2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
61 #include <asm/tlbflush.h>
65 static struct kmem_cache
*anon_vma_cachep
;
66 static struct kmem_cache
*anon_vma_chain_cachep
;
68 static inline struct anon_vma
*anon_vma_alloc(void)
70 struct anon_vma
*anon_vma
;
72 anon_vma
= kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
74 atomic_set(&anon_vma
->refcount
, 1);
75 anon_vma
->degree
= 1; /* Reference for first vma */
76 anon_vma
->parent
= anon_vma
;
78 * Initialise the anon_vma root to point to itself. If called
79 * from fork, the root will be reset to the parents anon_vma.
81 anon_vma
->root
= anon_vma
;
87 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
89 VM_BUG_ON(atomic_read(&anon_vma
->refcount
));
92 * Synchronize against page_lock_anon_vma_read() such that
93 * we can safely hold the lock without the anon_vma getting
96 * Relies on the full mb implied by the atomic_dec_and_test() from
97 * put_anon_vma() against the acquire barrier implied by
98 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
100 * page_lock_anon_vma_read() VS put_anon_vma()
101 * down_read_trylock() atomic_dec_and_test()
103 * atomic_read() rwsem_is_locked()
105 * LOCK should suffice since the actual taking of the lock must
106 * happen _before_ what follows.
109 if (rwsem_is_locked(&anon_vma
->root
->rwsem
)) {
110 anon_vma_lock_write(anon_vma
);
111 anon_vma_unlock_write(anon_vma
);
114 kmem_cache_free(anon_vma_cachep
, anon_vma
);
117 static inline struct anon_vma_chain
*anon_vma_chain_alloc(gfp_t gfp
)
119 return kmem_cache_alloc(anon_vma_chain_cachep
, gfp
);
122 static void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
124 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
127 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
128 struct anon_vma_chain
*avc
,
129 struct anon_vma
*anon_vma
)
132 avc
->anon_vma
= anon_vma
;
133 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
134 anon_vma_interval_tree_insert(avc
, &anon_vma
->rb_root
);
138 * anon_vma_prepare - attach an anon_vma to a memory region
139 * @vma: the memory region in question
141 * This makes sure the memory mapping described by 'vma' has
142 * an 'anon_vma' attached to it, so that we can associate the
143 * anonymous pages mapped into it with that anon_vma.
145 * The common case will be that we already have one, but if
146 * not we either need to find an adjacent mapping that we
147 * can re-use the anon_vma from (very common when the only
148 * reason for splitting a vma has been mprotect()), or we
149 * allocate a new one.
151 * Anon-vma allocations are very subtle, because we may have
152 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
153 * and that may actually touch the spinlock even in the newly
154 * allocated vma (it depends on RCU to make sure that the
155 * anon_vma isn't actually destroyed).
157 * As a result, we need to do proper anon_vma locking even
158 * for the new allocation. At the same time, we do not want
159 * to do any locking for the common case of already having
162 * This must be called with the mmap_sem held for reading.
164 int anon_vma_prepare(struct vm_area_struct
*vma
)
166 struct anon_vma
*anon_vma
= vma
->anon_vma
;
167 struct anon_vma_chain
*avc
;
170 if (unlikely(!anon_vma
)) {
171 struct mm_struct
*mm
= vma
->vm_mm
;
172 struct anon_vma
*allocated
;
174 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
178 anon_vma
= find_mergeable_anon_vma(vma
);
181 anon_vma
= anon_vma_alloc();
182 if (unlikely(!anon_vma
))
183 goto out_enomem_free_avc
;
184 allocated
= anon_vma
;
187 anon_vma_lock_write(anon_vma
);
188 /* page_table_lock to protect against threads */
189 spin_lock(&mm
->page_table_lock
);
190 if (likely(!vma
->anon_vma
)) {
191 vma
->anon_vma
= anon_vma
;
192 anon_vma_chain_link(vma
, avc
, anon_vma
);
193 /* vma reference or self-parent link for new root */
198 spin_unlock(&mm
->page_table_lock
);
199 anon_vma_unlock_write(anon_vma
);
201 if (unlikely(allocated
))
202 put_anon_vma(allocated
);
204 anon_vma_chain_free(avc
);
209 anon_vma_chain_free(avc
);
215 * This is a useful helper function for locking the anon_vma root as
216 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
219 * Such anon_vma's should have the same root, so you'd expect to see
220 * just a single mutex_lock for the whole traversal.
222 static inline struct anon_vma
*lock_anon_vma_root(struct anon_vma
*root
, struct anon_vma
*anon_vma
)
224 struct anon_vma
*new_root
= anon_vma
->root
;
225 if (new_root
!= root
) {
226 if (WARN_ON_ONCE(root
))
227 up_write(&root
->rwsem
);
229 down_write(&root
->rwsem
);
234 static inline void unlock_anon_vma_root(struct anon_vma
*root
)
237 up_write(&root
->rwsem
);
241 * Attach the anon_vmas from src to dst.
242 * Returns 0 on success, -ENOMEM on failure.
244 * If dst->anon_vma is NULL this function tries to find and reuse existing
245 * anon_vma which has no vmas and only one child anon_vma. This prevents
246 * degradation of anon_vma hierarchy to endless linear chain in case of
247 * constantly forking task. On the other hand, an anon_vma with more than one
248 * child isn't reused even if there was no alive vma, thus rmap walker has a
249 * good chance of avoiding scanning the whole hierarchy when it searches where
252 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
254 struct anon_vma_chain
*avc
, *pavc
;
255 struct anon_vma
*root
= NULL
;
257 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
258 struct anon_vma
*anon_vma
;
260 avc
= anon_vma_chain_alloc(GFP_NOWAIT
| __GFP_NOWARN
);
261 if (unlikely(!avc
)) {
262 unlock_anon_vma_root(root
);
264 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
268 anon_vma
= pavc
->anon_vma
;
269 root
= lock_anon_vma_root(root
, anon_vma
);
270 anon_vma_chain_link(dst
, avc
, anon_vma
);
273 * Reuse existing anon_vma if its degree lower than two,
274 * that means it has no vma and only one anon_vma child.
276 * Do not chose parent anon_vma, otherwise first child
277 * will always reuse it. Root anon_vma is never reused:
278 * it has self-parent reference and at least one child.
280 if (!dst
->anon_vma
&& anon_vma
!= src
->anon_vma
&&
281 anon_vma
->degree
< 2)
282 dst
->anon_vma
= anon_vma
;
285 dst
->anon_vma
->degree
++;
286 unlock_anon_vma_root(root
);
290 unlink_anon_vmas(dst
);
295 * Attach vma to its own anon_vma, as well as to the anon_vmas that
296 * the corresponding VMA in the parent process is attached to.
297 * Returns 0 on success, non-zero on failure.
299 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
301 struct anon_vma_chain
*avc
;
302 struct anon_vma
*anon_vma
;
305 /* Don't bother if the parent process has no anon_vma here. */
309 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
310 vma
->anon_vma
= NULL
;
313 * First, attach the new VMA to the parent VMA's anon_vmas,
314 * so rmap can find non-COWed pages in child processes.
316 error
= anon_vma_clone(vma
, pvma
);
320 /* An existing anon_vma has been reused, all done then. */
324 /* Then add our own anon_vma. */
325 anon_vma
= anon_vma_alloc();
328 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
330 goto out_error_free_anon_vma
;
333 * The root anon_vma's spinlock is the lock actually used when we
334 * lock any of the anon_vmas in this anon_vma tree.
336 anon_vma
->root
= pvma
->anon_vma
->root
;
337 anon_vma
->parent
= pvma
->anon_vma
;
339 * With refcounts, an anon_vma can stay around longer than the
340 * process it belongs to. The root anon_vma needs to be pinned until
341 * this anon_vma is freed, because the lock lives in the root.
343 get_anon_vma(anon_vma
->root
);
344 /* Mark this anon_vma as the one where our new (COWed) pages go. */
345 vma
->anon_vma
= anon_vma
;
346 anon_vma_lock_write(anon_vma
);
347 anon_vma_chain_link(vma
, avc
, anon_vma
);
348 anon_vma
->parent
->degree
++;
349 anon_vma_unlock_write(anon_vma
);
353 out_error_free_anon_vma
:
354 put_anon_vma(anon_vma
);
356 unlink_anon_vmas(vma
);
360 void unlink_anon_vmas(struct vm_area_struct
*vma
)
362 struct anon_vma_chain
*avc
, *next
;
363 struct anon_vma
*root
= NULL
;
366 * Unlink each anon_vma chained to the VMA. This list is ordered
367 * from newest to oldest, ensuring the root anon_vma gets freed last.
369 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
370 struct anon_vma
*anon_vma
= avc
->anon_vma
;
372 root
= lock_anon_vma_root(root
, anon_vma
);
373 anon_vma_interval_tree_remove(avc
, &anon_vma
->rb_root
);
376 * Leave empty anon_vmas on the list - we'll need
377 * to free them outside the lock.
379 if (RB_EMPTY_ROOT(&anon_vma
->rb_root
)) {
380 anon_vma
->parent
->degree
--;
384 list_del(&avc
->same_vma
);
385 anon_vma_chain_free(avc
);
388 vma
->anon_vma
->degree
--;
389 unlock_anon_vma_root(root
);
392 * Iterate the list once more, it now only contains empty and unlinked
393 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
394 * needing to write-acquire the anon_vma->root->rwsem.
396 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
397 struct anon_vma
*anon_vma
= avc
->anon_vma
;
399 BUG_ON(anon_vma
->degree
);
400 put_anon_vma(anon_vma
);
402 list_del(&avc
->same_vma
);
403 anon_vma_chain_free(avc
);
407 static void anon_vma_ctor(void *data
)
409 struct anon_vma
*anon_vma
= data
;
411 init_rwsem(&anon_vma
->rwsem
);
412 atomic_set(&anon_vma
->refcount
, 0);
413 anon_vma
->rb_root
= RB_ROOT
;
416 void __init
anon_vma_init(void)
418 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
419 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
420 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
, SLAB_PANIC
);
424 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
426 * Since there is no serialization what so ever against page_remove_rmap()
427 * the best this function can do is return a locked anon_vma that might
428 * have been relevant to this page.
430 * The page might have been remapped to a different anon_vma or the anon_vma
431 * returned may already be freed (and even reused).
433 * In case it was remapped to a different anon_vma, the new anon_vma will be a
434 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
435 * ensure that any anon_vma obtained from the page will still be valid for as
436 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
438 * All users of this function must be very careful when walking the anon_vma
439 * chain and verify that the page in question is indeed mapped in it
440 * [ something equivalent to page_mapped_in_vma() ].
442 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
443 * that the anon_vma pointer from page->mapping is valid if there is a
444 * mapcount, we can dereference the anon_vma after observing those.
446 struct anon_vma
*page_get_anon_vma(struct page
*page
)
448 struct anon_vma
*anon_vma
= NULL
;
449 unsigned long anon_mapping
;
452 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
453 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
455 if (!page_mapped(page
))
458 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
459 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
465 * If this page is still mapped, then its anon_vma cannot have been
466 * freed. But if it has been unmapped, we have no security against the
467 * anon_vma structure being freed and reused (for another anon_vma:
468 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
469 * above cannot corrupt).
471 if (!page_mapped(page
)) {
473 put_anon_vma(anon_vma
);
483 * Similar to page_get_anon_vma() except it locks the anon_vma.
485 * Its a little more complex as it tries to keep the fast path to a single
486 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
487 * reference like with page_get_anon_vma() and then block on the mutex.
489 struct anon_vma
*page_lock_anon_vma_read(struct page
*page
)
491 struct anon_vma
*anon_vma
= NULL
;
492 struct anon_vma
*root_anon_vma
;
493 unsigned long anon_mapping
;
496 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
497 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
499 if (!page_mapped(page
))
502 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
503 root_anon_vma
= ACCESS_ONCE(anon_vma
->root
);
504 if (down_read_trylock(&root_anon_vma
->rwsem
)) {
506 * If the page is still mapped, then this anon_vma is still
507 * its anon_vma, and holding the mutex ensures that it will
508 * not go away, see anon_vma_free().
510 if (!page_mapped(page
)) {
511 up_read(&root_anon_vma
->rwsem
);
517 /* trylock failed, we got to sleep */
518 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
523 if (!page_mapped(page
)) {
525 put_anon_vma(anon_vma
);
529 /* we pinned the anon_vma, its safe to sleep */
531 anon_vma_lock_read(anon_vma
);
533 if (atomic_dec_and_test(&anon_vma
->refcount
)) {
535 * Oops, we held the last refcount, release the lock
536 * and bail -- can't simply use put_anon_vma() because
537 * we'll deadlock on the anon_vma_lock_write() recursion.
539 anon_vma_unlock_read(anon_vma
);
540 __put_anon_vma(anon_vma
);
551 void page_unlock_anon_vma_read(struct anon_vma
*anon_vma
)
553 anon_vma_unlock_read(anon_vma
);
557 * At what user virtual address is page expected in @vma?
559 static inline unsigned long
560 __vma_address(struct page
*page
, struct vm_area_struct
*vma
)
562 pgoff_t pgoff
= page_to_pgoff(page
);
563 return vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
567 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
569 unsigned long address
= __vma_address(page
, vma
);
571 /* page should be within @vma mapping range */
572 VM_BUG_ON_VMA(address
< vma
->vm_start
|| address
>= vma
->vm_end
, vma
);
578 * At what user virtual address is page expected in vma?
579 * Caller should check the page is actually part of the vma.
581 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
583 unsigned long address
;
584 if (PageAnon(page
)) {
585 struct anon_vma
*page__anon_vma
= page_anon_vma(page
);
587 * Note: swapoff's unuse_vma() is more efficient with this
588 * check, and needs it to match anon_vma when KSM is active.
590 if (!vma
->anon_vma
|| !page__anon_vma
||
591 vma
->anon_vma
->root
!= page__anon_vma
->root
)
593 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
595 vma
->vm_file
->f_mapping
!= page
->mapping
)
599 address
= __vma_address(page
, vma
);
600 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
605 pmd_t
*mm_find_pmd(struct mm_struct
*mm
, unsigned long address
)
612 pgd
= pgd_offset(mm
, address
);
613 if (!pgd_present(*pgd
))
616 pud
= pud_offset(pgd
, address
);
617 if (!pud_present(*pud
))
620 pmd
= pmd_offset(pud
, address
);
622 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
623 * without holding anon_vma lock for write. So when looking for a
624 * genuine pmde (in which to find pte), test present and !THP together.
628 if (!pmd_present(pmde
) || pmd_trans_huge(pmde
))
635 * Check that @page is mapped at @address into @mm.
637 * If @sync is false, page_check_address may perform a racy check to avoid
638 * the page table lock when the pte is not present (helpful when reclaiming
639 * highly shared pages).
641 * On success returns with pte mapped and locked.
643 pte_t
*__page_check_address(struct page
*page
, struct mm_struct
*mm
,
644 unsigned long address
, spinlock_t
**ptlp
, int sync
)
650 if (unlikely(PageHuge(page
))) {
651 /* when pud is not present, pte will be NULL */
652 pte
= huge_pte_offset(mm
, address
);
656 ptl
= huge_pte_lockptr(page_hstate(page
), mm
, pte
);
660 pmd
= mm_find_pmd(mm
, address
);
664 pte
= pte_offset_map(pmd
, address
);
665 /* Make a quick check before getting the lock */
666 if (!sync
&& !pte_present(*pte
)) {
671 ptl
= pte_lockptr(mm
, pmd
);
674 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
678 pte_unmap_unlock(pte
, ptl
);
683 * page_mapped_in_vma - check whether a page is really mapped in a VMA
684 * @page: the page to test
685 * @vma: the VMA to test
687 * Returns 1 if the page is mapped into the page tables of the VMA, 0
688 * if the page is not mapped into the page tables of this VMA. Only
689 * valid for normal file or anonymous VMAs.
691 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
693 unsigned long address
;
697 address
= __vma_address(page
, vma
);
698 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
700 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
701 if (!pte
) /* the page is not in this mm */
703 pte_unmap_unlock(pte
, ptl
);
708 struct page_referenced_arg
{
711 unsigned long vm_flags
;
712 struct mem_cgroup
*memcg
;
715 * arg: page_referenced_arg will be passed
717 static int page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
718 unsigned long address
, void *arg
)
720 struct mm_struct
*mm
= vma
->vm_mm
;
723 struct page_referenced_arg
*pra
= arg
;
725 if (unlikely(PageTransHuge(page
))) {
729 * rmap might return false positives; we must filter
730 * these out using page_check_address_pmd().
732 pmd
= page_check_address_pmd(page
, mm
, address
,
733 PAGE_CHECK_ADDRESS_PMD_FLAG
, &ptl
);
737 if (vma
->vm_flags
& VM_LOCKED
) {
739 pra
->vm_flags
|= VM_LOCKED
;
740 return SWAP_FAIL
; /* To break the loop */
743 /* go ahead even if the pmd is pmd_trans_splitting() */
744 if (pmdp_clear_flush_young_notify(vma
, address
, pmd
))
751 * rmap might return false positives; we must filter
752 * these out using page_check_address().
754 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
758 if (vma
->vm_flags
& VM_LOCKED
) {
759 pte_unmap_unlock(pte
, ptl
);
760 pra
->vm_flags
|= VM_LOCKED
;
761 return SWAP_FAIL
; /* To break the loop */
764 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
766 * Don't treat a reference through a sequentially read
767 * mapping as such. If the page has been used in
768 * another mapping, we will catch it; if this other
769 * mapping is already gone, the unmap path will have
770 * set PG_referenced or activated the page.
772 if (likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
775 pte_unmap_unlock(pte
, ptl
);
780 pra
->vm_flags
|= vma
->vm_flags
;
785 return SWAP_SUCCESS
; /* To break the loop */
790 static bool invalid_page_referenced_vma(struct vm_area_struct
*vma
, void *arg
)
792 struct page_referenced_arg
*pra
= arg
;
793 struct mem_cgroup
*memcg
= pra
->memcg
;
795 if (!mm_match_cgroup(vma
->vm_mm
, memcg
))
802 * page_referenced - test if the page was referenced
803 * @page: the page to test
804 * @is_locked: caller holds lock on the page
805 * @memcg: target memory cgroup
806 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
808 * Quick test_and_clear_referenced for all mappings to a page,
809 * returns the number of ptes which referenced the page.
811 int page_referenced(struct page
*page
,
813 struct mem_cgroup
*memcg
,
814 unsigned long *vm_flags
)
818 struct page_referenced_arg pra
= {
819 .mapcount
= page_mapcount(page
),
822 struct rmap_walk_control rwc
= {
823 .rmap_one
= page_referenced_one
,
825 .anon_lock
= page_lock_anon_vma_read
,
829 if (!page_mapped(page
))
832 if (!page_rmapping(page
))
835 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
836 we_locked
= trylock_page(page
);
842 * If we are reclaiming on behalf of a cgroup, skip
843 * counting on behalf of references from different
847 rwc
.invalid_vma
= invalid_page_referenced_vma
;
850 ret
= rmap_walk(page
, &rwc
);
851 *vm_flags
= pra
.vm_flags
;
856 return pra
.referenced
;
859 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
860 unsigned long address
, void *arg
)
862 struct mm_struct
*mm
= vma
->vm_mm
;
868 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
872 if (pte_dirty(*pte
) || pte_write(*pte
)) {
875 flush_cache_page(vma
, address
, pte_pfn(*pte
));
876 entry
= ptep_clear_flush(vma
, address
, pte
);
877 entry
= pte_wrprotect(entry
);
878 entry
= pte_mkclean(entry
);
879 set_pte_at(mm
, address
, pte
, entry
);
883 pte_unmap_unlock(pte
, ptl
);
886 mmu_notifier_invalidate_page(mm
, address
);
893 static bool invalid_mkclean_vma(struct vm_area_struct
*vma
, void *arg
)
895 if (vma
->vm_flags
& VM_SHARED
)
901 int page_mkclean(struct page
*page
)
904 struct address_space
*mapping
;
905 struct rmap_walk_control rwc
= {
906 .arg
= (void *)&cleaned
,
907 .rmap_one
= page_mkclean_one
,
908 .invalid_vma
= invalid_mkclean_vma
,
911 BUG_ON(!PageLocked(page
));
913 if (!page_mapped(page
))
916 mapping
= page_mapping(page
);
920 rmap_walk(page
, &rwc
);
924 EXPORT_SYMBOL_GPL(page_mkclean
);
927 * page_move_anon_rmap - move a page to our anon_vma
928 * @page: the page to move to our anon_vma
929 * @vma: the vma the page belongs to
930 * @address: the user virtual address mapped
932 * When a page belongs exclusively to one process after a COW event,
933 * that page can be moved into the anon_vma that belongs to just that
934 * process, so the rmap code will not search the parent or sibling
937 void page_move_anon_rmap(struct page
*page
,
938 struct vm_area_struct
*vma
, unsigned long address
)
940 struct anon_vma
*anon_vma
= vma
->anon_vma
;
942 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
943 VM_BUG_ON_VMA(!anon_vma
, vma
);
944 VM_BUG_ON_PAGE(page
->index
!= linear_page_index(vma
, address
), page
);
946 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
947 page
->mapping
= (struct address_space
*) anon_vma
;
951 * __page_set_anon_rmap - set up new anonymous rmap
952 * @page: Page to add to rmap
953 * @vma: VM area to add page to.
954 * @address: User virtual address of the mapping
955 * @exclusive: the page is exclusively owned by the current process
957 static void __page_set_anon_rmap(struct page
*page
,
958 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
960 struct anon_vma
*anon_vma
= vma
->anon_vma
;
968 * If the page isn't exclusively mapped into this vma,
969 * we must use the _oldest_ possible anon_vma for the
973 anon_vma
= anon_vma
->root
;
975 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
976 page
->mapping
= (struct address_space
*) anon_vma
;
977 page
->index
= linear_page_index(vma
, address
);
981 * __page_check_anon_rmap - sanity check anonymous rmap addition
982 * @page: the page to add the mapping to
983 * @vma: the vm area in which the mapping is added
984 * @address: the user virtual address mapped
986 static void __page_check_anon_rmap(struct page
*page
,
987 struct vm_area_struct
*vma
, unsigned long address
)
989 #ifdef CONFIG_DEBUG_VM
991 * The page's anon-rmap details (mapping and index) are guaranteed to
992 * be set up correctly at this point.
994 * We have exclusion against page_add_anon_rmap because the caller
995 * always holds the page locked, except if called from page_dup_rmap,
996 * in which case the page is already known to be setup.
998 * We have exclusion against page_add_new_anon_rmap because those pages
999 * are initially only visible via the pagetables, and the pte is locked
1000 * over the call to page_add_new_anon_rmap.
1002 BUG_ON(page_anon_vma(page
)->root
!= vma
->anon_vma
->root
);
1003 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
1008 * page_add_anon_rmap - add pte mapping to an anonymous page
1009 * @page: the page to add the mapping to
1010 * @vma: the vm area in which the mapping is added
1011 * @address: the user virtual address mapped
1013 * The caller needs to hold the pte lock, and the page must be locked in
1014 * the anon_vma case: to serialize mapping,index checking after setting,
1015 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1016 * (but PageKsm is never downgraded to PageAnon).
1018 void page_add_anon_rmap(struct page
*page
,
1019 struct vm_area_struct
*vma
, unsigned long address
)
1021 do_page_add_anon_rmap(page
, vma
, address
, 0);
1025 * Special version of the above for do_swap_page, which often runs
1026 * into pages that are exclusively owned by the current process.
1027 * Everybody else should continue to use page_add_anon_rmap above.
1029 void do_page_add_anon_rmap(struct page
*page
,
1030 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1032 int first
= atomic_inc_and_test(&page
->_mapcount
);
1035 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1036 * these counters are not modified in interrupt context, and
1037 * pte lock(a spinlock) is held, which implies preemption
1040 if (PageTransHuge(page
))
1041 __inc_zone_page_state(page
,
1042 NR_ANON_TRANSPARENT_HUGEPAGES
);
1043 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1044 hpage_nr_pages(page
));
1046 if (unlikely(PageKsm(page
)))
1049 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1050 /* address might be in next vma when migration races vma_adjust */
1052 __page_set_anon_rmap(page
, vma
, address
, exclusive
);
1054 __page_check_anon_rmap(page
, vma
, address
);
1058 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1059 * @page: the page to add the mapping to
1060 * @vma: the vm area in which the mapping is added
1061 * @address: the user virtual address mapped
1063 * Same as page_add_anon_rmap but must only be called on *new* pages.
1064 * This means the inc-and-test can be bypassed.
1065 * Page does not have to be locked.
1067 void page_add_new_anon_rmap(struct page
*page
,
1068 struct vm_area_struct
*vma
, unsigned long address
)
1070 VM_BUG_ON_VMA(address
< vma
->vm_start
|| address
>= vma
->vm_end
, vma
);
1071 SetPageSwapBacked(page
);
1072 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
1073 if (PageTransHuge(page
))
1074 __inc_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1075 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1076 hpage_nr_pages(page
));
1077 __page_set_anon_rmap(page
, vma
, address
, 1);
1081 * page_add_file_rmap - add pte mapping to a file page
1082 * @page: the page to add the mapping to
1084 * The caller needs to hold the pte lock.
1086 void page_add_file_rmap(struct page
*page
)
1088 struct mem_cgroup
*memcg
;
1089 unsigned long flags
;
1092 memcg
= mem_cgroup_begin_page_stat(page
, &locked
, &flags
);
1093 if (atomic_inc_and_test(&page
->_mapcount
)) {
1094 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
1095 mem_cgroup_inc_page_stat(memcg
, MEM_CGROUP_STAT_FILE_MAPPED
);
1097 mem_cgroup_end_page_stat(memcg
, &locked
, &flags
);
1100 static void page_remove_file_rmap(struct page
*page
)
1102 struct mem_cgroup
*memcg
;
1103 unsigned long flags
;
1106 memcg
= mem_cgroup_begin_page_stat(page
, &locked
, &flags
);
1108 /* page still mapped by someone else? */
1109 if (!atomic_add_negative(-1, &page
->_mapcount
))
1112 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1113 if (unlikely(PageHuge(page
)))
1117 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1118 * these counters are not modified in interrupt context, and
1119 * pte lock(a spinlock) is held, which implies preemption disabled.
1121 __dec_zone_page_state(page
, NR_FILE_MAPPED
);
1122 mem_cgroup_dec_page_stat(memcg
, MEM_CGROUP_STAT_FILE_MAPPED
);
1124 if (unlikely(PageMlocked(page
)))
1125 clear_page_mlock(page
);
1127 mem_cgroup_end_page_stat(memcg
, &locked
, &flags
);
1131 * page_remove_rmap - take down pte mapping from a page
1132 * @page: page to remove mapping from
1134 * The caller needs to hold the pte lock.
1136 void page_remove_rmap(struct page
*page
)
1138 if (!PageAnon(page
)) {
1139 page_remove_file_rmap(page
);
1143 /* page still mapped by someone else? */
1144 if (!atomic_add_negative(-1, &page
->_mapcount
))
1147 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1148 if (unlikely(PageHuge(page
)))
1152 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1153 * these counters are not modified in interrupt context, and
1154 * pte lock(a spinlock) is held, which implies preemption disabled.
1156 if (PageTransHuge(page
))
1157 __dec_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1159 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1160 -hpage_nr_pages(page
));
1162 if (unlikely(PageMlocked(page
)))
1163 clear_page_mlock(page
);
1166 * It would be tidy to reset the PageAnon mapping here,
1167 * but that might overwrite a racing page_add_anon_rmap
1168 * which increments mapcount after us but sets mapping
1169 * before us: so leave the reset to free_hot_cold_page,
1170 * and remember that it's only reliable while mapped.
1171 * Leaving it set also helps swapoff to reinstate ptes
1172 * faster for those pages still in swapcache.
1177 * @arg: enum ttu_flags will be passed to this argument
1179 static int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
1180 unsigned long address
, void *arg
)
1182 struct mm_struct
*mm
= vma
->vm_mm
;
1186 int ret
= SWAP_AGAIN
;
1187 enum ttu_flags flags
= (enum ttu_flags
)arg
;
1189 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
1194 * If the page is mlock()d, we cannot swap it out.
1195 * If it's recently referenced (perhaps page_referenced
1196 * skipped over this mm) then we should reactivate it.
1198 if (!(flags
& TTU_IGNORE_MLOCK
)) {
1199 if (vma
->vm_flags
& VM_LOCKED
)
1202 if (flags
& TTU_MUNLOCK
)
1205 if (!(flags
& TTU_IGNORE_ACCESS
)) {
1206 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
1212 /* Nuke the page table entry. */
1213 flush_cache_page(vma
, address
, page_to_pfn(page
));
1214 pteval
= ptep_clear_flush(vma
, address
, pte
);
1216 /* Move the dirty bit to the physical page now the pte is gone. */
1217 if (pte_dirty(pteval
))
1218 set_page_dirty(page
);
1220 /* Update high watermark before we lower rss */
1221 update_hiwater_rss(mm
);
1223 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
1224 if (!PageHuge(page
)) {
1226 dec_mm_counter(mm
, MM_ANONPAGES
);
1228 dec_mm_counter(mm
, MM_FILEPAGES
);
1230 set_pte_at(mm
, address
, pte
,
1231 swp_entry_to_pte(make_hwpoison_entry(page
)));
1232 } else if (pte_unused(pteval
)) {
1234 * The guest indicated that the page content is of no
1235 * interest anymore. Simply discard the pte, vmscan
1236 * will take care of the rest.
1239 dec_mm_counter(mm
, MM_ANONPAGES
);
1241 dec_mm_counter(mm
, MM_FILEPAGES
);
1242 } else if (PageAnon(page
)) {
1243 swp_entry_t entry
= { .val
= page_private(page
) };
1246 if (PageSwapCache(page
)) {
1248 * Store the swap location in the pte.
1249 * See handle_pte_fault() ...
1251 if (swap_duplicate(entry
) < 0) {
1252 set_pte_at(mm
, address
, pte
, pteval
);
1256 if (list_empty(&mm
->mmlist
)) {
1257 spin_lock(&mmlist_lock
);
1258 if (list_empty(&mm
->mmlist
))
1259 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
1260 spin_unlock(&mmlist_lock
);
1262 dec_mm_counter(mm
, MM_ANONPAGES
);
1263 inc_mm_counter(mm
, MM_SWAPENTS
);
1264 } else if (IS_ENABLED(CONFIG_MIGRATION
)) {
1266 * Store the pfn of the page in a special migration
1267 * pte. do_swap_page() will wait until the migration
1268 * pte is removed and then restart fault handling.
1270 BUG_ON(!(flags
& TTU_MIGRATION
));
1271 entry
= make_migration_entry(page
, pte_write(pteval
));
1273 swp_pte
= swp_entry_to_pte(entry
);
1274 if (pte_soft_dirty(pteval
))
1275 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
1276 set_pte_at(mm
, address
, pte
, swp_pte
);
1277 BUG_ON(pte_file(*pte
));
1278 } else if (IS_ENABLED(CONFIG_MIGRATION
) &&
1279 (flags
& TTU_MIGRATION
)) {
1280 /* Establish migration entry for a file page */
1282 entry
= make_migration_entry(page
, pte_write(pteval
));
1283 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1285 dec_mm_counter(mm
, MM_FILEPAGES
);
1287 page_remove_rmap(page
);
1288 page_cache_release(page
);
1291 pte_unmap_unlock(pte
, ptl
);
1292 if (ret
!= SWAP_FAIL
&& !(flags
& TTU_MUNLOCK
))
1293 mmu_notifier_invalidate_page(mm
, address
);
1298 pte_unmap_unlock(pte
, ptl
);
1302 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1303 * unstable result and race. Plus, We can't wait here because
1304 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
1305 * if trylock failed, the page remain in evictable lru and later
1306 * vmscan could retry to move the page to unevictable lru if the
1307 * page is actually mlocked.
1309 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1310 if (vma
->vm_flags
& VM_LOCKED
) {
1311 mlock_vma_page(page
);
1314 up_read(&vma
->vm_mm
->mmap_sem
);
1320 * objrmap doesn't work for nonlinear VMAs because the assumption that
1321 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1322 * Consequently, given a particular page and its ->index, we cannot locate the
1323 * ptes which are mapping that page without an exhaustive linear search.
1325 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1326 * maps the file to which the target page belongs. The ->vm_private_data field
1327 * holds the current cursor into that scan. Successive searches will circulate
1328 * around the vma's virtual address space.
1330 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1331 * more scanning pressure is placed against them as well. Eventually pages
1332 * will become fully unmapped and are eligible for eviction.
1334 * For very sparsely populated VMAs this is a little inefficient - chances are
1335 * there there won't be many ptes located within the scan cluster. In this case
1336 * maybe we could scan further - to the end of the pte page, perhaps.
1338 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1339 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1340 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1341 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1343 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1344 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1346 static int try_to_unmap_cluster(unsigned long cursor
, unsigned int *mapcount
,
1347 struct vm_area_struct
*vma
, struct page
*check_page
)
1349 struct mm_struct
*mm
= vma
->vm_mm
;
1355 unsigned long address
;
1356 unsigned long mmun_start
; /* For mmu_notifiers */
1357 unsigned long mmun_end
; /* For mmu_notifiers */
1359 int ret
= SWAP_AGAIN
;
1362 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
1363 end
= address
+ CLUSTER_SIZE
;
1364 if (address
< vma
->vm_start
)
1365 address
= vma
->vm_start
;
1366 if (end
> vma
->vm_end
)
1369 pmd
= mm_find_pmd(mm
, address
);
1373 mmun_start
= address
;
1375 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1378 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1379 * keep the sem while scanning the cluster for mlocking pages.
1381 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1382 locked_vma
= (vma
->vm_flags
& VM_LOCKED
);
1384 up_read(&vma
->vm_mm
->mmap_sem
); /* don't need it */
1387 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1389 /* Update high watermark before we lower rss */
1390 update_hiwater_rss(mm
);
1392 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
1393 if (!pte_present(*pte
))
1395 page
= vm_normal_page(vma
, address
, *pte
);
1396 BUG_ON(!page
|| PageAnon(page
));
1399 if (page
== check_page
) {
1400 /* we know we have check_page locked */
1401 mlock_vma_page(page
);
1403 } else if (trylock_page(page
)) {
1405 * If we can lock the page, perform mlock.
1406 * Otherwise leave the page alone, it will be
1407 * eventually encountered again later.
1409 mlock_vma_page(page
);
1412 continue; /* don't unmap */
1416 * No need for _notify because we're within an
1417 * mmu_notifier_invalidate_range_ {start|end} scope.
1419 if (ptep_clear_flush_young(vma
, address
, pte
))
1422 /* Nuke the page table entry. */
1423 flush_cache_page(vma
, address
, pte_pfn(*pte
));
1424 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
1426 /* If nonlinear, store the file page offset in the pte. */
1427 if (page
->index
!= linear_page_index(vma
, address
)) {
1428 pte_t ptfile
= pgoff_to_pte(page
->index
);
1429 if (pte_soft_dirty(pteval
))
1430 ptfile
= pte_file_mksoft_dirty(ptfile
);
1431 set_pte_at(mm
, address
, pte
, ptfile
);
1434 /* Move the dirty bit to the physical page now the pte is gone. */
1435 if (pte_dirty(pteval
))
1436 set_page_dirty(page
);
1438 page_remove_rmap(page
);
1439 page_cache_release(page
);
1440 dec_mm_counter(mm
, MM_FILEPAGES
);
1443 pte_unmap_unlock(pte
- 1, ptl
);
1444 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1446 up_read(&vma
->vm_mm
->mmap_sem
);
1450 static int try_to_unmap_nonlinear(struct page
*page
,
1451 struct address_space
*mapping
, void *arg
)
1453 struct vm_area_struct
*vma
;
1454 int ret
= SWAP_AGAIN
;
1455 unsigned long cursor
;
1456 unsigned long max_nl_cursor
= 0;
1457 unsigned long max_nl_size
= 0;
1458 unsigned int mapcount
;
1460 list_for_each_entry(vma
,
1461 &mapping
->i_mmap_nonlinear
, shared
.nonlinear
) {
1463 cursor
= (unsigned long) vma
->vm_private_data
;
1464 if (cursor
> max_nl_cursor
)
1465 max_nl_cursor
= cursor
;
1466 cursor
= vma
->vm_end
- vma
->vm_start
;
1467 if (cursor
> max_nl_size
)
1468 max_nl_size
= cursor
;
1471 if (max_nl_size
== 0) { /* all nonlinears locked or reserved ? */
1476 * We don't try to search for this page in the nonlinear vmas,
1477 * and page_referenced wouldn't have found it anyway. Instead
1478 * just walk the nonlinear vmas trying to age and unmap some.
1479 * The mapcount of the page we came in with is irrelevant,
1480 * but even so use it as a guide to how hard we should try?
1482 mapcount
= page_mapcount(page
);
1488 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
1489 if (max_nl_cursor
== 0)
1490 max_nl_cursor
= CLUSTER_SIZE
;
1493 list_for_each_entry(vma
,
1494 &mapping
->i_mmap_nonlinear
, shared
.nonlinear
) {
1496 cursor
= (unsigned long) vma
->vm_private_data
;
1497 while (cursor
< max_nl_cursor
&&
1498 cursor
< vma
->vm_end
- vma
->vm_start
) {
1499 if (try_to_unmap_cluster(cursor
, &mapcount
,
1500 vma
, page
) == SWAP_MLOCK
)
1502 cursor
+= CLUSTER_SIZE
;
1503 vma
->vm_private_data
= (void *) cursor
;
1504 if ((int)mapcount
<= 0)
1507 vma
->vm_private_data
= (void *) max_nl_cursor
;
1510 max_nl_cursor
+= CLUSTER_SIZE
;
1511 } while (max_nl_cursor
<= max_nl_size
);
1514 * Don't loop forever (perhaps all the remaining pages are
1515 * in locked vmas). Reset cursor on all unreserved nonlinear
1516 * vmas, now forgetting on which ones it had fallen behind.
1518 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.nonlinear
)
1519 vma
->vm_private_data
= NULL
;
1524 bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1526 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1531 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1532 VM_STACK_INCOMPLETE_SETUP
)
1538 static bool invalid_migration_vma(struct vm_area_struct
*vma
, void *arg
)
1540 return is_vma_temporary_stack(vma
);
1543 static int page_not_mapped(struct page
*page
)
1545 return !page_mapped(page
);
1549 * try_to_unmap - try to remove all page table mappings to a page
1550 * @page: the page to get unmapped
1551 * @flags: action and flags
1553 * Tries to remove all the page table entries which are mapping this
1554 * page, used in the pageout path. Caller must hold the page lock.
1555 * Return values are:
1557 * SWAP_SUCCESS - we succeeded in removing all mappings
1558 * SWAP_AGAIN - we missed a mapping, try again later
1559 * SWAP_FAIL - the page is unswappable
1560 * SWAP_MLOCK - page is mlocked.
1562 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1565 struct rmap_walk_control rwc
= {
1566 .rmap_one
= try_to_unmap_one
,
1567 .arg
= (void *)flags
,
1568 .done
= page_not_mapped
,
1569 .file_nonlinear
= try_to_unmap_nonlinear
,
1570 .anon_lock
= page_lock_anon_vma_read
,
1573 VM_BUG_ON_PAGE(!PageHuge(page
) && PageTransHuge(page
), page
);
1576 * During exec, a temporary VMA is setup and later moved.
1577 * The VMA is moved under the anon_vma lock but not the
1578 * page tables leading to a race where migration cannot
1579 * find the migration ptes. Rather than increasing the
1580 * locking requirements of exec(), migration skips
1581 * temporary VMAs until after exec() completes.
1583 if ((flags
& TTU_MIGRATION
) && !PageKsm(page
) && PageAnon(page
))
1584 rwc
.invalid_vma
= invalid_migration_vma
;
1586 ret
= rmap_walk(page
, &rwc
);
1588 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1594 * try_to_munlock - try to munlock a page
1595 * @page: the page to be munlocked
1597 * Called from munlock code. Checks all of the VMAs mapping the page
1598 * to make sure nobody else has this page mlocked. The page will be
1599 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1601 * Return values are:
1603 * SWAP_AGAIN - no vma is holding page mlocked, or,
1604 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1605 * SWAP_FAIL - page cannot be located at present
1606 * SWAP_MLOCK - page is now mlocked.
1608 int try_to_munlock(struct page
*page
)
1611 struct rmap_walk_control rwc
= {
1612 .rmap_one
= try_to_unmap_one
,
1613 .arg
= (void *)TTU_MUNLOCK
,
1614 .done
= page_not_mapped
,
1616 * We don't bother to try to find the munlocked page in
1617 * nonlinears. It's costly. Instead, later, page reclaim logic
1618 * may call try_to_unmap() and recover PG_mlocked lazily.
1620 .file_nonlinear
= NULL
,
1621 .anon_lock
= page_lock_anon_vma_read
,
1625 VM_BUG_ON_PAGE(!PageLocked(page
) || PageLRU(page
), page
);
1627 ret
= rmap_walk(page
, &rwc
);
1631 void __put_anon_vma(struct anon_vma
*anon_vma
)
1633 struct anon_vma
*root
= anon_vma
->root
;
1635 anon_vma_free(anon_vma
);
1636 if (root
!= anon_vma
&& atomic_dec_and_test(&root
->refcount
))
1637 anon_vma_free(root
);
1640 static struct anon_vma
*rmap_walk_anon_lock(struct page
*page
,
1641 struct rmap_walk_control
*rwc
)
1643 struct anon_vma
*anon_vma
;
1646 return rwc
->anon_lock(page
);
1649 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1650 * because that depends on page_mapped(); but not all its usages
1651 * are holding mmap_sem. Users without mmap_sem are required to
1652 * take a reference count to prevent the anon_vma disappearing
1654 anon_vma
= page_anon_vma(page
);
1658 anon_vma_lock_read(anon_vma
);
1663 * rmap_walk_anon - do something to anonymous page using the object-based
1665 * @page: the page to be handled
1666 * @rwc: control variable according to each walk type
1668 * Find all the mappings of a page using the mapping pointer and the vma chains
1669 * contained in the anon_vma struct it points to.
1671 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1672 * where the page was found will be held for write. So, we won't recheck
1673 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1676 static int rmap_walk_anon(struct page
*page
, struct rmap_walk_control
*rwc
)
1678 struct anon_vma
*anon_vma
;
1680 struct anon_vma_chain
*avc
;
1681 int ret
= SWAP_AGAIN
;
1683 anon_vma
= rmap_walk_anon_lock(page
, rwc
);
1687 pgoff
= page_to_pgoff(page
);
1688 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1689 struct vm_area_struct
*vma
= avc
->vma
;
1690 unsigned long address
= vma_address(page
, vma
);
1692 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1695 ret
= rwc
->rmap_one(page
, vma
, address
, rwc
->arg
);
1696 if (ret
!= SWAP_AGAIN
)
1698 if (rwc
->done
&& rwc
->done(page
))
1701 anon_vma_unlock_read(anon_vma
);
1706 * rmap_walk_file - do something to file page using the object-based rmap method
1707 * @page: the page to be handled
1708 * @rwc: control variable according to each walk type
1710 * Find all the mappings of a page using the mapping pointer and the vma chains
1711 * contained in the address_space struct it points to.
1713 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1714 * where the page was found will be held for write. So, we won't recheck
1715 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1718 static int rmap_walk_file(struct page
*page
, struct rmap_walk_control
*rwc
)
1720 struct address_space
*mapping
= page
->mapping
;
1722 struct vm_area_struct
*vma
;
1723 int ret
= SWAP_AGAIN
;
1726 * The page lock not only makes sure that page->mapping cannot
1727 * suddenly be NULLified by truncation, it makes sure that the
1728 * structure at mapping cannot be freed and reused yet,
1729 * so we can safely take mapping->i_mmap_rwsem.
1731 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1736 pgoff
= page_to_pgoff(page
);
1737 i_mmap_lock_read(mapping
);
1738 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1739 unsigned long address
= vma_address(page
, vma
);
1741 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1744 ret
= rwc
->rmap_one(page
, vma
, address
, rwc
->arg
);
1745 if (ret
!= SWAP_AGAIN
)
1747 if (rwc
->done
&& rwc
->done(page
))
1751 if (!rwc
->file_nonlinear
)
1754 if (list_empty(&mapping
->i_mmap_nonlinear
))
1757 ret
= rwc
->file_nonlinear(page
, mapping
, rwc
->arg
);
1759 i_mmap_unlock_read(mapping
);
1763 int rmap_walk(struct page
*page
, struct rmap_walk_control
*rwc
)
1765 if (unlikely(PageKsm(page
)))
1766 return rmap_walk_ksm(page
, rwc
);
1767 else if (PageAnon(page
))
1768 return rmap_walk_anon(page
, rwc
);
1770 return rmap_walk_file(page
, rwc
);
1773 #ifdef CONFIG_HUGETLB_PAGE
1775 * The following three functions are for anonymous (private mapped) hugepages.
1776 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1777 * and no lru code, because we handle hugepages differently from common pages.
1779 static void __hugepage_set_anon_rmap(struct page
*page
,
1780 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1782 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1789 anon_vma
= anon_vma
->root
;
1791 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1792 page
->mapping
= (struct address_space
*) anon_vma
;
1793 page
->index
= linear_page_index(vma
, address
);
1796 void hugepage_add_anon_rmap(struct page
*page
,
1797 struct vm_area_struct
*vma
, unsigned long address
)
1799 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1802 BUG_ON(!PageLocked(page
));
1804 /* address might be in next vma when migration races vma_adjust */
1805 first
= atomic_inc_and_test(&page
->_mapcount
);
1807 __hugepage_set_anon_rmap(page
, vma
, address
, 0);
1810 void hugepage_add_new_anon_rmap(struct page
*page
,
1811 struct vm_area_struct
*vma
, unsigned long address
)
1813 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1814 atomic_set(&page
->_mapcount
, 0);
1815 __hugepage_set_anon_rmap(page
, vma
, address
, 1);
1817 #endif /* CONFIG_HUGETLB_PAGE */