2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
79 int sysctl_tcp_timestamps __read_mostly
= 1;
80 int sysctl_tcp_window_scaling __read_mostly
= 1;
81 int sysctl_tcp_sack __read_mostly
= 1;
82 int sysctl_tcp_fack __read_mostly
= 1;
83 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
84 int sysctl_tcp_max_reordering __read_mostly
= 300;
85 EXPORT_SYMBOL(sysctl_tcp_reordering
);
86 int sysctl_tcp_dsack __read_mostly
= 1;
87 int sysctl_tcp_app_win __read_mostly
= 31;
88 int sysctl_tcp_adv_win_scale __read_mostly
= 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit
= 100;
94 int sysctl_tcp_stdurg __read_mostly
;
95 int sysctl_tcp_rfc1337 __read_mostly
;
96 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
97 int sysctl_tcp_frto __read_mostly
= 2;
99 int sysctl_tcp_thin_dupack __read_mostly
;
101 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
102 int sysctl_tcp_early_retrans __read_mostly
= 3;
104 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
105 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
106 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
108 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
109 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
110 #define FLAG_ECE 0x40 /* ECE in this ACK */
111 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
112 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
113 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
114 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
115 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
116 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
118 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
119 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
120 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
121 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
123 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
124 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126 /* Adapt the MSS value used to make delayed ack decision to the
129 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
131 struct inet_connection_sock
*icsk
= inet_csk(sk
);
132 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
135 icsk
->icsk_ack
.last_seg_size
= 0;
137 /* skb->len may jitter because of SACKs, even if peer
138 * sends good full-sized frames.
140 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
141 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
142 icsk
->icsk_ack
.rcv_mss
= len
;
144 /* Otherwise, we make more careful check taking into account,
145 * that SACKs block is variable.
147 * "len" is invariant segment length, including TCP header.
149 len
+= skb
->data
- skb_transport_header(skb
);
150 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
151 /* If PSH is not set, packet should be
152 * full sized, provided peer TCP is not badly broken.
153 * This observation (if it is correct 8)) allows
154 * to handle super-low mtu links fairly.
156 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
157 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
158 /* Subtract also invariant (if peer is RFC compliant),
159 * tcp header plus fixed timestamp option length.
160 * Resulting "len" is MSS free of SACK jitter.
162 len
-= tcp_sk(sk
)->tcp_header_len
;
163 icsk
->icsk_ack
.last_seg_size
= len
;
165 icsk
->icsk_ack
.rcv_mss
= len
;
169 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
170 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
171 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
175 static void tcp_incr_quickack(struct sock
*sk
)
177 struct inet_connection_sock
*icsk
= inet_csk(sk
);
178 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
182 if (quickacks
> icsk
->icsk_ack
.quick
)
183 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
186 static void tcp_enter_quickack_mode(struct sock
*sk
)
188 struct inet_connection_sock
*icsk
= inet_csk(sk
);
189 tcp_incr_quickack(sk
);
190 icsk
->icsk_ack
.pingpong
= 0;
191 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
194 /* Send ACKs quickly, if "quick" count is not exhausted
195 * and the session is not interactive.
198 static inline bool tcp_in_quickack_mode(const struct sock
*sk
)
200 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
202 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
205 static void tcp_ecn_queue_cwr(struct tcp_sock
*tp
)
207 if (tp
->ecn_flags
& TCP_ECN_OK
)
208 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
211 static void tcp_ecn_accept_cwr(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
213 if (tcp_hdr(skb
)->cwr
)
214 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
217 static void tcp_ecn_withdraw_cwr(struct tcp_sock
*tp
)
219 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
222 static void __tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
224 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
225 case INET_ECN_NOT_ECT
:
226 /* Funny extension: if ECT is not set on a segment,
227 * and we already seen ECT on a previous segment,
228 * it is probably a retransmit.
230 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
231 tcp_enter_quickack_mode((struct sock
*)tp
);
234 if (tcp_ca_needs_ecn((struct sock
*)tp
))
235 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_IS_CE
);
237 if (!(tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)) {
238 /* Better not delay acks, sender can have a very low cwnd */
239 tcp_enter_quickack_mode((struct sock
*)tp
);
240 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
242 tp
->ecn_flags
|= TCP_ECN_SEEN
;
245 if (tcp_ca_needs_ecn((struct sock
*)tp
))
246 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_NO_CE
);
247 tp
->ecn_flags
|= TCP_ECN_SEEN
;
252 static void tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
254 if (tp
->ecn_flags
& TCP_ECN_OK
)
255 __tcp_ecn_check_ce(tp
, skb
);
258 static void tcp_ecn_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
260 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
261 tp
->ecn_flags
&= ~TCP_ECN_OK
;
264 static void tcp_ecn_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
266 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
267 tp
->ecn_flags
&= ~TCP_ECN_OK
;
270 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
272 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
277 /* Buffer size and advertised window tuning.
279 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
282 static void tcp_sndbuf_expand(struct sock
*sk
)
284 const struct tcp_sock
*tp
= tcp_sk(sk
);
288 /* Worst case is non GSO/TSO : each frame consumes one skb
289 * and skb->head is kmalloced using power of two area of memory
291 per_mss
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
293 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
295 per_mss
= roundup_pow_of_two(per_mss
) +
296 SKB_DATA_ALIGN(sizeof(struct sk_buff
));
298 nr_segs
= max_t(u32
, TCP_INIT_CWND
, tp
->snd_cwnd
);
299 nr_segs
= max_t(u32
, nr_segs
, tp
->reordering
+ 1);
301 /* Fast Recovery (RFC 5681 3.2) :
302 * Cubic needs 1.7 factor, rounded to 2 to include
303 * extra cushion (application might react slowly to POLLOUT)
305 sndmem
= 2 * nr_segs
* per_mss
;
307 if (sk
->sk_sndbuf
< sndmem
)
308 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
311 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
313 * All tcp_full_space() is split to two parts: "network" buffer, allocated
314 * forward and advertised in receiver window (tp->rcv_wnd) and
315 * "application buffer", required to isolate scheduling/application
316 * latencies from network.
317 * window_clamp is maximal advertised window. It can be less than
318 * tcp_full_space(), in this case tcp_full_space() - window_clamp
319 * is reserved for "application" buffer. The less window_clamp is
320 * the smoother our behaviour from viewpoint of network, but the lower
321 * throughput and the higher sensitivity of the connection to losses. 8)
323 * rcv_ssthresh is more strict window_clamp used at "slow start"
324 * phase to predict further behaviour of this connection.
325 * It is used for two goals:
326 * - to enforce header prediction at sender, even when application
327 * requires some significant "application buffer". It is check #1.
328 * - to prevent pruning of receive queue because of misprediction
329 * of receiver window. Check #2.
331 * The scheme does not work when sender sends good segments opening
332 * window and then starts to feed us spaghetti. But it should work
333 * in common situations. Otherwise, we have to rely on queue collapsing.
336 /* Slow part of check#2. */
337 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
339 struct tcp_sock
*tp
= tcp_sk(sk
);
341 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
342 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
344 while (tp
->rcv_ssthresh
<= window
) {
345 if (truesize
<= skb
->len
)
346 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
354 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
356 struct tcp_sock
*tp
= tcp_sk(sk
);
359 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
360 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
361 !sk_under_memory_pressure(sk
)) {
364 /* Check #2. Increase window, if skb with such overhead
365 * will fit to rcvbuf in future.
367 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
368 incr
= 2 * tp
->advmss
;
370 incr
= __tcp_grow_window(sk
, skb
);
373 incr
= max_t(int, incr
, 2 * skb
->len
);
374 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
376 inet_csk(sk
)->icsk_ack
.quick
|= 1;
381 /* 3. Tuning rcvbuf, when connection enters established state. */
382 static void tcp_fixup_rcvbuf(struct sock
*sk
)
384 u32 mss
= tcp_sk(sk
)->advmss
;
387 rcvmem
= 2 * SKB_TRUESIZE(mss
+ MAX_TCP_HEADER
) *
388 tcp_default_init_rwnd(mss
);
390 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
391 * Allow enough cushion so that sender is not limited by our window
393 if (sysctl_tcp_moderate_rcvbuf
)
396 if (sk
->sk_rcvbuf
< rcvmem
)
397 sk
->sk_rcvbuf
= min(rcvmem
, sysctl_tcp_rmem
[2]);
400 /* 4. Try to fixup all. It is made immediately after connection enters
403 void tcp_init_buffer_space(struct sock
*sk
)
405 struct tcp_sock
*tp
= tcp_sk(sk
);
408 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
409 tcp_fixup_rcvbuf(sk
);
410 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
411 tcp_sndbuf_expand(sk
);
413 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
414 tp
->rcvq_space
.time
= tcp_time_stamp
;
415 tp
->rcvq_space
.seq
= tp
->copied_seq
;
417 maxwin
= tcp_full_space(sk
);
419 if (tp
->window_clamp
>= maxwin
) {
420 tp
->window_clamp
= maxwin
;
422 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
423 tp
->window_clamp
= max(maxwin
-
424 (maxwin
>> sysctl_tcp_app_win
),
428 /* Force reservation of one segment. */
429 if (sysctl_tcp_app_win
&&
430 tp
->window_clamp
> 2 * tp
->advmss
&&
431 tp
->window_clamp
+ tp
->advmss
> maxwin
)
432 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
434 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
435 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
438 /* 5. Recalculate window clamp after socket hit its memory bounds. */
439 static void tcp_clamp_window(struct sock
*sk
)
441 struct tcp_sock
*tp
= tcp_sk(sk
);
442 struct inet_connection_sock
*icsk
= inet_csk(sk
);
444 icsk
->icsk_ack
.quick
= 0;
446 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
447 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
448 !sk_under_memory_pressure(sk
) &&
449 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
450 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
453 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
454 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
457 /* Initialize RCV_MSS value.
458 * RCV_MSS is an our guess about MSS used by the peer.
459 * We haven't any direct information about the MSS.
460 * It's better to underestimate the RCV_MSS rather than overestimate.
461 * Overestimations make us ACKing less frequently than needed.
462 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
464 void tcp_initialize_rcv_mss(struct sock
*sk
)
466 const struct tcp_sock
*tp
= tcp_sk(sk
);
467 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
469 hint
= min(hint
, tp
->rcv_wnd
/ 2);
470 hint
= min(hint
, TCP_MSS_DEFAULT
);
471 hint
= max(hint
, TCP_MIN_MSS
);
473 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
475 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
477 /* Receiver "autotuning" code.
479 * The algorithm for RTT estimation w/o timestamps is based on
480 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
481 * <http://public.lanl.gov/radiant/pubs.html#DRS>
483 * More detail on this code can be found at
484 * <http://staff.psc.edu/jheffner/>,
485 * though this reference is out of date. A new paper
488 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
490 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
496 if (new_sample
!= 0) {
497 /* If we sample in larger samples in the non-timestamp
498 * case, we could grossly overestimate the RTT especially
499 * with chatty applications or bulk transfer apps which
500 * are stalled on filesystem I/O.
502 * Also, since we are only going for a minimum in the
503 * non-timestamp case, we do not smooth things out
504 * else with timestamps disabled convergence takes too
508 m
-= (new_sample
>> 3);
516 /* No previous measure. */
520 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
521 tp
->rcv_rtt_est
.rtt
= new_sample
;
524 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
526 if (tp
->rcv_rtt_est
.time
== 0)
528 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
530 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rcv_rtt_est
.time
, 1);
533 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
534 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
537 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
538 const struct sk_buff
*skb
)
540 struct tcp_sock
*tp
= tcp_sk(sk
);
541 if (tp
->rx_opt
.rcv_tsecr
&&
542 (TCP_SKB_CB(skb
)->end_seq
-
543 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
544 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
548 * This function should be called every time data is copied to user space.
549 * It calculates the appropriate TCP receive buffer space.
551 void tcp_rcv_space_adjust(struct sock
*sk
)
553 struct tcp_sock
*tp
= tcp_sk(sk
);
557 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
558 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
561 /* Number of bytes copied to user in last RTT */
562 copied
= tp
->copied_seq
- tp
->rcvq_space
.seq
;
563 if (copied
<= tp
->rcvq_space
.space
)
567 * copied = bytes received in previous RTT, our base window
568 * To cope with packet losses, we need a 2x factor
569 * To cope with slow start, and sender growing its cwin by 100 %
570 * every RTT, we need a 4x factor, because the ACK we are sending
571 * now is for the next RTT, not the current one :
572 * <prev RTT . ><current RTT .. ><next RTT .... >
575 if (sysctl_tcp_moderate_rcvbuf
&&
576 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
577 int rcvwin
, rcvmem
, rcvbuf
;
579 /* minimal window to cope with packet losses, assuming
580 * steady state. Add some cushion because of small variations.
582 rcvwin
= (copied
<< 1) + 16 * tp
->advmss
;
584 /* If rate increased by 25%,
585 * assume slow start, rcvwin = 3 * copied
586 * If rate increased by 50%,
587 * assume sender can use 2x growth, rcvwin = 4 * copied
590 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 2)) {
592 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 1))
595 rcvwin
+= (rcvwin
>> 1);
598 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
599 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
602 rcvbuf
= min(rcvwin
/ tp
->advmss
* rcvmem
, sysctl_tcp_rmem
[2]);
603 if (rcvbuf
> sk
->sk_rcvbuf
) {
604 sk
->sk_rcvbuf
= rcvbuf
;
606 /* Make the window clamp follow along. */
607 tp
->window_clamp
= rcvwin
;
610 tp
->rcvq_space
.space
= copied
;
613 tp
->rcvq_space
.seq
= tp
->copied_seq
;
614 tp
->rcvq_space
.time
= tcp_time_stamp
;
617 /* There is something which you must keep in mind when you analyze the
618 * behavior of the tp->ato delayed ack timeout interval. When a
619 * connection starts up, we want to ack as quickly as possible. The
620 * problem is that "good" TCP's do slow start at the beginning of data
621 * transmission. The means that until we send the first few ACK's the
622 * sender will sit on his end and only queue most of his data, because
623 * he can only send snd_cwnd unacked packets at any given time. For
624 * each ACK we send, he increments snd_cwnd and transmits more of his
627 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
629 struct tcp_sock
*tp
= tcp_sk(sk
);
630 struct inet_connection_sock
*icsk
= inet_csk(sk
);
633 inet_csk_schedule_ack(sk
);
635 tcp_measure_rcv_mss(sk
, skb
);
637 tcp_rcv_rtt_measure(tp
);
639 now
= tcp_time_stamp
;
641 if (!icsk
->icsk_ack
.ato
) {
642 /* The _first_ data packet received, initialize
643 * delayed ACK engine.
645 tcp_incr_quickack(sk
);
646 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
648 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
650 if (m
<= TCP_ATO_MIN
/ 2) {
651 /* The fastest case is the first. */
652 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
653 } else if (m
< icsk
->icsk_ack
.ato
) {
654 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
655 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
656 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
657 } else if (m
> icsk
->icsk_rto
) {
658 /* Too long gap. Apparently sender failed to
659 * restart window, so that we send ACKs quickly.
661 tcp_incr_quickack(sk
);
665 icsk
->icsk_ack
.lrcvtime
= now
;
667 tcp_ecn_check_ce(tp
, skb
);
670 tcp_grow_window(sk
, skb
);
673 /* Called to compute a smoothed rtt estimate. The data fed to this
674 * routine either comes from timestamps, or from segments that were
675 * known _not_ to have been retransmitted [see Karn/Partridge
676 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
677 * piece by Van Jacobson.
678 * NOTE: the next three routines used to be one big routine.
679 * To save cycles in the RFC 1323 implementation it was better to break
680 * it up into three procedures. -- erics
682 static void tcp_rtt_estimator(struct sock
*sk
, long mrtt_us
)
684 struct tcp_sock
*tp
= tcp_sk(sk
);
685 long m
= mrtt_us
; /* RTT */
686 u32 srtt
= tp
->srtt_us
;
688 /* The following amusing code comes from Jacobson's
689 * article in SIGCOMM '88. Note that rtt and mdev
690 * are scaled versions of rtt and mean deviation.
691 * This is designed to be as fast as possible
692 * m stands for "measurement".
694 * On a 1990 paper the rto value is changed to:
695 * RTO = rtt + 4 * mdev
697 * Funny. This algorithm seems to be very broken.
698 * These formulae increase RTO, when it should be decreased, increase
699 * too slowly, when it should be increased quickly, decrease too quickly
700 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
701 * does not matter how to _calculate_ it. Seems, it was trap
702 * that VJ failed to avoid. 8)
705 m
-= (srtt
>> 3); /* m is now error in rtt est */
706 srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
708 m
= -m
; /* m is now abs(error) */
709 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
710 /* This is similar to one of Eifel findings.
711 * Eifel blocks mdev updates when rtt decreases.
712 * This solution is a bit different: we use finer gain
713 * for mdev in this case (alpha*beta).
714 * Like Eifel it also prevents growth of rto,
715 * but also it limits too fast rto decreases,
716 * happening in pure Eifel.
721 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
723 tp
->mdev_us
+= m
; /* mdev = 3/4 mdev + 1/4 new */
724 if (tp
->mdev_us
> tp
->mdev_max_us
) {
725 tp
->mdev_max_us
= tp
->mdev_us
;
726 if (tp
->mdev_max_us
> tp
->rttvar_us
)
727 tp
->rttvar_us
= tp
->mdev_max_us
;
729 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
730 if (tp
->mdev_max_us
< tp
->rttvar_us
)
731 tp
->rttvar_us
-= (tp
->rttvar_us
- tp
->mdev_max_us
) >> 2;
732 tp
->rtt_seq
= tp
->snd_nxt
;
733 tp
->mdev_max_us
= tcp_rto_min_us(sk
);
736 /* no previous measure. */
737 srtt
= m
<< 3; /* take the measured time to be rtt */
738 tp
->mdev_us
= m
<< 1; /* make sure rto = 3*rtt */
739 tp
->rttvar_us
= max(tp
->mdev_us
, tcp_rto_min_us(sk
));
740 tp
->mdev_max_us
= tp
->rttvar_us
;
741 tp
->rtt_seq
= tp
->snd_nxt
;
743 tp
->srtt_us
= max(1U, srtt
);
746 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
747 * Note: TCP stack does not yet implement pacing.
748 * FQ packet scheduler can be used to implement cheap but effective
749 * TCP pacing, to smooth the burst on large writes when packets
750 * in flight is significantly lower than cwnd (or rwin)
752 static void tcp_update_pacing_rate(struct sock
*sk
)
754 const struct tcp_sock
*tp
= tcp_sk(sk
);
757 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
758 rate
= (u64
)tp
->mss_cache
* 2 * (USEC_PER_SEC
<< 3);
760 rate
*= max(tp
->snd_cwnd
, tp
->packets_out
);
762 if (likely(tp
->srtt_us
))
763 do_div(rate
, tp
->srtt_us
);
765 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
766 * without any lock. We want to make sure compiler wont store
767 * intermediate values in this location.
769 ACCESS_ONCE(sk
->sk_pacing_rate
) = min_t(u64
, rate
,
770 sk
->sk_max_pacing_rate
);
773 /* Calculate rto without backoff. This is the second half of Van Jacobson's
774 * routine referred to above.
776 static void tcp_set_rto(struct sock
*sk
)
778 const struct tcp_sock
*tp
= tcp_sk(sk
);
779 /* Old crap is replaced with new one. 8)
782 * 1. If rtt variance happened to be less 50msec, it is hallucination.
783 * It cannot be less due to utterly erratic ACK generation made
784 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
785 * to do with delayed acks, because at cwnd>2 true delack timeout
786 * is invisible. Actually, Linux-2.4 also generates erratic
787 * ACKs in some circumstances.
789 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
791 /* 2. Fixups made earlier cannot be right.
792 * If we do not estimate RTO correctly without them,
793 * all the algo is pure shit and should be replaced
794 * with correct one. It is exactly, which we pretend to do.
797 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
798 * guarantees that rto is higher.
803 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
805 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
808 cwnd
= TCP_INIT_CWND
;
809 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
813 * Packet counting of FACK is based on in-order assumptions, therefore TCP
814 * disables it when reordering is detected
816 void tcp_disable_fack(struct tcp_sock
*tp
)
818 /* RFC3517 uses different metric in lost marker => reset on change */
820 tp
->lost_skb_hint
= NULL
;
821 tp
->rx_opt
.sack_ok
&= ~TCP_FACK_ENABLED
;
824 /* Take a notice that peer is sending D-SACKs */
825 static void tcp_dsack_seen(struct tcp_sock
*tp
)
827 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
830 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
833 struct tcp_sock
*tp
= tcp_sk(sk
);
834 if (metric
> tp
->reordering
) {
837 tp
->reordering
= min(sysctl_tcp_max_reordering
, metric
);
839 /* This exciting event is worth to be remembered. 8) */
841 mib_idx
= LINUX_MIB_TCPTSREORDER
;
842 else if (tcp_is_reno(tp
))
843 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
844 else if (tcp_is_fack(tp
))
845 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
847 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
849 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
850 #if FASTRETRANS_DEBUG > 1
851 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
852 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
856 tp
->undo_marker
? tp
->undo_retrans
: 0);
858 tcp_disable_fack(tp
);
862 tcp_disable_early_retrans(tp
);
865 /* This must be called before lost_out is incremented */
866 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
868 if ((tp
->retransmit_skb_hint
== NULL
) ||
869 before(TCP_SKB_CB(skb
)->seq
,
870 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
871 tp
->retransmit_skb_hint
= skb
;
874 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
875 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
878 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
880 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
881 tcp_verify_retransmit_hint(tp
, skb
);
883 tp
->lost_out
+= tcp_skb_pcount(skb
);
884 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
888 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
,
891 tcp_verify_retransmit_hint(tp
, skb
);
893 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
894 tp
->lost_out
+= tcp_skb_pcount(skb
);
895 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
899 /* This procedure tags the retransmission queue when SACKs arrive.
901 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
902 * Packets in queue with these bits set are counted in variables
903 * sacked_out, retrans_out and lost_out, correspondingly.
905 * Valid combinations are:
906 * Tag InFlight Description
907 * 0 1 - orig segment is in flight.
908 * S 0 - nothing flies, orig reached receiver.
909 * L 0 - nothing flies, orig lost by net.
910 * R 2 - both orig and retransmit are in flight.
911 * L|R 1 - orig is lost, retransmit is in flight.
912 * S|R 1 - orig reached receiver, retrans is still in flight.
913 * (L|S|R is logically valid, it could occur when L|R is sacked,
914 * but it is equivalent to plain S and code short-curcuits it to S.
915 * L|S is logically invalid, it would mean -1 packet in flight 8))
917 * These 6 states form finite state machine, controlled by the following events:
918 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
919 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
920 * 3. Loss detection event of two flavors:
921 * A. Scoreboard estimator decided the packet is lost.
922 * A'. Reno "three dupacks" marks head of queue lost.
923 * A''. Its FACK modification, head until snd.fack is lost.
924 * B. SACK arrives sacking SND.NXT at the moment, when the
925 * segment was retransmitted.
926 * 4. D-SACK added new rule: D-SACK changes any tag to S.
928 * It is pleasant to note, that state diagram turns out to be commutative,
929 * so that we are allowed not to be bothered by order of our actions,
930 * when multiple events arrive simultaneously. (see the function below).
932 * Reordering detection.
933 * --------------------
934 * Reordering metric is maximal distance, which a packet can be displaced
935 * in packet stream. With SACKs we can estimate it:
937 * 1. SACK fills old hole and the corresponding segment was not
938 * ever retransmitted -> reordering. Alas, we cannot use it
939 * when segment was retransmitted.
940 * 2. The last flaw is solved with D-SACK. D-SACK arrives
941 * for retransmitted and already SACKed segment -> reordering..
942 * Both of these heuristics are not used in Loss state, when we cannot
943 * account for retransmits accurately.
945 * SACK block validation.
946 * ----------------------
948 * SACK block range validation checks that the received SACK block fits to
949 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
950 * Note that SND.UNA is not included to the range though being valid because
951 * it means that the receiver is rather inconsistent with itself reporting
952 * SACK reneging when it should advance SND.UNA. Such SACK block this is
953 * perfectly valid, however, in light of RFC2018 which explicitly states
954 * that "SACK block MUST reflect the newest segment. Even if the newest
955 * segment is going to be discarded ...", not that it looks very clever
956 * in case of head skb. Due to potentional receiver driven attacks, we
957 * choose to avoid immediate execution of a walk in write queue due to
958 * reneging and defer head skb's loss recovery to standard loss recovery
959 * procedure that will eventually trigger (nothing forbids us doing this).
961 * Implements also blockage to start_seq wrap-around. Problem lies in the
962 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
963 * there's no guarantee that it will be before snd_nxt (n). The problem
964 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
967 * <- outs wnd -> <- wrapzone ->
968 * u e n u_w e_w s n_w
970 * |<------------+------+----- TCP seqno space --------------+---------->|
971 * ...-- <2^31 ->| |<--------...
972 * ...---- >2^31 ------>| |<--------...
974 * Current code wouldn't be vulnerable but it's better still to discard such
975 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
976 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
977 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
978 * equal to the ideal case (infinite seqno space without wrap caused issues).
980 * With D-SACK the lower bound is extended to cover sequence space below
981 * SND.UNA down to undo_marker, which is the last point of interest. Yet
982 * again, D-SACK block must not to go across snd_una (for the same reason as
983 * for the normal SACK blocks, explained above). But there all simplicity
984 * ends, TCP might receive valid D-SACKs below that. As long as they reside
985 * fully below undo_marker they do not affect behavior in anyway and can
986 * therefore be safely ignored. In rare cases (which are more or less
987 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
988 * fragmentation and packet reordering past skb's retransmission. To consider
989 * them correctly, the acceptable range must be extended even more though
990 * the exact amount is rather hard to quantify. However, tp->max_window can
991 * be used as an exaggerated estimate.
993 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
994 u32 start_seq
, u32 end_seq
)
996 /* Too far in future, or reversed (interpretation is ambiguous) */
997 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1000 /* Nasty start_seq wrap-around check (see comments above) */
1001 if (!before(start_seq
, tp
->snd_nxt
))
1004 /* In outstanding window? ...This is valid exit for D-SACKs too.
1005 * start_seq == snd_una is non-sensical (see comments above)
1007 if (after(start_seq
, tp
->snd_una
))
1010 if (!is_dsack
|| !tp
->undo_marker
)
1013 /* ...Then it's D-SACK, and must reside below snd_una completely */
1014 if (after(end_seq
, tp
->snd_una
))
1017 if (!before(start_seq
, tp
->undo_marker
))
1021 if (!after(end_seq
, tp
->undo_marker
))
1024 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1025 * start_seq < undo_marker and end_seq >= undo_marker.
1027 return !before(start_seq
, end_seq
- tp
->max_window
);
1030 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1031 * Event "B". Later note: FACK people cheated me again 8), we have to account
1032 * for reordering! Ugly, but should help.
1034 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1035 * less than what is now known to be received by the other end (derived from
1036 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1037 * retransmitted skbs to avoid some costly processing per ACKs.
1039 static void tcp_mark_lost_retrans(struct sock
*sk
)
1041 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1042 struct tcp_sock
*tp
= tcp_sk(sk
);
1043 struct sk_buff
*skb
;
1045 u32 new_low_seq
= tp
->snd_nxt
;
1046 u32 received_upto
= tcp_highest_sack_seq(tp
);
1048 if (!tcp_is_fack(tp
) || !tp
->retrans_out
||
1049 !after(received_upto
, tp
->lost_retrans_low
) ||
1050 icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
1053 tcp_for_write_queue(skb
, sk
) {
1054 u32 ack_seq
= TCP_SKB_CB(skb
)->ack_seq
;
1056 if (skb
== tcp_send_head(sk
))
1058 if (cnt
== tp
->retrans_out
)
1060 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1063 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
))
1066 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1067 * constraint here (see above) but figuring out that at
1068 * least tp->reordering SACK blocks reside between ack_seq
1069 * and received_upto is not easy task to do cheaply with
1070 * the available datastructures.
1072 * Whether FACK should check here for tp->reordering segs
1073 * in-between one could argue for either way (it would be
1074 * rather simple to implement as we could count fack_count
1075 * during the walk and do tp->fackets_out - fack_count).
1077 if (after(received_upto
, ack_seq
)) {
1078 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1079 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1081 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
1082 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSTRETRANSMIT
);
1084 if (before(ack_seq
, new_low_seq
))
1085 new_low_seq
= ack_seq
;
1086 cnt
+= tcp_skb_pcount(skb
);
1090 if (tp
->retrans_out
)
1091 tp
->lost_retrans_low
= new_low_seq
;
1094 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1095 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1098 struct tcp_sock
*tp
= tcp_sk(sk
);
1099 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1100 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1101 bool dup_sack
= false;
1103 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1106 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1107 } else if (num_sacks
> 1) {
1108 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1109 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1111 if (!after(end_seq_0
, end_seq_1
) &&
1112 !before(start_seq_0
, start_seq_1
)) {
1115 NET_INC_STATS_BH(sock_net(sk
),
1116 LINUX_MIB_TCPDSACKOFORECV
);
1120 /* D-SACK for already forgotten data... Do dumb counting. */
1121 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1122 !after(end_seq_0
, prior_snd_una
) &&
1123 after(end_seq_0
, tp
->undo_marker
))
1129 struct tcp_sacktag_state
{
1132 long rtt_us
; /* RTT measured by SACKing never-retransmitted data */
1136 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1137 * the incoming SACK may not exactly match but we can find smaller MSS
1138 * aligned portion of it that matches. Therefore we might need to fragment
1139 * which may fail and creates some hassle (caller must handle error case
1142 * FIXME: this could be merged to shift decision code
1144 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1145 u32 start_seq
, u32 end_seq
)
1149 unsigned int pkt_len
;
1152 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1153 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1155 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1156 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1157 mss
= tcp_skb_mss(skb
);
1158 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1161 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1165 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1170 /* Round if necessary so that SACKs cover only full MSSes
1171 * and/or the remaining small portion (if present)
1173 if (pkt_len
> mss
) {
1174 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1175 if (!in_sack
&& new_len
< pkt_len
) {
1177 if (new_len
>= skb
->len
)
1182 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
, GFP_ATOMIC
);
1190 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1191 static u8
tcp_sacktag_one(struct sock
*sk
,
1192 struct tcp_sacktag_state
*state
, u8 sacked
,
1193 u32 start_seq
, u32 end_seq
,
1194 int dup_sack
, int pcount
,
1195 const struct skb_mstamp
*xmit_time
)
1197 struct tcp_sock
*tp
= tcp_sk(sk
);
1198 int fack_count
= state
->fack_count
;
1200 /* Account D-SACK for retransmitted packet. */
1201 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1202 if (tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1203 after(end_seq
, tp
->undo_marker
))
1205 if (sacked
& TCPCB_SACKED_ACKED
)
1206 state
->reord
= min(fack_count
, state
->reord
);
1209 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1210 if (!after(end_seq
, tp
->snd_una
))
1213 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1214 if (sacked
& TCPCB_SACKED_RETRANS
) {
1215 /* If the segment is not tagged as lost,
1216 * we do not clear RETRANS, believing
1217 * that retransmission is still in flight.
1219 if (sacked
& TCPCB_LOST
) {
1220 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1221 tp
->lost_out
-= pcount
;
1222 tp
->retrans_out
-= pcount
;
1225 if (!(sacked
& TCPCB_RETRANS
)) {
1226 /* New sack for not retransmitted frame,
1227 * which was in hole. It is reordering.
1229 if (before(start_seq
,
1230 tcp_highest_sack_seq(tp
)))
1231 state
->reord
= min(fack_count
,
1233 if (!after(end_seq
, tp
->high_seq
))
1234 state
->flag
|= FLAG_ORIG_SACK_ACKED
;
1235 /* Pick the earliest sequence sacked for RTT */
1236 if (state
->rtt_us
< 0) {
1237 struct skb_mstamp now
;
1239 skb_mstamp_get(&now
);
1240 state
->rtt_us
= skb_mstamp_us_delta(&now
,
1245 if (sacked
& TCPCB_LOST
) {
1246 sacked
&= ~TCPCB_LOST
;
1247 tp
->lost_out
-= pcount
;
1251 sacked
|= TCPCB_SACKED_ACKED
;
1252 state
->flag
|= FLAG_DATA_SACKED
;
1253 tp
->sacked_out
+= pcount
;
1255 fack_count
+= pcount
;
1257 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1258 if (!tcp_is_fack(tp
) && (tp
->lost_skb_hint
!= NULL
) &&
1259 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1260 tp
->lost_cnt_hint
+= pcount
;
1262 if (fack_count
> tp
->fackets_out
)
1263 tp
->fackets_out
= fack_count
;
1266 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1267 * frames and clear it. undo_retrans is decreased above, L|R frames
1268 * are accounted above as well.
1270 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1271 sacked
&= ~TCPCB_SACKED_RETRANS
;
1272 tp
->retrans_out
-= pcount
;
1278 /* Shift newly-SACKed bytes from this skb to the immediately previous
1279 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1281 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1282 struct tcp_sacktag_state
*state
,
1283 unsigned int pcount
, int shifted
, int mss
,
1286 struct tcp_sock
*tp
= tcp_sk(sk
);
1287 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1288 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1289 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1293 /* Adjust counters and hints for the newly sacked sequence
1294 * range but discard the return value since prev is already
1295 * marked. We must tag the range first because the seq
1296 * advancement below implicitly advances
1297 * tcp_highest_sack_seq() when skb is highest_sack.
1299 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1300 start_seq
, end_seq
, dup_sack
, pcount
,
1303 if (skb
== tp
->lost_skb_hint
)
1304 tp
->lost_cnt_hint
+= pcount
;
1306 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1307 TCP_SKB_CB(skb
)->seq
+= shifted
;
1309 tcp_skb_pcount_add(prev
, pcount
);
1310 BUG_ON(tcp_skb_pcount(skb
) < pcount
);
1311 tcp_skb_pcount_add(skb
, -pcount
);
1313 /* When we're adding to gso_segs == 1, gso_size will be zero,
1314 * in theory this shouldn't be necessary but as long as DSACK
1315 * code can come after this skb later on it's better to keep
1316 * setting gso_size to something.
1318 if (!skb_shinfo(prev
)->gso_size
) {
1319 skb_shinfo(prev
)->gso_size
= mss
;
1320 skb_shinfo(prev
)->gso_type
= sk
->sk_gso_type
;
1323 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1324 if (tcp_skb_pcount(skb
) <= 1) {
1325 skb_shinfo(skb
)->gso_size
= 0;
1326 skb_shinfo(skb
)->gso_type
= 0;
1329 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1330 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1333 BUG_ON(!tcp_skb_pcount(skb
));
1334 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1338 /* Whole SKB was eaten :-) */
1340 if (skb
== tp
->retransmit_skb_hint
)
1341 tp
->retransmit_skb_hint
= prev
;
1342 if (skb
== tp
->lost_skb_hint
) {
1343 tp
->lost_skb_hint
= prev
;
1344 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1347 TCP_SKB_CB(prev
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1348 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1349 TCP_SKB_CB(prev
)->end_seq
++;
1351 if (skb
== tcp_highest_sack(sk
))
1352 tcp_advance_highest_sack(sk
, skb
);
1354 tcp_unlink_write_queue(skb
, sk
);
1355 sk_wmem_free_skb(sk
, skb
);
1357 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1362 /* I wish gso_size would have a bit more sane initialization than
1363 * something-or-zero which complicates things
1365 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1367 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1370 /* Shifting pages past head area doesn't work */
1371 static int skb_can_shift(const struct sk_buff
*skb
)
1373 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1376 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1379 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1380 struct tcp_sacktag_state
*state
,
1381 u32 start_seq
, u32 end_seq
,
1384 struct tcp_sock
*tp
= tcp_sk(sk
);
1385 struct sk_buff
*prev
;
1391 if (!sk_can_gso(sk
))
1394 /* Normally R but no L won't result in plain S */
1396 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1398 if (!skb_can_shift(skb
))
1400 /* This frame is about to be dropped (was ACKed). */
1401 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1404 /* Can only happen with delayed DSACK + discard craziness */
1405 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1407 prev
= tcp_write_queue_prev(sk
, skb
);
1409 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1412 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1413 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1417 pcount
= tcp_skb_pcount(skb
);
1418 mss
= tcp_skb_seglen(skb
);
1420 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1421 * drop this restriction as unnecessary
1423 if (mss
!= tcp_skb_seglen(prev
))
1426 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1428 /* CHECKME: This is non-MSS split case only?, this will
1429 * cause skipped skbs due to advancing loop btw, original
1430 * has that feature too
1432 if (tcp_skb_pcount(skb
) <= 1)
1435 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1437 /* TODO: head merge to next could be attempted here
1438 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1439 * though it might not be worth of the additional hassle
1441 * ...we can probably just fallback to what was done
1442 * previously. We could try merging non-SACKed ones
1443 * as well but it probably isn't going to buy off
1444 * because later SACKs might again split them, and
1445 * it would make skb timestamp tracking considerably
1451 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1453 BUG_ON(len
> skb
->len
);
1455 /* MSS boundaries should be honoured or else pcount will
1456 * severely break even though it makes things bit trickier.
1457 * Optimize common case to avoid most of the divides
1459 mss
= tcp_skb_mss(skb
);
1461 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1462 * drop this restriction as unnecessary
1464 if (mss
!= tcp_skb_seglen(prev
))
1469 } else if (len
< mss
) {
1477 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1478 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1481 if (!skb_shift(prev
, skb
, len
))
1483 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1486 /* Hole filled allows collapsing with the next as well, this is very
1487 * useful when hole on every nth skb pattern happens
1489 if (prev
== tcp_write_queue_tail(sk
))
1491 skb
= tcp_write_queue_next(sk
, prev
);
1493 if (!skb_can_shift(skb
) ||
1494 (skb
== tcp_send_head(sk
)) ||
1495 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1496 (mss
!= tcp_skb_seglen(skb
)))
1500 if (skb_shift(prev
, skb
, len
)) {
1501 pcount
+= tcp_skb_pcount(skb
);
1502 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1506 state
->fack_count
+= pcount
;
1513 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1517 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1518 struct tcp_sack_block
*next_dup
,
1519 struct tcp_sacktag_state
*state
,
1520 u32 start_seq
, u32 end_seq
,
1523 struct tcp_sock
*tp
= tcp_sk(sk
);
1524 struct sk_buff
*tmp
;
1526 tcp_for_write_queue_from(skb
, sk
) {
1528 bool dup_sack
= dup_sack_in
;
1530 if (skb
== tcp_send_head(sk
))
1533 /* queue is in-order => we can short-circuit the walk early */
1534 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1537 if ((next_dup
!= NULL
) &&
1538 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1539 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1540 next_dup
->start_seq
,
1546 /* skb reference here is a bit tricky to get right, since
1547 * shifting can eat and free both this skb and the next,
1548 * so not even _safe variant of the loop is enough.
1551 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1552 start_seq
, end_seq
, dup_sack
);
1561 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1567 if (unlikely(in_sack
< 0))
1571 TCP_SKB_CB(skb
)->sacked
=
1574 TCP_SKB_CB(skb
)->sacked
,
1575 TCP_SKB_CB(skb
)->seq
,
1576 TCP_SKB_CB(skb
)->end_seq
,
1578 tcp_skb_pcount(skb
),
1581 if (!before(TCP_SKB_CB(skb
)->seq
,
1582 tcp_highest_sack_seq(tp
)))
1583 tcp_advance_highest_sack(sk
, skb
);
1586 state
->fack_count
+= tcp_skb_pcount(skb
);
1591 /* Avoid all extra work that is being done by sacktag while walking in
1594 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1595 struct tcp_sacktag_state
*state
,
1598 tcp_for_write_queue_from(skb
, sk
) {
1599 if (skb
== tcp_send_head(sk
))
1602 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1605 state
->fack_count
+= tcp_skb_pcount(skb
);
1610 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1612 struct tcp_sack_block
*next_dup
,
1613 struct tcp_sacktag_state
*state
,
1616 if (next_dup
== NULL
)
1619 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1620 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1621 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1622 next_dup
->start_seq
, next_dup
->end_seq
,
1629 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1631 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1635 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1636 u32 prior_snd_una
, long *sack_rtt_us
)
1638 struct tcp_sock
*tp
= tcp_sk(sk
);
1639 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1640 TCP_SKB_CB(ack_skb
)->sacked
);
1641 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1642 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1643 struct tcp_sack_block
*cache
;
1644 struct tcp_sacktag_state state
;
1645 struct sk_buff
*skb
;
1646 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1648 bool found_dup_sack
= false;
1650 int first_sack_index
;
1653 state
.reord
= tp
->packets_out
;
1656 if (!tp
->sacked_out
) {
1657 if (WARN_ON(tp
->fackets_out
))
1658 tp
->fackets_out
= 0;
1659 tcp_highest_sack_reset(sk
);
1662 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1663 num_sacks
, prior_snd_una
);
1665 state
.flag
|= FLAG_DSACKING_ACK
;
1667 /* Eliminate too old ACKs, but take into
1668 * account more or less fresh ones, they can
1669 * contain valid SACK info.
1671 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1674 if (!tp
->packets_out
)
1678 first_sack_index
= 0;
1679 for (i
= 0; i
< num_sacks
; i
++) {
1680 bool dup_sack
= !i
&& found_dup_sack
;
1682 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1683 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1685 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1686 sp
[used_sacks
].start_seq
,
1687 sp
[used_sacks
].end_seq
)) {
1691 if (!tp
->undo_marker
)
1692 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1694 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1696 /* Don't count olds caused by ACK reordering */
1697 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1698 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1700 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1703 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
1705 first_sack_index
= -1;
1709 /* Ignore very old stuff early */
1710 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1716 /* order SACK blocks to allow in order walk of the retrans queue */
1717 for (i
= used_sacks
- 1; i
> 0; i
--) {
1718 for (j
= 0; j
< i
; j
++) {
1719 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1720 swap(sp
[j
], sp
[j
+ 1]);
1722 /* Track where the first SACK block goes to */
1723 if (j
== first_sack_index
)
1724 first_sack_index
= j
+ 1;
1729 skb
= tcp_write_queue_head(sk
);
1730 state
.fack_count
= 0;
1733 if (!tp
->sacked_out
) {
1734 /* It's already past, so skip checking against it */
1735 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1737 cache
= tp
->recv_sack_cache
;
1738 /* Skip empty blocks in at head of the cache */
1739 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1744 while (i
< used_sacks
) {
1745 u32 start_seq
= sp
[i
].start_seq
;
1746 u32 end_seq
= sp
[i
].end_seq
;
1747 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1748 struct tcp_sack_block
*next_dup
= NULL
;
1750 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1751 next_dup
= &sp
[i
+ 1];
1753 /* Skip too early cached blocks */
1754 while (tcp_sack_cache_ok(tp
, cache
) &&
1755 !before(start_seq
, cache
->end_seq
))
1758 /* Can skip some work by looking recv_sack_cache? */
1759 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1760 after(end_seq
, cache
->start_seq
)) {
1763 if (before(start_seq
, cache
->start_seq
)) {
1764 skb
= tcp_sacktag_skip(skb
, sk
, &state
,
1766 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1773 /* Rest of the block already fully processed? */
1774 if (!after(end_seq
, cache
->end_seq
))
1777 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1781 /* ...tail remains todo... */
1782 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1783 /* ...but better entrypoint exists! */
1784 skb
= tcp_highest_sack(sk
);
1787 state
.fack_count
= tp
->fackets_out
;
1792 skb
= tcp_sacktag_skip(skb
, sk
, &state
, cache
->end_seq
);
1793 /* Check overlap against next cached too (past this one already) */
1798 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1799 skb
= tcp_highest_sack(sk
);
1802 state
.fack_count
= tp
->fackets_out
;
1804 skb
= tcp_sacktag_skip(skb
, sk
, &state
, start_seq
);
1807 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, &state
,
1808 start_seq
, end_seq
, dup_sack
);
1814 /* Clear the head of the cache sack blocks so we can skip it next time */
1815 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1816 tp
->recv_sack_cache
[i
].start_seq
= 0;
1817 tp
->recv_sack_cache
[i
].end_seq
= 0;
1819 for (j
= 0; j
< used_sacks
; j
++)
1820 tp
->recv_sack_cache
[i
++] = sp
[j
];
1822 tcp_mark_lost_retrans(sk
);
1824 tcp_verify_left_out(tp
);
1826 if ((state
.reord
< tp
->fackets_out
) &&
1827 ((inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
))
1828 tcp_update_reordering(sk
, tp
->fackets_out
- state
.reord
, 0);
1832 #if FASTRETRANS_DEBUG > 0
1833 WARN_ON((int)tp
->sacked_out
< 0);
1834 WARN_ON((int)tp
->lost_out
< 0);
1835 WARN_ON((int)tp
->retrans_out
< 0);
1836 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1838 *sack_rtt_us
= state
.rtt_us
;
1842 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1843 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1845 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1849 holes
= max(tp
->lost_out
, 1U);
1850 holes
= min(holes
, tp
->packets_out
);
1852 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1853 tp
->sacked_out
= tp
->packets_out
- holes
;
1859 /* If we receive more dupacks than we expected counting segments
1860 * in assumption of absent reordering, interpret this as reordering.
1861 * The only another reason could be bug in receiver TCP.
1863 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1865 struct tcp_sock
*tp
= tcp_sk(sk
);
1866 if (tcp_limit_reno_sacked(tp
))
1867 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1870 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1872 static void tcp_add_reno_sack(struct sock
*sk
)
1874 struct tcp_sock
*tp
= tcp_sk(sk
);
1876 tcp_check_reno_reordering(sk
, 0);
1877 tcp_verify_left_out(tp
);
1880 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1882 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1884 struct tcp_sock
*tp
= tcp_sk(sk
);
1887 /* One ACK acked hole. The rest eat duplicate ACKs. */
1888 if (acked
- 1 >= tp
->sacked_out
)
1891 tp
->sacked_out
-= acked
- 1;
1893 tcp_check_reno_reordering(sk
, acked
);
1894 tcp_verify_left_out(tp
);
1897 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1902 void tcp_clear_retrans(struct tcp_sock
*tp
)
1904 tp
->retrans_out
= 0;
1906 tp
->undo_marker
= 0;
1907 tp
->undo_retrans
= -1;
1908 tp
->fackets_out
= 0;
1912 static inline void tcp_init_undo(struct tcp_sock
*tp
)
1914 tp
->undo_marker
= tp
->snd_una
;
1915 /* Retransmission still in flight may cause DSACKs later. */
1916 tp
->undo_retrans
= tp
->retrans_out
? : -1;
1919 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1920 * and reset tags completely, otherwise preserve SACKs. If receiver
1921 * dropped its ofo queue, we will know this due to reneging detection.
1923 void tcp_enter_loss(struct sock
*sk
)
1925 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1926 struct tcp_sock
*tp
= tcp_sk(sk
);
1927 struct sk_buff
*skb
;
1928 bool new_recovery
= false;
1929 bool is_reneg
; /* is receiver reneging on SACKs? */
1931 /* Reduce ssthresh if it has not yet been made inside this window. */
1932 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
||
1933 !after(tp
->high_seq
, tp
->snd_una
) ||
1934 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1935 new_recovery
= true;
1936 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1937 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1938 tcp_ca_event(sk
, CA_EVENT_LOSS
);
1942 tp
->snd_cwnd_cnt
= 0;
1943 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1945 tp
->retrans_out
= 0;
1948 if (tcp_is_reno(tp
))
1949 tcp_reset_reno_sack(tp
);
1951 skb
= tcp_write_queue_head(sk
);
1952 is_reneg
= skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
);
1954 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
1956 tp
->fackets_out
= 0;
1958 tcp_clear_all_retrans_hints(tp
);
1960 tcp_for_write_queue(skb
, sk
) {
1961 if (skb
== tcp_send_head(sk
))
1964 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
1965 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || is_reneg
) {
1966 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1967 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1968 tp
->lost_out
+= tcp_skb_pcount(skb
);
1969 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
1972 tcp_verify_left_out(tp
);
1974 /* Timeout in disordered state after receiving substantial DUPACKs
1975 * suggests that the degree of reordering is over-estimated.
1977 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
&&
1978 tp
->sacked_out
>= sysctl_tcp_reordering
)
1979 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1980 sysctl_tcp_reordering
);
1981 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1982 tp
->high_seq
= tp
->snd_nxt
;
1983 tcp_ecn_queue_cwr(tp
);
1985 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1986 * loss recovery is underway except recurring timeout(s) on
1987 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1989 tp
->frto
= sysctl_tcp_frto
&&
1990 (new_recovery
|| icsk
->icsk_retransmits
) &&
1991 !inet_csk(sk
)->icsk_mtup
.probe_size
;
1994 /* If ACK arrived pointing to a remembered SACK, it means that our
1995 * remembered SACKs do not reflect real state of receiver i.e.
1996 * receiver _host_ is heavily congested (or buggy).
1998 * To avoid big spurious retransmission bursts due to transient SACK
1999 * scoreboard oddities that look like reneging, we give the receiver a
2000 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2001 * restore sanity to the SACK scoreboard. If the apparent reneging
2002 * persists until this RTO then we'll clear the SACK scoreboard.
2004 static bool tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2006 if (flag
& FLAG_SACK_RENEGING
) {
2007 struct tcp_sock
*tp
= tcp_sk(sk
);
2008 unsigned long delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 4),
2009 msecs_to_jiffies(10));
2011 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2012 delay
, TCP_RTO_MAX
);
2018 static inline int tcp_fackets_out(const struct tcp_sock
*tp
)
2020 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2023 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2024 * counter when SACK is enabled (without SACK, sacked_out is used for
2027 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2028 * segments up to the highest received SACK block so far and holes in
2031 * With reordering, holes may still be in flight, so RFC3517 recovery
2032 * uses pure sacked_out (total number of SACKed segments) even though
2033 * it violates the RFC that uses duplicate ACKs, often these are equal
2034 * but when e.g. out-of-window ACKs or packet duplication occurs,
2035 * they differ. Since neither occurs due to loss, TCP should really
2038 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2040 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2043 static bool tcp_pause_early_retransmit(struct sock
*sk
, int flag
)
2045 struct tcp_sock
*tp
= tcp_sk(sk
);
2046 unsigned long delay
;
2048 /* Delay early retransmit and entering fast recovery for
2049 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2050 * available, or RTO is scheduled to fire first.
2052 if (sysctl_tcp_early_retrans
< 2 || sysctl_tcp_early_retrans
> 3 ||
2053 (flag
& FLAG_ECE
) || !tp
->srtt_us
)
2056 delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 5),
2057 msecs_to_jiffies(2));
2059 if (!time_after(inet_csk(sk
)->icsk_timeout
, (jiffies
+ delay
)))
2062 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_EARLY_RETRANS
, delay
,
2067 /* Linux NewReno/SACK/FACK/ECN state machine.
2068 * --------------------------------------
2070 * "Open" Normal state, no dubious events, fast path.
2071 * "Disorder" In all the respects it is "Open",
2072 * but requires a bit more attention. It is entered when
2073 * we see some SACKs or dupacks. It is split of "Open"
2074 * mainly to move some processing from fast path to slow one.
2075 * "CWR" CWND was reduced due to some Congestion Notification event.
2076 * It can be ECN, ICMP source quench, local device congestion.
2077 * "Recovery" CWND was reduced, we are fast-retransmitting.
2078 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2080 * tcp_fastretrans_alert() is entered:
2081 * - each incoming ACK, if state is not "Open"
2082 * - when arrived ACK is unusual, namely:
2087 * Counting packets in flight is pretty simple.
2089 * in_flight = packets_out - left_out + retrans_out
2091 * packets_out is SND.NXT-SND.UNA counted in packets.
2093 * retrans_out is number of retransmitted segments.
2095 * left_out is number of segments left network, but not ACKed yet.
2097 * left_out = sacked_out + lost_out
2099 * sacked_out: Packets, which arrived to receiver out of order
2100 * and hence not ACKed. With SACKs this number is simply
2101 * amount of SACKed data. Even without SACKs
2102 * it is easy to give pretty reliable estimate of this number,
2103 * counting duplicate ACKs.
2105 * lost_out: Packets lost by network. TCP has no explicit
2106 * "loss notification" feedback from network (for now).
2107 * It means that this number can be only _guessed_.
2108 * Actually, it is the heuristics to predict lossage that
2109 * distinguishes different algorithms.
2111 * F.e. after RTO, when all the queue is considered as lost,
2112 * lost_out = packets_out and in_flight = retrans_out.
2114 * Essentially, we have now two algorithms counting
2117 * FACK: It is the simplest heuristics. As soon as we decided
2118 * that something is lost, we decide that _all_ not SACKed
2119 * packets until the most forward SACK are lost. I.e.
2120 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2121 * It is absolutely correct estimate, if network does not reorder
2122 * packets. And it loses any connection to reality when reordering
2123 * takes place. We use FACK by default until reordering
2124 * is suspected on the path to this destination.
2126 * NewReno: when Recovery is entered, we assume that one segment
2127 * is lost (classic Reno). While we are in Recovery and
2128 * a partial ACK arrives, we assume that one more packet
2129 * is lost (NewReno). This heuristics are the same in NewReno
2132 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2133 * deflation etc. CWND is real congestion window, never inflated, changes
2134 * only according to classic VJ rules.
2136 * Really tricky (and requiring careful tuning) part of algorithm
2137 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2138 * The first determines the moment _when_ we should reduce CWND and,
2139 * hence, slow down forward transmission. In fact, it determines the moment
2140 * when we decide that hole is caused by loss, rather than by a reorder.
2142 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2143 * holes, caused by lost packets.
2145 * And the most logically complicated part of algorithm is undo
2146 * heuristics. We detect false retransmits due to both too early
2147 * fast retransmit (reordering) and underestimated RTO, analyzing
2148 * timestamps and D-SACKs. When we detect that some segments were
2149 * retransmitted by mistake and CWND reduction was wrong, we undo
2150 * window reduction and abort recovery phase. This logic is hidden
2151 * inside several functions named tcp_try_undo_<something>.
2154 /* This function decides, when we should leave Disordered state
2155 * and enter Recovery phase, reducing congestion window.
2157 * Main question: may we further continue forward transmission
2158 * with the same cwnd?
2160 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2162 struct tcp_sock
*tp
= tcp_sk(sk
);
2165 /* Trick#1: The loss is proven. */
2169 /* Not-A-Trick#2 : Classic rule... */
2170 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2173 /* Trick#4: It is still not OK... But will it be useful to delay
2176 packets_out
= tp
->packets_out
;
2177 if (packets_out
<= tp
->reordering
&&
2178 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2179 !tcp_may_send_now(sk
)) {
2180 /* We have nothing to send. This connection is limited
2181 * either by receiver window or by application.
2186 /* If a thin stream is detected, retransmit after first
2187 * received dupack. Employ only if SACK is supported in order
2188 * to avoid possible corner-case series of spurious retransmissions
2189 * Use only if there are no unsent data.
2191 if ((tp
->thin_dupack
|| sysctl_tcp_thin_dupack
) &&
2192 tcp_stream_is_thin(tp
) && tcp_dupack_heuristics(tp
) > 1 &&
2193 tcp_is_sack(tp
) && !tcp_send_head(sk
))
2196 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2197 * retransmissions due to small network reorderings, we implement
2198 * Mitigation A.3 in the RFC and delay the retransmission for a short
2199 * interval if appropriate.
2201 if (tp
->do_early_retrans
&& !tp
->retrans_out
&& tp
->sacked_out
&&
2202 (tp
->packets_out
>= (tp
->sacked_out
+ 1) && tp
->packets_out
< 4) &&
2203 !tcp_may_send_now(sk
))
2204 return !tcp_pause_early_retransmit(sk
, flag
);
2209 /* Detect loss in event "A" above by marking head of queue up as lost.
2210 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2211 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2212 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2213 * the maximum SACKed segments to pass before reaching this limit.
2215 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2217 struct tcp_sock
*tp
= tcp_sk(sk
);
2218 struct sk_buff
*skb
;
2222 /* Use SACK to deduce losses of new sequences sent during recovery */
2223 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2225 WARN_ON(packets
> tp
->packets_out
);
2226 if (tp
->lost_skb_hint
) {
2227 skb
= tp
->lost_skb_hint
;
2228 cnt
= tp
->lost_cnt_hint
;
2229 /* Head already handled? */
2230 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2233 skb
= tcp_write_queue_head(sk
);
2237 tcp_for_write_queue_from(skb
, sk
) {
2238 if (skb
== tcp_send_head(sk
))
2240 /* TODO: do this better */
2241 /* this is not the most efficient way to do this... */
2242 tp
->lost_skb_hint
= skb
;
2243 tp
->lost_cnt_hint
= cnt
;
2245 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2249 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2250 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2251 cnt
+= tcp_skb_pcount(skb
);
2253 if (cnt
> packets
) {
2254 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2255 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2256 (oldcnt
>= packets
))
2259 mss
= skb_shinfo(skb
)->gso_size
;
2260 err
= tcp_fragment(sk
, skb
, (packets
- oldcnt
) * mss
,
2267 tcp_skb_mark_lost(tp
, skb
);
2272 tcp_verify_left_out(tp
);
2275 /* Account newly detected lost packet(s) */
2277 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2279 struct tcp_sock
*tp
= tcp_sk(sk
);
2281 if (tcp_is_reno(tp
)) {
2282 tcp_mark_head_lost(sk
, 1, 1);
2283 } else if (tcp_is_fack(tp
)) {
2284 int lost
= tp
->fackets_out
- tp
->reordering
;
2287 tcp_mark_head_lost(sk
, lost
, 0);
2289 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2290 if (sacked_upto
>= 0)
2291 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2292 else if (fast_rexmit
)
2293 tcp_mark_head_lost(sk
, 1, 1);
2297 /* CWND moderation, preventing bursts due to too big ACKs
2298 * in dubious situations.
2300 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2302 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2303 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2304 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2307 /* Nothing was retransmitted or returned timestamp is less
2308 * than timestamp of the first retransmission.
2310 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2312 return !tp
->retrans_stamp
||
2313 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2314 before(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
));
2317 /* Undo procedures. */
2319 /* We can clear retrans_stamp when there are no retransmissions in the
2320 * window. It would seem that it is trivially available for us in
2321 * tp->retrans_out, however, that kind of assumptions doesn't consider
2322 * what will happen if errors occur when sending retransmission for the
2323 * second time. ...It could the that such segment has only
2324 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2325 * the head skb is enough except for some reneging corner cases that
2326 * are not worth the effort.
2328 * Main reason for all this complexity is the fact that connection dying
2329 * time now depends on the validity of the retrans_stamp, in particular,
2330 * that successive retransmissions of a segment must not advance
2331 * retrans_stamp under any conditions.
2333 static bool tcp_any_retrans_done(const struct sock
*sk
)
2335 const struct tcp_sock
*tp
= tcp_sk(sk
);
2336 struct sk_buff
*skb
;
2338 if (tp
->retrans_out
)
2341 skb
= tcp_write_queue_head(sk
);
2342 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2348 #if FASTRETRANS_DEBUG > 1
2349 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2351 struct tcp_sock
*tp
= tcp_sk(sk
);
2352 struct inet_sock
*inet
= inet_sk(sk
);
2354 if (sk
->sk_family
== AF_INET
) {
2355 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2357 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2358 tp
->snd_cwnd
, tcp_left_out(tp
),
2359 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2362 #if IS_ENABLED(CONFIG_IPV6)
2363 else if (sk
->sk_family
== AF_INET6
) {
2364 struct ipv6_pinfo
*np
= inet6_sk(sk
);
2365 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2367 &np
->daddr
, ntohs(inet
->inet_dport
),
2368 tp
->snd_cwnd
, tcp_left_out(tp
),
2369 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2375 #define DBGUNDO(x...) do { } while (0)
2378 static void tcp_undo_cwnd_reduction(struct sock
*sk
, bool unmark_loss
)
2380 struct tcp_sock
*tp
= tcp_sk(sk
);
2383 struct sk_buff
*skb
;
2385 tcp_for_write_queue(skb
, sk
) {
2386 if (skb
== tcp_send_head(sk
))
2388 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2391 tcp_clear_all_retrans_hints(tp
);
2394 if (tp
->prior_ssthresh
) {
2395 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2397 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2398 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2400 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2402 if (tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2403 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2404 tcp_ecn_withdraw_cwr(tp
);
2407 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2409 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2410 tp
->undo_marker
= 0;
2413 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2415 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2418 /* People celebrate: "We love our President!" */
2419 static bool tcp_try_undo_recovery(struct sock
*sk
)
2421 struct tcp_sock
*tp
= tcp_sk(sk
);
2423 if (tcp_may_undo(tp
)) {
2426 /* Happy end! We did not retransmit anything
2427 * or our original transmission succeeded.
2429 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2430 tcp_undo_cwnd_reduction(sk
, false);
2431 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2432 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2434 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2436 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2438 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2439 /* Hold old state until something *above* high_seq
2440 * is ACKed. For Reno it is MUST to prevent false
2441 * fast retransmits (RFC2582). SACK TCP is safe. */
2442 tcp_moderate_cwnd(tp
);
2443 if (!tcp_any_retrans_done(sk
))
2444 tp
->retrans_stamp
= 0;
2447 tcp_set_ca_state(sk
, TCP_CA_Open
);
2451 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2452 static bool tcp_try_undo_dsack(struct sock
*sk
)
2454 struct tcp_sock
*tp
= tcp_sk(sk
);
2456 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2457 DBGUNDO(sk
, "D-SACK");
2458 tcp_undo_cwnd_reduction(sk
, false);
2459 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2465 /* Undo during loss recovery after partial ACK or using F-RTO. */
2466 static bool tcp_try_undo_loss(struct sock
*sk
, bool frto_undo
)
2468 struct tcp_sock
*tp
= tcp_sk(sk
);
2470 if (frto_undo
|| tcp_may_undo(tp
)) {
2471 tcp_undo_cwnd_reduction(sk
, true);
2473 DBGUNDO(sk
, "partial loss");
2474 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2476 NET_INC_STATS_BH(sock_net(sk
),
2477 LINUX_MIB_TCPSPURIOUSRTOS
);
2478 inet_csk(sk
)->icsk_retransmits
= 0;
2479 if (frto_undo
|| tcp_is_sack(tp
))
2480 tcp_set_ca_state(sk
, TCP_CA_Open
);
2486 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2487 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2488 * It computes the number of packets to send (sndcnt) based on packets newly
2490 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2491 * cwnd reductions across a full RTT.
2492 * 2) If packets in flight is lower than ssthresh (such as due to excess
2493 * losses and/or application stalls), do not perform any further cwnd
2494 * reductions, but instead slow start up to ssthresh.
2496 static void tcp_init_cwnd_reduction(struct sock
*sk
)
2498 struct tcp_sock
*tp
= tcp_sk(sk
);
2500 tp
->high_seq
= tp
->snd_nxt
;
2501 tp
->tlp_high_seq
= 0;
2502 tp
->snd_cwnd_cnt
= 0;
2503 tp
->prior_cwnd
= tp
->snd_cwnd
;
2504 tp
->prr_delivered
= 0;
2506 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2507 tcp_ecn_queue_cwr(tp
);
2510 static void tcp_cwnd_reduction(struct sock
*sk
, const int prior_unsacked
,
2513 struct tcp_sock
*tp
= tcp_sk(sk
);
2515 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2516 int newly_acked_sacked
= prior_unsacked
-
2517 (tp
->packets_out
- tp
->sacked_out
);
2519 tp
->prr_delivered
+= newly_acked_sacked
;
2520 if (tcp_packets_in_flight(tp
) > tp
->snd_ssthresh
) {
2521 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2523 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2525 sndcnt
= min_t(int, delta
,
2526 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2527 newly_acked_sacked
) + 1);
2530 sndcnt
= max(sndcnt
, (fast_rexmit
? 1 : 0));
2531 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2534 static inline void tcp_end_cwnd_reduction(struct sock
*sk
)
2536 struct tcp_sock
*tp
= tcp_sk(sk
);
2538 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2539 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
||
2540 (tp
->undo_marker
&& tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
)) {
2541 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2542 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2544 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2547 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2548 void tcp_enter_cwr(struct sock
*sk
)
2550 struct tcp_sock
*tp
= tcp_sk(sk
);
2552 tp
->prior_ssthresh
= 0;
2553 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2554 tp
->undo_marker
= 0;
2555 tcp_init_cwnd_reduction(sk
);
2556 tcp_set_ca_state(sk
, TCP_CA_CWR
);
2560 static void tcp_try_keep_open(struct sock
*sk
)
2562 struct tcp_sock
*tp
= tcp_sk(sk
);
2563 int state
= TCP_CA_Open
;
2565 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2566 state
= TCP_CA_Disorder
;
2568 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2569 tcp_set_ca_state(sk
, state
);
2570 tp
->high_seq
= tp
->snd_nxt
;
2574 static void tcp_try_to_open(struct sock
*sk
, int flag
, const int prior_unsacked
)
2576 struct tcp_sock
*tp
= tcp_sk(sk
);
2578 tcp_verify_left_out(tp
);
2580 if (!tcp_any_retrans_done(sk
))
2581 tp
->retrans_stamp
= 0;
2583 if (flag
& FLAG_ECE
)
2586 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2587 tcp_try_keep_open(sk
);
2589 tcp_cwnd_reduction(sk
, prior_unsacked
, 0);
2593 static void tcp_mtup_probe_failed(struct sock
*sk
)
2595 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2597 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2598 icsk
->icsk_mtup
.probe_size
= 0;
2601 static void tcp_mtup_probe_success(struct sock
*sk
)
2603 struct tcp_sock
*tp
= tcp_sk(sk
);
2604 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2606 /* FIXME: breaks with very large cwnd */
2607 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2608 tp
->snd_cwnd
= tp
->snd_cwnd
*
2609 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2610 icsk
->icsk_mtup
.probe_size
;
2611 tp
->snd_cwnd_cnt
= 0;
2612 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2613 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2615 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2616 icsk
->icsk_mtup
.probe_size
= 0;
2617 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2620 /* Do a simple retransmit without using the backoff mechanisms in
2621 * tcp_timer. This is used for path mtu discovery.
2622 * The socket is already locked here.
2624 void tcp_simple_retransmit(struct sock
*sk
)
2626 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2627 struct tcp_sock
*tp
= tcp_sk(sk
);
2628 struct sk_buff
*skb
;
2629 unsigned int mss
= tcp_current_mss(sk
);
2630 u32 prior_lost
= tp
->lost_out
;
2632 tcp_for_write_queue(skb
, sk
) {
2633 if (skb
== tcp_send_head(sk
))
2635 if (tcp_skb_seglen(skb
) > mss
&&
2636 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2637 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2638 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2639 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2641 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2645 tcp_clear_retrans_hints_partial(tp
);
2647 if (prior_lost
== tp
->lost_out
)
2650 if (tcp_is_reno(tp
))
2651 tcp_limit_reno_sacked(tp
);
2653 tcp_verify_left_out(tp
);
2655 /* Don't muck with the congestion window here.
2656 * Reason is that we do not increase amount of _data_
2657 * in network, but units changed and effective
2658 * cwnd/ssthresh really reduced now.
2660 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2661 tp
->high_seq
= tp
->snd_nxt
;
2662 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2663 tp
->prior_ssthresh
= 0;
2664 tp
->undo_marker
= 0;
2665 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2667 tcp_xmit_retransmit_queue(sk
);
2669 EXPORT_SYMBOL(tcp_simple_retransmit
);
2671 static void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2673 struct tcp_sock
*tp
= tcp_sk(sk
);
2676 if (tcp_is_reno(tp
))
2677 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2679 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2681 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2683 tp
->prior_ssthresh
= 0;
2686 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2688 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2689 tcp_init_cwnd_reduction(sk
);
2691 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2694 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2695 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2697 static void tcp_process_loss(struct sock
*sk
, int flag
, bool is_dupack
)
2699 struct tcp_sock
*tp
= tcp_sk(sk
);
2700 bool recovered
= !before(tp
->snd_una
, tp
->high_seq
);
2702 if (tp
->frto
) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2703 /* Step 3.b. A timeout is spurious if not all data are
2704 * lost, i.e., never-retransmitted data are (s)acked.
2706 if (tcp_try_undo_loss(sk
, flag
& FLAG_ORIG_SACK_ACKED
))
2709 if (after(tp
->snd_nxt
, tp
->high_seq
) &&
2710 (flag
& FLAG_DATA_SACKED
|| is_dupack
)) {
2711 tp
->frto
= 0; /* Loss was real: 2nd part of step 3.a */
2712 } else if (flag
& FLAG_SND_UNA_ADVANCED
&& !recovered
) {
2713 tp
->high_seq
= tp
->snd_nxt
;
2714 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
),
2716 if (after(tp
->snd_nxt
, tp
->high_seq
))
2717 return; /* Step 2.b */
2723 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2724 tcp_try_undo_recovery(sk
);
2727 if (tcp_is_reno(tp
)) {
2728 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2729 * delivered. Lower inflight to clock out (re)tranmissions.
2731 if (after(tp
->snd_nxt
, tp
->high_seq
) && is_dupack
)
2732 tcp_add_reno_sack(sk
);
2733 else if (flag
& FLAG_SND_UNA_ADVANCED
)
2734 tcp_reset_reno_sack(tp
);
2736 if (tcp_try_undo_loss(sk
, false))
2738 tcp_xmit_retransmit_queue(sk
);
2741 /* Undo during fast recovery after partial ACK. */
2742 static bool tcp_try_undo_partial(struct sock
*sk
, const int acked
,
2743 const int prior_unsacked
)
2745 struct tcp_sock
*tp
= tcp_sk(sk
);
2747 if (tp
->undo_marker
&& tcp_packet_delayed(tp
)) {
2748 /* Plain luck! Hole if filled with delayed
2749 * packet, rather than with a retransmit.
2751 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2753 /* We are getting evidence that the reordering degree is higher
2754 * than we realized. If there are no retransmits out then we
2755 * can undo. Otherwise we clock out new packets but do not
2756 * mark more packets lost or retransmit more.
2758 if (tp
->retrans_out
) {
2759 tcp_cwnd_reduction(sk
, prior_unsacked
, 0);
2763 if (!tcp_any_retrans_done(sk
))
2764 tp
->retrans_stamp
= 0;
2766 DBGUNDO(sk
, "partial recovery");
2767 tcp_undo_cwnd_reduction(sk
, true);
2768 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2769 tcp_try_keep_open(sk
);
2775 /* Process an event, which can update packets-in-flight not trivially.
2776 * Main goal of this function is to calculate new estimate for left_out,
2777 * taking into account both packets sitting in receiver's buffer and
2778 * packets lost by network.
2780 * Besides that it does CWND reduction, when packet loss is detected
2781 * and changes state of machine.
2783 * It does _not_ decide what to send, it is made in function
2784 * tcp_xmit_retransmit_queue().
2786 static void tcp_fastretrans_alert(struct sock
*sk
, const int acked
,
2787 const int prior_unsacked
,
2788 bool is_dupack
, int flag
)
2790 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2791 struct tcp_sock
*tp
= tcp_sk(sk
);
2792 bool do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2793 (tcp_fackets_out(tp
) > tp
->reordering
));
2794 int fast_rexmit
= 0;
2796 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2798 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2799 tp
->fackets_out
= 0;
2801 /* Now state machine starts.
2802 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2803 if (flag
& FLAG_ECE
)
2804 tp
->prior_ssthresh
= 0;
2806 /* B. In all the states check for reneging SACKs. */
2807 if (tcp_check_sack_reneging(sk
, flag
))
2810 /* C. Check consistency of the current state. */
2811 tcp_verify_left_out(tp
);
2813 /* D. Check state exit conditions. State can be terminated
2814 * when high_seq is ACKed. */
2815 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2816 WARN_ON(tp
->retrans_out
!= 0);
2817 tp
->retrans_stamp
= 0;
2818 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2819 switch (icsk
->icsk_ca_state
) {
2821 /* CWR is to be held something *above* high_seq
2822 * is ACKed for CWR bit to reach receiver. */
2823 if (tp
->snd_una
!= tp
->high_seq
) {
2824 tcp_end_cwnd_reduction(sk
);
2825 tcp_set_ca_state(sk
, TCP_CA_Open
);
2829 case TCP_CA_Recovery
:
2830 if (tcp_is_reno(tp
))
2831 tcp_reset_reno_sack(tp
);
2832 if (tcp_try_undo_recovery(sk
))
2834 tcp_end_cwnd_reduction(sk
);
2839 /* E. Process state. */
2840 switch (icsk
->icsk_ca_state
) {
2841 case TCP_CA_Recovery
:
2842 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2843 if (tcp_is_reno(tp
) && is_dupack
)
2844 tcp_add_reno_sack(sk
);
2846 if (tcp_try_undo_partial(sk
, acked
, prior_unsacked
))
2848 /* Partial ACK arrived. Force fast retransmit. */
2849 do_lost
= tcp_is_reno(tp
) ||
2850 tcp_fackets_out(tp
) > tp
->reordering
;
2852 if (tcp_try_undo_dsack(sk
)) {
2853 tcp_try_keep_open(sk
);
2858 tcp_process_loss(sk
, flag
, is_dupack
);
2859 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
2861 /* Fall through to processing in Open state. */
2863 if (tcp_is_reno(tp
)) {
2864 if (flag
& FLAG_SND_UNA_ADVANCED
)
2865 tcp_reset_reno_sack(tp
);
2867 tcp_add_reno_sack(sk
);
2870 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
2871 tcp_try_undo_dsack(sk
);
2873 if (!tcp_time_to_recover(sk
, flag
)) {
2874 tcp_try_to_open(sk
, flag
, prior_unsacked
);
2878 /* MTU probe failure: don't reduce cwnd */
2879 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2880 icsk
->icsk_mtup
.probe_size
&&
2881 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2882 tcp_mtup_probe_failed(sk
);
2883 /* Restores the reduction we did in tcp_mtup_probe() */
2885 tcp_simple_retransmit(sk
);
2889 /* Otherwise enter Recovery state */
2890 tcp_enter_recovery(sk
, (flag
& FLAG_ECE
));
2895 tcp_update_scoreboard(sk
, fast_rexmit
);
2896 tcp_cwnd_reduction(sk
, prior_unsacked
, fast_rexmit
);
2897 tcp_xmit_retransmit_queue(sk
);
2900 static inline bool tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
2901 long seq_rtt_us
, long sack_rtt_us
)
2903 const struct tcp_sock
*tp
= tcp_sk(sk
);
2905 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2906 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2907 * Karn's algorithm forbids taking RTT if some retransmitted data
2908 * is acked (RFC6298).
2910 if (flag
& FLAG_RETRANS_DATA_ACKED
)
2914 seq_rtt_us
= sack_rtt_us
;
2916 /* RTTM Rule: A TSecr value received in a segment is used to
2917 * update the averaged RTT measurement only if the segment
2918 * acknowledges some new data, i.e., only if it advances the
2919 * left edge of the send window.
2920 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2922 if (seq_rtt_us
< 0 && tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2924 seq_rtt_us
= jiffies_to_usecs(tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
);
2929 tcp_rtt_estimator(sk
, seq_rtt_us
);
2932 /* RFC6298: only reset backoff on valid RTT measurement. */
2933 inet_csk(sk
)->icsk_backoff
= 0;
2937 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2938 static void tcp_synack_rtt_meas(struct sock
*sk
, const u32 synack_stamp
)
2940 struct tcp_sock
*tp
= tcp_sk(sk
);
2941 long seq_rtt_us
= -1L;
2943 if (synack_stamp
&& !tp
->total_retrans
)
2944 seq_rtt_us
= jiffies_to_usecs(tcp_time_stamp
- synack_stamp
);
2946 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2947 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2950 tcp_ack_update_rtt(sk
, FLAG_SYN_ACKED
, seq_rtt_us
, -1L);
2953 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 acked
)
2955 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2957 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, acked
);
2958 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
2961 /* Restart timer after forward progress on connection.
2962 * RFC2988 recommends to restart timer to now+rto.
2964 void tcp_rearm_rto(struct sock
*sk
)
2966 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2967 struct tcp_sock
*tp
= tcp_sk(sk
);
2969 /* If the retrans timer is currently being used by Fast Open
2970 * for SYN-ACK retrans purpose, stay put.
2972 if (tp
->fastopen_rsk
)
2975 if (!tp
->packets_out
) {
2976 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
2978 u32 rto
= inet_csk(sk
)->icsk_rto
;
2979 /* Offset the time elapsed after installing regular RTO */
2980 if (icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
2981 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
2982 struct sk_buff
*skb
= tcp_write_queue_head(sk
);
2983 const u32 rto_time_stamp
=
2984 tcp_skb_timestamp(skb
) + rto
;
2985 s32 delta
= (s32
)(rto_time_stamp
- tcp_time_stamp
);
2986 /* delta may not be positive if the socket is locked
2987 * when the retrans timer fires and is rescheduled.
2992 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
2997 /* This function is called when the delayed ER timer fires. TCP enters
2998 * fast recovery and performs fast-retransmit.
3000 void tcp_resume_early_retransmit(struct sock
*sk
)
3002 struct tcp_sock
*tp
= tcp_sk(sk
);
3006 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3007 if (!tp
->do_early_retrans
)
3010 tcp_enter_recovery(sk
, false);
3011 tcp_update_scoreboard(sk
, 1);
3012 tcp_xmit_retransmit_queue(sk
);
3015 /* If we get here, the whole TSO packet has not been acked. */
3016 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3018 struct tcp_sock
*tp
= tcp_sk(sk
);
3021 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3023 packets_acked
= tcp_skb_pcount(skb
);
3024 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3026 packets_acked
-= tcp_skb_pcount(skb
);
3028 if (packets_acked
) {
3029 BUG_ON(tcp_skb_pcount(skb
) == 0);
3030 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3033 return packets_acked
;
3036 static void tcp_ack_tstamp(struct sock
*sk
, struct sk_buff
*skb
,
3039 const struct skb_shared_info
*shinfo
;
3041 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3042 if (likely(!(sk
->sk_tsflags
& SOF_TIMESTAMPING_TX_ACK
)))
3045 shinfo
= skb_shinfo(skb
);
3046 if ((shinfo
->tx_flags
& SKBTX_ACK_TSTAMP
) &&
3047 between(shinfo
->tskey
, prior_snd_una
, tcp_sk(sk
)->snd_una
- 1))
3048 __skb_tstamp_tx(skb
, NULL
, sk
, SCM_TSTAMP_ACK
);
3051 /* Remove acknowledged frames from the retransmission queue. If our packet
3052 * is before the ack sequence we can discard it as it's confirmed to have
3053 * arrived at the other end.
3055 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3056 u32 prior_snd_una
, long sack_rtt_us
)
3058 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3059 struct skb_mstamp first_ackt
, last_ackt
, now
;
3060 struct tcp_sock
*tp
= tcp_sk(sk
);
3061 u32 prior_sacked
= tp
->sacked_out
;
3062 u32 reord
= tp
->packets_out
;
3063 bool fully_acked
= true;
3064 long ca_seq_rtt_us
= -1L;
3065 long seq_rtt_us
= -1L;
3066 struct sk_buff
*skb
;
3073 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3074 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3075 u8 sacked
= scb
->sacked
;
3078 tcp_ack_tstamp(sk
, skb
, prior_snd_una
);
3080 /* Determine how many packets and what bytes were acked, tso and else */
3081 if (after(scb
->end_seq
, tp
->snd_una
)) {
3082 if (tcp_skb_pcount(skb
) == 1 ||
3083 !after(tp
->snd_una
, scb
->seq
))
3086 acked_pcount
= tcp_tso_acked(sk
, skb
);
3090 fully_acked
= false;
3092 /* Speedup tcp_unlink_write_queue() and next loop */
3093 prefetchw(skb
->next
);
3094 acked_pcount
= tcp_skb_pcount(skb
);
3097 if (unlikely(sacked
& TCPCB_RETRANS
)) {
3098 if (sacked
& TCPCB_SACKED_RETRANS
)
3099 tp
->retrans_out
-= acked_pcount
;
3100 flag
|= FLAG_RETRANS_DATA_ACKED
;
3102 last_ackt
= skb
->skb_mstamp
;
3103 WARN_ON_ONCE(last_ackt
.v64
== 0);
3104 if (!first_ackt
.v64
)
3105 first_ackt
= last_ackt
;
3107 if (!(sacked
& TCPCB_SACKED_ACKED
))
3108 reord
= min(pkts_acked
, reord
);
3109 if (!after(scb
->end_seq
, tp
->high_seq
))
3110 flag
|= FLAG_ORIG_SACK_ACKED
;
3113 if (sacked
& TCPCB_SACKED_ACKED
)
3114 tp
->sacked_out
-= acked_pcount
;
3115 if (sacked
& TCPCB_LOST
)
3116 tp
->lost_out
-= acked_pcount
;
3118 tp
->packets_out
-= acked_pcount
;
3119 pkts_acked
+= acked_pcount
;
3121 /* Initial outgoing SYN's get put onto the write_queue
3122 * just like anything else we transmit. It is not
3123 * true data, and if we misinform our callers that
3124 * this ACK acks real data, we will erroneously exit
3125 * connection startup slow start one packet too
3126 * quickly. This is severely frowned upon behavior.
3128 if (likely(!(scb
->tcp_flags
& TCPHDR_SYN
))) {
3129 flag
|= FLAG_DATA_ACKED
;
3131 flag
|= FLAG_SYN_ACKED
;
3132 tp
->retrans_stamp
= 0;
3138 tcp_unlink_write_queue(skb
, sk
);
3139 sk_wmem_free_skb(sk
, skb
);
3140 if (unlikely(skb
== tp
->retransmit_skb_hint
))
3141 tp
->retransmit_skb_hint
= NULL
;
3142 if (unlikely(skb
== tp
->lost_skb_hint
))
3143 tp
->lost_skb_hint
= NULL
;
3146 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3147 tp
->snd_up
= tp
->snd_una
;
3149 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3150 flag
|= FLAG_SACK_RENEGING
;
3152 skb_mstamp_get(&now
);
3153 if (likely(first_ackt
.v64
)) {
3154 seq_rtt_us
= skb_mstamp_us_delta(&now
, &first_ackt
);
3155 ca_seq_rtt_us
= skb_mstamp_us_delta(&now
, &last_ackt
);
3158 rtt_update
= tcp_ack_update_rtt(sk
, flag
, seq_rtt_us
, sack_rtt_us
);
3160 if (flag
& FLAG_ACKED
) {
3161 const struct tcp_congestion_ops
*ca_ops
3162 = inet_csk(sk
)->icsk_ca_ops
;
3165 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3166 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3167 tcp_mtup_probe_success(sk
);
3170 if (tcp_is_reno(tp
)) {
3171 tcp_remove_reno_sacks(sk
, pkts_acked
);
3175 /* Non-retransmitted hole got filled? That's reordering */
3176 if (reord
< prior_fackets
)
3177 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3179 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3180 prior_sacked
- tp
->sacked_out
;
3181 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3184 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3186 if (ca_ops
->pkts_acked
)
3187 ca_ops
->pkts_acked(sk
, pkts_acked
, ca_seq_rtt_us
);
3189 } else if (skb
&& rtt_update
&& sack_rtt_us
>= 0 &&
3190 sack_rtt_us
> skb_mstamp_us_delta(&now
, &skb
->skb_mstamp
)) {
3191 /* Do not re-arm RTO if the sack RTT is measured from data sent
3192 * after when the head was last (re)transmitted. Otherwise the
3193 * timeout may continue to extend in loss recovery.
3198 #if FASTRETRANS_DEBUG > 0
3199 WARN_ON((int)tp
->sacked_out
< 0);
3200 WARN_ON((int)tp
->lost_out
< 0);
3201 WARN_ON((int)tp
->retrans_out
< 0);
3202 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3203 icsk
= inet_csk(sk
);
3205 pr_debug("Leak l=%u %d\n",
3206 tp
->lost_out
, icsk
->icsk_ca_state
);
3209 if (tp
->sacked_out
) {
3210 pr_debug("Leak s=%u %d\n",
3211 tp
->sacked_out
, icsk
->icsk_ca_state
);
3214 if (tp
->retrans_out
) {
3215 pr_debug("Leak r=%u %d\n",
3216 tp
->retrans_out
, icsk
->icsk_ca_state
);
3217 tp
->retrans_out
= 0;
3224 static void tcp_ack_probe(struct sock
*sk
)
3226 const struct tcp_sock
*tp
= tcp_sk(sk
);
3227 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3229 /* Was it a usable window open? */
3231 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3232 icsk
->icsk_backoff
= 0;
3233 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3234 /* Socket must be waked up by subsequent tcp_data_snd_check().
3235 * This function is not for random using!
3238 unsigned long when
= inet_csk_rto_backoff(icsk
, TCP_RTO_MAX
);
3240 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3245 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3247 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3248 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3251 /* Decide wheather to run the increase function of congestion control. */
3252 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3254 if (tcp_in_cwnd_reduction(sk
))
3257 /* If reordering is high then always grow cwnd whenever data is
3258 * delivered regardless of its ordering. Otherwise stay conservative
3259 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3260 * new SACK or ECE mark may first advance cwnd here and later reduce
3261 * cwnd in tcp_fastretrans_alert() based on more states.
3263 if (tcp_sk(sk
)->reordering
> sysctl_tcp_reordering
)
3264 return flag
& FLAG_FORWARD_PROGRESS
;
3266 return flag
& FLAG_DATA_ACKED
;
3269 /* Check that window update is acceptable.
3270 * The function assumes that snd_una<=ack<=snd_next.
3272 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3273 const u32 ack
, const u32 ack_seq
,
3276 return after(ack
, tp
->snd_una
) ||
3277 after(ack_seq
, tp
->snd_wl1
) ||
3278 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3281 /* Update our send window.
3283 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3284 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3286 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3289 struct tcp_sock
*tp
= tcp_sk(sk
);
3291 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3293 if (likely(!tcp_hdr(skb
)->syn
))
3294 nwin
<<= tp
->rx_opt
.snd_wscale
;
3296 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3297 flag
|= FLAG_WIN_UPDATE
;
3298 tcp_update_wl(tp
, ack_seq
);
3300 if (tp
->snd_wnd
!= nwin
) {
3303 /* Note, it is the only place, where
3304 * fast path is recovered for sending TCP.
3307 tcp_fast_path_check(sk
);
3309 if (nwin
> tp
->max_window
) {
3310 tp
->max_window
= nwin
;
3311 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3321 /* RFC 5961 7 [ACK Throttling] */
3322 static void tcp_send_challenge_ack(struct sock
*sk
)
3324 /* unprotected vars, we dont care of overwrites */
3325 static u32 challenge_timestamp
;
3326 static unsigned int challenge_count
;
3327 u32 now
= jiffies
/ HZ
;
3329 if (now
!= challenge_timestamp
) {
3330 challenge_timestamp
= now
;
3331 challenge_count
= 0;
3333 if (++challenge_count
<= sysctl_tcp_challenge_ack_limit
) {
3334 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPCHALLENGEACK
);
3339 static void tcp_store_ts_recent(struct tcp_sock
*tp
)
3341 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3342 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3345 static void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3347 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3348 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3349 * extra check below makes sure this can only happen
3350 * for pure ACK frames. -DaveM
3352 * Not only, also it occurs for expired timestamps.
3355 if (tcp_paws_check(&tp
->rx_opt
, 0))
3356 tcp_store_ts_recent(tp
);
3360 /* This routine deals with acks during a TLP episode.
3361 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3363 static void tcp_process_tlp_ack(struct sock
*sk
, u32 ack
, int flag
)
3365 struct tcp_sock
*tp
= tcp_sk(sk
);
3366 bool is_tlp_dupack
= (ack
== tp
->tlp_high_seq
) &&
3367 !(flag
& (FLAG_SND_UNA_ADVANCED
|
3368 FLAG_NOT_DUP
| FLAG_DATA_SACKED
));
3370 /* Mark the end of TLP episode on receiving TLP dupack or when
3371 * ack is after tlp_high_seq.
3373 if (is_tlp_dupack
) {
3374 tp
->tlp_high_seq
= 0;
3378 if (after(ack
, tp
->tlp_high_seq
)) {
3379 tp
->tlp_high_seq
= 0;
3380 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3381 if (!(flag
& FLAG_DSACKING_ACK
)) {
3382 tcp_init_cwnd_reduction(sk
);
3383 tcp_set_ca_state(sk
, TCP_CA_CWR
);
3384 tcp_end_cwnd_reduction(sk
);
3385 tcp_try_keep_open(sk
);
3386 NET_INC_STATS_BH(sock_net(sk
),
3387 LINUX_MIB_TCPLOSSPROBERECOVERY
);
3392 static inline void tcp_in_ack_event(struct sock
*sk
, u32 flags
)
3394 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3396 if (icsk
->icsk_ca_ops
->in_ack_event
)
3397 icsk
->icsk_ca_ops
->in_ack_event(sk
, flags
);
3400 /* This routine deals with incoming acks, but not outgoing ones. */
3401 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3403 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3404 struct tcp_sock
*tp
= tcp_sk(sk
);
3405 u32 prior_snd_una
= tp
->snd_una
;
3406 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3407 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3408 bool is_dupack
= false;
3410 int prior_packets
= tp
->packets_out
;
3411 const int prior_unsacked
= tp
->packets_out
- tp
->sacked_out
;
3412 int acked
= 0; /* Number of packets newly acked */
3413 long sack_rtt_us
= -1L;
3415 /* We very likely will need to access write queue head. */
3416 prefetchw(sk
->sk_write_queue
.next
);
3418 /* If the ack is older than previous acks
3419 * then we can probably ignore it.
3421 if (before(ack
, prior_snd_una
)) {
3422 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3423 if (before(ack
, prior_snd_una
- tp
->max_window
)) {
3424 tcp_send_challenge_ack(sk
);
3430 /* If the ack includes data we haven't sent yet, discard
3431 * this segment (RFC793 Section 3.9).
3433 if (after(ack
, tp
->snd_nxt
))
3436 if (icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
3437 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)
3440 if (after(ack
, prior_snd_una
)) {
3441 flag
|= FLAG_SND_UNA_ADVANCED
;
3442 icsk
->icsk_retransmits
= 0;
3445 prior_fackets
= tp
->fackets_out
;
3447 /* ts_recent update must be made after we are sure that the packet
3450 if (flag
& FLAG_UPDATE_TS_RECENT
)
3451 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
3453 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3454 /* Window is constant, pure forward advance.
3455 * No more checks are required.
3456 * Note, we use the fact that SND.UNA>=SND.WL2.
3458 tcp_update_wl(tp
, ack_seq
);
3460 flag
|= FLAG_WIN_UPDATE
;
3462 tcp_in_ack_event(sk
, CA_ACK_WIN_UPDATE
);
3464 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3466 u32 ack_ev_flags
= CA_ACK_SLOWPATH
;
3468 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3471 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3473 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3475 if (TCP_SKB_CB(skb
)->sacked
)
3476 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3479 if (tcp_ecn_rcv_ecn_echo(tp
, tcp_hdr(skb
))) {
3481 ack_ev_flags
|= CA_ACK_ECE
;
3484 if (flag
& FLAG_WIN_UPDATE
)
3485 ack_ev_flags
|= CA_ACK_WIN_UPDATE
;
3487 tcp_in_ack_event(sk
, ack_ev_flags
);
3490 /* We passed data and got it acked, remove any soft error
3491 * log. Something worked...
3493 sk
->sk_err_soft
= 0;
3494 icsk
->icsk_probes_out
= 0;
3495 tp
->rcv_tstamp
= tcp_time_stamp
;
3499 /* See if we can take anything off of the retransmit queue. */
3500 acked
= tp
->packets_out
;
3501 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
,
3503 acked
-= tp
->packets_out
;
3505 /* Advance cwnd if state allows */
3506 if (tcp_may_raise_cwnd(sk
, flag
))
3507 tcp_cong_avoid(sk
, ack
, acked
);
3509 if (tcp_ack_is_dubious(sk
, flag
)) {
3510 is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3511 tcp_fastretrans_alert(sk
, acked
, prior_unsacked
,
3514 if (tp
->tlp_high_seq
)
3515 tcp_process_tlp_ack(sk
, ack
, flag
);
3517 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
)) {
3518 struct dst_entry
*dst
= __sk_dst_get(sk
);
3523 if (icsk
->icsk_pending
== ICSK_TIME_RETRANS
)
3524 tcp_schedule_loss_probe(sk
);
3525 tcp_update_pacing_rate(sk
);
3529 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3530 if (flag
& FLAG_DSACKING_ACK
)
3531 tcp_fastretrans_alert(sk
, acked
, prior_unsacked
,
3533 /* If this ack opens up a zero window, clear backoff. It was
3534 * being used to time the probes, and is probably far higher than
3535 * it needs to be for normal retransmission.
3537 if (tcp_send_head(sk
))
3540 if (tp
->tlp_high_seq
)
3541 tcp_process_tlp_ack(sk
, ack
, flag
);
3545 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3549 /* If data was SACKed, tag it and see if we should send more data.
3550 * If data was DSACKed, see if we can undo a cwnd reduction.
3552 if (TCP_SKB_CB(skb
)->sacked
) {
3553 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3555 tcp_fastretrans_alert(sk
, acked
, prior_unsacked
,
3559 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3563 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3564 * But, this can also be called on packets in the established flow when
3565 * the fast version below fails.
3567 void tcp_parse_options(const struct sk_buff
*skb
,
3568 struct tcp_options_received
*opt_rx
, int estab
,
3569 struct tcp_fastopen_cookie
*foc
)
3571 const unsigned char *ptr
;
3572 const struct tcphdr
*th
= tcp_hdr(skb
);
3573 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3575 ptr
= (const unsigned char *)(th
+ 1);
3576 opt_rx
->saw_tstamp
= 0;
3578 while (length
> 0) {
3579 int opcode
= *ptr
++;
3585 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3590 if (opsize
< 2) /* "silly options" */
3592 if (opsize
> length
)
3593 return; /* don't parse partial options */
3596 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3597 u16 in_mss
= get_unaligned_be16(ptr
);
3599 if (opt_rx
->user_mss
&&
3600 opt_rx
->user_mss
< in_mss
)
3601 in_mss
= opt_rx
->user_mss
;
3602 opt_rx
->mss_clamp
= in_mss
;
3607 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3608 !estab
&& sysctl_tcp_window_scaling
) {
3609 __u8 snd_wscale
= *(__u8
*)ptr
;
3610 opt_rx
->wscale_ok
= 1;
3611 if (snd_wscale
> 14) {
3612 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3617 opt_rx
->snd_wscale
= snd_wscale
;
3620 case TCPOPT_TIMESTAMP
:
3621 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3622 ((estab
&& opt_rx
->tstamp_ok
) ||
3623 (!estab
&& sysctl_tcp_timestamps
))) {
3624 opt_rx
->saw_tstamp
= 1;
3625 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3626 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3629 case TCPOPT_SACK_PERM
:
3630 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3631 !estab
&& sysctl_tcp_sack
) {
3632 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3633 tcp_sack_reset(opt_rx
);
3638 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3639 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3641 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3644 #ifdef CONFIG_TCP_MD5SIG
3647 * The MD5 Hash has already been
3648 * checked (see tcp_v{4,6}_do_rcv()).
3653 /* Fast Open option shares code 254 using a
3654 * 16 bits magic number. It's valid only in
3655 * SYN or SYN-ACK with an even size.
3657 if (opsize
< TCPOLEN_EXP_FASTOPEN_BASE
||
3658 get_unaligned_be16(ptr
) != TCPOPT_FASTOPEN_MAGIC
||
3659 foc
== NULL
|| !th
->syn
|| (opsize
& 1))
3661 foc
->len
= opsize
- TCPOLEN_EXP_FASTOPEN_BASE
;
3662 if (foc
->len
>= TCP_FASTOPEN_COOKIE_MIN
&&
3663 foc
->len
<= TCP_FASTOPEN_COOKIE_MAX
)
3664 memcpy(foc
->val
, ptr
+ 2, foc
->len
);
3665 else if (foc
->len
!= 0)
3675 EXPORT_SYMBOL(tcp_parse_options
);
3677 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3679 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3681 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3682 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3683 tp
->rx_opt
.saw_tstamp
= 1;
3685 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3688 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
) - tp
->tsoffset
;
3690 tp
->rx_opt
.rcv_tsecr
= 0;
3696 /* Fast parse options. This hopes to only see timestamps.
3697 * If it is wrong it falls back on tcp_parse_options().
3699 static bool tcp_fast_parse_options(const struct sk_buff
*skb
,
3700 const struct tcphdr
*th
, struct tcp_sock
*tp
)
3702 /* In the spirit of fast parsing, compare doff directly to constant
3703 * values. Because equality is used, short doff can be ignored here.
3705 if (th
->doff
== (sizeof(*th
) / 4)) {
3706 tp
->rx_opt
.saw_tstamp
= 0;
3708 } else if (tp
->rx_opt
.tstamp_ok
&&
3709 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3710 if (tcp_parse_aligned_timestamp(tp
, th
))
3714 tcp_parse_options(skb
, &tp
->rx_opt
, 1, NULL
);
3715 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3716 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
3721 #ifdef CONFIG_TCP_MD5SIG
3723 * Parse MD5 Signature option
3725 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3727 int length
= (th
->doff
<< 2) - sizeof(*th
);
3728 const u8
*ptr
= (const u8
*)(th
+ 1);
3730 /* If the TCP option is too short, we can short cut */
3731 if (length
< TCPOLEN_MD5SIG
)
3734 while (length
> 0) {
3735 int opcode
= *ptr
++;
3746 if (opsize
< 2 || opsize
> length
)
3748 if (opcode
== TCPOPT_MD5SIG
)
3749 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3756 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3759 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3761 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3762 * it can pass through stack. So, the following predicate verifies that
3763 * this segment is not used for anything but congestion avoidance or
3764 * fast retransmit. Moreover, we even are able to eliminate most of such
3765 * second order effects, if we apply some small "replay" window (~RTO)
3766 * to timestamp space.
3768 * All these measures still do not guarantee that we reject wrapped ACKs
3769 * on networks with high bandwidth, when sequence space is recycled fastly,
3770 * but it guarantees that such events will be very rare and do not affect
3771 * connection seriously. This doesn't look nice, but alas, PAWS is really
3774 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3775 * states that events when retransmit arrives after original data are rare.
3776 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3777 * the biggest problem on large power networks even with minor reordering.
3778 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3779 * up to bandwidth of 18Gigabit/sec. 8) ]
3782 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3784 const struct tcp_sock
*tp
= tcp_sk(sk
);
3785 const struct tcphdr
*th
= tcp_hdr(skb
);
3786 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3787 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3789 return (/* 1. Pure ACK with correct sequence number. */
3790 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3792 /* 2. ... and duplicate ACK. */
3793 ack
== tp
->snd_una
&&
3795 /* 3. ... and does not update window. */
3796 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3798 /* 4. ... and sits in replay window. */
3799 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
3802 static inline bool tcp_paws_discard(const struct sock
*sk
,
3803 const struct sk_buff
*skb
)
3805 const struct tcp_sock
*tp
= tcp_sk(sk
);
3807 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
3808 !tcp_disordered_ack(sk
, skb
);
3811 /* Check segment sequence number for validity.
3813 * Segment controls are considered valid, if the segment
3814 * fits to the window after truncation to the window. Acceptability
3815 * of data (and SYN, FIN, of course) is checked separately.
3816 * See tcp_data_queue(), for example.
3818 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3819 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3820 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3821 * (borrowed from freebsd)
3824 static inline bool tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3826 return !before(end_seq
, tp
->rcv_wup
) &&
3827 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
3830 /* When we get a reset we do this. */
3831 void tcp_reset(struct sock
*sk
)
3833 /* We want the right error as BSD sees it (and indeed as we do). */
3834 switch (sk
->sk_state
) {
3836 sk
->sk_err
= ECONNREFUSED
;
3838 case TCP_CLOSE_WAIT
:
3844 sk
->sk_err
= ECONNRESET
;
3846 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3849 if (!sock_flag(sk
, SOCK_DEAD
))
3850 sk
->sk_error_report(sk
);
3856 * Process the FIN bit. This now behaves as it is supposed to work
3857 * and the FIN takes effect when it is validly part of sequence
3858 * space. Not before when we get holes.
3860 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3861 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3864 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3865 * close and we go into CLOSING (and later onto TIME-WAIT)
3867 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3869 static void tcp_fin(struct sock
*sk
)
3871 struct tcp_sock
*tp
= tcp_sk(sk
);
3872 const struct dst_entry
*dst
;
3874 inet_csk_schedule_ack(sk
);
3876 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
3877 sock_set_flag(sk
, SOCK_DONE
);
3879 switch (sk
->sk_state
) {
3881 case TCP_ESTABLISHED
:
3882 /* Move to CLOSE_WAIT */
3883 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
3884 dst
= __sk_dst_get(sk
);
3885 if (!dst
|| !dst_metric(dst
, RTAX_QUICKACK
))
3886 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
3889 case TCP_CLOSE_WAIT
:
3891 /* Received a retransmission of the FIN, do
3896 /* RFC793: Remain in the LAST-ACK state. */
3900 /* This case occurs when a simultaneous close
3901 * happens, we must ack the received FIN and
3902 * enter the CLOSING state.
3905 tcp_set_state(sk
, TCP_CLOSING
);
3908 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3910 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
3913 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3914 * cases we should never reach this piece of code.
3916 pr_err("%s: Impossible, sk->sk_state=%d\n",
3917 __func__
, sk
->sk_state
);
3921 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3922 * Probably, we should reset in this case. For now drop them.
3924 __skb_queue_purge(&tp
->out_of_order_queue
);
3925 if (tcp_is_sack(tp
))
3926 tcp_sack_reset(&tp
->rx_opt
);
3929 if (!sock_flag(sk
, SOCK_DEAD
)) {
3930 sk
->sk_state_change(sk
);
3932 /* Do not send POLL_HUP for half duplex close. */
3933 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
3934 sk
->sk_state
== TCP_CLOSE
)
3935 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
3937 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
3941 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
3944 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
3945 if (before(seq
, sp
->start_seq
))
3946 sp
->start_seq
= seq
;
3947 if (after(end_seq
, sp
->end_seq
))
3948 sp
->end_seq
= end_seq
;
3954 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
3956 struct tcp_sock
*tp
= tcp_sk(sk
);
3958 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
3961 if (before(seq
, tp
->rcv_nxt
))
3962 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
3964 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
3966 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
3968 tp
->rx_opt
.dsack
= 1;
3969 tp
->duplicate_sack
[0].start_seq
= seq
;
3970 tp
->duplicate_sack
[0].end_seq
= end_seq
;
3974 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
3976 struct tcp_sock
*tp
= tcp_sk(sk
);
3978 if (!tp
->rx_opt
.dsack
)
3979 tcp_dsack_set(sk
, seq
, end_seq
);
3981 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
3984 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
3986 struct tcp_sock
*tp
= tcp_sk(sk
);
3988 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
3989 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
3990 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
3991 tcp_enter_quickack_mode(sk
);
3993 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
3994 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
3996 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
3997 end_seq
= tp
->rcv_nxt
;
3998 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4005 /* These routines update the SACK block as out-of-order packets arrive or
4006 * in-order packets close up the sequence space.
4008 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4011 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4012 struct tcp_sack_block
*swalk
= sp
+ 1;
4014 /* See if the recent change to the first SACK eats into
4015 * or hits the sequence space of other SACK blocks, if so coalesce.
4017 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4018 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4021 /* Zap SWALK, by moving every further SACK up by one slot.
4022 * Decrease num_sacks.
4024 tp
->rx_opt
.num_sacks
--;
4025 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4029 this_sack
++, swalk
++;
4033 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4035 struct tcp_sock
*tp
= tcp_sk(sk
);
4036 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4037 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4043 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4044 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4045 /* Rotate this_sack to the first one. */
4046 for (; this_sack
> 0; this_sack
--, sp
--)
4047 swap(*sp
, *(sp
- 1));
4049 tcp_sack_maybe_coalesce(tp
);
4054 /* Could not find an adjacent existing SACK, build a new one,
4055 * put it at the front, and shift everyone else down. We
4056 * always know there is at least one SACK present already here.
4058 * If the sack array is full, forget about the last one.
4060 if (this_sack
>= TCP_NUM_SACKS
) {
4062 tp
->rx_opt
.num_sacks
--;
4065 for (; this_sack
> 0; this_sack
--, sp
--)
4069 /* Build the new head SACK, and we're done. */
4070 sp
->start_seq
= seq
;
4071 sp
->end_seq
= end_seq
;
4072 tp
->rx_opt
.num_sacks
++;
4075 /* RCV.NXT advances, some SACKs should be eaten. */
4077 static void tcp_sack_remove(struct tcp_sock
*tp
)
4079 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4080 int num_sacks
= tp
->rx_opt
.num_sacks
;
4083 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4084 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
4085 tp
->rx_opt
.num_sacks
= 0;
4089 for (this_sack
= 0; this_sack
< num_sacks
;) {
4090 /* Check if the start of the sack is covered by RCV.NXT. */
4091 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4094 /* RCV.NXT must cover all the block! */
4095 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4097 /* Zap this SACK, by moving forward any other SACKS. */
4098 for (i
= this_sack
+1; i
< num_sacks
; i
++)
4099 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4106 tp
->rx_opt
.num_sacks
= num_sacks
;
4110 * tcp_try_coalesce - try to merge skb to prior one
4113 * @from: buffer to add in queue
4114 * @fragstolen: pointer to boolean
4116 * Before queueing skb @from after @to, try to merge them
4117 * to reduce overall memory use and queue lengths, if cost is small.
4118 * Packets in ofo or receive queues can stay a long time.
4119 * Better try to coalesce them right now to avoid future collapses.
4120 * Returns true if caller should free @from instead of queueing it
4122 static bool tcp_try_coalesce(struct sock
*sk
,
4124 struct sk_buff
*from
,
4129 *fragstolen
= false;
4131 /* Its possible this segment overlaps with prior segment in queue */
4132 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4135 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4138 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4139 sk_mem_charge(sk
, delta
);
4140 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4141 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4142 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4143 TCP_SKB_CB(to
)->tcp_flags
|= TCP_SKB_CB(from
)->tcp_flags
;
4147 /* This one checks to see if we can put data from the
4148 * out_of_order queue into the receive_queue.
4150 static void tcp_ofo_queue(struct sock
*sk
)
4152 struct tcp_sock
*tp
= tcp_sk(sk
);
4153 __u32 dsack_high
= tp
->rcv_nxt
;
4154 struct sk_buff
*skb
, *tail
;
4155 bool fragstolen
, eaten
;
4157 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4158 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4161 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4162 __u32 dsack
= dsack_high
;
4163 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4164 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4165 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4168 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4169 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4170 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4174 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4175 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4176 TCP_SKB_CB(skb
)->end_seq
);
4178 tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4179 eaten
= tail
&& tcp_try_coalesce(sk
, tail
, skb
, &fragstolen
);
4180 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4182 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4183 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4186 kfree_skb_partial(skb
, fragstolen
);
4190 static bool tcp_prune_ofo_queue(struct sock
*sk
);
4191 static int tcp_prune_queue(struct sock
*sk
);
4193 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4196 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4197 !sk_rmem_schedule(sk
, skb
, size
)) {
4199 if (tcp_prune_queue(sk
) < 0)
4202 if (!sk_rmem_schedule(sk
, skb
, size
)) {
4203 if (!tcp_prune_ofo_queue(sk
))
4206 if (!sk_rmem_schedule(sk
, skb
, size
))
4213 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4215 struct tcp_sock
*tp
= tcp_sk(sk
);
4216 struct sk_buff
*skb1
;
4219 tcp_ecn_check_ce(tp
, skb
);
4221 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
4222 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
4227 /* Disable header prediction. */
4229 inet_csk_schedule_ack(sk
);
4231 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
4232 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4233 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4235 skb1
= skb_peek_tail(&tp
->out_of_order_queue
);
4237 /* Initial out of order segment, build 1 SACK. */
4238 if (tcp_is_sack(tp
)) {
4239 tp
->rx_opt
.num_sacks
= 1;
4240 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4241 tp
->selective_acks
[0].end_seq
=
4242 TCP_SKB_CB(skb
)->end_seq
;
4244 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4248 seq
= TCP_SKB_CB(skb
)->seq
;
4249 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4251 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4254 if (!tcp_try_coalesce(sk
, skb1
, skb
, &fragstolen
)) {
4255 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4257 tcp_grow_window(sk
, skb
);
4258 kfree_skb_partial(skb
, fragstolen
);
4262 if (!tp
->rx_opt
.num_sacks
||
4263 tp
->selective_acks
[0].end_seq
!= seq
)
4266 /* Common case: data arrive in order after hole. */
4267 tp
->selective_acks
[0].end_seq
= end_seq
;
4271 /* Find place to insert this segment. */
4273 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4275 if (skb_queue_is_first(&tp
->out_of_order_queue
, skb1
)) {
4279 skb1
= skb_queue_prev(&tp
->out_of_order_queue
, skb1
);
4282 /* Do skb overlap to previous one? */
4283 if (skb1
&& before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4284 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4285 /* All the bits are present. Drop. */
4286 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4289 tcp_dsack_set(sk
, seq
, end_seq
);
4292 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4293 /* Partial overlap. */
4294 tcp_dsack_set(sk
, seq
,
4295 TCP_SKB_CB(skb1
)->end_seq
);
4297 if (skb_queue_is_first(&tp
->out_of_order_queue
,
4301 skb1
= skb_queue_prev(
4302 &tp
->out_of_order_queue
,
4307 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4309 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4311 /* And clean segments covered by new one as whole. */
4312 while (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
)) {
4313 skb1
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4315 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4317 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4318 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4322 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4323 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4324 TCP_SKB_CB(skb1
)->end_seq
);
4325 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4330 if (tcp_is_sack(tp
))
4331 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4334 tcp_grow_window(sk
, skb
);
4335 skb_set_owner_r(skb
, sk
);
4339 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
, int hdrlen
,
4343 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4345 __skb_pull(skb
, hdrlen
);
4347 tcp_try_coalesce(sk
, tail
, skb
, fragstolen
)) ? 1 : 0;
4348 tcp_sk(sk
)->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4350 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4351 skb_set_owner_r(skb
, sk
);
4356 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
4358 struct sk_buff
*skb
;
4364 skb
= alloc_skb(size
, sk
->sk_allocation
);
4368 if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4371 if (memcpy_from_msg(skb_put(skb
, size
), msg
, size
))
4374 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
4375 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
4376 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
4378 if (tcp_queue_rcv(sk
, skb
, 0, &fragstolen
)) {
4379 WARN_ON_ONCE(fragstolen
); /* should not happen */
4390 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4392 struct tcp_sock
*tp
= tcp_sk(sk
);
4394 bool fragstolen
= false;
4396 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
4400 __skb_pull(skb
, tcp_hdr(skb
)->doff
* 4);
4402 tcp_ecn_accept_cwr(tp
, skb
);
4404 tp
->rx_opt
.dsack
= 0;
4406 /* Queue data for delivery to the user.
4407 * Packets in sequence go to the receive queue.
4408 * Out of sequence packets to the out_of_order_queue.
4410 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4411 if (tcp_receive_window(tp
) == 0)
4414 /* Ok. In sequence. In window. */
4415 if (tp
->ucopy
.task
== current
&&
4416 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4417 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4418 int chunk
= min_t(unsigned int, skb
->len
,
4421 __set_current_state(TASK_RUNNING
);
4424 if (!skb_copy_datagram_msg(skb
, 0, tp
->ucopy
.msg
, chunk
)) {
4425 tp
->ucopy
.len
-= chunk
;
4426 tp
->copied_seq
+= chunk
;
4427 eaten
= (chunk
== skb
->len
);
4428 tcp_rcv_space_adjust(sk
);
4436 tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4439 eaten
= tcp_queue_rcv(sk
, skb
, 0, &fragstolen
);
4441 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4443 tcp_event_data_recv(sk
, skb
);
4444 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4447 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4450 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4451 * gap in queue is filled.
4453 if (skb_queue_empty(&tp
->out_of_order_queue
))
4454 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4457 if (tp
->rx_opt
.num_sacks
)
4458 tcp_sack_remove(tp
);
4460 tcp_fast_path_check(sk
);
4463 kfree_skb_partial(skb
, fragstolen
);
4464 if (!sock_flag(sk
, SOCK_DEAD
))
4465 sk
->sk_data_ready(sk
);
4469 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4470 /* A retransmit, 2nd most common case. Force an immediate ack. */
4471 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4472 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4475 tcp_enter_quickack_mode(sk
);
4476 inet_csk_schedule_ack(sk
);
4482 /* Out of window. F.e. zero window probe. */
4483 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4486 tcp_enter_quickack_mode(sk
);
4488 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4489 /* Partial packet, seq < rcv_next < end_seq */
4490 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4491 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4492 TCP_SKB_CB(skb
)->end_seq
);
4494 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4496 /* If window is closed, drop tail of packet. But after
4497 * remembering D-SACK for its head made in previous line.
4499 if (!tcp_receive_window(tp
))
4504 tcp_data_queue_ofo(sk
, skb
);
4507 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4508 struct sk_buff_head
*list
)
4510 struct sk_buff
*next
= NULL
;
4512 if (!skb_queue_is_last(list
, skb
))
4513 next
= skb_queue_next(list
, skb
);
4515 __skb_unlink(skb
, list
);
4517 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4522 /* Collapse contiguous sequence of skbs head..tail with
4523 * sequence numbers start..end.
4525 * If tail is NULL, this means until the end of the list.
4527 * Segments with FIN/SYN are not collapsed (only because this
4531 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4532 struct sk_buff
*head
, struct sk_buff
*tail
,
4535 struct sk_buff
*skb
, *n
;
4538 /* First, check that queue is collapsible and find
4539 * the point where collapsing can be useful. */
4543 skb_queue_walk_from_safe(list
, skb
, n
) {
4546 /* No new bits? It is possible on ofo queue. */
4547 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4548 skb
= tcp_collapse_one(sk
, skb
, list
);
4554 /* The first skb to collapse is:
4556 * - bloated or contains data before "start" or
4557 * overlaps to the next one.
4559 if (!(TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)) &&
4560 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4561 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4562 end_of_skbs
= false;
4566 if (!skb_queue_is_last(list
, skb
)) {
4567 struct sk_buff
*next
= skb_queue_next(list
, skb
);
4569 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(next
)->seq
) {
4570 end_of_skbs
= false;
4575 /* Decided to skip this, advance start seq. */
4576 start
= TCP_SKB_CB(skb
)->end_seq
;
4579 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4582 while (before(start
, end
)) {
4583 int copy
= min_t(int, SKB_MAX_ORDER(0, 0), end
- start
);
4584 struct sk_buff
*nskb
;
4586 nskb
= alloc_skb(copy
, GFP_ATOMIC
);
4590 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4591 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4592 __skb_queue_before(list
, skb
, nskb
);
4593 skb_set_owner_r(nskb
, sk
);
4595 /* Copy data, releasing collapsed skbs. */
4597 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4598 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4602 size
= min(copy
, size
);
4603 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4605 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4609 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4610 skb
= tcp_collapse_one(sk
, skb
, list
);
4613 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4620 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4621 * and tcp_collapse() them until all the queue is collapsed.
4623 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4625 struct tcp_sock
*tp
= tcp_sk(sk
);
4626 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4627 struct sk_buff
*head
;
4633 start
= TCP_SKB_CB(skb
)->seq
;
4634 end
= TCP_SKB_CB(skb
)->end_seq
;
4638 struct sk_buff
*next
= NULL
;
4640 if (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
))
4641 next
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4644 /* Segment is terminated when we see gap or when
4645 * we are at the end of all the queue. */
4647 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4648 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4649 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4650 head
, skb
, start
, end
);
4654 /* Start new segment */
4655 start
= TCP_SKB_CB(skb
)->seq
;
4656 end
= TCP_SKB_CB(skb
)->end_seq
;
4658 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4659 start
= TCP_SKB_CB(skb
)->seq
;
4660 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4661 end
= TCP_SKB_CB(skb
)->end_seq
;
4667 * Purge the out-of-order queue.
4668 * Return true if queue was pruned.
4670 static bool tcp_prune_ofo_queue(struct sock
*sk
)
4672 struct tcp_sock
*tp
= tcp_sk(sk
);
4675 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4676 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4677 __skb_queue_purge(&tp
->out_of_order_queue
);
4679 /* Reset SACK state. A conforming SACK implementation will
4680 * do the same at a timeout based retransmit. When a connection
4681 * is in a sad state like this, we care only about integrity
4682 * of the connection not performance.
4684 if (tp
->rx_opt
.sack_ok
)
4685 tcp_sack_reset(&tp
->rx_opt
);
4692 /* Reduce allocated memory if we can, trying to get
4693 * the socket within its memory limits again.
4695 * Return less than zero if we should start dropping frames
4696 * until the socket owning process reads some of the data
4697 * to stabilize the situation.
4699 static int tcp_prune_queue(struct sock
*sk
)
4701 struct tcp_sock
*tp
= tcp_sk(sk
);
4703 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4705 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4707 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4708 tcp_clamp_window(sk
);
4709 else if (sk_under_memory_pressure(sk
))
4710 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4712 tcp_collapse_ofo_queue(sk
);
4713 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4714 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4715 skb_peek(&sk
->sk_receive_queue
),
4717 tp
->copied_seq
, tp
->rcv_nxt
);
4720 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4723 /* Collapsing did not help, destructive actions follow.
4724 * This must not ever occur. */
4726 tcp_prune_ofo_queue(sk
);
4728 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4731 /* If we are really being abused, tell the caller to silently
4732 * drop receive data on the floor. It will get retransmitted
4733 * and hopefully then we'll have sufficient space.
4735 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4737 /* Massive buffer overcommit. */
4742 static bool tcp_should_expand_sndbuf(const struct sock
*sk
)
4744 const struct tcp_sock
*tp
= tcp_sk(sk
);
4746 /* If the user specified a specific send buffer setting, do
4749 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4752 /* If we are under global TCP memory pressure, do not expand. */
4753 if (sk_under_memory_pressure(sk
))
4756 /* If we are under soft global TCP memory pressure, do not expand. */
4757 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
4760 /* If we filled the congestion window, do not expand. */
4761 if (tp
->packets_out
>= tp
->snd_cwnd
)
4767 /* When incoming ACK allowed to free some skb from write_queue,
4768 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4769 * on the exit from tcp input handler.
4771 * PROBLEM: sndbuf expansion does not work well with largesend.
4773 static void tcp_new_space(struct sock
*sk
)
4775 struct tcp_sock
*tp
= tcp_sk(sk
);
4777 if (tcp_should_expand_sndbuf(sk
)) {
4778 tcp_sndbuf_expand(sk
);
4779 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4782 sk
->sk_write_space(sk
);
4785 static void tcp_check_space(struct sock
*sk
)
4787 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
4788 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
4789 if (sk
->sk_socket
&&
4790 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
4795 static inline void tcp_data_snd_check(struct sock
*sk
)
4797 tcp_push_pending_frames(sk
);
4798 tcp_check_space(sk
);
4802 * Check if sending an ack is needed.
4804 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
4806 struct tcp_sock
*tp
= tcp_sk(sk
);
4808 /* More than one full frame received... */
4809 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
4810 /* ... and right edge of window advances far enough.
4811 * (tcp_recvmsg() will send ACK otherwise). Or...
4813 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
4814 /* We ACK each frame or... */
4815 tcp_in_quickack_mode(sk
) ||
4816 /* We have out of order data. */
4817 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
4818 /* Then ack it now */
4821 /* Else, send delayed ack. */
4822 tcp_send_delayed_ack(sk
);
4826 static inline void tcp_ack_snd_check(struct sock
*sk
)
4828 if (!inet_csk_ack_scheduled(sk
)) {
4829 /* We sent a data segment already. */
4832 __tcp_ack_snd_check(sk
, 1);
4836 * This routine is only called when we have urgent data
4837 * signaled. Its the 'slow' part of tcp_urg. It could be
4838 * moved inline now as tcp_urg is only called from one
4839 * place. We handle URGent data wrong. We have to - as
4840 * BSD still doesn't use the correction from RFC961.
4841 * For 1003.1g we should support a new option TCP_STDURG to permit
4842 * either form (or just set the sysctl tcp_stdurg).
4845 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
4847 struct tcp_sock
*tp
= tcp_sk(sk
);
4848 u32 ptr
= ntohs(th
->urg_ptr
);
4850 if (ptr
&& !sysctl_tcp_stdurg
)
4852 ptr
+= ntohl(th
->seq
);
4854 /* Ignore urgent data that we've already seen and read. */
4855 if (after(tp
->copied_seq
, ptr
))
4858 /* Do not replay urg ptr.
4860 * NOTE: interesting situation not covered by specs.
4861 * Misbehaving sender may send urg ptr, pointing to segment,
4862 * which we already have in ofo queue. We are not able to fetch
4863 * such data and will stay in TCP_URG_NOTYET until will be eaten
4864 * by recvmsg(). Seems, we are not obliged to handle such wicked
4865 * situations. But it is worth to think about possibility of some
4866 * DoSes using some hypothetical application level deadlock.
4868 if (before(ptr
, tp
->rcv_nxt
))
4871 /* Do we already have a newer (or duplicate) urgent pointer? */
4872 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
4875 /* Tell the world about our new urgent pointer. */
4878 /* We may be adding urgent data when the last byte read was
4879 * urgent. To do this requires some care. We cannot just ignore
4880 * tp->copied_seq since we would read the last urgent byte again
4881 * as data, nor can we alter copied_seq until this data arrives
4882 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4884 * NOTE. Double Dutch. Rendering to plain English: author of comment
4885 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4886 * and expect that both A and B disappear from stream. This is _wrong_.
4887 * Though this happens in BSD with high probability, this is occasional.
4888 * Any application relying on this is buggy. Note also, that fix "works"
4889 * only in this artificial test. Insert some normal data between A and B and we will
4890 * decline of BSD again. Verdict: it is better to remove to trap
4893 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
4894 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
4895 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
4897 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
4898 __skb_unlink(skb
, &sk
->sk_receive_queue
);
4903 tp
->urg_data
= TCP_URG_NOTYET
;
4906 /* Disable header prediction. */
4910 /* This is the 'fast' part of urgent handling. */
4911 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
4913 struct tcp_sock
*tp
= tcp_sk(sk
);
4915 /* Check if we get a new urgent pointer - normally not. */
4917 tcp_check_urg(sk
, th
);
4919 /* Do we wait for any urgent data? - normally not... */
4920 if (tp
->urg_data
== TCP_URG_NOTYET
) {
4921 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
4924 /* Is the urgent pointer pointing into this packet? */
4925 if (ptr
< skb
->len
) {
4927 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
4929 tp
->urg_data
= TCP_URG_VALID
| tmp
;
4930 if (!sock_flag(sk
, SOCK_DEAD
))
4931 sk
->sk_data_ready(sk
);
4936 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
4938 struct tcp_sock
*tp
= tcp_sk(sk
);
4939 int chunk
= skb
->len
- hlen
;
4943 if (skb_csum_unnecessary(skb
))
4944 err
= skb_copy_datagram_msg(skb
, hlen
, tp
->ucopy
.msg
, chunk
);
4946 err
= skb_copy_and_csum_datagram_msg(skb
, hlen
, tp
->ucopy
.msg
);
4949 tp
->ucopy
.len
-= chunk
;
4950 tp
->copied_seq
+= chunk
;
4951 tcp_rcv_space_adjust(sk
);
4958 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
4959 struct sk_buff
*skb
)
4963 if (sock_owned_by_user(sk
)) {
4965 result
= __tcp_checksum_complete(skb
);
4968 result
= __tcp_checksum_complete(skb
);
4973 static inline bool tcp_checksum_complete_user(struct sock
*sk
,
4974 struct sk_buff
*skb
)
4976 return !skb_csum_unnecessary(skb
) &&
4977 __tcp_checksum_complete_user(sk
, skb
);
4980 /* Does PAWS and seqno based validation of an incoming segment, flags will
4981 * play significant role here.
4983 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
4984 const struct tcphdr
*th
, int syn_inerr
)
4986 struct tcp_sock
*tp
= tcp_sk(sk
);
4988 /* RFC1323: H1. Apply PAWS check first. */
4989 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
4990 tcp_paws_discard(sk
, skb
)) {
4992 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
4993 tcp_send_dupack(sk
, skb
);
4996 /* Reset is accepted even if it did not pass PAWS. */
4999 /* Step 1: check sequence number */
5000 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5001 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5002 * (RST) segments are validated by checking their SEQ-fields."
5003 * And page 69: "If an incoming segment is not acceptable,
5004 * an acknowledgment should be sent in reply (unless the RST
5005 * bit is set, if so drop the segment and return)".
5010 tcp_send_dupack(sk
, skb
);
5015 /* Step 2: check RST bit */
5018 * If sequence number exactly matches RCV.NXT, then
5019 * RESET the connection
5021 * Send a challenge ACK
5023 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
)
5026 tcp_send_challenge_ack(sk
);
5030 /* step 3: check security and precedence [ignored] */
5032 /* step 4: Check for a SYN
5033 * RFC 5961 4.2 : Send a challenge ack
5038 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5039 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
5040 tcp_send_challenge_ack(sk
);
5052 * TCP receive function for the ESTABLISHED state.
5054 * It is split into a fast path and a slow path. The fast path is
5056 * - A zero window was announced from us - zero window probing
5057 * is only handled properly in the slow path.
5058 * - Out of order segments arrived.
5059 * - Urgent data is expected.
5060 * - There is no buffer space left
5061 * - Unexpected TCP flags/window values/header lengths are received
5062 * (detected by checking the TCP header against pred_flags)
5063 * - Data is sent in both directions. Fast path only supports pure senders
5064 * or pure receivers (this means either the sequence number or the ack
5065 * value must stay constant)
5066 * - Unexpected TCP option.
5068 * When these conditions are not satisfied it drops into a standard
5069 * receive procedure patterned after RFC793 to handle all cases.
5070 * The first three cases are guaranteed by proper pred_flags setting,
5071 * the rest is checked inline. Fast processing is turned on in
5072 * tcp_data_queue when everything is OK.
5074 void tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5075 const struct tcphdr
*th
, unsigned int len
)
5077 struct tcp_sock
*tp
= tcp_sk(sk
);
5079 if (unlikely(sk
->sk_rx_dst
== NULL
))
5080 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5082 * Header prediction.
5083 * The code loosely follows the one in the famous
5084 * "30 instruction TCP receive" Van Jacobson mail.
5086 * Van's trick is to deposit buffers into socket queue
5087 * on a device interrupt, to call tcp_recv function
5088 * on the receive process context and checksum and copy
5089 * the buffer to user space. smart...
5091 * Our current scheme is not silly either but we take the
5092 * extra cost of the net_bh soft interrupt processing...
5093 * We do checksum and copy also but from device to kernel.
5096 tp
->rx_opt
.saw_tstamp
= 0;
5098 /* pred_flags is 0xS?10 << 16 + snd_wnd
5099 * if header_prediction is to be made
5100 * 'S' will always be tp->tcp_header_len >> 2
5101 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5102 * turn it off (when there are holes in the receive
5103 * space for instance)
5104 * PSH flag is ignored.
5107 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5108 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5109 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5110 int tcp_header_len
= tp
->tcp_header_len
;
5112 /* Timestamp header prediction: tcp_header_len
5113 * is automatically equal to th->doff*4 due to pred_flags
5117 /* Check timestamp */
5118 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5119 /* No? Slow path! */
5120 if (!tcp_parse_aligned_timestamp(tp
, th
))
5123 /* If PAWS failed, check it more carefully in slow path */
5124 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5127 /* DO NOT update ts_recent here, if checksum fails
5128 * and timestamp was corrupted part, it will result
5129 * in a hung connection since we will drop all
5130 * future packets due to the PAWS test.
5134 if (len
<= tcp_header_len
) {
5135 /* Bulk data transfer: sender */
5136 if (len
== tcp_header_len
) {
5137 /* Predicted packet is in window by definition.
5138 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5139 * Hence, check seq<=rcv_wup reduces to:
5141 if (tcp_header_len
==
5142 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5143 tp
->rcv_nxt
== tp
->rcv_wup
)
5144 tcp_store_ts_recent(tp
);
5146 /* We know that such packets are checksummed
5149 tcp_ack(sk
, skb
, 0);
5151 tcp_data_snd_check(sk
);
5153 } else { /* Header too small */
5154 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5159 bool fragstolen
= false;
5161 if (tp
->ucopy
.task
== current
&&
5162 tp
->copied_seq
== tp
->rcv_nxt
&&
5163 len
- tcp_header_len
<= tp
->ucopy
.len
&&
5164 sock_owned_by_user(sk
)) {
5165 __set_current_state(TASK_RUNNING
);
5167 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
)) {
5168 /* Predicted packet is in window by definition.
5169 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5170 * Hence, check seq<=rcv_wup reduces to:
5172 if (tcp_header_len
==
5173 (sizeof(struct tcphdr
) +
5174 TCPOLEN_TSTAMP_ALIGNED
) &&
5175 tp
->rcv_nxt
== tp
->rcv_wup
)
5176 tcp_store_ts_recent(tp
);
5178 tcp_rcv_rtt_measure_ts(sk
, skb
);
5180 __skb_pull(skb
, tcp_header_len
);
5181 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5182 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITSTOUSER
);
5187 if (tcp_checksum_complete_user(sk
, skb
))
5190 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5193 /* Predicted packet is in window by definition.
5194 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5195 * Hence, check seq<=rcv_wup reduces to:
5197 if (tcp_header_len
==
5198 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5199 tp
->rcv_nxt
== tp
->rcv_wup
)
5200 tcp_store_ts_recent(tp
);
5202 tcp_rcv_rtt_measure_ts(sk
, skb
);
5204 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5206 /* Bulk data transfer: receiver */
5207 eaten
= tcp_queue_rcv(sk
, skb
, tcp_header_len
,
5211 tcp_event_data_recv(sk
, skb
);
5213 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5214 /* Well, only one small jumplet in fast path... */
5215 tcp_ack(sk
, skb
, FLAG_DATA
);
5216 tcp_data_snd_check(sk
);
5217 if (!inet_csk_ack_scheduled(sk
))
5221 __tcp_ack_snd_check(sk
, 0);
5224 kfree_skb_partial(skb
, fragstolen
);
5225 sk
->sk_data_ready(sk
);
5231 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
5234 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5238 * Standard slow path.
5241 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
5245 if (tcp_ack(sk
, skb
, FLAG_SLOWPATH
| FLAG_UPDATE_TS_RECENT
) < 0)
5248 tcp_rcv_rtt_measure_ts(sk
, skb
);
5250 /* Process urgent data. */
5251 tcp_urg(sk
, skb
, th
);
5253 /* step 7: process the segment text */
5254 tcp_data_queue(sk
, skb
);
5256 tcp_data_snd_check(sk
);
5257 tcp_ack_snd_check(sk
);
5261 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_CSUMERRORS
);
5262 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5267 EXPORT_SYMBOL(tcp_rcv_established
);
5269 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
5271 struct tcp_sock
*tp
= tcp_sk(sk
);
5272 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5274 tcp_set_state(sk
, TCP_ESTABLISHED
);
5277 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5278 security_inet_conn_established(sk
, skb
);
5281 /* Make sure socket is routed, for correct metrics. */
5282 icsk
->icsk_af_ops
->rebuild_header(sk
);
5284 tcp_init_metrics(sk
);
5286 tcp_init_congestion_control(sk
);
5288 /* Prevent spurious tcp_cwnd_restart() on first data
5291 tp
->lsndtime
= tcp_time_stamp
;
5293 tcp_init_buffer_space(sk
);
5295 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5296 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5298 if (!tp
->rx_opt
.snd_wscale
)
5299 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5303 if (!sock_flag(sk
, SOCK_DEAD
)) {
5304 sk
->sk_state_change(sk
);
5305 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5309 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
5310 struct tcp_fastopen_cookie
*cookie
)
5312 struct tcp_sock
*tp
= tcp_sk(sk
);
5313 struct sk_buff
*data
= tp
->syn_data
? tcp_write_queue_head(sk
) : NULL
;
5314 u16 mss
= tp
->rx_opt
.mss_clamp
;
5317 if (mss
== tp
->rx_opt
.user_mss
) {
5318 struct tcp_options_received opt
;
5320 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5321 tcp_clear_options(&opt
);
5322 opt
.user_mss
= opt
.mss_clamp
= 0;
5323 tcp_parse_options(synack
, &opt
, 0, NULL
);
5324 mss
= opt
.mss_clamp
;
5327 if (!tp
->syn_fastopen
) /* Ignore an unsolicited cookie */
5330 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5331 * the remote receives only the retransmitted (regular) SYNs: either
5332 * the original SYN-data or the corresponding SYN-ACK is lost.
5334 syn_drop
= (cookie
->len
<= 0 && data
&& tp
->total_retrans
);
5336 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
);
5338 if (data
) { /* Retransmit unacked data in SYN */
5339 tcp_for_write_queue_from(data
, sk
) {
5340 if (data
== tcp_send_head(sk
) ||
5341 __tcp_retransmit_skb(sk
, data
))
5345 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPFASTOPENACTIVEFAIL
);
5348 tp
->syn_data_acked
= tp
->syn_data
;
5349 if (tp
->syn_data_acked
)
5350 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPFASTOPENACTIVE
);
5354 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5355 const struct tcphdr
*th
, unsigned int len
)
5357 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5358 struct tcp_sock
*tp
= tcp_sk(sk
);
5359 struct tcp_fastopen_cookie foc
= { .len
= -1 };
5360 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5362 tcp_parse_options(skb
, &tp
->rx_opt
, 0, &foc
);
5363 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
5364 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
5368 * "If the state is SYN-SENT then
5369 * first check the ACK bit
5370 * If the ACK bit is set
5371 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5372 * a reset (unless the RST bit is set, if so drop
5373 * the segment and return)"
5375 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
5376 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
))
5377 goto reset_and_undo
;
5379 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5380 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5382 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSACTIVEREJECTED
);
5383 goto reset_and_undo
;
5386 /* Now ACK is acceptable.
5388 * "If the RST bit is set
5389 * If the ACK was acceptable then signal the user "error:
5390 * connection reset", drop the segment, enter CLOSED state,
5391 * delete TCB, and return."
5400 * "fifth, if neither of the SYN or RST bits is set then
5401 * drop the segment and return."
5407 goto discard_and_undo
;
5410 * "If the SYN bit is on ...
5411 * are acceptable then ...
5412 * (our SYN has been ACKed), change the connection
5413 * state to ESTABLISHED..."
5416 tcp_ecn_rcv_synack(tp
, th
);
5418 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5419 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5421 /* Ok.. it's good. Set up sequence numbers and
5422 * move to established.
5424 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5425 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5427 /* RFC1323: The window in SYN & SYN/ACK segments is
5430 tp
->snd_wnd
= ntohs(th
->window
);
5432 if (!tp
->rx_opt
.wscale_ok
) {
5433 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5434 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5437 if (tp
->rx_opt
.saw_tstamp
) {
5438 tp
->rx_opt
.tstamp_ok
= 1;
5439 tp
->tcp_header_len
=
5440 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5441 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5442 tcp_store_ts_recent(tp
);
5444 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5447 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5448 tcp_enable_fack(tp
);
5451 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5452 tcp_initialize_rcv_mss(sk
);
5454 /* Remember, tcp_poll() does not lock socket!
5455 * Change state from SYN-SENT only after copied_seq
5456 * is initialized. */
5457 tp
->copied_seq
= tp
->rcv_nxt
;
5461 tcp_finish_connect(sk
, skb
);
5463 if ((tp
->syn_fastopen
|| tp
->syn_data
) &&
5464 tcp_rcv_fastopen_synack(sk
, skb
, &foc
))
5467 if (sk
->sk_write_pending
||
5468 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5469 icsk
->icsk_ack
.pingpong
) {
5470 /* Save one ACK. Data will be ready after
5471 * several ticks, if write_pending is set.
5473 * It may be deleted, but with this feature tcpdumps
5474 * look so _wonderfully_ clever, that I was not able
5475 * to stand against the temptation 8) --ANK
5477 inet_csk_schedule_ack(sk
);
5478 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5479 tcp_enter_quickack_mode(sk
);
5480 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5481 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5492 /* No ACK in the segment */
5496 * "If the RST bit is set
5498 * Otherwise (no ACK) drop the segment and return."
5501 goto discard_and_undo
;
5505 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5506 tcp_paws_reject(&tp
->rx_opt
, 0))
5507 goto discard_and_undo
;
5510 /* We see SYN without ACK. It is attempt of
5511 * simultaneous connect with crossed SYNs.
5512 * Particularly, it can be connect to self.
5514 tcp_set_state(sk
, TCP_SYN_RECV
);
5516 if (tp
->rx_opt
.saw_tstamp
) {
5517 tp
->rx_opt
.tstamp_ok
= 1;
5518 tcp_store_ts_recent(tp
);
5519 tp
->tcp_header_len
=
5520 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5522 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5525 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5526 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5528 /* RFC1323: The window in SYN & SYN/ACK segments is
5531 tp
->snd_wnd
= ntohs(th
->window
);
5532 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5533 tp
->max_window
= tp
->snd_wnd
;
5535 tcp_ecn_rcv_syn(tp
, th
);
5538 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5539 tcp_initialize_rcv_mss(sk
);
5541 tcp_send_synack(sk
);
5543 /* Note, we could accept data and URG from this segment.
5544 * There are no obstacles to make this (except that we must
5545 * either change tcp_recvmsg() to prevent it from returning data
5546 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5548 * However, if we ignore data in ACKless segments sometimes,
5549 * we have no reasons to accept it sometimes.
5550 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5551 * is not flawless. So, discard packet for sanity.
5552 * Uncomment this return to process the data.
5559 /* "fifth, if neither of the SYN or RST bits is set then
5560 * drop the segment and return."
5564 tcp_clear_options(&tp
->rx_opt
);
5565 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5569 tcp_clear_options(&tp
->rx_opt
);
5570 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5575 * This function implements the receiving procedure of RFC 793 for
5576 * all states except ESTABLISHED and TIME_WAIT.
5577 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5578 * address independent.
5581 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5582 const struct tcphdr
*th
, unsigned int len
)
5584 struct tcp_sock
*tp
= tcp_sk(sk
);
5585 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5586 struct request_sock
*req
;
5591 tp
->rx_opt
.saw_tstamp
= 0;
5593 switch (sk
->sk_state
) {
5607 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5610 /* Now we have several options: In theory there is
5611 * nothing else in the frame. KA9Q has an option to
5612 * send data with the syn, BSD accepts data with the
5613 * syn up to the [to be] advertised window and
5614 * Solaris 2.1 gives you a protocol error. For now
5615 * we just ignore it, that fits the spec precisely
5616 * and avoids incompatibilities. It would be nice in
5617 * future to drop through and process the data.
5619 * Now that TTCP is starting to be used we ought to
5621 * But, this leaves one open to an easy denial of
5622 * service attack, and SYN cookies can't defend
5623 * against this problem. So, we drop the data
5624 * in the interest of security over speed unless
5625 * it's still in use.
5633 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
5637 /* Do step6 onward by hand. */
5638 tcp_urg(sk
, skb
, th
);
5640 tcp_data_snd_check(sk
);
5644 req
= tp
->fastopen_rsk
;
5646 WARN_ON_ONCE(sk
->sk_state
!= TCP_SYN_RECV
&&
5647 sk
->sk_state
!= TCP_FIN_WAIT1
);
5649 if (tcp_check_req(sk
, skb
, req
, NULL
, true) == NULL
)
5653 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5656 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
5659 /* step 5: check the ACK field */
5660 acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
|
5661 FLAG_UPDATE_TS_RECENT
) > 0;
5663 switch (sk
->sk_state
) {
5668 /* Once we leave TCP_SYN_RECV, we no longer need req
5672 synack_stamp
= tcp_rsk(req
)->snt_synack
;
5673 tp
->total_retrans
= req
->num_retrans
;
5674 reqsk_fastopen_remove(sk
, req
, false);
5676 synack_stamp
= tp
->lsndtime
;
5677 /* Make sure socket is routed, for correct metrics. */
5678 icsk
->icsk_af_ops
->rebuild_header(sk
);
5679 tcp_init_congestion_control(sk
);
5682 tp
->copied_seq
= tp
->rcv_nxt
;
5683 tcp_init_buffer_space(sk
);
5686 tcp_set_state(sk
, TCP_ESTABLISHED
);
5687 sk
->sk_state_change(sk
);
5689 /* Note, that this wakeup is only for marginal crossed SYN case.
5690 * Passively open sockets are not waked up, because
5691 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5694 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5696 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5697 tp
->snd_wnd
= ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
;
5698 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5699 tcp_synack_rtt_meas(sk
, synack_stamp
);
5701 if (tp
->rx_opt
.tstamp_ok
)
5702 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5705 /* Re-arm the timer because data may have been sent out.
5706 * This is similar to the regular data transmission case
5707 * when new data has just been ack'ed.
5709 * (TFO) - we could try to be more aggressive and
5710 * retransmitting any data sooner based on when they
5715 tcp_init_metrics(sk
);
5717 tcp_update_pacing_rate(sk
);
5719 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5720 tp
->lsndtime
= tcp_time_stamp
;
5722 tcp_initialize_rcv_mss(sk
);
5723 tcp_fast_path_on(tp
);
5726 case TCP_FIN_WAIT1
: {
5727 struct dst_entry
*dst
;
5730 /* If we enter the TCP_FIN_WAIT1 state and we are a
5731 * Fast Open socket and this is the first acceptable
5732 * ACK we have received, this would have acknowledged
5733 * our SYNACK so stop the SYNACK timer.
5736 /* Return RST if ack_seq is invalid.
5737 * Note that RFC793 only says to generate a
5738 * DUPACK for it but for TCP Fast Open it seems
5739 * better to treat this case like TCP_SYN_RECV
5744 /* We no longer need the request sock. */
5745 reqsk_fastopen_remove(sk
, req
, false);
5748 if (tp
->snd_una
!= tp
->write_seq
)
5751 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5752 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5754 dst
= __sk_dst_get(sk
);
5758 if (!sock_flag(sk
, SOCK_DEAD
)) {
5759 /* Wake up lingering close() */
5760 sk
->sk_state_change(sk
);
5764 if (tp
->linger2
< 0 ||
5765 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5766 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
5768 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5772 tmo
= tcp_fin_time(sk
);
5773 if (tmo
> TCP_TIMEWAIT_LEN
) {
5774 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5775 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5776 /* Bad case. We could lose such FIN otherwise.
5777 * It is not a big problem, but it looks confusing
5778 * and not so rare event. We still can lose it now,
5779 * if it spins in bh_lock_sock(), but it is really
5782 inet_csk_reset_keepalive_timer(sk
, tmo
);
5784 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
5791 if (tp
->snd_una
== tp
->write_seq
) {
5792 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
5798 if (tp
->snd_una
== tp
->write_seq
) {
5799 tcp_update_metrics(sk
);
5806 /* step 6: check the URG bit */
5807 tcp_urg(sk
, skb
, th
);
5809 /* step 7: process the segment text */
5810 switch (sk
->sk_state
) {
5811 case TCP_CLOSE_WAIT
:
5814 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
5818 /* RFC 793 says to queue data in these states,
5819 * RFC 1122 says we MUST send a reset.
5820 * BSD 4.4 also does reset.
5822 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
5823 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5824 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
5825 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5831 case TCP_ESTABLISHED
:
5832 tcp_data_queue(sk
, skb
);
5837 /* tcp_data could move socket to TIME-WAIT */
5838 if (sk
->sk_state
!= TCP_CLOSE
) {
5839 tcp_data_snd_check(sk
);
5840 tcp_ack_snd_check(sk
);
5849 EXPORT_SYMBOL(tcp_rcv_state_process
);
5851 static inline void pr_drop_req(struct request_sock
*req
, __u16 port
, int family
)
5853 struct inet_request_sock
*ireq
= inet_rsk(req
);
5855 if (family
== AF_INET
)
5856 net_dbg_ratelimited("drop open request from %pI4/%u\n",
5857 &ireq
->ir_rmt_addr
, port
);
5858 #if IS_ENABLED(CONFIG_IPV6)
5859 else if (family
== AF_INET6
)
5860 net_dbg_ratelimited("drop open request from %pI6/%u\n",
5861 &ireq
->ir_v6_rmt_addr
, port
);
5865 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
5867 * If we receive a SYN packet with these bits set, it means a
5868 * network is playing bad games with TOS bits. In order to
5869 * avoid possible false congestion notifications, we disable
5870 * TCP ECN negotiation.
5872 * Exception: tcp_ca wants ECN. This is required for DCTCP
5873 * congestion control; it requires setting ECT on all packets,
5874 * including SYN. We inverse the test in this case: If our
5875 * local socket wants ECN, but peer only set ece/cwr (but not
5876 * ECT in IP header) its probably a non-DCTCP aware sender.
5878 static void tcp_ecn_create_request(struct request_sock
*req
,
5879 const struct sk_buff
*skb
,
5880 const struct sock
*listen_sk
,
5881 const struct dst_entry
*dst
)
5883 const struct tcphdr
*th
= tcp_hdr(skb
);
5884 const struct net
*net
= sock_net(listen_sk
);
5885 bool th_ecn
= th
->ece
&& th
->cwr
;
5886 bool ect
, need_ecn
, ecn_ok
;
5891 ect
= !INET_ECN_is_not_ect(TCP_SKB_CB(skb
)->ip_dsfield
);
5892 need_ecn
= tcp_ca_needs_ecn(listen_sk
);
5893 ecn_ok
= net
->ipv4
.sysctl_tcp_ecn
|| dst_feature(dst
, RTAX_FEATURE_ECN
);
5895 if (!ect
&& !need_ecn
&& ecn_ok
)
5896 inet_rsk(req
)->ecn_ok
= 1;
5897 else if (ect
&& need_ecn
)
5898 inet_rsk(req
)->ecn_ok
= 1;
5901 int tcp_conn_request(struct request_sock_ops
*rsk_ops
,
5902 const struct tcp_request_sock_ops
*af_ops
,
5903 struct sock
*sk
, struct sk_buff
*skb
)
5905 struct tcp_options_received tmp_opt
;
5906 struct request_sock
*req
;
5907 struct tcp_sock
*tp
= tcp_sk(sk
);
5908 struct dst_entry
*dst
= NULL
;
5909 __u32 isn
= TCP_SKB_CB(skb
)->tcp_tw_isn
;
5910 bool want_cookie
= false, fastopen
;
5912 struct tcp_fastopen_cookie foc
= { .len
= -1 };
5916 /* TW buckets are converted to open requests without
5917 * limitations, they conserve resources and peer is
5918 * evidently real one.
5920 if ((sysctl_tcp_syncookies
== 2 ||
5921 inet_csk_reqsk_queue_is_full(sk
)) && !isn
) {
5922 want_cookie
= tcp_syn_flood_action(sk
, skb
, rsk_ops
->slab_name
);
5928 /* Accept backlog is full. If we have already queued enough
5929 * of warm entries in syn queue, drop request. It is better than
5930 * clogging syn queue with openreqs with exponentially increasing
5933 if (sk_acceptq_is_full(sk
) && inet_csk_reqsk_queue_young(sk
) > 1) {
5934 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
5938 req
= inet_reqsk_alloc(rsk_ops
);
5942 tcp_rsk(req
)->af_specific
= af_ops
;
5944 tcp_clear_options(&tmp_opt
);
5945 tmp_opt
.mss_clamp
= af_ops
->mss_clamp
;
5946 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
5947 tcp_parse_options(skb
, &tmp_opt
, 0, want_cookie
? NULL
: &foc
);
5949 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
5950 tcp_clear_options(&tmp_opt
);
5952 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
5953 tcp_openreq_init(req
, &tmp_opt
, skb
, sk
);
5955 af_ops
->init_req(req
, sk
, skb
);
5957 if (security_inet_conn_request(sk
, skb
, req
))
5960 if (!want_cookie
&& !isn
) {
5961 /* VJ's idea. We save last timestamp seen
5962 * from the destination in peer table, when entering
5963 * state TIME-WAIT, and check against it before
5964 * accepting new connection request.
5966 * If "isn" is not zero, this request hit alive
5967 * timewait bucket, so that all the necessary checks
5968 * are made in the function processing timewait state.
5970 if (tcp_death_row
.sysctl_tw_recycle
) {
5973 dst
= af_ops
->route_req(sk
, &fl
, req
, &strict
);
5975 if (dst
&& strict
&&
5976 !tcp_peer_is_proven(req
, dst
, true,
5977 tmp_opt
.saw_tstamp
)) {
5978 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSPASSIVEREJECTED
);
5979 goto drop_and_release
;
5982 /* Kill the following clause, if you dislike this way. */
5983 else if (!sysctl_tcp_syncookies
&&
5984 (sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
5985 (sysctl_max_syn_backlog
>> 2)) &&
5986 !tcp_peer_is_proven(req
, dst
, false,
5987 tmp_opt
.saw_tstamp
)) {
5988 /* Without syncookies last quarter of
5989 * backlog is filled with destinations,
5990 * proven to be alive.
5991 * It means that we continue to communicate
5992 * to destinations, already remembered
5993 * to the moment of synflood.
5995 pr_drop_req(req
, ntohs(tcp_hdr(skb
)->source
),
5997 goto drop_and_release
;
6000 isn
= af_ops
->init_seq(skb
);
6003 dst
= af_ops
->route_req(sk
, &fl
, req
, NULL
);
6008 tcp_ecn_create_request(req
, skb
, sk
, dst
);
6011 isn
= cookie_init_sequence(af_ops
, sk
, skb
, &req
->mss
);
6012 req
->cookie_ts
= tmp_opt
.tstamp_ok
;
6013 if (!tmp_opt
.tstamp_ok
)
6014 inet_rsk(req
)->ecn_ok
= 0;
6017 tcp_rsk(req
)->snt_isn
= isn
;
6018 tcp_openreq_init_rwin(req
, sk
, dst
);
6019 fastopen
= !want_cookie
&&
6020 tcp_try_fastopen(sk
, skb
, req
, &foc
, dst
);
6021 err
= af_ops
->send_synack(sk
, dst
, &fl
, req
,
6022 skb_get_queue_mapping(skb
), &foc
);
6024 if (err
|| want_cookie
)
6027 tcp_rsk(req
)->listener
= NULL
;
6028 af_ops
->queue_hash_add(sk
, req
, TCP_TIMEOUT_INIT
);
6038 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_LISTENDROPS
);
6041 EXPORT_SYMBOL(tcp_conn_request
);