2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
70 #include <linux/skbuff.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
83 int sysctl_ip_default_ttl __read_mostly
= IPDEFTTL
;
84 EXPORT_SYMBOL(sysctl_ip_default_ttl
);
86 /* Generate a checksum for an outgoing IP datagram. */
87 void ip_send_check(struct iphdr
*iph
)
90 iph
->check
= ip_fast_csum((unsigned char *)iph
, iph
->ihl
);
92 EXPORT_SYMBOL(ip_send_check
);
94 int __ip_local_out(struct sk_buff
*skb
)
96 struct iphdr
*iph
= ip_hdr(skb
);
98 iph
->tot_len
= htons(skb
->len
);
100 return nf_hook(NFPROTO_IPV4
, NF_INET_LOCAL_OUT
, skb
, NULL
,
101 skb_dst(skb
)->dev
, dst_output
);
104 int ip_local_out_sk(struct sock
*sk
, struct sk_buff
*skb
)
108 err
= __ip_local_out(skb
);
109 if (likely(err
== 1))
110 err
= dst_output_sk(sk
, skb
);
114 EXPORT_SYMBOL_GPL(ip_local_out_sk
);
116 static inline int ip_select_ttl(struct inet_sock
*inet
, struct dst_entry
*dst
)
118 int ttl
= inet
->uc_ttl
;
121 ttl
= ip4_dst_hoplimit(dst
);
126 * Add an ip header to a skbuff and send it out.
129 int ip_build_and_send_pkt(struct sk_buff
*skb
, struct sock
*sk
,
130 __be32 saddr
, __be32 daddr
, struct ip_options_rcu
*opt
)
132 struct inet_sock
*inet
= inet_sk(sk
);
133 struct rtable
*rt
= skb_rtable(skb
);
136 /* Build the IP header. */
137 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->opt
.optlen
: 0));
138 skb_reset_network_header(skb
);
142 iph
->tos
= inet
->tos
;
143 if (ip_dont_fragment(sk
, &rt
->dst
))
144 iph
->frag_off
= htons(IP_DF
);
147 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
148 iph
->daddr
= (opt
&& opt
->opt
.srr
? opt
->opt
.faddr
: daddr
);
150 iph
->protocol
= sk
->sk_protocol
;
151 ip_select_ident(skb
, sk
);
153 if (opt
&& opt
->opt
.optlen
) {
154 iph
->ihl
+= opt
->opt
.optlen
>>2;
155 ip_options_build(skb
, &opt
->opt
, daddr
, rt
, 0);
158 skb
->priority
= sk
->sk_priority
;
159 skb
->mark
= sk
->sk_mark
;
162 return ip_local_out(skb
);
164 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt
);
166 static inline int ip_finish_output2(struct sk_buff
*skb
)
168 struct dst_entry
*dst
= skb_dst(skb
);
169 struct rtable
*rt
= (struct rtable
*)dst
;
170 struct net_device
*dev
= dst
->dev
;
171 unsigned int hh_len
= LL_RESERVED_SPACE(dev
);
172 struct neighbour
*neigh
;
175 if (rt
->rt_type
== RTN_MULTICAST
) {
176 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUTMCAST
, skb
->len
);
177 } else if (rt
->rt_type
== RTN_BROADCAST
)
178 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUTBCAST
, skb
->len
);
180 /* Be paranoid, rather than too clever. */
181 if (unlikely(skb_headroom(skb
) < hh_len
&& dev
->header_ops
)) {
182 struct sk_buff
*skb2
;
184 skb2
= skb_realloc_headroom(skb
, LL_RESERVED_SPACE(dev
));
190 skb_set_owner_w(skb2
, skb
->sk
);
196 nexthop
= (__force u32
) rt_nexthop(rt
, ip_hdr(skb
)->daddr
);
197 neigh
= __ipv4_neigh_lookup_noref(dev
, nexthop
);
198 if (unlikely(!neigh
))
199 neigh
= __neigh_create(&arp_tbl
, &nexthop
, dev
, false);
200 if (!IS_ERR(neigh
)) {
201 int res
= dst_neigh_output(dst
, neigh
, skb
);
203 rcu_read_unlock_bh();
206 rcu_read_unlock_bh();
208 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
214 static int ip_finish_output_gso(struct sk_buff
*skb
)
216 netdev_features_t features
;
217 struct sk_buff
*segs
;
220 /* common case: locally created skb or seglen is <= mtu */
221 if (((IPCB(skb
)->flags
& IPSKB_FORWARDED
) == 0) ||
222 skb_gso_network_seglen(skb
) <= ip_skb_dst_mtu(skb
))
223 return ip_finish_output2(skb
);
225 /* Slowpath - GSO segment length is exceeding the dst MTU.
227 * This can happen in two cases:
228 * 1) TCP GRO packet, DF bit not set
229 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly
230 * from host network stack.
232 features
= netif_skb_features(skb
);
233 segs
= skb_gso_segment(skb
, features
& ~NETIF_F_GSO_MASK
);
234 if (IS_ERR_OR_NULL(segs
)) {
242 struct sk_buff
*nskb
= segs
->next
;
246 err
= ip_fragment(segs
, ip_finish_output2
);
256 static int ip_finish_output(struct sk_buff
*skb
)
258 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
259 /* Policy lookup after SNAT yielded a new policy */
260 if (skb_dst(skb
)->xfrm
!= NULL
) {
261 IPCB(skb
)->flags
|= IPSKB_REROUTED
;
262 return dst_output(skb
);
266 return ip_finish_output_gso(skb
);
268 if (skb
->len
> ip_skb_dst_mtu(skb
))
269 return ip_fragment(skb
, ip_finish_output2
);
271 return ip_finish_output2(skb
);
274 int ip_mc_output(struct sock
*sk
, struct sk_buff
*skb
)
276 struct rtable
*rt
= skb_rtable(skb
);
277 struct net_device
*dev
= rt
->dst
.dev
;
280 * If the indicated interface is up and running, send the packet.
282 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUT
, skb
->len
);
285 skb
->protocol
= htons(ETH_P_IP
);
288 * Multicasts are looped back for other local users
291 if (rt
->rt_flags
&RTCF_MULTICAST
) {
293 #ifdef CONFIG_IP_MROUTE
294 /* Small optimization: do not loopback not local frames,
295 which returned after forwarding; they will be dropped
296 by ip_mr_input in any case.
297 Note, that local frames are looped back to be delivered
300 This check is duplicated in ip_mr_input at the moment.
303 ((rt
->rt_flags
& RTCF_LOCAL
) ||
304 !(IPCB(skb
)->flags
& IPSKB_FORWARDED
))
307 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
309 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
310 newskb
, NULL
, newskb
->dev
,
314 /* Multicasts with ttl 0 must not go beyond the host */
316 if (ip_hdr(skb
)->ttl
== 0) {
322 if (rt
->rt_flags
&RTCF_BROADCAST
) {
323 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
325 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
, newskb
,
326 NULL
, newskb
->dev
, dev_loopback_xmit
);
329 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
, skb
, NULL
,
330 skb
->dev
, ip_finish_output
,
331 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
334 int ip_output(struct sock
*sk
, struct sk_buff
*skb
)
336 struct net_device
*dev
= skb_dst(skb
)->dev
;
338 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUT
, skb
->len
);
341 skb
->protocol
= htons(ETH_P_IP
);
343 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
, skb
, NULL
, dev
,
345 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
349 * copy saddr and daddr, possibly using 64bit load/stores
351 * iph->saddr = fl4->saddr;
352 * iph->daddr = fl4->daddr;
354 static void ip_copy_addrs(struct iphdr
*iph
, const struct flowi4
*fl4
)
356 BUILD_BUG_ON(offsetof(typeof(*fl4
), daddr
) !=
357 offsetof(typeof(*fl4
), saddr
) + sizeof(fl4
->saddr
));
358 memcpy(&iph
->saddr
, &fl4
->saddr
,
359 sizeof(fl4
->saddr
) + sizeof(fl4
->daddr
));
362 /* Note: skb->sk can be different from sk, in case of tunnels */
363 int ip_queue_xmit(struct sock
*sk
, struct sk_buff
*skb
, struct flowi
*fl
)
365 struct inet_sock
*inet
= inet_sk(sk
);
366 struct ip_options_rcu
*inet_opt
;
372 /* Skip all of this if the packet is already routed,
373 * f.e. by something like SCTP.
376 inet_opt
= rcu_dereference(inet
->inet_opt
);
378 rt
= skb_rtable(skb
);
382 /* Make sure we can route this packet. */
383 rt
= (struct rtable
*)__sk_dst_check(sk
, 0);
387 /* Use correct destination address if we have options. */
388 daddr
= inet
->inet_daddr
;
389 if (inet_opt
&& inet_opt
->opt
.srr
)
390 daddr
= inet_opt
->opt
.faddr
;
392 /* If this fails, retransmit mechanism of transport layer will
393 * keep trying until route appears or the connection times
396 rt
= ip_route_output_ports(sock_net(sk
), fl4
, sk
,
397 daddr
, inet
->inet_saddr
,
402 sk
->sk_bound_dev_if
);
405 sk_setup_caps(sk
, &rt
->dst
);
407 skb_dst_set_noref(skb
, &rt
->dst
);
410 if (inet_opt
&& inet_opt
->opt
.is_strictroute
&& rt
->rt_uses_gateway
)
413 /* OK, we know where to send it, allocate and build IP header. */
414 skb_push(skb
, sizeof(struct iphdr
) + (inet_opt
? inet_opt
->opt
.optlen
: 0));
415 skb_reset_network_header(skb
);
417 *((__be16
*)iph
) = htons((4 << 12) | (5 << 8) | (inet
->tos
& 0xff));
418 if (ip_dont_fragment(sk
, &rt
->dst
) && !skb
->ignore_df
)
419 iph
->frag_off
= htons(IP_DF
);
422 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
423 iph
->protocol
= sk
->sk_protocol
;
424 ip_copy_addrs(iph
, fl4
);
426 /* Transport layer set skb->h.foo itself. */
428 if (inet_opt
&& inet_opt
->opt
.optlen
) {
429 iph
->ihl
+= inet_opt
->opt
.optlen
>> 2;
430 ip_options_build(skb
, &inet_opt
->opt
, inet
->inet_daddr
, rt
, 0);
433 ip_select_ident_segs(skb
, sk
, skb_shinfo(skb
)->gso_segs
?: 1);
435 /* TODO : should we use skb->sk here instead of sk ? */
436 skb
->priority
= sk
->sk_priority
;
437 skb
->mark
= sk
->sk_mark
;
439 res
= ip_local_out(skb
);
445 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTNOROUTES
);
447 return -EHOSTUNREACH
;
449 EXPORT_SYMBOL(ip_queue_xmit
);
452 static void ip_copy_metadata(struct sk_buff
*to
, struct sk_buff
*from
)
454 to
->pkt_type
= from
->pkt_type
;
455 to
->priority
= from
->priority
;
456 to
->protocol
= from
->protocol
;
458 skb_dst_copy(to
, from
);
460 to
->mark
= from
->mark
;
462 /* Copy the flags to each fragment. */
463 IPCB(to
)->flags
= IPCB(from
)->flags
;
465 #ifdef CONFIG_NET_SCHED
466 to
->tc_index
= from
->tc_index
;
469 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
470 to
->ipvs_property
= from
->ipvs_property
;
472 skb_copy_secmark(to
, from
);
476 * This IP datagram is too large to be sent in one piece. Break it up into
477 * smaller pieces (each of size equal to IP header plus
478 * a block of the data of the original IP data part) that will yet fit in a
479 * single device frame, and queue such a frame for sending.
482 int ip_fragment(struct sk_buff
*skb
, int (*output
)(struct sk_buff
*))
486 struct net_device
*dev
;
487 struct sk_buff
*skb2
;
488 unsigned int mtu
, hlen
, left
, len
, ll_rs
;
490 __be16 not_last_frag
;
491 struct rtable
*rt
= skb_rtable(skb
);
497 * Point into the IP datagram header.
502 mtu
= ip_skb_dst_mtu(skb
);
503 if (unlikely(((iph
->frag_off
& htons(IP_DF
)) && !skb
->ignore_df
) ||
504 (IPCB(skb
)->frag_max_size
&&
505 IPCB(skb
)->frag_max_size
> mtu
))) {
506 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
507 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_FRAG_NEEDED
,
514 * Setup starting values.
518 mtu
= mtu
- hlen
; /* Size of data space */
519 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
521 mtu
-= nf_bridge_mtu_reduction(skb
);
523 IPCB(skb
)->flags
|= IPSKB_FRAG_COMPLETE
;
525 /* When frag_list is given, use it. First, check its validity:
526 * some transformers could create wrong frag_list or break existing
527 * one, it is not prohibited. In this case fall back to copying.
529 * LATER: this step can be merged to real generation of fragments,
530 * we can switch to copy when see the first bad fragment.
532 if (skb_has_frag_list(skb
)) {
533 struct sk_buff
*frag
, *frag2
;
534 int first_len
= skb_pagelen(skb
);
536 if (first_len
- hlen
> mtu
||
537 ((first_len
- hlen
) & 7) ||
538 ip_is_fragment(iph
) ||
542 skb_walk_frags(skb
, frag
) {
543 /* Correct geometry. */
544 if (frag
->len
> mtu
||
545 ((frag
->len
& 7) && frag
->next
) ||
546 skb_headroom(frag
) < hlen
)
547 goto slow_path_clean
;
549 /* Partially cloned skb? */
550 if (skb_shared(frag
))
551 goto slow_path_clean
;
556 frag
->destructor
= sock_wfree
;
558 skb
->truesize
-= frag
->truesize
;
561 /* Everything is OK. Generate! */
565 frag
= skb_shinfo(skb
)->frag_list
;
566 skb_frag_list_init(skb
);
567 skb
->data_len
= first_len
- skb_headlen(skb
);
568 skb
->len
= first_len
;
569 iph
->tot_len
= htons(first_len
);
570 iph
->frag_off
= htons(IP_MF
);
574 /* Prepare header of the next frame,
575 * before previous one went down. */
577 frag
->ip_summed
= CHECKSUM_NONE
;
578 skb_reset_transport_header(frag
);
579 __skb_push(frag
, hlen
);
580 skb_reset_network_header(frag
);
581 memcpy(skb_network_header(frag
), iph
, hlen
);
583 iph
->tot_len
= htons(frag
->len
);
584 ip_copy_metadata(frag
, skb
);
586 ip_options_fragment(frag
);
587 offset
+= skb
->len
- hlen
;
588 iph
->frag_off
= htons(offset
>>3);
589 if (frag
->next
!= NULL
)
590 iph
->frag_off
|= htons(IP_MF
);
591 /* Ready, complete checksum */
598 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
608 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
617 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
621 skb_walk_frags(skb
, frag2
) {
625 frag2
->destructor
= NULL
;
626 skb
->truesize
+= frag2
->truesize
;
631 /* for offloaded checksums cleanup checksum before fragmentation */
632 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) && skb_checksum_help(skb
))
636 left
= skb
->len
- hlen
; /* Space per frame */
637 ptr
= hlen
; /* Where to start from */
639 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
640 * we need to make room for the encapsulating header
642 ll_rs
= LL_RESERVED_SPACE_EXTRA(rt
->dst
.dev
, nf_bridge_pad(skb
));
645 * Fragment the datagram.
648 offset
= (ntohs(iph
->frag_off
) & IP_OFFSET
) << 3;
649 not_last_frag
= iph
->frag_off
& htons(IP_MF
);
652 * Keep copying data until we run out.
657 /* IF: it doesn't fit, use 'mtu' - the data space left */
660 /* IF: we are not sending up to and including the packet end
661 then align the next start on an eight byte boundary */
666 /* Allocate buffer */
667 skb2
= alloc_skb(len
+ hlen
+ ll_rs
, GFP_ATOMIC
);
674 * Set up data on packet
677 ip_copy_metadata(skb2
, skb
);
678 skb_reserve(skb2
, ll_rs
);
679 skb_put(skb2
, len
+ hlen
);
680 skb_reset_network_header(skb2
);
681 skb2
->transport_header
= skb2
->network_header
+ hlen
;
684 * Charge the memory for the fragment to any owner
689 skb_set_owner_w(skb2
, skb
->sk
);
692 * Copy the packet header into the new buffer.
695 skb_copy_from_linear_data(skb
, skb_network_header(skb2
), hlen
);
698 * Copy a block of the IP datagram.
700 if (skb_copy_bits(skb
, ptr
, skb_transport_header(skb2
), len
))
705 * Fill in the new header fields.
708 iph
->frag_off
= htons((offset
>> 3));
710 /* ANK: dirty, but effective trick. Upgrade options only if
711 * the segment to be fragmented was THE FIRST (otherwise,
712 * options are already fixed) and make it ONCE
713 * on the initial skb, so that all the following fragments
714 * will inherit fixed options.
717 ip_options_fragment(skb
);
720 * Added AC : If we are fragmenting a fragment that's not the
721 * last fragment then keep MF on each bit
723 if (left
> 0 || not_last_frag
)
724 iph
->frag_off
|= htons(IP_MF
);
729 * Put this fragment into the sending queue.
731 iph
->tot_len
= htons(len
+ hlen
);
739 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
742 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
747 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
750 EXPORT_SYMBOL(ip_fragment
);
753 ip_generic_getfrag(void *from
, char *to
, int offset
, int len
, int odd
, struct sk_buff
*skb
)
755 struct msghdr
*msg
= from
;
757 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
758 /* XXX: stripping const */
759 if (memcpy_fromiovecend(to
, (struct iovec
*)msg
->msg_iter
.iov
, offset
, len
) < 0)
763 /* XXX: stripping const */
764 if (csum_partial_copy_fromiovecend(to
, (struct iovec
*)msg
->msg_iter
.iov
, offset
, len
, &csum
) < 0)
766 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
770 EXPORT_SYMBOL(ip_generic_getfrag
);
773 csum_page(struct page
*page
, int offset
, int copy
)
778 csum
= csum_partial(kaddr
+ offset
, copy
, 0);
783 static inline int ip_ufo_append_data(struct sock
*sk
,
784 struct sk_buff_head
*queue
,
785 int getfrag(void *from
, char *to
, int offset
, int len
,
786 int odd
, struct sk_buff
*skb
),
787 void *from
, int length
, int hh_len
, int fragheaderlen
,
788 int transhdrlen
, int maxfraglen
, unsigned int flags
)
793 /* There is support for UDP fragmentation offload by network
794 * device, so create one single skb packet containing complete
797 if ((skb
= skb_peek_tail(queue
)) == NULL
) {
798 skb
= sock_alloc_send_skb(sk
,
799 hh_len
+ fragheaderlen
+ transhdrlen
+ 20,
800 (flags
& MSG_DONTWAIT
), &err
);
805 /* reserve space for Hardware header */
806 skb_reserve(skb
, hh_len
);
808 /* create space for UDP/IP header */
809 skb_put(skb
, fragheaderlen
+ transhdrlen
);
811 /* initialize network header pointer */
812 skb_reset_network_header(skb
);
814 /* initialize protocol header pointer */
815 skb
->transport_header
= skb
->network_header
+ fragheaderlen
;
820 __skb_queue_tail(queue
, skb
);
821 } else if (skb_is_gso(skb
)) {
825 skb
->ip_summed
= CHECKSUM_PARTIAL
;
826 /* specify the length of each IP datagram fragment */
827 skb_shinfo(skb
)->gso_size
= maxfraglen
- fragheaderlen
;
828 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
831 return skb_append_datato_frags(sk
, skb
, getfrag
, from
,
832 (length
- transhdrlen
));
835 static int __ip_append_data(struct sock
*sk
,
837 struct sk_buff_head
*queue
,
838 struct inet_cork
*cork
,
839 struct page_frag
*pfrag
,
840 int getfrag(void *from
, char *to
, int offset
,
841 int len
, int odd
, struct sk_buff
*skb
),
842 void *from
, int length
, int transhdrlen
,
845 struct inet_sock
*inet
= inet_sk(sk
);
848 struct ip_options
*opt
= cork
->opt
;
855 unsigned int maxfraglen
, fragheaderlen
, maxnonfragsize
;
856 int csummode
= CHECKSUM_NONE
;
857 struct rtable
*rt
= (struct rtable
*)cork
->dst
;
860 skb
= skb_peek_tail(queue
);
862 exthdrlen
= !skb
? rt
->dst
.header_len
: 0;
863 mtu
= cork
->fragsize
;
864 if (cork
->tx_flags
& SKBTX_ANY_SW_TSTAMP
&&
865 sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
)
866 tskey
= sk
->sk_tskey
++;
868 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
870 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
871 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
872 maxnonfragsize
= ip_sk_ignore_df(sk
) ? 0xFFFF : mtu
;
874 if (cork
->length
+ length
> maxnonfragsize
- fragheaderlen
) {
875 ip_local_error(sk
, EMSGSIZE
, fl4
->daddr
, inet
->inet_dport
,
876 mtu
- (opt
? opt
->optlen
: 0));
881 * transhdrlen > 0 means that this is the first fragment and we wish
882 * it won't be fragmented in the future.
885 length
+ fragheaderlen
<= mtu
&&
886 rt
->dst
.dev
->features
& NETIF_F_V4_CSUM
&&
888 csummode
= CHECKSUM_PARTIAL
;
890 cork
->length
+= length
;
891 if (((length
> mtu
) || (skb
&& skb_is_gso(skb
))) &&
892 (sk
->sk_protocol
== IPPROTO_UDP
) &&
893 (rt
->dst
.dev
->features
& NETIF_F_UFO
) && !rt
->dst
.header_len
) {
894 err
= ip_ufo_append_data(sk
, queue
, getfrag
, from
, length
,
895 hh_len
, fragheaderlen
, transhdrlen
,
902 /* So, what's going on in the loop below?
904 * We use calculated fragment length to generate chained skb,
905 * each of segments is IP fragment ready for sending to network after
906 * adding appropriate IP header.
913 /* Check if the remaining data fits into current packet. */
914 copy
= mtu
- skb
->len
;
916 copy
= maxfraglen
- skb
->len
;
919 unsigned int datalen
;
920 unsigned int fraglen
;
921 unsigned int fraggap
;
922 unsigned int alloclen
;
923 struct sk_buff
*skb_prev
;
927 fraggap
= skb_prev
->len
- maxfraglen
;
932 * If remaining data exceeds the mtu,
933 * we know we need more fragment(s).
935 datalen
= length
+ fraggap
;
936 if (datalen
> mtu
- fragheaderlen
)
937 datalen
= maxfraglen
- fragheaderlen
;
938 fraglen
= datalen
+ fragheaderlen
;
940 if ((flags
& MSG_MORE
) &&
941 !(rt
->dst
.dev
->features
&NETIF_F_SG
))
946 alloclen
+= exthdrlen
;
948 /* The last fragment gets additional space at tail.
949 * Note, with MSG_MORE we overallocate on fragments,
950 * because we have no idea what fragment will be
953 if (datalen
== length
+ fraggap
)
954 alloclen
+= rt
->dst
.trailer_len
;
957 skb
= sock_alloc_send_skb(sk
,
958 alloclen
+ hh_len
+ 15,
959 (flags
& MSG_DONTWAIT
), &err
);
962 if (atomic_read(&sk
->sk_wmem_alloc
) <=
964 skb
= sock_wmalloc(sk
,
965 alloclen
+ hh_len
+ 15, 1,
967 if (unlikely(skb
== NULL
))
974 * Fill in the control structures
976 skb
->ip_summed
= csummode
;
978 skb_reserve(skb
, hh_len
);
980 /* only the initial fragment is time stamped */
981 skb_shinfo(skb
)->tx_flags
= cork
->tx_flags
;
983 skb_shinfo(skb
)->tskey
= tskey
;
987 * Find where to start putting bytes.
989 data
= skb_put(skb
, fraglen
+ exthdrlen
);
990 skb_set_network_header(skb
, exthdrlen
);
991 skb
->transport_header
= (skb
->network_header
+
993 data
+= fragheaderlen
+ exthdrlen
;
996 skb
->csum
= skb_copy_and_csum_bits(
997 skb_prev
, maxfraglen
,
998 data
+ transhdrlen
, fraggap
, 0);
999 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1002 pskb_trim_unique(skb_prev
, maxfraglen
);
1005 copy
= datalen
- transhdrlen
- fraggap
;
1006 if (copy
> 0 && getfrag(from
, data
+ transhdrlen
, offset
, copy
, fraggap
, skb
) < 0) {
1013 length
-= datalen
- fraggap
;
1016 csummode
= CHECKSUM_NONE
;
1019 * Put the packet on the pending queue.
1021 __skb_queue_tail(queue
, skb
);
1028 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
)) {
1032 if (getfrag(from
, skb_put(skb
, copy
),
1033 offset
, copy
, off
, skb
) < 0) {
1034 __skb_trim(skb
, off
);
1039 int i
= skb_shinfo(skb
)->nr_frags
;
1042 if (!sk_page_frag_refill(sk
, pfrag
))
1045 if (!skb_can_coalesce(skb
, i
, pfrag
->page
,
1048 if (i
== MAX_SKB_FRAGS
)
1051 __skb_fill_page_desc(skb
, i
, pfrag
->page
,
1053 skb_shinfo(skb
)->nr_frags
= ++i
;
1054 get_page(pfrag
->page
);
1056 copy
= min_t(int, copy
, pfrag
->size
- pfrag
->offset
);
1058 page_address(pfrag
->page
) + pfrag
->offset
,
1059 offset
, copy
, skb
->len
, skb
) < 0)
1062 pfrag
->offset
+= copy
;
1063 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
1065 skb
->data_len
+= copy
;
1066 skb
->truesize
+= copy
;
1067 atomic_add(copy
, &sk
->sk_wmem_alloc
);
1078 cork
->length
-= length
;
1079 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1083 static int ip_setup_cork(struct sock
*sk
, struct inet_cork
*cork
,
1084 struct ipcm_cookie
*ipc
, struct rtable
**rtp
)
1086 struct ip_options_rcu
*opt
;
1090 * setup for corking.
1094 if (cork
->opt
== NULL
) {
1095 cork
->opt
= kmalloc(sizeof(struct ip_options
) + 40,
1097 if (unlikely(cork
->opt
== NULL
))
1100 memcpy(cork
->opt
, &opt
->opt
, sizeof(struct ip_options
) + opt
->opt
.optlen
);
1101 cork
->flags
|= IPCORK_OPT
;
1102 cork
->addr
= ipc
->addr
;
1108 * We steal reference to this route, caller should not release it
1111 cork
->fragsize
= ip_sk_use_pmtu(sk
) ?
1112 dst_mtu(&rt
->dst
) : rt
->dst
.dev
->mtu
;
1113 cork
->dst
= &rt
->dst
;
1115 cork
->ttl
= ipc
->ttl
;
1116 cork
->tos
= ipc
->tos
;
1117 cork
->priority
= ipc
->priority
;
1118 cork
->tx_flags
= ipc
->tx_flags
;
1124 * ip_append_data() and ip_append_page() can make one large IP datagram
1125 * from many pieces of data. Each pieces will be holded on the socket
1126 * until ip_push_pending_frames() is called. Each piece can be a page
1129 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1130 * this interface potentially.
1132 * LATER: length must be adjusted by pad at tail, when it is required.
1134 int ip_append_data(struct sock
*sk
, struct flowi4
*fl4
,
1135 int getfrag(void *from
, char *to
, int offset
, int len
,
1136 int odd
, struct sk_buff
*skb
),
1137 void *from
, int length
, int transhdrlen
,
1138 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1141 struct inet_sock
*inet
= inet_sk(sk
);
1144 if (flags
&MSG_PROBE
)
1147 if (skb_queue_empty(&sk
->sk_write_queue
)) {
1148 err
= ip_setup_cork(sk
, &inet
->cork
.base
, ipc
, rtp
);
1155 return __ip_append_data(sk
, fl4
, &sk
->sk_write_queue
, &inet
->cork
.base
,
1156 sk_page_frag(sk
), getfrag
,
1157 from
, length
, transhdrlen
, flags
);
1160 ssize_t
ip_append_page(struct sock
*sk
, struct flowi4
*fl4
, struct page
*page
,
1161 int offset
, size_t size
, int flags
)
1163 struct inet_sock
*inet
= inet_sk(sk
);
1164 struct sk_buff
*skb
;
1166 struct ip_options
*opt
= NULL
;
1167 struct inet_cork
*cork
;
1172 unsigned int maxfraglen
, fragheaderlen
, fraggap
, maxnonfragsize
;
1177 if (flags
&MSG_PROBE
)
1180 if (skb_queue_empty(&sk
->sk_write_queue
))
1183 cork
= &inet
->cork
.base
;
1184 rt
= (struct rtable
*)cork
->dst
;
1185 if (cork
->flags
& IPCORK_OPT
)
1188 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
))
1191 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
1192 mtu
= cork
->fragsize
;
1194 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
1195 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
1196 maxnonfragsize
= ip_sk_ignore_df(sk
) ? 0xFFFF : mtu
;
1198 if (cork
->length
+ size
> maxnonfragsize
- fragheaderlen
) {
1199 ip_local_error(sk
, EMSGSIZE
, fl4
->daddr
, inet
->inet_dport
,
1200 mtu
- (opt
? opt
->optlen
: 0));
1204 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
)
1207 cork
->length
+= size
;
1208 if ((size
+ skb
->len
> mtu
) &&
1209 (sk
->sk_protocol
== IPPROTO_UDP
) &&
1210 (rt
->dst
.dev
->features
& NETIF_F_UFO
)) {
1211 skb_shinfo(skb
)->gso_size
= mtu
- fragheaderlen
;
1212 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
1219 if (skb_is_gso(skb
))
1223 /* Check if the remaining data fits into current packet. */
1224 len
= mtu
- skb
->len
;
1226 len
= maxfraglen
- skb
->len
;
1229 struct sk_buff
*skb_prev
;
1233 fraggap
= skb_prev
->len
- maxfraglen
;
1235 alloclen
= fragheaderlen
+ hh_len
+ fraggap
+ 15;
1236 skb
= sock_wmalloc(sk
, alloclen
, 1, sk
->sk_allocation
);
1237 if (unlikely(!skb
)) {
1243 * Fill in the control structures
1245 skb
->ip_summed
= CHECKSUM_NONE
;
1247 skb_reserve(skb
, hh_len
);
1250 * Find where to start putting bytes.
1252 skb_put(skb
, fragheaderlen
+ fraggap
);
1253 skb_reset_network_header(skb
);
1254 skb
->transport_header
= (skb
->network_header
+
1257 skb
->csum
= skb_copy_and_csum_bits(skb_prev
,
1259 skb_transport_header(skb
),
1261 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1263 pskb_trim_unique(skb_prev
, maxfraglen
);
1267 * Put the packet on the pending queue.
1269 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
1273 i
= skb_shinfo(skb
)->nr_frags
;
1276 if (skb_can_coalesce(skb
, i
, page
, offset
)) {
1277 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
-1], len
);
1278 } else if (i
< MAX_SKB_FRAGS
) {
1280 skb_fill_page_desc(skb
, i
, page
, offset
, len
);
1286 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1288 csum
= csum_page(page
, offset
, len
);
1289 skb
->csum
= csum_block_add(skb
->csum
, csum
, skb
->len
);
1293 skb
->data_len
+= len
;
1294 skb
->truesize
+= len
;
1295 atomic_add(len
, &sk
->sk_wmem_alloc
);
1302 cork
->length
-= size
;
1303 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1307 static void ip_cork_release(struct inet_cork
*cork
)
1309 cork
->flags
&= ~IPCORK_OPT
;
1312 dst_release(cork
->dst
);
1317 * Combined all pending IP fragments on the socket as one IP datagram
1318 * and push them out.
1320 struct sk_buff
*__ip_make_skb(struct sock
*sk
,
1322 struct sk_buff_head
*queue
,
1323 struct inet_cork
*cork
)
1325 struct sk_buff
*skb
, *tmp_skb
;
1326 struct sk_buff
**tail_skb
;
1327 struct inet_sock
*inet
= inet_sk(sk
);
1328 struct net
*net
= sock_net(sk
);
1329 struct ip_options
*opt
= NULL
;
1330 struct rtable
*rt
= (struct rtable
*)cork
->dst
;
1335 if ((skb
= __skb_dequeue(queue
)) == NULL
)
1337 tail_skb
= &(skb_shinfo(skb
)->frag_list
);
1339 /* move skb->data to ip header from ext header */
1340 if (skb
->data
< skb_network_header(skb
))
1341 __skb_pull(skb
, skb_network_offset(skb
));
1342 while ((tmp_skb
= __skb_dequeue(queue
)) != NULL
) {
1343 __skb_pull(tmp_skb
, skb_network_header_len(skb
));
1344 *tail_skb
= tmp_skb
;
1345 tail_skb
= &(tmp_skb
->next
);
1346 skb
->len
+= tmp_skb
->len
;
1347 skb
->data_len
+= tmp_skb
->len
;
1348 skb
->truesize
+= tmp_skb
->truesize
;
1349 tmp_skb
->destructor
= NULL
;
1353 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1354 * to fragment the frame generated here. No matter, what transforms
1355 * how transforms change size of the packet, it will come out.
1357 skb
->ignore_df
= ip_sk_ignore_df(sk
);
1359 /* DF bit is set when we want to see DF on outgoing frames.
1360 * If ignore_df is set too, we still allow to fragment this frame
1362 if (inet
->pmtudisc
== IP_PMTUDISC_DO
||
1363 inet
->pmtudisc
== IP_PMTUDISC_PROBE
||
1364 (skb
->len
<= dst_mtu(&rt
->dst
) &&
1365 ip_dont_fragment(sk
, &rt
->dst
)))
1368 if (cork
->flags
& IPCORK_OPT
)
1373 else if (rt
->rt_type
== RTN_MULTICAST
)
1376 ttl
= ip_select_ttl(inet
, &rt
->dst
);
1381 iph
->tos
= (cork
->tos
!= -1) ? cork
->tos
: inet
->tos
;
1384 iph
->protocol
= sk
->sk_protocol
;
1385 ip_copy_addrs(iph
, fl4
);
1386 ip_select_ident(skb
, sk
);
1389 iph
->ihl
+= opt
->optlen
>>2;
1390 ip_options_build(skb
, opt
, cork
->addr
, rt
, 0);
1393 skb
->priority
= (cork
->tos
!= -1) ? cork
->priority
: sk
->sk_priority
;
1394 skb
->mark
= sk
->sk_mark
;
1396 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1400 skb_dst_set(skb
, &rt
->dst
);
1402 if (iph
->protocol
== IPPROTO_ICMP
)
1403 icmp_out_count(net
, ((struct icmphdr
*)
1404 skb_transport_header(skb
))->type
);
1406 ip_cork_release(cork
);
1411 int ip_send_skb(struct net
*net
, struct sk_buff
*skb
)
1415 err
= ip_local_out(skb
);
1418 err
= net_xmit_errno(err
);
1420 IP_INC_STATS(net
, IPSTATS_MIB_OUTDISCARDS
);
1426 int ip_push_pending_frames(struct sock
*sk
, struct flowi4
*fl4
)
1428 struct sk_buff
*skb
;
1430 skb
= ip_finish_skb(sk
, fl4
);
1434 /* Netfilter gets whole the not fragmented skb. */
1435 return ip_send_skb(sock_net(sk
), skb
);
1439 * Throw away all pending data on the socket.
1441 static void __ip_flush_pending_frames(struct sock
*sk
,
1442 struct sk_buff_head
*queue
,
1443 struct inet_cork
*cork
)
1445 struct sk_buff
*skb
;
1447 while ((skb
= __skb_dequeue_tail(queue
)) != NULL
)
1450 ip_cork_release(cork
);
1453 void ip_flush_pending_frames(struct sock
*sk
)
1455 __ip_flush_pending_frames(sk
, &sk
->sk_write_queue
, &inet_sk(sk
)->cork
.base
);
1458 struct sk_buff
*ip_make_skb(struct sock
*sk
,
1460 int getfrag(void *from
, char *to
, int offset
,
1461 int len
, int odd
, struct sk_buff
*skb
),
1462 void *from
, int length
, int transhdrlen
,
1463 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1466 struct inet_cork cork
;
1467 struct sk_buff_head queue
;
1470 if (flags
& MSG_PROBE
)
1473 __skb_queue_head_init(&queue
);
1478 err
= ip_setup_cork(sk
, &cork
, ipc
, rtp
);
1480 return ERR_PTR(err
);
1482 err
= __ip_append_data(sk
, fl4
, &queue
, &cork
,
1483 ¤t
->task_frag
, getfrag
,
1484 from
, length
, transhdrlen
, flags
);
1486 __ip_flush_pending_frames(sk
, &queue
, &cork
);
1487 return ERR_PTR(err
);
1490 return __ip_make_skb(sk
, fl4
, &queue
, &cork
);
1494 * Fetch data from kernel space and fill in checksum if needed.
1496 static int ip_reply_glue_bits(void *dptr
, char *to
, int offset
,
1497 int len
, int odd
, struct sk_buff
*skb
)
1501 csum
= csum_partial_copy_nocheck(dptr
+offset
, to
, len
, 0);
1502 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
1507 * Generic function to send a packet as reply to another packet.
1508 * Used to send some TCP resets/acks so far.
1510 * Use a fake percpu inet socket to avoid false sharing and contention.
1512 static DEFINE_PER_CPU(struct inet_sock
, unicast_sock
) = {
1515 .skc_refcnt
= ATOMIC_INIT(1),
1517 .sk_wmem_alloc
= ATOMIC_INIT(1),
1518 .sk_allocation
= GFP_ATOMIC
,
1519 .sk_flags
= (1UL << SOCK_USE_WRITE_QUEUE
),
1521 .pmtudisc
= IP_PMTUDISC_WANT
,
1525 void ip_send_unicast_reply(struct net
*net
, struct sk_buff
*skb
,
1526 const struct ip_options
*sopt
,
1527 __be32 daddr
, __be32 saddr
,
1528 const struct ip_reply_arg
*arg
,
1531 struct ip_options_data replyopts
;
1532 struct ipcm_cookie ipc
;
1534 struct rtable
*rt
= skb_rtable(skb
);
1535 struct sk_buff
*nskb
;
1537 struct inet_sock
*inet
;
1540 if (__ip_options_echo(&replyopts
.opt
.opt
, skb
, sopt
))
1549 if (replyopts
.opt
.opt
.optlen
) {
1550 ipc
.opt
= &replyopts
.opt
;
1552 if (replyopts
.opt
.opt
.srr
)
1553 daddr
= replyopts
.opt
.opt
.faddr
;
1556 flowi4_init_output(&fl4
, arg
->bound_dev_if
,
1557 IP4_REPLY_MARK(net
, skb
->mark
),
1559 RT_SCOPE_UNIVERSE
, ip_hdr(skb
)->protocol
,
1560 ip_reply_arg_flowi_flags(arg
),
1562 tcp_hdr(skb
)->source
, tcp_hdr(skb
)->dest
);
1563 security_skb_classify_flow(skb
, flowi4_to_flowi(&fl4
));
1564 rt
= ip_route_output_key(net
, &fl4
);
1568 inet
= &get_cpu_var(unicast_sock
);
1570 inet
->tos
= arg
->tos
;
1572 sk
->sk_priority
= skb
->priority
;
1573 sk
->sk_protocol
= ip_hdr(skb
)->protocol
;
1574 sk
->sk_bound_dev_if
= arg
->bound_dev_if
;
1575 sock_net_set(sk
, net
);
1576 __skb_queue_head_init(&sk
->sk_write_queue
);
1577 sk
->sk_sndbuf
= sysctl_wmem_default
;
1578 err
= ip_append_data(sk
, &fl4
, ip_reply_glue_bits
, arg
->iov
->iov_base
,
1579 len
, 0, &ipc
, &rt
, MSG_DONTWAIT
);
1580 if (unlikely(err
)) {
1581 ip_flush_pending_frames(sk
);
1585 nskb
= skb_peek(&sk
->sk_write_queue
);
1587 if (arg
->csumoffset
>= 0)
1588 *((__sum16
*)skb_transport_header(nskb
) +
1589 arg
->csumoffset
) = csum_fold(csum_add(nskb
->csum
,
1591 nskb
->ip_summed
= CHECKSUM_NONE
;
1593 skb_set_queue_mapping(nskb
, skb_get_queue_mapping(skb
));
1594 ip_push_pending_frames(sk
, &fl4
);
1597 put_cpu_var(unicast_sock
);
1602 void __init
ip_init(void)
1607 #if defined(CONFIG_IP_MULTICAST)