk
);
941 if (mroute_sk
== NULL
) {
947 /* Deliver to mrouted */
949 ret
= sock_queue_rcv_skb(mroute_sk
, skb
);
953 pr_warn("mroute: pending queue full, dropping entries\n");
961 * Queue a packet for resolution. It gets locked cache entry!
965 ipmr_cache_unresolved(struct mr_table
*mrt
, vifi_t vifi
, struct sk_buff
*skb
)
970 const struct iphdr
*iph
= ip_hdr(skb
);
972 spin_lock_bh(&mfc_unres_lock
);
973 list_for_each_entry(c
, &mrt
->mfc_unres_queue
, list
) {
974 if (c
->mfc_mcastgrp
== iph
->daddr
&&
975 c
->mfc_origin
== iph
->saddr
) {
982 /* Create a new entry if allowable */
984 if (atomic_read(&mrt
->cache_resolve_queue_len
) >= 10 ||
985 (c
= ipmr_cache_alloc_unres()) == NULL
) {
986 spin_unlock_bh(&mfc_unres_lock
);
992 /* Fill in the new cache entry */
995 c
->mfc_origin
= iph
->saddr
;
996 c
->mfc_mcastgrp
= iph
->daddr
;
998 /* Reflect first query at mrouted. */
1000 err
= ipmr_cache_report(mrt
, skb
, vifi
, IGMPMSG_NOCACHE
);
1002 /* If the report failed throw the cache entry
1005 spin_unlock_bh(&mfc_unres_lock
);
1012 atomic_inc(&mrt
->cache_resolve_queue_len
);
1013 list_add(&c
->list
, &mrt
->mfc_unres_queue
);
1015 if (atomic_read(&mrt
->cache_resolve_queue_len
) == 1)
1016 mod_timer(&mrt
->ipmr_expire_timer
, c
->mfc_un
.unres
.expires
);
1019 /* See if we can append the packet */
1021 if (c
->mfc_un
.unres
.unresolved
.qlen
> 3) {
1025 skb_queue_tail(&c
->mfc_un
.unres
.unresolved
, skb
);
1029 spin_unlock_bh(&mfc_unres_lock
);
1034 * MFC cache manipulation by user space mroute daemon
1037 static int ipmr_mfc_delete(struct mr_table
*mrt
, struct mfcctl
*mfc
)
1040 struct mfc_cache
*c
, *next
;
1042 line
= MFC_HASH(mfc
->mfcc_mcastgrp
.s_addr
, mfc
->mfcc_origin
.s_addr
);
1044 list_for_each_entry_safe(c
, next
, &mrt
->mfc_cache_array
[line
], list
) {
1045 if (c
->mfc_origin
== mfc
->mfcc_origin
.s_addr
&&
1046 c
->mfc_mcastgrp
== mfc
->mfcc_mcastgrp
.s_addr
) {
1047 list_del_rcu(&c
->list
);
1056 static int ipmr_mfc_add(struct net
*net
, struct mr_table
*mrt
,
1057 struct mfcctl
*mfc
, int mrtsock
)
1061 struct mfc_cache
*uc
, *c
;
1063 if (mfc
->mfcc_parent
>= MAXVIFS
)
1066 line
= MFC_HASH(mfc
->mfcc_mcastgrp
.s_addr
, mfc
->mfcc_origin
.s_addr
);
1068 list_for_each_entry(c
, &mrt
->mfc_cache_array
[line
], list
) {
1069 if (c
->mfc_origin
== mfc
->mfcc_origin
.s_addr
&&
1070 c
->mfc_mcastgrp
== mfc
->mfcc_mcastgrp
.s_addr
) {
1077 write_lock_bh(&mrt_lock
);
1078 c
->mfc_parent
= mfc
->mfcc_parent
;
1079 ipmr_update_thresholds(mrt
, c
, mfc
->mfcc_ttls
);
1081 c
->mfc_flags
|= MFC_STATIC
;
1082 write_unlock_bh(&mrt_lock
);
1086 if (!ipv4_is_multicast(mfc
->mfcc_mcastgrp
.s_addr
))
1089 c
= ipmr_cache_alloc();
1093 c
->mfc_origin
= mfc
->mfcc_origin
.s_addr
;
1094 c
->mfc_mcastgrp
= mfc
->mfcc_mcastgrp
.s_addr
;
1095 c
->mfc_parent
= mfc
->mfcc_parent
;
1096 ipmr_update_thresholds(mrt
, c
, mfc
->mfcc_ttls
);
1098 c
->mfc_flags
|= MFC_STATIC
;
1100 list_add_rcu(&c
->list
, &mrt
->mfc_cache_array
[line
]);
1103 * Check to see if we resolved a queued list. If so we
1104 * need to send on the frames and tidy up.
1107 spin_lock_bh(&mfc_unres_lock
);
1108 list_for_each_entry(uc
, &mrt
->mfc_unres_queue
, list
) {
1109 if (uc
->mfc_origin
== c
->mfc_origin
&&
1110 uc
->mfc_mcastgrp
== c
->mfc_mcastgrp
) {
1111 list_del(&uc
->list
);
1112 atomic_dec(&mrt
->cache_resolve_queue_len
);
1117 if (list_empty(&mrt
->mfc_unres_queue
))
1118 del_timer(&mrt
->ipmr_expire_timer
);
1119 spin_unlock_bh(&mfc_unres_lock
);
1122 ipmr_cache_resolve(net
, mrt
, uc
, c
);
1123 ipmr_cache_free(uc
);
1129 * Close the multicast socket, and clear the vif tables etc
1132 static void mroute_clean_tables(struct mr_table
*mrt
)
1136 struct mfc_cache
*c
, *next
;
1138 /* Shut down all active vif entries */
1140 for (i
= 0; i
< mrt
->maxvif
; i
++) {
1141 if (!(mrt
->vif_table
[i
].flags
& VIFF_STATIC
))
1142 vif_delete(mrt
, i
, 0, &list
);
1144 unregister_netdevice_many(&list
);
1146 /* Wipe the cache */
1148 for (i
= 0; i
< MFC_LINES
; i
++) {
1149 list_for_each_entry_safe(c
, next
, &mrt
->mfc_cache_array
[i
], list
) {
1150 if (c
->mfc_flags
& MFC_STATIC
)
1152 list_del_rcu(&c
->list
);
1157 if (atomic_read(&mrt
->cache_resolve_queue_len
) != 0) {
1158 spin_lock_bh(&mfc_unres_lock
);
1159 list_for_each_entry_safe(c
, next
, &mrt
->mfc_unres_queue
, list
) {
1161 ipmr_destroy_unres(mrt
, c
);
1163 spin_unlock_bh(&mfc_unres_lock
);
1167 /* called from ip_ra_control(), before an RCU grace period,
1168 * we dont need to call synchronize_rcu() here
1170 static void mrtsock_destruct(struct sock
*sk
)
1172 struct net
*net
= sock_net(sk
);
1173 struct mr_table
*mrt
;
1176 ipmr_for_each_table(mrt
, net
) {
1177 if (sk
== rtnl_dereference(mrt
->mroute_sk
)) {
1178 IPV4_DEVCONF_ALL(net
, MC_FORWARDING
)--;
1179 RCU_INIT_POINTER(mrt
->mroute_sk
, NULL
);
1180 mroute_clean_tables(mrt
);
1187 * Socket options and virtual interface manipulation. The whole
1188 * virtual interface system is a complete heap, but unfortunately
1189 * that's how BSD mrouted happens to think. Maybe one day with a proper
1190 * MOSPF/PIM router set up we can clean this up.
1193 int ip_mroute_setsockopt(struct sock
*sk
, int optname
, char __user
*optval
, unsigned int optlen
)
1198 struct net
*net
= sock_net(sk
);
1199 struct mr_table
*mrt
;
1201 mrt
= ipmr_get_table(net
, raw_sk(sk
)->ipmr_table
? : RT_TABLE_DEFAULT
);
1205 if (optname
!= MRT_INIT
) {
1206 if (sk
!= rcu_access_pointer(mrt
->mroute_sk
) &&
1207 !capable(CAP_NET_ADMIN
))
1213 if (sk
->sk_type
!= SOCK_RAW
||
1214 inet_sk(sk
)->inet_num
!= IPPROTO_IGMP
)
1216 if (optlen
!= sizeof(int))
1217 return -ENOPROTOOPT
;
1220 if (rtnl_dereference(mrt
->mroute_sk
)) {
1225 ret
= ip_ra_control(sk
, 1, mrtsock_destruct
);
1227 rcu_assign_pointer(mrt
->mroute_sk
, sk
);
1228 IPV4_DEVCONF_ALL(net
, MC_FORWARDING
)++;
1233 if (sk
!= rcu_access_pointer(mrt
->mroute_sk
))
1235 return ip_ra_control(sk
, 0, NULL
);
1238 if (optlen
!= sizeof(vif
))
1240 if (copy_from_user(&vif
, optval
, sizeof(vif
)))
1242 if (vif
.vifc_vifi
>= MAXVIFS
)
1245 if (optname
== MRT_ADD_VIF
) {
1246 ret
= vif_add(net
, mrt
, &vif
,
1247 sk
== rtnl_dereference(mrt
->mroute_sk
));
1249 ret
= vif_delete(mrt
, vif
.vifc_vifi
, 0, NULL
);
1255 * Manipulate the forwarding caches. These live
1256 * in a sort of kernel/user symbiosis.
1260 if (optlen
!= sizeof(mfc
))
1262 if (copy_from_user(&mfc
, optval
, sizeof(mfc
)))
1265 if (optname
== MRT_DEL_MFC
)
1266 ret
= ipmr_mfc_delete(mrt
, &mfc
);
1268 ret
= ipmr_mfc_add(net
, mrt
, &mfc
,
1269 sk
== rtnl_dereference(mrt
->mroute_sk
));
1273 * Control PIM assert.
1278 if (get_user(v
, (int __user
*)optval
))
1280 mrt
->mroute_do_assert
= (v
) ? 1 : 0;
1283 #ifdef CONFIG_IP_PIMSM
1288 if (get_user(v
, (int __user
*)optval
))
1294 if (v
!= mrt
->mroute_do_pim
) {
1295 mrt
->mroute_do_pim
= v
;
1296 mrt
->mroute_do_assert
= v
;
1302 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1307 if (optlen
!= sizeof(u32
))
1309 if (get_user(v
, (u32 __user
*)optval
))
1314 if (sk
== rtnl_dereference(mrt
->mroute_sk
)) {
1317 if (!ipmr_new_table(net
, v
))
1319 raw_sk(sk
)->ipmr_table
= v
;
1326 * Spurious command, or MRT_VERSION which you cannot
1330 return -ENOPROTOOPT
;
1335 * Getsock opt support for the multicast routing system.
1338 int ip_mroute_getsockopt(struct sock
*sk
, int optname
, char __user
*optval
, int __user
*optlen
)
1342 struct net
*net
= sock_net(sk
);
1343 struct mr_table
*mrt
;
1345 mrt
= ipmr_get_table(net
, raw_sk(sk
)->ipmr_table
? : RT_TABLE_DEFAULT
);
1349 if (optname
!= MRT_VERSION
&&
1350 #ifdef CONFIG_IP_PIMSM
1351 optname
!= MRT_PIM
&&
1353 optname
!= MRT_ASSERT
)
1354 return -ENOPROTOOPT
;
1356 if (get_user(olr
, optlen
))
1359 olr
= min_t(unsigned int, olr
, sizeof(int));
1363 if (put_user(olr
, optlen
))
1365 if (optname
== MRT_VERSION
)
1367 #ifdef CONFIG_IP_PIMSM
1368 else if (optname
== MRT_PIM
)
1369 val
= mrt
->mroute_do_pim
;
1372 val
= mrt
->mroute_do_assert
;
1373 if (copy_to_user(optval
, &val
, olr
))
1379 * The IP multicast ioctl support routines.
1382 int ipmr_ioctl(struct sock
*sk
, int cmd
, void __user
*arg
)
1384 struct sioc_sg_req sr
;
1385 struct sioc_vif_req vr
;
1386 struct vif_device
*vif
;
1387 struct mfc_cache
*c
;
1388 struct net
*net
= sock_net(sk
);
1389 struct mr_table
*mrt
;
1391 mrt
= ipmr_get_table(net
, raw_sk(sk
)->ipmr_table
? : RT_TABLE_DEFAULT
);
1397 if (copy_from_user(&vr
, arg
, sizeof(vr
)))
1399 if (vr
.vifi
>= mrt
->maxvif
)
1401 read_lock(&mrt_lock
);
1402 vif
= &mrt
->vif_table
[vr
.vifi
];
1403 if (VIF_EXISTS(mrt
, vr
.vifi
)) {
1404 vr
.icount
= vif
->pkt_in
;
1405 vr
.ocount
= vif
->pkt_out
;
1406 vr
.ibytes
= vif
->bytes_in
;
1407 vr
.obytes
= vif
->bytes_out
;
1408 read_unlock(&mrt_lock
);
1410 if (copy_to_user(arg
, &vr
, sizeof(vr
)))
1414 read_unlock(&mrt_lock
);
1415 return -EADDRNOTAVAIL
;
1417 if (copy_from_user(&sr
, arg
, sizeof(sr
)))
1421 c
= ipmr_cache_find(mrt
, sr
.src
.s_addr
, sr
.grp
.s_addr
);
1423 sr
.pktcnt
= c
->mfc_un
.res
.pkt
;
1424 sr
.bytecnt
= c
->mfc_un
.res
.bytes
;
1425 sr
.wrong_if
= c
->mfc_un
.res
.wrong_if
;
1428 if (copy_to_user(arg
, &sr
, sizeof(sr
)))
1433 return -EADDRNOTAVAIL
;
1435 return -ENOIOCTLCMD
;
1439 #ifdef CONFIG_COMPAT
1440 struct compat_sioc_sg_req
{
1443 compat_ulong_t pktcnt
;
1444 compat_ulong_t bytecnt
;
1445 compat_ulong_t wrong_if
;
1448 struct compat_sioc_vif_req
{
1449 vifi_t vifi
; /* Which iface */
1450 compat_ulong_t icount
;
1451 compat_ulong_t ocount
;
1452 compat_ulong_t ibytes
;
1453 compat_ulong_t obytes
;
1456 int ipmr_compat_ioctl(struct sock
*sk
, unsigned int cmd
, void __user
*arg
)
1458 struct compat_sioc_sg_req sr
;
1459 struct compat_sioc_vif_req vr
;
1460 struct vif_device
*vif
;
1461 struct mfc_cache
*c
;
1462 struct net
*net
= sock_net(sk
);
1463 struct mr_table
*mrt
;
1465 mrt
= ipmr_get_table(net
, raw_sk(sk
)->ipmr_table
? : RT_TABLE_DEFAULT
);
1471 if (copy_from_user(&vr
, arg
, sizeof(vr
)))
1473 if (vr
.vifi
>= mrt
->maxvif
)
1475 read_lock(&mrt_lock
);
1476 vif
= &mrt
->vif_table
[vr
.vifi
];
1477 if (VIF_EXISTS(mrt
, vr
.vifi
)) {
1478 vr
.icount
= vif
->pkt_in
;
1479 vr
.ocount
= vif
->pkt_out
;
1480 vr
.ibytes
= vif
->bytes_in
;
1481 vr
.obytes
= vif
->bytes_out
;
1482 read_unlock(&mrt_lock
);
1484 if (copy_to_user(arg
, &vr
, sizeof(vr
)))
1488 read_unlock(&mrt_lock
);
1489 return -EADDRNOTAVAIL
;
1491 if (copy_from_user(&sr
, arg
, sizeof(sr
)))
1495 c
= ipmr_cache_find(mrt
, sr
.src
.s_addr
, sr
.grp
.s_addr
);
1497 sr
.pktcnt
= c
->mfc_un
.res
.pkt
;
1498 sr
.bytecnt
= c
->mfc_un
.res
.bytes
;
1499 sr
.wrong_if
= c
->mfc_un
.res
.wrong_if
;
1502 if (copy_to_user(arg
, &sr
, sizeof(sr
)))
1507 return -EADDRNOTAVAIL
;
1509 return -ENOIOCTLCMD
;
1515 static int ipmr_device_event(struct notifier_block
*this, unsigned long event
, void *ptr
)
1517 struct net_device
*dev
= ptr
;
1518 struct net
*net
= dev_net(dev
);
1519 struct mr_table
*mrt
;
1520 struct vif_device
*v
;
1523 if (event
!= NETDEV_UNREGISTER
)
1526 ipmr_for_each_table(mrt
, net
) {
1527 v
= &mrt
->vif_table
[0];
1528 for (ct
= 0; ct
< mrt
->maxvif
; ct
++, v
++) {
1530 vif_delete(mrt
, ct
, 1, NULL
);
1537 static struct notifier_block ip_mr_notifier
= {
1538 .notifier_call
= ipmr_device_event
,
1542 * Encapsulate a packet by attaching a valid IPIP header to it.
1543 * This avoids tunnel drivers and other mess and gives us the speed so
1544 * important for multicast video.
1547 static void ip_encap(struct sk_buff
*skb
, __be32 saddr
, __be32 daddr
)
1550 const struct iphdr
*old_iph
= ip_hdr(skb
);
1552 skb_push(skb
, sizeof(struct iphdr
));
1553 skb
->transport_header
= skb
->network_header
;
1554 skb_reset_network_header(skb
);
1558 iph
->tos
= old_iph
->tos
;
1559 iph
->ttl
= old_iph
->ttl
;
1563 iph
->protocol
= IPPROTO_IPIP
;
1565 iph
->tot_len
= htons(skb
->len
);
1566 ip_select_ident(iph
, skb_dst(skb
), NULL
);
1569 memset(&(IPCB(skb
)->opt
), 0, sizeof(IPCB(skb
)->opt
));
1573 static inline int ipmr_forward_finish(struct sk_buff
*skb
)
1575 struct ip_options
*opt
= &(IPCB(skb
)->opt
);
1577 IP_INC_STATS_BH(dev_net(skb_dst(skb
)->dev
), IPSTATS_MIB_OUTFORWDATAGRAMS
);
1579 if (unlikely(opt
->optlen
))
1580 ip_forward_options(skb
);
1582 return dst_output(skb
);
1586 * Processing handlers for ipmr_forward
1589 static void ipmr_queue_xmit(struct net
*net
, struct mr_table
*mrt
,
1590 struct sk_buff
*skb
, struct mfc_cache
*c
, int vifi
)
1592 const struct iphdr
*iph
= ip_hdr(skb
);
1593 struct vif_device
*vif
= &mrt
->vif_table
[vifi
];
1594 struct net_device
*dev
;
1599 if (vif
->dev
== NULL
)
1602 #ifdef CONFIG_IP_PIMSM
1603 if (vif
->flags
& VIFF_REGISTER
) {
1605 vif
->bytes_out
+= skb
->len
;
1606 vif
->dev
->stats
.tx_bytes
+= skb
->len
;
1607 vif
->dev
->stats
.tx_packets
++;
1608 ipmr_cache_report(mrt
, skb
, vifi
, IGMPMSG_WHOLEPKT
);
1613 if (vif
->flags
& VIFF_TUNNEL
) {
1614 rt
= ip_route_output_ports(net
, &fl4
, NULL
,
1615 vif
->remote
, vif
->local
,
1618 RT_TOS(iph
->tos
), vif
->link
);
1621 encap
= sizeof(struct iphdr
);
1623 rt
= ip_route_output_ports(net
, &fl4
, NULL
, iph
->daddr
, 0,
1626 RT_TOS(iph
->tos
), vif
->link
);
1633 if (skb
->len
+encap
> dst_mtu(&rt
->dst
) && (ntohs(iph
->frag_off
) & IP_DF
)) {
1634 /* Do not fragment multicasts. Alas, IPv4 does not
1635 * allow to send ICMP, so that packets will disappear
1639 IP_INC_STATS_BH(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
1644 encap
+= LL_RESERVED_SPACE(dev
) + rt
->dst
.header_len
;
1646 if (skb_cow(skb
, encap
)) {
1652 vif
->bytes_out
+= skb
->len
;
1655 skb_dst_set(skb
, &rt
->dst
);
1656 ip_decrease_ttl(ip_hdr(skb
));
1658 /* FIXME: forward and output firewalls used to be called here.
1659 * What do we do with netfilter? -- RR
1661 if (vif
->flags
& VIFF_TUNNEL
) {
1662 ip_encap(skb
, vif
->local
, vif
->remote
);
1663 /* FIXME: extra output firewall step used to be here. --RR */
1664 vif
->dev
->stats
.tx_packets
++;
1665 vif
->dev
->stats
.tx_bytes
+= skb
->len
;
1668 IPCB(skb
)->flags
|= IPSKB_FORWARDED
;
1671 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1672 * not only before forwarding, but after forwarding on all output
1673 * interfaces. It is clear, if mrouter runs a multicasting
1674 * program, it should receive packets not depending to what interface
1675 * program is joined.
1676 * If we will not make it, the program will have to join on all
1677 * interfaces. On the other hand, multihoming host (or router, but
1678 * not mrouter) cannot join to more than one interface - it will
1679 * result in receiving multiple packets.
1681 NF_HOOK(NFPROTO_IPV4
, NF_INET_FORWARD
, skb
, skb
->dev
, dev
,
1682 ipmr_forward_finish
);
1689 static int ipmr_find_vif(struct mr_table
*mrt
, struct net_device
*dev
)
1693 for (ct
= mrt
->maxvif
-1; ct
>= 0; ct
--) {
1694 if (mrt
->vif_table
[ct
].dev
== dev
)
1700 /* "local" means that we should preserve one skb (for local delivery) */
1702 static int ip_mr_forward(struct net
*net
, struct mr_table
*mrt
,
1703 struct sk_buff
*skb
, struct mfc_cache
*cache
,
1709 vif
= cache
->mfc_parent
;
1710 cache
->mfc_un
.res
.pkt
++;
1711 cache
->mfc_un
.res
.bytes
+= skb
->len
;
1714 * Wrong interface: drop packet and (maybe) send PIM assert.
1716 if (mrt
->vif_table
[vif
].dev
!= skb
->dev
) {
1719 if (rt_is_output_route(skb_rtable(skb
))) {
1720 /* It is our own packet, looped back.
1721 * Very complicated situation...
1723 * The best workaround until routing daemons will be
1724 * fixed is not to redistribute packet, if it was
1725 * send through wrong interface. It means, that
1726 * multicast applications WILL NOT work for
1727 * (S,G), which have default multicast route pointing
1728 * to wrong oif. In any case, it is not a good
1729 * idea to use multicasting applications on router.
1734 cache
->mfc_un
.res
.wrong_if
++;
1735 true_vifi
= ipmr_find_vif(mrt
, skb
->dev
);
1737 if (true_vifi
>= 0 && mrt
->mroute_do_assert
&&
1738 /* pimsm uses asserts, when switching from RPT to SPT,
1739 * so that we cannot check that packet arrived on an oif.
1740 * It is bad, but otherwise we would need to move pretty
1741 * large chunk of pimd to kernel. Ough... --ANK
1743 (mrt
->mroute_do_pim
||
1744 cache
->mfc_un
.res
.ttls
[true_vifi
] < 255) &&
1746 cache
->mfc_un
.res
.last_assert
+ MFC_ASSERT_THRESH
)) {
1747 cache
->mfc_un
.res
.last_assert
= jiffies
;
1748 ipmr_cache_report(mrt
, skb
, true_vifi
, IGMPMSG_WRONGVIF
);
1753 mrt
->vif_table
[vif
].pkt_in
++;
1754 mrt
->vif_table
[vif
].bytes_in
+= skb
->len
;
1759 for (ct
= cache
->mfc_un
.res
.maxvif
- 1;
1760 ct
>= cache
->mfc_un
.res
.minvif
; ct
--) {
1761 if (ip_hdr(skb
)->ttl
> cache
->mfc_un
.res
.ttls
[ct
]) {
1763 struct sk_buff
*skb2
= skb_clone(skb
, GFP_ATOMIC
);
1766 ipmr_queue_xmit(net
, mrt
, skb2
, cache
,
1774 struct sk_buff
*skb2
= skb_clone(skb
, GFP_ATOMIC
);
1777 ipmr_queue_xmit(net
, mrt
, skb2
, cache
, psend
);
1779 ipmr_queue_xmit(net
, mrt
, skb
, cache
, psend
);
1790 static struct mr_table
*ipmr_rt_fib_lookup(struct net
*net
, struct sk_buff
*skb
)
1792 struct rtable
*rt
= skb_rtable(skb
);
1793 struct iphdr
*iph
= ip_hdr(skb
);
1794 struct flowi4 fl4
= {
1795 .daddr
= iph
->daddr
,
1796 .saddr
= iph
->saddr
,
1797 .flowi4_tos
= RT_TOS(iph
->tos
),
1798 .flowi4_oif
= rt
->rt_oif
,
1799 .flowi4_iif
= rt
->rt_iif
,
1800 .flowi4_mark
= rt
->rt_mark
,
1802 struct mr_table
*mrt
;
1805 err
= ipmr_fib_lookup(net
, &fl4
, &mrt
);
1807 return ERR_PTR(err
);
1812 * Multicast packets for forwarding arrive here
1813 * Called with rcu_read_lock();
1816 int ip_mr_input(struct sk_buff
*skb
)
1818 struct mfc_cache
*cache
;
1819 struct net
*net
= dev_net(skb
->dev
);
1820 int local
= skb_rtable(skb
)->rt_flags
& RTCF_LOCAL
;
1821 struct mr_table
*mrt
;
1823 /* Packet is looped back after forward, it should not be
1824 * forwarded second time, but still can be delivered locally.
1826 if (IPCB(skb
)->flags
& IPSKB_FORWARDED
)
1829 mrt
= ipmr_rt_fib_lookup(net
, skb
);
1832 return PTR_ERR(mrt
);
1835 if (IPCB(skb
)->opt
.router_alert
) {
1836 if (ip_call_ra_chain(skb
))
1838 } else if (ip_hdr(skb
)->protocol
== IPPROTO_IGMP
) {
1839 /* IGMPv1 (and broken IGMPv2 implementations sort of
1840 * Cisco IOS <= 11.2(8)) do not put router alert
1841 * option to IGMP packets destined to routable
1842 * groups. It is very bad, because it means
1843 * that we can forward NO IGMP messages.
1845 struct sock
*mroute_sk
;
1847 mroute_sk
= rcu_dereference(mrt
->mroute_sk
);
1850 raw_rcv(mroute_sk
, skb
);
1856 /* already under rcu_read_lock() */
1857 cache
= ipmr_cache_find(mrt
, ip_hdr(skb
)->saddr
, ip_hdr(skb
)->daddr
);
1860 * No usable cache entry
1862 if (cache
== NULL
) {
1866 struct sk_buff
*skb2
= skb_clone(skb
, GFP_ATOMIC
);
1867 ip_local_deliver(skb
);
1873 read_lock(&mrt_lock
);
1874 vif
= ipmr_find_vif(mrt
, skb
->dev
);
1876 int err2
= ipmr_cache_unresolved(mrt
, vif
, skb
);
1877 read_unlock(&mrt_lock
);
1881 read_unlock(&mrt_lock
);
1886 read_lock(&mrt_lock
);
1887 ip_mr_forward(net
, mrt
, skb
, cache
, local
);
1888 read_unlock(&mrt_lock
);
1891 return ip_local_deliver(skb
);
1897 return ip_local_deliver(skb
);
1902 #ifdef CONFIG_IP_PIMSM
1903 /* called with rcu_read_lock() */
1904 static int __pim_rcv(struct mr_table
*mrt
, struct sk_buff
*skb
,
1905 unsigned int pimlen
)
1907 struct net_device
*reg_dev
= NULL
;
1908 struct iphdr
*encap
;
1910 encap
= (struct iphdr
*)(skb_transport_header(skb
) + pimlen
);
1913 * a. packet is really sent to a multicast group
1914 * b. packet is not a NULL-REGISTER
1915 * c. packet is not truncated
1917 if (!ipv4_is_multicast(encap
->daddr
) ||
1918 encap
->tot_len
== 0 ||
1919 ntohs(encap
->tot_len
) + pimlen
> skb
->len
)
1922 read_lock(&mrt_lock
);
1923 if (mrt
->mroute_reg_vif_num
>= 0)
1924 reg_dev
= mrt
->vif_table
[mrt
->mroute_reg_vif_num
].dev
;
1925 read_unlock(&mrt_lock
);
1927 if (reg_dev
== NULL
)
1930 skb
->mac_header
= skb
->network_header
;
1931 skb_pull(skb
, (u8
*)encap
- skb
->data
);
1932 skb_reset_network_header(skb
);
1933 skb
->protocol
= htons(ETH_P_IP
);
1934 skb
->ip_summed
= CHECKSUM_NONE
;
1935 skb
->pkt_type
= PACKET_HOST
;
1937 skb_tunnel_rx(skb
, reg_dev
);
1941 return NET_RX_SUCCESS
;
1945 #ifdef CONFIG_IP_PIMSM_V1
1947 * Handle IGMP messages of PIMv1
1950 int pim_rcv_v1(struct sk_buff
*skb
)
1952 struct igmphdr
*pim
;
1953 struct net
*net
= dev_net(skb
->dev
);
1954 struct mr_table
*mrt
;
1956 if (!pskb_may_pull(skb
, sizeof(*pim
) + sizeof(struct iphdr
)))
1959 pim
= igmp_hdr(skb
);
1961 mrt
= ipmr_rt_fib_lookup(net
, skb
);
1964 if (!mrt
->mroute_do_pim
||
1965 pim
->group
!= PIM_V1_VERSION
|| pim
->code
!= PIM_V1_REGISTER
)
1968 if (__pim_rcv(mrt
, skb
, sizeof(*pim
))) {
1976 #ifdef CONFIG_IP_PIMSM_V2
1977 static int pim_rcv(struct sk_buff
*skb
)
1979 struct pimreghdr
*pim
;
1980 struct net
*net
= dev_net(skb
->dev
);
1981 struct mr_table
*mrt
;
1983 if (!pskb_may_pull(skb
, sizeof(*pim
) + sizeof(struct iphdr
)))
1986 pim
= (struct pimreghdr
*)skb_transport_header(skb
);
1987 if (pim
->type
!= ((PIM_VERSION
<< 4) | (PIM_REGISTER
)) ||
1988 (pim
->flags
& PIM_NULL_REGISTER
) ||
1989 (ip_compute_csum((void *)pim
, sizeof(*pim
)) != 0 &&
1990 csum_fold(skb_checksum(skb
, 0, skb
->len
, 0))))
1993 mrt
= ipmr_rt_fib_lookup(net
, skb
);
1996 if (__pim_rcv(mrt
, skb
, sizeof(*pim
))) {
2004 static int __ipmr_fill_mroute(struct mr_table
*mrt
, struct sk_buff
*skb
,
2005 struct mfc_cache
*c
, struct rtmsg
*rtm
)
2008 struct rtnexthop
*nhp
;
2009 u8
*b
= skb_tail_pointer(skb
);
2010 struct rtattr
*mp_head
;
2012 /* If cache is unresolved, don't try to parse IIF and OIF */
2013 if (c
->mfc_parent
>= MAXVIFS
)
2016 if (VIF_EXISTS(mrt
, c
->mfc_parent
))
2017 RTA_PUT(skb
, RTA_IIF
, 4, &mrt
->vif_table
[c
->mfc_parent
].dev
->ifindex
);
2019 mp_head
= (struct rtattr
*)skb_put(skb
, RTA_LENGTH(0));
2021 for (ct
= c
->mfc_un
.res
.minvif
; ct
< c
->mfc_un
.res
.maxvif
; ct
++) {
2022 if (VIF_EXISTS(mrt
, ct
) && c
->mfc_un
.res
.ttls
[ct
] < 255) {
2023 if (skb_tailroom(skb
) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp
)) + 4))
2024 goto rtattr_failure
;
2025 nhp
= (struct rtnexthop
*)skb_put(skb
, RTA_ALIGN(sizeof(*nhp
)));
2026 nhp
->rtnh_flags
= 0;
2027 nhp
->rtnh_hops
= c
->mfc_un
.res
.ttls
[ct
];
2028 nhp
->rtnh_ifindex
= mrt
->vif_table
[ct
].dev
->ifindex
;
2029 nhp
->rtnh_len
= sizeof(*nhp
);
2032 mp_head
->rta_type
= RTA_MULTIPATH
;
2033 mp_head
->rta_len
= skb_tail_pointer(skb
) - (u8
*)mp_head
;
2034 rtm
->rtm_type
= RTN_MULTICAST
;
2042 int ipmr_get_route(struct net
*net
, struct sk_buff
*skb
,
2043 __be32 saddr
, __be32 daddr
,
2044 struct rtmsg
*rtm
, int nowait
)
2046 struct mfc_cache
*cache
;
2047 struct mr_table
*mrt
;
2050 mrt
= ipmr_get_table(net
, RT_TABLE_DEFAULT
);
2055 cache
= ipmr_cache_find(mrt
, saddr
, daddr
);
2057 if (cache
== NULL
) {
2058 struct sk_buff
*skb2
;
2060 struct net_device
*dev
;
2069 read_lock(&mrt_lock
);
2071 vif
= ipmr_find_vif(mrt
, dev
);
2073 read_unlock(&mrt_lock
);
2077 skb2
= skb_clone(skb
, GFP_ATOMIC
);
2079 read_unlock(&mrt_lock
);
2084 skb_push(skb2
, sizeof(struct iphdr
));
2085 skb_reset_network_header(skb2
);
2087 iph
->ihl
= sizeof(struct iphdr
) >> 2;
2091 err
= ipmr_cache_unresolved(mrt
, vif
, skb2
);
2092 read_unlock(&mrt_lock
);
2097 read_lock(&mrt_lock
);
2098 if (!nowait
&& (rtm
->rtm_flags
& RTM_F_NOTIFY
))
2099 cache
->mfc_flags
|= MFC_NOTIFY
;
2100 err
= __ipmr_fill_mroute(mrt
, skb
, cache
, rtm
);
2101 read_unlock(&mrt_lock
);
2106 static int ipmr_fill_mroute(struct mr_table
*mrt
, struct sk_buff
*skb
,
2107 u32 pid
, u32 seq
, struct mfc_cache
*c
)
2109 struct nlmsghdr
*nlh
;
2112 nlh
= nlmsg_put(skb
, pid
, seq
, RTM_NEWROUTE
, sizeof(*rtm
), NLM_F_MULTI
);
2116 rtm
= nlmsg_data(nlh
);
2117 rtm
->rtm_family
= RTNL_FAMILY_IPMR
;
2118 rtm
->rtm_dst_len
= 32;
2119 rtm
->rtm_src_len
= 32;
2121 rtm
->rtm_table
= mrt
->id
;
2122 if (nla_put_u32(skb
, RTA_TABLE
, mrt
->id
))
2123 goto nla_put_failure
;
2124 rtm
->rtm_type
= RTN_MULTICAST
;
2125 rtm
->rtm_scope
= RT_SCOPE_UNIVERSE
;
2126 rtm
->rtm_protocol
= RTPROT_UNSPEC
;
2129 if (nla_put_be32(skb
, RTA_SRC
, c
->mfc_origin
) ||
2130 nla_put_be32(skb
, RTA_DST
, c
->mfc_mcastgrp
))
2131 goto nla_put_failure
;
2132 if (__ipmr_fill_mroute(mrt
, skb
, c
, rtm
) < 0)
2133 goto nla_put_failure
;
2135 return nlmsg_end(skb
, nlh
);
2138 nlmsg_cancel(skb
, nlh
);
2142 static int ipmr_rtm_dumproute(struct sk_buff
*skb
, struct netlink_callback
*cb
)
2144 struct net
*net
= sock_net(skb
->sk
);
2145 struct mr_table
*mrt
;
2146 struct mfc_cache
*mfc
;
2147 unsigned int t
= 0, s_t
;
2148 unsigned int h
= 0, s_h
;
2149 unsigned int e
= 0, s_e
;
2156 ipmr_for_each_table(mrt
, net
) {
2161 for (h
= s_h
; h
< MFC_LINES
; h
++) {
2162 list_for_each_entry_rcu(mfc
, &mrt
->mfc_cache_array
[h
], list
) {
2165 if (ipmr_fill_mroute(mrt
, skb
,
2166 NETLINK_CB(cb
->skb
).pid
,
2189 #ifdef CONFIG_PROC_FS
2191 * The /proc interfaces to multicast routing :
2192 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2194 struct ipmr_vif_iter
{
2195 struct seq_net_private p
;
2196 struct mr_table
*mrt
;
2200 static struct vif_device
*ipmr_vif_seq_idx(struct net
*net
,
2201 struct ipmr_vif_iter
*iter
,
2204 struct mr_table
*mrt
= iter
->mrt
;
2206 for (iter
->ct
= 0; iter
->ct
< mrt
->maxvif
; ++iter
->ct
) {
2207 if (!VIF_EXISTS(mrt
, iter
->ct
))
2210 return &mrt
->vif_table
[iter
->ct
];
2215 static void *ipmr_vif_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2216 __acquires(mrt_lock
)
2218 struct ipmr_vif_iter
*iter
= seq
->private;
2219 struct net
*net
= seq_file_net(seq
);
2220 struct mr_table
*mrt
;
2222 mrt
= ipmr_get_table(net
, RT_TABLE_DEFAULT
);
2224 return ERR_PTR(-ENOENT
);
2228 read_lock(&mrt_lock
);
2229 return *pos
? ipmr_vif_seq_idx(net
, seq
->private, *pos
- 1)
2233 static void *ipmr_vif_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2235 struct ipmr_vif_iter
*iter
= seq
->private;
2236 struct net
*net
= seq_file_net(seq
);
2237 struct mr_table
*mrt
= iter
->mrt
;
2240 if (v
== SEQ_START_TOKEN
)
2241 return ipmr_vif_seq_idx(net
, iter
, 0);
2243 while (++iter
->ct
< mrt
->maxvif
) {
2244 if (!VIF_EXISTS(mrt
, iter
->ct
))
2246 return &mrt
->vif_table
[iter
->ct
];
2251 static void ipmr_vif_seq_stop(struct seq_file
*seq
, void *v
)
2252 __releases(mrt_lock
)
2254 read_unlock(&mrt_lock
);
2257 static int ipmr_vif_seq_show(struct seq_file
*seq
, void *v
)
2259 struct ipmr_vif_iter
*iter
= seq
->private;
2260 struct mr_table
*mrt
= iter
->mrt
;
2262 if (v
== SEQ_START_TOKEN
) {
2264 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2266 const struct vif_device
*vif
= v
;
2267 const char *name
= vif
->dev
? vif
->dev
->name
: "none";
2270 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2271 vif
- mrt
->vif_table
,
2272 name
, vif
->bytes_in
, vif
->pkt_in
,
2273 vif
->bytes_out
, vif
->pkt_out
,
2274 vif
->flags
, vif
->local
, vif
->remote
);
2279 static const struct seq_operations ipmr_vif_seq_ops
= {
2280 .start
= ipmr_vif_seq_start
,
2281 .next
= ipmr_vif_seq_next
,
2282 .stop
= ipmr_vif_seq_stop
,
2283 .show
= ipmr_vif_seq_show
,
2286 static int ipmr_vif_open(struct inode
*inode
, struct file
*file
)
2288 return seq_open_net(inode
, file
, &ipmr_vif_seq_ops
,
2289 sizeof(struct ipmr_vif_iter
));
2292 static const struct file_operations ipmr_vif_fops
= {
2293 .owner
= THIS_MODULE
,
2294 .open
= ipmr_vif_open
,
2296 .llseek
= seq_lseek
,
2297 .release
= seq_release_net
,
2300 struct ipmr_mfc_iter
{
2301 struct seq_net_private p
;
2302 struct mr_table
*mrt
;
2303 struct list_head
*cache
;
2308 static struct mfc_cache
*ipmr_mfc_seq_idx(struct net
*net
,
2309 struct ipmr_mfc_iter
*it
, loff_t pos
)
2311 struct mr_table
*mrt
= it
->mrt
;
2312 struct mfc_cache
*mfc
;
2315 for (it
->ct
= 0; it
->ct
< MFC_LINES
; it
->ct
++) {
2316 it
->cache
= &mrt
->mfc_cache_array
[it
->ct
];
2317 list_for_each_entry_rcu(mfc
, it
->cache
, list
)
2323 spin_lock_bh(&mfc_unres_lock
);
2324 it
->cache
= &mrt
->mfc_unres_queue
;
2325 list_for_each_entry(mfc
, it
->cache
, list
)
2328 spin_unlock_bh(&mfc_unres_lock
);
2335 static void *ipmr_mfc_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2337 struct ipmr_mfc_iter
*it
= seq
->private;
2338 struct net
*net
= seq_file_net(seq
);
2339 struct mr_table
*mrt
;
2341 mrt
= ipmr_get_table(net
, RT_TABLE_DEFAULT
);
2343 return ERR_PTR(-ENOENT
);
2348 return *pos
? ipmr_mfc_seq_idx(net
, seq
->private, *pos
- 1)
2352 static void *ipmr_mfc_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2354 struct mfc_cache
*mfc
= v
;
2355 struct ipmr_mfc_iter
*it
= seq
->private;
2356 struct net
*net
= seq_file_net(seq
);
2357 struct mr_table
*mrt
= it
->mrt
;
2361 if (v
== SEQ_START_TOKEN
)
2362 return ipmr_mfc_seq_idx(net
, seq
->private, 0);
2364 if (mfc
->list
.next
!= it
->cache
)
2365 return list_entry(mfc
->list
.next
, struct mfc_cache
, list
);
2367 if (it
->cache
== &mrt
->mfc_unres_queue
)
2370 BUG_ON(it
->cache
!= &mrt
->mfc_cache_array
[it
->ct
]);
2372 while (++it
->ct
< MFC_LINES
) {
2373 it
->cache
= &mrt
->mfc_cache_array
[it
->ct
];
2374 if (list_empty(it
->cache
))
2376 return list_first_entry(it
->cache
, struct mfc_cache
, list
);
2379 /* exhausted cache_array, show unresolved */
2381 it
->cache
= &mrt
->mfc_unres_queue
;
2384 spin_lock_bh(&mfc_unres_lock
);
2385 if (!list_empty(it
->cache
))
2386 return list_first_entry(it
->cache
, struct mfc_cache
, list
);
2389 spin_unlock_bh(&mfc_unres_lock
);
2395 static void ipmr_mfc_seq_stop(struct seq_file
*seq
, void *v
)
2397 struct ipmr_mfc_iter
*it
= seq
->private;
2398 struct mr_table
*mrt
= it
->mrt
;
2400 if (it
->cache
== &mrt
->mfc_unres_queue
)
2401 spin_unlock_bh(&mfc_unres_lock
);
2402 else if (it
->cache
== &mrt
->mfc_cache_array
[it
->ct
])
2406 static int ipmr_mfc_seq_show(struct seq_file
*seq
, void *v
)
2410 if (v
== SEQ_START_TOKEN
) {
2412 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2414 const struct mfc_cache
*mfc
= v
;
2415 const struct ipmr_mfc_iter
*it
= seq
->private;
2416 const struct mr_table
*mrt
= it
->mrt
;
2418 seq_printf(seq
, "%08X %08X %-3hd",
2419 (__force u32
) mfc
->mfc_mcastgrp
,
2420 (__force u32
) mfc
->mfc_origin
,
2423 if (it
->cache
!= &mrt
->mfc_unres_queue
) {
2424 seq_printf(seq
, " %8lu %8lu %8lu",
2425 mfc
->mfc_un
.res
.pkt
,
2426 mfc
->mfc_un
.res
.bytes
,
2427 mfc
->mfc_un
.res
.wrong_if
);
2428 for (n
= mfc
->mfc_un
.res
.minvif
;
2429 n
< mfc
->mfc_un
.res
.maxvif
; n
++) {
2430 if (VIF_EXISTS(mrt
, n
) &&
2431 mfc
->mfc_un
.res
.ttls
[n
] < 255)
2434 n
, mfc
->mfc_un
.res
.ttls
[n
]);
2437 /* unresolved mfc_caches don't contain
2438 * pkt, bytes and wrong_if values
2440 seq_printf(seq
, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2442 seq_putc(seq
, '\n');
2447 static const struct seq_operations ipmr_mfc_seq_ops
= {
2448 .start
= ipmr_mfc_seq_start
,
2449 .next
= ipmr_mfc_seq_next
,
2450 .stop
= ipmr_mfc_seq_stop
,
2451 .show
= ipmr_mfc_seq_show
,
2454 static int ipmr_mfc_open(struct inode
*inode
, struct file
*file
)
2456 return seq_open_net(inode
, file
, &ipmr_mfc_seq_ops
,
2457 sizeof(struct ipmr_mfc_iter
));
2460 static const struct file_operations ipmr_mfc_fops
= {
2461 .owner
= THIS_MODULE
,
2462 .open
= ipmr_mfc_open
,
2464 .llseek
= seq_lseek
,
2465 .release
= seq_release_net
,
2469 #ifdef CONFIG_IP_PIMSM_V2
2470 static const struct net_protocol pim_protocol
= {
2478 * Setup for IP multicast routing
2480 static int __net_init
ipmr_net_init(struct net
*net
)
2484 err
= ipmr_rules_init(net
);
2488 #ifdef CONFIG_PROC_FS
2490 if (!proc_net_fops_create(net
, "ip_mr_vif", 0, &ipmr_vif_fops
))
2492 if (!proc_net_fops_create(net
, "ip_mr_cache", 0, &ipmr_mfc_fops
))
2493 goto proc_cache_fail
;
2497 #ifdef CONFIG_PROC_FS
2499 proc_net_remove(net
, "ip_mr_vif");
2501 ipmr_rules_exit(net
);
2507 static void __net_exit
ipmr_net_exit(struct net
*net
)
2509 #ifdef CONFIG_PROC_FS
2510 proc_net_remove(net
, "ip_mr_cache");
2511 proc_net_remove(net
, "ip_mr_vif");
2513 ipmr_rules_exit(net
);
2516 static struct pernet_operations ipmr_net_ops
= {
2517 .init
= ipmr_net_init
,
2518 .exit
= ipmr_net_exit
,
2521 int __init
ip_mr_init(void)
2525 mrt_cachep
= kmem_cache_create("ip_mrt_cache",
2526 sizeof(struct mfc_cache
),
2527 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
,
2532 err
= register_pernet_subsys(&ipmr_net_ops
);
2534 goto reg_pernet_fail
;
2536 err
= register_netdevice_notifier(&ip_mr_notifier
);
2538 goto reg_notif_fail
;
2539 #ifdef CONFIG_IP_PIMSM_V2
2540 if (inet_add_protocol(&pim_protocol
, IPPROTO_PIM
) < 0) {
2541 pr_err("%s: can't add PIM protocol\n", __func__
);
2543 goto add_proto_fail
;
2546 rtnl_register(RTNL_FAMILY_IPMR
, RTM_GETROUTE
,
2547 NULL
, ipmr_rtm_dumproute
, NULL
);
2550 #ifdef CONFIG_IP_PIMSM_V2
2552 unregister_netdevice_notifier(&ip_mr_notifier
);
2555 unregister_pernet_subsys(&ipmr_net_ops
);
2557 kmem_cache_destroy(mrt_cachep
);